54 research outputs found

    Chaotic multi-objective optimization based design of fractional order PI{\lambda}D{\mu} controller in AVR system

    Get PDF
    In this paper, a fractional order (FO) PI{\lambda}D\mu controller is designed to take care of various contradictory objective functions for an Automatic Voltage Regulator (AVR) system. An improved evolutionary Non-dominated Sorting Genetic Algorithm II (NSGA II), which is augmented with a chaotic map for greater effectiveness, is used for the multi-objective optimization problem. The Pareto fronts showing the trade-off between different design criteria are obtained for the PI{\lambda}D\mu and PID controller. A comparative analysis is done with respect to the standard PID controller to demonstrate the merits and demerits of the fractional order PI{\lambda}D\mu controller.Comment: 30 pages, 14 figure

    Efficient and Accurate Optimal Linear Phase FIR Filter Design Using Opposition-Based Harmony Search Algorithm

    Get PDF
    In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems

    FIR Digital Filter and Neural Network Design using Harmony Search Algorithm

    Get PDF
    Harmony Search (HS) is an emerging metaheuristic algorithm inspired by the improvisation process of jazz musicians. In the HS algorithm, each musician (= decision variable) plays (= generates) a note (= a value) for finding the best harmony (= global optimum) all together. This algorithm has been employed to cope with numerous tasks in the past decade. In this thesis, HS algorithm has been applied to design digital filters of orders 24 and 48 as well as the parameters of neural network problems. Both multiobjective and single objective optimization techniques were applied to design FIR digital filters. 2-dimensional digital filters can be used for image processing and neural networks can be used for medical image diagnosis. Digital filter design using Harmony Search Algorithm can achieve results close to Parks McClellan Algorithm which shows that the algorithm is capable of solving complex engineering problems. Harmony Search is able to optimize the parameter values of feedforward network problems and fuzzy inference neural networks. The performance of a designed neural network was tested by introducing various noise levels at the testing inputs and the output of the neural networks with noise was compared to that without noise. It was observed that, even if noise is being introduced to the testing input there was not much difference in the output. Design results were obtained within a reasonable amount of time using Harmony Search Algorithm

    Digital IIR filters design using differential evolution algorithm with a controllable probabilistic population size

    Get PDF
    Version of RecordPublishe

    On Applications of New Soft and Evolutionary Computing Techniques to Direct and Inverse Modeling Problems

    Get PDF
    Adaptive direct modeling or system identification and adaptive inverse modeling or channel equalization find extensive applications in telecommunication, control system, instrumentation, power system engineering and geophysics. If the plants or systems are nonlinear, dynamic, Hammerstein and multiple-input and multiple-output (MIMO) types, the identification task becomes very difficult. Further, the existing conventional methods like the least mean square (LMS) and recursive least square (RLS) algorithms do not provide satisfactory training to develop accurate direct and inverse models. Very often these (LMS and RLS) derivative based algorithms do not lead to optimal solutions in pole-zero and Hammerstein type system identification problem as they have tendency to be trapped by local minima. In many practical situations the output data are contaminated with impulsive type outliers in addition to measurement noise. The density of the outliers may be up to 50%, which means that about 50% of the available data are affected by outliers. The strength of these outliers may be two to five times the maximum amplitude of the signal. Under such adverse conditions the available learning algorithms are not effective in imparting satisfactory training to update the weights of the adaptive models. As a result the resultant direct and inverse models become inaccurate and improper. Hence there are three important issues which need attention to be resolved. These are : (i) Development of accurate direct and inverse models of complex plants using some novel architecture and new learning techniques. (ii) Development of new training rules which alleviates local minima problem during training and thus help in generating improved adaptive models. (iii) Development of robust training strategy which is less sensitive to outliers in training and thus to create identification and equalization models which are robust against outliers. These issues are addressed in this thesis and corresponding contribution are outlined in seven Chapters. In addition, one Chapter on introduction, another on required architectures and algorithms and last Chapter on conclusion and scope for further research work are embodied in the thesis. A new cascaded low complexity functional link artificial neural network (FLANN) structure is proposed and the corresponding learning algorithm is derived and used to identify nonlinear dynamic plants. In terms of identification performance this model is shown to outperform the multilayer perceptron and FLANN model. A novel method of identification of IIR plants is proposed using comprehensive learning particle swarm optimization (CLPSO) algorithm. It is shown that the new approach is more accurate in identification and takes less CPU time compared to those obtained by existing recursive LMS (RLMS), genetic algorithm (GA) and PSO based approaches. The bacterial foraging optimization (BFO) and PSO are used to develop efficient learning algorithms to train models to identify nonlinear dynamic and MIMO plants. The new scheme takes less computational effort, more accurate and consumes less input samples for training. Robust identification and equalization of complex plants have been carried out using outliers in training sets through minimization of robust norms using PSO and BFO based methods. This method yields robust performance both in equalization and identification tasks. Identification of Hammerstein plants has been achieved successfully using PSO, new clonal PSO (CPSO) and immunized PSO (IPSO) algorithms. Finally the thesis proposes a distributed approach to identification of plants by developing two distributed learning algorithms : incremental PSO and diffusion PSO. It is shown that the new approach is more efficient in terms of accuracy and training time compared to centralized PSO based approach. In addition a robust distributed approach for identification is proposed and its performance has been evaluated. In essence the thesis proposed many new and efficient algorithms and structure for identification and equalization task such as distributed algorithms, robust algorithms, algorithms for ploe-zero identification and Hammerstein models. All these new methods are shown to be better in terms of performance, speed of computation or accuracy of results

    Artificial Immune Systems: Principle, Algorithms and Applications

    Get PDF
    The present thesis aims to make an in-depth study of adaptive identification, digital channel equalization, functional link artificial neural network (FLANN) and Artificial Immune Systems (AIS).Two learning algorithms CPSO and IPSO are also developed in this thesis. These new algorithms are employed to train the weights of a low complexity FLANN structure by way of minimizing the squared error cost function of the hybrid model. These new models are applied for adaptive identification of complex nonlinear dynamic plants and equalization of nonlinear digital channel. Investigation has been made for identification of complex Hammerstein models. To validate the performance of these new models simulation study is carried out using benchmark complex plants and nonlinear channels. The results of simulation are compared with those obtained with FLANN-GA, FLANN-PSO and MLP-BP based hybrid approaches. Improved identification and equalization performance of the proposed method have been observed in all cases

    Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes

    Wave-based sensor, actuator and optimizer

    Get PDF
    Programa doutoral em Sistemas Avançados de Engenharia para a Indústria (AESI)A presente tese explora a utilização de ondas para abordar dois desafios significativos na indústria automóvel. O primeiro desafio consiste no desenvolvimento de um sistema de cancelamento ativo de ruído (ANC) que possa reduzir os ruídos não estacionários no compartimento de passageiros de um veículo. O segundo desafio é criar uma metodologia de conceção ótima para sensores de posição indutivos capazes de medir deslocamentos lineares, rotacionais e angulares. Para abordar o primeiro desafio, foi desenvolvido de um sistema ANC onde wavelets foram combinadas com um banco de filtros adaptativos. O sistema foi implementado em uma FPGA, e testes demonstraram que o sistema pode reduzir o ruído não estacionário em um ambiente acústico aberto e não controlado em 9 dB. O segundo desafio foi abordado através de uma metodologia que combina um algoritmo genético com um método numérico rápido para otimizar um sensor de posição indutivo. O método numérico foi usado para simular o campo eletromagnético associado à geometria do sensor, permitindo a maximização da corrente induzida nas bobinas recetoras e a minimização da não-linearidade no sensor. A minimização da não-linearidade foi conseguida através do desenho (layout) das bobinas que compõem o sensor. Sendo este otimizado no espaço de Fourier através da adição de harmónicos apropriados na geometria. As melhores geometrias otimizadas apresentaram uma não-linearidade inferior a 0,01% e a 0,25% da escala total para os sensores de posição angular e linear, respetivamente, sem calibração por software. O sistema ANC proposto tem o potencial de melhorar o conforto dos ocupantes do veículo, reduzindo o ruído indesejado dentro do compartimento de passageiros. Isso poderia reduzir o uso de materiais de isolamento acústico no veículo, levando a um veículo mais leve e, em última análise, a uma redução no consumo de energia. A metodologia desenvolvida para sensores de posição indutivos contribui para o estado da arte de sensores de posição eficientes e económicos, o que é crucial para os requisitos complexos da indústria automóvel. Essas contribuições têm implicações para o desenho de sistemas automotivos, com requisitos de desempenho e considerações ambientais e económicas.This thesis explores the use of waves to tackle two major engineering challenges in the automotive industry. The first challenge is the development of an Active Noise Cancelling (ANC) system that can effectively reduce non-stationary noise inside a vehicle’s passenger compartment. The second challenge is the optimization of an inductive position sensor design methodology capable of measuring linear, rotational, and angular displacements. To address the first challenge, this work designs an ANC system that employs wavelets combined with a bank of adaptive filters. The system was implemented in an FPGA, and field tests demonstrate its ability to reduce non-stationary noise in an open and uncontrolled acoustic environment by 9 dB. The second challenge was tackled by proposing a new approach that combines a genetic algorithm with a fast and lightweight numerical method to optimize the geometry of an inductive position sensor. The numerical method is used to simulate the sensor’s electromagnetic field, allowing for the maximization of induced current on the receiver coils while minimizing the sensor’s non-linearity. The non-linearity minimization was achieved through its unique sensor’s coils design optimized in the Fourier space by adding the appropriate harmonics to the coils’ geometry. The best optimized geometries exhibited a non-linearity of less than 0.01% and 0.25% of the full scale for the angular and linear position sensors, respectively. Both results were achieved without the need for signal calibration or post-processing manipulation. The proposed ANC system has the potential to enhance the comfort of vehicle occupants by reducing unwanted noise inside the passenger compartment. Moreover, it has the potential to reduce the use of acoustic insulation materials in the vehicle, leading to a lighter vehicle and ultimately reducing energy consumption. The developed methodology for inductive position sensors represents a state-of-the-art contribution to efficient and cost-effective position sensor design, which is crucial for meeting the complex requirements of the automotive industry.I would like to thank the Fundação para a Ciência e Tecnologia (FCT) and Bosch Car Multimedia for funding my PhD (grant PD/BDE/142901/2018)
    corecore