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ABSTRACT 

In a typical supervised classification procedure the availability alf training samples 

has a fundamental effect on classifier performance. For a fixed number of training 

samples classifier performance is degraded as the number of dimensions (features) is 

increased. This phenomenon has a significant influence on the analysis of hyperspectral 

data sets where the ratio of training samples to dimensionality is small. Objectives of this 

research are to develop novel methods for mitigating the detrimental effects arising from 

this small ratio and to reduce the effort required by an analyst in terms of training sample 

se1r:ction. An iterative method is developed where semi-labeled samples (classification 

outputs) are used with the original training samples to estimate parameters and establish a 

positive feedback procedure wherein parameter estimation and class~fication enhance 

each other in an iterative fashion. This work is comprised of four discrlete phases. First, 

the role of semi-labeled samples on parameter estimates is investigated. In this phase it is 

demonstrated that an iterative procedure based on positive feedbac:k is achievable. 

Second, a maximum likelihood pixel-wise adaptive classifier is designed. Third, a family 

of adaptive covariance estimators is developed that combines the adaptive classifiers and 

covariance estimators to deal with cases where the training sample set is extremely small. 

Finally, to fully utilize the rich spectral and spatial information contained in hyperspectral 

data and enhance the performance and robustness of the proposed adaptive classifier, an 

adaptive Bayesian contextual classifier based on the Markov random field is developed. 





CHAPTER 1: INTRODUCTION 

1.1. Statement of Problem 

Remote sensing technology involves the measurement and analysis of the 

electromagnetic radiation reflected or emitted from the earth's surface by a passive or an 

active source. The radiation responses in various wavelengths reveal the types or 

properties of the materials on the surface being measured and collectively form a 

multispectral image. Previously, multispectral scanners were developetl which measured 

radiation in 3 to 12 spectral bands. Current sensors can collect data in hundreds of 

spectral bands and then generate hyperspectral data. For instance, the Airborne 

VisibleIInfrared Imaging Spectrometer (AVIRIS) gathers data in 210 spectral bands 

covering 0.4-2.5 um wavelength region with 20 m spatial resolution. The objective of 

analysis is to associate each pixel in a multispectral image with a class category of 

interest. Using a statistical pattern recognition approach, the spectrum of a pixel in a 

multispectral image is represented as an n-dimensional random process and analyzed 

subsequently. Fig. 1.1 illustrates a portion of hyperspectral image (210 bands) and a data 

representation of one of pixels. 
T 

X=[x1, x2, . . .x2101 

Fig. 1.1. A portion of Hyperspectral image. (in color) 



Usually class statistics of interest are unknown and they may be estimated from 

pixels with known class origin. The pixel or sample with known class origin is referred as 

a labeled sample, and subsequently a sample with unknown class origin is referred as an 

unlabeled sample. A labeled sample can be used either to estimate class statistics (a 

training sample) and to test the quality of estimated statistics (a tlesting sample). A 

process using training samples to estimate class statistics is called a supervised learning. 

A typical supervised classification process for analyzing multispectral data is shown in 

Figure 1.2. 

Mu1 tispectral 
Input Data 

Fig, 1.2. A typical supervised classification process 

Before classifying the multispectral data, some form of processing is usually 

performed on the data. The purpose of this process is to obtain a better representation of 

data based on the available training samples in preparation for clas,sification. If the 

probability density functions (pdf's) of the classes are assumed, a better representation 

usually means a good set of parameter estimates for the pdf's. Due to limited training 

sample size, the common approach in remote sensing is to estimate class statistics up to 

second order, and consequently a sequence of normal distributions of c1,asses are usually 

assumed. The processing stage may then involve, for example, (I)  regularized covariance 

estimation which the number of estimated parameters for covariance matrices are reduced 

to decrease the variance of estimation, or (2) statistics enhancement using an expectation 

maximization (EM) algorithm where unlabeled samples in additional to ,training samples 



are used to estimate parameters, and (3) feature extraction which extracts the features 

most significant to discriminate classes. 

The classifier types can be broadly divided into two categories: pixel-wise 

classifier and spectral-spatial classifier. A pixel-wise classifier assigns each pixel to one 

of the candidate classes by a pre-specified decision rule basedl on the spectral 

measurement only. In general, the decision rule can be written as a function of a set of 

parameters contained in the pdf. In a spectral-spatial classifier, in addition to the spectral 

information, spatial information which represents the interaction of adjacent pixels is 

either incorporated into a statistical test rule to group adjacent pixels into an object or into 

the decision rule to represent a prior about the class distribution. The former is usually 

referred as the sample classifier where the resulting objects are eventually classified, and 

the latter is called a contextual classifier. 

After a classifier is designed, it is usually tested by measuring the error 

probability. This might be estimated by using the labeled samples. In practical situations, 

the number of these labeled samples is limited, so one must decide how to divide them 

between both the design and test of the classifier. An unbiased estimator is obtained by 

usirig a set of samples to design a classifier and the other statistically independent set of 

sa11-ples for testing the classifier. This approach, called the holdout method [I], will be 

adopted for this thesis. 

The increase in spectral resolution provided by the new sensor technology has 

brought about new potentials and challenges to data analysts. Om one hand, the 

availability of a large number of spectral bands makes it possible 1:o identify more 

detailed classes with higher accuracy than would be possible with the data from earlier 

sensors. On the other hand, in order to fully utilize the information contained in the new 

feature measurements, training samples are needed from all of the classes of interest. A 

large number of classes of interest, and a large number of spectral bands to be used, 

require a large number of labeled samples. For remote sensing applications, the ground 

truth information and hence labeled samples may be obtained in any of s'everal ways. For 

example, by visual inspection of the actual site at the time the data are being gathered, or 

by matching the spectral responses of the samples against the responses of known 

samples [2], or by visually inspecting pixels from the image with high spatial resolution. 

Unfcrtunately, in any case, the necessary number of labeled samples for designing and 



testing the classifier are usually very expensive or time consuming to a.cquire. As a result, 

the class statistics have to be estimated by a limited training sample set. When the ratio of 

the number of training samples to the number of features is smisll, the parameter 

estimates become highly variable. These poorly estimated statistics might cause both 

feature extraction and classification performance to deteriorate. 

Typically, the performance of the classifier improves up to a certain points as 

additional features are added, and then deteriorates. This is referred as the Hughes 

phlmomenon [3] or peak phenomenon as shown in Figure 1.3. The Hughes phenomenon 

can be simply explained as follows: The most commonly used supervised classifiers 

estimate the unknown parameters and plug them in for the true param~eters in the class- 

corlditional densities. For a fixed sample size, as the number of features is increased (with 

a corresponding increase in the number of unknown parameters), even though the 

separability may increase as illustrated in Figure 1.4a and it may potentially improve 

classifier performance, the reliability of the parameter estimates decreases as shown in 

Figure 1.4b. Consequently, the performance of the resulting plug-in classifiers, for a fixed 

sample size, may degrade with an increase in the number of features as illustrated in 

Figure 1 . 4 ~ .  

The number of training samples required for different classifiers to obtain 

reasonable parameter estimates has been studied [I]. Loosely speak:ing, for a linear 

classifier the number of training samples should be proportional to the number of 

features; and for a quadratic classifier, the number of training samples should be 

proportional to the square of the number of features. 

The additional problem that usually exists in remote sensing applications is the 

unre:presentative training sample problem. Since usually training samples are selected 

from spatially adjacent regions, they may not be good representatives of the samples of 

the entire same class that might exist in all regions in the scene. This problem further 

aggravates the difficulties in analyzing multispectral data. 
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Fig. 1.3. Hughes phenomenon 
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Fi,g. 1.4. Simple illustration of variation of (a) Separability (b) Reliability of statistics 
estimation and (c) Classification accuracy as function of dimensionality 



1.2 Organization of Thesis 

The objective of this research is: 1) to alleviate the Hughes phenomenon by 

extracting additional class label information from data and utilize it to enhance the 

statistics estimates and then improve classification accuracy; 2) to design a robust 

classification procedure where only minimum analyst effort is required in terms of the 

quantity and quality of training samples selected. 

With this goal in mind, in this thesis a general adaptive classification procedure 

and then three specific ways to implement this procedure are developeld to accommodate 

various training sample sizes. In this adaptive classification procedure, the semi-labeled 

sarnples (classification outputs) in addition to the original training samples are utilized to 

estimate parameters in order to establish a positive feedback procedure established where 

parameter estimation and classification enhanced each other at each iteration. Eventually, 

a higher classification accuracy may be achieved iteratively starting with a small training 

sample set. This thesis is organized as follows. 

In Chapter 2, the rule of semi-labeled samples on parameter estimates and the 

feasibility of establishing the positive feedback procedure are investigated. In Chapter 3, 

a m.aximum likelihood pixel-wise adaptive classifier is designed. In or~der to control the 

influence of semi-labeled samples, the proposed method gives full weight to the training 

samples and reduced weight to semi-labeled samples. This method works well for the 

case when the number of training samples is slightly higher than( the number of 

dimensions. 

When the number of training samples is comparable or even smaller than the 

number dimensions (referred as to ill-posed problem), covariance estimates become 

high~ly variable and using semi-labeled samples alone is not adequate to maintain the 

c1as:;ification performance. In Chapter 4, a family of adaptive covariance estimators is 

deve:loped that combines the adaptive classifiers and covariance estimators, where the 

semi-labeled samples (whose labels are determined by a decision rule) are incorporated in 

the process of determining the optimal regularized parameters and estimating those 

supportive covariance matrices that form final covariance estimators. 



In Chapter 5, to full utilize the rich spectral and spatial inforn~ation contained in 

hyperspectral data and enhance the performance and robustness of the proposed adaptive 

classification procedure, an adaptive Bayesian contextual classifier based on the Markov 

random field is then developed. This method is advantageous when segmented image has 

strong short distance statistics dependence and when different classes have similar 

spectral response but may be able to be differentiated by their locations. 

Finally, general conclusions and potentials for future research clevelopment future 

research are suggested in Chapter 6. 





CHAPTER 2: EFFECT OF SEMI-LABELED SAMPLES IN REDUCING 
THE SMALL SAMPLE SIZE PROBLEM AND MITIGATING THE 

HUGHES PHENOMENON 

2.1 Introduction 

In a typical supervised classification problem, the objective is to assign a class 

label, from a set of candidate labels, to an incoming observation. The minimum expected 

error that can be achieved in performing the classification process is referred to as the 

Bayes error [I], which can be achieved by a decision rule that assigns a sample to the 

class with maximum a posteriori probability (The MAP classifier). In order to design 

such a classifier, knowledge of the a posteriori probabilities and the class-conditional 

probability density functions is required. If such knowledge is available then by 

increasing the dimensionality of the data, one would expect to enhance the performance. 

In other words, the Bayes error is a non-increasing function of the dimensionality of the 

data. After all, a new feature can only add information about a sample and thus, one 

would expect to do at least as well as if such information is not available. In practice, 

however, class conditional probability density function (pdf's) need to ble estimated from 

a set of training samples. When these estimates are used in place of the true values of the 

pdf's the resulting decision rule is sub-optimal and hence has higher probability of error. 

The expected value of the probability of error taken over all training sample sets of a 

part:icular size is, therefore, larger than the Bayes error. When a new feature is added to 

the data the Bayes error decreases, but at the same time the bias of the classification error 

increases. This increase is due to the fact that more parameters must be estimated from 

the same number of training samples. If the increase in the bias of the classification error 

is more than the decrease in the Bayes error, then the use of the additional feature 

degrades the performance of the decision rule. This effect is called the Hughs 

phen-omenon [3]. The larger the number of the parameters that need to be estimated, the 



more severe the Hughes phenomenon can become. Therefore, when the dimensionality of 

data and complexity of the decision rule increase, the Hughs effect bec'omes more severe. 

In this chapter, a quantitative comparison between training samples and semi- 

labeled samples (definition will be given in the following section) on their value in 

reducing the classification error is provided. The information available: for estimating the 

parameters of a mixture of two normal distributions is examined for training samples and 

semi-labeled samples. The error bounds of some classifiers arle obtained when 

supervised, semi-supervised, and combined supervised-semi-supervised learning 

(definition will be given in the following section) are used to perform the classification. 

2.2 Definitions 

Labeled samples: samples whose class labels are correctly known 

Training samples: labeled samples which are used for training a classifier, i.e., 

estimating class conditional statistics if the class pdf are assumed 

Testing samples: labeled samples which are used to test performance of a 

classifier 

Unlabeled samples: samples whose class labels are completely u~~known 

Semi-labeled samples: samples whose class labels are determined by a decision 

rule. They are unlabeled samples before classification is performed and their class 

label information partially obtained after classification. The label for a semi- 

labeled sample can be either right or wrong. 

Supervised learning: the training samples are used to train a classifier, estimating 

the parameters in the decision rule 

Semi-supervised learning: the semi-labeled samples are used to train a classifier 

Combined supervised-semi-supervised learning: the semi-labeled samples 

together with the training samples are used to train a classifier 

2.3 Effect of Additional Semi-Labeled Samples 

Consider a classification problem involving L classes with prior probabilities Pi 

and probability density functions J(x) ,  and each class is Gaussianly distributed. We 



denote e* the Bayes error achieved by using the MAP classifier with given Pi andL(x). 

Let 8 denote the vector of parameters of the MAP classifier, e.g. mean vectors and 

covariance matrices and the associated prior probabilities. Let B* denote the true value of 

8, and e 'the Bayes error obtained by using B* in the decision rule is e *. Assuming that 

6is an estimate of 0' and the deviation of B from 8' is small, we can approximate the 

error corresponding to the decision rule obtained by using 6 by a Taylor series expansion 

of up to the second term: 

Where tr(A) designates the trace of the matrix A,  and T stands for transpose. The second 
term vanishes because B* is an extreme point of e(B). If the bias of 6 is zero or can be 

ignored ( ~ ( 6 )  = B*) ,  Then the expected value of e can be approximated at follows: 

Notice that the bias term on the right side of the above equation (2.2) is non- 

negative, because it is the trace of the product of two positive semi-definite matrices [4]. 

With the increase of the number of the parameters (B), the covariance estimate becomes 

more variable, which causes the number of terms in the bias to go up and hence the 

expected value of the error increases, too. If this increase is not canceled by the decrease 

in the Bayes error that the additional parameters may provide, the oveirall classification 

performance degrades. Hence the Hughes phenomenon occurs. However, if additional 

information is utilized, such as the information contained in the semi-labeled samples, 

more accurate estimates with lower covariance matrices may be obtained, and the bias in 

the classification error may be reduced and then the Hughes phenomenon may be 

miti gated. 

Consider two different estimators, 6 and 8 with negligible biases, and assume 
that cov(8) 2 cov(8) (i.e., cov(6) - cov(8)is positive semi-definite). Since is the global 

d2e(0)1 is positive definite and we have: minimum of e(8), the Hessian - 320 0=e8 



Furthermore, since the trace of the produce of two positive semi-definite matrices 

is :non-negative [4], the above can be written as: 

Therefore, the expected error by using i$ is greater than the expected error by 

using 6 in the decision rule, i.e.: 

In the following we will show that, by using additional semi-labeled samples, 

estimates with smaller covariance matrices can be found. Therefore, better performance 

can be obtained without the extra cost of selecting more training samples. 

Assume that an estimate 6 of 8' is obtained by using the training samples. 

Furthermore, assume that 8 is asymptotically unbiased and efficient (for example, 

maximum likelihood estimates always posses these properties [5]). In other words, for a 

moderately large sample size we have ~ { 6 }  = 8' and cov(6) = I;', where Ic'is the inverse 

of the Fisher information matrix [5]. The subscript "s" denotes that the Fisher information 

matrix corresponding to a supervised estimator obtained by using training samples that 

are drawn separately from each class. The Fisher information matrix is positive semi- 

defiinite and is defined as follows: 

Now, assume that 6 is another estimate of 8' obtained by using some semi- 

labeled samples in addition to the training samples. The semi-labelled samples are 

selected separately from each class. If 6 is also asymptotically unbiased i3nd efficient, the 
we have cov(6) = I;', where I, is the Fisher information matrix corresponding to the 

estimate obtained by using both training samples and semi-labeled samples. Provided that 

the semi-labeled and training samples are independent, one can write: 



where Is, denotes another Fisher information matrix corresponding 1:o the information 

contained in the semi-labeled samples for estimating 6'. Since all of the Fisher 

information matrices are positive semi-definite one can obtain 4 2 I,, and hence 

COY(& - C O V ( ~ ) .  Therefore, one can conclude that using additional semi-labeled samples, 

a smaller expected error may be obtained. 

2.4 Information of Two Normal Distributions 

In this section, the information available for estimating the parameters of a 

mixture of two normal distributions is examined in terms of the Fisher information 

matrix, denoted by I,. According to Crame-Rao inequality [5], if 6 is any absolutely 

unbiased estimator of 8 based on measure data, then the covariance of the error in the 

estimator is bounded below by the inverse of the Fisher information matrix, assuming it 

exists. Furthermore, if 8 is asymptotically (a large sample size) unbiased and efficient 

(for example, maximum likelihood estimates always possess these properties [5]), then 
cov(6) = 1;'. Loosely speaking, with more information available, then the determinant 

and trace of the inverse of the Fisher information matrix become smaller, and 

correspondingly, the covariance of an unbiased estimator is smaller too. In other words, 

the  estimator becomes more stable. 

Consider a classification problem involving two multivariate classes that can be 

represented as Gaussian distributions with probability density functions (pdf's) 
J(x.Ip,,C,),i = 1,2, where pi, and 25; denote the mean vector and covariance matrix of 

clasls i. The prior probabilities associated with the two classes are designated by P,  and 

P,. We consider the following case: n independent unlabeled observations (XI, X,,. .. ., X,) 

are drawn from the mixture of these two classes, and are subsequently classified as class 

one (C,) and class two (C,) based on the Bayes decision rule wlhich assigns an 

observation to the class with the highest a posteriori probability for minimizing the total 

classification error: 



where Q, and Q 2  are two sub-spaces corresponding to class one and class two 

respectively. Suppose n, samples are correctly classified, and n, samples are 
rnisclassified, i.e., n, + n, = n. Denoting I,, as the Fisher information matrix for this case, 

using the definition of Fisher information matrix given by Eq. (2.4), then we have: 

a 
f (x, 811 [-log f (x, 8)IT ae 

a 
f (x,8)][-log f (x,8)lT1x E Q,,x is C:, ae 

Without loss of generality, consider the canonical form where pl=O, and p2=[A 

0.. .OIT, and Z,=Z2=Id, A>0, is the Mahalanobis distance between the: two classes, and 

Id is, a d x didentity matrix (d is the dimension of the feature space). Since the error rate 

of probability is the subject of our study in the next section and is invariant under 

nonsingular linear transformation, the canonical form can be used here without loss of 
generality. Any other two-class problem for which Zl=& can be transformed into the 

above form through a linear transformation [I]. Using these conditions, Eq. (2.6) can be 

simplified as follows (the detailed derivation is shown at appendix A): 

k, = %a, + (1 - c)(l- a,) 



Here @(t) and $(t)are the cumulative distribution function (cdj') and probability 

density function (pdf) of the standard normal distribution respectively, and r, is the 

classification accuracy. From equation (2.7) we can derive the following interesting 

res~~lts: 

1) If two classes are quite separated, i.e., A >> 1, then t >> 1 and hence @ ( t )  = 1 

and t$(t) = 0,  a, = a, = p, = P2 == 1. In this case, equation (2.7) can be simplified as: 

where the above inequality is a matrix inequality indicating that the right hand side minus 

the left hand side is a positive semi-definite matrix. Notice that the right hand side of the 

above inequality is the Fisher information matrix for estimating 0 if the n randomly 
drawn samples have been labeled. In particular, let I,  be the information matrix for this 

case. One can write: 



Therefore, inequality (2.8) reveals the conceptually appealing fact th,at the information 

contained in n classified observations based on the Bayes decision rule is less than or 

equal to that of n labeled observations. The missing information in this case using only 

semi-labeled samples (referred as semi-supervised learning) is due to the mis-assigned 

labels. From now on we refer to the right hand side of (2.8) as the "supervised bound" 
for I,, . Usually, classification accuracy achieved by Bayes rule with known class 

condition probability density functions goes up with the separation of classes. Therefore, 
if two classes are quite separated, we have n, >> n, or n, =: n,  leading to I,, = I,, which 

implies more information can be gained from more correctly classified samples. 

2) At the worst case where half of the samples are correctly classified and the 
remaining half are rnisclassified, i.e., n, = n, = "/Z , Is, can be written as: 

This indicates that at least 50% of class label information i s  generated after 

c1as;sification. 

In summary, for the canonical two component normal mixtures with unknown 

means, after the classification is performed based on the Bayes decision rule, the Fisher 
info~mation matrix I,, is bounded as follows: 

n[ilId O ]  [illd 0 1  - 5 I,, 5 n 
2 0 GId (I ezd 



Under suitable regularity conditions the inverse of the Fisher information matrix 

(I- ') is the asymptotic (large sample) variance-covariance matrix for the maximum 

1ik:elihood estimates [4]. For the equal prior probability case (Pl=P2=0.:5), by inverting the 

bo~unds in Eq. (2.11), the asymptotic covariance of the ML (Maximum Likelihood) 
estimate of 0 = [p:,p:lTcan be bounded from above and below. Notice that for any two 

positive definite matrices A and B, if A2B, then B-'2A" [5] .  Denoting 8 as the ML 
estimate of 0 obtained by using semi-labeled samples, then cov(8) is bounded as 

follows: 

ancl 

Usiilg (1 and tr to denote the determinant and trace operators respectively then 1 I-' 1 and 
tr(1-') represent the asymptotic generalized and total variance [6]. Using Eq. (2.1 1) we 
can obtain the trace and determinant of (lSr)-': 

and 



Fig. (2. la) and (2. lb) illustrate the variation of asymptotic total1 variance with the 

accuracy, the number of samples, separations for semi-supervised learning (only semi- 

labeled samples are used) and supervised learning (only labeled samples are used). Note 

that accuracy achieved by Bayes rule is approximately 69% for A=1, and 99% A=5 with 

equal prior probabilities [I]. From these figures it is seen that 1) asymptotic total 

variance decreases with increase of classification accuracy. It drop,s faster when two 

classes are more separated; 2) The asymptotic total variance  increase:^ with increase of 

dimensionality, but decreases dramatically with increase of the number of samples; 3) 

The difference of asymptotic total variance using labeled and semi-labeled samples 

reduces with classification accuracy and separability of two classes. 

The above results imply that when semi-labeled samples are used, 1) the 

improvement of classification accuracy may reduce the total variance and hence enhance 

the estimation of statistics, and in return, the enhanced statistics can further improve the 

classification accuracy. This implies when semi-labeled samples are used to integrate 

statistics estimation with classification, a positive feedback can be esta.blished where 2) 

Tht: large number of semi-labeled samples may significantly reduce the total variance and 

the:refore mitigate the effect of small training sample size problem. 3) Semi-labeled 

samples can provide comparable class label information when two classes are quite 

~ep~arable and classification accuracy is high. 

2.5 Bound on Probability of Error 

2.5.1 Semi-supervised learning 

In the equal covariance case (C, = C, = C), the optimal classifier is linear: 

1 T - I  T -1 p2 h(x)=(p,-&)c-I+-(& C &-p2C &)+log- 
2 e 

when the true parameter values are used to evaluate h(x), the above linear classifier 

minimizes probability of error, which is referred to as the Bayes probability of error. 
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If the parameters are replaced by their estimates in h(x), the error rises. The expected 

probability of error using estimated parameters can be written as [I]: 

E{eFr) = err* + ~ t r { ~ ~ ~ = ~ ,  2 coV(6) 

x ei*'̂ ' [<A (x) - efi (x)]duiw 

For the canonical form where pl=O, and &=[A 0.. .OIT, and El=&=Zd, d>O, we have: 

The integrals in (2.16) can be computed by the method provided in [I]. Replacing cov(6) 
in (2.15) by its upper and lower bounds described in Eq. (2.12a) tlnrough Eq. (2.12b) 
1e:ads to the following inequalities for the bias of eFr: 

bias(eFr) 2 (supervised lower bound) (2.17a) 

Here the supervised lower bound is applied for supervised learning where n samples are 
1 

labeled. It is possible to show that the variance of eFris 0(,)[5] and is therefore 
n 

negligible. 



Fig. (2.2a) and (2.2b) show the bounds on the number of semi-labeled samples 

required to maintain the bias of classification error to less than 1% when dimensionality 

varies. Fig. (2.3) shows the upper and lower bounds of the bias of the probability of error 

(in percent) versus A (Square root of the Mahalanobis distance), when Pl=P,, d=4, and 

n= 1000. Notice that as A goes up the semi-supervised curves gets closer to the supervised 

lower bound indicating when classes are far away from each other, semi-supervised 

learning can achieve comparable performance to supervised learning. 

2.5.2 Combined Supervised and Semi-supervised learning 

In practical applications, usually both training and semi-labeled samples are 

a~~ailable. Assuming that the training and semi-labeled samples are statistically 

independent, one can write the Fisher information matrix corresponding to the combined 

supervised and semi-supervised learning as the sum of the Fisher information matrices 

corresponding to the training and semi-labeled samples. This implies that if both training 

sa~nples and semi-labeled samples are used simultaneously to estimate: the parameters of 

tht: decision rule, better performance with lower bias and variance can be achieved than 

when using training samples alone [7 ] .  By using the bounds obtained for the Fisher 

information matrix corresponding to the semi-labeled samples in equation (2.8), similar 

bounds can be obtained for the combined supervised and semi-supervised learning case. 

These bounds can then be utilized to determine the upper and lower bounds for bias of 

classification error as is done in the pervious section for the semi-supervised case. 

Assume that in addition to the n semi-labeled samples, n,, labeled samples from 

class 1 and n,, labeled samples from class 2 are also available for trainjng the classifier. If 
the estimate of the parameter set 8 = [p: p:lTobtained by using all of these samples in 

the decision rule (lo), the bias of the classification error, for the case Pl=P,, is bounded 

as: 

(supervised lower bound ) 



+ - + d - 1  
n,, + n / 2  n,, 

The variance of eiris again negligible since it is inversely plroportional to the 

square of the number of training samples. 

Figure (2.4) shows the bounds of the bias of the probability of error versus A 

when P,=P,, d=4, n=100, and nlt=n,t=lO. The no-semi-labeled curve in this figure refers 

to the case when only labeled samples are used. It is seen that by using additional semi- 

labeled samples, the bias of the classification error is substantially reduced. The amount 

of the reduction depends on the separation between two classes as characterized by A. 

In conclusion, semi-supervised learning can achieve comparable performance to 

supervised learning when the classes are relatively separated. When the classes are highly 

overlapped, a large number of semi-labeled samples are necessary for designing a 

classifier which matches the performance of the one designed by supervised learning. 

When both training and semi-labeled samples are available, the combined supervised and 

semi-supervised learning that uses these two kinds of samples can outperform supervised 

le,arning. This result is significant for the remote sensing applications where the number 

of training samples is usually limited compared to the dimensionality of data obtained by 

high spectral resolution sensors, while a large amount of semi-labeled samples are 

available after the classification is performed without additional effbrt. In such cases, 

utilizing semi-labeled samples may mitigate the Hughes phenomenon [I]. If we know 

which samples have been correctly classified and use them accordi~ngly to re-estimate 

statistics in addition to original training samples, the estimated statistics should be more 

precise because the actual training samples have been enlarged. Since usually we have no 



knowledge of classification accuracy for each individual sample, the key is to design a 

scheme that is able to apply a control factor that is related to the 1ike:lihood of a semi- 

labeled sample to a class. In the next chapter, an adaptive classifier is designed to achieve 

thi:; goal. 
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Fig. 2.2. Number of training samples for supervised learning and semi-labeled samples 
for semi-supervised learning required having bias (error) 4%. 
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CHAPTER 3: DESIGN OF AN ADAPTIVE CLASSIFIER 

3.1. Introduction 

In remote sensing applications, increased spectral resolution brought about by the 

culrent sensor technology has offered new potentials and challenges to data analysts. On 

one hand, the availability of a large number of spectral bands makes it possible to identify 

more detailed classes with higher accuracy than would be possible with the data from 

earlier sensors. On the other hand, a large number of classes of interest and a large 

nuinber of spectral bands available require a large number of training samples, which 

unfortunately are expensive or tedious to acquire. As a result, the class statistics must be 

estimated from the limited training sample set. When the ratio of the number of training 

sarnples to the number of spectral features is small, the parameter t:stimates become 

highly variable, causing classification performance to deteriorate with increasing 

dimensionality. This phenomenon where with finite training samples, classifier 

performance raises with dimensionality at first and then declines, was studied in detail by 

Hughes [I], and is later referred to as the Hughes phenomenon. 

An additional problem that usually exists in remote sensing applications is the 

unrepresentative training sample problem. Since usually training samples are selected 

fro~m spatially adjacent regions, they may not be good representatives of the samples of 

the entire class, which is likely distributed over the entire scene. Thils problem further 

aggravates the difficulties in analyzing remote sensing data. 

In Chapter 2, it has shown that using semi-labeled samples may reduce the 

variance of the parameter estimation. To mitigate the small training sample problem, a 

self-learning and self-improving adaptive classifier is proposed in this paper. This 

ada.ptive classifier enhances statistics estimation and hence improves classification 

accuracy iteratively by utilizing the semi-labeled samples, in addition to the original 



tra.ining samples, in subsequent statistics estimation. In this iterative process, samples are 

initially classified based on the estimated statistics using the original training samples 

only. Then the classified results are subsequently used with the original training samples 

to update class statistics, and the samples are reclassified by the updated statistics. This 

process is repeated until convergence is reached. 

The proposed adaptive classifier potentially has the following benefits: 

1) The large number of semi-labeled samples can enhance the statistics 

estimates, decreasing the estimation error and therefore reduce the effect of the 

small sample size problem, because the semi-labeled samples in effect enlarge the 

training sample size. 

2) The estimated statistics are more representative of the true class 

distribution, because samples used to estimate statistics are fro:m a larger portion 

of the entire data set. 

3) This classifier is adaptive in the sense that it can improve the accuracy 

by using the information extracted from its output. With proper conditions, a 

positive feedback system can be formed, whereby better statistics estimation leads 

to higher classification accuracy, and in return, higher classification accuracy 

results in even better parameter estimation. 

4) In a way, this approach augments automation of the classifier. It is 

possible that to start with a small number of training samples (minimum input 

from the analyst) this classifier may be able to continuous;ly extract useful 

information from the data and adjust itself accordingly, and eventually evolve 

automatically to an optimal classifier which produces optimal classification 

accuracy with a given data set. Hence analyst's effort can be greatly reduced. 

5 )  Since the semi-labeled samples can be fed back b'efore or after any 

feature extraction is performed, it offers flexibility of implementation, that is, 

depending on the requirement of accuracy and the computaticln load, the semi- 

labeled samples can be used in more than one way. 



3.;! Design of Adaptive Classifier 

If we assume every sample in the data set is unique, i.e. it belongs only to one 

class, we would expect it should only contribute to statistics of the only class to which it 

belongs. In the EM algorithm [9] and its application in remote sensing [7][8], each 

unl!abeled sample has a certain amount of membership for each class and correspondingly 

has weighted contribution to the statistics of every class. Even though this is reasonable 

at [:his point because the sample labels are completely unknown, the contribution of the 

sarnple to the class to which it does not belong is definitely undesired. This negative 

influence may be significant enough to cause the estimated statistic to deviate from the 

true one, especially when a large number of unlabeled samples are used, or there exists a 

c1a:ss whose statistics are quite different from the rest of classes. For exiample, if the class 

proportion is quite unbalanced, i.e., a few classes are quite dominant in ,the given data set, 

then the large number of unlabeled samples used may be mostly frorn these dominant 

c1a:jses. With small numbers of training samples, the estimated statistics of minority 

classes will be overwhelmed by the unlabeled samples and conseque:ntly may deviate 

froin the true one. This phenomenon has been observed in practice,, and it has been 

not.iced that better classification accuracy could be achieved by using approximately the 

same number of unlabeled samples as the number of training samples, which is small. 

This is unfortunate because more information can be obtained and utilized with additional 

unlabeled samples [7] [8]. 

In this section, an adaptive classifier based on the Maximum Likelihood (ML) 

rule is proposed to enhance the statistics estimation by using semi-labeled samples in 

addition to training samples. In this new classifier, the partial information of the class 

label obtained in the process of classification is utilized in such a way that each semi- 

1abe:led sample only affects the statistics of the class into which it has been partitioned. 

Furlhermore this classifier assigns full weight to training samples, but automatically gives 

reduced weight to semi-labeled samples. Therefore, it utilizes the additional class label 

information provided by correctly classified semi-labeled samples and at the same time 

limits the undesired influence from misclassified samples. Before we describe the 

proposed adaptive classifier, we first provide a brief review of Expectation Maximization 

(EM[) algorithm. 



The EM algorithm is an iterative method for numerically approximating the 

maximum likelihood (ML) estimates of the parameters in a mixture model. Under the 

mixture model, the distribution of an observation x€RP is given as: 

where a , ,  . .., a, are the class prior probabilities and thus the mixing proportions, 

f, i,s the component density parameterized by @, and L is the total number of components. 

The mixture density f is then parameterized by Q = (a ,,...., a,, @, ,... @,). 

Assume that y = (y,,  ...,ymi) are the mi training samples from class i. Also, there 

are L classes and a total of n unlabeled samples denoted by x = (x,,  ..., x,). The parameter 

set Q then contains all the prior probabilities, mean vectors and covariance matrices. 
Assume that GI,...,@, are mutually independent. The EM algorithm can then be expressed 

as the following iterative equation [9]: 

where z17 is the posterior probability that xj  belongs to class i. 

'x k=l ' i k  l n g  ( ~ k  1 4; 1)) 



Equation (3.20b) indicates that the optimal 4, maximizes the weighted summation of 

the: log likelihood of training samples and unlabeled samples. For every training sample, 

the: weighting factor is one, and for every unlabeled sample, the weig,hting factor is the 

posterior probability. If L classes can be represented as Gaussian distributions, Eq. 

(3.20a) and (3.20b) yield: 

mi 

(y, - p,+)(yu - + 2 ro(xj - P;)(x, - 
j=l 
n 

In [7][8], the EM algorithm has been studied and applied to rem'ote sensing data. 

It was shown that by assuming a mixture model and using both training samples and 

unlabeled samples in obtaining the statistics estimates, the classification performance can 

be improved, and the Hughes phenomenon can then be delayed to a higher 



di~nensionality and hence more features can be applied to achieve better performance. In 

addition, the parameter estimates represent the true class distribution more completely. 

As indicated by Eq. (3.19) through Eq. (3.21b), in the EM algorithm each 

unlabeled sample contributes to the statistics of all classes selected, and the amount of 

coi~tribution is weighted by the sample's posterior probability. This is reasonable because 

at this stage the class label information of an unlabeled sample is completely missing. 

However, if we assume each sample has a unique class label, apparently the influence 

from one of the unlabeled samples k of the jth class to the ithclass statistics ( i  # j) is 

undesired, specifically, if ilh and j" are quite different, and it is possible sample k has a 

large posterior probability for ith class. This negative influence may be significant 

enough to cause the estimated statistics to deviate from the true ones. As a result, the 

iteration may converge to erroneous solutions. This situation can become very severe 

when a large number of unlabeled samples are used. For example, if th~e class proportion 

is quite unbalanced, i.e., there are a few classes that are quite dominant in the given data 

set, then the large number of unlabeled samples used may be mostly from these dominant 

classes. 

An alternative way is to replace unlabeled samples by semi-labeled samples, 

which contain partial information of class origin obtained by a decision rule in the 

classification process. With the additional information of class labels, one can limit the 

effect of a semi-labeled sample to one class to which it has been assigned with the highest 

likelihood. In addition, by using semi-labeled samples, parameter estimation and 

classification can be integrated in an iterative way such that they enhance each other 

consistently. In this process, every bit of improvement from classification is fed back to 

the ;process of parameter estimation and hence leads to better statistic estimation, and in 

return a better classification accuracy can be achieved. In other words, a self-learning and 

self-adapting process can then be established. This is advantageous for the analysis of 

high(-dimensional data with limited training samples. In high dimensional space, in 

gene:ral, samples are more separable, and higher classification accuracy can be achieved 

if c1,ass statistics can be estimated more precisely. In the following section, an adaptive 

classifier will be proposed using both training samples and semi-labeled samples to 

obtain close to optimal statistics estimation and classification iteratively. 



The proposed adaptive classifier is an iterative method to num~erically find close 

to optimal performance for given data by integrating parameter. estimation with 
classification. Denote y = (y,,, ...,y,, ) as the training samples for the iih class, whose pdf 

is f,(xlQi), and x = (x,,, ..., x , , )  are the semi-labeled samples that have been classified to 

the: i I h  class. Among these semi-labeled samples, there are two types of samples, the 

co~rectly classified samples and misclassified samples. Correctly classified samples can 

p1a.y a role as equivalent to training samples and enhance statistics estimation. On the 

other hand, misclassified samples introduce undesired effects as information noise to the 

estimated statistics. Ideally, one would like to just use those semi-lab~eled samples that 

have been correctly classified. However, information about the classification accuracy for 

individual sample is not available at this point. Therefore, in order to control the effect 

froim semi-labeled samples, a weighting factor is applied to represent this influence. 

With this in mind, an adaptive classifier is designed, which obtains close to 

optimal performance by maximizing the weighted log likelihood of training samples and 

semi-labeled samples. Similar to the EM algorithm, it is an iterative approach and 

achieves the optimal statistics estimation and classification by starting with initial 

estimate Q0 and classification based on training samples only and repeating the following 

steps at each iteration using training samples and semi-labeled samples: 

1) Compute Weighting Factors: 

2) Maximize the mixed log likelihood: 

3)  Perform classification based on the maximum likelihood (ML) classification 

rule: 



x E i w i = arg max(ln(x(x I qjt))) 
I_<i_<L 

Here the superscript "c" and "+" designate the current and next value 

re~~pectively. If all L classes are Gaussian distributed, Eq. (3.22b) yields,: 

and Eq. (18c) yields: 

where di is a discriminant function [I] given by: 



Note that in a manner similar to the EM algorithm, the rnean vectors and 

covariance matrices are weighted mixtures of ML estimates from training samples and 

semi-labeled samples, and the weight for each sample is related to the relative likelihood, 

which is less than one. But in this proposed adaptive classifier, unique membership is 

assumed and each semi-labeled sample only has contribution to the same class to which 

is classified. In addition, in this iterative process, the membership of each training sample 

remains the same. However, the membership of each semi-labeled sample is being 

updated at every iteration through the whole procedure. 

3.3 Experimental Results 

In the following experiments, we test the performance of the proposed adaptive 

classifier using both simulated and real multispectral data. The first two experiments use 

simulated data of dimensionality of 6, 20, and 40. The third uses 12 dimensional real 

data. 

In experiment 1 and 2, there are three simulated classes with Gaussian 

distributions. Three sets of labeled samples are generated independently. In the first set, 

there are 1000 samples for each class, and 10 samples are selected ranclomly from 1000 

samples and subsequently used for training; the other 990 samples are th.en classified and 

become semi-labeled samples, which are used to estimate statistics at the following 

iteration. In the second data set, there are 10,000 random samples for each class and they 

are used for testing the performance of the classifier. The third data set is generated to 

benchmark the performance of the proposed adaptive classifier. In this data set, there are 

1000 random samples for each class, and then all of them are used for designing a 

classifier, which is then tested by using 10,000 test samples from the second data set. The 

convergence criterion is that the relative difference of classification accuracy between 

two consecutive iterations is less than 0.01%. Each experiment is repeated ten times, and 

the rnean classification accuracy and standard deviation are then estimated. 



3.3.1 Experiment 1: equal spherical covariance 

1) d=6: In this experiment, the covariance matrix of all three cla.sses is the identity 

matrix, but each class had a slightly different mean vector. The mean of the first class is 

at the origin; the mean of the second class is 3.0 in the first variable and zero in the other 

variables. The dimension is d=6. The mean classification accurac:y versus iteration 

number is graphed in Fig. (3.5a). 

Here SC represents the mean classification accuracy and standard deviation of the 

data where a sample covariance estimate is used as the initial estimate from training 

samples, and the mixed sample covariance shown in Eq. (3.23b) is used for the later 

estimation. The SC-Test represents the results for the testing data. LOOC represents the 

results where a mixed covariance estimator, LOOC, is used to estimate covariance 

maitrices [2], and, similar to SC case, the mixed sample covariance shown in Eq. (3.23b) 

is then used for the following covariance estimation. LOOC-Test represents the results of 

the testing data. 

The results show that with additional semi-labeled samples, the ;mean accuracy of 

data and testing data increases steadily with iterations until it reaches convergence. Note 

that in this data set, in the supervised learning process the mean classification accuracy 

for training data (resubstution accuracy [I]) is 91.01% with a standard deviation 0.66%, 

and for testing (hold out accuracy [I]) it is 90.67% with a standard deviation 0.15%. The 

Bayes accuracy (optimal) is bounded between these two. Therefore, we believe the final 

convergence solution is optimal within a range of standard deviation. Also, it is observed 

that the difference of the mean accuracy between data and test data are within a standard 

deviation. Further, the standard deviation is reduced with iterations. The final one is 

reduced by about five folds. Additional results not shown here indicate that the estimated 

statistics become more and more representative to the true ones and more robust. This, 

then, is a self-improving adaptive classifier where statistics estimation and classification 

enhance each other. 

Also, it is seen that without LOOC, the initial accuracy is lower, and as a result 

convergence is attained more slowly but the final accuracy is very close to that with 



LOOC. This further indicates that eventually semi-labeled samples can compensate for 

the deterioration of classifier performance caused by lack of training samples. 

2) d=20: In this experiment, the synthetic data from the expe:riment l a  is used 

with the exception that the dimensionality is raised from 6 to 20. Hence, the number of 

dirnension is now greater than the number of class training samples but smaller than the 

total number of training samples. This case represents a poorly posed problem where the 

dimension size is greater than the training sample size. Mean classification accuracy is 

plotted in Fig. 3.5b. Since the number of dimension is greater than the class training 

sarnple size, the sample covariance matrix becomes singular and uninvertible. The 

covariance estimator LOOC must be used for the initial iteration. In this experiment, for 

supervised learning, the mean accuracy for data is 91.51% (std. dev. 0.59%) and for test 

data is 90.12 (std. dev. 0.12%). 

Comparing with experiment one, even though the initial classification accuracy 

reduces about 3% relatively, the classification accuracy still steadily increases and final 

classification accuracy is only about 2% lower. These results indicate that even with the 

poorly posed problem, this proposed adaptive classifier is still able to perform well. 

3) d=40: Again, in this experiment the synthetic data from the experiment l a  is 

used with the exception that the dimension is increased to 40. Hence, the number of 

dimensions is much greater than the number of class training samples and even greater 

than the total number of training samples. This case represents an ill-posed problem 

where the number of dimensions exceeds the total number of training samples, and the 

number of parameters (2000) is twice the number of samples available. Mean 

classification accuracy is plotted in Fig. 3 . 5 ~ .  Again, since the number of dimension is 

greater than the class training sample size, the sample covariance matrix is singular and 

uninvertible. The covariance estimator LOOC is again used for the initial iteration. In this 

experiment, for supervised learning, the mean accuracy for data is 93.46% (std. dev. 

0.57%) and for test data is 88.33 (std. dev. 0.28%). 
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Compared to the results of LOOC in experiment one, even though the initial 

classification accuracy is reduced about 10% relatively, the classification accuracy for the 

data still steadily increases. Final classification is about 7% less, and the standard 

deviation reduces with iterations as well. For testing data, the classification accuracy 

col~verges more slowly, and the final value is a little lower than previous accuracy. But 

ovcxall these results show that this proposed adaptive classifier still is able to perform 

relatively well even for an ill-posed problem. 

3.3.2 Experiment 2: unequal spherical covariance matrices 

1) d=6: In this experiment, the three classes have unequal rnean vectors and 

spherical covariance matrices. The mean vectors are the same as those in the experiment 

one:. The covariance matrices of class one, two and three are I, 21 and 31 respectively. In 

this case, these three classes overlap more and are more difficult to discriminate than the 

equal covariance case. Mean accuracy is plotted in Figure 3.6a. It is observed that these 

results are similar to those in experiment la. In this experiment, for supervised learning, 

the mean accuracy for data is 88.68% (std. dev. 0.75%) and for test data is 85.99 (std. 

dev. 0.20%). 

2) d=20: In this experiment, the simulated data in Experiment 2a is used with 

exception that the dimension is twenty, which is greater than the number of training 

samples. This is thus again a poorly posed problem. Mean accuracy is plotted in Figure 

6b. In this experiment, for supervised learning, the mean accuracy fo:r data is 92.48% 

(std. 0.56%) and for test data is 90.98 (std. 0.13%). 

It is worth noting that even though the initial classification mean accuracy is 

reduced by 7% relatively, the final increases by 5%. This shows the appealing fact that 

with semi-labeled samples the proposed adaptive classifier is able to utilize the increment 

of separability provided by additional dimensions, and then improve the classification 

accuracy. In other words, Hughes phenomenon is mitigated. 

3) d=40: In this experiment, the simulated data in Experiment 2a is used with 

exception that the dimension is forty. Mean accuracy is plotted in Figure 3 . 6 ~ .  In this 



ex:periment, for supervised. learning, the mean accuracy for data is 96.27% (std. 0.40%) 

and for test data is 93.07 (std. 0.14%). 

With such a high ratio of the number of dimensions to the number of samples, it is 

seen due to the Hughes phenomenon, the accuracy with only ten training samples is 

gre:atly reduced, about 10%. However, with additional semi-labeled samples being fed 

back to statistics estimation, the classification accuracy is able to climb up and quickly 

coriverges to a value that is just slightly lower than the optimal with dinlinishing standard 

deviation. 



8 5 

ae - 
% S O  - SC 
0 
E - - SC-Tost 

=I 0 . LOOC 
2 7 5  + LOOC-Te8 

70 

6 5 
1  3 5 7 9 1 1  1 3 1 5 1 7 1 9 2 1  2 3 2 5 2 7 2 9  

Number of lteratlo 

(a) d=6 

- - - - - P w  

- LOOC - LOOC-Tea 

(b) d=20 

, . . , , . , . , ,  , , , ,  , . . /  , . . , , , . . ,  1 1  

i 
1 3 5  7  9 1 1  13 1 5  17 IS 2 1  23 25  2 7  29 

Number of lteratlc 

(c) d=40 

Fig. 3.2. Mean Accuracy for Experiment 2 



3.3.3 Experiment 3: Flight line C1 

This experiment is conducted using real samples from data designated Flightline 

C1 (FLC I), which is 12-band multispectral data taken over Tippecanoe County, Indiana 

by the M7 scanner [lo] in June, 1966. The number of training sarnples and testing 

sarnples in each class is listed in Table 1. The training sample size was deliberately 

chosen to be very small, representing a poorly-posed problem where the number of 

training samples for each class is comparable to dimensions. Since the resting data in this 

experiment is very large, and in particular for some of classes with !;mall numbers of 

samples, almost all samples of such class are included in the testing dat,a. For this reason, 

the testing samples and a majority of training samples are independent, and there are 

small overlaps on the testing data and training data. Also, for the same reason, test 

saniples that are not training samples are used as semi-labeled samples and are used to 

update the class statistics. Otherwise, there may not be sufficient semi-labeled samples to 

modify the class statistics for some minority classes. The classification results are plotted 

in Fig. 7, based on available ground truth for the area, a test field map is provided in Fig. 

8a, and thematic map for the initial and final classifications are shown in Fig. 8b and 8c. 

It is seen from Fig. 7, the classification accuracy increases and converge:; quickly, and the 

final accuracy is slightly lower than 94.7%, the resubstution classification accuracy that is 

obtained by using all testing samples as training samples. Also, comparing Fig. 8b with 

Fig. 8c, the speckle error has been greatly reduced. 

Table 3.1 

Training and testing samples for Flight line C1 

Class Name No. of Testing samples No. of training 
Alfalfa 3,375 12 
R r  Soil 1.230 8 

10,625 
5,781 

Red Clover 12,147 
2,385 
25,174 16 

Water I 4 

Wheat-2 



To illustrate how this proposed classifier improves itself iteratively by reducing 

the class statistics estimation error, the close up snapshots of the classified map for two 

crops are presented in Fig. 3.9 and 3.10. Fig. 3.9 is of the rye field a little below the 

middle of the flightline (Figure 3.8). As shown in Fig. 3.9a, the rye tsaining field of 4 

pixels was selected in it. As illustrated in figure 3.9b, due to poorly estimated statistics 

using limited training samples, the majority of pixels have been misclassified as 

something other than rye. However, at the second iteration when semi-labeled samples 

are added to enhance the statistics, there are more pixels around t:he training field 

classified as rye. This trend continues and at the last iteration, a majority of pixels in the 

fiel'd are eventually correctly classified as rye. In fact, some of the pixe:ls in this rye field 

are not actually rye. 

The second close up example involves the field of oats within a doughnut shaped 

wheat field just above the middle of the flightline. There are no training fields for oats in 

this field, and instead oats training is located elsewhere in the flightline:. As expected, at 

the first iteration, on the test field for oats only very few pixels are corrt:ctly classified as 

oats. However, at the second iteration, more pixels around those pixe1.s that have been 

previously classified as oats have been identified as oats. As this process continues, more 

and more pixels on this test field for oats have been correctly identified as oats. In figure 

3.10f, at the fifth iteration a group of pixels of the shape of a strip across the oats field has 

been misclassified as wheat, this is not an error of omission for the cliiss oats. Instead, 

this area is really a sod water way unplowed by the farmer. Since ther'e are no training 

samples for this class of ground cover, this result further indicates that the proposed 

adaptive classifier adjusted itself to the next nearest class based on the information 

provided by the semi-labeled samples. 

To show how representative the estimated parameters are, the probability map 

[I I] associated with the classification is obtained. The probability map iis determined by 

color coding the Mahalanobis distance of each pixel for the class to which it is classified. 

Blue pixels are ones that classified with low conditional probabilities. The 

coloir/likelihood scale indicates increasing likelihood from blue to yellovv to red with red 

 pixel!^ being the ones that are classified with the highest likelihood. Figurc 3.1 1 shows the 

probability map for the rye field of Figure 3.9. It is seen from this figure that when only 

the iinitial supervised learning is used the only bright spots are near the training fields. In 

other words, the rest of the data are not represented well. By adding semi-.labeled samples 



to the estimation process, more representative estimates are obtained, and thus the 

probability maps indicate increased likelihood by the brighter, red color.. 

1 2 3 4 5 6 

Number of iteration 

Fig. 3.3. Classification accuracy for flight line C1 
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(a) Testing field (b) Initial classification (c) Finial Classification 

Fig. 3.4. Test and classification map for flight line C1. (In color) 



(a) Color IR Image (b) First iteration (c) Second iteration 

(d) Third iteration (e) Fourth iteration (f) Fifth iteration 

Fig. 3.5. Original image and classification map for a rye test field at each iteration. 
(In color) 
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(c) Second iteration (d) Third iteration 

(e) Fourth iteration (f) Fifth iteration 

Fig. 3.6. Original image and classification map of wheat and oats fields at each iteration. 
(In color) 



A training field 
for rye 

(a) Initial iteration (b) Final iteration 

Fig. 3.7. Portion of Probability map for Flight Line C1. (In color) 

3.4 Conclusion 

This thesis is begun by investigating the information contained in semi-labeled 

samples of two Gaussian distributions in terms of the Fisher Information Matrix. Results 

show that higher classification accuracy can provide more useful class label information 

for statistical estimation, and so do the number of samples. The probability of error for 

semi-supervised learning and combined learning process is also investigated. Results 

indicate that when semi-labeled samples are fed back to the statistical estimation process, 

higher accuracy and more semi-labeled samples may enhance statistics significantly and 

consequently reduce the probability of error for the following c1assific;ation. 



Based on the above findings, a self-improving adaptive process is proposed which 

integrates statistical estimation and classification using semi-labeled samples. It may 

mitigate the Hughes phenomenon by iteratively utilizing the additional class label 

information extracted from classification process. 

The experimental results further reveal several benefits of this classifier. First, all 

experiments show that the proposed adaptive classifier is able to raise classification 

accuracy steadily and eventually drive it close to the optimal value. Higher initial 

classification accuracy accelerates the rate of convergence but has little effect on the final 

classification. 

Second, as is shown in experiment results 6a and 6b, whet1 the separability 

incxeases with dimensionality, with semi-labeled samples, the peak performance is 

enhanced. In other words, the information in the new feature measure~nents can be used 

to further reduce the error. Without the semi-labeled samples, the peak performance 

occurs at a lower dimension after which no further improvement can be obtained from 

new feature measurements; instead performance deteriorates with dimensions. 

Third, the estimated statistics are approaching the true ones with iterations. As is 

shown through all the experiments, the standard deviation is greatly reduced with 

iterations, indicating the estimated statistics are more and more robust. In particular, as 

shown in the last experiment with semi-labeled samples, most of sarriples are classified 

with high likelihood. 

Despite the promising results, the proposed adaptive classifier has limitations. In 

pa.rticular, for a very ill-posed problem, where the number of dimensj~ons are far greater 

than the number of training samples and the number of parameters arc: even greater than 

the number of all semi-labeled samples, the initial classification can be very bad. As a 

result a positive feedback could hardly be established and the proposecl adaptive classifier 

may not converge. This necessitates the use of an adaptive covarianc:e estimator, where 

se:mi-labeled samples are incorporated into the process to deteimine the optimal 

covariance mixture. 





CHAPTER 4: AN ADAPTIVE METHOD FOR COMBINED COVARIANCE 
ESTIMATION AND CLASSIFICATION 

4.1 Introduction 

In quadratic maximum likelihood classification, the mean vector and covariance 

matrix are usually unknown and must be estimated by the sample mean and sample 

covariance matrix based on training samples. When the training sample size is quite small 

relative to the dimensionality, the sample estimates, especially the sample covariance 

matrix becomes highly variable and consequently, this greatly deteriorates the classifier 

performance. In particular, when the number of training samples; is less than the 

dimensionality, the sample covariance matrix becomes singular and hence quadratic 

classifiers cannot be used. This poses limitations on the number of dimensions (or 

features) that can be used in remote sensing applications where training samples are 

usually small compared to the number of dimensions available. This is unfortunate 

because larger numbers of features provided by new generation sensors make it possible 

to identify more classes while training samples remain difficult and expensive to acquire. 

An adaptive classifier has been proposed to mitigate the small training sample problem 

by using semi-labeled samples in chapter 3. This method works well for the case that the 

number of dimensions is not too large. However, when the number of dimensions is very 

high (up to a few hundreds), the number of parameters in the covariance matrix 

estimation process increases dramatically (approximate to the square of the dimensions). 

In such cases, using additional semi-labeled samples alone may not be adequate to reduce 

the variance of covariance estimation. On the other hand, regularization methods attempt 

to reduce the variance of these estimates by biasing them toward values that are deemed 

more "physically plausible" [12]. Therefore, the variance is reducled by limiting the 

number of parameters needed to be estimated and at the expense of potentially increased 



bias. The extent of this bias-variance trade-off is controlled by one or more regularization 

parameters. 

In this chapter, a method of combining the adaptive c1assifie:r and regularized 

covariance estimations is proposed. Depending on the method of selecting support 

covariance matrices and the regularization parameters, a group of new adaptive 

covariance estimators are then introduced. The regularized parameters and support 

covariance matrices used in a covariance mixture are determined based on both training 

samples and semi-labeled samples, and they are repeatedly updatedl until the highest 

classification accuracy is reached. Extensive experiments are performed using simulated 

data and real, aircraft-acquired hyperspectral data. With simulated data, the experimental 

results indicate the proposed sequential covariance estimators can a.chieve equivalent 

classification performance with a small training sample size to that obtained using large 

training sample size. With hyperspectral data, the proposed adaptive covariance 

es1:imators can improve the classification performance significantly with limited training 

samples. 

4.2 Gaussian Maximum Likelihood Classification 

The objective of classification is to assign unlabeled samples to one of several 

groups or classes based on certain decision rules. In the typical quadratic maximum 

likelihood (QML) classifier, the decision rule can be represented by a discriminate 

function and an unlabeled sample is partitioned to the class with the: smallest value. A 

multivariate Gaussian distribution has a pdf as: 

where pi and Ci are i" class mean vector and covariance matrix, re:;pectively, L is the 

number of classes and x E R
p
.  Assuming a [O,:l] loss function and equally likely classes, 

the maximum likelihood classification rule then is given by: 



whlere di is a discriminate function with a form as: di(x) = (x - )Z;'(x - 4 )T + lnlZi I 

The measure d,(x) is sometime referred as the (true) general dlistance between x 

and pi with a unit prior probability. The first term is the familiar Malhalanobis distance 

between x and the mean vector for the ith class, while the latter term is adjustment factors 

balsed on the generalized variance. 

In practical situations, the true class distributions are not known and hence mean 

ve'ctors and covariance matrices must be estimated from training samples. The mean is 

typically estimated by the sample mean, which is also a max.imum likelihood 
1 M' 

esi:imate, Gp = mi = - x yi, ,where y,, , is the jth training sample from class i , and M, 
Mi ,=I 

is the total number of training samples in class i, The covariance is typically estimated by 
1 

the sample covariance ti = S, = --x(y, - m,)(y, - mi)'or by the maximum 
Mi - 1 j=, 

1 Mi 
T likelihood covariance estimate ey = - x ( y ,  - m,)(y, -mi) . 

Mi j=1 

When sample mean vectors and sample covariance matrices art: substituted in Eq. 

(I), the quadratic discriminate rule (QD) is still asymptotically (large sample) optimal. 

However, when the size of training sets is small compared to the number of dimensions, 

the performance of QD can be seriously degraded because sample estimates are unstable. 
In particular, the sample covariance estimate Si becomes highly variable, and it is 

singular if fewer than p + 1 training samples from class i are available. Therefore, QD 

cannot be used in this case. 

When the dimensionality is large compared to the number of training samples, the 

estimated covariance can be highly variable and classifier performance can deteriorate 

severely. Specifically, when the number of dimensions is greater than the number of 

training samples, the sample covariance is singular and hence uninvertible. This type of 

problems is referred as a poorly-posed problem. In particular, when the number of 

dimensions is even greater than the number of entire training samples, the problem 

becomes ill-posed. 



To deal with the poorly or ill posed problems or those nearly so, the number of 

the parameters to be estimated must be reduced. One way to deal with this is to employ a 

linear classifier that is obtained by replacing sample covariance matrices for all classes by 

their weighted average: 

where N is the total number of training samples from all classes. O111ce S,,, is used, the 

number of parameters is substantially reduced, and the variance of the. elements of S, is 

smaller than the variance of the corresponding elements of Si.  Even if each Ci differs 

gr~zatly, using S, can sometime lead to better performance for small training sets because 

S,, reduces the number of parameters to be estimated and decreases the variance. This 

has been verified by several studies [15:1[16][17]. 

Even though a linear classifier often performs better than a quadratic classifier for 

small training set size, the choice between these two is quite restrictive. Several more 

flexible methods are proposed in which a sample covariance estimate is replaced by 

pe~rtially pooled covariance matrices of various form, and a varying degree of 

regularization is applied to control the number of parameters to be estimated and 

cclnsequently improve the classifier performance based on training samples. 

4.3 Regularized Covariance Estimation 

Regularization methods attempt to reduce the variance of these estimates by 

reducing the number of parameters. Usually, there are two tasks in the regularization 

procedures: 1) select the covariance mixture models, and 2) select a inodel to determine 

the appropriate value for regularized parameters. 

Normally, in a regularized scheme a covariance mixture of the following form is 

assumed: 



The regularized (mixing) parameter w,controls the biasing of individual class 

covariance sample Si toward a pooled covariance matrix S p .  However, when the total 

number of training samples N is comparable to or is less than the: dimension p, Sp 

becomes problematic. Hence, more regularization is required and usually a non-singular 
diagonal matrix A is used to replace Sp and a covariance mixture becomes: 

Usually, in the model selection the mixing parameter(s) is determined by 

minimizing a loss function based on the training samples. A popular minimization 

criterion is based on cross-validated estimation of classification error. In the leave-one- 

out cross-validation error procedure, the classification rule is to use the classifier 
designed using N, - 1 training samples excluding the training samples x, , to classify x,,, , 

and then a parameter is selected that minimizes the classification error rate. This criterion 

has an advantage of being directly related to classification accuracy. However, the 

process of estimating the covariance of each class requires the covariaince estimates of all 

classes, which implies the same mixing parameter has to be used for all classes. 

Apparently, the same choice of mixing parameter might not be optiinal for all classes. 

Furthermore, the parameter values are not unique to achieve the same classification error 

rate, and therefore a tie-breaking method is required. 

An alternative maximization criterion is to maximize the sun1 of average leave- 

one-out likelihood values of each class. In this procedure, the leave-.one-out likelihood 
corresponding to training sample xi,, is obtained by using Ni - 1 training samples 

excludingx,,,. This criterion requires less computation than the leave-one-out 

classification error procedure. Also, it allows different mixing parameters for each class, 

which provides the flexibility of applying a varying degree of regularization to each class. 

However, the major shortcoming of this criterion is lack of a direct relationship with 

classification accuracy. 



4.3.1 Regularized discriminant analysis (RDA) 

In [12], a procedure referred as " regularized discriminate analysis" (RDA) is 

proposed, which is a two-dimensional optimization over four-way mixtures as shown in 

the following: 

where 

artd the common covariance S, is given by Eq. (4.2). As indicated in Eq. (4.5), the 
mixing parameter A controls the amount of shrinkage of the sample colvariance Si toward 

a common pooled covariance Si, and the mixing parameter y regularizes the shrinkage of 
eigenvalues of Si toward equality as t ( , ( ) ) /  is equal to the average of the 

eigenvalues e,(A). Shrinking the eigenvalues of Si toward equality compensates for the 

well-known upward bias of the large eigenvalues and downward bias of the smaller 

eigenvalues of the sample covariance matrix Sj. This is particularly stdvantageous when 

the true covariance matrices are some multiples of the identity matrix. 

As mentioned before, the pair of mixing parameters is selected by cross-validating 

on the total number of misclassifications based on available training samples. Even 

though this procedure has the benefit of directly relating the classification accuracy, it is 

computationally expensive, and the same mixing parameters must be used for all classes. 

NIoreover, the same classification accuracy can occur on the extensive range of values of 
th.e pair (A, y)[16]. Hence a tie-breaking technique is required. 

4,,3.2 Leave-one-out covariance (LOOC) Estimator 

In [17], a new covariance estimator is proposed which exanlines the following 

pair-wise mixtures of the estimators: diagonal sample covariance-sample covariance, 

sample covariance-common covariance, and common covariance-diagonal common 

covariance. Thus, it has the following form: 



(1 - ai)diag(S,)  + aiS, 0 < a, < 1 

( 2 - a i ) s i + ( a , - l ) ~  1 < a i 1 2  

( 3  - a , )S  + (a, - 2)diag(S) 2 I a, I 3 

where 

The mixing parameter ai is determined by maximizing the average leave-one-out 

log likelihood of each class: 

As aforementioned, in the process of selecting mixing parameter by maximizing 

leave-one-out average log likelihood, the covariance estimate can be determined 

independently and then each class can have a mixing parameter that is optimal in terms of 

available training samples. Overall, classes with more training sampleis only need a small 

arnount of bias, while classes with very few training samples need moire bias. In addition, 

using an approximation on the diagonal matrices, LOOC requires less computation than 

R:DA. However, without this approximation, LOOC needs more computation than RDA. 

Another major drawback of this criterion is having no direct relationship to classification 

accuracy. 

4.3.3 Empirical Bayesian Covariance Estimate 

In [16],  a middle-of-road approach between LD and QD is proposed, in which the 

covariance mixture has the form: 

f i  (i) = (1 - iCi (rn))Si + 4s; (m) 0 5 9 ' 1 (4.9) 

where S; is an appropriate pooled covariance matrix similar to St,. Here the sample 

covariance matrices Si are modeled as outcomes of a common inverted Wishart prior 



distribution. The parameter m is determined by maximizing the sum of average leave- 

one-out class likelihood, which has the merit of less computation than RDA and avoiding 
tic: breaking. Also, since the pooled covariance matrices S; and the mixing parameter &, 

are selected in an empirical Bayes setting, they accommodate the varia.bility of S, and the 

training sample size of each class. In particular, under Bayes context, a large magnitude 
in the variability of the Si andlor large training sample size Ni leads to small &,, while 

si.milar Si andlor small N,result from large G , .  However, this approach requires the 

training sample size be larger than the number of dimensions, which cannot apply to ill- 

or poorly-posed problems. 

4.3.4 Bayesian Leave-One-Out Covariance Estimation (BLOOC) 

In [18], a new covariance estimator is developed whic:h virtually is the 

combination of RDA, LOOC, and empirical Bayesian approach. There are two forms of 

this new covariance estimation depending on the form of covariance matrices used. When 

the ridge estimator is adopted, the proposed estimator is called as (bLOOC1) and has the 

fclllowing form: 

where t can be expressed as the function of a , ,  t = - ')A - ( P -9, where is the 
2 - ai 

dimensionality and A = N, -1, which represents the degree of freedom in Wishart 

distributions, and the pooled covariance matrices,$ are determined. under a Bayesian 

context and can be represented as: 

When the mixture of covariance and covariance-diagonal covariance matrices is used, the 

p:roposed estimator is referred as (bLOOC2) and is defined as the follclwing 



(1 - ai)diag(Si) + aiSi O l a , I l  

(2 - a, )s, + (a ,  - l)~;(t) 1 1 a i c 2  

(3 - a , )S  + (ai  - 2)diag(S) 2 I a, 1 3 

Tlne mixing parameters a,are determined by maximizing average leave-one-out log 

likelihood. 

As an extension of RDA, LOOC, the Empirical Bayesian covariance estimators, 

b1,OOCl and bLOOC2 have appealing benefits possessed by these methods. For 

example, like LOOC, bLOOCl and bLOOC2 are quite flexible on the training sample 

size. They can deal with a broad range of limited training sample sizes, from well-posed, 

to poorly posed, and ill-posed problems, and the mixing parameters are customized for 

each class. Also, with the approximation on the diagonal matrices, bLOOCl and 

b1,00C2 are computational more efficient than RDA and the Empirical Bayesian 

covariance estimators. In addition, like the Empirical Bayesian covariance estimators, 
b1,OOCl and bLOOC2 can accommodate the variability of S,. Using ridged estimators, 

b1,OOCl has the additional advantage of reducing the larger eigenvalues and increasing 

th.e smaller ones. 

However, bLOOCl and bLOOC2 suffer from drawbacks inherited in RDA, 

LOOC and the Empirical Bayesian covariance estimators. First of all, even though the 

average leave-one-out likelihood used in LOOC, bLOOCl and bLOOC2 provides the 

flexibility of selecting different mixing parameters for each class and avoiding tie- 

breaking, it has a major disadvantage of having no direct relation with classification 

accuracy. Most important of all, even though instability of covariance estimates posed by 

limited training samples can be reduced using a covariance mixture in the aforementioned 

approaches, the degree of improvement is certainly limited. This is true because 

covariance matrix estimates and mixing parameters used in the covariisnce mixture are all 

based on limited training samples only. In particular, when the training sample sets are so 

small, the estimated covariance matrices can be over-tuned to accommodate training 

samples only and they may not be good representatives of statistics for the entire data. 



On the other hand, in the chapter 3 we proposed an adaptive iterative classifier, 

where the limited training samples problem is alleviated by using additional semi-labeled 

sa.mples to enhance statistics estimation. In this proposed classifier, .the class label of a 

se:mi-labeled sample is updated in the classification process at each iteration. We have 

shown that in an adaptive classifier, starting with a reasonable good initial accuracy 

achieved by using training samples only, a positive feedback process can be established 

where semi-labeled samples can provide additional useful class label information and, 

when they are used, the estimation of statistics can be enhanced and the classification 

acxuracy can be improved. In return, the class label information from semi-labeled 

sa~mples can be further enhanced in the later stage when better statistics estimation and 

higher classification accuracy are achieved. However, when the number of dimensions is 

very high (up to a few hundreds), the number of parameters in the covariance matrix 

estimation process increases dramatically (approximate to the square 'of the dimensions). 

In such cases, using additional semi-labeled samples alone may not be sufficient to 

re.duce the variance of covariance estimation. 

4.4 Adaptive Covariance Estimators 

A new method is then developed in this section that combines an adaptive 

classifier with various regularized covariance estimation methods, i.e., LOOC, bLOOCl 

and bLOOC2. As an adaptive classifier, this method is an iterative approach, i.e., initially 

th~e regularized covariance matrices are determined by using training, samples only, and 

then they are continuously updated using training samples in adldition to currently 

updated semi-labeled samples until a convergence is reached wherle the classification 

accuracy changes very little. 

Denote y = ( y ,  . . , y i i )  as the training samples for the i" class, whose pdf 

isJ; (y 1 a,), and x =   xi",,...,^,",;) as the current semi-labeled samples that have been 

classified to belong to the ith class. Depending on the covariance estimator with which 

the adaptive classifier is combined, the proposed estimators have variclus forms: 



1) ADAPTIVE LOOC 

(1) Compute the Weighting Factors 

where di(x) is the general distance of x to the i" class and is defined as: 

(2) Estimate the mean vectors and supportive covariance matrix, i.e. sample 

covariance and common covariance matrices: 

(3) Estimate the regularized covariance mixture: 



The way to select the optimal mixing parameter a'will be give:n later. 

(4) Perform classification based on the ML rule: 

x E i u i = arg max(ln(L(x I pl+, C: (al+ )))) 
1 S i S L  

Steps (1) through step (4) are repeated until a convergence is attained. 

Except at step (3), Adaptive BLOOCl and BLOOC2 have the same procedures as 

in the Adaptive LOOC. In step (3), adaptive BLOOCl and BLOOC2 have steps with the 

fc~llowing forms, respectively: 

2) Adaptive BLOOCl 

0 I o!i 5 1 

(2 - a,)Si + (a i  - 1)s; (t) 1 5 a , < 2  (4.14a) 

(3 - ails + (a i  - 2)- tr(S) I 2 < ai < 3 
P 

3) Adaptive BOOC2 

(1 - a1+)diag(S;) + al?Sl+ 0 5 alt 5 1 

(2 - a: )Sl+ + (a: - 1)s;' (t) 1 5; a,! < 2 (4.14b) 

(3 - al+)St + (a; - 2)diag(S') 2 I a' I 3 

Correspondingly, similar to the results from [18], the pooled covariance matrix 
~ i ( t )  is given by: 



where t is related to a; by the following expression: 

4) Selecting an appropriate regularized parameter 

For the proposed estimators, since the semi-labeled samples are used in addition 

to training samples, the leave-one-out average likelihood is modified and used as the 

criterion to select the appropriate mixture model. In other words, the mixing parameters 
q a r e  selected so that the best fit to the training samples and semi--labeled samples is 

achieved, which implies the best classification accuracy may then be able to be 

accomplished correspondingly. The technique is to remove a sample., estimate the mean 

and covariance from the remaining samples, and then to compute the mixed log 

likelihood of the sample that is left out, given the mean and covariarlce estimates. Each 

sample is removed in turn, and the average mixed log likelihood is computed. By 
changing the value of a , ,  the value of ai that maximizes the average mixed log 

likelihood is selected. 

Denote milk and Silk as the mean and the sample covarianc'e of class iwithout 

sample k ,  respectively. Depending on whether k is a training sample or semi-labeled 
sample, mi,, and Silkcan be computed as follows: 

If k is a training sample 



For k a semi-labeled sample 

and the common covariance, without sample k from class i,  is given by: 

The proposed adaptive LOOC estimator for class i without sarnple k ,  can then be 

computed as follows: 

Next the mixed average log likelihood of y,, and xi,, , is compiuted as follows: 



This computation is repeated for several values ofa,over the range 0 I ai 5 3, 

and the value of ai with the highest mixed average log likelihood is selected. Once the 

appropriate value of a, has been evaluated, the estimated covariancr: matrix mixture is 

calculated with all the training samples and semi-labeled samples (step 3) and is used in 

th.e Quadratic ML classifier (step 4). For adaptive BLOOCl and BLOOC2, the optimal 
value ofai is  determined in the similar way except that (4.14a) and ((4.14b) are used to 

calculate the covariance mixture. 

The direct implementation of the leave-one-out likelihood function for each class 

with ni training samples and mi semi-labeled samples would require the computation of 

(ni+mi) matrix inverse and determinants at each value of a,. Fortunately, a more efficient 

implementation can be derived using the rank-one down-date of the covariance matrix 

[1.7], where the leave-one-out covariance matrix can be represented as the function of the 

covariance matrix. In addition, the computation of optimal can be further simplified if 
oine assumes that diag(S) == diag(S,,,) in the adaptive LOOC or adaptive bLOOC2 

t r s i k  tr(S)Z in the adaptive bLOOCl estimators and the approximation of -1 = - 
P P 

estimator. 

4.5 Computational Consideration 

4.5.1 Efficient implementation of the adaptive LOOC estimator 

Efficient Implementation of the Adaptive LOOC estimator for 1 I a, 5 2 

If implemented directly, the computation of the proposed estimate would require 
computing the inverse and determinant of the (p by p) matrix C(cri)for each sample, 

which would be quite computational expensive. Fortunately, a significrant reduction in the 



required computation can be accomplished by writing the matrix in a fbrm that allows the 

determinant and inverse to be computed efficiently. 

Denote z = (y ,,,..., yjmi ;xi,, ..., ximi ), the combination of training samples and semi- 

labeled samples from class i ,  and redefine the weighting factor ~~re la l t ed  with sample zjj 

as; follows: 

j is a semi - labeled sample 
(4.27) 

j is a training sample: 

Then 

j # k  
'ilk = 

W i  - Wik 

where 

The common covariance estimate without sample k from class ican b'e written as: 



T:hen the proposed estimate for 1 I a I 2becomes 

cilI,(a,> = ( 2  - a i ) x ; / k  + (ai - l)S;,, 

= ( 2  - ai) 
Wi  - Wit 

[ 
2 

+(ai - 1 )  S, + wik xi - W i  

L(Wi - wik) L(Wi - w,) 

= ( 2 - a i )  [ w; + (ai - 1)~ ik  1 xi + (ai - 1),Si 
W;  - Wit L(Wi - W i t )  

2 2 
Wi Wit 

3 L(Wi - w , ) ~  
(wi - Wjk 

where 

Wi + (ai - 1)wik I xi + (a, - 1)s; 
Wi - Wit L(Wi - W i t )  

2 2 

k, = ( 2 - a i )  W i  Wi t  + (ai - 1) W i  - 
3 

(w; - ~ i k )  L(wi - W i k l 3  

Then the inverse o f  C,,,(a,)can be computed efficiently using the Sherman-Morrison- 

PJoodbury formula: 



Then the quadratic term in the Gaussian density function becomes: 

where 

The determinant can also be computed efficiently: 

Finally, the log likelihood function for 15 a; I 2can be computed efficiently as follows: 



As indicated in equation (4.32), instead of inverting a (p by p) matrix and finding 

itis determinant for every sample in the class, one only needs to compute the inverse and 
the determinant of matrix G once, and then calculate d = vTG,-'V for each sample, which 

is relatively simple. 

Efficient Implementation of the Adaptive LOOC estimator for 0 <I ai 5 1 

Unfortunately, there isn't a similar method to avoid inverting a large matrix for 

eiich sample in the diagonal sample covariance-sample covariance mixture. However, if 

oine makes the approximation that the diagonal covariance matrix clnanges only a little 

when a single sample is excluded, one can significantly reduce computation. Experiments 

piresented later confirm the validity of this assumption when at least a moderate number 
o-F samples are available. With this assumption, the proposed estimate for 0 5 ai I lcan 

be written as follows: 



Using the same steps as in the previous section, the log likeliholod function is 

Efficient Implementation of the Adaptive LOOC estimator for 2 I ai 5 3 

Similarly, the computation of the common covariance-ldiagonal common 

covariance mixture can be simplified by assuming the change of diagonal common 
covariance can be ignored when a sample is removed (diag(S) = diag(SiIk)).  Experiments 

presented later confirm the validity of this assumption for moderate sample sizes. 



Cilk (a;) = (3 - a i ) S i l k  + (a, - 2)diag(Silk) 

=: (3 - a, )Si lk  + (ai - 2)diag(S) 

(4.34) 

where 

2 (3 - a,) wi w,  
k3 = 

L(wi - wik)3 

Similarly, the log likelihood function is 

45.2 Efficient Implementation of the Adaptive BLOOCl Estimato~r 

Efficient Implementation of the Adaptive BLOOCl estimator for 1 5 a; < 2 

When the sample k is removed form class i ,  the sample covariance-common 
covariance mixture is then given by as follows: 



where t  can be derived as follows: 

The pooled covariance matrix ~ ; ( t )  without sample kfrom class i can then be derived as: 

w,', wi - Wik + ,=, W , + t - p - l  w i -wik  + t - p - l  ' i l k  

j t i  1 

Define: 

Then equation (37) can be written as follows: 



s i I k ( t )  = [c, - c2  + 2 - a , ] - '  

( 2  - a,) w, 
-c2 + 

- c1 w, - Wik 
- 

c, - c2 + 2 - a, s; (0 + 
c, - c2 + 2 - a, X i  

and subsequently equation (24a) becomes: 

where 

Then the log likelihood function is given as follows: 



Efficient Implementation of the Adaptive BLOOCl Estimator for 0 5 ai 5 1 

With sample kfrom class i, the adaptive BLOOCl estimator for 0 I ai I 1 
becomes: 

where 



Therefore, the log likelihood of class iwithout sample kcan be computed as follows: 

Efficient Implementation of the Adaptive BLOOCl Estimator for 2 I a, I 3  

With sample k from class i, the adaptive BLOOC 1 estimator for 2 I a, 1 3  
becomes: 



where 

The log likelihood function is then given as: 



Tlhe above computation can be further simplified if one assumes the trace of the common 
z r s , / k  1 t r ( S )  I )  covariance estimate changes little when a single sample is removed (-- I = -  

P P 

t r ( S i  I 
G7 = ( 3 - a i ) S +  ( 3  - ) ~ i k  Xi + ( a ,  - 2 )  -- 

L(wi - ~ i k  1 P 

The log likelihood function is then given as: 



For notational purposes, in the following sections and experiments, the adaptive 

B.LOOC1 without approximation is denoted as AbLOOC1-exact (Adaptive Bayesian 

Leave One Out Covariance Estimation), whereas the implementation with approximation 

is designated as AbLOOCl. 

4.6 Experimental Results 

In this section, the experimental results from computer-generated data are 

presented. Six proposed covariance estimates, namely, ALOOC1, ALOOC-Exact, 

AbLOOCl, AbLOOC1-Exact, AbLOOC2, and AbLOOC2-Exact are used. The values of 

the regularized parameter are chosen to be 0, 0.25, 0.5, 0.75, 1.0,1.25. 1.5, 1.75, 2, 2.25, 

2.5, 2.75, and 3. The data distributions are generated from three different covariance 

structures as adapted from [2]. These simulated data represent the two extremes where 

one covariance matrix is spherical and the other is highly elliptical. The purpose of using 

th.ese different types of covariance matrices is to demonstrate that the performance of the 

covariance estimation techniques is affected by the underlying class covariance structure. 

The dimensions p are chosen to be 10, 20,40, and 60, which represent low, medium and 

high dimensions. 

Three sets of labeled samples are generated independently. In the first set, there 

are 1000 samples for each class; 10 samples are selected randonnly from the 1000 

samples and subsequently used for training. The other 990 samples are: then classified and 

become semi-labeled samples, which are used to estimate statistics at the following 

iteration. In the second data set, there are 10,000 random samples for each class and they 

are used for testing the performance of the classifier. The third data set is generated to 

benchmark the performance of the proposed adaptive covariance estimator. In this data 

set, there are 1000 random samples for each class, then all of them arc: used for designing 

a classifier, which is then tested by using the 10,000 test samples from the second data 

set. 

The classification accuracy obtained by classification itself js referred to as re- 

substitution accuracy and the classification accuracy for testing data is called hold out 

accuracy [I]. The convergence criterion is that the relative difference of classification 



ac:curacy between two consecutive iterations is less than 0.1%. E,ach experiment is 

repeated 10 times from which the mean and variance of the c1assific:ation accuracy are 

computed. Since only 10 training samples are used for dimensions ranging from p=10 to 

p:=60, the training set size is small compared to dimensionality, in p,articular, for p=60, 

the problem becomes very ill-posed because the dimension is twice the total number of 

trisi ning samples. 

4.6.1 Experiment one: equal spherical covariance matrices 

All three classes have the identity covariance matrix. The mean of the first class is 

at the origin. The mean of the second class is taken to be 3.0 in the first variable and 

zeros in the others, and the mean of the third class is 3.0 in the seconcl variable and zeros 

in the rest. The mean accuracy and the standard deviation in parentheses and the number 

of iterations to reach convergence are shown in Table 4.1, and the increment 

classification accuracy is highlighted by bold letters, and the mean accuracy is also 

plotted in Figure 4.1. 



Table 4.1 

Mean Classification Accuracy (%) for Experiment 11 

I Accuracy 1 v=10 1 ~ = 2 0  1 p=40 1 p=60 1 
Initial 1 82.64(3.32) ( 75.54(5.4) 1 67.98(4.9) 165.32(5.26) 1 

I ALooC 

Final 90.76(0.2) 90.65(0.14) 
Difference 8.12(-3.12) 15.14(-5.26) 

t Iterations 9 10 
Initial 85.4(4.17) 84.27(2.24) 

ALOOC- Final 90.74(0.17) 90.6(0.17) 
exact Difference 5.27(-4) 6.4(-2.07) 

Iterations 6 8 6 
Initial 86.88(3.8) 85.42(1.48) 
Final 90.68(0.2) 90.77(0.13) 

Difference 3.8(-0.82) 5.35(-1.35) 
Iterations 4 6 

Initial 86.65(1.51) 84.71(2.19) 
Final 90.76(0.14) 90.7(0.16) 

exact Difference 4.11(-1.37) 5.99(-2.03) 

Initial 86.53(2.65) 83.77(3.34) 1 IibLOOC2- Final 90.68(0.14) 90.77(0.14) 
exact Difference 4.15(-2.51) 7(-3.2) 

Iterations 6 6 6 
Hold out 90.55(0.11) 90.12(0.12) 

Resubstitution 91.05(0.66) 91.5 l(0.59) 



Table 4.1 cont. 

The value of regularized parameters for Experiment 1 

ALOOC 

class three 
Initial 2.60(0.93)2.95(0.11) 
Final 0.35(0.94) 0.60(1.27) 



p=10 p=20 p=40 p=60 

ALOOC Initial Final ALOOC-Exact Initial I1 Final 

AbLOOCl Initial Final AbLOOCl-Exact Initial 11 Final 

AbLOOC2 rn Initial ~ i n ~ l  AbLOOC2-Exact Initial 11 Final 

Supervised Learning Ell 

Fig. 4.1. Mean classification accuracy for experiment 1. (111 color) 

It is observed that even though the initial accuracy resulted from different 

covariance estimators where only training samples are used has large variation, with 

additional semi-labeled samples the final accuracy is approximately equal with a value 

close to the optimal. This suggests that with additional semi-labeled samples, the various 

PI-oposed covariance estimators can provide comparable performance. However, it is seen 

the higher initial accuracy leads to slightly faster convergence. This indicates that the 

value of the initial accuracy has little influence on the final value of the accuracy, but it 

has slight effect on the rate of convergence. 

Furthermore, when the number of dimensions varies from 10 to 60, even though 

tl-~e initial accuracy steadily decreases due to Hughes phenomenon [3], the final accuracy 

remains almost unchanged, and improvement on accuracy is more pronounced with 

h:igher dimensions. Also, for higher dimensions, for example 20, 40 and 60, the final 

accuracy is even better than the accuracy from supervised sample covariance estimators. 

This indicates the Hughes phenomenon [3] has been greatly alleviatedl. This result is very 

significant in that for this data set, the separability of classes remain unchanged with the 

number of dimensions. In other word, the increase of dimensions has no effect on 

d-iscriminant power. As a result, the Hughes phenomenon [3] is severe which can be seen 



by the fact the dramatic decrease of the initial accuracy and the classification accuracy for 

su.pervised learning with dimensions. Further, the standard deviation is reduced with 

iterations. The final one is reduced by about 10-50 fold, which indicates the estimated 

statistics are more representative of the true ones. 

Even though the initial and final mean values of the selected regularized 

parameter have noticeable variation, they are similar within the standard deviation. This 

may suggest that improvement may mostly result from the improvement of supporting 

covariance matrices used in the covariance estimators. 

4.6.2 Experiment two: unequal spherical covariance matrices 

In experiment 2, all three classes have different spherical covariance matrices and 

different mean vectors. The covariance of class one, two, and thre:e is I, 21, and 31, 

respectively. The mean of the first class is the origin. The mean of the second class is 

taken to be 3.0 in the first variable and zeros in the others, and the mean of the third class 

is 3.0 in the second variable and zeros in the rest. The results of the experiment are 

presented in Table 4.2 and the mean classification accuracy for each estimator is graphed 

in Fig. 4.2. 

Note that contrary to the first experiment, for this data set the separability of 

classes increases with dimensions. This suggests the potential of dramatic improvement 

of' accuracy as long as the class statistics can be estimated precisely in the high dimension 

space. It is seen that with the exception of the methods AbLOOCl and AbLOOC1-exact, 

the initial accuracy from the other four methods deteriorate to variou:~ degrees when the 

number of dimensions increases. For instance, in the method of ALOOC-Exact the 

decrease of the initial accuracy is up to 15%. However, the final accuracy from all 

pr.oposed methods increases with dimensions, and values of the final accuracy are quite 

close and much higher than the initial ones. 



Table 4.2 

Mean Classification Accuracy (%) for Experiment 2 

Accuracy p=10 1 p=20 P = 4 0 m  

ALOOC 
Difference 
Iterations 

Initial 
Final 

9.69(-3.99) 15.02(-3.73) 
7 12 9 

ALOOC 
-Exact 

77.87(4.28) 76.26(3.97) 
87.56(0.29) 91.28(0.24) 

AbLOOCl 

Initial 
Final 

Difference 

AbLOOCl 
-Exact 

76.68(2.71) 72.68(3.17) 
87.45(0.3) 9 1.220.17) 

10.77(-2.41) 18.54(-3) 
Iterations 

Initial 
Final 

Difference 

AbLOOC2 

AbLOOC 
-Exact 

saAple Cov. I Resubstitution i88.68(0.52) 192.48(0.56) 9 6 . 2 7 ( ~ 1 1  

11 11 
82.88(2.8) 85.94(1.73) 

87.24(0.24) 91.09(0.19) 
4.36(-2.56) 5.15(-1.7) 

Iterations 
Initial 
Final 

Difference 
Iterations 

Initial 

Su~ervised 

8 5 
82.57(2.79) 86.03(1.96) 
87.72(0.2) 91.04(0.26) 
5.15(-2.59) 5.01(-1.7) 

10 6 8 
79.57(3.19) 75.59(2.97) 

- Final 
Difference 
Iterations 

Initial 
Final 

Difference 

87.5(0.32) 91.23(0.11) 
7.93(-2.87) 

6 11 

Iterations 
Hold out 

8 7 
87.9tV0.13) 92.4U0.13) 



Table 4.2 cont. 

The value of the Regularized Parameters for Experime-nt 2 



p=10 p=20 p=40 p=60 

ALOOC H Initial Final ALOOC-Exact Initial Final 

AbLOOCl Initial El Final AbLOOCl-Exact Initial Final 

AbLOOC2 rn Initial ~ i ~ ~ l  AbLOOC2-Exact Initial CI 1:inal 

Supervised Learning . 
Fig. 4.2. Mean Classification Accuracy for Experiment 2. (Iin color) 

4.6.3 Experiment three: equal elliptical covariance matrices with mean difference in 
the variable with low variance 

In this experiment, all three classes have the same highly ell.iptica1 covariance 

matrix, and the primary difference in the mean vectors is in the variables with low 

variance. The covariance matrix for all three classes is a diagonal matrix whose diagonal 
2 

elements are given by 0, = 1 5 i 5 P . The mean vector of the first class 

is the origin, the elements of the mean vector of the second class are given by 
r 1 

L L  J 

P I  = - P I  1 5 i 5 P . See Table 4.3 and Figure 4.3 for the results. 

P P - 1  
0 

l l i  S p,  and the mean of class three is defined by 



Table 4.3 

Mean Classification Accuracy (%) for Experiment 3 

ALOOC Final 93.51(0.13) 91.53(0.2) 
-Exact Difference 3.12(-1.23) 7.18(-3.23) 

Accuracy 

Iterations 

.AbLOOCl 

- 
Initial 80.3 l(3.28) 67.3(3.29) 

AbLOOCl Final 93.49(0.15) 91.42(0.17) 
-Exact Difference 13.18(-3.13) 24.12(-3.12) 

p=10 

- Iterations 7 11 
Initial 86.37(3.78) 79.07(4.68) 

AbLOOC2 Final 93.52(0.11) 91.51(0.17) 
Difference 7.15(-3.67) 12.44(-4.51) 

- Iterations 8 10 5 

p=20 

Initial 90.79(1.4) 85.47(1.9) 
AbLOOC Final 93.61(0.14) 91.52(0.15) 

-Exact Difference 2.82(-1.26) 6.05(-1.75) 

- Iterations 7 7 
Supervised Hold out 93.32(0.11) 90.94(0.09) 

p=40 p=60 



Table 4.3 cont. 

The Value of the Regularized Parameters for Experiment 3 

ALOOC 

ALOOC 
class two 

-Exact 

class three 
Initial 2.23(0.08) 2.43(0.17) 
Final 1.80(0.16) 1.88(0.13) 

Initial 2.83(0.21) 2.93(0.13) 
class three 

Final 0.70(1.03) 0.93(1.32) 



Fig. 4.3 reveals that both the initial accuracy and the final accuracy decrease with 

di:mensions. However, the value of the final accuracy is still much higher than the initial 

one, and the increment increases with dimensions, indicating that the Hughes 

ph.enomenon [3] has been alleviated to some degree. 

ALOOC Initial rn Final ALOOC-Exact Initial t l  Final 

AbLOOCl Initial Final AbLOOC1 -Exact rn Initial t l  Final 

AbLOOC2 rn Initial ~ i n ~ l  AbLOOC2-Exact Initial L I  Final 

Supervised Learning E4 

Fig. 4.3. Mean classification accuracy for experiment 3. (In color) 

The initial accuracy of AbLOOCl and AbLOOC1-Exact is much lower than that 

from the other four methods at the high dimension where p=40 and ]p=60, for example 

about 10-20%. As a result, the final accuracy from these two methods is noticeably lower 

too, about 1% at p=40 and 5% at p=60, and convergence rate (not sholwn here) has been 

very slow because the initial accuracy is too low. However, the inlprovement of the 

acscuracy is still very significant, about 33% at p=40 and 31% at p=60. 

4.6.4 Experiment four: equal elliptical covariance matrices with mean difference in 
the variable with high variance 

In this experiment, the same highly elliptical covariance matrix from experiment 3 

is again used for all three classes. However, the difference in mean vectors occurs in the 

variables that have high variance. The mean vector of the first class js again the origin, 

the elements of the mean vector of the second class are given by 



. 1  l i l p ,  and the mean of class thre:e is defined by 

, = ( - 1 )  1  I i I p . See Table 4.4 and Fig. 4.4 for the results. 

Due to the difficulty of statistics estimation of this data set at the high dimensions, 

the initial accuracy from all method drops dramatically, about 20% drop from p=10 to 

p=:60. As a result the final accuracy decrease slightly, about 4% drop from p=10 to p=60. 

However, all final ones are much higher than the initial ones, and the increment of the 

classification accuracy increases with the dimensionality. Again, ABLOOCl and 

AHLOOC 1-Exact slightly under-perform all other four methods. 

Table 4.4 

Mean Classification Accuracy (%) for Experiment 4. 



Table 4.4 cont. 

The Value of the Regularized Parameters for Experime~it 4 

ALOOC 

ALOOC 
-Exact 

class three 
Initial 2.88(0.24) 2.93(0.12) 
Final 1.03(1.14) l.gg(1.32) 

class one 
Initial 2.23(0.08) 2.23(0.71) 
Final 1.98(0.08) 1.98(0.08) 
Initial 2.10(0.49) 2.20(0.61) 

AbLooC1 'lass two 
Final 1.65(0.17) 1.85(0.13) 

class three - 
Initial 2.65(0.86) 2.98(0.08) 
Final 1.43(1.35) 1.73(1.44) 



P= 10 P=a P=a F=m 
ALOOC EI Initial W Final ALOOC-Exact Initial Final 

AbLOOCl w Initial El Final AbLOOC1-Exact rn Initial Final 

AbLOOC2 w Initial ~ i ~ ~ l  AbLOOC2-Exact Initial El Final 
Supervised Learning . 

Fig. 4.4. Mean Accuracy for Experiment 4. (In color) 

The following experiments are performed on AVIRIS data lcollected in 1992. 

Several samples of various ground cover classes are identified in each of the scenes. 

Initially a small percentage of the samples are selected at random and used to estimate the 

class mean vectors and covariance matrices, and the remaining samples are classified. 

For the following iterations, all the classified samples (semi-labeled samples) in addition 

to the training samples are used to enhance the mean vectors and covariance matrices, 

and then all the samples are reclassified. The iteration is repeated until convergence is 

reached. Convergence is assumed to have occurred when the classification accuracy has 

less than 0.1% change. The experiment is repeated ten times, and the mean and standard 

deviation of the ten classification accuracies are obtained. 

The previous results from simulation data indicate that estimators AbLOOCl and 

A12LOOCl-Exact do not perform as well as the other four estimators in some cases. For 

this reason, these two estimators are not considered in the following experiments. In the 

analysis of the hyperspectral data, feature extraction is often employed to reduce 

dimensionality. Hence, discriminant analysis feature extraction (DAFE) [I]  is 



incorporated in this experiment to demonstrate the effect of covariance estimators on the 

classification process. 

4.ii.5 Experiment 5: Cuprite, Nevada scene data 

In experiment 4, Cuprite, Nevada scene is used, which covers an interesting 

geological feature called a hydrothermal alteration zone, which is exposed due to sparse 

vegetation. A total of 2744 samples and 191 bands (0.40-1.34, 1.43-1.80, 1.96-2.46 ym) 

are used in the experiment, and then 7 features are extracted using DAFE and 

classification is performed in the subspace formed by these features. 1% labeled samples 

are randomly selected as training samples, and the rest are used as testing samples. The 

number of labeled and training samples in each class is shown in table 4.5, and the 

experiment results are shown in table 4.6. The overall mean classification accuracy is 

depicted in Fig. 4.5. 

Table 4.5 

Training Samples Information for Experiment 5 

Training 
7 Alunite 

Buddingtonite 
Kaolinite 

Labeled Samples 
729 

Quartz 
Alluvium 

Playa 
Tuff 

In this experiment, extremely small training sets are deliberately selected. The 

total number of training samples is much less than the original 191 bands, and it is just 

slighter greater than the number of the extracted features, which is 7. In addition, there 

are two classes, i.e., Buddingtonite and Argilized, which have only one training sample. 

For this reason, the initial overall mean classification accuracy is low and for most of the 

classes, individual classification accuracies are quite low, too. However, with the 

71 
232 

1 

2 
385 
689 
252 
293 

Argillized 

4 
7 
3 
3 

9 3 
Total Samples 2744 27 3 



ad.aptive process, the final overall mean classification accuracy is increased by about 

10%-15%, up to above 90% with much smaller standard deviation. In ]particular, for most 

of classes, the individual mean classification accuracy improvement iis very impressive, 

for instance, up to 20%-30%. The reduction of standard deviation is significant, too, 

except for one class, Kaolinite. Here the final standard deviation is higher than the initial 

one. The reason for this exception is that the initial classification accuracy is quite bad, 

m,aking it very difficult to improve final accuracy to the near optimal value. We observed 

th,at at each iteration, if the initial accuracy is quite low then final accuracy value tends to 

be. low too. This indicates that the initial accuracy not only has an effect on the 

convergence rate but also the final convergence value too. This can also observed by the 

overall classification accuracy achieved by the combination of the adaptive process with 

di.fferent covariance estimators, except for AbLOOC2+DAFE, which starts with slightly 

lower initial accuracy, but achieves highest final accuracy with low standard deviation. 

However, even though ALOOC and AbLOOC have the lower initial accuracy, they 

generate highest classification increment. 

Table 4.6 

Mean Accuracy (%) for Experimental 5 



ALooc+DAFE ALoocExact+DAFE AbLooc2+DAFE lrbLoocExact2+DAFE 

I Initial l l  Final 1 

Fig. 4.5. Overall Mean Accuracy for Experiment 5 

4.6.6 Experiment 6: Jasper ridge site data 

In this experiment, data taken over the Jasper Ridge site is used. This is a 

biological preserve in San Mateo County, California. In all, 3207 lalbeled samples are 

used. The 193 spectral bands (0.40-1.34, 1.43-1.80, and 1.95-2.47 pm) outside the water 

ab~sorption bands are used. Using DAFE, five features are selected and subsequently 

classification is performed in the subspace. 0.5% labeled samples are randomly selected 

as training samples, and the rest samples are used as testing samples. The number of 

labeled and training samples in each class is shown in Table 4.7, and the classification 

results are shown in Table 4.8. The overall mean classification accuracy is graphed in 

Fig. 4.6. 

As in experiment 5, a very small training set is used in this expcximent to simulate 

a very ill-posed problem. However, the initial mean accuracy is relatively high because 

the classes might be more separated. For this reason, the final mean accuracy is able to 

reach near optimal value with a much smaller standard deviation and with fewer 



iterations. Again, it is seen that the initial mean accuracy affects the final value of the 

accuracy. AbLOOCExact2 produces the highest final classification ac~xracy with lowest 

standard deviation even though it starts with slightly lower initial classification accuracy 
and highest standard deviation. 

Table 4.7 

Training Samples for Experiment 6 

Evergreen 
Sementine 
Green-s tone 
Water 

l~otal  Samples 3207 l6 1 

Labeled Samples 
900 
202 

Deciduous 
Cha~arral 

Table 4.8 

Classification Results for Experimental 6 

1 
810 
208 

.4LOOC+ 
DAFE 

1 
495 
592 

ALOOC- 
Exact 

+DAFE 

3 4 

ABLOOC2 
+ DAFE 

ABLOOC 
Exact2+ 
DAFE 

Final 195.7(4.6)( 99.7(3.1) 1 90.4(25.3) ( 92.7(17.9) 1 74.3(18.2) 
Difference ) 7.6(-0.9) 1 9.1(-10.6) 1 8.5(-0.4) 1 4.2(-3.8) ( 15.4(0.8) 

Initial 

Iterations 



IB Initial Final 1 I 
Fig. 4.6. Overall Mean Accuracy for Experiment 6 

4.6.7 Experiment 7: Indian pine 

In this experiment, the data taken over the Indian Pine test site is used. This is a 

mixed forest/agricultural area in Indiana. The water absorption bands (104-108, 150-163, 

220) have been discarded, and 5 features from among the total of 191 bands are extracted 

using DAFE. Of the total of 2521 labeled samples, 1% labeled sainples are used as 

training samples. See table 4.9 for the number of training samples in each class in detail. 

Table 4.10 shows the results, and Fig. 4.7 illustrates the overall mean classification 

accuracy. 

The classes in this data set are highly overlapped, making c:lassification quite 

challenging, because the initial overall classification accuracy and rnost of individual 

initial class ones are quite low; some of them are even below 50%. ALOOCExact 

produces the highest final classification accuracy with the highest initial one, while 

AbLOOC2 leads to the highest increment of the classification accuracy for the lowest 

injtial one. 



Table 4.9 

Training Samples for Experiment 7 

Labeled Samples Training 
BeansICorn Residue 520 
CornINo Residue 450 
Corn/Bean Residue 372 
BeanslNo Residue 490 5 
CornIWheat Residue 388 
WheatINo Residue 30 1 

Table 4.10 

Mean Classification Accuracy (%) for Experiment '7 

Initial 53.0(9.1) 78.4(17.7) 41.4(24.5) 30.9(25.6) 36.8(17.7) 4.9(20.8) 0.4(13.9) 

Final 70.9(7.5) 73.3(9.6) 93.1(41) 49.4(34.1) 60.1(21.3) El Difference 17.9(-1.6) -5.1.(-8.1) 51.7(-20.4) 18.5(8.5) 23.3(3.7) .9(-18.0) .6(-13.9) 

Iterations 15 15 15 15 15 

Initial 64.6(4.6) 57.6(16.6) 83.5(21 .O) 53.9(17.8) 50.7(11.6) 
BLQQC 

Final 72.6(6.1) 57.9(10.9) 96.6(5.5) 73.8(2.9) 57.8(17.6) 
XAC'T2 P 

Difference S.O(l.6) 0.3(-5.8) 13.1(-15.6) 20.0(-15.0) 7.1(6.0) 

Iterations 15 15 15 15 15 



- -  - -  

Fig. 4.7. Overall Mean Accuracy for Experiment 7 

4.7 Conclusions 

A new family of adaptive covariance estimators are presented which are produced 

by combining an adaptive classification process with various regularized covariance 

estimators, i.e., LOOC, bLOOCl and bLOOC2. They are proposed as a means to 

mitigate small training sample problems, in particular, for the poorly or ill-posed problem 

where for high dimension data the number of training samples is comparable to the 

number of features or where the sum of all training samples is even smaller than the 

number of features. A set of experiments on simulated data and real hyperspectral data 

are performed and reported. 

For simulated data, the proposed adaptive covariance estimators offer similar 

performance, i.e., starting with various initial classification accuracies, all of them led to 

h~gher final classification accuracy. They also appear more robust against variations in 

training sets as indicated by the decreased standard deviation among the repeated test 

trials. In addition, the increment of mean classification accuracy increases with 

d~mensionality. 



For real data, all proposed adaptive covariance estimators are a.ble to improve the 

classification accuracy significantly. However, performance of the adaptive covariance 

estimators depends on the specific data and the initial classification accuracy. Higher 

in~tial classification accuracy tends to lead to higher final classification accuracy. 

However, the net increment of classification accuracy is higher with the lower initial 

ones. 

In conclusion, the proposed adaptive covariance estimators have the advantage of 

both an adaptive classifier and a regularized covariance estimator and are able to produce 

higher classification accuracy than either of them used alone. This me:thod is also robust 

because, from all experiments performed where training samples are randomly selected, 

the mean classification accuracy has been improved and for most of them the standard 

deviation of multiple trials has been reduced. 

The capability of improving the classification accuracy of these: proposed adaptive 

covariance estimators also offers a robust classification procedure that can significantly 

reduce the user's effort in terms of the quantity and quality of training samples selected, 

which usually are difficult or tedious to achieve. This implies that, as long as a user can 

correctly select a few training samples for each class with this method,, the classification, 

ac:curacy may be significantly improved to a value that could only have been achieved 

previously with large number of training samples using a common MIL classifier. These 

characteristics suggest that the procedures tend to reduce the dependence on the skill 

level of the analyst. 

Regarding the computation expense of these adaptive covariance estimators, at 

first glance, they appear computationally somewhat costly, because at each iteration, all 

semi-labeled samples and training samples must be checked to find the optimal 

regularized parameters. If there are a number of semi-labeled samples, the computation 

could be immense. However, in the practical application, the comput:ition can be greatly 

reduced and becomes affordable for several reasons without much compromise in the 

classification accuracy. First of all, as was mentioned before, the determination of the 

optimal regularized parameter can be efficiently implemented using the rank-one down- 

date of the covariance matrix. Secondly, as shown in experiments the approximation of 

the adaptive covariance estimators, i.e., ALOOC, AbLOOC 1, and AbLOOC2, produce 

comparable performance in most cases. Thirdly, from our experience, the major 



increment of classification accuracy occurs at the first a few iterations. As a matter of 

fact, almost 50%-60% increment occurs at the second iteration when the semi-labeled 

sa.mples are used at the first time, and additional 20-10% increment occurs at the third 

iteration. For this reason, if computational efficiency is a major concern, one only needs 

to perform the first few iterations to obtain the majority increment of classification 

ac:curacy. The computation time for the hyperspectral data reported in this paper is about 

45 CPU seconds for a Macintosh G4, which is affordable for practical applications. 





CHAPTER 5: ADAPTIVE BAYESIAN CONTEXTUAL CLASSIFICATION 
BASED ON MARKOV RANDOM FIELDS 

5.1 Introduction 

Hyperspectral image data acquired by new generation sensors contain extremely 

rich spectral attributes, which offer the potential to discriminate more detailed classes 

with the high classification accuracy using a conventional Maximurn Likelihood Pixel 

Classifier (MLC). However, two difficulties inhibit this potential. First of all, the large 

number of classes of interest combined with the large number of spectral bands available 

requires a large number of training samples. Unfortunately training samples are generally 

expensive and tedious to obtain. As a result, the class statistics estimated from the limited 

training sample set are less accurate and the subsequent classifier performance 

deteriorates. Additionally, in a conventional MLC, it is explicitly assumed that the 

spectral properties are independent of the properties of all other pixels. Consequently, 

the MLC has difficulty distinguishing the pixels that come from different land-cover 

classes but have very similar spectral properties. The result is u;sually a snow-like 

classification map. 

Since, in general, certain ground cover class may be more likely to be placed 

adjacently than others, there is more than trivial information available from the relative 

assignments of the classes of neighboring pixels. Also, in many remotely sensed images, 

objects on the ground are much greater than the pixel element size so neighboring pixels 

are more likely to come from the same class and form a homogeneous region. Therefore, 

a classifier that utilizes both spectral and spatial contextual information may be able to 

better discriminate the pixels with similar spectral attributes but located in different 

regions, and subsequently reduce the speckle error and improve the classification 



performance significantly. However, this type of classifier also faces the problem of the 

srnall training sample size. 

In chapter 3, it has been demonstrated that a proposed adaptive pixel MLC may 

alleviate the small training sample problem by including semi-labeled samples along with 

the training samples during the process of statistics estimation. The key to successful 

performance of this classifier is to establish a positive feedback process wherein during 

each iteration the statistics estimation can be improved based on the higher classification 

accuracy of the previous iteration. In return, much higher classificatilon accuracy can be 

achieved in the current iteration, and so on. As with a conventional MILC, performance of 

this adaptive pixel MLC is limited by using just spectral information. 

In this chapter, an adaptive Bayesian contextual classifier. that utilizes both 

spectral and spatial interpixel dependency contexts in statistics estimation and 

classification is proposed. In this classifier, only interpixel class dependency context is 

considered, and the joint prior probabilities of the classes of each pixel and its spatial 

neighbors are modeled by the Markov Random Field. The statistics estimation and 

classification are performed in a recursive manner to allow the establishment of the 

positive feedback process in a computationally efficient manner. Exlperiments with real 

hyperspectral data show that starting with a small training sample set this classifier can 

reach classification accuracies similar to that obtained by a pixel wise MLC with a very 

large training sample set. Additionally, classification maps are produced which have 

significantly less speckle error. 

5.2 Previous Work and Background 

There are generally two main types of contextual information [19]. i.e., interpixel 

class dependency context and interpixel correlation context. Both of ithese exist spatially 

and temporally. Spatial correlation coefficients between pixels generally differ according 

to the distance between pixels and the spectral bands. The exploitation of this spatial 

correlation context can make it possible to differentiate classes in more detail. This would 

not be possible without additional spatial correlation contextual information. However 

this requires paying the price of increased computational complexity as compared to pixel 



wise classification [20]-[22]. In this study, only interpixel class dependency context is 

considered. 

Generally speaking, the methodologies for taking spatial conte:xt into account can 

be categorized into four different groups [19]. The postprocessi~~g type contextual 

classifiers perform postprocessing such as filtering or applying syntactic rules after the 

pixelwise classification. An example of a filter for postprocessing is a majority filter 

[23], which counts the votes of classification results inside a given w-indow. A common 

problem of this approach is that its performance relies heavily on the ]initial classification 

accuracy achieved by the pixel wise MLC. That is, the postprocessing proceedure can 

lead to degraded performance if the initial classification accuracy is poor. What is more, 

this method tends to bias a pixel into a class to which its neighbors belong. Sometimes 

this biasing can be overdone and as a result the segmented image may loose details 

unnecessarily. 

The approaches in the second category are based on a region growing process. A 

given scene is divided into distinct homogeneous regions by using an appropriately 

chosen criterion and each homogeneous region is classified on a sample or per-field 

basis. One procedure in this category is ECHO, which uses a conjunctive, object-seeking 

method as the tool for region finding [24, 251. ECHO is able to capture the homogenous 

behavior of regions with different sizes and utilize it to reduce speckle error. This 

capability depends heavily on the true size of each homogenous region. ECHO is 

particularly successful in applications where statistics of pixels in an image have long 

distance dependence. That is, neighboring pixels are more likely to come from the same 

cl.ass and form a large homogeneous parcel. An example of this arises with remote 

sensing of agriculture fields that have large regions of identical crops. However, since 

class statistics have been estimated to form appropriate criterion, ECHO also suffers the 

limited training sample problem in the analysis of hyperspectral data. 

The third type of approach is the so-called stacked vector approach. This adds to 

the original spectral feature vector new components of features that can carry spatial 

contexts. Additional components can be derived, for example, from texture descriptors 

such as Fourier coefficients or coocurrent matrices [26]. This appro,ach has an inherent 

problem of excessive dimensionality of augmented feature vectors and poor performance 

al: the object boundaries since the texture measures are based on a certain size of region. 



The final category is a model-based approach that tries to inclorporate contextual 

information through modeling of the scene. Example models are th,e spatial stochastic 

mcodel [20] and the two-dimensional Markovian model [27]. These approaches assume a 

local dependency of a pixel on its neighbors and it is incorporated into the decision rule 

in addition to the spectral information. As a result, these are a.lso referred to as 

simultaneous contextual classification methods [20, 27-30], or Bayesian contextual 

classification because the theoretical foundation of simultaneous classification is based 

on the Bayesian formulation. Bayesian contextual approaches involve the formulation of 

a distribution model for both the underlying class labels and the class-conditional model 

so that the estimated class labels can be derived from optimizing a posterior cost 

function. In other words, in contextual classification, the image is classified by finding a 

Ivlaximum A Posterior (MAP) estimate of the unknown field of class 1,abels. 

In the study of contextual classification, the prior probability mass function for 

the underlying entities (class labels) is modeled as a discrete Markov Random Field 

(MRF) or equivalently Gibbs distribution according to the Hammersley-Clifford theorem 

[29]. These models are very popular in image segmentation and restoration because they 

only require the specification of spatially local interaction (short distance statistical 

dependence) using a set of local parameters. This greatly reduces the complexity of the 

model. It has been shown that classification performance of multispectral remotely 

sensed images has been improved with these approaches [30]-[35]. 

Although the Bayesian contextual MAP estimation is neatly folrmulated, the MAP 

estimation still involves huge computational complexity due to the: size of the image 

lattice wherein the image is confined. Also, the exact maximization of the posterior 

probability is intractable. As a result, methods for approximately maximizing the true 

MAP estimate must be used. In [36] a simulated annealing has been used and it has been 

shown that the method will converge to the global optimum, but it is generally too slow 

to be practically useful. An alternative approach called Iterated Conditional Modes 

(ICM), which is rather crude compared with simulated annealing but computationally 

efficient, was developed in [37]. This method is known to yield relatively good results 

when textures can be discriminant over small regions containing few pixels, but in high 

rr:solution images, where larger numbers of pixels are necessary t'o discriminant, the 

method is prone to being trapped in a local minimum. In [30] an algorithm is suggested 



which successively classifies the image from coarse resolution to fiiner resolution until 

individual pixels are classified. This method is known to be faster than ICM [37] when 

distinct textures exist, and is less likely to be trapped in local minima. In [38] an 

approach is developed which replaces the MRF model with a novel MultiScale Random 

Field (MSRF), and replaces the MAP estimator with a sequential MAP (SMAP) 

estimator derived from a novel estimation criteria. This method is not iterative and 

computational efficient, and has better performance than MAP' estimation using 

simulated annealing. 

In the analysis of hyperspectral data (up to a few hundre.d spectral bands), 

supervised MAP also face the challenge of precisely estimating the class conditional 

statistics with limited training sample size. In chapter 3, it is demonstrated that a 

PI-oposed adaptive pixel MLC is able to alleviate the small training ;sample problem by 

including semi-labeled samples in the process of statistics estimation in addition to 

training samples. The key to successful performance of this classifier is to establish a 

positive feedback process where, at each iteration, the statistics estimation can be 

improved based on the higher classification accuracy of the previous iteration. This 

allows much higher classification accuracy to be achieved during the c:urrent iteration and 

those that follow. With a few iterations, eventually more accurate statistics and higher 

classification accuracy can be achieved. Higher  classification^ accuracy makes 

establishment of the positive feedback more likely and results in faster convergence. 

However, like a conventional MLC, performance of this adaptive pixel MLC is limited 

by just using spectral information alone. Therefore, it would be advantageous to 

integrate a MAP classifier with the adaptive classification procedure in that performance 

of  MAP can be enhanced because of the better class statistics provided by the adaptive 

method. In return, performance of the adaptive method can be furthler improved by the 

better classification accuracy produced by MAP where the spatial information is 

exploited in addition to spectral information. In other words, a combination of the MAP 

cllassifier with an adaptive procedure should outperform a pixel-wise adaptive MLC. 

From now on, we will refer to this method as Adaptive Bayesian Contextual 

Classification Based on Markov Random Field (ABCC-MRF). 

Although there are methods [30] [37] which perform better th~an ICM [38] in the 

application of image segmentation, the ICM method is selected in ABCC-MRF to 

approximately maximize the MAP estimate of the unknown field of class labels for three 



reasons. First of all, the ICM is an iterative process and it starts wit:h a pixel-wise ML 

PI-ocess. Therefore, it is easier to integrate with an adaptive pixel-wise MLC. Secondly, 

and most important of all, ICM has demonstrated adequate performance in the 

application of multispectral data analysis [28] [33:1 [35]. The reason is as follows. In the 

classification process of the ICM [29] where the class label is assigned to each pixel, 

miaximizing the joint posterior probability is approximated as maximiizing the individual 

class posterior probability. Since multispectral data contains more spectral attributes than 

spatial ones, the spectral information plays the major rule in classification. In contrast, 

spatial information is subsidiary, and it is only used to enhance. the classification 

performance. With hyperspectral data, which has many more spectral bands than 

rr~ultispectral data, if the class statistics can be more accurately estimated, the rich 

spectral information contained in data can be better utilized. Consequently, higher 

cl.assification performance can be achieved. Better class statistics estimates may be 

achieved by an adaptive method. In other words, in the analysis of hyperspectral data, 

high classification performance doesn't require one to estimate MAP more precisely 

using more elaborate methods [36] [37]. An important advantage of ICM is that it is 

conceptually simple and computationally efficient. As a result, ABCC-MRF also has the 

advantage of computational efficiency. This is a highly desirable feature in the analysis of 

the hyperspectral data. In the next section, the Bayesian formu1;ation and ICM are 

presented. 

5.2.1 Bayesian formulation of image in markov random field 

Multivariate image X is composed of p-dimensional pixels where X,(s), and 

{k=1, 2, . . . , p}, and s=(i,j) denotes a two-dimensional index, an image lattice point at the 

i" row and jth column. Let u denote the field that contains the classification of each pixel 

in X. Points in u can take values in the set (1, 2, ..., L}, where IL is the number of 
cliasses. The multivariate image X is then classified by finding a field of class labels ii,, 

such that 

where tiMAp is referred to as a MAP estimate of the field of class labels which maximizes 

the posterior cost function (5.1). Therefore, the modeling of both the prior probability 



distribution p(u) and class-conditional distribution p(X I u) becomels an essential task. 

Note that the estimate Eq.(5.1) becomes the pixel-wise noncontextilal classifier if the 

prior probability does not have any consequence in formulating Eq.(5.1). 

In most vision problems, available information stems from twlo different sources: 

01)servation on image sites for a given occurrence of the problem, and a priori knowledge 

about the restrictions imposed on the simultaneous labeling of connected neighboring 

units. This second source of information reflects statistical dependencies between the 

labels of neighboring sites. Markov random field (MRF) theory [29:1 [36] [38] [39] [40] 

provides a convenient and consistent way to model such context-dependent information. 

The MRF's-Gibbs equivalence, established by Hammersley and Cllifford, and further 

developed by Besag [29], gives an explicit formula for the joint distribution of MRF's. 

For a Markov random field u, the conditional distribution of a point in the field, 

given all other points, i s  only dependent on its neighbors: 
p{u(s) I u(S - s)} = p{u(s) Iu(ds)}. Here S is an image lattice and S.-s denotes a set of 

points in S excluding s, 3s denotes the neighboring pixels of s. The first order 

neighborhood system is usually defined as the four pixels surrounding a given pixel, and 

higher orders are defined by adding comer pixels to a lower order neighborhood system. 

A clique is defined as a subset of points in S such that if s and r are two points contained 

in a clique c, then s and r are neighbors, and the order of a clique is the number of points 

(sites) in the clique. The neighborhood system and the corresponding cliques are 

illustrated in Figure 5.1. 

5.2.2 Prior model 

The a priori probability of the labeling p(u) defines an MW.  According to the 

H:arnrnersley-Clifford theory [29], for a given neighbor system, p(u) (;an be expressed as 

a Gibbs distribution: 

where Z is a normalizing constant called a partition coefficient, anti Vc is an arbitrary 

function of u on the clique c. C is defined as the set of all cliques. 



Together with the joint class-conditional distribution p{X(u) and prior distribution 

of (5.2), the MAP estimates of true class labels as given by (5.1) becomes: 

+ 
4-neighborhood system cliques 

8-neighborhood system cliques 

Fig. 5.1. Neighborhoods system and corresponding cliques 

iMAP = argrnin{-lnp(X 1 u) + EVC (u)) 
U C 

The minimization of (5.3) is essential in order to derive a MAP estimate of u, 
LMAp. In [30], it is pointed out that the one dimensional dynamic programming in [3 I.] or 

simulated annealing method in [36] are computational expensive, and the global 

nlinimization still suffers from falling into a local minimum. In [38], a method called 
ICM is developed to approximate GMAP using assumptions to reduce: the computational 

complexity. Instead of attempting to optimize in one step by the above suggested 

methods, the ICM is computationally feasible since it updates the class assignments 



iteratively so that inverting a huge matrix is avoided. To apply the IC!M method, (5.1) is 

m.odified to conform to the task based on two main assumptions, which are: 

(1) Each pixel value is class-conditionally independent, such that: 

(2) The class labels are the realization of a Markov random field, and their 

probability mass functions are identical, i.e., 

Suppose that the objective is to estimate the class label of' a pixel given the 

estimates of class labels for all other pixels inside the rectangular lattice. Then the 

optimization of (5.3) becomes: 

Note that u(s) denotes a class label at s E S. Applying th~e Bayes' rule and 

considering the Markov property of (2), the argument of (5.4) becomes 

The first term of the right hand side of (5.5) becomes 

by virtue of (1). Since the class assignment of all other pixels except u(s) inside 
the lattice are already made, the term p{X(S -s) 1 ii(S -s)) is not a factor 

affecting the optimization. Therefore, (5.4) in connection with (5.5) and (5.6) 

becomes 



Assuming the class conditional distribution can be represented by Gaussian 

distribution, i.e., 

Concerning energies of cliques of order 2 (2-point clique) and restricting to 4- 

neighborhood system, for the sake of mathematical and computational 

convenience, most MRF vision models are assumed to be homogeneous and 

isotropic. Then Vc is independent of the location of clique c in S and independent 

of the orientation of c. Under these assumptions, the M-Le:vel MRF model is 

frequently used for an image segmentation problem: 

0 if u(s) = U(S' ) 
V(u(s),u(sf 1) = 

#? otherwise 

where p is a constant coefficient, which can be estimated from the image or 

empirically determined. It is a weight emphasizing the significance of interaction 

among adjacent pixels inside a clique. Therefore, the class con.ditiona1 probability 

mass function of p{u(s) I ;(as)) becomes 

Then (5.7) is equivalent to: 



i (s> = arg max[p{X(s) 1 u(s) )p{u(s) 1 i(ds) I 
ISuSL 

= arg min[- In p{X(s) I u(s) ) - In p{u(s) ( i(ds) )I  
,<us  L 

(5.9) 

= argmin[ln I X, ( +(X(s) - ,D,)~X;'(X(S) - pU) + 2mP + const.] 
15uSL 

Here, m is the number of occurrences of the class different fro:m u(s) in the clique 

containing s. The term const. doesn't depend on the particular class assignment to 

the pixels. 

5.3 Adaptive Bayesian Contextual classifier: the Combination of am Adaptive 
Classifier with Bayesian Contextual Iteration Conditional Modes (ICM) 

In this section, the new adaptive Bayesian contextual classifier is developed that 

combines the adaptive procedure proposed in chapter 3 with the Bayesian Contextual 

Iteration Conditional Modes (ICM) [38]. In this new classifier, conte~ctual information is 

incorporated into the process of weighting factor computation and classification. There 

are two reasons for this operation. One is to further emphasize the posj.tive effect from the 

correctly classified semi-labeled samples and discourage the negative influence from the 

mis-classified semi-labeled ones, and the second is to enhance the classification using 

contextual information in addition to the likelihood. 

Similar to the adaptive procedure and ICM, this new method is also an iterative 

process that achieves the optimal statistics estimation and classification by starting with 

initial estimate $O and the classification based on training samples only and repeating the 

following steps at each iteration using training samples and semi-labeled samples. 

Assume the initial class conditional statistics and classification ha!; been obtained by 

u:sing the training samples, and all L classes can be represented by Gaussian distributions. 

Denote y = (y,,, ...,yimi ) as the training samples for the ith class, whose pdf is fi(xl&), and 

x = (x,,, ..., x,, ) are the semi-labeled samples that have been classified to the ith class. The 



procedure of this method is defined as follows the initial ML cla~sific~ation using training 

samples: 

Cycle 1 : 

la )  Perform classification using a MAP classifier based on the 

classification map from the ML: 

X(s) E s H L(s) = arg min[ In I C, I +(X(s) - P , ) ~  Cil (x(s) - fill) + 2mP] (5.10) 
l<u<L 

where p is empirically determined 

lb) Perform classification using a postprocessing classifier based on the 

classification map from the ML 

The purpose of using the postprocessing classifier is to compare the results 

from the MAP classifier 

Cycle 2: 

1) Compute weighting factors using contextual informatior) together with the 

likelihood based on the classification results from MAP clalssifier in step (la) 

from the previous cycle 

Note that the unit weight is assigned to each training sample. 



2) Obtain the class conditional statistics by maximizing the mixed log likelihood 

based on the classification results from the MAP classifier in step (la) from the 

previous cycle: 

3) Performing classification based on the maximum likelihood (ML) classification 

rule: 



4a) Perform classification using the MAP classifier based om the classification 

map from the ML classifier: 

4b) Perform classification using the postprocessing classifier based on the 

classification map from the ML 

The steps of the cycle 2 are repeated until convergence is reached where the 

classification results have small change. The flow chart in figure 5.2 illustrates one 

complete cycle of the adaptive contextual classifier. 

Fig. 5.2. One complete cycle of the adaptive contextual classifier 
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Note that as an adaptive pixel-wise ML classifier, in this adaptive contextual 
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in.cluding NIL, MAP, and postprocessing classification at each cycle, and the weight of 

each semi-labeled sample is updated after each cycle. Correspondingly, the class 

conditional statistics are updated at each cycle too. 

However, two modifications have been made in this new proposed classifier. 

First, the contextual information in addition to likelihood is utilized to enhance the 

performance of semi-labels in terms of their influence of class conditional statistics 

estimation and to improve the classifier performance. Second, the semi-labeled samples 

generated from the MAP classifier instead of a ML classifier at the previous cycle in 

addition to training samples are used to update the current class condil.ional statistics, and 

each cycle is started with a ML classifier instead of a MAP classifier. The reason for this 

cl~oice is as follows. First, it has been shown that in ICM starting wii:h the classification 

results from a ML classifier, in general the MAP classifier outperfomls the ML classifier 

[:I31 [34]. Even though a postprocessing process may be able to improve classification 

accuracy also by reducing the speckle error, it is more likely to be overdone and lead to 

loss of details. Therefore, semi-labeled samples generated from the MAP classifier 

should contain more correctly classified samples, and better statistics estimation may 

result than to use those from a ML classifier or a postprocessing process. Second, with 

good statistics estimation, a ML classifier may be able to catch more details, and it is less 

likely to bias the minority class with small numbers of pixels than a ]MAP classifier or a 

postprocessing process. Since the ultimate objective here is to generate a classification 

map with high quality, i.e., high classification accuracy with less speckle but with 

adequate detail, a NIL classifier is chosen to start each cycle to produce the classification 

results with as much detail as possible. After that a MAP, or a postprocessing process is 

uljed to further improve classification accuracy by removing the speckle error that usually 

can be corrected by using contextual information, for instance, spatial proximity. In the 

following section, the experiment with the proposed algorithm is applied to analysis of 

h yperspectral data and the results are presented. 

5.4 Experimental Results and Discussion 

In this experiment, the analyzed data is part of an airborne hyperspectral data 

flighline over the Washington DC mall, which was collected with the HYDICE system. 



1r1 this case there were 210 bands in the 0.4 to 2.4 gm region of the visible and infrared 

spectrum. In the analysis, the water absorption bands are removed and 191 bands are 

used. There are 1 1  classes with about 50 training samples for each class selected. Since 

th.e data has high spatial resolution (about 5 meters), the testing samples are manually 

selected. The detailed information about training and testing samples are shown in Table 

5.1 and thematic maps of the training and testing fields are illustrated. in Figure 5.3a and 

Figure 5.3b, respectively. Note that there is no overlap between training fields and 

testing fields. The training samples size is deliberately chosen to be small. With 

Discriminant Analysis Feature Extraction (DAFE) [I], 10 out of 191 features are selected 

to form a new subspace, and then the classification is performed in this new subspace. 

Table 5.1 

Training and Testing Samples 

This data set is a challenge to analyze for several reasons. First, classes are 

complex. For example, the information class roof consists of five types of subclasses, and 

the road class consists of two types of subclasses. Usually, even though some of the 

sr~bclasses are spectrally quite different, some are quite similar. Second, the classes roof, 

road and path are spectrally similar in that they may be made of siimilar materials, for 

instance, asphalt. Third, this data was collected at the dry season; most of lawns are not 

Class 
roof1 
roo@ 
roof3 
roof4 
roof5 
rood1 
road2 
path 

shadow 
tree 
grass 
Total 

Training 
Samples 

54 
54 
58 
46 
55 
6 1 
52 
56 
46 
5 5 
54 
647 

Testing 
Samples 

121 
1433 
348 
290 
243 

4737 
855 
552 
215 
1109 
3193 
13096 



well grown and as a result, the class grass and path are hard to differentiate in the regions 

where the path is located on the lawn. 

In table 5.2, the overall classification accuracy obtained by three types of 

classifiers during each cycle with various values of fl is illustrated. The resubstitution 

accuracy [I] represents the accuracy where, for the ML classifier, all test samples are 

used to train and test the classifier. Usually it is biased to a value higher than the true 

one. The Kappa statistic of each result is listed in parentheses next to the corresponding 

overall classification accuracy. Figure 5.4 illustrates the classificatioln accuracy at each 

cycle, and Figure 5.5 shows the variation in classification accuracy with P. 
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Fig. 5.3. Thematic maps for training and testing fields. (In color) 



Table 5.2 

The Performance of the Adaptive Contextual Classifier 

Accuracy 
(%) Belta=l Belta=2 Belta=4 Belta=8 

Class 80.5(76.5) SOS(76.5) SOS(76.5) 80.5(76.5) 

Group 90.1(86.6) 90.1(86.6) 90.1(86.6) 90.1(86.6) 

Class 82.6(78.9) 83.0(79.4) 83.0(79.4) 82.9(79.2) 

Group 90.5(87.2) 91.0(87.7) 91.0(87.8) 91.3(88.) 

Post- Class 85.0(81.6) 85.0(81.6) 85.0(81.6) 85.0(81.6) 85.0(81.6) 85.0(81.6) 
Processing Group 91.8(88.9) 91.8(88.9) 91.8(88.9) 91.8(88.9) 91.8(88.9) 91.8(88.9) 

2 

The number of cycles 

+ML Class &ML Group MAP Class 1 -+MAP C~OLIII -+Postprocessing Class 

Fig. 5.4. Progression of the classification accuracy with 8=32 
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--Xi" MAP Group +PostProcessing Class +PostProcessing Group 7 

Fig. 5.5. Classification accuracy versus B in the adaptive calntextual 
classifier at the last cycle 

From the Table 5.2 and Figures 5.4 and 5.5, the following results may be 

observed: 1) For all classifiers, both the overall class and group classification accuracies 

have been improved as iteration progresses. After just three cycles the classification 

accuracy converges with net increment about 13% for the class, and about 6% for the 

gi:oup. 2) At each cycle, the MAP and the postprocessing classifier achieve the higher 

overall class and group classification accuracies than the ML cliassifier does. This 

indicates that contextual information does help to reduce the speckle error and 

accordingly improve classification performance. 3) During the first cycle the 

classification accuracy increment from ML to MAP is about 2.6% for the class and 0.4% 

for the group. However, the classification accuracy increase for the ML at the second 

cycle is about 7.1% for the class and 2.5% for the group. This indicates that using 

additional contextual information does improve the classification performance, but the 

irnprovement is limited. Essentially, the significant improvement of the classification 

pc2rformance may stem from better statistics estimates produced by the adaptive method. 

4 )  Even though classifier performance increases as P becomes large, the improvement is 



not significant. This indicates that the classification result is not vt:ry sensitive to the 

value of b if it is large enough. 

Even though there are a large number of samples (13,906) in the test fields, this is 

only about one seventh of the total number of samples (95,456) in the data set. Therefore, 

the classification accuracy for test fields can only provide an incomp1r:te characterization 

this proposed adaptive Bayesian contextual classification procedure's performance. It is 

worthwhile to examine the thematic maps of the segmented images. Figures (5.6a) 

through (5 .6~)  depict the classification results during the first cycle wjth b=32. 

During the first cycle, with limited training samples the initial statistics estimates 

are not very good. In this case, the total number of training samples is greater than the 

original bands and much smaller than the total number of parameters needed to be 

estimated in the original space. Therefore, feature extraction is not very good either, thus 

the classification performance. It may be seen in Figure 5.6a that c:lassification errors 

occur in many places and some of them are highlighted by rectangles and ovals. These 

errors are mostly due to incorrectly estimated statistics and, to a lesser extent, the spectral 

similarity (class overlap) between classes. For instance, there is a great deal of similarity 

in the spectral response between roof and road or path, between p,ath and grass, and 

between tree and grass. In Figures 5.6b and 5 . 6 ~  it may be observed that the latter type 

O F  errors (speckle errors) are greatly reduced by the MAP or the postprocessing 

classifiers. However, errors of the first type (highlighted by ovals) still remain. In some 

areas the MAP or the postprocessing create additional errors (highlighted by rounded 

rectangles) beyond those generated by the ML. These errors lead to lloss of details. This 

indicates that with additional contextual information the classification performance may 

be improved. However, this improvement is certainly limited if the i~nitial classification 

accuracy is poor. The limitation is represented in the classification accuracy increment 

shown in Table 5.2, as has been pointed out previously. 



(a) Color IR image (b) ML classifier 

(c) MAP classifier (d) Postprocessing 

Regions highlighted by the rectangles: speckle errors here may be due to 
confusions between classes generated by the ML classifier, but most of them are 
corrected by the MAP and the postprocessing classifiers. 
Regions highlighted by the rounded rectangles: partial details achieved by the ML 
classifier, but then lost by the MAP and the postprocessing classifiers 
Regions highlighted by the ovals: classification errors here may be due to bad 
statistics estimation with limited training samples which occurs in the ML 
classifier, and could not be corrected by the MAP and the postprocessing 
classifiers 

Fig. 5.6. The original image and the thematic maps of the segmented images 
from the first cycle with 8=32. (In color) 



(a) ML classifier (b) MAP classifier 

(c) Postprocessing (d) ML classifier with all testing 
samples as training samples 

Regions highlighted by the ovals: classification errors occumng during the first 
cycles may be due to bad statistics estimates but have been corrected by the ML 
classifier at this cycle with improved statistics estimates. 
Regions highlighted by the rounded rectangles: details lost in the first cycle and then 
are recovered by the ML classifier during this cycle, then most of them have been 
maintained in the subsequent MAP and the postprocessing c1as;sifiers 
Regions highlighted by the rectangles: speckle errors remain in the results of the ML 
classifier at this cycle, but corrected by the MAP and the postprocessing classifier 

Fig. 5.7. The thematic maps (grouped classes) of the segmented images at the third cycle 
with P=32 by the adaptive contextual classifier and by a MILC. (In color) 



During the third cycle, which is shown in Fig. 5.7a, the classification errors have 

been greatly reduced and the details lost in the first cycle have been recovered by the ML 

classifier. This may be attributed to improved statistics estimation. However, speckle 

errors still remain in certain regions, for example, the regions which are highlighted by 

rectangles. As a result, even with good statistics, the ML could not differentiate the 

classes with similar spectral responses very well. On the other hand, with additional 

contextual information, this type of error can be removed by the MAP or the 

postprocessing classifiers. Results of this approach are displayed in Figures 5.7b and 

5 . 7 ~  which depict thematic maps that are visually clean and pleasant. 

To benchmark the performance of the adaptive Bayesian contextual classification 

method, all testing samples are used as training samples, and then classification is 

performed by a ML classifier. Subsequently, the ML classifier perfoirmance is tested by 

the same set of testing samples. The thematic map of the segmented image is shown in 

Fig. 5.6d. With the large training sets, three information classes, grass, tree, and road are 

nicely identified. However, there are some undesired effects. There are many pixels 

from path, and five subclasses of roofs that are incorrectly identified as road. The 

possible explanation is as follows: the classes, roof1 through roof5, road1 and road2, 

might be made of similar materials and therefore pixels from these classes may contain 

similar spectral response. However, since the testing samples are mariually selected, and 

roads may be readily identified by their long and relatively narrow aspect ratio it is 

re:latively easy to select numerous pixels for the road testing samples. On the contrary, it 

is relatively difficult to select pixels as testing samples for the c1as:ses path and roofs, 

which are limited and distributed in the narrow and short blocks. As a result, there are 

much more testing samples for roads than for roofs and path. Therefore, the statistics 

estimates for roads may be more accurate than ones for roofs and path with smaller 

v,lriances. Consequently, the pixels from the classes, roofs or path, might be more likely 

incorrectly classified as roads. 

In addition, there are many speckle errors that are mostly scattered on the regions 

where roads are located. This further indicates the essential drawback of a ML classifier, 

that is, even with pretty good statistics estimates, speckle errors may be unavoidable. 

Upon comparing Figures 5.7b and 5 . 7 ~  with Figure 5.7d one can see that 

identification is improved. Specifically the classification of roofs, path and shadow has 



improved. In other words, the detailed information about these three classes lost in Fig. 

5.7d has been recovered and is displayed in Figures 5.7b and 5 . 7 ~ .  Iin addition, most of 

speckle errors exiting in Fig. 5.7d do not appear on the Fig. 5.7b and Fig. 5 . 7 ~ .  Overall, 

the images in Fig. 5.7b and Fig. 5 . 7 ~  are visually more appealing than the one on Fig. 

5.7d. 

Even though the classification accuracies corresponding to images in Figures 5.7b 

and 5 . 7 ~  were achieved by the MAP and the postprocessing proceduae during the third 

cycle, are slightly lower than the one corresponding to the Fig. 5.7d produced by the ML 

with all testing samples as training ones (resubstitution accuracy [I.]), this doesn't mean 

that the proposed Adaptive Bayesian Contextual Classifier underperforms the ML 

classifier. Usually the value of the resubstitution accuracy [12] often biases to a higher 

one than the true accuracy . Therefore, it is possible that the classification accuracies 

achieved by the MAP and the Postprocessing classifiers may be higher than the 

re.substitution accuracy if a different testing data set is used. This :indicates that even 

starting with a limited training data set, the adaptive Bayesian Conte:rctual Classification 

PI-ocedure can achieve high quality classification results. In other words, the final 

classification accuracy is high and the resulted segmented image is visually pleasant. 

Fi~rthermore, it may even outperform a conventional one pass ML classifier with large 

number of training samples. 

5.5 Conclusion 

In this chapter, an adaptive Bayesian contextual classification procedure based on 

h/Iarkov Random Field is developed. In this procedure, the adaptive classification 

classifier and the Bayesian contextual classifier that is approxirnated by ICM are 

integrated. As a result, advantages of both classifiers are incorporated. As an adaptive 

hiL classifier, the proposed procedure can iteratively enhance statistics estimates and 

irnprove classification performance with a limited training sample set. As with a 

contextual classifier, it can therefore improve the classification accuracy by reducing the 

speckle errors due to spectral similarity between classes that are very difficult to 

differentiate by a pixel-wise ML classifier. 



The experimental results with hyperspectral data further reveals the benefits of 

this classification procedure. Starting with a limited training sample set, this method is 

able to steadily raise classification accuracy and eventually drive it close to the optimal 

value. The total improvement in the classification accuracy is significant and the 

convergence rate is fast even though a simple sub-optimal contextual classifier is used. 

T:his is significant because the classifier ICM has a reputation of slow convergence when 

it is used alone. 

Overall, the proposed procedure is conceptually simple, easy to implement, fast to 

run, and has high performance. Here, the very simple and effiicient sub-optimal 

contextual classifier, ICM, is integrated with the simple ML classifier. The high 

performance is achieved because these techniques are combined in a constructive way so 

that their individual shortcomings can be reduced and their advantages can be amplified. 

It is specifically advantageous when the pixels have strong local (short distance) statistics 

independence. 

As with the adaptive ML classifier developed in Chapter 3, and the adaptive 

covariance estimator developed in Chapter 4, the adaptive Ba~yesian contextual 

classification procedure provides a means to mitigate the limitations imposed by Hughes 

plqenomenon. In addition, it offers a robust classification procedure that can significantly 

reduce the analyst's effort in terms of the quantity and quality of training samples 

selected. This is important because training samples are generally difficult or tedious to 

o'btain. Also, this means the dependence on the skill level of the analyst may be greatly 

reduced. 



CHAPTER 6: CONCLUSION 

6.1 Summary 

In a typical supervised classification procedure, training samples play a 

fundamental rule on performance of a classifier. When the number of training samples is 

finite, the classification accuracy first increases then decreases with dimensionality. This 

is often referred to as the Hughes phenomenon, or the peaking phenomenon. The 

degradation of classification performance with dimensionality is particular severe for the 

analysis of hyperspectral data where the ratio of the number of training samples to the 

number of dimensions is small. 

For the purpose of mitigating the Hughes phenomenon and to reduce the effort of 

an analyst in terms of training sample selection, in this thesis ;i general adaptive 

cl.assification procedure and then three specific methods to implement this procedure are 

developed to accommodate various training sample sizes. In this adaptive classification 

p:rocedure, the semi-labeled samples (classification outputs) in addition to the original 

training samples are utilized to estimate class statistics in order to ~zstablish a positive 

feedback procedure where statistics estimation and classification enhance each other 

during each iteration. Eventually, a more accurate statistics estimation and higher 

cllassification accuracy can be achieved iteratively. 

In Chapter 2, the role of semi-labeled samples on statistics estimation and 

feasibility of establishing the positive feedback procedure are investigated. Theoretical 

results show that when semi-labeled samples are used, statistics estimation may be 

enhanced. With the enhanced statistics estimates, classification perfo~mance may then be 

further improved. In other words, the positive feedback may be established. The degree 

of improvement of classification performance depends on the following factors: the 

number of semi-labeled samples, the classification accuracy (or the number of correctly 



classified semi-labeled samples) during each iteration, and the selparability between 

classes. In other words, the more semi-labeled samples, the higher classification 

ac:curacy, and the more separation between classes, the more likely positive feedback is 

to be established, and the faster the final classification accuracy can reach the close to 

optimal value with given data set. 

In Chapter 3, based on the theoretical results from the chapter 2, a self-learning 

and self-improving adaptive classifier is proposed. This adaptive classifier enhances 

statistics estimation and hence improves classification accuracy iteratively by utilizing 

the semi-labeled samples, in addition to the original training samples, in subsequent 

statistics estimation. In this iterative process, samples are initially classified based on the 

estimated statistics using the original training samples only. Then seimi-labeled samples 

are subsequently used with the original training samples to update class statistics, and the 

samples are reclassified by the updated statistics. This process is repeated until 

convergence is reached where the classification accuracy changes a little. Since the class 

la.bel accuracy of each sample is unknown, in order to control the influence of semi- 

1a.beled samples, the proposed method gives full weight to the tra.ining samples and 

reduced weight to semi-labeled samples. When this classifier is combined with ECHO, it 

is particularly advantageous on analysis of data where long statistics spatial dependency 

is strong 

When the training sample size is extremely small, i.e., the number of entire 

training samples is comparable or even smaller than the number of (dimensions (poorly 

p'osed or ill-posed cases), using the adaptive method or a regularized covariance 

estimation method alone may not adequate. In Chapter 4, to deal with poorly posed or ill- 

posed cases, a family of adaptive covariance estimators is developed. This method 

combines the adaptive classification method and regularized covariance estimators. The 

semi-labeled samples (whose labels are determined by a decision  rule)^ are incorporated in 

the process of determining the optimal regularized parameters and estimating those 

silpportive covariance matrices that formulate final covariance estimators. 

Finally, to fully utilize the rich spectral and spatial information contained in 

hyperspectral data, and to enhance the performance and robustness of the proposed , 

a'daptive classifier, in Chapter 5 an adaptive Bayesian contextual classifier based on the 

hlarkov random field is then developed. In this classifier, only interpixel class lable 



dependency context is considered. The joint prior probabilities of the classes of each 

pixel and its spatial neighbors are modeled by the Markov Random Field. The statistics 

estimation and classification are performed in a recursive mariner to allow the 

es'tablishment of a positive feedback process in a computationally efficient manner. 

All experimental results with the above three types of adaptive classifiers show 

that with a small training sample size, the statistics estimation can be enhanced, and 

classification accuracy can be improved iteratively. For most of experiments, the final 

classification accuracy can reach a close to optimal value. These classifiers can even 

o~~tperform a supervised Maximum Likelihood classifier with a large training sample 

size. 

6.2 Suggestions for Further Work 

Extension of the adaptive classification procedure: the general philosophy of 

this adaptive classification procedure is to improve classification performance iteratively. 

During each iteration, information from the classification outputs is extracted and then it 

is utilized to update the process before classification, i.e., re-extract f~eatures, re-estimate 

statistics, and classification is performed with updated information. Semi-labeled samples 

(c:lassification outputs) bridge the iterative process. Since semi-labeled samples contain 

pixtial class label information, they can be used wherever the training samples are used in 

the supervised classification process. The adaptive classification can, be combined with 

ally methods used in the steps of the classification process, i.e. preprocessing (Project 

Pursuit [41]), feature extraction (DBFE [42] and DAFE), subclass determination (LOOL 

[:!I). The key to successfully use of semi-labeled samples is to control their effect 

appropriately. 

Quantitative study on convergence of this adaptive classification procedure: 

from the experiments performed studied, we observed that the number of training 

samples for each class, the initial classification accuracy, and the number of semi-labeled 

samples for each class are the factors affecting the convergence rate and the final value of 

the classification accuracy. How these factors exactly determine convergence 

characteristics of this adaptive classification procedure is still open question. The study 



will provide valuable guidelines to use this adaptive classification procedure properly, 

and determine the minimum effort necessary from an analyst in terms of training sample 

selection. 
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Appendix A: Derivation of Fisher Information Matrix for Two Nornnal Distributions 

The Fisher information matrix expressed in Eq. (2.2) can be written as: 

Since the vector of unknown parameters is 0 = [p:,pllT, therefore: 

With p, = 0 and C, = C, = I,, the above can be simplified as: 

Also, in the canonical case under consideration, the subspaces 51, and Q, can be 
determined as: 



where 

If we define: 

X E ~ ,  e x ,  st 
X E ~ ,  e x ,  > t  

then we have: 



k3 = r,a2 + ( 1  - r,)(l-  a,) 
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