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Fuzzy Spectral and Spatial Feature Integration
for Classification of Nonferrous Materials in

Hyperspectral Data
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Abstract—Hyperspectral data allows the construction of more
elaborate models to sample the properties of the nonferrous ma-
terials than the standard RGB color representation. In this paper,
the nonferrous waste materials are studied as they cannot be sorted
by classical procedures due to their color, weight and shape sim-
ilarities. The experimental results presented in this paper reveal
that factors such as the various levels of oxidization of the waste
materials and the slight differences in their chemical composition
preclude the use of the spectral features in a simplistic manner for
robust material classification. To address these problems, the pro-
posed FUSSER (FUzzy Spectral and Spatial classifiER) algorithm
detailed in this paper merges the spectral and spatial features to
obtain a combined feature vector that is able to better sample the
properties of the nonferrous materials than the single pixel spectral
features when applied to the construction of multivariate Gaussian
distributions. This approach allows the implementation of statis-
tical region merging techniques in order to increase the perfor-
mance of the classification process. To achieve an efficient imple-
mentation, the dimensionality of the hyperspectral data is reduced
by constructing bio-inspired spectral fuzzy sets that minimize the
amount of redundant information contained in adjacent hyper-
spectral bands. The experimental results indicate that the proposed
algorithm increased the overall classification rate from 44% using
RGB data up to 98% when the spectral-spatial features are used
for nonferrous material classification.

Index Terms—Hyperspectral image processing, image classifica-
tion, spectral fuzzy sets.

I. INTRODUCTION

N OWADAYS, sustainable development has become one of
the most important paradigms of the contemporary soci-

eties since a large amount of electrical and electronic equipment
is being designed, manufactured and retired. Thus, the
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Fig. 1. Fractions of different nonferrous metals and Stainless Steel resulting
from the WEEE recycling process.

problem of processing and recycling the electrical and elec-
tronic waste is of paramount importance since this type of waste
is not biodegradable and may be contaminated with highly toxic
substances.

Currently, the recycling process is carried out in generic
dumps where the electronic waste is mixed among other waste
materials. While a wide variety of materials are used to man-
ufacture the electrical and electronic products, the process
required to recycle the waste from electrical and electronic
equipment (WEEE) is one of the most complex and labor
intensive industrial tasks.

In recent years, due to the environmental legislation that has
been introduced in regard to the recycling process for WEEE,
the development of systems that are able to sort and process
the electrical and electronic waste in an automatic fashion has
been viewed as the most cost-effective recycling solution. For
instance, the EC WEEE Recycling Directive [1] states that all
EU countries have to recover about 70%–80% of the weight of
the produced WEEE and to reuse 50%–75% of the recovered
materials or components. This law strengthened the necessity to
devote additional efforts in the development of new techniques
and technologies that are able to improve the performance of the
methods that are currently applied for WEEE recycling.

After the WEEE scrap is subjected to shredding, magnetic,
mechanical and densiometric sorting, the resulting waste frac-
tions still contain a mix of nonferrous metals (e.g., aluminum,
copper, zinc, brass, and lead) and austenitic Stainless Steel
(Fig. 1) representing approximately 13% of the total WEEE
weight. It is important to mention that the nonferrous and
austenitic Stainless Steel cannot be identified and separated
using the current recycling methods [2], [3].
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Fig. 2. The hyperspectral image acquisition process.

As the price of the recycled materials largely depends on pu-
rity, the nonferrous fractions resulting after WEEE recycling are
currently sold at a much lower price and their reutilization is
more difficult. A proper separation of these nonferrous metals
will allow a substantial increase in the added value of the whole
recycling process and helping the EU countries to comply with
the 2002/96/EC directive.

The methods that are currently applied to separate the nonfer-
rous metals and Stainless Steel involve a visual inspection based
on the color properties associated with the analyzed materials
[4]. In this regard, Kutila et al. [5] developed a color inspection
system that was applied to separate the metals whose colors are
predominantly red (brass, copper) from the bright metals such as
Stainless Steel, aluminum and zinc. The experiments reported in
their paper indicate that the materials defined by red properties
can be separated from the materials with bright colors (reported
classification accuracy 83.5%), but the results were inaccurate
when they attempted to separate the metals with similar chro-
matic properties (the reported classification accuracies for ma-
terials such as copper and brass dropped to 37.4% and 36.8%,
respectively). X-Ray methods have been widely used for metal
scrap and plastic sorting [6], [7]. However, the application of
X-Ray backscatter imaging to tasks such as the sorting of non-
ferrous materials in industrial environments may encounter dif-
ficulties as this technology only measures the material density
[4]. The only methods that proved efficient in classifying non-
ferrous metals are based on the analysis of the spectrum emitted
by metals after they were subjected to thermal stress [8]. These
methods cannot be used for recycling purposes due to the low
speed of the spectrum acquisition process and the technical dif-
ficulties to devise a suitable excitation method for each WEEE
nonferrous fraction.

Modern optical spectrometers overcome these problems as
they provide high-resolution spatial image data with a detailed
spectral accuracy (see Fig. 2). This technology involves the cap-
ture and interpretation of multidimensional digital images and
the current range of spectral imaging systems is able to cap-
ture multiple bands from ultraviolet to far infrared with good
bandwidth resolution. This versatility enables the application of
the spectral imaging systems in the detection and classification
of various natural and man-made materials such as minerals,
metals, plastic, vegetation, etc., [7], [9]–[11]. Recently, spectral
data has been used to model the characteristics of the human
tissues when applied to the development of robust face discrim-
inators [12] and to properly characterize welding defects using
a hybrid neural network-fuzzy-logic approach [13].

A characteristic of the hyperspectral images is that each pixel
is defined by a vector whose elements are the different spectral
(wavelengths) components captured from the scene. This
hyperspectral vector provides not only the color information
associated with the scene, but also information in regard to the
chemical composition of the scene materials [9], [14]–[16].

To distinguish among different spectrums, several similarity
measures were proposed in the literature on hyperspectral data
analysis [17]. The classical approaches that evaluate the dis-
tances between various spectrums in the Euclidean space
or those based on the measurement of the angle between spec-
trums’ Spectral Angle Mapper (SAM) [18] offer a good estima-
tion in regard to the similarity of two spectrums, but they do not
analyze the correlation between the data contained in adjacent
spectral bands [9]. Consequently, these approaches are not able
to properly accommodate the intraclass variations that are gen-
erated by the spectral differences between samples that belong
to the same material. (In the context of material classification
the intraclass variations are caused by external factors including
metal oxidization, nonuniform illumination conditions, specular
highlights, shadows, etc.)

The intraclass variations can be appropriately modeled by the
use of pattern recognition techniques since the spectral infor-
mation is evaluated in a more elaborate fashion [15], [19]. One
problem that has to be addressed is the high dimensionality of
the hyperspectral data [20]–[22]. In this sense, to circumvent
the problems caused by the large resolution of the hyperspec-
tral data when used for classification purposes, feature reduction
techniques are usually applied to avoid the Hughes phenomenon
[23]. To this end, the information contained in the spectral bands
can be either decorrelated using principal component analysis
(PCA) [20], wavelet decomposition [24]–[26], or by applying
user-defined band selection [22], [27], [28]. Once the hyper-
spectral data is decorrelated, the feature vectors describing the
spectrum are extracted and used for classification tasks. Typi-
cally, the feature vectors are constructed using the spectral in-
formation associated with each pixel in the image [29]–[31],
but recent approaches suggested to merge the spectral and spa-
tial information in order to increase the classification accuracy
[32]–[34].

In this paper, we propose to use hyperspectral data to separate
different nonferrous materials using feature vectors that sample
the material characteristics in the spectral-spatial domain. This
paper is organized as follows. In Section II, an overview of the
developed material classification system is detailed where the
key issue is the application of the spectral fuzzy sets for hy-
perspectral data decorrelation. This approach uses the physical
properties of the spectrums to overcome some of the limitations
associated with other decorrelation methods such as PCA and
linear discriminant analysis (LDA) among others. Building on
this concept, spectral-spatial features are constructed to model
the characteristics of the nonferrous materials by the use of spa-
tial fuzzy histograms. Sections III and IV detail the classifi-
cation process and introduce the statistical region merging ap-
proach that is applied to join the connected regions with similar
properties. Section V details the experimental results, while in
Section VI concluding remarks are provided.
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II. SYSTEM OVERVIEW

This section outlines the complete procedure that has been de-
veloped to extract the feature vectors from the acquired spectral
images. Also, in this section, we explain how the spectral-spa-
tial features are used for nonferrous material classification.

The proposed algorithm, called FUzzy Spectral and Spatial
feature classifiER (FUSSER), can be divided into two main
components. The first component, as illustrated in Fig. 3, per-
forms the normalization and decorrelation of the spectrum and
the spectral-spatial feature merging. The computational stages
associated with the first component of the algorithm can be sum-
marized as follows.

1) Image acquisition.
2) Data normalization.
3) Spectral decorrelation.
4) Spectral-spatial feature integration.
5) First-stage classification.
As illustrated in Fig. 3, the captured spectral image data is

subjected to intensity normalization, filtering and decorrelation.
Different decorrelation techniques such as PCA, LDA, Wavelet
decomposition and the proposed spectral fuzzy sets are analyzed
in our study. This is followed by the calculation of the spectral-
spatial features by constructing fuzzy histograms in predefined
neighborhoods for each pixel in the decorrelated image data.
Finally, the extracted feature vectors are fed into the first-stage
classifier which creates an initial partition of the image with
respect to the materials contained in the image data.

The second component of the developed algorithm, as illus-
trated in Fig. 4, implements a statistical reclassification and re-
gion merging approach that is applied to refine the initial parti-
tion of the image resulting from the first component (see Fig. 3)
of the material classification algorithm.

A. Image Acquisition and Light Normalization

The acquired spectral data is represented by an image matrix
where each element (pixel) at position is represented by
a vector . Let be the vector representation of the spectrum
defined by the intensity responses of the wavelengths and
and be the vectors representing the white and black references
of the spectrum, as illustrated in Fig. 5

(1)

(2)

(3)

In order to make the spectral vector independent to the il-
lumination source, a solution is to normalize the hyperspectral
data using a dichromatic model such as that proposed by Shafer
[35]. Shafer’s illumination model assumes that the white illu-
mination reference is known, but this approach is difficult to be
directly applied to the normalization of the hyperspectral data
due to the complications associated with the development of a
light source that has the same emittance for each wavelength.
To be able to implement the Shafer’s model when dealing with
nonwhite hyperspectral illumination, in our implementation, we
have adopted the approach proposed by Tan et al. [36]. In this
approach, the spectral components of the incident light are cal-

Fig. 3. Outline of the first component of the FUSSER algorithm.

culated at each location as illustrated in (4) and the spectrum is
normalized using (5)

(4)

(5)

Since is not known for each pixel in the hyperspectral
data, the spectrum normalization will be indirectly performed
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Fig. 4. Outline of the second component of the FUSSER algorithm.

Fig. 5. Hyperspectral vector (L), white reference (W), and black reference (B)
of the spectrum.

using the reflections of the white and black reference
as follows:

(6)

Geusebroek et al. [29] demonstrated that the highlights and
shadows caused by the object geometry, material reflectance,
and position of the light source can be compensated for by
applying intensity normalization and desaturation. Using this
concept, in our implementation each spectrum is first nor-
malized by its mean and afterwards it is desaturated by the

subtraction of its minimum value (7), as a variation of the
method proposed by Stockman to extract the Spectral hue [37]

(7)

where and .

B. Spectral Decorrelation

Since the hyperspectral data is high dimensional and is char-
acterized by a high level of redundancy, there is a significant
overlap between the spectral distributions associated with dif-
ferent nonferrous materials. In order to reduce the level of re-
dundancy in the hyperspectral data and improve the material
separation, decorrelation techniques are applied to obtain a new
data representation that has a reduced dimensionality. In this
study different decorrelation methods are investigated, namely
the PCA-based approach [20], [26], LDA [19], [43], automatic
band selection [47], wavelet decomposition [25], and a novel
technique based on spectral fuzzyfication that will be detailed
in this paper.

PCA allows the extraction of highly discriminative features
by performing an orthogonal decomposition of the hyperspec-
tral data. The main disadvantage associated with the PCA and
related techniques such as LDA and independent component
analysis (ICA) [44] is that they require a training procedure
that involves sampling relevant data-points from the high-di-
mensional data. Another disadvantage of PCA resides in the fact
that the compressed feature vectors are not directly linked with
concrete physical variables and as a result they cannot be easily
interpreted. Also, PCA requires retraining if new materials are
included in the classification process.

To overcome the limitations associated with classical decor-
relation techniques, a new method based on spectral fuzzyfica-
tion has been designed to optimize the discriminative power of
the spectral features using an approach suggested by the human
visual system when applied to the classification of nonferrous
materials.

1) Classical Decorrelation Methodologies: The first decor-
relation method analyzed in this paper is based on the widely
used PCA (also referred in the computer vision literature to as
Karhunen–Loève transform) technique [20], [38], [39]. PCA is
a vector transform whose aim is to reduce the dimensionality of
the input data by projecting it onto a lower dimensional orthog-
onal representation.

An adequate number of normalized vectors covering each
class associated with nonferrous materials are selected from
training data in order to calculate the eigenvectors and eigen-
values of their covariance matrix [39]. The first
eigenvectors calculated from the covari-
ance matrix are used to generate the transformation matrix

. The PCA vector transform involves the projection of the
high-dimensional vectors on the transformation matrix , as
shown in (8)

(8)

where is the normalized vector to be transformed,
is the mean vector of all normalized vectors selected for training
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and is the eigenmatrix defined by the first eigenvectors
calculated from the covariance matrix of the training vectors.

After the application of the PCA transformation, the spectrum
is represented by vectors in the orthogonal PCA space. This
representation offers a decorrelated and compressed version of
the original hyperspectral data that can be efficiently used for
classification tasks. For comparative purposes, in this paper, we
also included the LDA, Wavelet and automatic band selection
techniques to assess their performance when applied for data
decorrelation.

2) Spectral Fuzzy Sets: The method proposed in this paper
to decorrelate the hyperspectral data is based on the knowledge
that the adjacent wavelengths of the spectrum are more cor-
related than the distant wavelengths. This observation is jus-
tified since for most solid materials the spectral information
varies smoothly over successive spectral wavelengths [46]. Con-
sequently, the spectral characteristics associated with nonfer-
rous materials are sampled by groups of adjacent spectral bands
rather than unique spectral bands. To model this property, the
intensity values for each wavelength have to take into account
the values of the adjacent wavelengths. This can be obtained by
dividing the spectrum in separate groups to attain the desired
spectral selectivity. To avoid the problems caused by a crisp
division of the spectrum, in this paper a method based on the
spectrum fuzzyfication is proposed. This involves the separation
of the hyperspectral data into a number of fuzzy groups where
each group covers a range of wavelengths and the contribution
of each wavelength is modeled by a membership function.

Let be the normalized components of the spectrum
as defined in (7) and be the number of fuzzy sets in which the
spectrum will be divided. A membership function is defined for
each of the fuzzy sets to characterize the membership for any
wavelength in the spectrum to its related fuzzy set. For the sake
of simplicity, in this implementation, triangular shaped mem-
bership functions are used (for a systematic approach in regard
to the construction of the fuzzy rules the reader is directed to
[41], [42]). In this way, the membership value for each point of
the spectrum is defined by a triangular function that is defined
as follows:

otherwise
(9)

where is the central wavelength value of the fuzzy set
and defines the separation between two consecutive central
wavelengths, as shown in Fig. 6.

As illustrated in Fig. 6, each of the spectrum wavelengths
has a membership grade to each of the segregated fuzzy sets. In
other words, each wavelength has a membership grade different
than zero in the two adjacent groups and a membership grade of
zero in the rest of the groups. This is shown in Fig. 7.

The data resulting after the application of the fuzzy set repre-
sentation to the initial hyperspectral data is defined by the En-
ergy of each fuzzy set that is calculated by weighting the in-
tensity of each of the spectrum elements with the
membership function associated with each fuzzy set as follows:

(10)

Fig. 6. Triangle shaped membership functions.

Fig. 7. An example that illustrates the membership grade associated with the
wavelength � .

Fig. 8. Sensitivity of the human retinal receptors.

The Energy measure defined in (10) samples the intensity of
the spectrum in each of the fuzzy sets. Based on the value of
Energy for each fuzzy set, we can obtain useful information in
regard to the radiometric (spectral) properties of the nonferrous
materials contained in the hyperspectral image data. In this way,
each hyperspectral pixel is defined by a vector containing the
Energy values of the fuzzy sets, as illustrated in (11)

(11)

This fuzzy representation allows us to characterize the spectral
information in an efficient manner since the spectral features are
not affected by the appropriate selection of the training elements
as it is the case with the classical data decorrelation techniques.
In addition, the dimensionality of the hyperspectral data is opti-
mally reduced since the fuzzyfication procedure maximizes the
decorrelation between adjacent spectral bands, but at the same
time maintains the physical meaning of the spectral features.

This approach is closely related to the way the human eye
extracts the color information where each Energy value can be
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Fig. 9. Vectorial representation of the hyperspectral image data.

conceptualized as the amount of data absorbed by a color re-
ceptor (cone) present in the human visual system. The chro-
matic retinal receptors consist of three different types of cones,
where each cell (cone) is able to convert the electromagnetic
radiation emitted by the surface of the objects into chromatic
information [46]. Each of these cones, as shown in Fig. 8, re-
sponds strongly to different parts of the spectrum ( ,

, ) and the colors sensed by humans are
created as a combination of the three primary colors (R,G,B)
given by the response of each type of cone. It is interesting to
note that the chromatic receptors present in the human eye em-
ploy models that are consistent with the fuzzy set theory. Our
approach based on the construction of spectral fuzzy sets can
be viewed as an extension of the process applied by the human
vision system to attain the trichromatic information to the hy-
perspectral case.

The decorrelated feature vectors defined in (11) contain only
spectral information and they do not provide any spatial infor-
mation (see Fig. 9).

Since the spatial information provides additional cues in char-
acterizing the properties associated with nonferrous materials,
the development of a feature vector that encompasses the spa-
tial and spectral information can increase the discrimination be-
tween different nonferrous materials. To achieve this goal, fuzzy
spatial histograms are proposed to merge the spectral and spa-
tial features into a compound feature vector. These histograms
encompass the distribution of the spectral vectors [see (8) and
(11)] in a given neighborhood or region.

C. Vector Quantization

Although the components of the spectral vectors
obtained after the application of the decorrelation techniques
(based either on PCA or spectrum fuzzyfication) can be theo-
retically used to model the spectral properties of the nonferrous
materials, in practice they need to be quantized prior to the
calculation of the feature histograms that integrate the spectral
and spatial information. This approach is motivated by the fact
that due to noise, various illumination conditions, and various
levels of oxidization, the spectral pixels that are sampled from
same material very seldom have identical intensities values and
these uncertainties between same-material pixels may cause
severe classification errors.

The classical approach to calculate the spectral-spatial fea-
tures involves the binning of the values in a feature histogram
that is calculated over a predefined neighborhood in the image.
This approach returns inappropriate results since the spectral

Fig. 10. The fuzzy-based vector quantization procedure. This diagram illus-
trates the calculation of the quantized vectors when six fuzzy sets are employed
to sample the hyperspectral domain.

Fig. 11. Quantization of a spectral pixel.

components show little variation among nonferrous mate-
rials and the simplistic crisp binning process can induce erratic
changes in the histograms if the intensity values of the com-
ponents are in the vicinity of the borders between bins. To ad-
dress this issue, we generate a normalized representation, where
each component of the spectral vectors is mapped into a
vector by the use of fuzzy membership functions. Using this
approach, each spectral component generates a quantized
vector where the elements of the vector represent the grade of
membership of the intensity value with respect to the
fuzzy sets that are applied to sample the hyperspectral domain.
The proposed fuzzy-based quantization procedure is illustrated
in Fig. 10. This fuzzy-based representation has the advantage
that the variations between the spectral components and the
uncertainties caused by noise or different levels of material oxi-
dization are better modeled than in the case when crisp binning
would be employed.

The quantization procedure shown in Fig. 10 is performed for
each component of the spectral pixel and the quantization vector

is created by concatenating the quantization vectors re-
sulting from each component of the spectral vector , as
illustrated in Fig. 11.
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D. Spectral-Spatial Features Integration

To construct the spectral-spatial histogram we need to define
a neighborhood around each spectral pixel. In this way, a fuzzy
histogram is computed using the quantized vectors that are
calculated, as illustrated in Fig. 11, for all spectral pixels con-
tained in the neighborhood

(12)

The histogram shown in (12) encodes the spatial dis-
tribution for each spectral component inside the selected
neighborhood (size ) and the spectral characteristics asso-
ciated with nonferrous materials are captured by the histogram’s
shape.

It is useful to note that (12) generates the same result as in the
case when the fuzzy histogram is calculated for each channel

independently and the resulting spectral histograms are con-
catenated into a single vector. However, the implementation de-
scribed in (12) has the advantage that allows the calculation of
the histograms for different sized neighborhoods by just per-
forming additive operations. This property is very useful for our
implementation since the compound descriptor characterizing
two regions would be the same as the sum of the descriptors
that are calculated for each region individually. This opens the
possibility of real-time implementation for the region merging
procedure that will be detailed in Section IV.

III. CLASSIFICATION PROCEDURE

In the previous section, the procedure that is applied to obtain
the feature vectors that encompass the spectral and spatial fea-
tures has been detailed. The histogram vector shown in (12) de-
fines the distribution of the spectral information in a predefined
neighborhood around the pixel and is used as input for
classification. In our implementation, the multivariate Gaussian
classifier is proposed to perform the material classification since
the Gaussian distributions approximate well the dispersion of
the spectral-spatial feature vectors within each class of nonfer-
rous materials.

A Gaussian model for each material is created where and
are the mean vector and the covariance matrix of the modeled

class

(13)
The classification stage is carried out by checking each spec-
tral-spatial vector calculated for each pixel in the image
against the normalized distributions that define each material
class. Each pixel in the decorrelated hyperspectral image is la-
beled to the class that achieves the minimum matching cost.

IV. REGION MERGING

The aim of the first-stage classification is to label each pixel
in the image with respect to the nonferrous material classes.
Our investigations revealed that due to interclass overlap some
pixels are misclassified. The errors in classification were mostly

Fig. 12. (a) Classification results obtained when the neighborhood fuzzy his-
tograms are used as input vectors. (b) Classification results obtained after the
application of the region merging procedure.

Fig. 13. Extraction of the region histogram for each of the preclassified regions.

caused by strong highlights and various oxidization levels en-
countered for similar materials.

However, in the vast majority of cases, the misclassified re-
gions are small and in general they are connected to larger re-
gions that were correctly classified (see Fig. 12). Based on this
observation, a merging procedure for all connected regions is
applied and for each region resulting from this process statis-
tics are calculated to solve the misclassifications. Using this ap-
proach, the whole connected regions are statistically compared
against the class models to decide if a particular region should be
reclassified or whether two or more regions should be merged.
To achieve this, the fuzzy histogram is calculated for the en-
tire region resulting from the merging process as explained in
Section II-D. The histogram merging process is illustrated in
(14)

(14)

where is the union of the connected regions . By per-
forming region merging, we increase the statistical relevance
of the spectral-spatial vector since the merged region is signifi-
cantly larger than the size of the neighborhood where the spec-
tral-spatial vectors for each pixel in the image were calculated.
Figs. 13 and 14 illustrate this process.

While the histograms depicted in Fig. 13 are calculated from
image regions with different sizes, in order to compare them
against the Gaussian models constructed for each class they
are normalized by dividing each bin of the histogram with the
number of elements that form the distribution.

In Fig. 14, each pair of connected regions are checked for
merging. To do this, the region histogram is calculated for each
region ( and ) and a joint histogram is calculated for
the region obtained after the and regions are merged

.
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Fig. 14. Histograms of the two candidate regions �� �� � and the histogram
of the merged region �� �.

The , and histograms are checked against
the Gaussian models associated with all material classes stored
in the database and for each histogram will be assigned a
class label in agreement to the class model that minimize the
matching cost.

If and are assigned different class labels, the proba-
bility for each region to belong to the assigned class is calcu-
lated to decide whether the regions should be merged or not.
The merging probability is calculated as follows:

(15)

The matching cost attained by the merged region (cal-
culated using (17)) is compared against the matching costs ob-
tained for the two separated regions and [see (16)]

(16)

(17)

To quantify the contribution of each region in (16), the
matching cost for each region is weighted by the number of el-
ements in each region ( and ) and the number of elements
contained in the merged region . The regions are
merged if the matching cost calculated for is smaller
than the matching cost attained for and .

V. RESULTS

The validation of the proposed spectral-spatial method has
been carried out in the context of nonferrous waste material clas-
sification. In this investigation the following materials are eval-
uated: white copper, aluminum, Stainless Steel, brass, copper,
and lead (see Fig. 15).

The hyperspectral data evaluated in our study has been ac-
quired using a PHL Fast10 CL spectral camera manufactured by
Specim [11]. Although this camera is able to capture 1024 wave-
lengths, we elected to capture 80 uniformly distributed wave-
lengths in the spectral range [384.05 nm, 1008.10 nm]. The mo-
tivation behind this approach is twofold: the reduction of the
onerous computational requirements to capture and process the
full resolution hyperspectral data (1024 wavelengths) and to re-
duce the problems associated with the construction of high di-
mensional feature spaces (due to the high correlation between
contiguous spectral bands) [46]. The illumination source con-
sists of a mixture of halogen and near ultraviolet lamps that fully

Fig. 15. The nonferrous materials investigated in this study.

cover the analyzed spectrum range. In order to minimize the is-
sues caused by noneven illumination, specular highlights and
shadows diffuse light sources were employed.

The developed machine vision system consists of three inde-
pendent components: the feeding device, conveyor and a part-
extractor module. The shredded WEEE mixture is automatically
loaded onto a nonspecular black conveyor belt (600 mm wide)
via a vibratory feeder to ensure that the nonferrous materials are
arranged into a thin layer prior to their arrival at the inspection
line that performs the material classification in hyperspectral
data. The conveyor speed was set at 20 m/min and the nonfer-
rous materials were separated using a pneumatic part-extractor.

The material samples that were used to validate the proposed
nonferrous material classification system have been provided
by Indumetal Recycling S.A. and IGE Hennemann Recycling
GmbH which are part of the SORMEN project consortium [2].
The nonferrous materials have been manually sorted by expert
operators and in this process they use all the available knowl-
edge about each nonferrous waste fraction. In this study, the cap-
tured datasets were divided into training and testing sets where
half of the data was used for training and the remaining half was
used for testing. From each of these datasets more than 500 000
spectral-spatial descriptors were extracted. The experimental re-
sults reported in this paper were only conducted on the testing
datasets.

A. Background Removal

In order to remove the background information, a pixel-based
evaluation proved to be sufficient to identify the background.
For this operation no spectrum normalization was applied since
the background does not present specular properties. The back-
ground is removed by performing a binary classification where
pixel-based Gaussian models are constructed for background
and nonferrous materials. The identification of the background
information attained a classification rate of 97%.

B. Data Decorrelation. Classic Approaches and Fuzzy
Spectral Energy Response

After removing the background information, the two different
decorrelation methods discussed in Section II were tested in
order to determine which method generates the best results. In
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TABLE I(a)
CLASSIFICATION RESULTS USING SINGLE PIXEL SPECTRAL FEATURES

TABLE I(b)
CLASSIFICATION RESULTS USING SINGLE PIXEL SPECTRAL FEATURES.

AUTOMATIC BAND SELECTION (FLOATING SEARCH METHOD) AND

UNPROCESSED (RAW) SPECTRAL DATA

this regard, one of the goals of this investigation was to calcu-
late the optimal number of PCA components and the optimal
number of fuzzy sets. The experimental results are depicted in
Table I(a). In this evaluation, the classification has been carried
out at pixel-level (using single-pixel spectral features). The data
depicted in Table I(a) indicates that the best results are obtained
when the number of fuzzy sets is selected in the range 8 to 24.
Similar results were obtained when the PCA technique has been
employed to decorrelate the original hyperspectral data. The
experimental results shown in Table I(a) reveal that the RGB
data is not sufficient to accurately capture the characteristics as-
sociated with nonferrous materials. In our experiments, when
the RGB data was applied for material classification, the cor-
rect recognition rate was only 43.83%. The experimental re-
sults depicted in Table I(a) indicate that the application of the
data decorrelation techniques is opportune as the classification
results obtained for decorrelated data (number of features 2)
are higher than the results obtained for original hyperspectral
data (80 spectral wavelengths)—see the result shown in the last
column of Table I(b). For comparative purposes, additional clas-
sification results obtained for other decorrelation schemes such
as Wavelet decomposition [25], LDA [see Table I(a)], and au-
tomatic band selection based on floating search method (FSM)
[47] [see Table I(b)] are included.

The experimental results depicted in Tables I(a) and I(b) re-
veal that the spectrum fuzzyfication and the classical data decor-
relation methods (PCA, LDA, Wavelet and automatic band se-
lection) produced promising results when applied to the decor-
relation of hyperspectral data. However, in our experiments the
proposed fuzzy sets outperformed these techniques and at the
same time our approach avoids the complications associated
with the training procedure required by classic data decorrela-
tion methods that were analyzed in this study. For these reasons,

Fig. 16. Pixel-based classification results when applied to decorrelated hyper-
spectral data (eight fuzzy sets).

TABLE II
CLASSIFICATION RESULTS USING FUZZY HISTOGRAMS CALCULATED IN

NEIGHBORHOODS OF DIFFERING SIZES

the technique based on fuzzy sets was deemed as the most ap-
propriate decorrelation method. Fig. 16 illustrates the results re-
turned by the pixel-based classification approach when applied
to hyperspectral data that was decorrelated using eight fuzzy
sets.

C. Neighborhood Fuzzy Histograms

In the experiments described in the previous section, the spa-
tial information was not included in the process of modeling the
nonferrous material characteristics. In order to include the spa-
tial information in the construction of the feature vectors, fuzzy
spatial histograms are calculated for each pixel in the image
data, as explained in Section II-D. To evaluate the contribution
of the spatial information in the classification process, the spec-
tral-spatial vectors (fuzzy spatial histograms) are constructed
for differing window sizes. The classification process is carried
out using the multivariate Gaussian classifier that has been de-
tailed in Section III. The experimental results are depicted in
Table II.

The experimental data shown in Table II indicates that the
development of compound feature vectors that encompass the
spectral and spatial information generates more robust image
descriptors that are able to sample in a more elaborate fashion
the spectral characteristics of the nonferrous materials. The re-
sults depicted in Table II prove that the decorrelation technique
based on spectrum fuzzyfication produces more consistent re-
sults than PCA, Wavelet decomposition and the selection of
the most discriminant bands for all window sizes and they also
demonstrate that the RGB data is not suitable for nonferrous
material classification. Based on the experimental data shown
in Table II it can be concluded that the application of the spec-
tral-spatial vectors for material classification proved to be op-
portune since the overall classification rate is increased to over
86%. An experimental example is depicted in Fig. 17.
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Fig. 17. Classification results using spectral-spatial feature vectors.

TABLE III
CLASSIFICATION RESULTS AFTER REGION MERGING

TABLE IV
CONFUSION MATRIX CALCULATED FOR ALL NONFERROUS MATERIAL CLASSES

(PROPOSED REGION-BASED CLASSIFICATION APPROACH)

Overall 98.36%.

D. Region Merging

The regions identified after the application of the neigh-
borhood (spectral-spatial) histograms (see Section V-C) are
subjected to reclassification using the procedure discussed
in Section IV. In this process for each connected region
the merging cost is evaluated using the (15) and (16) and
the merging decisions are based on the minimization of the
matching cost criterion. The experimental results shown in
Table III indicate that optimal results are obtained when
the spectral-spatial histograms are calculated in a 7 7
neighborhood.

The results depicted in Table III show that the application of
the region merging process reduced to a great extent the level of
misclassified regions.

The confusion matrix (Table IV) constructed for all materials
evaluated in this study reveals that most errors are caused by the

Fig. 18. Classification results after the image depicted in Fig. 16 has been sub-
jected to region merging and reclassification.

Fig. 19. Additional classification results. (a) Original image. (b) Fuzzy his-
togram-based classification results. (c) Results after region merging and reclas-
sification. (d) Ground-truth image.

TABLE V
COMPARATIVE RESULTS: SINGLE-PIXEL DESCRIPTORS,

FUZZY HISTOGRAMS, AND REGION MERGING

misclassification of the Stainless Steel and the class overlap gen-
erated by nonferrous materials with similar spectral properties.
Additional experimental results are depicted in Figs. 18 and 19.

To illustrate the appropriateness of the proposed spectral-
spatial features, in Table V results that illustrate the improve-
ment in performance when the classification is performed using
single-pixel spectral descriptors, fuzzy histograms and after re-
gion merging are depicted. (To limit the size of the table only
the results obtained when the fuzzy histograms are calculated
in a 7 7 neighborhood are reported).

VI. CONCLUSION

The aim of this paper was to detail the theoretical and prac-
tical issues associated with the implementation of an integrated
system for nonferrous material sorting. In our approach, the
developed FUSSER algorithm addressed issues related to the
decorrelation of hyperspectral data using an approach that em-
ulates the human visual system and the development of fuzzy
histograms that integrate the spectral and spatial features in a
compact descriptor that is able to accurately sample the proper-
ties of the nonferrous materials. The proposed approach avoids
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the requirement of complex and subjective training procedures
and at the same time allows the construction of elaborate statis-
tical models that can be applied for robust nonferrous material
classification. To further improve the classification results, we
have devised a region merging postprocessing scheme that is
applied to reclassify the connected regions in agreement with
the minimization of a matching cost criterion.

In this study, a large number of experiments have been con-
ducted to evaluate the efficiency of the proposed system. In
this regard, the experimental data reported in this paper indi-
cates that the unprocessed (raw) hyperspectral information is
not suitable to accurately capture the characteristics of the non-
ferrous materials. Our experiments revealed that significant im-
provements are obtained when the material classification is per-
formed on decorrelated hyperspectral data. Another key issue
related to the implementation of the material-sorting algorithm
described in this paper resides in the integration of the spatial
and spectral features in a compact image descriptor. The exper-
imental data clearly demonstrate that considerably improved re-
sults are obtained when the characteristics of the analyzed non-
ferrous materials are modeled using the proposed fuzzy spectral
histograms to achieve spatial feature integration. The nonfer-
rous material classification (FUSSER) algorithm attained over
98% correct classification when applied to the identification
of the WEEE scraps containing six different nonferrous mate-
rials (white copper, aluminum, Stainless Steel, brass, copper and
lead).

The experimental results indicate that most errors are caused
by the misclassification of the Stainless Steel. To reduce the
rate of misclassification associated with this material, future
work will be concentrated on the development of multiresolu-
tion classification schemes that will be applied to increase the
discriminative power of the proposed spectral-spatial features.
Additional future work will also explore the feasibility of im-
plementing the proposed classification algorithm on a hardware
platform in order to achieve the computational speed required
for real-time operation and to investigate the application of mul-
tiple narrowband illumination arrangements to improve the dis-
crimination between the Stainless Steel and the other nonferrous
materials with similar spectral properties.
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