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Abstract 
 
Hyperspectral imaging has become a powerful tool in biomedical and agriculture fields in 

the recent years and the interest amongst researchers has increased immensely. 

Hyperspectral imaging combines conventional imaging and spectroscopy to acquire both 

spatial and spectral information from an object. Consequently, a hyperspectral image data 

contains not only spectral information of objects, but also the spatial arrangement of 

objects. Information captured in neighboring locations may provide useful supplementary 

knowledge for analysis. Therefore, this dissertation investigates the integration of 

information from both the spectral and spatial domains to enhance hyperspectral image 

classification performance. 

 
The major impediment to the combined spatial and spectral approach is that most spatial 

methods were only developed for single image band. Based on the traditional single-

image based local Geary measure, this dissertation successfully proposes a 

Multidimensional Local Spatial Autocorrelation (MLSA) for hyperspectral image data. 

Based on the proposed spatial measure, this research work develops a collaborative band 

selection strategy that combines both the spectral separability measure (divergence) and 

spatial homogeneity measure (MLSA) for hyperspectral band selection task. In order to 

calculate the divergence more efficiently, a set of recursive equations for the calculation 

of divergence with an additional band is derived to overcome the computational 

restrictions.  

 

Moreover, this dissertation proposes a collaborative classification method which 

integrates the spectral distance and spatial autocorrelation during the decision-making 

process. Therefore, this method fully utilizes the spatial-spectral relationships inherent in 

the data, and thus improves the classification performance.  
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In addition, the usefulness of the proposed band selection and classification method is 

evaluated with four case studies. The case studies include detection and identification of 

tumor on poultry carcasses, fecal on apple surface, cancer on mouse skin and crop in 

agricultural filed using hyperspectral imagery. Through the case studies, the 

performances of the proposed methods are assessed. It clearly shows the necessity and 

efficiency of integrating spatial information for hyperspectral image processing.   
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1 Introduction 
 

1.1 Motivation 

 

Hyperspectral imaging has been one of the main focuses in the imaging field over last 20 

years. The development of hyperspectral imaging originated from the need 30 years ago 

to develop techniques for remote sensing of the Earth from space [1]. The idea was to 

study the Earth utilizing details not readily visible to humans [3]. These details are 

manifested in spectral regions beyond the narrow wavelength region accessible to the 

human eye, from the near infrared to the microwave and into the radiometric wavelength 

[2][4].  

 

Hyperspectral imaging combines conventional imaging and spectroscopy to acquire both 

spatial and spectral information from an object. This type of imaging produces a three-

dimensional image cube [5], [6] with two spatial dimensions (horizontal and vertical) and 

one spectral dimension. The spectral dimension contains spectral (or wavelength) 

information for each pixel on the hyperspectral image cube, and the spatial dimension 

records the spatial information for each pixel. Because of these combined features of 

imaging and spectroscopy, hyperspectral imaging can enhance and expand our capability 

to identify the objects present in the observed scene as well as their spatial distributions.  

 

Hyperspectral imaging has been widely used in a number of areas, including 

environmental monitoring [7], land cover [8], agricultural analysis [9], and military 

applications such as ground target detection [10]-[14], and face recognition [15]. As 

hyperspectral cameras have become more and more accessible, hyperspectral imaging 

has been applied to biomedical and agricultural uses, as well. Since hyperspectral 

imaging offers a non-contact optical sensing technique for obtaining both spectral and 
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spatial information, it has become as effective tool in biomedical applications such as 

various cancer diagnostics [16]-[19] [56]-[58]and in agricultural application such as food 

safety inspection [17][39][42]-[51]. 

 

The goal of hyperspectral imaging in biomedical applications is to be able to detect and 

diagnose any form of diseases from its spectral signature. There are many different tools 

that can help doctors in their diagnoses, but in many cases the disease has already spread, 

and treatment may already have been compromised. Developing hyperspectral imaging 

as a medical imaging system that could diagnose pathology at an early stage could be a 

major improvement in the biomedical field, thus saving many lives. 

 

In agriculture, the technique of hyperspectral imaging can help in the design of a non-

destructive, automated safety inspection machine. An automated inspection system would 

liberate humans from the traditional hand manipulation of agricultural products, reducing 

energy, labor, and materials costs and improving the quality of product. 

 

For hyperspectral imaging analysis in biomedical and agricultural applications, the main 

issues are band selection or dimensionality reduction and classification. Both of these 

applications require that the object can be processed in a timely manner with little or no 

time lag. This is referred as “real-time” processing. Band selection algorithms can reduce 

the data dimensionality without loss of critical information, making real-time processing 

possible.  “Classification” is usually a name given to the process of grouping a large 

number of pixels into multiple classes. Classification of a hyperspectral image means to 

identify each pixel into multiple classes in the scene. Spectral classification methods 

produce satisfying results in many cases, but a serious limitation of such methods is that 

they assign pixels to classes only on their spectral similarity, without any consideration 

given to the spatial locations of the pixels. When the objects in a hyperspectral image do 

not have unique spectral signatures, the classification results they generated often display 

noisy or unrealistic features, such as isolated pixels assigned to a particular class. In this 

situation, additional information is required to distinguish them.  
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Hyperspectral data are collected by hyperspectral imaging spectrometers. The 

spectrometers regularize continuous scenes into a grid of equally sized and regularly 

spaced data in the form of pixels. Consequently, a hyperspectral image data not only 

contains information in the spectral domain, but also in the spatial domain in terms of the 

arrangement of objects in the scene. Information captured in neighboring locations may 

provide useful supplementary knowledge for analysis. Therefore, this dissertation 

investigates the integration of information from both the spectral and spatial domains to 

enhance hyperspectral image classification performance. 

 

1.2 Problem Statement 

 

In hyperspectral imagery, the electromagnetic spectrum is sampled at dozens, hundreds 

or even thousands of wavelength ranges in the visible and near infrared spectra. The 

result is a very detailed view of the spectral signature of the scene represented by a 

particular pixel. The additional information comes at a cost, however. The more features 

used for prediction, the more noise, redundancy, and model complexity can degrade 

accuracy. Practical considerations such as computation time, storage, and communication 

bandwidth must also be considered. These problems can be resolved by dimensionality 

reduction methods, which seek to remove redundant information and to keep only the 

information relevant to the applications. Among widely used dimensionality reduction 

methods, principal component analysis (PCA) [23] rearranges the data in terms of the 

significance measured by the eigenvalues of the data covariance matrix. While PCA is a 

powerful dimensionality reduction technique, it may not be optimal in terms of 

classification [24]. Other dimensionality reduction techniques in hyperspectral image 

processing include feature extraction and band selection. Feature extraction generates a 

reduced number of features by transforming the original data into a lower dimension with 

most information content preserved [25][26]. Band selection finds an optimal subset of 

spectral bands for dimensionality reduction in hyperspectral image processing without 

any loss of critical information. The transformed features generated by the feature 
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extraction methods can usually provide better discriminating power than the optimal 

bands selected by the band selection method. But feature extraction is not suitable for the 

applications discussed in this dissertation since it reduces the time and cost for the 

measurement equipment. Band selection is preferable in our applications because it can 

decrease the system cost and increase the processing speed.  

 

Both supervised and unsupervised techniques have been developed for classifying 

hyperspectral images [20]. Although most classification techniques are suitable for 

classifying hyperspectral images by spectral information, their application to 

classification imaging is limited by the fact that they rely on the spectral properties of the 

data only, thus neglecting the spatial information related to the spatial arrangement of the 

pixels in the scene. The resulting classification is carried out without incorporating 

information on the spatially adjacent data, i.e., the data are managed not as an image but 

as a disarranged listing of spectral measurements, where the spatial coordinates can be 

randomly shuffled without affecting the analysis. However, one of the distinguishing 

properties of hyperspectral data, as collected by available imaging spectrometers, is the 

multivariate information coupled with a two-dimensional (2-D) pictorial representation 

amenable to image interpretation [21][22]. Consequently, a hyperspectral image data not 

only contain information regarding the spectral content, but also the spatial arrangement 

of objects in the scene under observation. An efficient classification procedure should 

consider both the spectral and spatial information when it assigns a pixel to a particular 

class.  

 

1.3 Objective 

 
The main objective of this research is to investigate the integration of spatial and spectral 

information for hyperspectral image classification. The major impediment to the 

combined spatial and spectral approach is that most spatial methods were only developed 

for single image band. By carefully investigating the existing spatial autocorrelation 
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measure, this dissertation successfully proposes a Multidimensional Local Spatial 

Autocorrelation (MLSA) for hyperspectral image data. This new measure is a 

fundamental improvement in the description of spatial autocorrelation for hyperspectral 

imaging and offers an excellent opportunity for combining spatial and spectral 

information in hyperspectral data analysis.  

 

An important task in hyperspectral data analysis is to reduce the redundancy of the 

spectral and spatial information without losing any valuable details needed for the 

subsequent detection, discrimination, and classification processes. First, the use of 

divergence for band selection is mathematically characterized. A set of recursive 

equations for the calculation of divergence with an additional band is derived to 

overcome the computational restrictions. Then based on the proposed Multidimensional 

Local Spatial Autocorrelation (MLSA) measure, this research work develops a 

collaborative band selection strategy that combines both the spectral separability measure 

(divergence) and spatial homogeneity measure (MLSA) for hyperspectral band selection 

task. Moreover, this dissertation proposes a collaborative classification method to 

integrate the spectral and spatial information simultaneously for the classification process. 

The collaborative classification method consists of a spectral similarity term to measure 

the similarity of a given sample to a particular class and a spatial similarity term to 

measure how similar a pixel to its neighboring pixels. Therefore, this method fully 

utilizes the spatial-spectral relationships inherent in the data, and thus improves the 

classification performance for hyperspectral image data. Figure 1.1 illustrates the 

schematic diagram of proposed method.  

 

 
 Figure 1.1: Schematic diagram of proposed method 
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1.4 Contributions 

 

The primary goal of this study is to investigate how to efficiently integrate spatial and 

spectral information in hyperspectral image analysis. To this end, contributions include: 

1. Proposing the Multidimensional Local Spatial Autocorrelation (MLSA) measure 

for hyperspectral image and deriving their statistic moment terms.   

2. Developing a set of recursive equations for the calculation of divergence with an 

additional band to overcome the computational restrictions in band selection.  

3. Proposing a collaborative band selection strategy that combines both the spectral 

separability measure (divergence) and spatial homogeneity measure (MLSA) for 

hyperspectral band selection. 

4. Developing a collaborative classification method that considers both the spectral 

similarity and spatial homogeneity during the decision-making.    

5. Evaluating the proposed band selection and classification method in four case 

studies, including detection and identification of tumor on poultry carcasses, fecal 

on apple surface, cancer on mouse skin and crop in agricultural filed using 

hyperspectral imagery.   

6. Developing a MATLAB Toolbox for hyperspectral image analysis. 

 

One of the reasons for the paucity of combined spatial and spectral approaches is that 

most spatial methods have only been developed for the single image band. The extension 

of classic spatial methods to hyperspectral image data is not straightforward. When such 

techniques are applied independently to each spectral image, there is a possibility for loss 

or corruption of information of the image due to the probability that new spectral 

constituents (not present in the original image) may be created as a result of processing 

the spectral image separately. This dissertation successfully proposes the 

Multidimensional Local Spatial Autocorrelation (MLSA) measure for hyperspectral 

image and derives its statistic moment terms. This new measure is a fundamental 

improvement in the description of spatial autocorrelation for hyperspectral imaging and 
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provides a great opportunity to combine spatial and spectral information in hyperspectral 

data analysis (Chapter 4.4.2).     

 

The huge amount of hyperspectral image data often makes real-time computer processing 

a challenging task. This dissertation suggests a band selection method for hyperspectral 

images based on recursive divergence. This method avoids transforming the original 

hyperspectral images to the feature space. Instead, it maximizes the class separability by 

considering the correlation information of spectral bands. This research mathematically 

characterizes the use of divergence for band selection. Also, a set of recursive 

equations for the calculation of divergence with an additional band is derived to 

overcome the computational restrictions in real-time processing (Chapter 4.3).  

 

In the spectral information-based band selection, a good subset will maximize the 

representation of the spectral separability. However, separability maximization does not 

guarantee a classification process that will produce either the best or the most accurate 

visual result. It is only when the spectral separability is spatially organized that regional 

variations become apparent in an image. This suggests that using only the spectral 

separability criterion cannot guarantee the most accurate results. This dissertation 

develops a collaborative band selection strategy that combines both spectral 

separability measure (divergence) and spatial homogeneity measure (MLSA) for 

hyperspectral band selection (Chapter 4.4.3). 

 

Most techniques used for the analyzing hyperspectral images involve separate processing 

for extracting spatial and spectral information, and are not able to do extract both 

simultaneously. The spatial and spectral processing is done separately and their results 

combined. Thus, within each spectral and spatial domain of the processing, the individual 

processes are unable to make use of the information in the other domain, until the 

processing in each separate domain is complete, at which point their outputs can be 

combined. By using the proposed a collaborative classification method, the spectral and 

spatial information of image can be combined simultaneously. This method fully 
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utilizes the spatial-spectral relationships inherent in the data, and thus improves 

performance in image-analysis tasks (Chapter 5.3). 

 

For biomedical and agricultural applications, hyperspectral imaging offers an instant, 

non-invasive diagnostic procedure based on the analysis of the spectral properties of the 

tissue. This dissertation evaluates the proposed band selection and classification method 

with four case studies: poultry tumor detection, apple contamination detection, skin 

cancer detection and agricultural crop classification. The performances of the proposed 

methods clearly show the necessity and efficiency of integrating spatial information for 

hyperspectral image processing.  (Chapter 3, Chapter 4.5 and Chapter 5.4).  

 

To help researchers using hyperspectral imagery, a MATLAB toolbox for hyperspectral 

image analysis is necessary. The Hyperspectral Image Toolbox provides rich 

visualization tools for display the 3D hyperspectral image. In addition, it incorporates 

with both standard algorithms for hyperspectral image analysis and also this original 

work in hyperspectral band selection and classification. (Appendix A) 
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2 Background 

2.1 Introduction 
 
In this chapter, we provide relative background for the research conducted by this 

dissertation. The chapter is organized as follows. Section 2.2 summarizes the history of 

hyperspectral imaging and several basic concepts for hyperspectral imaging. Section 2.3 

describes the key characteristic of hyperspectral imaging and gives examples of spectral 

signatures. In section 2.4, two spectral classification methods, i.e. support vector machine 

(SVM) and Maximum likelihood classifier (MLC) are presented. These two classifiers 

will be used in experiments. Section 2.5 reviews the applications of hyperspectral 

imaging in biomedical and agriculture fields.   

 

2.2 Hyperspectral Imaging 

 
The development of hyperspectral imaging came from remote sensing of the Earth that 

started 30 years ago [1]-[4]. The idea was to study the Earth utilizing details not readily 

visible to humans. These details are manifested in spectrum regions beyond the narrow 

wavelength region accessible by eye, from the near infrared to the microwave, and in the 

radiometric wavelengths. With the launch of Landsat 1 in July 1975, the first 

multispectral remote sensing of the earth took place by NASA in black and white with no 

more than 10 spectral bands. Multispectral imaging allows the separation of different 

land cover types into thematic classes, based on differences in spectral reflectance or 

spectral emittance in the thermal region of the spectrum. The improvements of computer 

power has allowed for the creation of sensors with a higher number of spectral bands. 

The so-called hyperspectral sensors were used by the Airborne Imaging System (AIS 1, 

AIS 2) which were designed and built in the early 80s as part of a NASA Jet Propulsion 
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Laboratory (JPL) imaging spectrometry program. These new sensors could separate the 

signal into 128 contiguous bands in the spectral region from 1200 to 2400 nm. The next 

major step in the NASA program and in imaging spectrometry in general was the 

development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). 

Operational in 1987 and in current use, AVIRIS was designed to image 224 contiguous 

bands in the region from 400-2500 nm. Now, we are moving towards developing sensors 

with even better spatial resolution. 

 

Hyperspectral imaging is an optical technique, which obtains the spectral information 

from an object to display it as an image. With conventional spectroscopy, we can 

measure the intensity of radiation at a certain wavelength at a single spot. We will then 

have the spectral signature of the object in a particular wavelength. The disadvantage of 

such a method is that we can only record the spectrum at a specific spot. Acquiring the 

spectral information over large areas is known as imaging spectroscopy. In that case we 

will record both spatial and spectral signature of the object of interest. HSI uses 

spectroscopy imaging in which the waveband is divided into a multitude of continuous 

bands. 

 

There are various kinds of sensors in hyperspectral imaging, and each one of them 

analyzing a different feature of the material. Depending on the sensor, the information 

needed is extracted using the reflectance spectrum, the emission spectrum or the 

fluorescence spectrum. All of these spectrometric measurement techniques can be found 

in hyperspectral imaging in many to biomedical applications. In the next part, the 

fluorescence spectroscopy will be briefly introduced because of its widely use in the 

related applications.   

 

2.3 Principle of Hyperspectral Imaging 
 
The key characteristic of hyperspectral imaging is the high spectral resolution that is 

provided over a large and continuous wavelength region. Spectral resolution is a measure 
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of the narrowest spectral feature that can be resolved by sensor. Spectral resolution might 

become the key parameter in identifying different materials. It was found that some 

minerals might have similar features at low-resolution spectrum. However, at high 

resolution, their spectrum might be quite different. Hyperspectral imaging differs from 

multispectral imaging and spectroscopic imaging by the number of bands in the spectral 

dimension or spectral resolution. For HSI, we are talking about over a hundred 

continuous narrow bands that extend from the visible (0.4µm to 0.7µm) region through 

the near-infrared (0.7µm to 2.5µm). Other sensors exploit the emissive properties of the 

materials in the mid wave and long wave infrared. The high resolution and continuity of 

such sensors can reveal important information and more properties for further 

classification. 

 

When we plot the response characteristics of a certain material type against wavelength, 

we define what is termed the spectral signature of that material. In hyperspectral image, 

the spatially co-registered pixels can be combined into a vector representing the spectral 

signature of materials. In principle, the spectral signature can be used to uniquely 

characterize and identify any given material over a sufficiently broad spectral band. 

 

Figure 2.1 provides examples of spectral signatures for corn, grass, wheat and stone. This 

is a hyperspectral data set taken over an agricultural portion of NW Indiana in the early 

growing season of 1992. Data are delivered by the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS), which features 224 spectral channels spaced about 10 nm apart 

in the spectral region from 0.4 to 2.45 μm at a spatial resolution of 20 m. 

 

Data produced by hyperspectral imaging systems are essentially a three dimensional cube 

of data H(m,n,λk) (shown in Figure 2.2), where (m,n) (m = 0,1,…,M-1, n = 0,1,…,N-1) 

denotes the spatial coordinates for a pixel location in the image and λk (k = 1,2,…,K) 

denotes a spectral band (wavelength range). The value stored at H(m,n,λk) is the 

spectrometry response from the pixel (m,n) at a certain wavelength corresponding to the 

spectral bandλk. Each pixel picked from the hyperspectral imaging data can be 
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(a) Spectral image of the Indiana pine dataset 

 

    
               (b) Spectral signature of corn                           (c) Spectral signature of grass 

 

   
              (e) Spectral signature of wheat                          (f) Spectral signature of stone 

Figure 2.1: Examples of spectral signature 
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Figure 2.2: Representation of 3D nature of hyperspectral images 

 

represented as a column vector 1( , , , )T
i i ik iKx x x=x , with class label ωl. For each pixel 

the spectrometry response levels at the entire spectral band in study are measured, so xij is 

the measurement of the normalized intensity value of the k-th spectral band for the i-th 

pixel.   

 

2.4 Spectral Signature Classification 

 
A hyperspectral image cube is made up of many, usually hundreds, of images that are 

spatially co-registered. Each of these images represents the reflected (absorbed, 

transmitted) energy of the materials within the pixel at different wavelengths and 

bandwidths. For any given material, the amount of energy that is reflected will vary with 

wavelength. This important property allows us to separate distinct material types based 

on their response values for a given wavelength. By comparing the spectral signature of 

different materials, we may be able to distinguish between them. For example in 

detection cancer metastases, by analyzing the spectral signature of human skin, we would 

like to know which cells are cancerous and which one are not. To do this we need to 
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classify each pixel of the spectral image into those that contains cancerous cells and those 

that do not contain cancerous cells.  

 

In this part, Support vector machine (SVM) [31]-[33]and Maximum likelihood classifier 

(MLC) [34]-[36], two popular classifiers for hyperspectral image process, are introduced. 

 

2.4.1 Support Vector Machine Classification 

 

Support Vector Machines is a statistical learning theory introduced recently for 

regression and classification purpose [29][30]. In this section, the derivation and 

applications of SVM for high dimensionality data such as hyperspectral data will be 

discussed. 

 

The idea of SVM is to find the optimal separation surface between two classes through an 

optimizing procedure that finds the support vectors that form the boundaries of the class. 

There are many different possibilities of separating the hyperplanes for a given set of 

data, but among them, there is only one way to find the hyperplane that maximizes the 

margin separation between the classes. SVM will find the linear classifier for an optimal 

separating hyperplane. In case there is no linear separation, the Kernel method is used to 

map the data with a non-linear transformation to a higher dimensional space and in that 

space it attempts to find a linear separation between classes where smaller number of 

training set can work. 

 

Consider the case of classifying a set of linearly separating data. Assume a set of training 

vectors ix  that belong to two classes with the class label { }1, 1iy = + −  (i = 1, …, n). The 

data set is called linearly separable by a hyperplane 0T b+ =w x  if there exist a vector w 

and a scalar b such that   
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1 if  1

1 if  1

T
i i

T
i i

b y

b y

+ ≥ + = +

+ ≤ − = −

w x

w x
                                                 (2.1) 

which can be combined into an inequality: 

( ) 1 0 , 1,2, ,T
i iy b i n+ − ≥ =w x                                          (2.2) 

The problem reduces to determining the weight vector w and bias b that maximizes the 

margin of separation 2 / w . The optimal hyperplane can be determined as the solution 

of a constrained optimization problem that minimizes the Lagrangian criterion function: 

( ) ( )2

1

1, , 1 , 0
2

n
T

i i i i
i

J b y bα α α
=

⎡ ⎤= + − + ≥⎣ ⎦∑w w w x                    (2.3) 

By differentiating the Lagrangian function with respect to w and b and setting to zeros 

leads to  

1

n

i i i
i

yα
=

=∑w x                                                         (2.4) 

1
0

n

i i
i

yα
=

=∑                                                           (2.5) 

The linearly constrained optimization problem can be translated into a dual problem that 

maximizes the following criterion function:  

( )
1 1 1

1( )
2

n n n
T

i i j i j i j
i i j

W y yα α α α
= = =

= −∑ ∑∑ x x                             (2.6) 

subject to the constraints 

1
0

n

i i
i

yα
=

=∑   and  0 , 1, 2, ,i i nα ≥ =                               (2.7) 

The Lagrange multipliers αi’s can be estimated using quadratic programming methods. 

The Karush-Kuhn-Tucker complementary conditions for primal optimization problem are 

( )1 0 , 1,2, ,T
i i iy b i nα ⎡ ⎤− + = =⎣ ⎦w x                               (2.8) 

Training samples ix  corresponding to nonzero Lagrange multipliers (αi) are called 

support vectors. Support vectors lie on the class boundaries at the distance 1/ w  from 

the hyperplane. All remaining samples in the training set but support vectors do not play 
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a role in finding optimal decision boundaries. The discriminant function corresponding to 

the optimal hyperplane depends both on the Lagrange multipliers and on the support 

vectors, i.e.,  

( ) ( ) *T
i i i

i SV
f y bα

∈

= +∑x x x                                              (2.9) 

where SV denotes the set of support vectors. The bias can be represented by 
* 1 T

svb = −w x for 1svy = + . The Lagrange multipliers behave as weights of each training 

sample according to its importance in determining the discriminant function.  

 

For a non-linearly separable case, the input vectors are mapped to a higher dimensional 

feature space by a nonlinear function. Then the decision function for a two-class problem 

derived by the support vector classifier can be written as follows using a kernel function 

K(x, xj) of a new pattern x (to be classified) and a training pattern xj: 

                                               ( ) sgn( ( , ) )j j j
j S

f y K bα
∈

= +∑x x x                                   (2.10) 

Frequent choices of kernels include polynomial, radial basis, and sigmoid function.  

 

2.4.2 Maximum Likelihood Classification 

 

Maximum likelihood classification using Gaussian density function is often use in 

hyperspectral image discrimination. The method assumes that each information class ωi is 

described by k spectral components, which are independent Gaussian random variables. 

Under this method, a hyperspectral image pixel is classified as belonging to information 

class l if [37] 

( ) max{ ( )},  1, 2,...,k lb g l L= =x x                               (2.11) 

( ) ln ( | ) ln ( )l l lg p pω ω= +x x                                  (2.12) 

where L is the number of classes and gl(x) is a known discriminant function, based on the 

assumption that the classes have a multivariate normal density distribution. p(x|ωl) is the 
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likelihood and p(ωl) is the posterior probability. The multivariate normal density in d 

dimension is written [37]: 

1
1/2/2

1 1( ) exp[ ( ) ( )]
2(2 )

T
d

p
π

−= − − −x x μ Σ x μ
Σ

                (2.13) 

In the general multivariate normal case, we can write the discriminant function as [37]: 

11 1( ) ( ) ( ) ln ln ( )
2 2

T
l l l l l lg p ω−= − − − − +x x μ Σ x μ Σ                 (2.14) 

where μl is the mean of class l and lΣ is covariance matrix of class l. 

 

2.5 Applications of Hyperspectral Imaging 

2.5.1 Food Safety Inspection 

 
There are more than 200 known diseases transmitted through food [38]. The food maybe 

carries various illnesses such as viruses, bacteria, parasites, toxins and metals. It may 

causes diseases ranging from mild gastroenteritis to life threatening neurological, hepatic, 

and renal syndromes. In the United States, food borne diseases have been estimated to 

cause 6 million to 81 million illnesses and up to 9,000 deaths each year.  

 

The issue of food safety is very important, for example, contaminated apple juice came to 

the forefront in recent years with major outbreaks of Escherichia coli infections in people 

who drank unpasteurized apple juice or cider [40]. In addition, to monitoring for food 

contamination, it is necessary to detect which produce is satisfactory to be sold [39]. 

Nowadays, many food inspections are still done manually, workers are positioned along 

the conveyors to visually inspect the passing product and remove those with defects. 

Such inspections can be a labor-intensive job when inspecting large quantities of food 

[39]. 
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However, ongoing changes in the food supply, the identification of new food borne 

diseases, and the availability of new surveillance data like hyperspectral imaging could 

reduce the occurrences of food poisoning. Rapid, noninvasive methods that can be 

implemented to assess hazardous conditions in food production would be substantially 

beneficial. Moreover, it will reduce the costs of energy, labor and materials. 

Hyperspectral imaging techniques may allow online measurements with such specificity 

[41]. 

 

2.5.1.1 Poultry Skin Tumor 

 

The safety of our Nation's food supply is an issue faced by all individuals at every meal. 

One way to help inspectors in their quest to ensure the quality and safety of the Nation's  

food  supply  is  to  use  automated  machine  vision  to  spot  diseases  and unwholesome 

food before it is shipped to store shelves. We saw previously that hyperspectral imaging 

system could be used to detect problems on fruits like apples, but it can also be extended 

to a range of other products like poultry skin. Identification and separation of poultry 

carcasses contaminated by feces and/or ingesta are very important to protect the 

consumer from a potential source of food poisoning when pathogens enter the food chain. 

The development of high speed and reliable inspection systems to ensure safe processing 

of poultry has become an important issue [47]. 

 

Despite the developments in this area, the machine-vision inspection technique with 

chickens presents more complex problems than apples. Apples are easier in part because 

they are more uniform in shape and surface texture than chickens. Still, there are 

uniformity problems, such as color differences from variety to variety and even within a 

single apple. The reflected light is analyzed by a computer and the differences between 

light shining on the chicken and light reflected are due to variations in external skin color 

texture, and chemical contents that are clues to problems.  

 



19 
 

Chao et al. [48] initiated to introduce hyperspectral images on the detection of chicken 

skin tumors. They applied principle component analysis (PCA) on the hyperspectral 

reflectance image to select three useful wavelength bands. Through analyzing the 

eigenimage, they manually chose three bands which gave good contrast between tumor 

and good skin regions. These three wavelengths were then used in a real-time 3-band 

multispectral imaging system, which was used to image 60 tumorous and 20 normal 

chickens. The ratioed images captured by this multispectral imaging system were then 

divided into regions of interest (ROI’s) classified as either tumorous or normal by a 

veterinarian. Statistic features, such as skewness, kurtosis and coefficient of variation, for 

each ROI were extracted for use as inputs to fuzzy classifiers. The fuzzy classifiers were 

able to separate normal from tumorous skin with increasing accuracies as more features 

were used. They obtained classification rates of 91% and 86% for normal and tumorous 

skin tissue regions, respectively (44 of 51 test set tumors were correctly detected). 

 

In [49], Nakariyakul et al studied a feature selection method to detect chicken skin 

tumors using hyperspectral reflectance image. Two sets of spectral bands were selected to 

detect the central lesion regions and the outer thickened-skin regions of the tumors from 

normal skin. The two detection results were fused to reduce false alarms. 

 

In the particular case of skin tumors, Fletcher and Kong [50] discovered that because 

tumors are different than skin discoloration in shape rather than in color, using a non-

invasive hyperspectral imaging by fluorescence was better than using reflectance.  

Kim et al [47] also used hyperspectral fluorescence image to detect chicken skin tumors. 

In their research, they manually chose three features: the maximum response in bands 20-

25, the slope of the response in bands 10-20, and the ratio of the maximum response in 

bands 40-45 over the maximum response in bands 20-25, thus 23 bands in total. These 

features were used to train a fuzzy classifier.  Their research obtained 76% detection rate 

(31 of 41 skin tumors were detected) in ten HS image sets with 12 false alarm regions in 

total. 
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Kong et al [17]also investigated using hyperspectral fluorescence image on detecting 

chicken tumors. Before applied PCA, the spatial HS data were compressed using a 

discrete wavelet transform. Then the spectral responses of the data were reduced by PCA. 

Two were manually selected: the average of the responses in bands 20-24, and the 

difference between the average response in bands 20-24 and the average in bands 44-48, 

which are ten bands in total. A fuzzy classifier is trained to classify each pixel to tumor, 

normal skin, or background. Morphological processing and median filtering were used as 

postprocessing to reduce false alarms. There were able to achieve a detection rate of 82%.  

 

In our initial work on detecting chicken skin tumors [51], a spectral band selection 

method for feature dimensionality reduction is proposed. Hyperspectral fluorescence 

imaging offers an instant, noninvasive inspection method for detecting biomedical 

abnormalities. However, the huge amount of hyperspectral image data often makes real-

time computer processing a challenging task. Our research suggests a band selection 

method of hyperspectral images based on the recursive divergence for the automatic 

detection of poultry carcasses. This method avoids transforming the original 

hyperspectral images to the feature space. Instead, it maximizes the class separability by 

considering the correlation information of spectral bands. In that paper, we 

mathematically characterize the use of divergence for band selection. Also, a set of 

recursive equations for the calculation of divergence with an additional band is derived to 

overcome the computational restrictions in real-time processing. A support vector 

machine is used as a classifier for tumor detection. Our proposed recursive divergence 

approach gives 90.6% detection rate, which is within the industry-accepted accuracy of 

90–95%, while achieving the computational saving for real-time processing. 

 

2.5.1.2 Fecal Contamination 

 

Fecal contamination detection on produce has become increasingly important since the 

Food and Drug Administration (FDA) averred fecal contamination as a major source of 
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human pathogens. Hyperspectral imaging devices for anomaly detection on produce and 

meat has been a significant breakthrough in reducing to case of contamination. 

 

The introduction of hyperspectral imaging as made it possible to detect and classify with 

a high level of accuracy these problems related to food safety. Kim et al. [43][44][45][46] 

implemented a hyperspectral imaging device based on fluorescence spectroscopy for 

detection of Escherichia coli contamination from animal feces on apple surface. The 

hyperspectral imaging system was design to work in the visible and the near infrared 

regions of the spectrum by using fluorescence spectroscopy. The idea is to use a machine 

vision system that is much quicker and more accurate than the human eye and without 

requiring anyone to handle the fruit. The imaging device can detect dirt, fly specks, fungi, 

rot, and other diseases, all of which can cause fruit to harbor more bacteria, in addition 

creating obvious quality problems. The result of their experiment proves that 

hyperspectral fluorescence techniques can be used efficiently to detect fecal 

contamination on apple surfaces for commercial purposes. 

 

2.5.1.3 Fruit Defect Inspection 

 

The United States packs over 220 million boxes of apples each year. Apples with rot, 

injury, disease, serious bruising and other defects must be removed before waxing to 

prevent cross-contamination and reduce subsequent processing cost. Although some 

aspects of the packing process have been automated, a key step of the apple packing 

process, the defect inspection process, is still done by hand.  

Cheng [39] integrates hyperspectral imaging, real time machine vision, dual-spectral 

sensing, and pattern recognition techniques for automatic defect inspection in fresh 

produce. In particular, these technologies were applied for cucumber chilling damage 

inspection and online apple defect detection.  

 

Lu [42] investigates the potential of near-infrared (NIR) hyperspectral imaging for 

detecting bruises on apples in the spectral region between 900 nm and 1700 nm. An NIR 
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hyperspectral imaging system was developed and a computer algorithm was created to 

detect both new and old bruises on apples. Experiments were conducted to acquire 

hyperspectral images from Red Delicious and Golden Delicious apples over a period of 

47 days after bruising. Results showed that the spectral region between 1000 nm and 

1340 nm was most appropriate for bruise detection. 

 

2.5.2 Cancer Detection  

 

Cancer remains a primary cause of human mortality. Treatment, though improving, is 

held back by late or inadequate detection of cancerous and precancerous tissue. If the 

detection methodology lacks sufficient precision, surgical removal of cancerous tissue 

can be incomplete. Hyperspectral, noninvasive imaging examines human tissue with 

extremely high spectral resolution, detecting phenomena in extremely narrow bands of 

emission, thereby greatly increasing image resolution. With high resolution and multiple 

bandwidths, very subtle differences in signature characteristics of tissues can be 

identified. 

 

2.5.2.1 Skin Cancer 

 

The skin is the body's largest organ and it protects the body against heat, light, injury, and 

infection. Healthy skin cells grow, divide, and replace themselves in an orderly controlled 

way. Sometimes, however, normal cells lose the ability to divide and grow normally, and 

grow out of control to form tumors. Tumors can be benign or malignant. Benign tumors 

are not cancer, while malignant tumors are cancer. The three types of skin cancer are 

basal cell carcinoma, squamous cell carcinoma and malignant melanoma. Skin cancer is 

one of the most common cancers in the United Sates and its incidence is increasing 

dramatically.  According to the statistics of the American Cancer Society, in the US, 

more than 1 million Americans will be diagnosed with non-melanoma skin cancer every 

year, and 59,580 persons will be diagnosed with melanoma in 2005 [52]. The melanoma 



23 
 

mortality rates increased from 2.0 per 100,000 in 1969 to 3.0 in 1999 [53]. Yet the skin 

cancer would be almost 100 percent curable if it were detected early and treated. 

Unfortunately there are very few options for the medical clinician to diagnosis skin 

cancer. The most definitive test has been a biopsy. A biopsy is the removal of a sample of 

tissue from the body for examination. The tissue will be examined under a microscope to 

assist in diagnosis. The biopsy is an invasive diagnostic technique, which requires both 

trained professionals and significant waiting time. Because of the accessibility of the 

skin, it is possible to obtain the optical properties of the tumor tissues [54].  

 

Our initial work [18][19][55] present hyperspectral fluorescence imaging and a support 

vector machine for detecting skin tumors. A hyperspectral image contains spatial 

information measured at a sequence of individual wavelength across a sufficiently broad 

spectral band at high-resolution spectrum. Fluorescence is a phenomenon where light is 

absorbed at a given wavelength and then is normally followed by the emission of light at 

a longer wavelength. Fluorescence generated by the skin tissue is collected and analyzed 

to determine whether cancer exists. Oak Ridge National Laboratory developed an 

endoscopic hyperspectral imaging system capable of fluorescence imaging for skin 

cancer detection. That hyperspectral imaging system captures hyperspectral images of 21 

spectral bands of wavelength ranging from 440 nm to 640 nm. Experiments show that the 

SVM classification with spatial filtering achieves high skin tumor detection accuracies. 

 

2.5.2.2 Cervical Cancer  

 

Causal factors for cervical cancer (known also as cervical intraepithelial neoplasia [CIN]) 

may include carcinogens, multiple cell mutations, viruses, and multiple causal factors. 

The human papillomavirus (HPV) is an identified risk factor for CIN. Optic technology 

that is based upon biochemistry and structure is ideal for diagnosing CIN. With sufficient 

spatial resolution, spectral imaging can reveal the increased vascularity in subsurface 

vessels of the cervix that contain hemoglobin often found in cases of cervical cancer. [56] 

provided evidence that a hyperspectral system detected cervical cancer precursors at a 
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rate greater than that obtained by a simultaneously collected Pap smear. Although this 

study used a small test sample that scanned only the ectocervix, rather than the 

endocervix as well, the researchers showed that spectral sensing has the potential to 

discern grade of disease. 

 

2.5.2.3 Colon Cancer 

 

The colon is the upper part of the large intestine tube while the rectum is the lower part of 

this tube. Practically, colon or rectum cancer is characterized as separate cancer 

instances. Colorectal or bowel cancer is a composite name for colon and rectum cancer. It 

is the uncontrolled growth of tissue cells in either the colon or rectum which causes the 

colorectal cancer. According to a recent publication1, over 34,000 new cases of 

colorectal cancer are diagnosed each year. Yet 80% of colorectal cancer cases can be 

treated if caught at an early stage. New improved screening and diagnosis methods could 

potentially save thousands more lives each year. 

 

Rajpoot [57][58][16] studied the classifier performance for a hyperspectral colon tissue 

cell classification system. It was shown that considerably high classification accuracy 

could be achieved for their tissue cell classification system by selecting optimal set of 

parameters for the Gaussian kernel.  

 

2.5.3 Precision Farming 
 
Hyperspectral imaging will have a particular enabling impact on precision agriculture 

[61]. Precision agriculture is the technique of managing each part of a field differently 

and in the most effective way. Information on the performance and potential production 

of each part of the field is collected, monitored, and analyzed so that informed 

management decisions can be made [59]. The result is potentially increased yields with 

less input and reduced impact on the environment. Goel et al. [60] reported that there is a 

potential of using hyperspectral airborne remote sensing in the visible and near-infrared 
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regions for the detection of weed infestation in corn fields. In [9], Yang, et al. examined 

airborne hyperspectral imagery for mapping grain sorghum yield variability as compared 

with yield monitor data. Hyperspectral images were acquired using a CCD camera-based 

hyperspectral imaging system from two grain sorghum fields during the 2000 growing 

season, and yield data were also collected from the fields using a yield monitor. Results 

from this study demonstrate that airborne hyperspectral imagery can be a useful data 

source for mapping crop yield variability. 
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3 Hyperspectral Image Datasets for Case Study 
 
In this dissertation, four case studies using hyperspectral imagery are investigated, 

namely detection and identification of tumor on poultry carcasses, fecal on apple surface, 

cancer on mouse skin and crops in an agricultural filed. All data in these case studies are 

real-world data. Especially the first three datasets are exclusive, and the last one is a 

public data set. In this chapter, a brief description of the three hyperspectral datasets used 

is given. Section 3.1 introduces the hyperspectral chicken data for poultry tumor 

detection. Section 3.2 introduces the dataset used for detecting fecal on apple surface. 

The dataset used for detecting cancer on mouse skin is described in Section 3.3. Last, the 

famous Indian pine dataset is briefly described in Section 3.4.  

 

3.1 Hyperspectral Imaging for Poultry Tumor Detection 

3.1.1 Background 
 
Machine vision systems have been widely used for inspection and quality control in 

automated production processes. Poultry carcasses with pathological problems must be 

identified and removed from food processing lines to meet the requirement of high 

standards of food safety. Traditionally, trained human inspectors carry out the inspection 

and examine a small number of representative samples from a large production run. 

Manual inspection and classification of agricultural products can be a highly repetitive 

and tedious task. Human inspectors are often required to examine 30-35 poultry samples 

per minute. Such working conditions can lead to repetitive motion injuries, distracted 

attention and fatigue problems, and result in inconsistent quality. Rapid, non-invasive 

machine vision inspection methods for assessing hazardous conditions in food production 

would provide a substantial benefit in the quest to ensure high quality of poultry 

inspection.  
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Poultry skin tumors are ulcerous lesions that are surrounded by a rim of thickened skin 

and dermis [122]. Skin cancer causes skin cells lose the ability to divide and grow 

normally, and induce abnormal cells to grow out of control to form tumors. Tumorous 

carcasses often demonstrate swollen or enlarged tissue caused by the uncontrolled growth 

of new tissue. Tumor is not as visually obvious as other pathological diseases such as 

septicemia, air sacculitis, and bruise since its spatial signature appears as shape distortion 

rather than a discoloration. Therefore, conventional vision-based inspection systems 

operating in the visual spectrum may reveal limitations in detecting skin tumors on 

poultry carcasses.  

 

Hyperspectral fluorescence imaging offers an instant, non-invasive inspection method for 

detecting biomedical abnormalities such as defects on poultry carcasses [48][54]. 

Hyperspectral image data contain spatial information measured at a sequence of 

individual wavelength across broad spectral bands. Hyperspectral images show a detailed 

view of the spectral signature of the scene. The spectral signatures are useful for 

identifying various material compositions due to their unique spectral characteristics at 

particular wavelengths [5]. Fluorescence techniques are generally regarded as sensitive 

optical tools, and have proven to be effective in a number of scientific areas [123]. 

Fluorescence is a phenomenon where light is absorbed at a given wavelength and then is 

normally followed by the emission of light at a longer wavelength. A number of 

compounds emit fluorescence in the visible range when excited with ultraviolet radiation. 

Normal poultry skin often exhibits higher emissions compared to tumorous skin. The 

altered biochemical and morphological state of the neoplastic tissue is reflected in the 

spectral characteristics of the measured fluorescence.  

 

3.1.2 Hyperspectral Image System for Chicken Data 
 

Instrumentation and Sensing Laboratory (ISL) at Beltsville Agricultural Research Center, 

Maryland has developed a laboratory-based line-by-line hyperspectral imaging system 
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capable of reflectance and fluorescence imaging for uses in food safety and quality 

research [17][41]. The system employs a pushbroom method in which a line of spatial 

information with a full spectral range per spatial pixel is captured sequentially to cover a 

volume of spatial and spectral data. Figure 3.1 shows the ISL hyperspectral imaging 

system equipped with a CCD camera, a spectrograph, a sample transport mechanism, and 

two lighting sources for reflectance and fluorescence sensing. Two fluorescent lamp 

assemblies are used to provide a near uniform UV-A (365 nm) excitation to the sample 

area for fluorescence measurements. A short-pass filter placed in front of the lamp 

housing is used to prevent transmittance of radiations greater than approximately 400 nm, 

and thus eliminate the potential spectral contamination by pseudo-fluorescence. The 

system acquires the data via line-by-line scans while transporting sample materials via a 

precision positioning table. 

 

The ISL hyperspectral image system captures 65 spectral bands (K = 65) at the 

wavelengths from λ1 (425.4 nm) to λ65 (710.7 nm) in visible light spectrum. A 

hyperspectral image of a poultry sample consists of a spatial dimension of 400×460 

pixels where each pixel denotes 1 mm × 1 mm of spatial resolution. Each pixel has a 16-

bit gray-scale resolution. The data size of a hyperspectral image sample is approximately 

24 mega-bytes (= 460 pixels × 400 pixels × 65 bands × 2 bytes). The speed of the 

conveyer belt was adjusted based on the predetermined CCD exposure time and data 

transfer rate. 

 

Spectral signature reveals the characteristics of the different types of tissues. Figure 3.2 

shows the relative fluorescence intensity of hyperspectral image data at each spectral 

band for normal tissues and tumors. Normal tissues have a large peak response at 

approximately band 22 and a smaller peak at approximately band 45. Tumors show lower 

fluorescence intensities than normal tissues on average, but have strong response between 

the bands 40 and 45 relative to the peak near the band 22. Background pixels show low 

fluorescence intensity and an almost flat response over the entire spectral range due to the 

carrying tray being covered with a non-fluorescent flat black paint. 
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Figure 3.1: Hardware components of the ISL hyperspectral imaging system 
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Figure 3.2: Spectral signatures of the tumor and normal tissue measured by  

relative fluorescence intensity 

 

3.1.3 Hyperspectral Chicken Data Description 
 

Twelve chicken carcasses were collected from a poultry processing plant owned by Allen 

Family Foods Inc. of Cordova, MD in March and May of 2002. A Food Safety and 

Inspection Service (FSIS) veterinarian at the plant identifies the condition of the poultry 

carcasses. Hyperspectral images obtained consist of 460×400 pixels with 65 spectral 

bands. The spectral band has discrete wavelengths from 425.4 nm (λ1) to 710.7 nm (λ65).  

Table 3.1 show the 65 spectral bands used along with the associated wavelength. 

 

The sample poultry carcasses were placed on a tray painted with a non-fluorescent flat 

black paint to minimize background scattering in a darkened room. The speed of the 

conveyer belt was adjusted based on the predetermined CCD exposure time and data 

transfer rate. Figure 3.3 shows 6 spectral images (λ1, λ11,…, λ51) of a hyperspectral image 

sample obtained by ISL’s system.  
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Table 3.1: Wavelength values of the spectral band used in the image acquisitions 

Band # 
Wavelength 

(nm) 
Band # 

Wavelength 

(nm) 
Band #

Wavelength 

(nm) 
Band # 

Wavelength 

(nm) 

1 425.45 2 429.82 3 434.19 4 438.56 

5 442.93 6 447.31 7 451.70 8 456.08 

9 460.47 10 464.86 11 469.25 12 473.65 

13 478.04 14 482.45 15 486.85 16 491.26 

17 495.67 18 500.08 19 504.50 20 508.92 

21 513.34 22 517.76 23 522.19 24 526.62 

25 531.05 26 535.49 27 539.93 28 544.37 

29 548.82 30 553.26 31 557.71 32 562.17 

33 566.62 34 571.08 35 575.54 36 580.01 

37 584.48 38 588.95 39 593.42 40 597.90 

41 602.37 42 606.86 43 611.34 44 615.83 

45 620.32 46 624.81 47 629.31 48 633.81 

49 638.31 50 642.81 51 647.32 52 651.83 

53 656.35 54 660.86 55 665.38 56 669.90 

57 674.43 58 678.96 59 683.49 60 688.02 

61 692.56 62 697.10 63 701.64 64 706.18 

65 710.73       
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Figure 3.3: Hyperspectral images of a poultry carcass 
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3.1.4 Data Preprocessing 
 
Image segmentation is performed as preprocessing to remove the poultry carcasses from 

the background. The background is the tray on which the poultry carcass is placed. Due 

to the tray painted with non-fluorescent, flat black paint, the fluorescence intensities of 

these trays are low and almost same for different wavelength. Figure 3.4 displays the 

histogram of the chicken data. The two peaks in the histogram indicate the intensity of 

background and poultry carcass. A fixed threshold can easily remove the background. 

Figure 3.5 shows the image segmentation result.  

 

3.2 Hyperspectral Imaging for Apple Contamination Detection  

3.2.1 Background 
 
The other application of using hyperspectral fluorescence image for food safety 

inspection is automated detection for animal feces contamination on apples. The issue of 

the detection of apple surface contaminations is very important. For example, 

contaminated apple juice came to the forefront in recent years with major outbreaks of 

Escherichia coli infections in people who drank unpasteurized apple juice or cider [40]. 

The primary source of pathogenic bacteria in unpasteurized juices is animal fecal matter. 

The government regulations also require no-visual evidence of fecal matter on fruits used 

to make juices.  

 

In this application, we demonstrate the versatility of the hyperspectral fluorescence 

imaging techniques for food safety inspection. Here the same hyperspectral image system 

used in chicken tumor detection is applied to detect apples contaminated with a range of 

diluted animal feces spanning from visible to invisible to human eye. 
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Figure 3.4: Histogram of HS chicken data 

 

 

        
(a)  Original image (λ10)                      (b) Segmentation result 

Figure 3.5: Segmentation of hyperspectral fluorescence image with a threshold 
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3.2.2 Hyperspectral Apple Data Description 
 

96 Golden Delicious apples were handpicked from crates. Fresh cow feces were collected 

and diluted 1:2, 1:20, and 1:200 by weight with de-ionized water. Then a drop of each of 

the three dilutions was immediately applied to each apple. The hyperspectral image 

system captures 79 spectral bands at wavelengths from 425 to 772nm. Figure 3.6 shows 

three spectral images (λ20, λ40, λ60) contaminated apples. At the shorter wavelength, like 

λ20 and λ40, the 1:2 feces treatments are clearly visible as darker spots compared to apple 

surfaces. In contrast, at longer wavelength, the 1:2 feces contamination on apples is not 

clearly shown.  But the fluorescence intensities for feces contaminated spots are generally 

higher than that of apple surfaces.  The spectral signature is shown in Figure 3.7. 

 

3.3 Hyperspectral Imaging for Mouse Skin Cancer Detection 

3.3.1 Background 
 
Cancer is the second leading cause of death in the United States, exceeded only by 

cardiovascular diseases [128]. About one million new cancer cases are expected to be 

diagnosed and about a half million Americans die of cancer every year. These estimates 

do not include approximately 1.3 million cases of basal and squamous cell skin cancers 

that exist in the same time period. Cancers that develop from melanocytes, the pigment-

producing cells of the skin, are called melanoma. Melanoma can spread quickly to other 

parts of the body through the lymph system or through the blood. For most skin cancer 

patients including melanoma and nonmelanoma skin cancers, early diagnosis and 

thorough treatment such as complete resection are the keys to gaining a favorable 

prognosis.  

 

Current diagnostic methods for skin cancers rely on physical examination of the lesion in 

conjunction with skin biopsy that involves the removal of tissue samples from the body 

for examination. Biopsy of large lesions often requires substantial tissue removal.  



36 
 

 
(a) Spectra image of λ20 

 

 
(b) Spectra image of λ40 

 

 
(c) Spectra image of λ60 

Figure 3.6: Hyperspectral images of contaminated apple 
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Figure 3.7: Spectral signature of the fecal and apple skin measured by fluorescence 

intensity 
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Though this protocol for skin lesion diagnosis has been accepted as the gold standard, it 

is subjective, invasive, and time-consuming. Since suspicious areas are identified by 

visual inspection alone, there are a significant number of false positives that undergo 

biopsy. Conversely, many malignant lesions can also be overlooked. There is an urgent 

need for objective criteria that would aid the clinician in evaluating whether biopsy is 

required. 

 

Spectroscopy offers an instant, non-invasive diagnostic tool to detect skin tumor, a 

typical symptom of skin cancer, accounting for about half of all cancers, based on the 

spectral properties of tissue [54][48]. Cancer causes the cells grow out of control to form 

tumors. A hyperspectral image contains spatial information measured at a sequence of 

individual wavelength across a sufficiently broad spectral range. This enables 

hyperspectral imaging to reveal useful information for material identification than 

conventional imaging techniques [6].  

 

3.3.2 Hyperspectral Image System for Mouse Data 
 
The Advanced Biomedical Science and Technology Group at Oak Ridge National 

Laboratory, Oak Ridge, Tennessee has developed a hyperspectral imaging (HSI) system 

capable of reflectance and fluorescence imaging [125] [126][127]. For this study the HSI 

system has been further adapted for skin cancer diagnostics. Figure 3.8 shows a 

schematic diagram of hardware components of the ORNL hyperspectral imaging system. 

This system consists of fiber probes for image signal collection, an endoscope, an 

acousto-optic tunable filter (AOTF) for wavelength selection, a laser excitation source, an 

endoscopic illuminator (model Olympus CLV-10) equipped with a 300 watt CW Xe arc 

lamp source, a charge-coupled device (CCD) color camera (model Sony CCD-Iris) for  
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Figure 3.8: Hardware components of the ORNL hyperspectral imaging system 
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reflection detection, and an intensified charge-coupled device (ICCD) camera (model 

IMAX-512-T-18 Gen. II) for fluorescence imaging.  

 

The AOTF is an optical bandpass filter whose passband can be electronically tunable 

using the acousto-optic interaction inside an optical medium whose refractive index is 

changed by an acoustic wave. The AOTF allows the user to select and transmit a single 

wavelength from the incoming light. The acoustic wave produces a wavelength-selective 

single-tone grating in the AOTF transducer that can be varied by simply changing the 

acoustic frequency. Radio-frequency (RF) signals are used to generate the acoustic 

waves. The RF amplitude level applied to the transducer controls the filtered light 

intensity level. Varying the RF frequency corresponding to the wavelength range can do a 

complete spectral analysis. The AOTF has a dynamic range of 400-650 nm with a 10×10 

mm aperture and a spectral resolution of 1-2 nm. The AOTF shows a fast response time 

(in μs), is accurate, and exhibits a high extinction ratio. 

 

Both fluorescence and reflected lights are collected through the endoscope into the AOTF 

device via collimating lenses. A mirror placed in front of the AOTF projects the acquired 

images onto the ICCD camera for fluorescence imaging and onto the CCD camera for 

reflection measurement. Reflectance images are acquired using an endoscopic 

illuminator. The reflection source was coupled to a gastrointestinal endoscope (Olympus 

T120) equipped with an imaging bundle. Fluorescence spectra and images are acquired 

using a LSI pulsed Nitrogen laser (model VSL-337) with a maximum repetition rate of 20 

Hz. For fluorescence imaging, the N2-pumped laser was coupled to a bifurcated fiber 

probe (R400-7-VIS/NIR) that was also used to sample point measurements using a 

miniature fiber optic spectrometer (Ocean Optics USB2000-FLG).  

 

The fluorescent light emitted by the tissues is diffracted by the AOTF (Brimrose 

TEAF10-0.4-0.65-S) at a 60-degree angle from the undiffracted (zero-order) beam thus 

separating the reflected image from the fluorescent image. Individual wavelengths by the 

AOTF are thus sent to the ICCD. A Brimrose AOTF controller (model VFI-160-80-DDS-
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A-C2) controls the AOTF. The controller sends an RF signal to the AOTF based on the 

input provided using Brimrose software. Wavelength selection takes place in 

microseconds enabling ultra-fast modulation of wavelength output to the ICCD. 

Wavelength specific images were taken between 440-650 nm every 10 nanometers. In 

addition to the imaging capability, spectral information from each site was obtained using 

the Ocean Optics spectrometer coupled to a laptop computer. 

 

Fluorescence images were acquired by gating the intensified ICCD camera. A timing 

generator incorporated into the ICCD camera’s controller (ST-133) allowed the ICCD to 

operate in the pulsed mode with a wide range of programmable functions. A 500 ns delay 

between the laser trigger and the detector activation was programmed to synchronize the 

laser and the detector.  The intensifier was gated for 500 ns during which a 5 ns laser 

pulse was delivered to the tissues.  An image was captured 20 times per second, 

integrated by internal software, and output to a screen once per second. This allows real-

time fluorescence detection. Fluorescence images and spectra were acquired and 

processed with WinView (Roper Scientific) and OOIBase32 (Ocean Optics) software, 

respectively. Reflection images were captured and processed with SimplePCI image 

analysis software (Compix, Inc, Cranberry, Township, PA).   

 

3.3.3 Hyperspectral Mouse Data Description 
 

The hyperspectral image data used in this experiment are fluorescence images data taken 

from a mouse skin sample by Oak Ridge National Laboratory. The mouse tissue was a 

sample image taken from a larger study of adult nude mice injected subcutaneously with 

100 µL of Fischer rat 344 rat tracheal carcinoma cells (IC-12) to induce tumor formation. 

The mice were nude to prevent hair from interfering with our measurement and to assist 

with tumor formation due to having compromised immune systems. The subdermal 

injection was done as close to the skin surface as possible to allow tumor formation close 

to the skin surface. This also allowed experiments to be performed in-vivo rather than 
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after tissue extraction. Experiments performed on live, whole animals are a vast 

improvement over tissue samples due to closer simulation of in-vivo human cancerous 

conditions. After injection, the nude mice were incubated for a period of four days to 

allow tumor formation to occur.  Once a tumor was observed (approximately 5 mm), the 

mice were anesthetized for approximately 30 minutes to permit data collection. After data 

collection, the mice were humanely sacrificed to avoid undue suffering. The Oak Ridge 

National Laboratory committee on the ethical treatment of animals acted as a governing 

body on all matters concerning animal testing and all work was done under IACUC 

#A3170-01. Strict protocols advised by the committee were followed when dealing with 

animals. The hyperspectral images consist of 165×172 pixels with 21 spectral bands from 

the wavelength λ1 (440 nm) to λ21 (640 nm) with 10 nm spectral resolutions in the 

spectral region. Such a fine spectral resolution provides sufficient information for precise 

study of tumor detection. The fluorescence image is enhanced with a Gamma correction 

with γ = 0.8. The mapping is weighted toward higher (brighter) output values. Figure 

3.9(a) shows a reflectance image of a skin tumor region taken from a mouse sample. 

Figure 3.9(b) is a fluorescence image of the band λ6 (490 nm) of the same spot. Images of 

a small circular area are obtained by an endoscope. Lower part of the fluorescence image 

(a bright U-shaped area) corresponds to normal tissue, and the upper part is a tumor 

region.  

 

3.3.4 Registration of Spectral Band Images  
 
Original spectral band images captured by the hyperspectral imaging system are not 

spatially aligned since the AOTF diffracts the light at different wavelengths. Acousto-

optics involves the interaction of sound and light in dielectric material. When sound 

propagates through a solid or liquid, compressions are created in the material that cause 

variable refraction of the passing light, pulling color features from it. Filters can be used 

to pass light with either a single wavelength or multiple wavelengths, depending on the 

RF signal applied. A piezoelectric oscillator bonded to an acousto-optic medium converts  
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      (a) Reflectance image                   (b) Fluorescence image at  

                                                               wavelength 490 nm 

Figure 3.9: Skin tumor region of a mouse skin sample.  

 
 
a high-frequency electrical signal into an ultrasonic wave. Figure 3.10(a) shows the 

amount of offsets between the images measured at different wavelengths that the AOTF 

generates. The spectral band of the wavelength 490 nm was selected as a reference band 

with zero offset. Positive offset values indicate the number of pixels of the image shifted 

to the right with respect to the reference band. Figure 3.10(b) illustrates a pair of band 

images at the wavelengths of 540 nm and 490 nm spatially co-registered by translating 

the image at 540 nm for the offset of 14 pixels.  

 

Figure 3.11 shows nine spectral band images from wavelengths 450 nm to 610 nm. All 

the spectral band images are co-registered with the reference band image (490 nm) 

according to the procedure described in Section 3.3.4.  

 

Figure 3.12 shows relative fluorescence intensity of a pixel taken from a mouse skin 

sample in terms of two categories of interest: normal tissue and tumor. Normal tissues 

have higher fluorescence intensity on average compared to tumors. Normal tissues have a 

peak response at approximately band 490 nm. Tumors show less distinctive spectral 

peaks.  
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(a)  The amount of offsets of spectral band images caused by the AOTF with respect to 

the reference band at 490 nm                                         

 
 (b) Registered band images of 490 nm and 540 nm 

Figure 3.10: Offset of image registration 
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Figure 3.11: Spectral band images from the wavelength 450 nm to 610 nm. 
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Figure 3.12: Spectral signature of normal tissue and tumor 
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3.4 Indiana Pine Data 
 

The Indiana Pine data is a well-known publicly available hyperspectral data set, which is 

used to investigate land use and can be downloaded from 

ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/. The Indiana Pine data are delivered by the 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which measured pixel 

response in 224 bands in the 0.4 to 2.45 μm region of the spectrum with about 10nm 

intervals, at a spatial resolution of 20 m, and covers an agricultural portion of North West 

Indiana. The Indian Pines data consists of 145×145 pixels in 220 contiguous spectral 

bands. This data set includes about two-thirds agriculture, and one-third forest or other 

natural perennial vegetation. Four of the 224 AVRIS bands do not contain data, leaving 

220 bands. Similar to the earlier work on this dataset [103], twenty bands, λ104 - λ108 

(1.36-1.40 μm), λ150-λ163 (1.82-1.93μm), and λ220 (2.50 μm), where the atmosphere is 

opaque have been omitted from the data set. Therefore, a total of 200 bands have been 

used in experiments. The advantage of using this dataset is the availability of the 

reference image produced from field surveys, which may be used for accuracy 

assessment purposes. 

 

In this dissertation, we use only a part of the 145 × 145 scene, called the subset scene for 

a size of 68 × 86. The subset scene contains four classes: Corn-notill, Soybean-notill, 

Soybean-mintill, and Grass-Trees, and over 75% of this scene are labeled. Figure 3.13 

shows the spectral image of subset and the ground truth for subset. Figure 3.14 shows the 

spectral signature of the four classes. 

 

                      
(a) Spectral image            (b) ground truth 

Figure 3.13: Spectral image and ground truth of subset 
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Figure 3.14: Spectral signature of the four classes in subset scene 

 

 



49 
 

 

4 Integration of Spatial and Spectral Information for 
Hyperspectral Image Band Selection 

 

An important task in hyperspectral data analysis is to reduce the redundancy of the 

spectral and spatial information without losing any valuable details needed for the 

subsequent detection, discrimination, and classification processes. This chapter first 

presents a band selection method of hyperspectral images based on the recursive 

divergence. A set of recursive equations for the fast calculation of divergence with an 

additional band is derived to overcome the computational restrictions in real-time 

processing.  

 

The major impediment to the combined spatial and spectral approach is that most spatial 

methods were only developed for single image band. Based on the traditional single-

image based local Geary measure, this dissertation successfully proposes a 

Multidimensional Local Spatial Autocorrelation (MLSA) for hyperspectral image data. 

This new measure is a fundamental improvement in the description of spatial 

autocorrelation for hyperspectral imaging. Then based on the proposed spatial measure, 

this research work develops a collaborative band selection strategy that combines both 

the spectral separability measure (divergence) and spatial homogeneity measure 

(MLSA) for hyperspectral band selection task.  

 

The chapter is organized as follows. Section 4.1 introduces the background of band 

selection. Section 4.2 provides a review of the literature concerning band selection 

algorithm for hyperspectral image data. Then, the proposed recursive divergence based 

band selection algorithm is thoroughly described in Section 4.3. In Section 4.4.2, the new 

Multidimensional Local Spatial Autocorrelation measure is proposed. Section 4.4.3 

describes the proposed collaborative band selection method.  The experimental results for 

proposed band selection methods are represented in Section 4.5. 
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4.1 Introduction 
 

Hyperspectral sensors collect the electromagnetic spectrum at dozens or hundreds of 

wavelength ranges in the visible and near infrared spectra. A three-dimensional (3-D) 

volume of data in spatial and spectral spaces characterizes a hyperspectral image [6]. The 

high spectral resolution is the key characteristic of hyperspectral imaging, which is 

provided over a large and continuous wavelength region. Spectral resolution is a measure 

of the narrowest spectral wavelength that can be resolved by sensor. Spectral resolution 

acts as the pivotal parameter in identifying different materials. It was found that some 

minerals might have similar features at low-resolution spectrum. However, at high 

resolution, their spectrum might be quite different. For instance, the AVIRIS 

hyperspectral sensor can measure the upwelling radiance spectrum from 400 to 2500 nm 

at 10 nm resolution. Its unique optical sensor delivers calibrated images of the upwelling 

spectral radiance in 224 contiguous spectral channels (also called bands). 

 

The increased number of spectral bands means the higher dimensionality of hyperspectral 

data. The resulting high-dimensional datasets, on one hand, benefit better discrimination 

power among similar spectral signatures. On the other hand, such a large amount of 

hyperspectral image data often involves problems in storage, transmission and 

processing, which makes real-time computer processing a challenging task.  

 

And in addition, the larger data volumes from such hyperspectral image make traditional 

processing techniques inefficient for many applications. One of these techniques is 

supervised classification, which uses labeled samples available for training the classifier 

and estimating its performance. A rule of thumb used in remote sensing image 

classification techniques is that the number of training pixels should be at least ten times, 

but preferably hundreds times, the dimensionality of the data set. However, the size of 

training samples for such classification techniques is normally limited. Moreover, as the 

number of available bands increases, such techniques become less applicable, resulting in 

severe limitations. Thus, beyond a certain point, if the number of training samples per 
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feature is small, the addition of more dimensions leads to misclassification [81]. This 

phenomenon is called “Hughes phenomenon” or “Curse of dimensionality”.  The Hughes 

phenomenon states that after adding many features to a classifier which is trained using a 

fixed size training set, the classification performance starts to degrade. 

 

In order to overcome the curse of dimensionality, dimensionality reduction techniques 

can be applied to the original hyperspectral bands. There are a number of dimensionality 

reduction techniques, and according to the adopted reduction strategy they are usually 

divided into band selection and feature extraction approaches. Feature extraction is often 

referred to as data transformation from a high order dimension to a low order dimension 

in order to concentrate the vital information while discarding redundant data. These 

feature extraction techniques include, but are not limited to, principal component analysis 

(PCA), fisher’s linear discriminant analysis (FDA), independent component analysis 

(ICA) [101], projection pursuits [82] and wavelet transform [83][25]. As an alternative, 

band selection can be defined as the subset of features that provide the highest-class 

separability. The key difference between band selection and feature extraction is that in 

the former only a subset of original bands is selected while the latter is based on a 

functional mapping to generate a completely new feature space in fewer dimensions. 

Band selection methods are particularly welcome because the selected features retain the 

original meanings researchers are familiar with. 

 

Band selection is a process that selects a subset of original bands. The optimality of a 

band subset is measured by an evaluation criterion. Typically, a small number of bands 

can give sufficient information for the classification. The band selection procedure finds 

the small subset of bands that are relevant to the target concept. A small subset of 

relevant bands gives more discriminating power than using more bands. As a result, the 

band selection gives a better generalization error. Benefits of the band selection include 

reducing the number of bands, removing irrelevant, redundant, or noisy data, speeding up 

processing time and improving classification performance.  

 



52 
 

4.2 Review of Band Selection Techniques 
 
Band selection techniques generally involve both a search algorithm and a criterion 

function. The search algorithm generates and compares possible subsets of bands by 

applying the criterion function as a measure for each considered band subset. A criterion 

function J must be a measure of the overlap or class separability among the distributions. 

Within-class and between-class scatter matrices are often used to formulate criteria of 

class separability. In order to formulate criteria for class separability, these matrices need 

to be converted to a number. After band selection, samples should be close to those in the 

same class but far from those in different classes. So, this value of J should be larger 

when the class separability is larger.  

 

Relief is an instance-based feature ranking scheme introduced by Rendell and Kira [84] 

and later enhanced by Kononenko [85]. The basic idea of Relief is to sample instances at 

random and then compute their nearest neighbors from the same and opposite class, and 

adjust a feature weighting vector to give more weight to features that discriminate the 

instance from neighbors of different classes. The theory is that a useful feature should 

differentiate between instances from different classes and have the same value for 

instances from the same class. Relief algorithm has some extensions defined by 

Kononenko [85]. ReliefF is one of these extensions. It is not limited to two class 

problems as Relief algorithm is, and it is more robust and can deal with incomplete and 

noisy data. The key idea of the ReliefF is to estimate the quality of attributes according to 

how well their values distinguish between instances that are near to each other. In ReliefF 

algorithm, a set of feature vectors for the training instances and their labels is taken and 

the vector W which contains the estimations of the qualities of the features is output. 

Given a randomly selected instance xi from class L, ReliefF searches for k of its nearest 

neighbors from the same class called nearest hits H, and also k nearest neighbors from 

each of the different classes, called nearest misses M. Then, for each feature, it updates 

the quality estimation Wj based on their values for xi, H, M. If instance xi and those in H 

have different values on the j-th feature, then the Wj is decreased. On the other hand, if xi 
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and those in M have different values on the j-th feature, Wj is increased. This whole 

process is repeated n times which is set by users.  

 

SVM Recursive Feature Elimination (SVM-RFE) method selects a small subset of genes 

by using the SVM [88].  SVM-RFE is a recursive feature elimination method based on 

sensitivity analysis for a cost function  

21
2

J = w
                                                   

 (4.1)  

where w is the weight vector obtained from SVM. At each step, a feature is discarded 

according to a criterion related to coefficients of the weight vector of a SVM, bj = (wj)2. 

The feature with the smallest criterion score is eliminated, and the SVM is re-trained at 

each step. 

 

Several methods are proposed based on the original SVM-RFE algorithm. Unlike the 

SVM-RFE method, at each step, Duan et al. [89] proposed an approach to compute the 

feature ranking score from a statistical analysis of weight vectors of multiple linear 

SVMs trained on subsamples of the original training data. In [90], the authors suggested 

to use ten-fold cross validations to improve the reliability of the top feature subsets 

selected with SVM-RFE. 

 

Millette [91] designed an expert system, which makes use of the Jeffreys-Matusita 

distance measure and a library of prototype reflectance data, to make spectral decisions.  

2(1 )ijB
ijJ e−= −

                                               
(4.2) 

Where Bij is Bhattacharyya distance 
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where iμ  and iΣ are the mean vector and covariance matrix of class ωi, respectively. 
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Keshava [92] proposed a band selection algorithm based on the spectral angle mapper 

(SAM) metric, which is the angle between the two spectra. For two J- dimensional 

spectra, x and y, θ is given by the following analytical expression: 

,
( , ) arccos( )θ =

x y
x y

x y
                                                  (4.4) 

Tu et al. [93] proposes a band selection algorithm coupled with feature extraction for data 

dimensionality reduction based on canonical analysis (CA). Using the eigenvalues and 

eigenvectors generated by CA, a loading factor matrix can be defined, through which a 

discriminant power (DP) is calculated for each bands. Du [94] used high-order moments 

for band ranking and divergence for band decorrelation. Du, Qi, and Wang, [95] used the 

independent component analysis for the band selection. Ifarraguerri and Parairie [96] 

presented the band selection algorithm based on the Jefferis-Matusita metric. Huang [97] 

proposes a band selection method based on the pairwise separability criterion and matrix 

coefficients analysis. Mutual information, which derived from the concept of entropy, 

measures the statistical dependence between two random variables and therefore can be 

used to evaluate the relative utility of each band for classification. A mutual information-

based band selection method is presented by Guo et al. in [98].  

 

4.3 Recursive Divergence Based Band Selection  

 
This approach depends on the concept of a measure of "statistical distance" between the 

probability densities characterizing the sample classes. Intuitively, this distance or 

separability measure should has the property that for two feature sets A and B, if the 

distance or separability between two class densities were greater for feature set A than for 

feature set B, then the error probability obtained for set A would be less than for set B. 

 

The divergence is one of popular criteria for class separability. Spectral bands in 

hyperspectral images are highly correlated. The divergence takes into account the 



55 
 

correlation that exists among the various selected bands and influences the classification 

capabilities of the spectral bands that are selected. We use the divergence to determine 

feature ranking and to evaluate the effectiveness of class discrimination in hyperspectral 

image data. The divergence is defined as the total average information for discriminating 

class ωi from class ωj, and given by [99]  

( ) ( )( ) ( ) ln
( )

i
ij i j

j

pD p p d
p

+∞

−∞
⎡ ⎤= −⎣ ⎦∫

xx x x x
x

                           (4.5) 

where pi(x) is the probability density function of x in class ωi. The divergence is the 

symmetric version of Kullback-Leibler distance, and it is nonnegative, monotonic, and 

additive for independent variables. 

 

Suppose that signal classes are characterized by p-dimensional multivariate normal 

distributions: ( , )i iN μ Σ , where iμ  and iΣ are the mean vector and covariance matrix of 

class ωi, respectively. Then, the divergence between these two classes is given by [100] 

( ) ( )( )( ) ( )( )1 1 1 11 1
2 2

T

ij i j i j i j i j j iD tr tr− − − −⎡ ⎤ ⎡ ⎤= + − − + − −⎣ ⎦⎢ ⎥⎣ ⎦
x Σ Σ μ μ μ μ Σ Σ Σ Σ    (4.6) 

where tr is the notation for the trace of a matrix.  

 

If the covariance matrices of the two normal distributions are equal, that is, i j= =Σ Σ Σ , 

then the divergence can be simplified to  

( ) ( )( ) ( ) ( )1 1T T

ij i j i j i j i jD tr − −⎡ ⎤= − − = − −⎢ ⎥⎣ ⎦
x Σ μ μ μ μ μ μ Σ μ μ                   (4.7) 

which equals the Mahalanobis generalized distance. The form of Equation (3.6) is close 

to that of the Bhattacharyya distance with first and second terms indicating class 

separabilities due to mean- and covariance-differences. The advantage of divergence is 

that both the first and second terms are expressed by the trace of a matrix, while the 

Bhattacharyya distance is the combination of trace and determinant. 

 

From the training samples, the sample covariance matrix of class ωi can be calculated as 

follows: 
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ji
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= − −∑Σ x μ x μ                                         (4.8)                         
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1,   if 
0,   otherwise

j i
ijz

ω∈⎧
= ⎨
⎩

x
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1

N

i ij
j

N z
=

= ∑ , N is total number of samples, and ˆ iμ  is the 

sample mean vector of class ωi given by 
1

1ˆ
iN

i ij j
ji

z
N =

= ∑μ x . 

Given L spectral bands, the number of possible subsets to find the best size d spectral 

bands is 

! ,
( )! !c

Ln
L d d

=
−

                                                             (4.9) 

which can be very large even for moderate values of L and d. For example, selecting the 

best 6 spectral bands out of 65 bands in our case study of the detection of poultry 

carcasses means that 82598880 band sets must be considered, and evaluating the 

divergence criterion for every band set in an acceptable time may not be feasible. Thus, 

we propose the suboptimal band selection method based on the recursive calculation of 

the divergence.  

 

The basic idea is to build up a set of d spectral bands incrementally, starting with the 

empty set. That is, the search algorithm constructs the set of spectral bands at the ith stage 

of the algorithm from that at the (i-1)th stage by the addition of a spectral band from the 

current optimal set. The divergence criterion Equation (4.6) at stage i can be evaluated 

by updating its value already calculated for stage (i-1) instead of computing the 

divergence from their definitions. This results in substantial computational savings. 

 

Let *( )ij pD x  be the divergence with p selected bands and * *
1( , )ij p pD x +x  the divergence 

with the additional band *
1px + . Suppose the additional band *

1px +  has mean *
kμ , variance 

2
kσ ; and the covariance vector between *

1px +  and the elements of px , kz  for class k (=i or 
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j). Then the new mean vectors and new covariance matrix are * *
,( ; )v T

k k p kμ=μ μ , 

(   k i or j= ) and  

,
, 1 2

k p k
k p t

k kσ
+

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Σ z
Σ

z
                                              (4.10) 

 

divergence with the additional of a band *
1px +  can be calculated based on its definition in 

(4.6) as follows: 

 
( ) ( )( )

( )( )( )

* * 1 1
1 , 1 , 1 , 1 , 1

1 1
, 1 , 1

1,
2

1                   
2

ij p p i p j p j p i p

T

i p j p i j i j

D x tr

tr ν ν ν ν

− −
+ + + + +

− −
+ +

⎡ ⎤= − −⎣ ⎦

⎡ ⎤+ + − −⎢ ⎥⎣ ⎦

x Σ Σ Σ Σ

Σ Σ μ μ μ μ
                  (4.11) 

 

The inverse of the new covariance matrix with an additional band can be obtained by the 

following recursive formula  

                 
1 1 1

1 ,
, 1 1 1

t
k p k k k k k

k p t
k k k

γ δ γ γ δ
δ γ δ

− − −
−

+ − −

⎛ ⎞+ −
= ⎜ ⎟

−⎝ ⎠

Σ
Σ                               (4.12) 

where 1
,k k p kzγ −= Σ  and 2 1

,
t

k k k k p kz zδ σ −= − Σ .  

 

Replacing this inverse matrix in the equation of divergence when a new band *
1px +  is to 

be considered, we can obtain 

( ) ( )( )

( )( )( ) ( )
( ) ( )

* * 1 1
1 , , , ,

* * * * *
, , , , , , 1

* *
1

1,
2

1                  
2

                  

ij p p i p j p j p i p
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i p j p i p j p i p j p ij p
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+
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⎡ ⎤= − −⎣ ⎦

⎡ ⎤+ + − − + Δ⎢ ⎥⎣ ⎦

= + Δ

x Σ Σ Σ Σ

Σ Σ μ μ μ μ

x

 (4.13) 

where *
1( )ij px +Δ  is the incremental divergence due to the addition of a band *

1px + , and can 

be calculated by the following formulae:  
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(4.14) 

 

If the covariance matrices of the two normal distributions are equal, then the incremental 

divergence due to the addition of a band is given by    
2* * 1

*
1 2 1

( ) ( )
( )

T
i j i j p

ij p t
p

x
μ μ

σ

−

+ −

⎡ ⎤− − −⎣ ⎦Δ =
−

μ μ Σ z
z Σ z

                                     (4.15) 

Equation (4.11) gives an efficient way to calculate the divergence with the additional 

band. When a new band is to be considered, it is not necessary to compute the divergence 

of all selected bands; only the incremental divergence is calculated.  

 

We can extend the above idea to the band selection of hyperspectral images with multi-

classes. Assume that we have L multiple classes in hyperspectral images, and want to 

select d spectral bands out of K bands. Then, we can define the divergence of a specific 

band (say λq) as the sum of L(L-1)/2 pairwise combinations of Dij(xq). That is, 
1

1

( ) ( )
L

q ij q
i i j L

D Dλ
−

= < ≤

= ∑ ∑ x                                               (4.16) 

The incremental divergence for multiple classes due to the addition of a band can be 

defined similarly as follows:  
1

* *
1 1

1
( ) ( )

L

p ij p
i i j L

x x
−

+ +
= < ≤

Δ = Δ∑ ∑                                               (4.17) 

For multi-class problem, the transformed divergence [104], which gives an exponentially 

decreasing weight to increasing distances between the classes, can result a better 

performance. The transformed divergence is defined as 

( )
( ) 2[1 exp( )]

8
ij

ij

D
TD = − −

x
x                                     (4.18) 
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The procedure for an efficient band selection based on the recursive equation of 

divergence can be described as follows. The diagram is shown in Figure 4.1. 

 

Algorithm 1: Recursive Divergence Based Band Selection Algorithm  
 

             Input: a set of spectral band Λ=[λ1, λ2,..., λK] and training sample set X 

 

            Output: selected optimal band subset O 

 

1. Set O to the empty set.  

 

2. Exhaustively calculate divergence by Equation (4.6) for all bands in Λ. Find the 

one with the maximum divergence (say λi) as the starting band.  

 

3. Calculate divergence incremental *
1( )ij px +Δ  according to Equation (4.12) for all 

the remaining bands. If Op represents a set of p spectral bands then, the best 

band at a given iteration, Op+1 is the set which has the maximum divergence 

value. 

 

4. Select the band having the largest divergence incremental value (say λk), and 

add it to the selected band set O and remove it from Λ.  

 

5. If stopping criterion is met, then stop and output selected band set O. Otherwise 

go to Step 2.     

 

4.4 Collaborative Band Selection 
 

A basic property of spatially located data is that the set of values are likely to be related 

over space.  As Tobler [78] has argued, “the first law of geography: everything is related 
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Output Ot

 Find band i such that   

O1 O0 { i}
Λ1 Λ0 { i}

Find band m such that

No

Yes

Start

Set Λ0= [ and O0= {}

Calculate incremental divergence
t j) for j Λt

Compute divergence          
 D( k), k=1,2,…,K

t = t+1
Ot Ot-1 { m}
Λt Λt-1 { m}

maxt t≥

Set  1t =
max: desired number of bands t

1
arg max ( )k

k K
i D λ

≤ ≤
=

arg max ( )
j t

t jm
λ

λ
∈

= Δ
Λ

 
 

Figure 4.1: Block diagram of the recursive divergence based band selection 
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to everything else, but near things are more related than distant things.” For hyperspectral 

image data, it is anticipated that there will be some degree of dependency between pixels.  

 

In the spectral information based band selection, a good subset is to maximize the 

representation of the spectral separability. However, separability maximization does not 

guarantee a classification process that will produce the best visual result, or the most 

accurate. It is only when the spectral separability is spatially organized that regional 

variations become apparent in an image. This implies that using only the spectral 

separability criterion cannot guarantee obtain the most accurate results. Most 

hyperspectral image analysis techniques, such as enhancement and classification, are 

indirectly an attempt to make the spatial heterogeneity clearer. In other words, pixels 

after process should on average be more similar to neighboring pixels than those pixels 

that are far away, a characteristic known as spatial autocorrelation. The spatial 

autocorrelation for the image provides an excellent measure of information in the image. 

This suggests that to identify band combinations with the highest spatial autocorrelation 

should not only increase the accuracy of the spectral representation of the objects, but 

also increase their spatial representation and suppress visually distracting. 

 

4.4.1 Review of Spatial Autocorrelation 
 

Spatial autocorrelation is defined one observation tends to take value (reflectance value 

of a pixel in hyperspectral image) that is related to those of neighboring observations 

(surrounding pixels). Spatial autocorrelation is useful since it not only considers the value 

of the pixel (magnitude of reflectance), but also the relationship between that pixel and its 

neighboring pixels.  

 

To measure the spatial autocorrelation, some spatial statistics have been developed. 

These include the Moran I, Geary c ([67]), G statistics ([73]), and LISA ([68]). There are 

two common aspects for all those spatial analytical techniques. First, they begin from the 
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randomized distribution assumption of spatial pattern. Second, the spatial pattern is 

derived from the data only.  

 

There exist two types of measures: global measures, which provide a single value that 

summarize the level of spatial autocorrelation with respect to the whole region, and local 

measures, which provide a value for each location with respect to its neighborhood. In the 

following subsections we briefly review some popular measures of both global and local 

spatial association. 

 

          A.  Global spatial autocorrelation 
 

To measure the global measure of spatial autocorrelation, the Moran I is defined by 

1 1

2

1 1 1

( )( )

( )

n n

ij i j
i j

n n n

i ij
i i j

w x x x x
nI

x x w

= =

= = =

− −
=

−

∑∑

∑ ∑∑
                            (4.19) 

where xi denotes the observed value at location i, x is the mean value of the xi over the n 

locations. wij is the (i, j)-th element of a spatial weights matrix. Here we consider 

symmetric binary weights, with ones if location j is contiguous to location i, and zero 

otherwise.  

 

As a different approach to measuring spatial association, Geary’s c statistic is defined as 

the following: 

2

1 1

2

1 1 1

( )
( 1)

2 ( )

n n

ij i j
i j

n n n

i ij
i i j

w x x
nc

n x x w

= =

= = =

−
−

=
−

∑∑

∑ ∑∑
                            (4.20) 

The Geary statistic is always positive and asymptotically normal. When the Geary value 

is 1, which means there is no spatial autocorrelation. A low value (between 0 and 1) 
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indicates a positive spatial autocorrelation while a high value (greater than 1) indicates a 

negative spatial autocorrelation [64]. 

 

        B. Local spatial autocorrelation 
 

Global measures of spatial autocorrelation emphasize the average spatial dependence 

over a study area. These measures have also shown success in quantifying global noise 

present in image. However, the global measure is useful when spatial dependence is 

relatively uniform over the study area. If the underlying spatial process is not stationary, 

global measures may not be representative. In this case, the global measures which 

generate only a sole average measure of spatial dependency tend to obscure, or suppress, 

any significant local variation of spatial nonstationarity in the data set. Such a global 

estimate will be quite uninformative and may be very misleading. Therefore, to measure 

the spatial dependence at a smaller area is often more appropriate. Local versions of these 

global measures are gaining attention for their ability to identify the location and spatial 

dependence within the study area. 

 

To overcome these limitations, local indicators of spatial association (LISA) have been 

developed [68]. In contrast to existing methods, LISA measures focus on local variations 

within patterns of spatial dependence. Thus, they have the potential to uncover discrete 

spatial regimes which might be missed by using existing global techniques. In calculating 

local spatial association measures on raster data, each cell or pixel receives a value 

quantifying its spatial dependence to its neighbors, where the neighborhood is determined 

by the weights matrix. 

 

There have been different proposals for local measures, but two in particular are worth 

mentioning since they are related to the previous global measures of spatial 

autocorrelation. Local Moran and local Geary statistics are alternative local indicators.  

 

The local Moran statistic for each observation i is defined as 
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for any i = 1, . . . , n. Local Moran’s Ii measures joined covariation of neighboring 

localities.  

 

A local Geary statistic for each observation i may be defined as follows 
2
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ij i j
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i n
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                                              (4.22) 

The local Moran allows for the identification of spatial agglomerative patterns, while the 

local Geary allows for the identification of spatial patterns of similarity or dissimilarity. 

One advantage of the local Moran and the local Geary is that they can be associated with 

the global statistics (Moran I and Geary c) and can be used to estimate the contribution of 

individual statistics to the corresponding global statistics. In calculating local spatial 

association measures on image data, each pixel receives a value quantifying its spatial 

dependence to its neighbors, where the neighborhood is determined by the weights 

matrix.  

 

4.4.2 Multidimensional Local Spatial Autocorrelation (MLSA) 
 
The measures in previous discusses are all for one-dimensional variable. While the pixels 

in hyperspectral image are usually multi-dimensional vectors, the classical local Geary 

statistic cannot be directly applied to hyperspectral image data. 

 

Three methods are proposes here to extend the single-image based local Geary measure 

to high dimensional data. Let us now consider a hyperspectral image H, defined on the K 

dimensional space, where K is the number of spectral channels. We use xi to denote the 

observed value at location i. But now 1( , , , )t
i i ik iKx x x=x , which is represented as a 
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column vector. k denotes the dimension of the data or the spectral band of the 

hyperspectral image.  

 

A. Average  Approach  
 
The basic idea of this method is to calculate the local Geary’s c for each dimension first, 

and then take an average for the c value among all dimensions. The local Geary’s c for K-

dimensional data is defined as: 

2

1 2
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A
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where, the superscript A in A
ic  indicates average, and 2

2 ( ) /k ik k
i

m x x n= −∑ .  We derive 

the moments for A
ic  under the null hypothesis of no spatial association.  

 

Lemma 1: For hyperspectral image H, if each pixel is i.i.d, and spectral image λk is 

independent, then 
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where 2
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1[ ( ) ]ij ik jk
jk

E w x x
m

−∑  is the expected value for a spectral image. According to 

[68],  
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j
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Substitute (4.25) to (4.24), we have  
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Proof of result (ii): 
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If all spectral images are independent, we have 2
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then variance can be written as 
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Otherwise, if spectral image λk are not independent, the variance can be expressed as 
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B. Mean Approach 
 
For this method, we will calculate the mean for the K-dimensional data first. This process 

can convert the K-dimensional data to a one-dimensional data. And then the classic local  
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Geary’s c is applied for this one-dimensional data. The local Geary’s c for this case is 

defined as: 
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where the superscript M in M
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We also derive the moments for M

ic  under the null hypothesis of no spatial 

association.  

 

Lemma 2: For hyperspectral image H, if each pixel is i.i.d, then 
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Proof of result (ii): 

Similar to (i), according to [68], 
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□ 
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C. Vector Approach 
 
The local Geary statistic for observation i is defined as [68] 
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This definition can be re-written as 
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Now, consider in multi-dimensional space, suppose , ( , )i j KN∈x x μ Σ ,and are i.i.d, then  
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i ij i j i j ij i j i j
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c w w− −= − − = − −∑ ∑x x Σ x x x x Σ x x         (4.37) 

where the superscript V in V
ic  indicates vector, Σ is the covariance matrix for x. The 

observed values xi , xj have expectations: 

( ) cov( )T T T
i i iE = + = +x x x μμ Σ μμ                                        (4.38) 
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                    (4.39) 

The moments for V
ic  under the null hypothesis of no spatial association are derived.  

 

Lemma 3: For hyperspectral image H, if , ( , )i j KN∈x x μ Σ ,and are i.i.d, then,  

(i) Expected value for V
ic  is 2 iw K , 

(ii) Variance for V
ic  is 2 2 2 2

(2) (2)(4 8 ) ( )(4 2 ) (2 )i i i iw K K w w K K w K+ + − + −  

 

Proof of result (i): 
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where K is the dimension of the features. 

 

 
Proof of result (ii): 

The variance for V
ic can be denoted as 

( ) ( ) ( )2 2var V V V
i i ic E c E c⎡ ⎤= −⎢ ⎥⎣ ⎦

                                   (4.41) 

while 
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(4.42) 

The first term in right hand side of Equation (3.42) can be represented as [74] 
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For the second term in Equation (3.42), 
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Using the following results [74], 

1 1cov(( ) ( ), ( ) ( )) 2T T
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and 
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We obtain 

 
1 1 2( ) ( )( ) ( ) 2 4T T

i k i k i l i lE K K− −⎡ ⎤− − − − = +⎣ ⎦x x Σ x x x x Σ x x        (4.47) 

 
The variance value turns out to be 
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□ 

 

The first two approaches are not recommended because there is a possibility for loss or 

corruption of information of the image. In this dissertation, we only use the vector 
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approach to calculate the local spatial autocorrelation for hyperspectral image data. This 

measure is named as Multidimensional Local Spatial Autocorrelation (MLSA) measure. 

 

4.4.3 Collaborative Band Selection  
 

In the spectral information based band selection, a good subset is to maximize the 

representation of the spectral separability. However, separability maximization does not 

guarantee a classification process that will produce the best visual result, or the most 

accurate. It is only when the spectral separability is spatially organized that regional 

variations become apparent in an image. In other words, pixels should on average be 

more similar to neighboring pixels than those pixels that are far away, a characteristic 

known as spatial autocorrelation. This suggests that using only the divergence criterion 

cannot guarantee obtain the most accurate results. As an alternative, the spatial 

information based method determines the band subset with only spatial information to 

make the spatial heterogeneity clearer. While in classification stage, the most available 

classifiers are spectral classifiers, they assign each pixel to particular class depend on the 

spectral similarity. This suggests that for hyperspectral classification procedure, spectral 

information is still in the dominant position. The spatial information is a useful 

supplement to increase the classification accuracy. 

 

In this section, we developed a collaborative band selection method that combines both 

spectral separability measure and spatial homogeneity measure of hyperspectral band 

selection. The collaborative band selection algorithm consists of three major steps of 

computation. At the first step, divergence is used to measure class separability of data 

samples for each subset combination. We sort and rank the divergence value in a 

descendent order for the all combinations. Then the collaborative band selection 

algorithm selects several subsets which have the largest divergence value. Since the 

classifier makes decision based on the spectral similarity, hence the large divergence 

value usually indicates higher classification accuracy. The algorithm chooses several 
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band combinations with the largest divergence values can guarantee the selected subset 

has good classification performance.   

 

At the second step, the algorithm attempts to improve the prediction accuracy by 

integrating spatial information. At this step, the multidimensional local spatial 

autocorrelation measure for those selected subsets in the previous step is calculated. By 

adopting the proposed spatial measures, it is possible to efficiently calculate the spatial 

autocorrelation for hyperspectral image. From the training samples, the average 

multidimensional local spatial autocorrelation measure for class ωl of specific band subset 

(say U, U =[λ1, ,..., λp] ) be calculated as: 

1

1( ) ( )
lN

V
l i

il

C c
N =

= ∑U U                                                   (4.49) 

The average multidimensional local spatial autocorrelation measure value for all training 

samples is 

1

( ) ( )
L

l
l

C C
=

=∑U U                                                      (4.50) 

 

The third step is to combine the spectral information (divergence value) with the spatial 

information (average multidimensional local spatial autocorrelation measure value). The 

ration between divergence and average multidimensional local spatial autocorrelation 

measure value is used to combine the divergence and spatial autocorrelation in this step: 

( ) ( ) / ( )DC D C=U U U                                        (4.51) 

where U is a specific band subset. For the divergence measure, the larger value indicates 

more separate between two classes. While for the multidimensional local spatial 

autocorrelation measure, the smaller value means stronger spatial similarity. For Equation 

(4.51), the band subset has large class separabiliy and strong spatial similarity will yield a 

bigger output value. The rule to find the optimal subset at this step is defined as: 
* max ( ) max[ ( ) / ( )]DC D C= =

U U
U U U U                          (4.52) 
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The procedure for the collaborative band selection method is described as follows. The 

diagram is shown in Figure 4.2. 

 

Algorithm 2. Collaborative Band Selection Algorithm  

 

             Input: a set of spectral band Λ =[λ1, λ2,..., λK], training sample set X 

                          User defined value p  

 

            Output: selected optimal band subset O 

 

1. Set O to the empty set.  

 

2. Exhaustively calculate divergence ( )kD λ by Equation (4.17) for all bands in Λ. 

Sort and rand the ( )kD λ  in a descendent order. Find largest p divergence value 

and corresponding subsets.  

 

3. Calculate the average multidimensional local spatial autocorrelation measure 

value for these p subsets. 

 

4. Calculate the combination value according to Equation (4.51) 

 

5. Select the band having the largest combination value. Add it to the selected 

band set O and remove it from Λ.  

 

6. If stopping criterion is met, then stop and output selected band set O. Otherwise 

go to Step 2.     
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Output Ot

 Find  p band such that   
 D( 1)≥D( 2)≥...≥D( p)

Compute average MLSA value  
C( k), k=1,2,…,p

O1 O0 { i}
Λ1 Λ0 { i}

Find band m such that

t ≥ tmax
No

Yes

Start

Set Λ0= [ and O0= {}
Set t = 1
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Calculate incremental divergence
t j) for j Λt 

Compute divergence          
 D( k), k=1,2,…,K

t = t+1
Ot Ot-1 { m}
Λt Λt-1 { m}

 Find band i such that   

1
arg max ( )j

j p
i DC λ

≤ ≤
=

Find p band such that
D( 1)≥D( 2)≥...≥D( p)

Compute average MLSA value  
Ct U) for U= Ot { j}, j=1,..,p

1
arg max ( )

j p
i DC

≤ ≤
= U

 
Figure 4.2: Block diagram of the collaborative band selection algorithm  
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4.5 Experimental Results for Band Selection 
 
In this section, a serious of experiments is presented to illustrate the performance of the 

proposed recursive divergence band selection (RD) and collaborative band selection 

(CBS) method. Here, the classification accuracy is got from the pixel classifier. The MLC 

classifier is used to get the pixel classification results. We do not choose SVM as 

classifier for this experiment is because the performance of SVM depends on its 

parameter setting. While MLC do not have this problem, so its output is fairer to evaluate 

the performance of band selection methods. 

 

4.5.1 Hyperspectral Poultry Data 
 

Since we have twelve HS chicken data cubes. we use one cube for training purpose. The 

other eleven HS cubes are used for testing. The tumors on the poultry carcass are verified 

and labeled by a Food Safety and Inspection Service (FSIS) veterinarian (shown in 

Figure 4.3 ). The size of this data cube is 460×400 pixels. Tumor and normal tissue pixels 

are collected from this data cube and all these pixels with they labels are used for band 

selection and classifier training purpose. We also examine the detection result for the 

training set to determine the other parameters, such as window size for calculate local 

geary value, and parameters for band selection.  From the training data cube, we extract 

1500 pixels from different tumor area and 5000 pixels from different normal tissue area. 

Twenty percent of these samples (300 tumor pxiels and 1000 normal pxiels) are used in 

training, and the other are used as the test set. 

 

We first discuss the RD method. Figure 4.4 shows the band combinations with minimum 

and maximum divergence values for two bands case. This result is obtained from 

exhaustively searching all combinations with two bands. There are total 65×64/2=2080 

combinations. Bands λ59 and λ61 gives minimum divergence value 0.8262 among all 2080 

combinations. As shown in Figure 4.4 (a), the normal tissue and tumor pixels are highly 

overlapped. That means if we use these two bands for classification, we must get plenty  



77 
 

 

 

        
  (a)  Without labeled                         (b) labeled tumors 

Figure 4.3: Labeled tumors  

 

 

 

  
(a) Minimum divergence value: 0.8262        (b) Maximum divergence value: 10.8444  

Figure 4.4: Minimum and maximum divergence value for 2-band case 
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of misclassified pixels. While for bands λ15 and λ49, which gives the largest divergence 

value 10.8444, the tumor and normal tissue are more separate than the previous one. 

Figure 4.4 illustrates the relationship between divergence value and class separability. 

The larger divergence value indicates more separate between two classes.     

 
Now we study band selection for 1-band case, which is to choose the best one band from 

total 65 spectral bands.  Figure 4.5 (a) shows the divergence value for normal tissue and 

tumor classes on all 65 spectral bands. The divergence has a large peak value at 

approximately band λ12 with divergence value 5.7454. If we use only the divergence 

value as the criterion, band λ12 will be chosen since it has the largest divergence value 

among all 65 bands. Can this band yield the best classification accuracy? Figure 4.5 (b) 

plots the classification accuracy corresponding with different divergence values. The 

maximum value of accuracy happens at band λ9, which has divergence value 5.5088. 

These plots suggest that, in general, the larger divergence value usually result higher 

classification accuracy. Unfortunately, the largest divergence value cannot always 

guarantee the highest classification accuracy. This is why we need spatial information as 

a useful supplement to increase the classification accuracy. 

 
Table 4.1 lists the divergence value, average local Geary value and accuracy for ten 

bands. These ten bands have biggest divergence values among all 65 bands. The average 

local Geary values are calculated by Equation (4.50) with 3×3 window. If we apply the 

CBS method, and assume the parameter is set to 10, which means we consider the spatial 

information for the top 10 bands. Then the optimal band is λ15.  

 

Table 4.1: Divergence (D), average local Geary (C) and accuracy (Acc) for 1-band case 

Band 12 11 13 6 14 7 9 10 8 15 
D 5.7454 5.7120 5.6459 5.5760 5.5281 5.5165 5.5088 5.4895 5.4581 5.4327
C 0.1079 0.1130 0.1022 0.1539 0.1000 0.1411 0.1132 0.1180 0.1318 0.0965

D/C 53.247 50.548 55.243 36.231 55.281 39.096 48.664 46.521 41.412 56.297
Acc 0.7755 0.7775 0.7767 0.7663 0.7759 0.7734 0.7803 0.7778 0.7773 0.7778
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(a) Divergence value for 1-band case 

 
 

(b) divergence value vs. classification accuracy for testing data 

Figure 4.5: Divergence value and accuracy for 1-band case 
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The RD method chooses λ12 as the optimal band for one-band case, and λ12 yields 77.55% 

classification accuracy. For CBS method, the λ15 is chosen as the optimal band, which has 

77.78%.  The highest accuracy 78.03% is obtained by λ9, which in only 0.25% higher 

than that obtained by CBS. Hence for one band case, the CBS method can obtain better 

performance than RD method.  

 

Next we discuss the 2-band case. In this step, two spectral bands will be selected from 65 

bands. There are 65×64/2=2080 combinations in total. Figure 4.6 plots the classification 

accuracy corresponding with different divergence values. This figure illustrates similar 

phenomenon that the largest divergence value cannot always guarantee the highest 

classification accuracy.  

 

Table 4.2 lists several results for 2-band case. The subset [λ14, λ65] gives the highest 

accuracy rate of 83.31%. The subset [λ15, λ49] has the largest divergence value among 

2080 possible combinations. This subset yield accuracy of 81.69%, which is not the 

highest accuracy rate. The RD method chooses subset [λ12, λ46], which has 80.90%. The 

CBS method selects subset [λ15, λ47], and this subset can produce 81.96% accuracy. The 

RD and CBS method adopt sequential forward search strategy, which keep the selected 

bands from the previous stage, and add a new band to make the subset optimal criterion. 

The sequential forward search technique can only give the near-optimal solution, this 

results RD method get poor performance. While for CBS method, because it combines 

the spatial information with the spectral information, even it also adopts the sequential 

forward search technique, the final performance is much better than using the divergence 

measure only. The accuracy yielded by CBS method is only 1.35% less than the optimal 

accuracy. We can conclude that for two band case, the CBS method also obtains better 

performance than RD method.  

 

Table 4.3 lists results for 3-band case. Similar conclusions can be found. The highest 

accuracy 84.27% is yielded by subset [λ14, λ58, λ65] among all combinations of three  

bands, which is 65×64×63/6=43680 combinations. The RD method chooses subset [λ12, 
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Figure 4.6: divergence value vs. classification accuracy for 2-band 

 
 

Table 4.2: Divergence (D), average local geary (C) and accuracy (Acc) for 2-band case 

Band D C Acc 
14 65 10.2135 0.3150 0.8331
15 49 10.8444 0.3338 0.8169
12 46 9.8367 0.3112 0.8090
15 47 10.5840 0.3214 0.8196

 

Table 4.3: Divergence (D), average local Geary (C) and accuracy (Acc) for 3-band case 

Band D C Acc 
14 58 65 11.4371 0.7567 0.8427
12 46 2 10.3414 0.7331 0.8120
15 47 26 11.3698 0.4434 0.8329
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λ46, λ2], which has 81.20% accuracy. The CBS method selects subset [λ15, λ47, λ26], and 

this subset can produce 83.29% accuracy. The accuracy yielded by CBA method is very 

close to the optimal one. So for three band case, the CBS method still obtains better 

performance than RD method.  

 
Figure 4.7 compares the classification accuracy for bands selected by RD and CBS 

method. For the CBS method, different p values are used. The 3×3 window is adopted to 

calculate local Geary measure. When p =10, the result shows the best performance. 

Meanwhile, the incremental of classification accuracy becomes very small after using 

four bandns. Hence, the first four selected bands are used.  Table 4.4 lists the four optimal 

bands selected by RD, CBS and the exhaustive search method for the highest 

classification accuracy among all combinations. 

 

Figure 4.8 displays the classification accuracy for testing set with band selection results. 

The overall accuracy for selected bands is shown in Figure 4.8 (a). The CBS method 

generates higher classification accuracy than the RD method as we expected. Exhaustive 

search methods provide the best performance. For the tumor accuracy (shown in Figure 

4.8 (b)), the RD and CBS method all generate high accuracies. This means the bands 

selected by RD and CBS method are all provided good discriminant ability for tumor 

pixels. But for normal tissue accuracy (shown in Figure 4.8 (c)), the CBS method 

produces the higher accuracy than RD. This suggests that the band selected by the CBS 

method will generate less false positive error than RD.   

 

4.5.2 Hyperspectral Apple Data 
 
For this dataset, the goal is to find one or two optimal spectral bands from 79 bands for 

fecal detection. Each hyperspectral cube contains twelve apples as shown in Figure 4.9. 

The four apples on the left side are picked as training data; the other six apples are used 

as testing data. In the training data, the pixels from fecal and apple surface are randomly 

picked. Total 2000 fecal pixels and 4000 apple surface pixels are gathered for band  
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Figure 4.7: Accuracy for RD and CBS results 

 
 

Table 4.4: Band selection result for chicken data 

Methods 
Number of selected bands 

1 2 3 4 

RD 12 12,46 12,46,2 12,46,2,1 

CBS 15 15,47 15,47,26 15,47,26, 40 

Max Accuracy 9 14,65 14,58,65 14,25,40,65 
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(a) Overall accuracy  

           

 
(b) Accuracy for Tumor  
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(c) Accuracy for Normal Tissue 

Figure 4.8: Classification accuracy on band selection results for chicken data 

 
 

 

 
Figure 4.9: One hyperspectral cube of apple data 
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Table 4.5: Band selection results for apple data 

Methods
Number of selected bands

1 2 

RD 55 55,36 

CBS 54 54,38 

 
 
selection and MLC classifier training. The testing data contain 4250 pixels from fecal and 

160656 pixel from apple surface. The band selection results are listed in Table 4.5. For 

the CBS method, we use 3×3 window with p=10. 

 

The classification results with 1 band selected by RD and CBS method are displayed in 

Figure 4.10 (a) and (b), respectively. The white spots indicate fecal, black area is apple 

surface and grey color denotes background. From Table 4.5 we known, for 1-band case, 

the RD and CBS method obtain very similar results. RD method selects λ55, while CBS 

chooses λ54. From the classification results shown in Figure 4.10, it is clear that with only 

spectral band, the detection accuracy is not satisfying.  Several feces are missed and in 

addition, lots of apple surface are misclassified as fecal.  

 
Using two spectral bands can greatly improve the performance. As shown in Figure 4.11, 

all feces are correctly detected. Although there are some apple surface pixels are 

misclassified as fecal, this kind of error can be easily removed through spatial filtering.  

Table 4.6 lists the pixel classification results. Both methods can correctly detect most of 

the fecal pixels. But the bands selected by CBS method generates less false positive error, 

i.e., apple surface pixels are misclassified as fetal.  

 

As a comparison, Figure 4.12 and Figure 4.13 shows the ratio images of two selected 

band and the binary images of automated histogram-threshold method proposed in [43]. 

The fecal is indicated with white spots. In this case, both RD and CBS method correctly 

identified 100% of feces. Compared with the band selection methods proposed in [43] 
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(a) Classification result for λ55 

 

 
(b) Classification result for λ54 

Figure 4.10: Classification results with 1 band on apple data 
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(a) Classification result for [λ55, λ36] 

 

 
(b): Classification result for [λ54, λ38] 

Figure 4.11: Classification results with 2 bands on apple data 
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(a)  λ55/λ36 image 

 
 

 
(b): Threshold result for [λ55, λ36] 

 
Figure 4.12: Threshold results for [λ55, λ36] on apple data 
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(a) λ54/λ38 image 

 

 
(b): Threshold result for [λ54, λ38] 

 
Figure 4.13: Threshold results for [λ54, λ38] on apple data 
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Table 4.6: Pixel classification results on apple data 

 Fecal Apple surface 

[λ55, λ36](RD) 4244/4250 158371/160656 

[λ54, λ38](CBS) 4245/4250 158689/160656 

 
[44], our proposed methods are more computational efficient and has a stronger 

mathematic background.  

 
Compared to the chicken tumor detection, to detect fecal on apple surface is relatively 

easier. So the RD and CBS yield very similar results. Both of the methods can generate 

high accuracy.  If compared in pixel level, CBS is a litter better than RD for less false 

positive errors. 

 

4.5.3 Hyperspectral Mouse Data 
 
The hyperspectral data used in the section is a hyperspectral fluorescence dataset taken 

on mouse skin by the Oak Ridge National Laboratory. This hyperspectral dataset consists 

of, on average, 165×172 pixels with 21 spectral bands. The spectral band has a discrete 

value from the wavelength λ1 (440 nm) to λ21 (640 nm) with 10 nm intervals in the 

spectral region. The hyperspectral mouse data contains two classes of tumor and normal 

tissue. Fluorescence intensity of the background pixels is almost same. Before 

performing the classification, a k-mean clustering algorithm is applied on the image to 

remove the background and to acquire the region of interest (ROI) shown in Figure 4.14 

(c). Also, depending on the reflection image (Figure 4.14(a)), the ground truth can be 

mapped, which is displayed in Figure 4.14(b), where the black area in the Figure 4.14 (b) 

indicates the background. We can see the lower left part is normal tissue (U-shaped, 

bright area in the fluorescence image), and the upper part is the tumor. In order to 

perform band selection, training samples are randomly selected for the two classes, other 

than the background. The number of training and testing pixels used are tabulated in 

Table 4.7.  
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         (a) Reflection Image    (b) 490nm Fluorescence Image                (c) ROI 
 

Figure 4.14: Reference images 

 
Table 4.7: Mouse data used for training and testing 

Class Name Training Testing
Normal Tissue 200 2036 

Tumor 200 517 
 

To evaluate the performance of the proposed band selection methods, we still conduct the 

exhaustive search method to find the optimal band subset for one to three-band cases. 

Then we compare the classification accuracy for different selected bands.  

 

Table 4.8 lists the one spectral band selected by RD, CBS and exhaustive search method. 

The band λ11 gives the largest divergence value among all 21 bands with accuracy of 

62.55%. But the highest classification accuracy 62.59% is yielded by band λ8, which is 

also the band selected by the CBS method. For one band case, the advantage of CBS 

method is not significant. Next, we discuss the choosing two bands case. 

 

Table 4.9 lists the band selection result for 2-band case by RD, CBS and exhaustive 

search method, respectively. Through exhaustively searching all 2-band combinations, 

which is 21×20/2=210, the subset [λ6, λ16] yields the highest accuracy of 82.82%. The 

subset [λ8, λ13] has the largest divergence value and accuracy of 82.67%. This subset is 

also the output of the CBS method. This accuracy is very close to the optimal one. For 

RD method, because of the limitation of the sequential forward searching, it selects a  
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Table 4.8: Divergence (D), average local geary (C) and accuracy (Acc) for 1-band case 

 
Band D C Acc 

11 7.5626 0.0189 0.6255
8 6.8867 0.0148 0.6259

 

Table 4.9: Divergence (D), average local geary (C) and accuracy (Acc) for 2-band case 

Band D C Acc 
6 16 16.6747 0.0552 0.8282
8 13 22.5978 0.0483 0.8267
11 1 19.5453 0.0539 0.7560

 
 
subset [λ1, λ11] with 75.60% accuracy. For two-band case, the CBS method shows greater 

improvement than the RD method. 

 
The results for 3-band case are listed in  
Table 4.10. The optimal accuracy is 90.76% by subset [λ1, λ8, λ19]. The RD output [λ1, λ6, 

λ11] results 88.42% accuracy. While CBS method selects subset [λ1, λ8, λ13], which yields 

accuracy of 88.81%. Still, the CBS method is better. 

 
Figure 4.15 displays the overall accuracy for testing set with band selection results. The 

CBS method generates higher classification accuracy than the RD method as we expected. 

The accuracy has a big jump from 1 band to 3 bands, the incremental is about 50%. Then 

the accuracy still increases but not that dramatically. 

 

4.5.4 Indiana Pine Data 
 

The previous two hyperspectral datasets contain only two classes. In this experiment, we 

will test the proposed band selection for multiple-class situation. The Indiana pine data 

used in this experiment contains four classes. From the subset scene, a random sample of 

20% of the pixels was chosen from the known ground truth of the four classes: Corn-

notill, Soybean-notill, Soybean-min, Grass-Trees. The remaining 80% of the known 
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Table 4.10: Divergence (D), average local geary (C) and accuracy (Acc) for 3-band case 

Band D C Acc 
1 8 19 26.0890 0.0723 0.9076
11 1 6 29.5938 0.0792 0.8842
8 13 1 30.5100 0.0795 0.8881

 
 

 
Figure 4.15: Classification accuracy on band selection results for mouse data 
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ground pixels in the scene are acted as testing data. Table 4.11 lists the pixel numbers 

used as training and testing of each class. 

 

Since this is a multi-class problem, we adopt transformed divergence (TD) instead of 

classic divergence as the criterion. For multi-class problem, the transformed divergence 

gives an exponentially decreasing weight to increasing distances between the classes, 

therefore can result a better performance. Figure 4.16 shows the transformed divergence 

for one band case. Figure 4.16 (a) plots the TD value for each band. The peak value 

appears at band λ101. The Figure 4.16 (b) plots the TD value vs. pixel classification 

accuracy on testing data. A similar observation can be found as that in the previous 

experiments, is that the largest divergence value cannot guarantee the highest 

classification accuracy. 

 

Experiments are carried out to assess the performance of our band selection methods and 

to compare with two classical subset selection algorithms (ReliefF [85] and CA [93]). 

Figure 4.17 presents the comparison of classification accuracy of four band selection 

methods. For all methods, the total accuracy improves as more spectral bands are added 

into the band subsets. Two proposed methods RD and CBS achieve better performance 

than the comparing methods. The CBS method yields the highest accuracy among all 

methods. The RD method produces the second best accuracy. They both outperform the 

competitive methods.  

 

 

 

Table 4.11: Indiana pine data used for training and testing 

 Corn-notil Grass/Tree Soybean-notil Soybean-min

# of training 202 146 145 385 

# of testing 806 586 582 1541 
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(a) Transformed divergence value for each band 

 

 
(b) TD vs. testing accuracy                        

 
Figure 4.16: Transformed divergence for 1 band case 
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Figure 4.17: Comparison of band selection method performance 
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5 Integration of Spatial and Spectral Information for 
Hyperspectral Image Classification 

 

In this chapter, we propose a collaborative classification method for hyperspectral image 

classification. By using the proposed the collaborative classification method, the spectral 

and spatial information of image can be combined simultaneously. This method fully 

utilizes the spatial-spectral relationships inherent in the data, and thus improves 

performance in hyperspectral classification task. 

 

The chapter is organized as follows. Section 5.1 explains the procedure of hyperspectral 

classification. Section 5.2 provides a review of previous work for hyperspectral 

classification. Then, the proposed collaborative classification method is described in 

Section 5.3. The classification results are presented in Section 5.4. 

 

5.1 Introduction 
 
The main issue on hyperspectral imaging is concentrated on classification. Classification 

is usually a name given when one is dealing with grouping a large number of pixels into 

multiple classes. Classification of a hyperspectral image means to identify each pixel into 

multiple classes in the scene. Once all pixels are classified into one of several classes, the 

data may be used to produce thematic maps. The thematic map may provide much 

valuable information, such as to produce summary statistics of the objects in a scene. 

Therefore, to obtain an accurate classification result or thematic map is a very important 

issue.  

 

There are two major hyperspectral image classification methods: Supervised 

classification and unsupervised classification. In unsupervised classification techniques, 
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no prior information is required. The algorithms aggregate pixels into various classes 

according to the clusters found in the spectral space. While a typical supervised 

classification procedure for hyperspectral image usually has three steps: 

1) a set of training data of each class is first derived from where both ground truth and 

spectral information are available, 

2) a classification criterion (e.g. discriminant function) is developed and used to 

classify pixels to each class, 

3) the pixel is then assigned to the class depends on the output of the discriminant 

function. 

 

The supervised spectral classification methods produce satisfying results for many cases, 

but a main limitation of such methods is that they assign a pixel to a class only depend on 

the spectral similarity, without any consideration for the spatial locations of that pixel. 

When the objects in the hyperspectral image do not have unique spectral signatures, the 

classification results they generated often display noisy or unrealistic features, such as 

isolated pixels assigned to a particular class. In this situation, additional information is 

required to distinguish them. Information captured in neighboring pixels or information 

about pattern surrounding the pixel of interest may provide useful supplementary 

information. This type of information is referred to as spatial information. Therefore, 

integration of information from spectral and spatial domain for classification presents the 

potential for increased classification performance for hyperspectral image classification. 

 

5.2 Review of Classification Techniques 
 

In the previous studies, the methodologies for taking spatial context have been 

categorized into four different groups [106]. The first approach, which is also the most 

widely used technique, is to perform postprocess after the image has been classified by a 

pixel-wise classifier.  An example of the postprocessing is using a majority filter. The 

majority filtering process assigns a pixel’s label according to its neighbors. If the local 
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neighborhood is dominated by certain class, the label of the targeted pixel is assigned to 

that class to reflect the majority. The postprocessing process can remove outliers in a 

homogeneous area.  

 

The opposite approach to postprocessing is preprocessing of images. The methods in this 

category are based on image segmentation. A given image is divided into many 

homogeneous regions according to their spatial and spectral similarities by using an 

appropriately chosen criterion. Each homogeneous area is classified by comparing the 

similarities of the means of each segment to pre-labeled samples.  

 

The well-known ECHO (Extraction and Classification of Homogeneous Objects) 

algorithm [107][108] is in this category. ECHO separates image pixels into fields of 

spectrally similar before the pixels are assigned to categories. Classification is then 

conducted for each field, rather than individual pixels. First, ECHO divides the image 

into small groups which is consisting of four pixels. For each group, the pixels are tested 

for homogeneity by a distance to the average value of the group. If the distance is in the 

tail of the Gaussian density, the groups are not homogenous and are rejected. Then, each 

individual group is compared to its adjacent ‘field’, which can be a group of one or more 

connected groups that have previously been merged. If the two appear statistically similar 

by some appropriate criterion, then they are merged. Otherwise this group is compared to 

another adjacent field or becomes a new field. For classification process, a maximum 

likelihood (ML) classifier was applied for each field resulted from the segmentation 

process. 

 

Karakahya et al [109][110] proposed a two-stage process to the classification of remote 

sensing images. First, a spatial filter is used to achieve more homogeneous regions, which 

can improve spectral separability. Then, a maximum likelihood classifier is employed to 

classify the land covers. De Jong et al [111] proposed a SSC (spatial and spectral 

classifier) method for hyperspectral image classification. SSC method starts by dividing 

an image into homogeneous and heterogeneous regions based on spectral variation. Then 
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a conventional per-pixel classification method is applied to classify the homogeneous 

parts. The heterogeneous parts are classified based on a combination of spectral and 

contextual information. 

 

The third category is to add new components to the original spectral vectors. This method 

can also be called as stacked vector method. The new components are features that can 

carry spatial information. The simplest way is to add mean and variances of neighboring 

pixel values to the original vectors. Alternatively, the additional components can be 

derived from texture descriptors such as Fourier coefficients or coocurrent matrices 

[112]. Camps-Valls et al.[113] proposed a composite kernel machine to enhance the 

classification accuracy of hyperspectral images. Through exploiting the properties of 

Mercer’s kernels, that method constructs a family of composite kernels which can 

combine spatial and spectral information. The experiment results prove that this method 

can efficiently combine contextual and spectral information for hyperspectral image 

classification.  

   

The final category tries to combines the spectral and spatial (contextual) information and 

classifies pixels using both sources at the same time through modeling of the scene. The 

spatial (contextual) information is used by setting up a probabilistic model, which is then 

used for decision making. The widely used Markov Random Fields (MRF) [114][115] 

method is in this category. 

 

The MRF is used to construct an a priori model in the Bayesian sense so as to accomplish 

the Maximum a Posteriori (MAP) estimate. Such a MAP solution often provides more 

satisfactory results than a Maximum Likelihood classifier (MLC) [105]. In general, the 

optimization of MRF function is difficult, so there have been many approaches proposed 

for approximately solving the optimization problem. The Iterative conditional mode 

(ICM) [116] is the most commonly used one. The ICM method iteratively minimizes the 

functional with respect to single pixel in much the same manner as used by iterative 

coordinate descent. The ICM algorithm has widely been applied since it is quick and 
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produces reasonably accurate categories. The drawback is that it may arrive at a local 

optimum, hence emphasizing the choice of initial means. 

 

5.3 Collaborative Classification 
 

As we mentioned before, for the spectral classification method, even if the parameter 

estimation for discriminant function is accurate, the spectral distances does not consider 

the pixel neighborhood, as an isolated pixel in a uniformly labeled region is more likely 

to have the same label even if its spectral vector makes it belonging to another class. 

Therefore, integration of information from spectral and spatial domain for classification 

presents the potential for increased classification performance for hyperspectral image 

classification. 

 

From the previous research work, although various approaches have been proposed, they 

have this or that kind of drawbacks. A comment problem for the postprocess approach is 

that its performance heavily relies on the initial pixel-wise classification accuracy. If the 

initial classification accuracy is not good, the postprocessing procedure can even lead to a 

degraded performance. In addition, the resulting classified thematic maps are often 

blocky and do not properly identify class boundaries and loose details unnecessarily.  For 

the second approach, although the classification result is usually more reliable than that 

of individual pixels, the classification accuracies of these algorithms are very sensitive to 

the initial segmentation results. These segmentation results are critical to achieving a 

good thematic map. The third approach has a common problem of excessive 

dimensionality of augmented vectors, slow processing speed and poor performance at the 

object boundaries since the texture measures are based on a certain size of neighborhood. 

And for the MRF method, the key is to model the contextual information. For the MRF 

model, the least square fit method [117] and coding method [118][119] are the two most 

widely known technique for estimating the model parameters. If the relevant parameters 

of the model are not accurately defined, this model cannot show its full effectiveness. The 
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success of the model parameters estimation relies on the complete and correct 

understanding of image neighborhood configurations. In practical sense, the 

neighborhood configurations are difficult to acquire. The parameter within MRF model is 

therefore trivial and restricts the model capabilities.  

 

Here, we propose a cost function based collaborative classification method inspired by 

[120]. This method can efficiently integrate spectral and spatial information for 

classification process. The cost function consists of two parts: 

• A spectral similarity term to measure how similar a given sample to a particular 

class. 

• A spatial similarity term to measure how similar a pixel to its neighborhood.   

 

The cost function F is defined as follows:  

 ( , ) ( , ) ( )i l i l iF S Bω ω α= +x x x                                      (5.1) 

The first term S(xi,ωl) in the right side of equation (5.1) represents the spectral distance 

between a sample xi to a particular class ωl, which is used to measure how similar a given 

sample to a particular class in spectral space. This spectral distance measure can be 

distance-based measure, such as Euclidean distance, Mahalanobia distance, 

Bhattacharyya distance, or projection-based method, such as spectral angle mapper 

(SAM), or decision value from discriminant function, such as decision value from 

support vector machine (SVM) classifier, maximum likelihood classifier (MLC) and 

maximum a posteriori (MAP) classifier.  

 

Meanwhile, the second term B(xi) in the right side of the equation represents a 

measurement  for spatial similarity of local i with its neighborhood and is defined as 

( ) ( , ),  i ij i j i
j

B w V j N= ∈∑x x x                                  (5.2) 

where Ni represents the neighborhood of the pixel at location i. Ni can be n-th order 

neighborhood system. Figure 5.1 illustrates an example of 5-th order neighborhood  
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Figure 5.1: 5-th order neighborhood system 

 
 
system. wij is spatial weight for each neighboring pixel. This spatial weight can be 

defined by either adjacency or distance criteria. 

• Adjacency criteria: wij is 1 if location i is adjacent to location j, and 0 otherwise. 

According to the distance.  

• Distance criteria: wij is 1 if the distance between location i and j is within a given 

distance, and 0 otherwise.    

 

V(xi, xj) measures the spatial similarity between two pixels at location i and j 

respectively. How to define this term is the key to measure the spatial similarity among 

xi’s neighborhood. For example, in MRF method, it determines the spatial relationship 

based on the class label of xi and its neighbors.  A indication function T(Γ) is defined for 

this purpose. If the neighborhood pixel xj has the same label as xi, the value of indication 

function is 1, otherwise it is 0. In [120], the author proposed a more simple way to 

measure the spatial similarity for class labels. If the neighborhood pixel xj has the same 

label as xi, the spatial similarity measure decreased by certain value, otherwise it 

increases by certain value.   

 

However a major drawback of earlier methods is they use merely the class label to 

estimate the spatial information. As we known, the class label of a pixel is determined by 

its spectral characteristic. When a classifier assigns a pixel to a particular class, it only 

considers the spectral similarity of the pixel, without any spatial information involved. To 
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overcome this drawback, in this section, we propose a new formula to estimate the spatial 

information. The new measure V(xi, xj) is defined as 

1   if  and 

( , )
1    if  and 

i j i
j

i j

i j i
j

j N
c

V
j N

c

ω ω

ω ω

⎧− = ∈⎪
⎪= ⎨
⎪ ≠ ∈
⎪⎩

x x                              (5.3) 

where cj is the multidimensional local spatial autocorrelation value for location j. If the 

neighborhood pixel xj has the same label as xi, the function decreased by cj, otherwise it 

increases by cj. The cj value provides the spatial autocorrelation for location j, and can be 

calculated by Equation (4.37). The smaller value of cj means more similar of xj with its 

neighboring pixels, then the classification result for xj should be more reliable.  α is a 

positive scalar to control the influence of spatial term. If α equals to 0 means no spatial 

information is considered.  

 

In our approach, we use the SVM as the classifier, so the cost function in our approach is 

defined as follows: 

( , ) ( , ) ( , ),  i l SVM i l ij i j i
j

F S w V j Nω ω α= + ∈∑x x x x                (5.4) 

( , )SVM i lS ωx  is the distance between a sample xi and a given SVM hyperplane ωl .  

( , ) ( ( , ) )SVM i l SV SV i SVS y K bω α= − +∑x x x                          (5.5) 

Where xSV is support vectors, ySV is the label of xSV, and αSV, b are the SVM parameters 

obtained by training a one-against-all SVM classifier. 

 

The decision rule for equation (5.5) is  

                           i lx ω∈  if 
1,2,...,

arg min ( , )i l
l L

F x ω
=

                                     (5.6) 

The algorithm can be summarized as  

 

Algorithm 3: Collaborative Hyperspectral Classification Algorithm  
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1. Calculate ( , )SVM i lS ωx  for xi and obtain the initial label for xi. 

 

2. Calculate ( , )i lF ωx for all xi and re-labeling them according Equation (5.6) 

 

3. Go to step 2 until no change is detected. 

 

5.4 Experimental Results 
 

In this section, the classification results with cost function based collaborative 

classification method are presented. In these experiments, the SVM classifier is adopted 

instead of MLC since SVM can provide better classification performance than MLC. For 

the chicken data and mouse data, 2-th order neighborhood system is adopted.  

 

5.4.1 Hyperspectral Chicken Data 
 
From Figure 4.7, the incremental of classification accuracy become very small after four 

bands. Hence, the first four selected bands are used to training classifier and classify the 

test data.  

 

Figure 5.2 and Figure 5.3 shows the classification results for four bands selected by RD 

method and CBS method, respectively.  Figure 5.2 (a) displays the classification result 

from SVM classifier. The SVM classifier uses only the spectral information as the 

criterion for decision making. As shown in the figure, the classified pixels have a lot of 

false positive errors, which is many normal pixels are misclassified as tumor. Also, we 

can find plenty of isolated pixels, which are misclassified as tumors. The SVM 

classification result for CBS results is shown in Figure 5.3 (a). It also has lots of false 

positive errors, but compared to the result in Figure 5.2 (a), the bands selected by CBS 

method generate less false positive errors than those chosen by RD method. This  
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     (a) Classified by SVM             (b) Classified by collaborative method 

Figure 5.2: Classification result with RD result for training data 

 
 
 

    
                    (a) Classified by SVM              (b) Classified by collaborative method 

Figure 5.3: Classification result with CBS result for training data 
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observation is consistent with the one we got from Figure 4.8 (c). The classification 

results by using cost function based collaborative classification method are displayed in 

Figure 5.2 (b) and Figure 5.3 (b) for bands selected by RD method and by CBS method, 

respectively. Since the collaborative classification method integrating spectral and spatial 

information together during the decision-making process, the performance is much better 

than using spectral information only. Using same selected bands, the collaborative 

classification method can remove most false positive errors and generate more accuracy 

classification result than SVM classifier.  

 

Figure 5.4 and Figure 5.5 show the classification result for one of the testing chicken data. 

Similar conclusion can be drawn from these results, the CBS method can generate less 

false positive error than the divergence method and by integrating the spectral and spatial 

information, the classification accuracy for hyperspectral image can be improved.   

 

The output of the classifier shows the locations of potential tumors. A potential tumor is a 

region that consists of pixels identified as a tumor in classification. Because some normal 

tissues are spectrally very similar to tumors, the classifier usually yields more tumor spots 

than actually exist. The post processing is to further remove the false positives based on 

the location, shape and size of potential tumors. Most tumors have a round shape and size 

of the tumor cannot be too big or too small. Also because of the illumination reason, false 

positive errors are more likely happened at the edge area of the image. Employing these 

rules during post processing, the final detection results are shown in Figure 5.6. White 

spots indicate the tumors correctly detected and then white areas enclosed by a rectangle 

indicate false positives. 

 

Table 5.1 summarizes the tumor detection results on 11 poultry samples with 4 spectral 

bands selected using the RD, Hybrid, and ES. The average detection rates were 90.6% for 

RD and CBS and 93.75% for ES. Band selection with the RD has 3 missed tumors and 19  
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                       (a) Classified by SVM              (b) Classified by collaborative method 

Figure 5.4: Classification result with RD result for testing data 

 
 
 

                 
                         (a) Classified by SVM          (b) Classified by collaborative method 

Figure 5.5: Classification result with CBS result for testing data 
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(a) Original image (λ10)                    (b) Exhaustive search 

 

                
(c) RD                                          (d) CBS 

Figure 5.6: Tumor detection results with four spectral bands selected 
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Table 5.1: Tumor detection performance of the RD, CBS, and Exhaustive search with 4 

bands 

Image 
No. 

Number of 
Tumors 

RD CBS ES 
# Found FPs # Found FPs # Found FPs 

1 8 8  2 8 2 8 1 
2 2 2 1 2 1 2 1 
3 0 0 2 0 1 0 1 
4 3 3 1 3 1 3 1 
5 2 2 1 2 1 2 1 
6 2 2 2 2 1 2 2 
7 2 2 2 2 1 2 1 
8 0 0 0 0 0 0 0 
9 4 3 2 3 1 3 1 
10 7 5 2 5 2 6 2 
11 2 2 1 2 1 2 1 

Total 32 29 (90.6%) 16 29 (90.6%) 12 30(93.75%) 12 
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false positives (FPs) on average while the CBS shows 3 missed tumors and 12 false 

positives. The CBS method can efficiently reduce the number of false positive errors. 

 

5.4.2 Hyperspectral Mouse Data 
 

For this data set, we will analyze the performance of the collaborative classification 

method in a more quantitive way. First, we use the SVM to classify testing data with all 

the spectral information, i.e., all 21 bands. Figure 5.7 shows the classification results with 

SVM and collaborative classification method. We conduct classification of the pixels in a 

small circular region of interest generated by an endoscope. Normal tissue is indicated as 

the dark area and white region corresponds to tumor. The gray region outside the region 

of interest is not considered. It is clear that the result generated by collaborative 

classification method has less misclassified pixels. Table 5.2 compares the performance 

of SVM and the collaborative classification method from overall accuracy, tumor 

accuracy and normal tissue accuracy. In all three terms, the collaborative classification 

method shows better results. The Overall accuracy increases from 92.23% to 93.85%. 

The improvement for tumor accuracy is 1.71%, for normal tissue is 1.6%. 

 

Next we analyze the classification result on the bands selected by different band selection 

methods. The band selection results for mouse data are presented in Section 5.2. Figure 

5.8 displays the classification results with band λ11. This band is the first band selected by 

RD method. The classification accuracy with this band is only 61% (listed in Table 5.3). 

This result points out that with only spectral band, we cannot precisely detect tumor. We 

need more spectral information. This maybe is the motivation of investigating 

hyperspectral imaging. 

 

The classification results with three selected bands [λ11, λ1, λ6] are displayed in Figure 5.9 

and Table 5.4. The accuracy jumps to 85% with three bands. The collaborative 

classification method yields higher accuracy in overall accuracy, tumor accuracy and  
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            (a) SVM                       (b) collaborative method 

Figure 5.7: Classification of skin tumor with all the 21 spectral bands 

 
 
 

Table 5.2: Classification accuracy of skin tumor with all the 21 spectral bands 

 
Overall 

Accuracy (%)

Tumor Accuracy

(%) 

Normal Tissue

Accuracy (%) 

SVM 92.23 95.17 91.22 

Collaborative method 93.85 96.88 92.82 

 

 

 

                         
(a) SVM                                 (b) Cost function 

Figure 5.8: Classification of skin tumor with band λ11 
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Table 5.3: Classification accuracy of skin tumor with band λ11 

 
Overall 

Accuracy (%)

Tumor Accuracy

(%) 

Normal Tissue

Accuracy (%) 

SVM 61.40 87.38 52.53 

Collaborative method 61.13 86.92 52.32 

 

 

                          
          (a) SVM                             (b) Collaborative method 

Figure 5.9: Classification of skin tumor with band [λ11, λ1, λ6] 

 
 

Table 5.4: Classification accuracy of skin tumor with band [λ11, λ1, λ6] 

 
Overall 

Accuracy (%)

Tumor Accuracy

(%) 

Normal Tissue 

Accuracy (%) 

SVM 84.97 91.59 82.70 

Cost function 85.88 94.70 82.86 
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normal tissue accuracy than the SVM method. Figure 5.10 and Table 5.5 show the result 

with five bands. And Figure 5.11, Table 5.6 shows the results with ten bands. For both 

cases, the collaborative classification method outperforms the SVM method. With 5 

spectral bands, the collaborative classification method yields 88.66% overall accuracy, 

while SVM generates only 86.12%. For ten-band case, SVM can correctly classify 

90.48% pixels; while collaborative classification method can make 93.10% pixels 

correctly classified. 

 

For the bands selected by the CBS method, Figure 5.12 and Table 5.7 show the results 

with band λ8. The classified result is poor.  It only give 59% accuracy, this result is just 

better than the random guess. But the accuracy appears a big promotion with three bands. 

As shown in Figure 5.13 and Table 5.8, the accuracy reaches 90% for the collaborative 

classification method and 88% for SVM. Recall that for RD method, three bands can only 

get 85% accuracy. This proves the efficiency of integrating spatial information once 

more. The classification results with five spectral bands are listed in Figure 5.14 and 

Table 5.9. The accuracy further increases to 91.75% and 91.75 for the collaborative 

classification method and for SVM, respectively. With ten bands, the accuracy reaches 

92.94% and 90.96% for the collaborative classification method and for SVM, 

respectively. These results are shown in Figure 5.15 and Table 5.10.    

 

 

                     
               (a) SVM                             (b) Collaborative method 

Figure 5.10: Classification of skin tumor with band [λ11, λ1, λ6, λ14, λ13] 
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Table 5.5: Classification accuracy of skin tumor with band [λ11, λ1, λ6, λ14, λ13] 

 
Overall 

Accuracy (%)

Tumor Accuracy

(%) 

Normal Tissue

Accuracy (%) 

SVM 86.12 92.06 84.09 

Collaborative method 88.66 94.39 86.70 

 
 

 

                   
               (a) SVM                           (b) Collaborative method 

Figure 5.11: Classification of skin tumor with 10 bands  

 
 

Table 5.6: Classification accuracy of skin tumor with 10 bands  

 
Overall 

Accuracy (%)

Tumor Accuracy

(%) 

Normal Tissue

Accuracy (%) 

SVM 90.48 94.08 89.25 

Collaborative method 93.10 95.79 92.18 
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             (a) SVM                         (b) Collaborative method 
Figure 5.12: Classification of skin tumor with band [λ8] 

 
 

Table 5.7: Classification accuracy of skin tumor with band [λ8] 

 
Overall 

Accuracy (%)

Tumor Accuracy

(%) 

Normal Tissue

Accuracy (%) 

SVM 59.90 91.12 49.23 

Collaborative method 59.18 90.65 48.43 

 

 

                    
              (a) SVM                        (b) Collaborative method 

Figure 5.13: Classification of skin tumor with band [λ8, λ13, λ1] 

 
 

Table 5.8: Classification accuracy of skin tumor with band [λ8, λ13, λ1] 

 
Overall 

Accuracy (%)

Tumor Accuracy

(%) 

Normal Tissue

Accuracy (%) 

SVM 88.38 90.81 87.55 

Collaborative method 90.60 92.06 90.10 

 



118 
 

                    
          (a) SVM                        (b) Collaborative method 

Figure 5.14: Classification of skin tumor with band [λ8, λ13, λ1, λ6, λ11] 

 
 

Table 5.9: Classification accuracy of skin tumor with band [λ8, λ13, λ1, λ6, λ11] 

 
Overall 

Accuracy (%)

Tumor Accuracy

(%) 

Normal Tissue

Accuracy (%) 

SVM 89.25 93.46 87.81 

Collaborative method 91.75 95.64 90.42 

 

 

                      
             (a) SVM                         (b) Collaborative method 
Figure 5.15: Classification of skin tumor with 10 bands  

 
 

Table 5.10: Classification accuracy of skin tumor with 10 bands 

 
Overall 

Accuracy (%)

Tumor Accuracy

(%) 

Normal Tissue

Accuracy (%) 

SVM 90.96 94.70 89.68 

Collaborative method 92.94 96.88 91.59 
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5.4.3 Indiana Pine Data 
 
In this part, we will test the performance of the proposed classification method for multi-

class problem. From the subset scene, there are four classes: Corn-notill, Soybean-notill, 

Soybean-min, Grass-Trees. The training data are used to train four binary SVM 

classifiers. The results with two different neighborhood systems: 2-th order and 5-th 

order are presented and compared. 

 

First, we conduct classification on RD results. Figure 5.16 - Figure 5.18 show the 

classification results for 3, 4 and 5 bands, respectively. The Figure 5.16 (a) shows the 

classification result obtained by SVM. It is obviously that there are lots of misclassified 

pixels. And the accuracy for it is 85.43%. While by using the proposed classification 

method, the accuracy can be greatly enhanced. When using the 2-th order neighborhood 

system (3 by 3 window), the final accuracy is 90.75%. If using 5-th order neighborhood 

system (5 by 5 window), the accuracy can reach 96.70%. For 4-band case, the initial 

accuracy with SVM is 87.25%, when applied proposed method, the optimal accuracy can 

increase to 96.70%.  For 5 bands, the initial accuracy is 89.05%, the proposed method 

yields 96.76% accuracy.  From these results, we find that for this data set, when using the 

2-th order neighborhood system, the optimal accuracy can be obtained with four spectral 

bands. If using the 5-th order neighborhood system, then three spectral bands are enough 

to get a good result. 

 

The classification results for CBS method are displayed in Figure 5.19 - Figure 5.21, 

respectively. For 3-band case, the SVM accuracy for CBS method is 86.57%, which is 

higher than that of RD. This proves that the CBS method can generate better band 

selection result. If using proposed classification method, the final accuracy can increase 

to 91.61% and 96.73% for 2-th order and 5-th order neighborhood system, respectively. 

For 4-band case, the initial SVM accuracy is 89.36%, also higher than that of RD. Same 

conclusion can be drawn for 5-band case. When using the 2-th order neighborhood 
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               (a) Accuracy: 85.43%           (b) Accuracy: 90.75%          (c) Accuracy: 96.70% 

Figure 5.16: Classification results for 3 bands selected by RD  

 
 

                                                           
               (a) Accuracy: 87.25 %           (b) Accuracy: 94.82%          (c) Accuracy: 96.70% 

Figure 5.17: Classification results for 4 bands selected by RD  

 
 

                                                            
               (a) Accuracy: 89.05%           (b) Accuracy: 94.84%          (c) Accuracy: 96.76% 

Figure 5.18: Classification results for 5 bands selected by RD  

 
 

                                                                                     
               (a) Accuracy: 86.57%           (b) Accuracy: 91.61%          (c) Accuracy: 96.73% 

Figure 5.19: Classification results for 3 bands selected by CBS 

 
 

                                                                                     
               (a) Accuracy: 89.36%           (b) Accuracy: 95.39%          (c) Accuracy: 96.70% 

Figure 5.20: Classification results for 4 bands selected by CBS 
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system, the optimal accuracy 95.39% can be obtained with four spectral bands. And for 

the 5-th order neighborhood system, using three spectral bands can yield 96.73% 

accuracy. 

 
Table 5.11 shows classification results of different methods for same dataset. The 

Euclidean classifier [129] and SVM classifier [130] only use the spectral information. 

The BLOOC+DAFE+ECHO [129] uses contextual and spectral information to classify 

homogeneous objects. It is important to stress that all these methods are using 200 

spectral bands for classification, while in our experiment, we use only 3 or 4 spectral 

bands and we can obtain better classification performance than all of them. It can be 

concluded that the proposed integration method is a great improvement for hyperspectral 

image classification.  



122 
 

 

 
 
 

                                                                                  
               (a) Accuracy: 90.01%           (b) Accuracy: 95.39%          (c) Accuracy: 96.76% 

Figure 5.21: Classification results for 5 bands selected by CBS 

 
 

Table 5.11: Classification accuracy for other works 

Method Euclidean classifier BLOOC+DAFE+ECHO  SVM  
Accuracy 67.43% 93.50% 95.90% 
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6 Conclusions and Future Works 
 
This dissertation addresses the problem of integrating spectral and spatial information for 

hyperspectral image classification. The huge amount of hyperspectral image data often 

makes real-time computer processing a challenging task. To overcome this problem, this 

dissertation proposes two band selection algorithms in Chapter 4. First, this research 

work proposes a band selection method for hyperspectral images based on recursive 

divergence. This method avoids transforming the original hyperspectral images to the 

feature space. A set of recursive equations for the calculation of divergence with an 

additional band is derived to overcome the computational restrictions in real-time 

processing. In the recursive divergence based band selection, a good subset is to 

maximize the representation of the spectral separability. However, separability 

maximization does not guarantee a classification process that will produce the best visual 

result, or the most accurate. After carefully investigating the existing spatial 

autocorrelation measure, this dissertation proposes a Multidimensional Local Spatial 

Autocorrelation (MLSA) for hyperspectral image data. Based on the new local spatial 

autocorrelation measure, a collaborative band selection strategy is developed that 

combines both the spectral separability measure and spatial homogeneity measure of 

hyperspectral band selection.  

 

In Chapter 5, this dissertation discusses the classification for hyperspectral image. A 

collaborative classification method is proposed in this chapter to integrate the spectral 

and spatial information for the classification process. The proposed collaborative 

classification method consists of a spectral similarity term to measure the similarity of a 

given sample to a particular class and a spatial similarity term to measure how similar a 

pixel to its neighboring pixels. It can fully utilize the spatial-spectral relationships 

inherent in the data and enhance the classification performance. 
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The proposed band selection and classification method was applied for three exclusive 

applications, including chicken tumor detection, apple surface contamination detection, 

skin cancer detection and a public dataset, Indiana pine data. The performances of the 

proposed methods clearly show the necessity and efficiency of integrating spatial 

information for hyperspectral image processing. They outperformed the other compared 

method which using spectral information only. And it can be concluded that the proposed 

integration method is a great improvement for hyperspectral image classification.  

 
 
Although this dissertation makes a deep and extensive research on integrating the spectral 

and spatial information for hyperspectral classification, there are still many problems 

worth further consideration. In order to combine the spatial information with spectral 

information, first we need to have a criterion to measure the spatial information in the 

hyperspectral image. Although there exist many spatial statistic measures, most of them 

have only been developed for the single image band. In this dissertation, we propose a 

multidimensional local spatial autocorrelation measure to assess the spatial information 

for hyperspectral data. It is possible to propose more spatial measures for hyperspectral 

image. How to develop other spatial method for hyperspectral image is an important and 

challenging work in future. Additionally, in this dissertation, the sequential forward 

search strategy is used in band selection procedure. The advantage of this search strategy 

is computational efficient. But this strategy can only find a near-optimal solution. To 

further improve the band selection performance, it is important to find a better search 

strategy. 
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Appendix: Hyperspectral Image Toolbox  
 

Hyperspectral imaging is a technique that combines conventional imaging and 

spectroscopy to acquire both spatial and spectral information from an object. 

Hyperspectral imaging produces three-dimensional images. The third dimension contains 

spectral (or wavelength) information for each pixel on the hyperspectral image cube. 

Because of this combined feature of imaging and spectroscopy, hyperspectral imaging 

can enhance and expand our capability of detecting some chemical constituents in an 

object as well as their spatial distributions. Hyperspectral imaging has been used in a 

wide range of scientific and industrial fields including space exploration; remote sensing 

for environmental mapping, geological search or mineral mapping, atmospheric 

composition analysis and monitoring, military target detection or recognition. 

 

To help researchers using hyperspectral imagery, a MATLAB toolbox for analyzing the 

hyperspectral image is very necessary. The Hyperspectral Image Toolbox incorporates 

with both standard algorithms for hyperspectral image analysis and also includes original 

work in hyperspectral band selection and classification. Figure 1 shows the schematic 

diagram of the Hyperspectral Image Toolbox.  
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Figure 1: Schematic diagram   
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