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Abstract 

This research presents various intelligent optimisation methods which are: genetic 

algorithm (GA), particle swarm optimisation (PSO), artificial bee colony algorithm (ABCA), 

firefly algorithm (FA) and bacterial foraging optimisation (BFO). It attempts to minimise 

analogue electronic filter and amplifier circuits, taking a cascode amplifier design as a case 

study, and utilising the above-mentioned intelligent optimisation algorithms with the aim of 

determining the best among them to be used. Small signal analysis (SSA) conversion of the 

cascode circuit is performed while mesh analysis is applied to transform the circuit to 

matrices form. Computer programmes are developed in Matlab using the above mentioned 

intelligent optimisation algorithms to minimise the cascode amplifier circuit. The objective 

function is based on input resistance, output resistance, power consumption, gain, upper-

frequency band and lower frequency band. The cascode circuit result presented, applied the 

above-mentioned existing intelligent optimisation algorithms to optimise the same circuit and 

compared the techniques with the one using Nelder-Mead and the original circuit simulated 

in PSpice. Four circuit element types (resistors, capacitors, transistors and operational 

amplifier (op-amp)) are targeted using the optimisation techniques and subsequently 

compared to the initial circuit. The PSO based optimised result has proven to be best 

followed by that of GA optimised technique regarding power consumption reduction and 

frequency response. 

This work modifies symbolic circuit analysis in Matlab (MSCAM) tool which utilises 

Netlist from PSpice or from simulation to generate matrices. These matrices are used for 

optimisation or to compute circuit parameters. The tool is modified to handle both active and 

passive elements such as inductors, resistors, capacitors, transistors and op-amps. The 

transistors are transformed into SSA and op-amp use the SSA that is easy to implement in 

programming. Results are presented to illustrate the potential of the algorithm. Results are 

compared to PSpice simulation and the approach handled larger matrices dimensions 

compared to that of existing symbolic circuit analysis in Matlab tool (SCAM). The SCAM 

formed matrices by adding additional rows and columns due to how the algorithm was 

developed which takes more computer resources and limit its performance.   

Next to this, this work attempts to reduce component count in high-pass, low-pass, 

and all- pass active filters. Also, it uses a lower order filter to realise same results as higher 

order filter regarding frequency response curve. The optimisers applied are GA, PSO (the 
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best two methods among them) and Nelder-Mead (the worst method) are used subsequently 

for the filters optimisation. The filters are converted into their SSA while nodal analysis is 

applied to transform the circuit to matrices form. High-pass, low-pass, and all- pass active 

filters results are presented to demonstrate the effectiveness of the technique. Results 

presented have shown that with a computer code, a lower order op-amp filter can be applied 

to realise the same results as that of a higher order one. Furthermore, PSO can realise the best 

results regarding frequency response for the three results, followed by GA whereas Nelder-

Mead has the worst results. 

Furthermore, this research introduced genetic folding (GF), MSCAM, and 

automatically simulated Netlist into existing genetic programming (GP), which is a new 

contribution in this work, which enhances the development of independent Matlab toolbox 

for the evolution of passive and active filter circuits. The active filter circuit evolution 

especially when operational amplifier is involved as a component is of it first kind in circuit 

evolution.   In the work, only one software package is used instead of combining PSpice and 

Matlab in electronic circuit simulation. This saves the elapsed time for moving the simulation 

between the two platforms and reduces the cost of subscription. The evolving circuit from GP 

using Matlab simulation is automatically transformed into a symbolic Netlist also by Matlab 

simulation. The Netlist is fed into MSCAM; where MSCAM uses it to generate matrices for 

the simulation. The matrices enhance frequency response analysis of low-pass, high-pass, 

band-pass, band-stop of active and passive filter circuits. After the circuit evolution using the 

developed GP, PSO is then applied to optimise some of the circuits. The algorithm is tested 

with twelve different circuits (five examples of the active filter, four examples of passive 

filter circuits and three examples of transistor amplifier circuits) and the results presented 

have shown that the algorithm is efficient regarding design.  
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Chapter 1 

Introduction 

1.1 Introduction 

Electronics is a field in technology and physics concerned with circuit design using 

microchips and transistors, and with the movement and behaviour of electrons in a vacuum, 

semiconductor, conductor or gas. The application of electronics to human activities has 

become a part of life and almost all aspects of human endeavours required it for better 

functionality or productivity. Electronics is a very rapid growing industry because of its 

demand in a day-to-day application and the need to overcome some challenges facing the 

society. The objective of an electronics engineer is to design circuits that are smaller, faster 

and cheaper. Other objectives are: to reduce power consumption and increase system 

reliability. 

Electronics is growing on a daily basis and one of the latest advances is a terahertz 

(THz) transmitter [1]. Panasonic, the Japanese National Institute of Information and 

Communications Technology and Hiroshima University claim to have produced a terahertz 

(THz) transmitter capable of signal transmission of data at a per-channel rate of over 10 

Gbit/s through multiple channels at around 300 GHz. The technology is the latest 

development in wireless communication which can transmit data at rates ten times higher 

than existing technology allows [1]. 

Secondly, in the UK, a collaborative project for developing sensing technologies that 

monitor machined metal parts is ongoing [2]. The project brings together partners to integrate 

research and end users, Centre for Process Development (CPI), with the technology and 

industrial scale manufacturing, BAE Systems, Element Six, Advanced Manufacturing Ltd, 

The Advanced Manufacturing Research Centre, Printed Electronics Limited, DMG Mori 

Seiki and The National Physical Laboratory involved. The ‘Intelligent Tooling’ project is 

developing electronic components and embedded sensors within high-value machining 

usages in manufacturing sectors such as aerospace, automotive, rail, energy and marine. Part 

of the research team is aiming at designing and printing the electronic sensors, offering 

expertise toward integration of printable and conventional electronics [2]. Every day 
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electronic devices are changing in size; as such, there is a need for more research regarding 

electronics miniaturisation.   

1.2 Research Questions   

The world physical interpretation is analogue in nature that makes analogue circuits 

very vital in circuit design. Although the quantity of digital circuit design outnumbered that 

of analogue design, most digital circuit modelling requires the analogue module for 

interfacing to the external world. This thesis intends to combine disparate concepts in new 

ways to investigate a conventional circuit system optimisation. The research questions are:  

 Whether introducing the concept of component count reduction in passive and 

active filter circuits will reduce the size, power consumption and increase circuit 

reliability. 

 If there is an improvement on existing symbolic circuit analysis in Matlab 

(SCAM) whether its capacity (matrices dimension) will be enhanced to handle 30 

by 30 or more so that it can be used to simulate complex circuits. This is 

important especially when operational amplifier (op-amp) is involved as circuit 

component compared existing one that cannot handle matrices dimension more 

than eight by eight. The SCAM formed matrices by adding additional rows and 

columns due to how the algorithm was developed which takes more computer 

resources and limit its performance.   

 Whether combining the concepts: genetic programming (GP), genetic folding 

(GF), modified symbolic circuit analysis in Matlab (MSCAM) and automatically 

generated Netlist for the evolution of passive and active filter circuits will aid to 

develop an independent Matlab toolbox. The simulator uses only Matlab compare 

to existing GP which combine Matlab and PSpice.  

Power consumption in electronic circuit designs has been a source of concern for 

engineers because of its effect on the environment. The more a system is complex, the less 

reliable it would be or in other words, the fewer the elements in a system, the greater the 

reliability of the system. Electronic circuit’s minimisation increases system reliability, 

reduces power consumption and reduces component count and size. Also, optimisation can be 

used to vary component values if the desired component values are not available in a 

developing country where some component values seem to be a problem. 
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The process of converting electrical circuit into its equivalent matrices requires 

tedious mathematical computation. Because it is a human method, it is also prone to error or 

may take longer time and each circuit has to undergo the same process each time a circuit has 

to be solved. Instead of combining two platforms (PSpice and Matlab) for electronic circuit 

simulation, only Matlab is used in this research to develop an algorithm for the evolution of 

filter circuits. This reduces elapsed time used for transferring the simulation to and from the 

two packages, and can also serve as a useful tutorial on how to use GP in Matlab to design 

analogue circuits. Simulation programme with integrated circuit emphasis (Spice) is also 

known as PSpice and the latter is used throughout the thesis. 

 1.3 Circuits Optimisation 

A circuit optimisation is a process of finding the best or an alternative design for 

existing electronic circuits. Circuit optimisation helps to reduce component count, cost, size 

and increases system reliability in circuits. There have been advances in analogue circuit 

optimisation. Among such advances in recent time is the introduction of a look-up table 

(LUT) based analogue design automation. The LUT algorithm is used to extract circuit 

parameters from complex physics-based models of transistor used by PSpice [3]. 

1.4 Motivations 

The motivation of this research is centred on the fact that most optimisation packages 

are expensive, not independent, not flexible, and not open access. Therefore, this work is 

motivated to develop a standalone optimisation algorithm that is flexible, open source and 

less expensive because only one simulator is required. The Matlab toolbox uses only Matlab 

software compare to existing GP which combine Matlab and PSpice software packages which 

will reduce payment of subscription to two software. 

 1.5 Aim and Objectives 

The overall aim of this piece of research is to embark on analogue electronic circuit 

optimisation in terms of component count reduction, improve on existing algorithms and to 

develop a toolbox or an independent algorithm that can be used as a tutorial in Matlab for 

circuit evolution.  

 This research objective is to survey optimisation methods to identify the best 

method and use it to optimise analogue circuit. 
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 This work intends to search for independent optimisation techniques if any and 

possible improvement if any.  

 Lastly, one of its objectives is to develop an automated independent optimisation 

algorithm for electronic circuit evolution without combining with other packages.  

 1.6 Thesis Contributions 

To the best of my knowledge regarding this research and since most of my 

contributions to knowledge or the ideas have been published by me, several findings from the 

research are considered significant. The following summarises the main contributions of this 

research: 

 The work presents genetic algorithm (GA), firefly algorithm (FA), bacterial 

foraging optimisation (BFO), artificial bee colony (ABC), and particle swarm 

optimisation (PSO). These algorithms are used because there are intelligent 

methods to justify the research topic. Analogue electronic circuits are optimised 

using cascode amplifier by applying all these artificial intelligent algorithms for 

the purpose of identifying the best algorithm. 

 The research attempts to reduce component count in high, low, and all pass active 

filters. Also, a lower order filter is simulated to achieve the same results as that 

simulated with higher order ones as regards their frequency response. 

 Modified Matlab symbolic circuit analysis and simulation tool that generates 

matrices that make use of Netlist from PSpice are presented. The matrices can be 

applied to calculate circuit components or for optimisation. 

 The research introduces the use of GF, MSCAM and GP for the evolution of 

active and passive filter circuits. Instead of combining PSpice and Matlab in 

electronic circuit simulation, the work only used Matlab. This reduces elapsed 

time use for transferring simulation between the software packages and reduces 

cost of subscription. 

 1.7 Thesis Overview 

This thesis is comprised of seven chapters. Chapter 1 (this chapter) which is made up 

of the following sections: introduction, research questions, circuit optimisation, motivations, 

aim & objectives, thesis contributions, thesis overview and list of publications. The 

remaining chapters of the thesis are briefly described below: 
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 In Chapter 2, a detailed background theory, literature survey, the concept, principle 

of inspiration of various evolutionary algorithms and artificial intelligent methods are 

presented. The developer and the period in which the algorithms were developed are also 

stated and some area applied. 

Chapter 3 describes MSCAM and its applications in an electronic circuit simulation 

are illustrated. It improves on existing SCAM so that the developed algorithm can handle 

matrices dimension more than a matrix size of eight by eight. 

Chapter 4 presents circuit optimisation. One circuit is used as an example to 

implement five different artificial intelligent methods (GA, FA, BFO, ABCA, and PSO) with 

a sole aim to determine the best method among them. 

In Chapter 5, the use of GF, MSCAM, GP and automatically generated symbolic 

Netlist to develop an independent algorithm is presented. The benchmark testing of the 

developed algorithm for its efficiency with four mathematical functions is implemented. The 

algorithm evolved the expression in the form of tree structure illustrated in the chapter. 

In Chapter 6, application of EA in analogue circuit evolution as an evolvable 

hardware (EH) is described. The chapter emphasises the use of GF, MSCAM, GP and 

automatically generated symbolic Netlist for the evolution of analogue circuit such as low-

pass, high-pass, band-pass and band-stop for both passive and active filter circuit. In other 

words, the developed algorithm in Chapter 5 is modified and applied in analogue circuit 

evolution. 

Chapter 7 is the conclusions and future work. It illustrates deduction based on results 

& discussion and possible future work.  

1.8 List of Publications 

The highlights of the publications are: 

Conference Papers/Posters 

 O. J. Ushie and M. F. Abbod, ''Intelligent Optimization Methods for Analogue 

Electronic Circuits: GA and PSO Case Study," International Conference on 
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Machine Learning, Electrical and Mechanical Engineering (ICMLEME'2014), on 

Jan. 8-9, 2014 Dubai (UAE), pp. 193-199, 2014. 

 O. J. Ushie ''Intelligent Minimisation Methods for Analogue Electronic Circuits 

Using PSO and GA," Brunel University Research Student Conference, 11 – 12 

March, 2014. 

 O. J. Ushie ''Intelligent Minimisation Methods for Analogue Electronic Circuits 

Using PSO and GA," School of Engineering and Design Research Student 

Conference, Brunel University London, 23 – 26 June, 2014. 

Journal Papers 

 O. J. Ushie, M. F. Abbod, E. C. Ashigwuike and S. Lawan, “Constrained 

Nonlinear Optimization of Unity Gain Operational Amplifier Filters Using PSO, 

GA and Nelder-Mead’’ The International Journal of Intelligent Control and 

Systems (IJICS), vol. 20, pp. 26-34, 2015. 

 O. J. Ushie, M. Abbod, and E. C. Ashigwuike, “Naturally Based Optimisation 

Algorithm for Analogue Electronic Circuits: GA, PSO, ABC, BFO, and Firefly a 

Case Study,” Journal of Automation and Systems Engineering (JASE), vol.9 issue 

3, pp 173-184, 2015       

 O. J. Ushie, M. F. Abbod,   and E. C. Ashigwuike, “Matlab Symbolic Circuit 

Analysis and Simulation Tool using PSpice Netlist for Optimization,” 

International Journal of Engineering and Technology Innovation vol. 5, pp. 75-86, 

2015. 

 O. J. Ushie, M. Abbod, and Brian E. Usibe, “Genetic Folding/Programming 

Toolbox: Analogue Circuit Design Case Study,” Journal of Automation and 

Systems Engineering (JASE), vol.10 issue 1, pp 40-64, 2016 

 O. J. Ushie, M. F. Abbod, and Julie C. Ogbulezie, “The Use of Genetic 

Programming to Evolve Passive Filter Circuits” International Journal of 

Engineering and Technology Innovation, (submitted 13/01/2016 under review).        

 O. J. Ushie, M. F. Abbod, and E. C. Ashigwuike, “Evolution of Active Filter 

Circuits Design Using Genetic Programming” International Journal of Electronics 

and Communications, Elsevier (submitted 19/05/2016 under review).   

http://www.ezconf.net/index.php?co_id=25&mo_id=0&PHPSESSID=2bd23eff560ad1149436c80794310e6e


  
7 

  

Chapter 2
1
 

Literature Review 

2.1 Introduction 

Optimisation is a process of finding an optimal solution for a model [6]. As long as 

the society continues to exist, the need to improve its standard of living will also continue. 

Societal problems arise from a diverse field such as engineering, manufacturing, finance, 

music, medicine, computational art, chemistry and physics. The desire to obtain the best 

solution is faced in day-to-day life and cannot be overemphasised. Optimisation is applied in 

our everyday activities to minimise or maximise something. An organisation minimises cost, 

maximises profits and maximises performance. Tourists maximise their enjoyment to a 

minimal cost during a holiday. 

This chapter surveys various intelligent optimisation techniques applied in this 

research to optimise analogue electronic circuits. The methods surveyed are: GA, GP, GF, 

PSO, FA, ABCA and BFO.  

2.2 Artificial Intelligence 

Artificial intelligence (AI) which is the study of computer techniques that emulate 

aspects of human intelligence or writing computer programmes that emulate the behaviour of 

organisms to solve a problem [7]. It can also be defined as the enterprise of constructing a 

physical symbols system that can reliably pass the Turning test [8]. Turning test was named 

after a famous man who was working as a director of programming at Manchester University, 

who contributed to artificial intelligence. Turning developed a concept known as ‘Turning 

test’. The test involves a person communicating through teletype with an unidentified party 

that might be either a computer or another person. If the computers at the other destination 

response in a humanlike way, it may fool the person into thinking it is another human [9]. AI 

involves three things: knowledge representation, search and application of these ideas. 

Search is the process of solving a problem where the basic technique or method being 

applied involves examining many possibilities while finding a solution. Planning for 

                                                           
1
 Majority of Chapter 2 has been published in [4, 5]. 
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Christmas vacation involves search. One may decide to visit wife’s family, one’s family or 

travel to the US. If one decides to travel to the US, one may search for a flight, may rent a car 

or a hotel and so on. The knowledge representation in AI involves the research studies of the 

problem to find a language to encode the ideas so that the computer can use it. Knowledge 

representation and search form the core of the AI. The application involves natural language 

processing and vision [9].   

 The optimisation methods are developed based on the behaviour of organisms that are 

translated into algorithms. These algorithms are applied to write computer programmes to 

optimise the analogue circuits and used for other applications mentioned in the introduction 

of this chapter. Classification of the algorithm gives a clear understanding on how to analyse 

it and how it works. Algorithms that apply similar problem-solving technique can be grouped 

together.  Algorithm can be labelled or classified as: 

 Deterministic versus randomised: Deterministic algorithms yield on a given set of 

input the same results and always follow the same computational steps. On the other 

hand, randomised or stochastic algorithm has some randomness introduced by random 

function. Solutions in the population are always different each time the programme is 

run due to the random function. Although the final results may be of no big 

difference, the path of individual is not repeated on the same input. The randomised 

algorithms have the effect of disturbing the input, easy to implement and superior to 

deterministic regarding runtime [10]. 

 Offline versus online: online algorithms do not know their input initially, but the input 

is supplied online; an example of an online algorithm is ski, whereas offline 

algorithms know their input at the beginning [10]. 

 Exact versus approximate versus heuristic versus operational: Exact algorithm aims at 

computing an optimal solution given such a specified goal. Often, it is quite expensive 

regarding memory, run time and not possible for large input. Approximation algorithm 

aims at computing the solution that is never worse than a factor or guaranteed factor 

worse than optimal solution example travelling salesman problem. Heuristic 

algorithms find the optimal solution without providing a guarantee which they always 

do. The operational algorithm does not optimise the objective function but chain a 

sequence of computational operations directed by expert knowledge, for example 

ClustalW [10].  
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 Other classes of algorithms according to the main concept are listed as: divide and 

conquer algorithms, greedy algorithms, simple recursive algorithms, dynamic 

programming algorithms, backtracking algorithms, and branch and bound algorithms 

[10]. 

2.3 Evolutionary Computing 

An algorithm is defined as any well-defined computational process that takes a set of 

values or some values as input and yield set of values or some values as output. In other 

words, an algorithm is a series of computational steps that change the input into output [10]. 

An algorithm is referred to be correct if, for every set of input instance, it produces the 

correct output as solution. It can be detailed as a hardware design or even as in English as 

computer code. The only condition is that the description must provide precise steps of the 

computational process to be followed. An optimisation algorithm is the process that is 

executed iteratively and also involves comparing of various solutions till a satisfactory or an 

optimum solution is found [11].  

An evolutionary algorithm (EA) has been in use for the past decades for the provision 

of solutions for many engineering and computer science problems. The EA is classified into: 

GA [12], GP [13], GF [14], evolutionary programming (EP) [15], evolutionary strategies 

(ES) [16], gene expression programming (GEP) [17] and differential evolution (DE) [18, 19]. 

The following operations are involved while considering evolutionary computing: encoding, 

initialisation, fitness, selection, operators and termination. 

2.3.1 Encoding 

Encoding is the process of representing strings of genes called potential solutions 

(individuals as in GA whereas particles as in PSO). GA encodes potential solution typically 

in a form of a real string or a form of a fixed-length string of binary numbers [20]. PSO 

represents its potential solution known as particles in a form of a fixed-length of real-valued 

vector or a form of a real string or a form of a fixed-length string of binary numbers. GP 

represents its potential solutions in a form of a variable-sized of tree structure (TS) of values 

and functions [21]. The encoding process is dependent on the types of technique to be used 

and the problem involved. 
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2.3.2 Initialisation 

Initialisation of a set of a population size is a first step in the EA. Each population has 

a number of particles or individuals, encoding sets and parameters. It is important to specify 

how many individuals or particles the population has. A small population size may converge 

too quickly. It is better that the first population size specification should have a large number 

of individuals or particles to be able to explore the whole search space that may consume the 

memory resources and time. Therefore, other genetic parameters and the population size are 

chosen carefully.  

2.3.3 Fitness 

In EA, the fitness function of an individual is the measured value of an objective 

function that provides a measure of how well individuals have performed in a problem space. 

In calculating fitness, the particle or individual has to be first decoded, evaluated and then 

determine how well it has performed as regard objective function. Therefore, each individual 

or particle is evaluated depending on how well the particle or individual is closed to the 

optimal solution called fitness value. These values guide the search to direct the individuals 

or particles toward an optimal solution. The thesis makes use of the error that is the RMS 

value of the difference between the objective function and the evolving function within a 

frequency range.  

2.3.4 Selection 

GA uses the best solution (solution with high fitness) to pass to the next generation 

called a selection of the fittest [11]. Selection method determines the number of trials or times 

an individual is selected for reproduction. In other words, it determines which and how many 

parents to be chosen, how many offspring to create, and which individuals will be swapped 

with the next generation. The most widely used method is roulette wheel method. It gives 

each individual its fitness value and depending on these values, a chosen individual will 

survive to the next generation. 

2.3.5 Operators 

The operators are mutation and crossover. 
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2.3.5.1 Crossover 

It is the process of swapping parts of solution(s) with another in chromosomes with 

the purpose of mixing the solution [11]. Crossover is the procedure of taking two 

chromosomes and using them to reproduce new offspring. After the selection, the population 

is made up of better individuals. Selection does not create new ones. Crossover operator is 

applied to the search domain with the hope of creating good offspring or the main task is to 

mix the solutions. Crossover involves three steps: 

a. Two pairs of chromosomes for the mating are randomly selected. If two parents (A, B) 

are being selected: 

00100/00101110101 (B) 

10101\00101101010 (A) 

b. The crossover point is created at random along the chromosome length. For a one-point 

crossover as in this case, the random point is = 5, the head is the left part of the cross 

point and the remainder is the tail. The swap parts take the form to create new offspring: 

Head (B) | Tail (A) = e; 

Head (A) | Tail (B) = f; 

c. Finally, the chosen parts are replaced between the two chromosomes (A, B) depending 

on the cross point and connected again by (|) operator as follows:  

0010000101101010 (e) 

1010100101110101 (f) 

Crossover operator proceeds if the two parents have a percentage for the mating less than 

the probability value Pc. However, the Pc value is known as the crossover rate that 

depends on either an adapted value or a fixed value. 

2.3.5.2 Mutation 

It is the process of changing parts of solution randomly, thereby increasing the 

diversity of the population and avoiding the algorithm to converge to local optimum [11]. 

Crossover exploits the newest solution to finding better ones, whereas mutation explores the 

entire search domain. The mutation operator is introduced to avoid early convergence to local 

optima by randomly sampling new points in the search domain. The mutation rate is 

represented as Pm. The mutation operator process as follows: 

101011(B) 
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100001(b) 

Notice only two genes have been changed 3rd, 5th. 

2.3.6 Termination 

The termination condition is the number of generations the algorithm should run or 

certain conditions the algorithm should satisfy before it stops. 

2.4 Evolutionary Algorithm Classification 

EA are globally oriented, straightforward to apply in problems where there is little or 

no knowledge about the solution to the problem. Because EA is random in nature and it needs 

no derivative information, it is able of searching in the solution domain with greater 

possibility of locating the global solution. Among the EA mentioned in Section 2.3, the 

review will only cover GA, GP and GF which are used in this research.  

2.4.1 Genetic Algorithm 

GA was developed by John Holland and co-workers in the 1960s and 1970s; it applies 

the Charles Darwin's theory of evolution based on survival of the fittest. Holland was the first 

to use selection, mutation, recombination and crossover in the study of an artificial system 

[11]. GA is a population–based stochastic technique that makes use of the principle of 

survival of the fittest to produce a better solution [22]. Individuals in the population are 

encoded accordingly as strings.  After the decoding, the fitness is evaluated which serve as 

criteria for selection of pairs of individuals for the next reproduction. During iteration, 

individuals are selected for reproduction according to their performance in the problem 

domain evaluated from fitness. GA operators are: selection, mutation, and crossover 

discussed above. 

GA has many advantages over traditional optimisation algorithms. The most famous 

two are parallelism and ability to deal with complex problems. GA can handle various types 

of optimisation, whether objective function is stationary or changes with time (non-

stationary), continuous or discontinuous linear or nonlinear, or with random noise. Offsprings 

in the populations behave like independent elements, makes the population explore the search 

domain in many directions simultaneously. Different groups of encoded strings and different 

parameters can be implemented or manipulated at the same time, making GA parallelism. In 



  
13 

  

summary, GA has some advantages over traditional optimisation algorithms, and one of them 

is its ability to handle complex problems and parallelism. Its disadvantages include: setting its 

right parameters (mutation, crossover and selection criteria), formulation of population size, 

and proper fitness function [11]. Also, it is time-consuming because GA requires many 

generations to converge to a solution and large population sizes.    

The GA is summarised as follows: 

a. Formulate an objective function 

b. Encode a solution into strings  

c. Generate an initial population  

d. Evaluate the individual’s fitness in the population with regard to the objective 

function 

e. Specify GA parameters (crossover, mutation, generation and population size) 

f. Perform crossover with probability PC  

g. Perform mutation with probability Pm 

h. Select elite for the next generation  

i. Update generation 

j. End according to criteria 

GA is popular among EAs. Application of genetic learning for a combinational logic 

design that has a case-based memory of past problem-solving attempt that learnt to improve 

the quality of the result for similar design problems is explained in the paper [23]. The 

algorithm is applied to parity checker and the presented result has improvement. Zarifia et al. 

[24] introduced a GA method for neural spike detection. The new approach solves the 

problem of vulnerability to noise, human intervention and lengthy training by conventional 

methods of spike detection. Bechouat et al. [25] compared PSO and GA as different 

approaches for selection and generation of duty cycle to obtain the maximum power in 

photovoltaic system. Furthermore, the extension of GA and its use to improve circuit’s 

parameters is presented [26]. An automated combinational and digital circuit design using 

GA is presented [22, 27-29]. 

It has been successfully applied to automate the process of analogue circuit design 

[30-32]. Taherzadeh-Sani et al. [33] presented a method for determining the sizes of devices 

in analogue IC using GA. The efficiency of the GA using the approach is illustrated by the 

authors; they demonstrated how GA can be used for selection of the best device sizes in 
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analogue circuits. Some useful guidelines for automated design of analogue circuit by 

performing evolutionary operations are discussed [34]. Besides GA application to optimise 

active filter design using electronic work bench (EWB) is presented by Al-Azawi and Abdul-

Whab [35]. They stressed the need for component count reduction, especially in op-amp 

which consumes power, and further emphases that it also reduces cost of design. Also, the 

paper shows how GA solves complex problem easier as compared to traditional optimisation 

method. The authors claim GAs to be the best solution. This research compared GA and PSO 

in component count optimisation and concluded that PSO is the best technique suitable as 

regard result presented. GA uses to optimise component values selections in references [36-

38]. Results presented show a low design error as a result of freedom of component selection 

allowed by GA and reduces mathematical computation of transfer function.  

A modified GA kernel for efficiency improvement on the analogue IC design cycle is 

illustrated [39]. Furthermore, competitive co-evolutionary DE (CODE), a new algorithm with 

practical user-defined specifications is proposed to design analogue ICs [40].  A directly 

performance-constrained template-based automatic layout is retargeting and optimisation for 

analogue ICs is presented in [41]. In addition, a new CMOS wideband low noise amplifier 

with gain control is proposed [42]. Besides, a new approach to an optimal analogue test 

point’s selection is analysed [43]. Furthermore, simulation-based approach in which the 

simulator and the search algorithm are being optimised for analogue circuit synthesis is 

illustrated [44]. 

2.4.2 Genetic Programming 

GP is the newest concept in the research area of evolutionary computation (EC). It 

was created by John Koza and originated from the GA. GP differ from GA in that, GP is 

represented by variable length tree structures containing whatever elements that are needed to 

solve the problem, whereas GA is represented by a fixed length of numerical strings. The TS 

in GP population is popular because it is used to create neural networks, determine designs 

for analogue electric circuits and parallelise computer programmes. The TS is great because it 

can produce solutions of complexity and arbitrary size, as opposed to GA with fixed-length. 

GP has been used successfully in a different number of applications: arts and entertainment, 

biology and bio-information, medicine, time series prediction, control, modelling and 

regression image and signal processing. In GP, a population is randomly created and each 

individual in the population is evaluated to ascertain its fitness that serves as selection 
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criteria. The best individual is selected and reproduced, mutated or crossover with other 

individuals to produce new individuals for the next generation [21, 45-47].   

In preparation for implementing GP according to Kennedy and Eberhart [48], five 

steps are involved: 

1. State the function set  

2. State the terminal set. 

3. State the fitness measure. 

4. Select the system control parameters. 

5. State the terminal conditions. 

The function set is limited by programming language used to run the GP. The function 

set includes mathematical functions (cos, sin, tan, exp, etc.), arithmetic operators (+, -, x, #, /, 

etc.), Boolean operators (AND, OR, NOT, NOR, etc.). The terminal sets composed of 

variables and constants; for example, in circuit evolution, it comprises of resistors, capacitor, 

inductors transistor, diode, op-amps, etc. A fitness measure is often chosen to be inversely 

proportional to an error produced by programme output or it may be the score of programme 

achieves in as regard objective function. The two major control parameters are the maximum 

number of generations and population size. Others parameters used are crossover probability, 

reproduction probability and mutation. The termination conditions may be the maximum 

number of generation or if the objective function is achieved. 

The GP algorithm; according to Koza [46], is based on the three steps: 

1. Generate a random population composed of the original function and termination 

criteria for the problem. 

2. Perform the following sub-steps iteratively until the termination criteria are reached: 

(a) Each programme in the population is executed such that a fitness measure that 

specifies how well the problem is solved is clearly formulated. 

(b) New population is created by selecting individual(s) with probability based on 

fitness and then these operations are applied: 

(i) Reproduction: Copy existing individual to the new population. 

(ii) Crossover: Two individuals are created for the new population by 

randomly recombining chosen parts of two existing individuals. 

3. The single best individual in the population produced while the run is taken as the 

result.  
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A basic introduction to GP that specify how you can create: an individual using 

terminals and functions, random population using full, grow and ramped-half-and-half is in 

[49]. The paper also described GP operators and how to evaluate fitness. GP Matlab toolbox 

that illustrates how it can be represented using Matlab is in [50, 51]. GP algorithms have been 

applied in different areas: Balasubramaniam and Kumar have used GP as a novel approach to 

finding a solution to matrix Riccati differential equation for a non-linear singular system. The 

goal is to reduce calculation effort and results presented show that GP approach is better 

regarding accuracy as compared to the traditional Runge-Kutta method [52]. Other 

applications include: GP application in area of software repairs are in [53, 54], while a fully 

automated technique to locate and repair bugs in software is illustrated [53]. Also solving 

iterated functions using GP is in [55]. GP- based feature optimiser integration with patter 

recognition and fisher criterion methods to non-intrusive load supervising for load 

identification is illustrated [56]. 

GP has been applied to automatically synthesise similar human designs in a number of 

fields. These include: analogue electrical circuit, antennas, mechanical systems, controllers, 

quantum computing circuits, optical lens system, bioinformatics, robotics, sorting networks, 

assembly code generation, scheduling and software repair. Others are: communication 

protocols, empirical model discovery, reverse engineering and symbolic regression. 

According to the authors, despite differences in the techniques and representations, results 

presented shared common features [45, 47]. Hou et al. [57] presented GP based on the tree 

representation for a passive filter synthesis and the results presented show that their method 

can generate both economical and compliant passive filter circuits. The paper also specifies 

how the authors intended to add more design objectives such as component value sensitivity 

and group delay variation to be considered in their future work.  Chang et al. applied the 

same technique as that of Hou et al. and claimed that their technique is better with regard to 

its efficiency compared to traditional technique and faster than previous work [58]. 

2.4.3 Genetic Folding 

The GF is a class of EA based on numbers of genes structurally organised in order of 

linear numbers separated by dots [14]. GF is one of the classes of EA based on a generic 

meta-heuristic optimization technique. The main aspect of the GF algorithm is a population-

based methodology motivated by biological evolution. GF imitates the Ribo Nucleic Acid 

(RNA) secondary structure folding procedure of the complementary bases on itself.   
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2.4.3.1 The RNA Alphabet 

All organisms on the earth contain one trillion genes that have a complex mission and 

function to accomplish. Gene is made up of deoxyribo nucleic acid (DNA [59]. The 

information carried in DNA consists of thousands of genes. The significant genetic 

information that DNA contains influences the function of cells. DNA is made up of 

nucleotide units that consist of three components: a deoxyribose sugar, a phosphate and a 

base. The main unit of a genetic code is the base pair. A base pair consists of two nucleic acid 

bases, which are chemically bonded. DNA has four different bases: adenine (A), guanine (G), 

cytosine (C), and thymine (T). The links of four types of bases are: CGTA  , . The amino 

acid is formed by combined DNA base pairs. Sequences of amino acids are assembled into 

functional proteins or RNA. RNA is another group of nucleic acids whose function is for 

protein synthesis, information carrier from DNA to ribosomal sites of protein in a cell [119]. 

The four different bases are adenine, cytosine, guanine, and uracil abbreviated as A, C, G, 

and U, respectively. The bases are linked to each other in RNA thus: CGUA  , . This 

idea is applied in genetic folding. 

2.4.3.2 The Folding Language 

As illustrated above, RNA sequences are folded with complementary bases. In GF, 

the arrangement of chromosomes is understood in terms of the folding procedure. Figure 2.1 

demonstrates a simple idea of GF language for the expression sin ((a* b) + (c-d)) that mimics 

the same process of the RNA folding to be represented in the secondary structure: 

 

Figure 2.1: The folding language. 

The outcomes in each operation are signified by indices to be applied later. Index one 

is the outcomes of sin (4+3) which is referred to as index ‘4’ and ‘3’. However, the operator 

‘sin’ is the addition of the subtraction in index ‘3’ and the multiplication of index ‘4’. In 

Figure 2.1 the reading process is from down to up and the overall result is indexed number 

one. In GF representation, the chromosome comprises of a simple floating string of genes 

whereas the gene pool comprises of multiple complexes of genes.  
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2.4.3.3 Genetic Encoding 

The TS representation is helpful to explain the encoding and decoding process of the 

GF algorithm. The elements in the TS can be easily calculated in a recursive manner. For 

example, equation (2.1) can be encoded in GF as: 

)()( srqp                                        (2.1) 

The TS diagram for expression in (2.1) is represented in Figure 2.2 

 

Figure 2.2: TS diagram for equation 2.1. 

The TS expression view like (from top to down and from left to right): 

pqrssqrt                           (2.2) 

The expression in equation (2.2) is read as the following road map:  the “sqrt” is one 

operand operator with the value (minus) as an input value. Then the minus operator is a two 

operands operator with two values (× and +); the multiplication operator is a two terminals 

operator that have two values (p and q), and the plus operator is a two terminals operator that 

have two values (s and r). Two steps involved in representing equation (2.2) using GF is as 

follows: 
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Step 1) all elements are given a position number in order 

     srqpsqrt   

        1       2       3        4      5       6       7       8 

Step 2) elements are folds over their complementary location genes: 

       2.0    3.4   5.6    7.8   0.5    0.6    0.7   0.8 

The GF in equation (2.2) begins with the operator “sqrt” (position 1) and ends with 

the element “s” (position 8). The “sqrt” operator (position 1) calls the “minus” operator 

(position 2). The “minus” operator has in the left child (LC) (position 3) the “multiplication” 

operator and in the right child (RC) (position 4) the “plus” operator. The “multiplication” 

operator (position 3) has the terminals (p and q) in the LC and RC respectively. The “plus” 

operator (position 4) has the terminals (s and r) in the RC and LC respectively. The indices of 

the element’s positions are used to represent terminals.  

2.4.3.4 Genetic Decoding 

The decoding process in GF is a reverse technique of encoding GF. The decoding 

technique requires two steps to be followed: 

Step 1) use the value of the genes to call the next gene to be read  

                    2.3    4.5     6.7    0.4     0.5   0.6     0.7   

  Step 2) substitute each gene’s position with its appropriate operator 

                      dcba  

                       1       2         3         4       5        6        7 

The diagram in Figure 2.3 shows the representation of GF chromosomes in the TS diagram:  
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Figure 2.3: TS diagram for genetic decoding illustration. 

 Drawing the GF chromosome in the TS diagram starts with the gene in the position 

“1”. Position “1” has the minus operator with two values (LC.RC). Starting with the LC 

refers to position “2”. Position “2” is the “multiplication” operator with two values (LC.RC). 

The LC refers to position “4” which has a value “0.4” value refers to “a” which is a terminal 

value. The RC value refers to position “5”. Position “0.5” value refers to “b” a terminal value.  

RC refers to position “3”. Position “3” is the “plus” operator with two values (LC.RC). The 

LC refers to position “6” which has a value “0.6” value refers to “c” a terminal value. The RC 

value refers to position “7”. Position “0.7” value refers to “d” a terminal value.   

2.5 Swarm Intelligence Optimisation Methods 

Swarm is defined as a population of interacting individuals or particles that is able to 

optimise certain global objective through cooperative search of domain. Social behaviour of 

animals is applied to develop an algorithm to solve problems in the society. Individual 

amongst the group relates so that the problem is better solved than just each individual 

contribution. The problem-solving behaviour that develops from the communications 

amongst swarm of specious is called swarm intelligence (SI) [48]. The inspiration comes 

from social insects such as termites, ants, wasps, bees, schools of fish and flocks of birds.  

Some of SI optimisation methods are: PSO, FA, ABCA and BFO. 

2.5.1 Particle Swarm Optimisation 

PSO is a population-based random optimisation method developed by Kennedy and 

Eberhart 1995 [60]. It is inspired by a social behaviour of a school of fish or flock of bird. 

Compared to GA, PSO has no genetic operators such as mutation, reproduction and crossover 

but dynamically adjusts its velocity.  Also, PSO has fewer parameters compared to GA and 
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does not implement survival of the fittest. In PSO, potential solutions are flown or moved in 

search of the needed solution in the problem space and each particle is updated in the process. 

The particles as a whole are referred to as swarm. Suitable parameter selection guide, detailed 

PSO algorithm and improved PSO algorithm with leadership; during exploration search, a 

particle is selected as a leader to guarantee that the swarm converges rapidly to the global 

optimum solution [60-62]. PSO has been used for combinational logic circuits design [63-

69]. Also PSO applications and comprehensive survey is presented in [70]. Furthermore, a 

proposed PSO-based dynamic rounding-off (DRO) technique; which serves an improvement 

on the existing DRO technique is in [71]. 

Some studies on the use of PSO in analogue circuit designs are as follow: In power 

electronics circuits (PECS), PSO technique is used for design and optimisation of PECs with 

no mathematical analysis required. To enhance population diversity, a simple mutation 

operator is introduced into PSO. Results presented demonstrate the efficiency of PSO 

approach in terms of high global search capability, easy implementation and fast convergence 

[72]. It is used to improve analogue circuit performance and optimal design of analogue 

circuits using a PSO technique as in [73, 74]. The emphasis is on PSO suitability to solve 

both single-objective and multi-objective discrete optimisation problem. Furthermore, the 

usage of PSO in microwave amplifier; the PSO technique used to a single stage amplifier 

circuit to obtain the best-optimised result in the design in terms of desired low noise and 

desired gain [75, 76]. Also, PSO application for design of analogue circuits as regard device 

sizes. Results presented show that PSO method is promising and accurate approach in 

determining components sizes in an analogue circuit [77]. In addition, the automated discrete 

component selection of values of capacitor and resistor for analogue active filter synthesis 

using the craziness-based PSO (CRPSO) is discussed in [78]. A new variant of Human 

behaviours based PSO (HBPSO) is presented and applied in circuit design for optimisation of 

switching functioning of inverter circuit [79]. Other applications of PSO in circuit 

optimisation are illustrated [80-82]. Also, Vural and Yildirim [83] used PSO in analogue 

active filter to select component values. The work is aimed at optimising overall design error 

of fourth-order Butterworth low-pass active filter. The same circuit is analysed by the same 

authors applying PSO, ABCA, GA, in which their performances are evaluated [84].  

The first application attempt in the use of swarm intelligence to formulate an optimal 

power flow problem that consider controllable and uncontrollably distributed generator in 
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power networks is presented in [85]. The use of adaptive PSO based on clustering that solve 

the problem of PSO algorithm being trapped into local optima while solving complex 

multimodal function optimisation problems is given in [86]. Despite all these studies, there is 

no research that attempts to optimise an operational amplifier filter circuit in terms of 

component count reduction that this work intends to address. 

2.5.1.1 PSO algorithm 

 The following steps are involved while using PSO. 

a. Formulate an objective function 

b. Initialise a population of particles with random ‘position’ and ‘velocity’ in n-

dimensions of the problem space i=0 

c. Calculate the fitness of each particle to obtain pbest    

d. Compare each particle’s fitness with its previous best fitness obtained. If the new 

value is better than pbest, then set the pbest as the new value and pbest location as the 

new location in n-dimensional space   

e. Compare pbest of particle with each other and update the gbest location with the 

highest fitness 

f. Change the position and velocity of the particle according to equations (2.3) and (2.4) 

respectively 

g. Repeat step (c) to (f) until convergence is reached based on designed criteria. 

11   ttt vxx                     (2.3) 

)()( tttttt xgcxpcwvv  22111         (2.4) 

where xt = position, vt = velocity, w = initial function or weight is taken as constant between 

0.5 to 0.9. c1 and c2 acceleration constant or the learning parameters and the both take 

approximate value of 2. α1 and α2 are random variable and each takes values between 0 and 1. 

pt = pbest and gt = gbest. During PSO implementation, the velocity of each particle is 

adjusted iteratively by the gbest (the best position obtained by particles in its neighbourhood) 

and its pbest (personal best position i.e., the best position obtained by particles so far) [87]. 

The movement of swarm in PSO consist of two main components: a stochastic (random) 

component and a deterministic component (algorithms follow a rigorous procedure, and 

values of both design variables and the path and the functions are repeatable). 
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2.5.1.2 Accelerated PSO  

The use of particle best is to increase the variety in the quality solutions; it can also be 

achieved by simulation applying some randomness so that there is no compelling factor for 

using personal best unless optimisation problem is multimodal and nonlinear.  The global 

best is only used in accelerated PSO (APSO) that accelerates the convergence of the 

algorithm. The APSO was developed by Yang in 2008 and further developed by Gandomi et 

al. [88]. Therefore, in APSO, the formula for the velocity vector is: 

)()2/1( 211 ttt xgbestccvv                 (2.5) 

where α is the random variable and the values ranges from 0 to 1. This implies that ½ is out 

of inconvenience [11], using the standard normal distribution c1αt, where the second term is 

replaced by αt drawn from N(0,1).  

tttt cxgbestcvv 121 )(                   (2.6) 

where αt can be drawn from any suitable distributions or Gaussian distribution. The position 

is updated as: 

11   ttt vxx             (2.7) 

Further simplification gives the update of position in single step as: 

ttt cgbestcxcx 1221 )1(            (2.8) 

For a typical APSO, c1 is from 0.1 to 0.4, c2 is from 0.1 to 0.7, but for most unimodal 

objective functions c1 = 0.2, c2 = 0.5 can be taken as initial values. In order to decrease 

randomness as iteration progress the APSO use:  

te   01              (2.9) 

or 

t 01  ,   (0 < β < 1)           (2.10) 

where initial value of randomness parameter; α0 ranges from 0.5 to 1 and the number of 

iteration is t. 
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2.5.2 Firefly Algorithm 

The FA inspired by flashing behaviour and patterns of fireflies was developed by Xin-

She Yang lately in 2007 and first published in 2008 [89]. Flashing light characteristics of 

fireflies that produce short flashes and rhythmic uniquely to a given species is applied to 

develop an algorithm. The importance of the flashes is to attract mating partners, attract 

potential prey and serve as a warning to potential predators. The light intensity becomes 

weaker and weaker as the distance increases because it is being absorbed by air. The 

reduction in the light intensity limits the visibility to several hundred metres at night, which 

enable communications among fireflies. Light intensity I of the firefly is inversely 

proportional to the distance d.   

The following features of firefly are used developed FA: 

a. Fireflies are being attracted to one another irrespective of their sex (unisex). 

b. The attractiveness of fireflies is directly proportional to the brightness of their flash. 

c. The brightness of the firefly light is controlled or influenced by the landscape of the 

objective function. The brightness can simply be in proportionate to the value of the 

objective function for maximisation of problem while other forms the brightness can 

be specified similarly to the fitness function in GA. 

Firefly algorithm according to Xin-She Yang [11] 

Formulate objective function f(y)       y = (y1, . . ., yd)T  

Create initial population of m fireflies yi (I = 1, 2, . . ., m) 

Light intensity Ii at yi is calculated by f(yi) 

Specify absorption coefficient β. 

while (p < MaxGeneration), 

for i = 1 : m (all m fireflies) 

  for j = 1 : m (all m fireflies) (inner loop) 

   if (Ii < Ij) 

    Move firefly i toward j  

   end if 

   Vary attractiveness with distance d via exp[-βd
2
] 

   Calculate current solution and update light intensity. 

end for j 

end for i 
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Determine the new global best g after ranking the fireflies 

end while   

Variations of attractiveness and light intensity can be expressed mathematically 

according to Xin-She Yang [11] as follow:  

  2d

I
d

SI            (2.11) 

where Is refers to as light intensity at the source, fixed light absorption coefficient β for a 

given medium, I varies with d.   

deII  0            (2.12) 

where I0 is original light intensity at d = 0. From Is/d
2
 and to avoid singularity at d = 0, the 

combined effect of both absorption and the inverse-square law can be approximated to 

Gaussian form as follow:      

 
2

0
d

d eII             (2.13) 

Because light intensity is proportional to firefly’s attractiveness, therefore attractiveness   of 

a firefly by 

2

0
de   .           (2.14) 

where 0  is the attractiveness at d = 0. Because it is faster to calculate 1/(1+d
2
) than 

exponential function, the function is approximated as 

2

0

1 d





 .          (2.15) 

Both equation (2.14) and equation (2.15) define characteristic distance  /1 with a range 

0  to 1
0

e  for equation (2.14) or 0 /2 for equation (2.15). In some applications, the 

attractiveness function  d  can be decreasing function generalised form as: 

 
dn

d e   0 ,  (n>=1)         (2.16) 

For a fixed β, the characteristic length becomes 
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n/1    ,1      n          (2.17) 

On the other hand, for a given range of distance λ in an optimisation problem, the absorption 

coefficient β can be used as an initial value. i.e. 

n


1
           (2.18) 

The distance d between every two fireflies i and j at yi and yj, respectively, is the Cartesian 

distance. 

 




m

k

kjkijiij yyyyd

1

2
,,        (2.19) 

where yi,k is the kth component of the spatial coordinate yi of ith firefly. In a two-dimensional 

case, is represented as: 

   22
jijiij yyxxd          (2.20) 

Firefly i movement as a result of attraction to another j is determined by 

t
i

t
i

t
j

dt
i

t
i yyeyy ij 




 )(
2

0
1 .       (2.21) 

where the third term is randomisation, with εi  being a vector of random numbers generated 

from uniform distribution or Gaussian distribution and α is the random parameters. The 

second term is due to the attraction. 

FA has been popular in recent years and has over 850 publications. Fister et al. [90] 

presented a comprehensive review of FA. The work reviewed how FA is hybrid or modified 

and used for different applications. Also, the multi-objective optimisation enhanced FA has 

been investigated [91-93]. A decentralised algorithm for synchronicity based on firefly 

features is presented [94]. The FA is applied to the sensor system and the result presented 

shows that the algorithms can efficiently synchronise sensor network.  

The flashing features inspired FA used in optimisation is used to develop an algorithm 

[95, 96]; the first reference provides a detailed FA while the second reference indicates the 

development of the algorithm. The result presented shows how PSO betters firefly algorithm. 
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Furthermore, the use of FA to construct codebook for vector quantisation is in [97]. Higher 

quality result is presented for reconstructed images better than those obtained from the Linde-

Buzo-Gray (LBG), PSO, and quantum-PSO (QPSO). In addition, Gandomi et al. [98] 

researched on different chaotic maps and compared their performance, and stated that some 

chaotic maps can improve the performance of FA; some parameters in FA can be replaced 

with these chaotic maps. A support vector regression with the chaos-based FA presented by 

Kazemet et al. [99] illustrated its application in stock market price forecasting. On the other 

hand, Srivastava et al. [100] showed how a modified FA can be applied in software testing. It 

was demonstrated with generated independent test sequences efficiently which have better 

performance. In the area of image registration, Zhang and Wu applied FA [101]. Also, Zaman 

and Matin [102] discovered that FA can perform better than PSO and found global results. A 

non-convex economic dispatch problem with valve-loading effect was solved by Yang et al. 

[103] using FA and obtained the best results compared to other techniques. In addition, 

Imanirad et al. [104] applied FA to create alternative for decision makers with different 

options.  Chaotic FA (CFA) use to optimise time coordination of relays (optimise total 

operating time and to minimise damage during faults). The algorithm is implemented in 

Matlab, results are presented and compared to conventional FA [105]. 

2.5.3 Artificial Bee Colony Algorithm  

ABCA of the honey bees inspired the bee algorithm. Many different forms of bee 

algorithms have been developed which are: the virtual bee algorithm (VBA) [106], the honey 

bee algorithm (HBA) [107], the honeybee-mating algorithm (HBMA) [108], the artificial bee 

colony optimisation (ABCO) [109]. Honey bees store honey in constructed colony and live in 

a colony as forage. Honey bees interact by ‘waggle dance’ and pheromone. Whenever the 

bees find food source and carry nectar to the hive, the food source is communed by waggle 

dance but it varies from species to species. ABCA was developed by Karaboga in 2005 [6]. 

The bees in a colony are grouped into three classes: onlooker bees (observer bees), scouts, 

and employed bees (forager bees). In a given food source, only a single employed bee is 

involved. That is to say, the number of food source is equal to the number of employed bee.  

Employed bee of the abandoned food site becomes a scout to search for new food sources. 

Employed bees and onlooker bees communicate with each other to enable onlooker bees 

locate a food source to forage.  
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It is a population-based, random search technique carries out in the neighbourhood. 

Detailed survey of ABCA was carried out by Karaboga et al. [110] Honey bee special 

features such as communication and dance, decision-making, foraging, marriage, nest site 

selection, allocation of task, mating and reproduction are being transformed into bee 

algorithm. A modified version of ABC algorithm a best-so-far for solution update; the 

authors developed improved algorithm that perform better than existing ABC algorithm. 

Results presented demonstrated the efficiency of the technique in terms of speed of 

convergence and quality solutions when compared to original ABCA [111]. The ABC 

algorithm has been used for different areas of applications some of which are: ABCA has 

been used successfully for scheduling task [112-114] and its usage for reliable and efficient 

routing algorithm for emergency and disaster management situation has been reported [115]. 

Hong hybridised several forecasting methods: ABCA, chaotic sequence, recurrent 

mechanism and seasonal adjustment in power engineering for electric load forecasting. 

Results presented show that the technique is an alternative method in terms of forecasting 

accuracy [116].  

ABCA application in the area of electronic circuit design includes: its application by 

Karaboga as an alternative technique in the design of digital filter [117].  In addition, ABCA 

is used to optimise Nano-CMOS analogue mixed signal (AMS) where the authors claimed 

that their work was the first to combined bee colony optimisation (BCO) and meta-modelling 

for AMS design domain exploration. Results presented illustrate the suitability of the 

technique [118]. Manoj and Elias [119] used ABCA in electronic circuit to design a non-

uniform filter bank trans-multiplexer (NUFB TMUX). The filter coefficients are represented 

in canonical signed digit (CSD) format that is formulated as optimisation problem for ABCA 

application. The authors presented results that are better than that obtained by rounding 

coefficients of filters to their nearest CSD number. The results also outperformed that got 

from using PSO and GA. Also, Agrawal and Shu [120] used ABCA as an alternative design 

method for two-channel QMF (quadrate mirror filter) bank that has linear phase. Results 

illustrated show improved performance as regard smallest peak reconstruction error and 

better results for bigger tap QMF banks when compared to DE, PSO and other conventional 

optimisation algorithms. Kockanat and Karabogo [121] released the first time proposal of 

2D-ABCA adaptive filter algorithm in literature. The use of ABCA for investigation of the 

design of CMOS inverter and results presented show that the approach is capable of 
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producing results within a very short time with acceptable error while satisfying all the design 

conditions [122]. 

Bee algorithm 

State the objective function f(y), y = (y1, y2, . . . yd)T 

Encode f(y) into virtual nectar levels 

Specify dance route (direction, strength) or protocol 

While (criteria) 

For loop over all m dimensions 

Formulate current solution 

Calculate the current solution 

end for 

Update the optimal solution set and communicate 

end while 

2.5.4 Bacterial Foraging Optimisation 

Natural selection favours the survival of genes of potential animals that have foraging 

strategies (techniques of handling, locating and ingesting food) as a result of them obtaining 

enough food to enhance their reproduction and eliminate animals with weaker foraging 

strategies. After many generations, weaker animals are reshaped or eliminated, and this led 

scientists to discover evolutionary principle called foraging theory. A foraging animal 

optimises the energy obtained per unit time while foraging in the face of environment (risk 

from predators, destiny of prey and nature of physical search area) and constraints (reasoning 

capabilities and sensing) [123]. The survival of an animal as regard its mobility and its 

exploration for food depends upon their fitness criteria referred to as BFO. It is inspired by 

the chemotaxis characteristics of bacteria which make it move away or toward specific 

signals as it senses any chemical near it. The organism reshapes the poorer organism with 

weak search experience. The genes of the fittest species are used for development chain and 

have promised better animals in next generations. The foraging characteristic in evolutionary 

species is being translated into algorithms that are applied to non-linear optimisation model.  

The control mechanism on how bacteria forage is divided into four units: chemotaxis, 

swarming, reproduction and elimination and dispersal. 
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a. Chemotaxis: The technique is accomplished by tumbling and swimming by flagella. 

The rotation of flagella in every bacterium determines whether it should travel in a 

specified direction (swimming) or different directions (tumbling) carried out in entire 

lifetime. Mathematically it is defined as; 

)()(),,(),,1( jiClkjlkj ii         (2.22) 

where )( j  is unit length random direction used to specify the direction to 

move after a tumble. ),,( lkji  stands for ith bacterium at jth chemotaxis, lth 

elimination or dispersal step, and kth reproduction. C(i) is the step size taken in the 

random direction defined by tumble. 

b. Swarming: During the technique of getting to the best food location, the bacterium in 

the optimal path should send attractive signal to other bacteria for them to swarm 

together toward the desired location. Swarming is mathematically represented as; 
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(2.23) 

where )),,(,( lkjPJ cc  is the objective function value to be added to the actual objective 

function to be minimised. p is the number of parameters to be minimised, s is the total 

number of bacterial.  

c. Reproduction: The least healthy bacteria are eliminated and the remaining healthiest 

bacteria each break into two bacteria and are placed in same location. This maintains 

the population of the bacteria constant. 

d. Elimination and Dispersal: The population of bacteria in the search domain changes 

gradually which may be as a result of consumption of nutrient or an event can happen 

such that all the bacteria in an area are kill or a group is sent to another new part of 

environment. This may possibly destroy the chemotactic progress, or enhance 

chemotactic progress since dispersal may bring bacteria close to good food sources.  

Detailed BFO Algorithm, its usage in non-linear optimisation models such as control 

systems & distributed optimisation and design optimisation of Yagi-Uda Array are reported 

respectively in [123, 124]. BFO is used in distributed control application in area of sensor 

network. The authors suggested a general technique to control design applying discrete event-
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triggered elements at the high level and hierarchical model consisted of continuous time-

triggered elements at the low level [125]. BFA is applied to training Neural Network (NN) 

and result presented in the paper shows that BFO-NN technique obtains quality result than 

that of GA-NN in terms of accuracy and convergence [126]. Also, a hybrid GA-BFA 

proposed for proportional-integral-derivative (PID) controller for an automatic voltage 

regulator (AVR) system [127, 128]. Result is compared to GA, PSO, and GA-PSO and it 

proves its potential for optimisation. In addition, BFO application in the area of power system  

in terms of: optimisation of voltage stability limit and real power loss, optimisation of active 

power filter for load compensation and for estimation of three winding transformer parameter 

[129-136]. 

In the area of communication, an improved adaptive BFA (ABFA) using the method 

of adaptive delta modulation is applied to optimised both phase and amplitude of linear array 

of antenna and Multi-colony BFO (MC-BFO) for complex radio frequency identification 

(RFID) network planning problem was in [137, 138].  

This research intends to address the following: 

 Reduce component count in passive and active filters. 

 Improve on existing SCAM to enable it matrices dimension more than 32 by 32 as 

regard operational amplifier simulation compared existing that cannot handle matrices 

dimension more than 8 by 8 and also extend it to handle active components. 

 Use GP, GF and MSCAM and automatically generated Netlist for the evolution of 

passive and active filter circuits. 

2.6 Summary 

This chapter presents definition and general background of optimisation, optimisation 

algorithm and their area of applications to the society at large. Also, the elements of 

evolutionary optimisation algorithm are discussed and illustrated, how they are formulated 

and used while developing algorithm. This is followed by the review of literature on the 

various optimisation methods used in this research. It also describes in detail the history of 

these developed techniques, principle of inspiration and different application areas. Some of 

their key features are highlighted below.  
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GA applies the principle of survival of the fittest to solve optimisation problems. GA 

owns some advantages over traditional optimisation algorithms: its ability to handle complex 

problems and parallelism. Its disadvantages include, setting its right parameters (mutation, 

crossover and selection criteria), formulation of population size, proper fitness function.  

Also, it is time-consuming because GA requires many generations to converge to a solution 

and large population sizes. In the use of GA for circuits’ optimisation, the objective function 

is formulated specifying the frequency response and called directly from the GA Matlab 

optimisation toolbox under the fitness function option. The maximum and minimum 

component values are fed at the upper and lower options respectively. Also, GA parameters 

are set. The total number of components to be minimised is specified in the dialog box option 

called number of variable option. The programme is automatically generated, applying 

generate code option under the file menu in order to rank results. 

GP originated from the genetic algorithm. GP differs from GA, in that GP is 

represented by variable length structures containing whatever elements are needed to solve 

the problem, whereas GA is represented by a fixed length of numerical strings. The TS is 

great because it can produce solutions of complexity and arbitrary size, as opposed to GA 

with fixed-length. In this work, GP is for circuits’ evolution, the objective function is 

formulated specifying the lower and upper cut-off frequencies. A Matlab programme is coded 

using GP algorithm for circuits’ evolution, and GP parameters are also initialised. 

GF is based on numbers of genes structurally organised in order of linear digits 

separated by dots. GF imitates the RNA secondary structure folding procedure of the 

complementary bases on itself.  GF is used to show how the TS in GP are linked from the top 

to the bottom during circuit evolution. The GA, GP and GF are evolutionary computation 

algorithm. 

PSO is inspired by a social behaviour of a school of fish or flock of bird. Compared to 

GA, PSO has no genetic operators such as mutation, reproduction and crossover but 

dynamically adjusts its position and velocity. Also, PSO has fewer parameters compared to 

GA and does not implement survival of the fittest. In PSO, potential solutions are flown or 

moved in search of the needed solution in the problem space and each particle is updated in 

the process. PSO is used in this work for circuits’ optimisation; the objective function is 

formulated, specifying the frequency response and being called into a Matlab programme 

coded using PSO algorithm for circuits’ optimisation, which is expected to sample 
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components values that will produce the frequency response. The maximum and minimum 

component values are specified. In addition, PSO parameters are set.  

FA inspired by flashing behaviour and patterns of fireflies. It is powerful optimisation 

tool due to the effect of attractiveness function that is unique to firefly behaviour. FA’s 

disadvantages include: it does not keep record of past better solution to guide the search 

toward better solution; parameters do not change with time and are trapped into several local 

optima. In this research, FA is used for circuit’s optimisation, the objective function is 

formulated specifying the frequency response and being called into a programme coded in 

Matlab using FA algorithm for circuits’ optimisation which is expected to sample 

components values that will produce the frequency response. The maximum and minimum 

component values are specified. Besides, FA parameters are initialised. 

ABCA imitates foraging behaviour of bees. It has fewer control parameters, easy to 

implement, easily hybridise with other algorithm and easy to be modify. Its disadvantages 

are: it is compromised with its cost-benefit function, slow to converge and sometimes trapped 

to local optimal. ABCA is used for circuits’ optimisation in this work; the objective function 

is formulated, specifying the frequency response and being called into a Matlab programme 

coded using ABCA algorithm for circuits’ optimisation which is expected to sample 

components values that will produce the frequency response. The maximum and minimum 

component values are specified. Also, ABCA parameters are set. 

BFO is inspired by the chemotaxis characteristics of bacteria which make it move 

away or toward specific signals as it senses any chemical near it. The survival of an animal as 

regard its mobility and its exploration for food depends upon their fitness criteria referred to 

as bacterial foraging optimisation. Its disadvantage is that it required a large number of 

parameters. In this research, BFO is used for circuits’ optimisation, the objective function is 

formulated specifying the frequency response and being called into a programme coded in 

Matlab using BFO algorithm for circuits’ optimisation which is expected to sample 

components values that will produce the frequency response. The maximum and minimum 

component values are specified. In addition, BFO parameters are initialised. PSO, FA, 

ABCA, and BFO are some swarm intelligent optimisation methods. Artificial intelligence 

methods are used due to the following advantages over humans. Hardware advantages 

include greater parallel speeds and greater serial speeds. Self-improvement advantages 

include modification of motivational system, improvement of algorithms and design of new 
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mental modules. Co-operative advantages include transfer of skills, copyability, improved 

communication and perfect co-operation. Compared to mathematical optimisation: simplex 

method, branch and bound, Lagrange multipliers, interior point methods and cutting planes 

that are unable to solve difficult problems due to memory needed and large amount of 

computational time. 

The next section is Chapter 3, which gives a brief review of symbolic circuit analysis 

and description on how automatically generates matrices from Netlist created from PSpice or 

automatically generated Netlist from simulation is transformed to matrices. 
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Chapter 3
2
 

Modified Symbolic Circuit Analysis in Matlab and 

its Applications in Electronic Circuit Simulation 

3.1 Introduction 

 This chapter gives a brief review of symbolic circuit analysis. It describes MSCAM 

and its usage in an electronic circuit simulation with illustrations. It improves on existing 

SCAM, so that, the developed algorithm can handle matrices dimension of size more than 

eight by eight whenever op-amp is involved as a circuit component. Besides, the chapter 

gives a detailed description of how automatically generated matrices from Netlist; created 

from PSpice or automatically generated Netlist from the simulation is transformed to 

matrices. The remaining part of this chapter is subdivided as: electronic circuit simulation 

techniques, discussed in Section 3.2 and symbolic method illustrated in Section 3.3. Circuit’s 

simulation and results are presented in Section 3.4, the formulation of the objective function 

and circuit’s simulation examples are demonstrated in Section 3.5 and summary of this 

chapter is in Section 3.6. 

A physical model can be explained quantitatively or qualitatively. In the qualitative 

simulation, analysis of variables in a system is achieved by assigning a given range of 

qualitative values. Whereas in a quantitative simulator, analysis of variables in a system is 

achieved by assigning real values and the response to a given excitation is evaluated using 

analytical (symbolic) or numerical [140]. The two main importance of symbolic simulator in 

analogue circuits design are: 

 It provides insight to novice or student designers, and it also interactively helps 

experienced designers [141, 142].  

 It also aids in automatically generating analytic analogue circuits [143]. 

                                                           
2 The bulk of Chapter 3 has been published in [139].  
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 3.2 Electronic Circuit Simulators 

There are many types of simulation software; some are licensed and some are free 

with limited capacity. A simulator helps students to demonstrate or verify what has been 

taught in the classroom. Some of the free analogue simulation software include: SPice which 

is a general-purpose and open source analogue electronic circuit simulation [144, 145].  

Furthermore, electric very large scale integration (VLSI) design system is an automation 

simulator for integrated circuits and printed circuit board [146-148]. Also, gpsim is a 

Microchip PIC (peripheral interface controller) microcontroller’s software designed for PIC 

circuit simulations [149]. Other simulators include; DoCircuits is a cross-platform virtual 

learning system, web-based that models an instrument as well as circuits applied in labs to 

enhance students’ implementation of experiments in virtual environment [150]. PartSim a 

free and easy to use circuit simulator; is another kind of simulator that can be run in web 

browser [151].  Besides, SimOne is a European’s leading software applied for gas transport, 

optimisation and distribution simulation [152]. Moreover, CircuitLab simulates analogue and 

digital components side-by-side and also gives precise results for nonlinear circuit [153]. 

Other digital and analogues (mixed-signal) simulators are: EasyEDA, which is an enthusiast’s 

web-based software for educators, electronics engineers and students [154]. Falstad circuit 

simulator applet is a tool that boots with animated schematic of LRC circuit. In it, the green 

indicator signifies positive voltage, grey colour signifies the ground, red signifies negative 

voltage and moving yellow dots signifies current [155]. GeckoCIRCUITS is a power 

electronic designing circuit tool with a fast circuit simulation capability [156]. Furthermore, 

Ngspice is a mixed-levelled and mixed-signal circuit simulator. It is developed based on three 

software packages: Spice3f5, Cider1b1 and XSpice [157, 158]. Also, NL5 is an analogue 

simulator that operates with piecewise linear components [159]. SuperSpice from AnaSoft is 

a circuit tool for both integrated circuit and board-level applications [160]. Also, SIMetrix is 

a simulator that enhances engineers to simulate and model switching power electronics 

systems which combine accuracy and speed in model environment [161]. Moreover, Maple is 

a computer algebra system created to enable users to key in a mathematical symbol in a 

traditional way [162]. Conclusively, multisim (national instrument (NI)) includes 

microcontroller simulation that can export and import features to PCB (printed circuit board) 

[163]. In most of these simulators, there are no detailed insight analyses of the simulation 
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procedure while processing, most optimisations cannot be carried out directly with them and 

most researchers have no access.  

 3.3 Symbolic Method 

Symbolic circuit analysis has been used by many researchers in analogue circuit 

simulation. Gielen et al. [141] introduced a symbolic analysis for analogue circuit design that 

is interactive. It provides the designer of the analogue circuit with deep insight on how the 

design process is carried out than mechanical simulators do. In addition, optimisation of 

analogue circuit design using simulated annealing (SA) and symbolic simulation is also 

developed by Gielen et al [164]. It is non-fixed-topology and efficient analogue design tool. 

The method sizes all circuit components to satisfy design objective. Also, a tutorial overview 

regarding applications and methods of symbolic analysis for analogue circuit is illustrated 

[165]. Wambacq, et al. [166] illustrated approximated symbolic expression for small signal 

analysis (SSA) of analogue IC applying symbolic computation. Yu and Sechen [167] 

developed an approximate symbolic analysis of large analogue IC.  This unified approach 

used two new approximation (create a tree of two-graph and product terms in decreasing 

order of magnitude in symbolic network function) during computation processes with 

classical two-graph tree enumeration method. Also, related two-graph methods for symbolic 

analysis of circuit are illustrated in [168-170]. However, determinant decision diagram 

(DDD) combines with a canonical symbolic synthesis of the analogue circuit is presented 

[171, 172]. Also, a symbolic circuit analysis application for the multi-physical system is 

presented as a new modelling approach. The technique reduces the complexity of the 

symbolic equations and solution by mixing numeric and symbolic strategies. The approaches 

potential is demonstrated on usage for modelling and analysis of gas-pipeline nets and mixed 

mechanical and electrical systems [173]. The use of symbolic analysis has aided in analogue 

realisation; the fraction power of a realistic transfer function was introduced in analogue 

circuit domain as already existed in digital domain. It helps in the design of analogue circuits 

for such fractional order controller and solves the problem of running continued fraction 

expansion algorithm every time [174]. Besides, SA and GA based technique for symbolic 

description of analogue circuits is developed. It is a Matlab tool based on evolutionary 

algorithms and modified nodal analysis of analogue circuits containing MOSFETs for 

automatic simplified symbolic SSA [175]. 
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The process involved in transforming electrical circuit into matrices required tedious 

calculations and the same process has to be performed each time a circuit is to be resolved. 

Also, transforming circuit’s equations by the human method may take a longer time or result 

in an error to solve a simple circuit. The existing automated method (SCAM) [176, 177] 

cannot handle some components such as MOSFET and BJT. Also to transform a circuit 

whose matric is more than eight by eight tend to be very slow because it requires large 

memory and in some circuit applications, it is inefficient. 

The symbol(s) to be used in the code has to be symbolised. The essence is for the 

computer to treat it as symbolic to form an equation with it and to enable the users to execute 

a variety of symbolic evaluations in Science and Mathematics. The data structure which 

stores a string representation of a symbol is called symbolic object. For illustration, 

symbolising e, f, g and y is as follows: 

syms e f g y, but if only one character is involved the sym is singular. 

Two set of equations is formed from circuits either by nodal analysis method or mesh 

analysis method [178].  

3.3.1 Mesh Analysis 

The mesh can be defined as a loop that does not comprise of any other loop. It uses 

mesh current as circuit variables. The mesh analysis is most useful when the circuit has 

mostly voltage sources. It applies Kirchhoff's voltage law (KVL), Ohm’s law and 

simultaneous equations to find unknown currents in a circuit. It does not apply Kirchhoff’s 

current law which makes it different from branch current method. It is useful to solve a 

circuit with fewer variables and less simultaneous equations and to be useful to solve a circuit 

without a calculator. Detailed procedures are as follow: 

a. Assign a current loop 

 Specify a direction of loops 

 Given circuit’s number of loop = number of branches – 1 

 Loop current can overlap 

 All branches are covered in the loop 

 Each loop is referred to as mesh 

b. Write the KVL equation each mesh and if loop current overlap 
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 Currents are added if in the same direction 

 Currents are subtracted if in the opposite direction 

 Voltage sources are added if in the direction of mesh current 

 Voltage sources are subtracted if opposite of the mesh current 

c. The simultaneous equations are solved for the mesh current 

 Obtain each branch currents from the mesh current 

 Voltages are evaluated from the current 

3.3.2 Nodal Analysis 

The modified nodal analysis is called modified nodal analysis (MNA) for easy 

formation of the algorithm. For the algorithm to handle components such as transistor and 

operational amplifier, the transistor and operational amplifier are converted to SSA. The op-

amp representation differs from the one represented [177]. The new operational SSA 

representation reduces the size of memory occupied, increases speed and can handle larger 

matrix dimension size. Detailed illustration of the approach is explained below. 

3.3.3 Development of Algorithm for New Modified Nodal Analysis 

New modified nodal analysis (NMNA) applied to a circuit with op-amps, capacitor, 

transistors, inductor, resistors, independent voltage and current sources results in a matrix 

equation of the form: 

IAX   (3.1) 

For a given circuit with p number of nodes, the following illustrate how matrices A, I and X 

are formed. 

3.3.3.1 The A Matrix: 

A matrix is p×p and comprises only known quantities, (the values of the gain of the 

operational amplifier and the passive elements (the capacitors, inductors and 

resistors).  Component connected to ground only appears on the diagonal; while non-

grounded component appears both on and off the diagonal as summarised below: 

a. A matrix p×p in size and holds only known quantities. 

b. Have both active and passive elements  

c. Components connected to ground only appear on the diagonal 
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d. Components not connected to ground appear both on and off the diagonal terms. 

e. The op-amp is coded such that 1 is added to the operational amplifier output (i.e. 

A(p,p)=A(p,p)+1), and negative input is added with Av while positive input is 

subtracted with Av. 

3.3.3.2 The X Matrix:  

 Is a matrix of size p×1 vector that contains the unknown quantities (node voltages) 

3.3.3.3 The I Matrix: 

a. The I matrix is a p×1 vector that comprises only known quantities 

b. It holds summation of current sources in a loop due to node voltage. The current 

source is as a result of the voltage source or as a result of independent source. 

c. The circuit is solved using Matrix manipulation below: 

IAX 1    provided A is non-singular. (3.2) 

The computer can easily accomplish the matrices evaluation that may be difficult by the 

human method. 

3.3.3.4 Presentation 

The convention of representation obviously does not change the solution.  However, 

the procedure described below simplifies the formation matrices necessary for the solution of 

the circuit.  

a. The ground or reference node is labelled 0. 

b. The other remaining nodes are labelled in sequential order from 1 to p. 

c. Voltage at node 1 is call v_1, at node 2 is referred to as v_2 and so on. 

d. The naming of independent voltage sources is quite flexible; it starts with the letter 

“V” and one node must be unique from another node name. 

e. The current as a result voltage source is labelled with “I1, I2 I3 and so no” whereas the 

current source due to the voltage source is V1/R111 that is voltage source over 

impedance. The current in particular branch is the sum of these current sources. 

3.4 Circuits Simulation and Results 

The developed algorithm discussed in Section 3.3.3 is used to write computer code in 

Matlab. The programme is implemented with four different examples to demonstrate its 
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efficiency. Before, the continuation of the results analysis, a brief introduction to filter is 

made.  

3.4.1 Filter 

The electronic and electrical filter design is a vital device in a modern communication 

system and electronic. A filter is an electronic device that permits certain range of 

frequencies to be transmitted and it is classified into four as regard frequencies passage or 

rejection:  

 A low-pass filter suppresses high frequencies but allows only the low frequencies to 

be transmitted.  

 Whereas a high-pass filter suppresses low frequencies but allows only the high 

frequencies to be transmitted.  

 A band-pass filter is a filter that passes a certain range of frequencies and rejects 

frequencies outside the given range.  

 Band-rejection filter is a device which passes most frequencies unchanged but 

suppresses those in a specific range to very low levels. It is opposite of a band-pass 

filter.  

A digital filtering technique is worthy of mention since it is widely applied and 

increasingly important. This filter executes the filtering task applying digital and analogue 

components in addition to digital to analogue (D/A) converters, analogue to digital (A/D) 

converters, shift registers, multiplexers and multiplier. Filter can also be classified in terms of 

component combinations as passive and active filter.  

3.4.1.1 Passive Filter 

Passive filters are designed from the combination of inductance, capacitance and 

resistance and can be designed to cover a range of frequency from 10 Hz to 500 MHz. The 

passive filters have low sensitivity to component variation and do not need an external power 

supply which makes it advantageous over active circuits. They are disadvantageous when 

size and cost are considered because of the bulky coil. 

3.4.1.2 Active Filter 

The active filters are constructed from an op-amp (active source), capacitor and 

resistor. The active filters have low output and high input impedances also, eliminate bulky 
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coils and expensive nature of passive filters. The major setback posed by the active filter is 

that its gain reduces at high frequencies above 50 kHz, and also it requires a power source 

[179, 180]. Operational transducer amplifier and a step-by-step method applied in the design 

of active filter [181, 182]. 

3.4.2 Operational Amplifier and its Small Signal Analysis 

The op-amp is a versatile electronic circuit that can perform basic mathematical 

operations, such as division, multiplication subtraction and addition. It can also be applied to 

do differentiation and integration. The op-amp is used as the integral element in filters, 

amplifiers flip-flops and oscillators. The op-amp has the following properties: infinite input 

resistance, zero output resistance, zero offsets voltage, infinite open-loop gain (A), infinite 

frequency response and infinite common-mode rejection ratio. 

The SSA is the procedure of replacing non-linear elements with linear ones.  Also, in 

some cases, the elements are being replaced by their internal operation of the components. 

The small signal operation of an op-amp is shown in Figure 3.1. 

 

Figure 3.1: Small signal analysis of operational amplifier. 

The SSA of op-amp has VRin as a not-defined voltage that makes it difficult in the 

simulation. The second option of the SSA of the op-amp explained in [183] is being used. 

The summary of the op-amp nodal analysis detailed process is illustrated with the following 

equations: 

)(


 ininvout VVAV  (3.3) 

For instance, if an op-amp’s inputs are: Vin
+
 = V3, Vin

-
 = V4 and its output is Vout = V5, then 

the output node voltage is given as 

)( 435 VVAV v   (3.4) 

From equation (3.3), 
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0 

outinvinv VVAVA  
(3.5) 

From equation (3.5) analysis, if the output of an op-amp is in p node, then the matrix of 

A(p,p) is added with 1. i.e. 

1),(),(  ppAppA  (3.6) 

In this particular case, as Vin
+
 is at p-2 node and Vin

-
 is at p-1 node, the expression will be: 

 (3.7) 

 
(3.8) 

In other words, the op-amp’s output is added with 1, Vin
+
  input is added with (-Av) and Vin

-
 

input is added with Av as explained above. The algorithm is coded in such a way that each op-

amp is substituted as illustrated above. 

3.4.3 Transistor Amplifier 

The transistor amplifier will be discussed based on its SSA and frequency response 

using common-emitter and common-source for illustration. The transistors are being replaced 

by their SSA. The values of Rpi, Ro, gm, Cpi and Cmu are usually specified in the simulated 

result from PSpice or obtained in literature or data sheet. Also, MOSFET is also transformed 

into its SSA in a similar way. 

3.4.3.1 Frequency Response of Common-Emitter Amplifier 

 The common-emitter amplifier is capable of producing relatively high voltage and 

current gains. The input resistance is medium and independent of load resistance RL. Its 

output resistance is high and independent of source resistance. The coupling capacitor, C1, 

couples the biasing network to the source voltage Vs. The coupling capacitor C2, connects the 

load resistor RL, to the collector resistance RC. The by-pass capacitance Ce is applied to 

increase the mid-band gain as it short circuit the emitter resistance Re at mid-band frequency. 

The Re is for bias stability. The external capacitors Ce, C2, C1 are responsible for low 

frequency response whereas the internal capacitances (Cpi and Cμ) are responsible for high 

cut-off. Cpi is the emitter-base capacitance, the collector-based capacitance is Cμ, Rx is the 

vAppAppA  )1,()1,(

v A p p A p p A     ) 2 , ( ) 2 , ( 
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resistance of the silicon material between the base region and the intrinsic or internal base. 

The common-emitter amplifier circuit is in Figure 3.2 whereas SSA is in Figure 3.3. 

  

Figure 3.2: Common-emitter amplifier. 

   

 Figure 3.3: SSA of common-emitter amplifier. 

 3.4.3.2 Frequency Response of Common-Source Amplifier 

The common-source amplifier has similar features to that of the common-emitter 

amplifier explained in Section 3.4.3.1. The only difference is that common-source amplifier 

input resistance is higher than that of the common-emitter amplifier. The common-source 

amplifier circuit is in Figure 3.4 whereas SSA is in Figure 3.5. 
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Figure 3.4: Common-source amplifier. 

 

Figure 3.5: SSA of common-source amplifier. 

3.5 Formulation of Objective Function and Circuits Simulation Examples 

Detail of the software environment is as: Matlab version: 8.0.0.783 (R2012b), 

operating system: Microsoft Windows 7. Others are: RAM: 12 GB, system rating: 64-bit 

operating system and processor: Intel (R) core (TM) I7-2600 CPU @ 3.40 GHz. The same 

system specification is used throughout this research. The circuit simulation process is 

summarized in flowchart shown in Figure 3.6. Four different circuits are considered in order 

to demonstrate the potential of the developed algorithm. Example 1 (seventh order 

Chebyshev filter) is used to illustrate the formulation of objective function. 
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Figure 3.6: The proposed MSCAM algorithm. 

 

3.5.1 Seventh Order Chebyshev Circuit Objective Function Specifications  

The symbolic matrices A and B obtained from MSCAM are used to formulate the 

fitness function as: 

]0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0);[( 111RVA S       (3.9) 
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  (3.10) 

where )1()1()1( 64111111 RRRCjb     

))1()(( 4112 RCjb    

616 1 Rb   

))1()(( 4121 RCjAb v    

1)1()1( 42122  RRCjb   

223 1 Rb   

232 1 Rb   

)1( 2233 RCjb    

234 Cjb    
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)( 243 CjAb v    

1)1()1( 73244  RRCjb   

345 1 Rb   

747 1 Rb   

354 1 Rb   

)1()1( 5355 RRb   

556 1 Rb   

661 1 Rb   

))1(( 565 RAb v   

1)1()1( 6566  RRb  

774 1 Rb   

)1()1()1( 12107377 RRRCjb    

))1()(( 10378 RCjb    

12712 1 Rb   

))1()(( 10387 RCjAb v    

1)1()1( 108388  RRCjb   

889 1 Rb   

898 1 Rb   
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)1( 8499 RCjb    

4910 Cjb    

)( 4109 CjAb v    

1)1()1( 13941010  RRCjb   

91011 1 Rb   

131013 1 Rb   

91110 1 Rb   

)1()1( 1191111 RRb   

111112 1 Rb   

12127 1 Rb   

)1( 111211 RAb v   

1)1()1( 12111212  RRb  

131310 1 Rb   

)1()1()1( 18161351313 RRRCjb    

))1()(( 1651314 RCjb    

181318 1 Rb   

))1()(( 1651413 RCjAb v    

1)1()1( 161451414  RRCjb   
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141415 1 Rb   

141514 1 Rb   

)1( 1461515 RCjb    

61516 Cjb    

)( 61615 CjAb v    

1)1()1( 191561616  RRCjb   

151617 1 Rb   

191619 1 Rb   

151716 1 Rb   

)1()1( 17151717 RRb   

171718 1 Rb   

181813 1 Rb   

)1( 171817 RAb v   

1)1()1( 18181818  RRb  

191916 1 Rb   

)1()1( 201971919 RRCjb    

))1()(( 20719120 RCjb    

))1()(( 2072019 RCjAb v    
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1)1( 2072020  RCjb   

ABC  1           (3.11)  

where C holds the unknown voltage drops across all the nodes to be evaluated.  Cn is the 

voltage drops across the last node (n) being calculated to get its frequency response. The 

values of each component are substituted to determine the unknown. 

3.5.2 Circuits Simulation Results 

3.5.2.1 Example 1: Seventh Order Chebyshev Filter Circuit 

Seventh order Chebyshev filter circuit is used as example 1; it is an online tutorial 

titled “Minimising Component-Variation Sensitivity in Single Op-amp Filters” [184]. The 

circuit is in Figure 3.7 and the PSpice simulation that produce the frequency response curve 

shown in Figure 3.8. The circuit’s netlist from PSpice is fed to the modified symbolic circuit 

analysis (MSCAM) program developed to simulate the frequency response curve, which is 

the same as that of PSpice as shown in Figure 3.8 indicated with different colours and line 

style. Same technique is applied to other examples. The MSCAM simulation is with the cut-

off frequency of 7100 Hz while that of PSpice simulation is 7600 Hz with error of 6.57% and 

a gain of 1.  
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Figure 3.7: Seventh order Chebyshev circuit [184]. 

 

Figure 3.8: Seventh order Chebyshev PSpice (red) and MSCAM (black) frequency response.  
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3.5.2.2 Example 2: Common-Emitter Circuit 

A common-emitter circuit is used as example 2 to demonstrate how a transistor can be 

transformed to its SSA that replaces the internal operation of transistor. The common emitter 

circuit is in Figure 3.9. Its small signal equivalent circuit is shown in Figure 3.10 where gm = 

69.6e-3 and VRpi = 0.713.  The SSA frequency response simulated in PSpice and MSCAM 

simulation is presented in Figure 3.11. The MSCAM and PSpice simulation of the SSA have 

the same lower and upper cut-off frequencies at 32.5 Hz and 26.1 MHz respectively with 

approximately zero error and a gain of 75.29. 

 

Figure 3.9: Common-emitter circuit. 

 

Figure 3.10: Common-emitter SSA. 
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Figure 3.11: Common-emitter SSA PSpice (black) and MSCAM (red) frequency response. 

3.5.2.3 Example 3: Combined Operational Amplifier and Transistor Circuit 

Example 3 is a circuit that combines op-amp and transistor. It demonstrates how the 

Matlab code can be applied to implement a circuit that the component comprises of both 

transistor and op-amp in figure 3.12. Its SSA equivalent circuit is shown in Figure 3.13. The 

PSpice simulation of the SSA and MSCAM simulation frequency responses are shown in 

Figure 3.14. The different line colours and styles differentiate the frequency response curve. 

The MSCAM, SSA and PSpice simulation have the same cut-off frequency of 185 kHz with 

MSCAM having 0.2 error due to difference in frequency at 100 Hz due to scaling between 

the software packages and a gain of 3.169. 

 

Figure 3.12: Example 3 circuit. 
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Figure 3.13: Example 3 SSA circuit. 

 

Figure 3.14: Example 3 original circuit PSpice (red), SSA PSpice (green) and MSCAM (black) frequency 

response curves. 
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Figure 3.15: Common-source amplifier. 

 

Figure 3.16: Common-source amplifier SSA. 

 

Figure 3.17: Example 4 Pspice (red) and MSCAM (black) SSA frequency response. 
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Table 3.1 shows the elapsed time for each example and technique. The SCAM 

simulation capability is limited in terms of the size of circuit and component it can simulate. 

Table 3.1: Simulation results time summarised. 

Examples 
PSpice small signal 

analysis 

MSCAM matrix 

size /time 

SCAM matrix size 

/time 

Example 1 7
th

 

order 

None but large signal 

analysis 0.16 sec 

20 by 20 

0.025 sec 

20 by 20 

Unable to simulate 

Example 2 

CE Amp 
0.05 sec 

5 by 5 

0.008 sec 

Cannot handle BJT  

transistor 

Example 3  

Op-amp/BJT 
0.3 sec 

8 by 8 

0.031 sec 

Cannot handle BJT 

transistor 

Example 4 

FET Amp. 
0.3 sec 

5 by 5 

0.03 sec 

Cannot handle FET 

transistor 

 

3.6 Summary 

A modified symbolic circuit analysis in Matlab (MSCAM) that enhanced circuit’s 

capacity simulation (circuit’s matrices dimension) so that it can be used to simulate complex 

circuits is introduced and a detailed review of symbolic analysis is presented also in this 

chapter. Brief introduction of electronic circuit simulation techniques is also carried out. This 

chapter also analysed the SSA of transistor and op-amp. Description of how four different 

circuits illustrate the developed algorithm using modified nodal analysis in combination with 

the newly introduced SSA of transistors and Op-amp. Due to the introduction of the transistor 

SSA, the MSCAM can also simulates circuits with fewer number of BJT and FET. These 

four examples are presented to demonstrate the efficiency of the developed algorithm. 

Appendix subdivided into A and B is included in case someone wants to test the four 

examples. 

The next chapter is Chapter 4, which describes five different optimisation tools and 

how there are applied to optimised analogue circuits 
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Chapter 4
3
 

Analogue Circuit Optimisation 

4.1 Introduction 

The application of electronics by human activities has become part of life and almost 

all aspects of human endeavours required it for better functionality or productivity. 

Electronics is a very rapid growing industry because of its demand in a day-to-day 

application and the need to overcome some problems or challenges in the society. The 

objective of an electronics engineer is to design circuits that are smaller, faster, cheaper, and 

having the ability to communicate wirelessly, to reduce power consumption and increase 

reliability of the circuits. Human methods of electronic circuit design require tedious 

mathematical calculations and at times prone to errors. The intelligent optimisation 

techniques are easy to implement and do not require tedious mathematical computations.  

This chapter describes how five intelligent optimisation techniques are used in 

analogue circuit optimisation. The different optimisation techniques analysed here are: PSO, 

ABCA, BFO, FA and GA. Besides, Nelder-Mead which is easy and straight forward to be 

used from the optimisation toolbox is described and used for comparison purpose only and to 

justify why one should write a complicated programme for the same similar solution. The 

remaining part of this chapter is subdivided as: the use of Nelder-Mead to minimise analogue 

circuits, which is discussed in Section 4.2 and application of GA to minimise analogue 

circuits illustrated in Section 4.3. PSO used to minimise analogue circuits is explained in 

Section 4.4 while use of BFO to minimise analogue circuits is demonstrated in Section 4.5. 

Application of FA to minimise analogue circuits is discussed in Section 4.6, ABCA used to 

minimise analogue circuits is demonstrated in Section 4.7, methodology explained in Section 

4.8, results and discussion are illustrated in Section 4.9 and summary of this chapter is in 

Section 4.10. 

                                                           
3
 A substantial part of Chapter 4 has been published in [5, 185].   
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4.2 Use of Nelder-Mead to Minimise Analogue Circuits 

In Nelder-Mead; fminco-constrained nonlinear minimisation, an objective function is 

formulated as illustrated in Section 3.5.1 or the one discussed under Section 4.8 and the same 

objective function is used for all the methods for the same circuit. The objective function is 

being called right from the optimisation toolbox in the dialog box option called objective 

function option. The following options are set: algorithm option is set at the interior point and 

derivative option is set at approximated by solver. The maximum component values are fed at 

start point option. The maximum and minimum component values are fed at the upper and 

lower options respectively. The X-tolerance is set at 1E-8 whereas function tolerance is set at 

1E-4. These are settings that give the best result.  

4.3 Use of Genetic Algorithm to Minimise Analogue Circuits 

In the case of GA, the objective function is formulated as illustrated in Section 3.5.1 

and it is called directly from Matlab GA optimisation toolbox under the fitness function 

option. The maximum and minimum component values are fed at the upper and lower 

options respectively. Also, GA parameters settings include: probability of crossover PC = 0.8, 

population size N = 50, probability of mutation Pm = 0.05 and the number of iterations Nit = 

100. The total number of components to be minimised is specified in the dialog box option 

called number of variable option. The programme is automatically generated applying 

generate code option under the file menu in order to rank results. The summaries of 

parameters applied are in Table 4.1. 

Table 4.1: Summary or definition of GA’s symbols used. 

Symbols Meaning 
Value 

used 
Remarks 

PC probability of crossover 

(single point) 

0.8 probability of crossover value used to obtain 

the best approximate frequency response curve 

Pm probability of mutation 

(Gaussian)  

0.05 probability of mutation value used to obtain the 

best approximate frequency response curve 

Nit number of iteration 100 number of iterations used to obtain the best 

approximate frequency response curve 

N number of individuals 

(chromosome-binary) 

50 number of individuals used to obtain the best 

approximate frequency response curve 
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NC number of components to 

be minimised 

7 number of components to be optimised 
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4.4 Use of Particle Swarm Optimisation to Minimise Analogue Circuits 

As earlier defined, PSO is a population-based stochastic optimisation method 

developed by Eberhart and Kennedy 1995 [60]. It was inspired by social interaction of flock 

of bird and school of fish. In comparison with GA, PSO does not execute genetic operators, 

crossover, reproduction and mutation, but adjusts its velocity dynamically.  Also, PSO needs 

fewer control parameters to obtain the same result as GA control parameters and it does not 

apply survival of the fittest principle. In PSO, particles explore for the required solution in the 

problem space the potential solution is updated while the process is ongoing. A swarm is the 

collection of particles that make up the population. PSO suitable parameter or element 

selection guide as well as improved PSO algorithm with leadership and detailed PSO 

algorithm are illustrated in [60, 61]. 

The following steps are implemented while applying PSO to minimise filter circuits:  

a.  Formulation of an objective function to calculate fitness as in Section 3.5.1 

b. Initialisation of particles using cascode amplifier design component value to illustrate the 

PSO. Number of iteration Nit
 
= 30, number of components to be minimised NC = 7, 

number of particle N = 20, acceleration constants c1 = c2 = 1.49618 (these are values 

used to obtain the best approximate frequency response curve after several trials), 

component maximum values = 5 3 1 11 16 16 40 and component minimum values = 0.01 

0.3 0.5 0.1 14 14 0.1. The component maximum and minimum values are got in the same 

magnitude above and below the initial component values but the increment/decrement 

not more than half of the initial value.   

Each particle generates random component values within a specified range according to 

expression:   

)()( NCNrandMinValueMaxValueMinValueXP       (4.1) 

 where Xp represents the randomly generated population of size NC by N, MinValue is the 

component Minimum Values, MaxValue is the component Maximum Values whereas N 

and NC as defined in (b). 

c. The fitness values of all the particles are calculated.    

The personal best (pbest) of each particle is evaluated with respect to the objective 

function.   

d. The fitness of each particle is compared with its former best fitness found. If the current 

value obtain is better than pbest, then set the pbest as the current value and pbest position 

as the current position.   
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e. Compare pbest of all the particles with one another and update the lbest position with the 

highest fitness 

f. The position and velocity of the particles are altered according to equations (4.2) and 

(4.3) respectively.  

Steps (c) to (f) are repeated until the design criteria are met which is the number of iteration 

used. 

ttt vxx 1                (4.2) 

)()(
22111 tttttt

xlcxpcwvv 


        (4.3) 

where xt is the position, vt is the velocity, w is the initial weight, c1 and c2 are the acceleration 

constant, α1 and α2 are the random variable, pt is the pbest and lt is the lbest. 

4.5 Use of Bacterial Foraging Optimisation to Minimise Analogue Circuits  

The use of BFO to minimise circuits involves the following steps:  

1. Initialisation: In this research, the following were considered: number of bacteria S = 8, 

number of iteration in chemotactic loop (Nc
 
> Ns) Nc = 5, number of components p = 7, 

number of swimming length Ns = 4, maximum number of dispersal or elimination 

imposed on bacteria Ned = 2, maximum number of reproduction Nre = 4, probability that 

dispersal and elimination will continue Ped = 0.25 attraction coefficient wattract = 0.2, 

attraction coefficients dattract = 0.1, repulsion coefficient wrepellent
 
= 10, and repulsion 

coefficient hrepellent = 0.1 component maximum values = 5 3 1 11 16 16 40 and 

component minimum values = 0.01 0.3 0.5 0.1 14 14 0.1.The objective function is 

formulated as illustrated in Section 3.5.1 

2. 1 ll ; dispersal-elimination loop 

3. 1 kk ; reproduction loop 

4. 1 jj ; chemotactic loop that is subdivided into: 

i. For each bacterium i = 1, 2, 3, …, S, evaluate objective function ),,,( lkjiJ  

a. let  )),,(),,,((),,,(),,,( ( lkjPlkjJlkjiJlkjiJ i
CCsw        (4.4) 

where 

  
  



s

i

p

m

i
mmrepellentrepellent

s

i

p

m

i
mmattractattractCC whwdJ

1 1

2

1 1

2 )])(exp([)])(exp([   (4.5) 
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where dattract is the depth attraction coefficients, wattract is the width attraction coefficient, 

hrepellent is the height repulsion coefficient, wrepellent
 
is the width repulsion coefficient 

m
 is a 

given cell location, 
i

m
  is the neighbouring cell location, S is the number of bacteria and p is 

the number of components.  

b. Let ),,,( lkjiJJ swlast   to save the value since better cost via run. 

c. Loop end 

ii. Tumble: create a random vector pi  ),( each element between (-1,1) 

iii. Move:  let 
)()(

)(
)(

ii

i
i

T 


        (4.6) 

)()(),,(),,1( jiClkjlkj ii          (4.7) 

This is the results in step size C(i) in tumble direction of the i th bacterium.  

iv. Evaluate ),,,( lkjiJ and let 

)),,(),,,((),,,(),,,( ( lkjPlkjJlkjiJlkjiJ i
CCsw      (4.8) 

v. Swim:  

a. let m = 0  

b. while sNm   

i. let 1mm  

ii.  lastsw JlkjiJ ),,,(  then  ),,,( lkjiJJ swlast  , )()(),,(),,1( jiClkjlkj ii    

and use the new ),,1( lkji  to compute ),,,( lkjiJ  as in step 4(iv)  

iii. Else sNm   

vi. Increment counter to next bacteria (i+1) until all the bacteria undergoes chemotaxis 

5. Reproduction  

a. For a given l and k, for each i = 1, 2, 3, …, S, let 





1

1
),,,(

CNj

j
sw

i
health lkjiJJ  is the 

ith bacterium health sorted in ascending order. 

b. The bacteria with minimum health (Jhealth) values split and replaced their parents’ 

location and those highest values die. 

6.  If reNk  , repeat step 2 to 5 until maximum number of reproduction step is complete 

or next chemotactic loop is started. 



  
64 

  

7. Dispersal-elimination: for i = 1, 2, 3, …, S, a random number is created and if equal 

or less than Ped, disperse the bacterium to new location otherwise it should maintain 

its position. 

8.   edNl  , repeat step 1; else stop.  

4.6 Use of Firefly Algorithms to Minimise Analogue Circuits 

1. Initialisation Parameter: The following parameters are initialised: number of 

components = 7, Max Generation = 100, absorption coefficient 6.0  attractiveness

o  = 1, randomisation parameter α = 0.01 (α can be varied (decreases gradually as 

solution approaches optimal) to improve convergence). These are values determined as 

best values. Component maximum values = 5 3 1 11 16 16 40 and component 

minimum values = 0.01 0.3 0.5 0.1 14 14 0.1. The objective function is also formulated 

as illustrated in Section 3.5.1. 

2. Light intensity Ii at yi which is directly proportional to attractiveness is calculated by   

2

0

1 d





  .         (4.9) 

3. Update firefly positions: 

a. Calculate the square root of the distance between the first firefly and the second 

firefly as  

 




m

k

kjkijiij yyyyd

1

2
,,       (4.10) 

 

b. Calculate  with the value of o , and  β 

2

0
de             (4.11) 

c.  Move firefly i toward j if (Ii<Ij) according to equation (4.12) bearing in mind that if 

+ o  is attraction and - o  is repulsion. 

t
i

t
i

t
j

dt
i

t
i yyeyy ij 


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 )(
2

0
1       (4.12) 

d. Update firefly position 

4. Repeat step 2 until maximum iteration 

4.7 Use of Artificial Bee Colony Optimisation to Minimise Analogue Circuits 

The steps involved are as the following: 
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1. Initialisation Parameter: The parameters initialise are: colony size (employed bees and 

onlooker bees) NP = 20, the number of food sources is equivalent to half of the 

colony size (NP/2), a food source is discarded by its employed bee if could not be 

improved through "limit" trials (limit = 100), max Cycle = 2500, runtime = 100, 

number of parameters of the problem to be optimized (D = 7), component maximum 

values = 5 3 1 11 16 16 40 and component minimum values = 0.01 0.3 0.5 0.1 14 14 

0.1. 

2. Search by employed bees: An employed bee finds a new food source within the 

vicinity of a current food source by changing one randomly selected position variable 

value and maintaining other variables unaltered in each iteration. Let the location of 

the ith food source be; Si = (Si,0, Si,1, …, Si,Ns-1)  where Si,0, Si,1, …, Si,Ns-1 are Ns  

variables of solution and optimisation problem. To search for neighbouring food 

source S’i, a randomly chosen variable Sij in Si altered as S’ij  

)(' kjijijij SSSS           (4.13) 

where α is the uniform random number (-1,1) and Skj stands for the variable at the jth 

location in randomly chosen food source Sk which is one of the employed bees other 

than Si. S’ij is set to extreme value in the range if its position falls outside acceptable 

range. Whenever a new food source is located, the quantity of nectar of both new and 

current food source are compared. If the quantity of nectar in the new food source is 

more than the current food source, the employed bee relocates to the new source. 

3.  Choice of onlookers: When all employed bees undergo the process in section 2 

above, they share the nectar information about the food sources with onlookers in 

hive. The onlooker bee chooses a food source based on the quantity of nectar. In other 

words, good sources acquire more onlookers than bad sources. 

4. Search by onlooker bees: As each onlooker chooses food source, also it locates a new 

food source close to the food source. This is achieved by altering a randomly chosen 

position variable of the source as illustrated in employed bee. The quantities of nectar 

found in the new food source by onlookers at a food source are compared to 

determine the best neighbouring food source. If the quantity of nectar found in the 

best neighbouring food source is better than the food source, the position is moved to 

the best food source.  

5. Search by scouts: If all the onlookers end their search, some employed bees become 

scout controlled by limit. When onlookers and employed bee associated with a 
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particular food source cannot determine a better neighbouring food source in iteration 

limit, the source is discarded and the employed in that particular food source becomes 

a scout. The scout randomly looks for the position of new food source. Whenever it 

determines a new food source, it again becomes the employed bee in that food source.    

6. Update the best solution: If all the scouts become employed bees, the location of the 

best food source discovered so far is updated.  

7. Termination: The algorithm stops if termination criterion is satisfied, otherwise repeat 

steps 2-6.      

4.8 Methodology 

Cascode amplifier circuit is used to illustrate the methodology as a case study. Its 

original circuit is presented in Figure 4.1 while its minimised circuit is shown in Figure 4.2. 

The PSpice simulation of SSA module of the original circuit of the cascode amplifier is used 

to specify the objective function for the minimised circuit and Matlab code is written to get 

equivalent component values that satisfy the specifications. The minimised circuit is 

converted into its SSA as in Figure 4.3. The mesh analysis technique is applied to transform 

the circuit into its matrices form.  BFO, Firefly and ABC, GA and PSO algorithms are 

applied to get equivalent component values for the minimised cascode amplifier circuit. The 

best individual or particle for a given iteration that satisfied the objective function 

specification is taken as solution. The same component values of the circuits and the 

objective function specification are analysed with Nelder-Mead constrained nonlinear 

minimisation to analyse the effectiveness of the technique. The optimise unit of the circuit is 

considered as a black box, and output/input impedance is optimised such that they are not 

affected.  

The input impedance Rs and output impedance RL of the circuit are taken as constants 

and are given fixed value while others remaining components are given range of values as 

demonstrated in Table 4.2.  The upper and lower limits of the component values enable the 

programme to choose their values at random to evolve a circuit which satisfies the objective 

function. The multi-objective optimisation function is based on gain, power, upper-frequency 

band, and lower-frequency band. Figure 4.4 summarises the technique in the form of a 

flowchart. 
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Figure 4.1: Cascode amplifier initial circuit [186]. 
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Figure 4.2: Cascode amplifier minimised circuit. 

 

 

Figure 4.3: SSA for the minimised cascode amplifier circuit. 
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Figure 4.4: The proposed algorithm flow chart. 

 

The weighed objective function is formulated based on: 

)10/()10(max1/()1/( 8

12

4

11 vf
ApowerEcfEcfO      (4.14) 

where Of represents objective function, cf11 is the difference in value between the achieved 

and targeted lower-frequency response, cf12 is the difference in value between the achieved 

and targeted upper-frequency response, max-power is the difference in value between the 

achieved and targeted max-power needed by the circuit, Av is the range specified for the 

amplifier gain to be minimised, while Rout and Rin are the ranges specified for the output and 

input resistances of the amplifier to be minimised respectively. The components that are 

given value ranges shown in Table 4.2. Their specified values used in the optimisation are as 

follow:  
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cf11 = targeted (cf11) – 32.544 Hz  

cf12 = (targeted (cf12) – 20.444E6)/E6 Hz 

Max-power = 0.7236 mW, Av = 20 to 46, Rout = 650 Ω to 800 Ω, Rin = 7 kΩ to 7.5 kΩ.  

The constants for this work are: 

Cpi
 
= 10 pF, Cmu

 
= 2 pF, Rs = 100 Ω, RL

 
= 15 kΩ, Ro = 100 kΩ, Vcc = 10 V, V1

 
= 1 V, Vbe 

 
= 

0.648 V, IC  = 1 mA, hFE 
 
= 250, q = 1.6E-19 C, kb = 1.38e-23 J/K, Temperature = 300 K.  

Table 4.2: Components ranges. 

Component name  Minimum value Maximum value 

CL  (F) 0.01E-6 5E-6 

Re (Ω) 0.3E3 3E3 

Rc (Ω) 0.5E3 1E3 

R1 (Ω) 14E3 16E3 

R2  (Ω)  14E3 16E3 

Cb ( F) 0.1E-6 11E-6 

Ce  (F) 0.1E-6 40E-6 

Formulas used in the simulation are:  

 qTempkV bT /           (4.15) 

)/()( 2121 RRRRRb          (4.16) 



  2   f          (4.17) 

Tcm VIG /             (4.18) 

FEcB hII /           (4.19) 

mFEpi GhR /          (4.20) 

)/()( pibpibin RRRRR         (4.21) 

)/()( ococout RRRRR         (4.22) 
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BCi IIA /           (4.23) 

))/( ococmv RRRRGA         (4.24) 

]0;0;0;0;0;0;0;1[TA         (4.25) 
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where )))/(1((11 bbS CjRRa    

bRa 12  

bRa 21   

)))/(1((22 ebpi CjRRa    

piRa 23  

))/(1(24 eCja    

piRa 32
 

 )))/(1((33 pipi CjRa      

))/(1(35 piCja    

))/(1(42 eCja    

)))/(1((44 pie CjRa    
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eRa 47  

))/(1(53 piCja    

CIa 55  

)/1(56 mGa   

)/1(65 mGa   

oRa 66  

oRa 67  

eRa 74  

oRa 76  

eco RRRa  (77  

cRa 78  

cRa 87  

)))/(1((88 LcL CjRRa    

 ABC  1               (4.27) 

where C contains unidentified voltages in all the nodes to be found.  Cn is the voltage across 

the load resistor at node n being analysed to determine its frequency response within a given 

range of frequency (1 Hz to 1 GHz). The frequency response curves in Figure 4.5 are plot of 

gain in magnitude against its frequency for original circuit, and that of circuits optimised 

using Nelder-Mead, BFO, Firefly and ABC, GA and PSO. Firefly parameters are specified 

as: runtime = 100, number of iteration = 150, generation (N) = 40,  = 0.5,  = 1, β = 0.2. 

Also, ABCA parameters are set as follow: number of colony size (NP) = 20, food source 
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which must be improved (limit) = 100, food number = NP/2, runtime = 100 and number of 

cycle for foraging (maxcycle) = 2500.  

GA parameters are specified as: crossover (Pc) = 0.8, pop-size = 50, mutation (Pm) = 

0.05 and generation = 100. Whereas PSO parameters are set as: initial weight (w = 0.7298), 

acceleration constants (c1 = c2 = 1.49618), number of particles = 20 and number of iteration = 

30. In addition, BFO parameters selections are: number of bacteria in pop (S) = 8, number of 

bacteria reproductions (splits) per generation (Sr) = S/2, algorithm runtime = 100, Limits the 

length of a swim when it is on a gradient (Ns) = 4, number of chemotactic step per bacteria 

lifetime (Nc) = 5, number of reproduction steps, Nre = 4, probability that each bacteria is 

eliminated (Ped) = 0.25 and number of elimination-dispersal events (Ned) = 2. 

 4.9 Results and Discussion 

The optimised and original circuits are simulated in PSpice to get their frequency 

response. The 0.707 (-3dB) of the maximum gain is used to set the cut-off frequencies, which 

serves as reference. Example 1 shows cascode amplifier circuit, Example 2 describes a high-

pass filter; Example 3 illustrates a low-pass one and Example 4 for an all-pass filter. 

4.9.1 Example 1: Cascode Amplifier Circuit 

The results got from example 1 are summarised in Table 4.3. The original circuit 

simulated in PSpice enabling to obtained bandwidth, power and frequency response. Figure 

4.5 shows the frequency response curves with unique line styles for the Nelder-Mead, 

original circuit, BFO, ABCA, FA, PSO and GA optimised circuits.  Results presented have 

demonstrated that GA and PSO are useful optimisation tools for electronics. However, PSO 

has proved to be the best among the five-swarm algorithm techniques regarding power 

reduction and frequency response. Also, results presented revealed that FA, Nelder-Mead, 

ABCA and BFO are not good enough because they have narrow bandwidth in terms of 

frequency response and power consumption instead of reduction, it rather increases. It further 

revealed that PSO is better than GA regarding higher power reduction and better frequency 

response and they have least mean and standard deviation errors as in Table 4.3. The 

components mean and standard deviation are presented in Table 4.4. 
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Figure 4.5: Frequency response curve for all the optimised circuits and initial cascade circuit. 

 

Table 4.3: Results obtained from Example 1 simulation. 

Circuit 

element 

Initial 

Circuit 

Nelder-

Mead 

Firefly ABC BFO GA  PSO 

CL (µF) 100 18.74 13.07 11.98 24.79 6.86 14.66 

Re (kΩ) 1.3 1.91 1.92 0.99 2.70 1.43 2.76 

Rc (Ω) 750 504 990 621 533 665 549 

Cb (µF) 100 9.76 0.11 5.49 1.57 6.13 11 

R1 (kΩ) 15 14.75 0.50 4.99 12.82 4.86 9.57 

R2 (kΩ) 15 14.75 4.20 7.10 3.81 14.13 12.12 

Ce (µF) 100 48.73 26.42 50 24.57 30.58 50 

R3 (kΩ) 30 -    - - 

C4 (µF) 100 -    - - 

Q2N2222 2  1 1 1 1 1 1 

Rs (Ω) 1 1 1 1 1 1 1 

RL (kΩ) 50 50 50 50 50 50 50 

V1ac (volt) 1 1 1 1 1 1 1 

V2dc (volt) 12 12 12 12 12 12 12 
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Earth 1 1 1 1 1 1 1 

cf1 (Hz) 102 338.80 3.27E3 410.87 831.80 338.80 204.20 

cf2 (MHz) 48.95 36.31 47.70 26.02 23.24 45.69 47.75 

Power  (mW) 22.10 25.5 23.6 42.4 31.9 18.4 18.0 

Percentage of 

power change 

 +15.4% +6.79% +91.86% +44.3% -16.7% -18.6% 

Number of 

component 

16 13 13 13 13 13 13 

Objective 

function error 

 6.74E3 53.44 7.47E3 6.98E3 6.83E3  6.70E3 

Number of 

trials 

  100 100 100 100 100 

Mean error      56.316 6454 5123 26.658 26.587 

Std error   0.2026 5304 39.106 0.0043 0.0255 

 

Table 4.4: Mean and standard deviation results obtained from Example 1 simulation. 

Device Firefly ABC BFO GA PSO 

 

mean std mean std mean std mean std mean std 

CL (F) 10.50 3.214 9.368 5.842 10.63 4.270 1.257 1.014 20.00 0 

Re (Ω) 0.655 0.501 1.005 0.571 9.156 5.887 0.343 0.171 0.013 0.030 

Rc (Ω) 4.234 0.021 4.935 0.595 4.175 7.230 5.041 0.585 4.013 0.126 

Cb (F) 5.056 1.526 5.031 2.985 8.659 5.606 6.057 2.736 9.861 0.816 

R1 (Ω) 0.508 0.017 0.948 0.310 21.56 7.116 1.022 0.285 0.506 0.036 

R2 (Ω) 8.985 0.186 8.971 0.301 6.464 8.398 9.106 0.302 8.500 0 

Ce  (F) 3.292 6.296 15.73 8.424 14.81 4.272 0.153 0.053 0.102 0.000 

 

4.9.2 Example 2: High-Pass Filter Circuit 

The original circuit (high-pass filter) [187] is in Figure 4.6 while the minimised 

Nelder-Mead circuit is in Figure 4.7. The optimised and original circuit’s frequency response 

curve with unique line style is shown in Figure 4.8. The component values for minimised 

PSO, GA circuit and summary of results obtained simulated for the high-pass filter is in 

Table 4.5. 

For high and low unity gain filters, 
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221 QAV        
           

(4.28) 

which means that Q = 0.707. The analysis simply implies that, the quality factor is positioned 

at 0.707.  

 

Figure 4.6: Original high-pass filter circuit [187]. 

 

 

Figure 4.7: Nelder-Mead optimised high-pass filter circuit. 

 

 

U1

OPAMP

+

-

OUT

V1
1Vac

0Vdc

0

0V

C1

100n

R1

2.1k

U2

OPAMP

+

-

OUT

C2

100n

C3

100n

R2

1.65k

0A

R3
3.16k

0A
0V

0V

0V
0V

0V

Vout

U1

OPAMP

+

-

OUT

V1
1Vac

0Vdc

0

C1

3.55n

R1

39.55k

0A

Vout



  
77 

  

Figure 4.8: Frequency response curve for the high-pass filter. 

 

Table 4.5: Results obtained from Example 2 simulation. 

Circuit element Initial Circuit Nelder-Mead  GA PSO  

C1 (nF) 100 3.55 3.16 3.60 

C2 (nF) 100  - - - 

C3 (nF) 100 - - - 

R1 (kΩ) 2.1 39.55 38.16 37.00 

R2 (kΩ) 1.65 - - - 

R3 (kΩ) 3.16 - - - 

Op amp U1 1 1 1 1 

Op amp U2 1 - - - 

Ground 1 1 1 1 

V1 (ac volt) 1 1 1 1 

No. of Components 10 5 5 5 

Component reduction 

percentage 

- 50% 50% 50% 

Elapsed time - - 3.36 seconds 0.66 seconds 

Objective function error - 4.82E3 3.2E3 3.2E3 

4.9.3 Example 3: Low-Pass Filter Circuit 

The original circuit (low pass filter) [187] is shown in Figure 4.9, while the minimised 

Nelder-Mead circuit is in Figure 4.10. The optimised and original circuit’s frequency 

response curve with unique line style is shown in Figure 4.11. The summary of simulated 

results and component values for minimised PSO, GA circuit for the high pass filter are in 

Table 4.6. 
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Figure 4.9: Original low-pass filter circuit [187]. 

 

Figure 4.10:  Nelder-Mead optimised low-pass filter circuit. 

 

Figure 4.11: Frequency response curve for the low-pass filter. 
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Table 4.6: Results obtained from Example 3 simulation. 

Circuit elements Initial Circuit Nelder-Mead  GA PSO  

C1 (nF) 1 4.01 0.24 0.1 

C2 (pF) 820  799.01 786.66 793.55 

C3 (nF) 1.5 0.12 0.02 0.2 

C4 (pF) 330 - - - 

C5 (nF) 4.7 - - - 

R1 (kΩ) 3.16 0.775 0.54 0.54 

R2 (kΩ) 1.87 0.12 0.09 0.02 

R3 (kΩ) 4.42 5.51 3.19 3 

R4 (kΩ) 1.47 - - - 

R5 (kΩ) 4.53 - - - 

Ground 1 1 1 1 

Op amp U1 1 1 1 1 

Op amp U2 1 1 1 1 

Op amp U3 1 - - - 

V1 (ac volt) 1 1 1 1 

No. of 

Components 

15 10 10 10 

Component 

reduction 

percentage 

- 33.33% 33.33% 33.33% 

Elapsed time - - 4.98 seconds 0.99 seconds 

Objective function 

error 

- 843.03 792.03 792.03 

4.9.4 Example 4: All-Pass Filter 

The original circuit (all-pass filter) [187] is in Figure 4.12, while the minimised 

Nelder-Mead circuit is in Figure 4.13. The optimised and original circuit’s frequency 

response curve with unique line style is shown in Figure 4.14.  The summary of simulated 

results and component values for minimised PSO, GA circuit for the all-pass filter are in 

Table 4.7. 
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Figure 4.12: Original 7th order all-pass filter circuit [187]. 

 

 

Figure 4.13: Nelder-Mead optimised all-pass filter of the 7th order circuit. 
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Figure 4.14: Frequency response curve for the all-pass filter. 

Table 4.7: Results obtained from Example 4 simulation. 

Circuit element Initial Circuit Nelder-Mead  GA PSO 

C1 (nF) 1 1.55 1.76 1.82 

C2 (nF) 1 1.55 1.52 1 

C3 (nF) 1 1.55 1.52 1 

C4 (nF) 1 1.55 1.58 1.09 

C5 (nF) 1 1.55 1.58 1.09 

C6 (nF) 1 - - - 

C7 (nF) 1 - - - 

R1(kΩ) 1 1.33 0.65 1.01 

R2 (kΩ) 1 1.33 0.64 0.54 

R3 (kΩ) 1 1.33 0.65 1.01 

R4 (kΩ) 2 0.78 0.84 1 

R5 (kΩ) 1 1.33 1.76 1.59 

R6 (kΩ) 1 1.33 0.58 0.5 

R7 (kΩ) 1 1.33 0.59 0.5 

R8 (kΩ) 1 1.33 0.59 0.5 

R9 (kΩ) 2 0.78 0.99 1 

R10 (kΩ) 1 1.33 0.74 1.32 

R11 (kΩ) 1 1.33 1.76 2 

R12 (kΩ) 1 1.33 1.97 1.43 
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R13 (kΩ) 1 1.33 1.97 1.43 

R14 (kΩ) 2 - - - 

R15 (kΩ) 1 - - - 

R16 (kΩ) 1 - - - 

R17 (kΩ) 1 - - - 

R18 (kΩ) 1 - - - 

Ground 1 1 1 1 

Op amp U1 1 1 1 1 

Op amp U2 1 1 1 1 

Op amp U3 1 1 1 1 

Op amp U4 1 1 1 1 

Op amp U5 1 1 1 1 

Op amp U6 1 - - - 

Op amp U7 1 - - - 

V1 (ac volt) 1 1 1 1 

No. of Components 34 25 25 25 

Component reduction 

percentage 

- 26.47% 26.47% 26.47% 

Elapsed time - - 18.55 seconds 4.05 seconds 

Objective function error - 3.377E5 2.188E5 2.188E5 

Table 4.8 illustrates the cut-off frequencies located at the quality factor points. Results 

presented have revealed that, this technique can be used to reduce components in high, low 

and all pass filters, particularly in appliance where a phase angle change has no effect. 

Table 4.8: Showing the cut-off frequencies for the original and optimised filter circuits. 

Circuit type High-pass 

filter  

Low-pass 

filter 

All-pass filter circuit 

Low-pass High-pass 

Original  1 kHz 33 kHz 10.30 kHz 100.5 kHz 

Nelder-Mead 1.1 kHz 29 kHz 10.32 kHz 100.2 kHz 

GA 1.3 kHz 34 kHz 10.31 kHz 100.3 kHz 

PSO 1.2 kHz 34 kHz 10.30 kHz 100.4 kHz 
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4.10 Summary 

This work presents four different swarm optimisation and GA algorithms for analogue 

circuit optimisation.  The results of the first example in this chapter illustrated showed how 

equivalent analogue circuit can be found in terms of cut-off frequencies but do not give exact 

performance as the initial circuit. The examples further showed that component count 

reduction is achieved in analogue circuit same as it has been accomplished in digital circuits. 

The original circuit has sixteen (16) components count whereas the optimised five methods 

(Nelder-Mead, FA, BFO, ABC, PSO, and GA) all have thirteen components count but at 

different level of power consumption as illustrated in Table 4.3. In this approach, BFO, 

Nelder-Mead, ABC, and FA increased power consumption indicated at different values. 

However, PSO and GA reduced power consumption indicated at different levels.  

Op-amp filter circuits are minimised in the other three examples. In the high-pass 

filter circuit, a third order filter is minimised to a single stage op-amp and it obtains an 

equivalent result as that of third order with a component count reduction of five. In the low-

pass filter circuit, the fifth order filter circuit minimised to a three-stage op-amp filter and it 

obtains an equivalent result in terms of cut-off frequencies as that of a fifth order one with a 

component count reduction of five. In the all-pass filter, the seventh order filter is minimised 

to a five stage op-amp with a component count reduction of nine. It means that with computer 

programme, a lower order op-amp filter can be coded in such a way to realise a higher order 

op-amp filter by finding the quality factor of 0.707 with its corresponding frequency as 

detailed by the original circuit. In addition, PSO offers the best results regarding frequency 

response for the four examples, followed by GA whereas Nelder-Mead gives the worst result.  

Next is Chapter 5, which describes GP algorithm developments and how it is tested 

with four different benchmark functions. 
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Chapter 5
4
 

Genetic Programming  

5.1 Introduction 

In artificial intelligence, GP is an EA-based methodology motivated by biological 

evolution to search computer programmes that execute a user-defined task. Fundamentally, 

GP is a set of algorithms and a fitness function to compute how well a computer has 

implemented a task. GP is a domain-independent, systematic method for getting computers to 

resolve problems automatically, beginning from what is required to be done as a high-level 

statement. Using inspirations from biological evolution, GP begins from a randomly 

generated computer programmes, and gradually refines them through procedures of sexual 

recombination and mutation, until solutions are obtained. All these processes are carried out 

without the user having to specify the form or know or structure of the solutions in advance.  

This chapter demonstrates how GP and GF algorithms are used to develop a 

standalone optimisation tool and how the developed algorithm is tested with four different 

benchmark functions. The remaining part of this chapter is subdivided as: GP which is 

discussed in Section 5.2 and GF which is illustrated in Section 5.3. Specifications of the 

objective function for benchmark testing that is presented in Section 5.4 while algorithm 

benchmark testing on mathematical functions which is demonstrated in Section 5.5 and the 

summary of this chapter is in Section 5.6. 

The GP and the GF algorithms discussed in Sections 2.4.2 and 2.4.3 respectively are 

used to develop a computer code. The GF, MSCAM, and automatically simulated Netlist is 

introduced into existing GP which is a new contribution in this work, it enhances the 

development of independent Matlab toolbox. The simulator uses only Matlab compare to 

existing GP which combine Matlab and PSpice. The newly developed code is then tested for 

its efficiency using four benchmark expressions. A flowchart shown in Figure 5.1 

summarises the GP algorithm and the benchmark testing procedure used in this work. A 

randomly generated population is calculated to ascertain how well each individually evolving 

expression is performing with regard to its individual objective function. If the evolving 

                                                           
4
 The bulk of Chapter 5 has been published in [188] 
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expression satisfies the objective with zero error, the iteration with zero error is taken as 

solution else a generation continues. The evolving expression from the generation is extracted 

and substituted with specified range of values of X and Y. The same values are being 

substituted into an original expressions and a RMS difference is used as an error. The 

procedure continues until a zero error is obtained or the objective function is satisfied. 

Detailed processes involved are explained in the flowchart shown in Figure 5.1. 

 

Figure 5.1: The GP algorithm for benchmark testing. 

5.2 Genetic Programming 

Detailed information about GP is discussed in Section 2.4.2. Here the GP analysis is 

centred on how the GP algorithm is developed and represented for the benchmark testing.  
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The same approach is applied for all benchmark testing; the same parameters are used except 

variation in Length of parameters and length of chromosome that is being determined by the 

length of a TS or a function to be tested. For this case study, benchmark testing Expression 

5.2 in Section 5.5.1 is used for an illustration. The illustration is based on the following 

subheadings presented after summarising the GP algorithm: 

The GP algorithm, according to Koza [46], is based on the three steps: 

1. Generate a random population composed of the original function and termination 

criteria for the problem. 

2. Perform the following sub-steps iteratively until the termination criteria are 

reached: 

a) Each programme in the population is executed such that a fitness measure that 

specifies how well the problem is solved is clearly formulated. 

b) New population is created by selecting individual(s) with probability based on 

fitness and then these operations are applied: 

(i) Reproduction: Copy existing individual to the new population. 

(ii) Crossover: Two individuals are created for the new population by randomly 

recombining chosen parts of two existing individuals. 

3. The single best individual in the population produced while the run is taken as the 

result.  

5.2.1 Initialisation of Parameters 

 The following elements are initialised: Length of parameters = 63, population size = 

100, maximum number of generation = 500, length of chromosome = Length of parameters 

multiply by bit group (63 3 = 189), mutation = 0.10 and crossover = 0.90. These are the 

settings that give the best result after several trials. The programme finds the required 

solution to equation 5.2 whenever it has zero error. The population is randomly generated 

after parameters initialisation of a size equal to length of the chromosome multiply by the 

population size. 


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5.2.2 Decoding 

 The string is coded into +, ×, -, 3, 4, Y, X and 7. In this case, a chromosome is divided 

into a bit group of three, and each is converted to its decimal equivalent. The decimal 

equivalent is interpreted as: 

 ‘0’ represents plus 

 ‘1’ represents multiplication 

 ‘2’ represents minus 

 ‘3’ represents 3 

 ‘4’ represents 4 

 ‘5’ represents Y 

 ‘6’ represents X 

 ‘7’ represents 7 

5.2.3 Creation 

 A tree is randomly generated using an operands or terminals (the terminals in this case 

3, 4, Y, X and 7) and operators (+, × and -) defined in Section 5.2.2 above. Beginning with 

many trees of different sizes and shapes is good. A tree is generated applying a grow or a full 

method: 

 Grow – path lengths in TS vary up to a maximum length. 

 Full – all branches in TS must reach its maximum depth. 

   Ramp half – and - half method – trees of varying depths from a minimum to a 

maximum depth. Half of the tree is initialised with full and the other with grow. The 

ramp half - and – half is used. 

5.2.4 Mutation 

Pick a mutation reference point in one parent and swap its subtree with another 

randomly generated tree. In this research, the mutation rate of 0.1 is used. 

5.2.5 Crossover 

  Pick crossover reference points in both parents and then exchange the subtrees. An 

offspring will be varying even if the parents are the same. The crossover rate of 0.9 is used. A 

roulette wheel method is used to select two individuals from the present population, and the 
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ten randomly selected subtrees of the parents are swapped to create two offspring. 

5.3 Genetic Folding 

As discussed earlier in Section 2.4.3, GF is the structural arrangement of genes in 

order of linear numbers separated by dots. In this research, the GF is used to show how 

elements are structurally linked from beginning to end, so that the expression can be 

substituted with respective values of X and Y.  The GF representation of GP TS of Figure 

5.11 is shown in Table 5.1 (Figure 5.11 is used in this case because it is the desired TS). 

Table 5.1: The GF representation for benchmark testing. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

+ + + × × × - X × X × Y Y 7 × 

2.3 4.5 6.7 8.9 10.11 12.13 14.15 0.8 18.19 0.10 22.23 0.12 0.13 0.14 0.15 

 

18 19 22 23 30 31 36 37 38 39 46 47    

× × 3 × X 4 X Y X Y X Y    

36.37 38.39 0.22 46.47 0.30 0.31 0.36 0.37 0.38 0.39 0.46 0.47    

The GF begins with the series operator in location 1 and ends with element ‘Y’ in position 47.  

The 1
st
 plus operator has the 2

nd
 plus operator in location 2 and the 3

rd
 plus operator in 

location 3. The plus operator in location 2 has multiplication operators in location 3 and 5. 

Also, the plus operator in location 3 has multiplication operator in location 6 and minus 

operator in location 7.  The multiplication operator in location 4 has multiplication operator 

in location 8 and 7 as terminal in location 9 (terminal always end a branch) and so on. 

Terminals are defined using their indices location. GF is best understood with the following 

points:  

1. The arrangement of the chromosome comprises of float string in the gene and the 

location of the gene.  

2. The gene structure is left child (LC) side separated by dot and right child (RC) side. 

3. The dot stand for and. 

4. The operator that has two operands is with LC and RC. 
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5. The operator that has one operand is with LC and 0 in the RC. 

6. The terminal has 0 in LC and value in the RC. 

5.4 Specifications of the Objective Function and Hardware Requirements 

Detail of software environment is as: Matlab version: 8.0.0.783 (R2012b), operating 

system: Microsoft Windows 7. Others are: RAM: 12 GB, system rating: 64-bit operating 

system and processor: Intel (R) core (TM) I7-2600 CPU @ 3.40 GHz. The same system 

specification is used in Chapter 6. X is given a range of value from -10 to 10 with increment 

of 1 whereas Y is given a range value from -2 to 2 with an increment of 0.2. This information 

is used to generate matrices of size 21 by 21 for both an original and an evolving expression. 

The matrices are reshaped to size 1 by 441 and the RMS difference between the two matrices 

(the original and the evolving expression matrices) give the error. Mathematically: 

 Z’ is the reshaped matrix of size 1 by 441 

 Z is the reshaped matrix of size 1 by 441 

)'( ZZRMSW            (5.1) 

where W is the error, Z’ is the original expression, and Z is the GP evolving expression, the 

error controls the algorithm toward the required solution. The algorithm produces optimal 

solution when the error is zero. 

5.5 Algorithm Benchmark Testing on Mathematical Functions 

To test for efficiency, validation and reliability of optimisation algorithm are often 

performed using a test function or benchmark. Test function is vital to compare, validate and 

compare the functioning of optimisation algorithms, specifically newly developed ones [189].  

For a new GP algorithm developed, it is important to validate its performance by using 

existing set of benchmarks. The basic requirements on a benchmark according to Feldt et al. 

[190] are: 

 Validity:  mistakes that invalidate the expected output should be avoided, 

 Comparability: findings should be compared to others researchers findings. 

 Reproducibility: experiments and problems should be well documented so that other 

researchers can reproduce the same solutions to a given problem.  
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5.5.1 Benchmark Testing Expression 1 

743' 2223  XYYXYXZ       (5.2)  

Both X and Y is given a range of values from -50 to 50 with an interval of 1 and a three-

dimensional plot is represented after each iteration TS representation. The objective function 

specification is described in Section 5.4. The GP algorithm evolved the expression with 

593.28 errors in 1
st
 iteration and the GP TS is shown in Figure 5.2, its three-dimensional plot 

is represented in Figure 5.3 and the plot of errors against generations is shown in Figure 5.4. 

 

Figure 5.2: 1st iteration GP evolved TS for expression in equation 5.2 with 593.28 errors. 

Simplification of the above TS gives; 



Z  7(4 Y)  (X Y) (4Y)  (Y  X)33(4 4)Y 4(X  X)) 



Z  28XY 2 12XY  3XY 2 Y  4X 2 



Z  31XY 2 12XY Y  4X 2 
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Figure 5.3: Three-dimensional plots for expression in equation 5.2 for 1st iteration with 593.28 errors. 

 

Figure 5.4: 1st iteration plot of errors against generations for expression in equation 5.2. 

 

The GP algorithm also evolved the expression with 83.72 errors in the 20
th

 iteration 

and the GP TS is in Figure 5.5, its three-dimensional plot is represented in Figure 5.6 and the 

plot of errors against generations is shown in Figure 5.7. 
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Figure 5.5: 20th iteration GP evolved TS for expression in equation 5.2 with 83.72 errors. 

Evaluation of the above TS gives; 

23 6714))(2()()( YYYXXXYYXYXXZ   

7614 223234  YYXYYXXYZ  

 

Figure 5.6: Three-dimensional plots for expression in equation 5.2 for the 20th iteration with 83.72 errors. 
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Figure 5.7: 20th iteration plot of errors against generations for expression in equation 5.2. 

The GP algorithm evolved the expression in the 41
st
 iteration with 3.63 errors and the 

GP TS is in Figure 5.8, its three-dimensional plot is represented in Figure 5.9 and the plot of 

errors against generations is shown in Figure 5.10. 

 

Figure 5.8: 41st iteration GP evolved TS for expression in equation 5.2 with 3.63 errors. 

Its mathematical expressions are of form. 
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Z  X(X Y)  (X Y)YX(3X)Y(Y 7)74(X Y) 
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Z  X 3Y 2  3X 2Y Y 2  3Y  4X  7 
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Figure 5.9: Three-dimensional plots for expression in equation 5.2 for the 41st iteration with 3.63 errors. 

 

 

Figure 5.10: 41st iteration plot of errors against generations for expression in equation 5.2. 

The GP algorithm finally evolved the expression with optimal solution in the 52
nd

 

iteration with zero errors and the GP TS is in Figure 5.11, its three-dimensional plot that is 

the same as that of original expression is represented in Figure 5.12 and the plot of errors 

against generations is shown in Figure 5.13. 
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Figure 5.11: 52nd iteration GP evolved TS for expression in equation 5.2 with zero error. 

Critical analysis of the evolved TS of Figure 5.11 gives the expression simplified bellow: 



Z  X(X Y)  (X Y) X(3)  (X Y) (Y Y)7 (X  4)) 



Z  X(X 2Y 2) 3X(XY)Y 2  7  4X   



Z  X 3Y 2  3X 2Y Y 2  4X  7 

From the investigation of the TS or transforming the TS into equation, we can deduce that the 

algorithm is efficient because it has successfully evolved the original equation. 
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Figure 5.12: Three-dimensional plots for expression in equation 5.2 for the 52nd iteration with zero error 

and the same as original expression. 

 

 

Figure 5.13: Plot of errors against generations for expression in equation 5.2. 

5.5.2 Benchmark Testing Expression 2 
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The objective function specification is similar to that formed in Section 5.4. The GP 

algorithm evolved the expression with optimal solution in the 65
th

 iteration with zero errors 

and the GP TS of Figure 5.14. X is given a range of values from -10 to 10 with interval of 1 

and the plot is represented in Figure 5.15, and the plot of errors against generations is shown 

in Figure 5.16. 

 

Figure 5.14: 65th iteration GP evolved TS for expression in equation 5.3 with zero error. 

Careful analysis of the evolved TS of Figure 5.14 produces the expression simplified bellow: 



Y  ((X  X)  (X  X)) ((X  X)  (X  3)) ((X  X)  (51)) ((X 5) (71)) 



Y  (X 2  X 2) (X 2  (3X)) (X 2  4)5X 6 

 



Y  X 4  3X 3  4X 2 5X 6 

From the above examination of the TS or transforming the TS into equation, we can conclude 

that the algorithm is efficient because it has successfully evolved the original equation. 
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Figure 5.15: Plot of Y against X for expression in equation 5.3 with zero error. 

 

Figure 5.16: Plot of errors against generations for expression in equation 5.3. 

 

5.5.3 Benchmark Testing Expression 3 

12' 24  XXY           (5.4) 

The objective function specification is similar to that formed in Section 5.4. The GP 

algorithm evolved the expression with optimal solution in the 30
th

 iteration with zero errors 

and the GP TS of Figure 5.17. X is given a range of values from -10 to 10 with an interval of 

1. The plot is represented in Figure 5.18 and the plot of errors against generations is shown in 

Figure 5.19. 
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Figure 5.17: 30th iteration GP evolved TS for expression in equation 5.4 with zero error. 

Critical analysis of the evolved TS of Figure 5.17 gives the expression simplified bellow: 



Y 1 (X 2  X 2)1 X 2  (X 2 1) 



Y  X 4 2X 2 1 

From the investigation of the TS or transforming the TS into equation, we can deduce that the 

algorithm is efficient because it has successfully evolved the original equation. 

 

Figure 5.18: Plot of Y against X for expression in equation 5.4 with zero error. 
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Figure 5.19: Plot of errors against generations for expression in equation 5.4. 

5.5.4 Benchmark Testing Expression 4 

422937' 234  XXXXY         (5.5) 

The objective function specification is similar to that formed in Section 5.4. The GP 

algorithm evolved the expression with optimal solution in the 86
th

 iteration with zero errors 

and the GP TS of Figure 5.20. X is given a range of values from -10 to 10 with an interval of 

1. The plot is represented in Figure 5.21 and the plot of errors against generations is shown in 

Figure 5.22.  

 

Figure 5.20: 86th iteration GP evolved TS for expression in equation 5.5 with zero error. 

Careful analysis of the evolved TS of Figure 5.20 gives the expression simplified bellow: 
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))7()6(())()8(()7()( 222  XXXXXXXXXY  

)4267()88(7 22234  XXXXXXXXXY  

422937 234  XXXXY  

From the examination of the TS or transforming the TS into equation, we can deduce that the 

algorithm is efficient because it has successfully evolved the original equation. 

 

Figure 5.21: Plot of Y against X for expression in equation 5.5 with zero error. 

 

 

Figure 5.22: Plot of errors against generations for expression in equation 5.5. 
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5.6 Summary 

This chapter described how the GP algorithm is formulated by explaining the different 

units involve: initialisation of parameters, decoding, creation, mutation, crossover and 

formulation of objective function. It also illustrated how GF is incorporated into the GP by 

showing how the TS are structurally linked from the first element to the last. The developed 

GP algorithm is tested with four different benchmark functions. The algorithm is efficient 

because it successfully evolved the original benchmark equations.  

The next chapter to be discussed is Chapter 6; it describes how the developed GP 

algorithm is modified and applied to evolve analogue filter circuits. 

 

 

  



  
103 

  

Chapter 6 

Application of Evolutionary Computing in Analogue 

Circuit Evolution (Evolvable Hardware) 

6.1 Introduction 

This chapter is an extension of Chapter 5. The developed and tested algorithm in 

Chapter 5 is modified and applied to analogue circuit evolution. The remaining part of this 

chapter is presented as follow: evolvable hardware is discussed in Section 6.2, methodology 

is illustrated in Section 6.3, results and discussions are presented in Section 6.4 and summary 

of this chapter is in Section 6.5. 

As mention earlier, an analogue circuit design is important because of the fact that the 

world physical reading is analogue in nature. Although the volume of analogue circuit 

designs is far less compared to digital circuit designs, the majority of digital circuit designs 

require an analogue circuit for interfacing the outside world. Instead of using two platforms 

(Matlab and PSpice) for analogue circuit simulation, only Matlab is proposed in this research. 

This helps to reduce elapsed time needed to transfer simulation between the software 

packages. The traditional techniques of filter design require tedious mathematical 

computation. 

6.2 Evolvable Hardware  

Evolvable Hardware (EH) is a research field in EA used in electronic circuit 

simulation with no manual engineering design. It is a combination of autonomous system, 

fault tolerance, artificial intelligence and reconfigurable hardware. Some of EH’s applications 

in electronic circuit simulations are discussed by different researchers [191-198]. Doboli et al. 

[199] used very high speed integrated circuit hardware description language-analogue mixed 

signal (VHDL-AMS) for creating high-level analogue and mixed signal. In the work, many 

constraints are introduced to the VHDL-AMS instructions and case studies are illustrated. An 

evolvable hardware simulation which automatically designs analogue circuits using parallel 

GA was developed by Lohn et al. [31]. The algorithm evolves component values, circuit 

topology and circuit size. 
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Vural et al. [200] proposed three EAs: harmony search (HS), DE and ABCA to 

optimise CMOS amplifier area. Results are presented to demonstrate that the techniques meet 

specifications, accommodates required functionalities and the design objective.  

Other applications of GP as EH in addition to those discussed in Section 2.4.2 

include:  The use of current – flow analysis and GP for the invention of CMOS amplifier is 

presented in [201]; the work illustrates how current-flow evaluation corrects and screens 

circuits utilising topology-independent design rules. The approach is aimed to show how 

connections are linked between transistors. Also, a tree representation method in circuit 

design is illustrated by Senn et al. [202]. The authors combined GP and two-port theory for 

analogue circuit design. The presentation of circuit as the two-port network enhanced the 

encoding and evaluating of the circuit’s structure. The approach is also applied to active 

(transistor) and passive linear circuits. Moreover, GP use for the automatic design of 

analogue electronic circuits by Koza et al. [203] that has transistor as the active filter is 

presented as part of examples. It uses single technique by applying GP for modelling both 

circuit topology and sizing. Also, Peng et al. [204] used GP and bond graph (GPBG) in 

electronic circuit analysis with active components that is an extension of their previous 

research on passive component design. The analysis covers three models of a transistor, and 

one model of an op amp are implemented and analysed as two-port BG components. It also 

uses GP to create BG defining parameters and component topology in the design of active 

filter.  

Many studies on the use of an EA to evolve passive filters exist, but little has been 

done or more work is needed in the field of active filters, specifically on op-amp as a part of 

active filter components.   

 6.3 Methodology 

The detailed steps involved in modification or development of GP algorithm for 

analogue circuit evolution are illustrated in the flowchart of Figure 6.1. Randomly generated 

population is computed to know individually evolved circuit’s performance. If the evolving 

circuit satisfies the objective function with less than zero without further reduction in error or 

zero error, the circuit is referring to as the desired circuit otherwise generation continues. The 

procedures regenerate until less than zero without further reduction in error or zero error is 

got. Further processes involved are demonstrated in the flowchart in Figure 6.1 below. 
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Figure 6.1: The GP algorithm. 

6.3.1 Genetic Programming 

The aim of GP is to code a computer programme, initialise all the parameters 

required, and it has the ability to solve a stated problem. GP can find a solution to problems 

that can be compared and measured regarding fitness. As stated earlier, GP originated from 

the genetic algorithm. GP differ from GA, in that: GP is represented by variable length 

structures, containing whatever elements are needed to solve the problem, whereas GA is 

represented by a fixed length of numerical strings. The TS is great because it can produce 

solutions of complexity and arbitrary size, as opposed to GA with a fixed-length. GP 

generates population randomly and each individual is evaluated to determine fitness. An 

individual with the highest fitness is chosen to perform crossover, reproduction or mutation, 
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with other individuals to produce other individuals for next generation.   

GP algorithm in combination to GF, MSCAM and automatically generated symbolic 

Netlist are applied to evolve passive and active filter circuits. Also, the algorithm is tested 

with SSA circuit of a common-collector, FET and transistor common-emitter. The first circuit 

is used for illustration of detailed technique involved in the approach as show below: 

6.3.1.1 Initialisation 

 The GP algorithm is initialised with the following parameters: crossover = 0.90, 

mutation = 0.10, length of parameters = 8191, length of chromosome = 24573 and population 

size (PS) = 100. The randomly created population of matrix dimension = length of 

chromosome by PS. These initial values give the best solutions. 

6.3.1.2 Coding of Circuit’s Components 

 The voltage source is fixed but added before the Netlist formation to reduce the 

length of the chromosome. The chromosome is divided into bit group of three, and each is 

converted to its equivalent decimal translated as: 

 ‘0’ for series part (+) 

 ‘1’ for parallel part (|) 

 ‘2’ for capacitor (X) 

 ‘3’ represents inductor (Y) 

 ‘>3’ for operational amplifier (Z) 

6.3.1.3 Tree Creation 

Operators (| and +) and terminals (L, C and op-amp) defined in Section 6.3.1.2. are 

used to create tree randomly which may be grow or full technique: 

6.3.1.4 Mutation 

Mutation point is selected in one individual’s subtree and exchanges its subtree with a 

randomly created subtree. In this research, the mutation rate of 0.1 is used. 
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6.3.1.5 Crossover 

Ten Crossover locations in both parents are selected and the subtrees are 

interchanged. It creates offspring which are always different from their parents. The 

crossover rate used is 0.9.  

6.3.2 Genetic Folding 

In GF genes are structure in order of linear numbers separated by dots. GF is applied 

in this work to show how the chromosomes are structurally linked from beginning to end to 

enhance evolving circuit extraction to generate the Netlist. Figure 6.2 shows an active fourth 

order low-pass filter GP representation, whereas its GF representation is demonstrated in 

Table 6.1. 

 

Figure 6.2: Tree representations of active fourth order low-pass filter. 

The TS expression is read from top to bottom and from left to right, where + stands for series 

and | stands for parallel: 

+V1+R1|C1+Op1+R2|C2+Op2+R3|C3+Op3+R4|C4+Op4     (6.1) 

The expression in equation (6.1) is interpreted as follow: the 1
st
 series operator is two 

operands operator that have values (V1, series). The V1 is a terminal. The 2
nd

 series operator is 
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two operands operators that have values (R1, parallel). The R1 is a terminal. The 1
st
 parallel 

operator is two operand operators that have values (C1, series). The C1 is a terminal. The 3
rd

 

series operator is a two operands operator that has values (OP1, series) and so on. The 

expression also is represented using GF in Table 6.1. Each element is given numbers in order 

as in the 1
st
 row, the circuit’s elements are in the 2

nd
 row and the elements are folded over 

their complementary location genes in the 3
rd

 row. 

Table 6.1: The GF representation for circuit evolution. 

1 2 3 6 7 14 15 30 31 62 63 126 127 254  

+ R1 | C1 + OP1 + R2 | C2 + OP2 + R3  

2.3 0.2 6.7 0.6 14.15 0.14 30.31 0.30 62.63 0.62 126.127 0.126 254.255 0.254  

 

255 510 511 1022 1023 2046 2047 4094 4095 8190      

| C3 + OP3 + R4 | C4 + OP4      

510.511 0.510 1022.1023 0.1022 2046.2047 0.2046 4094.4095 0.4094 8190.0 0.8190      

V1 and the 1
st
 series (+) are fixed to shorten the length of chromosome and are not included 

Table 6.1. The GF begins with the series operator in location 1 and ends with element ‘OP4’ 

in position 8190.  The 1
st
 series operator has the R1 terminal in location 2 (and terminal 

always end a branch) and parallel operator in location 3. The parallel operator in location 3 

has terminals C1 in location 6 and series operator in location 7. The series operator in location 

7 has terminals OP1 in location 14 and series operator in location 15 and so on. The terminals 

are defined using their indices location. GF is best understood with the following points: 

7. The arrangement of the chromosome comprises of float string in the gene and the 

location of the gene.  

8. The gene structure is left child (LC) side separated by dot and right child (RC) side. 

9. The dot stand for and. 

10. The operator that has two operands is with LC and RC. 

11. The operator that has one operand is with LC and 0 in the RC. 

12. The terminal has 0 in LC and value in the RC. 
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6.3.3 Creation of Netlist 

To evaluation how well evolving circuit has performed in the population with regard 

to the desired circuit, evolving circuits are extracted and converted into a symbolic Netlist. 

Variable are represented in Matlab programme as single variable as described in Section 

6.3.1.2 and later encoded again to individual element types. The same component type is 

encoded with unique subscripts to distinguish them if there are more than one element type in 

the same circuit. The encoding is made symbolically. Using resistor as one component type 

for illustration, all resistors are labelled Y. Supposing there are four resistors (4Y), there are 

being substituted by [‘a-d’] so that if an element is chosen and it is ‘a’, it is labelled R1, if 

another element is chosen and it is ‘b’, it is labelled R2, and so on. The evolving circuits in the 

form of TS are described thus: an operand terminates a branch (op-amp, inductor, resistor and 

capacitor) whereas an operator (parallel or series part) continues the TS. The TS is interpreted 

from top to bottom and from left to right. The branches that proceed after the operand are 

swapped with ‘0’. Likewise, the branches that proceed after the ‘0’ are swapped with ‘0’, so 

that all the branches that proceed after the operands are swapped with ‘0’ up to the maximum 

length of TS. All the ‘0’ elements are then removed to leave the remainder evolving circuit. 

The stack separation evaluation technique is used to rearrange the GP evolved 

elements as it is connected. The series sets are numbered from 0 to the highest number, 

whereas the parallel sets are all numbered 0 since all are grounded apart from the special 

cases where a component is connected between nodes. The components labels are 

distinguished by subscript from 1 to the last element, for example, 4 resistors in a circuit are 

labelled as R1 R2 R3 R4. The Netlist formation is thus: if an element is picked; it is between a 

1
st
 node number and a 2

nd
 node number. It is vital to note that, the series components are 

always connected to the next node number (in this case) that is not zero. For instance, the 

extract from the above evolving circuit is as follow: 

+V+R|C+Z+R|C+Z+R|C+Z+R|C+Z      (6.2) 

In equation (6.2), Z stands for op-amp and replacing the values of parallel and series part 

into equation (6.2) form equation (6.3) as: 

0V1R0C2Z3R0C4Z5R0C6Z7R0C8Z9      (6.3) 
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The symbolic Netlist is formed thus: It starts with the element name, followed by 

node1, node2 and followed by its component value. If a circuit has op-amp as component(s), 

Netlist starts with it and number it from first to the last before other components follow. The 

formation continues thus: op-amp name, followed by its output node number, inverting node 

number and non-inverting node number 

 OAmp1 3 2 3 

 OAmp2 5 4 5 

 OAmp3 7 6 7 

 OAmp4 9 8 9 

 V 0 1 component value 

 R1 1 2 component value 

 R2 3 4 component value 

 R3 5 6 component value 

 R4 7 8 component value 

 C1 0 2 component value 

 C2 0 4 component value 

 C3 0 6 component value 

 C4 0 8 component value 

6.3.4 Symbolic Circuit Analysis in Matlab 

Gielen and Sansen [140] demonstrated how symbolic simulation is very useful when 

creating a large part of analytical prototype automatically. In this section, the MSCAM 

discussed in detail in Chapter 3 uses Netlist automatically generated from simulation 

described in Section 6.3.3 to transform it to symbolic matrices. The symbolic matrices are 

then substituted with their real values (using the eval command in Matlab) to acquire 

frequency response.  It is then compared with the specified frequency response set in the 

objective function. The process continues till the set frequency is acquired.   

6.3.5 Objective Function Specifications for the Active Fourth-Order Low-Pass Filter 

Voltage gain in other words, frequency response is utilised to analyse fourth-order active 

filter circuit.  
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a. Frequency range; 1 Hz to 1 MHz is set for the circuit and a cut-off frequency of 70 

kHz is specified. Impedance of each operand node is evaluated using 3 items: 

frequency, component value and component type. 

b. Each operand node brings impedance upward. The operator node computes the 

corresponding parallel or series (arithmetic) to acquire its impedance after getting 

impedance from its branches and the process proceeds till the final circuit 

impedance is computed. 

c. The current flowing in the tree is got by division of the source voltage over the 

circuit impedance. Starting from source, the current flowing in the series node is the 

same as current flowing in from the source. Whereas in the parallel node, the 

current flowing in is divided inversely proportional to the branches’ impedance and 

proceeds until the node terminates. 

d. The node voltage is the product of impedance and the current, and the voltage gain 

is obtained by division of the voltage across the set output node by source voltage. 

The procedure is demonstrated mathematically below.       

The symbolic matrices A and B (equation (6.4) and equation (6.5) respectively), 

automatically generated from MSCAM simulation is used to formulate fitness thus: 

]0;0;0;0;0;0;0);[( 111RVA S        (6.4) 
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where 111111 RCjb     

vAb 21  

)1(1 222 RAb v   
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223 1 Rb   

232 1 Rb   

2233 RCjb    

vAb 43  

)1(1 344 RAb v   

345 1 Rb   

354 1 Rb   

3355 RCjb    

vAb 65  

)1(1 466 RAb v   

467 1 Rb   

476 1 Rb   

4477 RCjb    

vAb 87  

188  vAb  

ABC  1           (6.6)  

where C holds an unknown voltage drop across all the nodes to be determined, and Cn is the 

voltage drops across the last node (n) being calculated to get its frequency response. The eval 

command in Matlab is used to substitute or replace the values of variables in the 
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automatically generated symbolic matrices (matrices A and B). The command (logspace) in 

Matlab is used to span the frequency range over 50 intervals for both evolving and targeted 

circuits’ frequency response. The difference between the RMS of GP evolving circuit 

frequency response and targeted frequency response is referred to as error. The relationship is 

presented in equation (6.7): 

)( 2211 ffrmsW            (6.7) 

where W stands for error, f11 is the targeted frequency response and f22 is the GP evolving 

circuit frequency response. 

 The use of PSO to minimise filter circuit discussed in Section 4.4 is then applied to 

individual circuit. Part of the circuit is critically observed and certain number of components 

are removed which is the mostly repeated pattern towards the end of circuit. The remaining 

components are given range of values so that PSO can select the value within the limit. 

6.4 Results and Discussion 

The results are explained under three main headings: active filters, transistor amplifier and 

passive filter circuits 

6.4.1 Active Filters Circuits  

Five different active filter circuits are used to illustrate the algorithm’s efficiency. The 

algorithm successfully evolves all the 5 circuits with zero or less than zero error. Results 

presented are the same as the objective function frequency response. The component values 

are specified over a range of values while PSO selects value within a specified range. 

6.4.1.1 Example 1: Fourth-Order Active Low-Pass Filter Circuit 

In the 1
st
 iteration, the GP evolved circuit TS is shown in Figure 6.3 whereas its 

equivalent circuit is shown in Figure 6.4. The MSCAM frequency response of the evolved 

circuit is shown in black colour; whereas the GP evolved PSpice circuit simulation is 

indicated in red colour as shown in Figure 6.5. The MSCAM simulation is with cut-off 

frequency at 160 kHz while that of the original circuit specifications cut-off frequency 

(PSpice simulation) is 67.9 kHz with error of 0.1736 and a gain of 1. It can be deduced from 

the frequency response curve that the desired circuit is not achieved because there is variation 
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between the two curves. The algorithm is constraint to initially with at least the first element 

type to enable formation of Netlist.   

 

Figure 6.3: 1st iteration tree representations of the active fourth order-low pass filter. 

 

Figure 6.4: 1
st
 iteration GP evolved circuit for the active fourth order low-pass filter. 

 

Figure 6.5: 1st iteration frequency response for GP evolved circuit (black), and the PSpice simulation of 

original circuit (red) for the active fourth order low-pass filter. 
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For the 7
th

 iteration, the GP evolved circuit TS, which is shown in Figure 6.6 whereas 

its equivalent circuit is shown in Figure 6.7. The MSCAM frequency response of the evolved 

circuit is shown in black colour; whereas the optimised GP evolved PSpice circuit simulation 

is shown in red colour as indicated in Figure 6.8. The MSCAM simulation is with the cut-off 

frequency at 82 kHz while that of the original circuit specifications cut-off frequency (PSpice 

simulation) is 67.9 kHz with error of 0.0342 and a gain of 1. Also, it can be inferred from the 

frequency response curve that the desired circuit is not realised because there is variation 

between the two curves.  

 

Figure 6.6: 7th iteration tree representations of the active fourth order low-pass filter. 

 

Figure 6.7: 7th iteration GP evolved circuit for the active fourth order low-pass filter. 
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Figure 6.8: 7th iteration frequency response for GP evolved circuit (black), and the PSpice simulation of 

original circuit (red) for the active fourth order low-pass filter. 

For the 12
th

 iteration, the GP evolved circuit TS is shown in Figure 6.9 whereas its 

equivalent circuit is shown in Figure 6.10. The MSCAM frequency response of the evolved 

circuit is shown in black colour whereas the optimised GP evolved PSpice circuit simulation 

is shown in red colour indicated in Figure 6.11. The MSCAM simulation is with the cut-off 

frequency at 81.13 kHz while that of the original circuit specifications cut-off frequency 

(PSpice simulation) is 67.9 kHz with error of 9.7298E-7 and a gain of 1. Likewise, it can be 

concluded from the frequency response curve that the desired circuit is not yet realised even 

though the response is getting closer but there is variation between the two curves. 

 

Figure 6.9: 12th iteration tree representations of the active fourth order-low pass filter. 
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Figure 6.10: 12th iteration GP evolved circuit for the active fourth order low-pass filter. 

 

Figure 6.11: 12th iteration frequency response for GP evolved circuit (black), and the PSpice simulation 

of original circuit (red) for the active fourth order low pass filter. 

The GP evolved the desired circuit which is the same as that of original circuit in 

terms of frequency response curve and components arrangements. Its TS is shown in Figure 

6.2 that is used for the illustration of the method, whereas its equivalent circuit is shown in 

Figure 6.12. The minimised circuit is shown in Figure 6.13. It takes thirty-six minutes to 

evolve the circuit after eighteen iterations. The MSCAM frequency response of the evolved 

circuit is shown in black colour whereas the optimised GP evolved PSpice circuit simulation 

is shown in red colour as indicated in Figure 6.14. The MSCAM, original circuit 

specifications and optimised circuit simulation with PSO application are with cut-off 

frequencies at 67.9 kHz while that of optimised circuit simulation without PSO application 

has cut-off frequency at 81.15 kHz with error of 8.6921E-10 and a gain of 1. The total 

number of component count reduction is 3. Here it can be inferred from the frequency 

response curve that the desired circuit is realised because there is no variation between the 

two curves. 
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Figure 6.12: 18th iteration GP evolved circuit for the active fourth order low-pass filter [187]. 

 

 

Figure 6.13: GP evolved/reduced/PSO component adjusted circuit for the active 4th-order low-pass filter. 

 

Figure 6.14: 18th iteration Frequency response for GP evolved circuit (Red), PSpice simulation of GP 

evolved circuit (black), PSpice simulation of reduced GP evolved circuit without PSO (blue) and with 

PSO (Green) for the active 4th-order filter circuit. 

6.4.1.2 Example 2: Fifth-Order Active Low-Pass Filter Circuit with Feedback 

The GP evolved desired circuit TS is shown in Figure 6.15, whereas its equivalent 

circuit is shown in Figure 6.16. The optimised GP evolved circuit is shown Figure 6.17. It 

takes twenty minutes to evolve the circuit and ten iterations. The MSCAM frequency 

response of the evolved circuit is shown in blue colour, the optimised GP evolved PSpice 

circuit simulation is indicated in black colour and the optimised circuit simulation with PSO 

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

U3

OPAMP

+

-

OUT

U4

OPAMP

+

-

OUT

R111

1k

R2

1k

R3

1k

R4

1kC1

1n C2

1n

C3

1n C4

1n

V1
1Vac

0Vdc

0

4

1

2

6

9

7

5

3

8

Vout

R1

0.9k
R2

0.9k
R3

0.9k

C1

1.35n
C2

1.35n
C3

1.35n

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

U3

OPAMP

+

-

OUT

3

6

7

V1
1Vac

0Vdc

1

Vout

5

2

4

0



  
119 

  

is shown in red colour as indicated in Figure 6.18. The GP algorithm successfully evolved the 

circuit with feedback loop (that is repeated in regular pattern) just with little modifications in 

the code. It is easy to modify algorithm of existing circuit for another compared to human 

method that the whole process has to start over. The MSCAM, original circuit specifications 

and optimised circuit simulation with PSO application are with cut-off frequencies at 47.1 

kHz while that of optimised circuit simulation without PSO application has cut-off frequency 

at 32.04 kHz with error of 5.1093E-7 and a gain of 1. The total number of component count 

reduction is 5. 

 

Figure 6.15: (a) GP evolved TS for the active low-pass filter with feedback and (b) U representation. 

 

Figure 6.16: GP evolved circuit for the active low-pass filter with feedback [187]. 
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Figure 6.17: GP evolved/reduced/PSO component adjusted circuit for the active low-pass filter with 

feedback. 

 

Figure 6.18: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved circuit 

(black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved circuit with PSO 

(Green) for the active low-pass filter with feedback. 
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Figure 6.19: (a) GP evolved TS for the active high-pass filter with feedback and (b) S representation. 

 

 

Figure 6.20: GP evolved circuit for the active high-pass filter with feedback. 

 

Figure 6.21: GP evolved/reduced/PSO component adjusted circuit for the active high-pass filter with 

feedback. 
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Figure 6.22: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved circuit 

(black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved circuit with PSO 

(Green) for the active high-pass filter with feedback. 

 

6.4.1.4 Example 4: Active Band-Pass Filter Circuit 

The GP evolved desired circuit TS is shown in Figure 6.23 whereas its equivalent 

circuit is shown in Figure 6.24. The optimised GP evolved circuit is shown in Figure 6.25. It 

takes twenty-six minutes to evolve the circuit after thirteen iterations. The MSCAM 

frequency response of the evolved circuit is shown in blue colour, the optimised GP evolved 

PSpice circuit simulation is indicated in black colour and the optimised circuit simulation 

with PSO is shown in red colour as indicated in Figure 6.26. The MSCAM, original circuit 

specifications and optimised circuit simulation with PSO application are with the lower and 

upper cut-off frequencies at 31.42 Hz and 47.86 kHz respectively while that of optimised 

circuit simulation without PSO application has lower and upper cut-off frequencies at 24.73 

Hz and 64.57 kHz respectively with error of 3.5614E-7 and a gain of 1. The total number of 

component count reduction is 6. 
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Figure 6.23: GP evolved TS for the active band pass filter (U and S as Figure 6.15 and Figure 6.19). 

 

Figure 6.24: GP evolved circuit for the active band-pass filter. 

 

 

Figure 6.25: GP evolved/reduced/PSO component adjusted circuit for the active band-pass filter. 
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Figure 6.26: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved circuit 

(black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved circuit with PSO 

(Green) for the active band-pass filter. 

 

6.4.1.5 Example 5: Active Band-Stop Filter Circuit 

The GP evolved desired circuit TS is shown in Figure 6.27, whereas its equivalent 

circuit is shown in Figure 6.28. The optimised GP evolved circuit is shown in Figure 6.29. It 

takes twenty-two minutes to evolve the circuit after eleven iterations. The MSCAM 

frequency response of the evolved circuit is shown in blue colour, the optimised GP evolved 

PSpice circuit simulation is indicated in black colour and the optimised circuit simulation 

with PSO is shown in red colour as indicated in Figure 6.30. This complex circuit is evolved 

within short time because the algorithm did not see it to be complex, what is needed is the 

right specifications regarding objective function and parameters settings. The MSCAM, 

original circuit specifications and optimised circuit simulation with PSO application are with 

lower and upper cut-off frequencies at 45.7 kHz and 453.4 kHz respectively while that of 

optimised circuit simulation without PSO application has lower and upper cut-off frequencies 

at 55 kHz and 562 kHz respectively with error of 8.1899E-8 and a gain of 1. The total 

component count reduction of 9. 
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Figure 6.27: (a) GP evolved TS for the band-stop filter (b) W representation and (c) T representation. 

 

Figure 6.28: GP evolved circuit for the active band-stop filter. 
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Figure 6.29: GP evolved/reduced/PSO component adjusted circuit for the active band-stop filter. 

 

Figure 6.30: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved circuit 

(black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved circuit with PSO 

(Green) for the active band-stop filter. 

6.4.2 Passive Filter Circuits 

Four different examples; two low-pass, one high-pass and one band-pass passive filter 

circuits are used to demonstrate the efficiency of the algorithm. The algorithm has proved to 

be efficient as it successfully evolves the four circuits with zero error. The results are the 

same as the set frequency response specified in the objective function.  
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6.4.2.1 Example 1: 10
th

 Order Low-Pass Passive Filter Circuit 

In example 1, the expected or desired circuit GP representation is shown in Figure 

6.31 whereas the equivalent circuit representation is shown in Figure 6.32. It takes fifty-six 

minutes to evolve the circuit after twenty eight iterations. The MSCAM frequency response 

of the evolved circuit simulation is shown with the blue colour (solid) whereas the equivalent 

circuit PSpice simulation is shown with black colour (dash) shown in Figure 6.33. The 

desired circuit specifications are achieved as regard design and frequency response curve. 

The MSCAM and original circuit specifications are with cut-off frequencies at 1.07 MHz 

with zero error and a gain of 1.  

 

Figure 6.31: Example 1 evolved circuit tree representations. 

 



  
128 

  

 

Figure 6.32: Example 1 evolved circuit. 

 

Figure 6.33: Example 1 frequency response curve for MSCAM (blue or solid) and PSpice (black or 

dashed). 

6.4.2.2 Example 2: Low-Pass Passive Filter Circuit 

In example 2, the expected or desired circuit GP representation is shown in Figure 

6.34 whereas the equivalent circuit representation is shown in Figure 6.35. It takes three 

hours and twenty-four minutes to evolve the circuit after one hundred and two iterations. The 

MSCAM frequency response of the evolved circuit simulation is shown in blue colour 

(solid), whereas the equivalent circuit PSpice simulation is shown in black colour (dash) as in 

Figure 6.36. The MSCAM and original circuit specifications are with cut-off frequencies at 

1.489 kHz with zero error and a gain of 1. 
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Figure 6.34: Example 2 evolved circuit tree representations. 

 

Figure 6.35: Example 2 evolved circuit 
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Figure 6.36: Example 2 frequency response for MSCAM (blue or solid) and PSpice (black or dashed). 

6.4.2.3 Example 3: High-Pass Passive Filter Circuit 

In example 3, the expected or desired circuit GP representation is shown in Figure 

6.37, whereas the equivalent circuit representation is shown in Figure 6.38. The optimised 

circuit is shown in Figure 6.39. It takes thirty-eight minutes to evolve the circuit after one 

hundred and two iterations. The MSCAM frequency response of the evolved circuit 

simulation is shown in red colour (dash), whereas the equivalent circuit PSpice simulation is 

shown in blue colour (dash) as in Figure 6.40. The desired circuit specifications are achieved 

regarding design wise and frequency response curve. The MSCAM, original circuit 

specifications, optimised circuit simulation with PSO application, optimised circuit 

simulation without PSO application have cut-off frequencies at 8.35 MHz with zero error and 

a gain of 0.0625. The total number of component count reduction is 2.  
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Figure 6.37: High-pass evolved circuit tree representations. 

 

Figure 6.38: GP evolved circuit for the passive high pass filter. 

 

Figure 6.39: GP evolved/reduced circuit for the passive high pass filter. 
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Figure 6.40: High-pass frequency response for MSCAM (blue or solid) and PSpice (black or dashed). 

 

6.4.2.4 Example 4: Band-Pass Passive Filter Circuit 

In example 4, the expected or desired circuit GP representation is shown in Figure 

6.41 whereas the equivalent circuit representation is shown in Figure 6.42. It takes two hours 

to evolve the circuit after one hundred and two iterations. The MSCAM frequency response 

of the evolved circuit simulation is shown with red colour (dash), whereas the equivalent 

circuit PSpice simulation is shown in blue colour (dash) in Figure 6.43. The same algorithm 

has been used for all these circuits evolution with little modifications in the cut-off frequency, 

length of chromosome, bit groups, which are values to play with, and it eliminates 

mathematical computations involving human methods. The GP evolved MSCAM simulation 

and original circuit specifications are with the lower and upper cut-off frequencies at 8.242 

kHz and 48.59 kHz respectively with zero error and a gain of 0.0625.  
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Figure 6.41: Band-pass evolved circuit tree representations. 

 

 

Figure 6.42: Band-pass evolved circuit tree representations. 
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Figure 6.43: Band-pass frequency response for MSCAM (red or solid) and PSpice (black or dashed). 

 

6.4.3 Transistor Amplifier Circuit 

The algorithm is also used to evolve SSA of transistor circuits and it is very efficient 

to evolve them because the frequency responses of all the three evolving GP circuits of the 

sampled transistors were the same as that of set frequency as illustrated below.  

6.4.3.1 Example 1: Common-Collector Transistor Amplifier Circuit 

The common collector transistor amplifier circuit is shown in Figure 6.44, GP evolved 

desired SSA circuit TS is shown in Figure 6.45 whereas its equivalent circuit is shown in 

Figure 6.46. It takes twenty-four minutes to evolve the circuit and twelve iterations. The 

MSCAM frequency response of the evolved circuit is shown in black colour and the PSpice 

simulation of the SSA circuit is indicated in black colour as shown in Figure 6.47. The GP 

evolved SSA of common collector circuit MSCAM simulation and original circuit 

specifications have the same lower and upper cut-off frequencies at 46.5 Hz and 95.35 MHz 

respectively with 2% error and a gain of 0.95. 
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Figure 6.44: Common-collector transistor amplifier circuit. 

 

 

Figure 6.45: GP evolved TS for common-collector transistor amplifier circuit. 
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Figure 6.46: GP evolved circuit for the common-collector transistor amplifier circuit. 

 

 

Figure 6.47: Frequency response curve of the SSA simulation (black) and GP evolved circuit (red) for the 

common-collector transistor amplifier. 

6.4.3.2 Example 2: Common-Emitter Transistor Amplifier Circuit 

The common-emitter transistor amplifier circuit is shown in Figure 6.48, GP evolved 

the desired SSA circuit TS which is shown in Figure 6.49 and its equivalent circuit is shown 

in Figure 6.50. It takes twenty-two minutes to evolve the circuit and eleven iterations. The 

MSCAM frequency response of the evolved circuit is shown in black colour and the PSpice 

simulation of the SSA circuit is indicated in the black colour as shown in Figure 6.51. The 

GP evolved SSA of common-emitter circuit MSCAM simulation and original circuit 

specifications have the same lower and upper cut-off frequencies at 32.5 Hz and 26.1 MHz 

respectively with zero error and a gain of 75.29. 
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Figure 6.48: Common-emitter transistor amplifier circuit. 

 

 

Figure 6.49: GP evolved TS for common-emitter transistor amplifier circuit. 
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Figure 6.50: GP evolved circuit for the common-emitter transistor amplifier circuit. 

 

 

Figure 6.51: Frequency response curve of the SSA simulation (black) and GP evolved circuit (red) for the 

common-emitter transistor amplifier. 

6.4.3.3 Example 3: FET Transistor Amplifier Circuit 

The FET transistor amplifier circuit is shown in Figure 6.52, GP evolved the desired 

SSA circuit TS which is shown in Figure 6.53 and its equivalent circuit is shown in Figure 

6.54. It takes twenty-six minutes to evolve the circuit and thirteen iterations. The MSCAM 

frequency response of the evolved circuit is shown in black colour and the PSpice simulation 

of the SSA circuit is indicated in the black colour as shown in Figure 6.55. The GP evolved 

SSA of FET circuit MSCAM simulation, and original circuit specifications have the same 

lower and upper cut-off frequencies at 30.9 Hz and 25.7 MHz respectively with zero error 

and a gain of 2.68. 
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Figure 6.52: Common-source FET amplifier circuit. 

 

 

Figure 6.53: GP evolved TS for the common-source FET amplifier circuit. 
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Figure 6.54: GP evolved circuit for the common-source FET amplifier circuit. 

 

 

Figure 6.55: Frequency response curve of the SSA simulation (black), and the GP evolved circuit (red) for 

the common-source FET amplifier. 

6.5 Summary 

This work introduced the use of GF, MSCAM, automatically simulated Netlist and 

GP for its first time use for active filter and passive filter circuits’ evolution. The developed 

and tested algorithm in Chapter 5 is modified with the introduction of MSCAM and how 

automatically simulated Netlist and being used for analogue circuits evolution. The same 

algorithm has been used for all these circuits evolution with little modifications in the cut-off 

frequency, length of chromosome, bit groups which are values to play with and it eliminates 

mathematical computations involving human methods. The research has provided an 

alternative approach of applying GP for the evolution of passive and active filter circuits or a 

Matlab toolbox for analogue circuit evolution. The elapsed time used while transferring 

simulation between software packages is reduced. Twelve different (eight examples of active 

V1
1Vac

0Vdc

R111

50K

Rg1

1M

Rg2

2.2M

Rd

2.2k

Rds

90.086k RL

3k

C111

1u

Cpi

10p

Cgs

1p

1

C2

1u

42 53

0

Cds

1p

I4

0.863e-3*2.486

1Aac

CL

3p

Vout



  
141 

  

filter and four examples of passive filter) circuits are used to demonstrate the efficiency of the 

approach and algorithm successfully evolved all the circuits. 

Chapter 7 is next which is centred on the conclusions and future work.  
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

In Chapter 1, a brief rational for analogue circuit optimisation, the motivation, aim 

and objective, thesis contribution to knowledge and the list of publication made during this 

work are presented. Chapter 2 presented definition and general background of optimisation 

and optimisation algorithm. The review of various optimisation methods used in this research 

is presented. It also described in detail the history of these developed techniques, principle of 

inspiration and different application areas. Chapter 2 is concluded by stating the advantages 

and disadvantages of each method and summary on how each technique can be used to 

optimise analogue circuit is stated 

In Chapter 3, MSCAM is introduced. The description of how the developed algorithm 

using modified nodal analysis in combination with the newly introduced SSA is illustrated on 

four different circuits. Results are presented to demonstrate the efficiency of the developed 

algorithm. 

In Chapter 4, four different swarm optimisation and GA algorithms for analogue 

circuit optimisation are presented.  The first result demonstrates how an equivalent analogue 

circuit can be found by applying the optimisation techniques. The examples further show that 

component count reduction is achieved in analogue circuit same as it has been accomplished 

in digital circuits. Other three results show how the approach is used to minimise op-amp 

filter circuits. In addition, PSO offers the best results regarding frequency response for the 

four examples.  

In Chapter 5, different units involve in the formulation GP algorithm is described. It 

also illustrates how GF is incorporated into the GP by showing how the TS are structurally 

linked from first element to the last. The developed GP algorithm is tested with four different 

benchmark functions. The algorithm is efficient because it successfully evolved the 

benchmark equations.  
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In Chapter 6, this unit introduces the use of GF, MSCAM automatically simulated 

Netlist and GP for its first time use for active filter and passive filter circuits’ evolution. The 

developed and tested algorithm in Chapter 5 is modified with the introduction of MSCAM 

and how automatically simulated Netlist are being used for analogue circuits evolution. 

Twelve different results (five examples of active filter, four examples of passive filter circuits 

and three examples of transistor amplifier circuits) are used to demonstrate the efficiency of 

the approach and algorithm successfully evolved all the circuits. In this final Chapter 7, 

conclusions and future research are presented. 

The three main contributions to knowledge in this research are: 

 This research introduced the concept of component count reduction in passive and 

active filter circuits which reduce the size, power consumption and increase circuit 

reliability. It also surveyed five artificial intelligence methods, and have identified 

PSO algorithm to be the best method among them in terms of power consumption 

reduction, speed of convergence and use it to optimise analogue circuit 

demonstrated in Chapter 2 and 4. 

 This work presented MSCAM that uses Netlist from PSpice or simulation to 

generate matrices. These matrices are used to calculate circuit parameters or used 

for optimisation illustrated in Chapter 3. The MSCAM enhances the matrices 

dimension of more than 30 by 30 so that it can be used to simulate complex 

circuits. This is important especially when operational amplifier (op-amp) is 

involved as circuit component compared existing SCAM that cannot handle 

matrices dimension more than eight by eight. The SCAM formed matrices by 

adding additional rows and columns due to how the algorithm was developed 

which takes more computer resources and limit its performance.   

 Also, this work has developed an automated algorithm that combines GF, 

automatically generated Netlist from simulation, MSCAM and GP for the 

evolution of active and passive filter circuits demonstrated in Chapter 5 and 6. The 

GF, MSCAM, and automatically simulated Netlist is introduced into existing GP 

which is a new contribution in this work, it enhances the development of 

independent Matlab toolbox. The simulator uses only Matlab compare to existing 

GP which combine Matlab and PSpice. The newly developed code is then tested 

for its efficiency using four benchmark expressions. 
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7.2 Future Work 

Although research demonstrated several contributions to Matlab toolbox and circuit 

optimisation problems, there are still some areas this work can be improved further. 

 The developed GP algorithm can be improved further to be able to handle branching 

or intermediate nodes. In other words, how to improve on the computer code to 

evolve a circuit system that the node numbering is non- linear. This will enable the 

algorithm to find variety of circuit to a given circuit specification. 

  Also to enhance the computer program to evolve a circuit with multi-feedback loop 

that do not repeat regular pattern. 

 To incorporate the PSO algorithm into the GP algorithm for automatic circuit 

optimisation rather than applying PSO algorithm after circuit evolution. This will 

reduce the elapse time used to evolve the truncated part during optimisation before 

using the PSO algorithm.   
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Appendix 

A Netlist from PSpice and the modified Netlist for MSCAM 

PSpice source file for Common-Emitter SSA Modified file version for MSCAM 

V_V1         1 0 DC 0Vdc AC 1Vac  

R_R111         1 2  100 TC=0,0  

R_R2         0 3  9.6k TC=0,0  

R_R1         0 3  51.2k TC=0,0  

R_Rpi         3 0  1.51k TC=0,0  

R_Ro         4 0  58.3k TC=0,0  

R_RL         5 0  3k TC=0,0  

C_C111         2 3  1u  TC=0,0  

C_Cpi         0 3  10p  TC=0,0  

C_Cmu         4 3  2p  TC=0,0  

C_C2         5 4  1u  TC=0,0  

R_Rc         0 4  2k TC=0,0  

C_CL         0 5  3p  TC=0,0  

I_I4         4 0 DC 69.6e-3*0..713 AC 1Aac 

V1 1 0 1  

R111 1 2 100  

R2 0 3 9.6e3  

R1 0 3 51.2e3  

Rpi 3 0 1.51e3  

Ro 4 0 58.3e3  

RL 5 0 3e3  

C111 2 3 1e-6  

Cpi 0 3 10e-12  

Cmu 4 3 2e-12  

C2 5 4 1e-6  

Rc 0 4 2e3  

CL 0 5 3e-12  

I4 4 0 69.6e-3*0..713 

 

PSpice source file for Example 3 Circuit Modified file version for MSCAM 

R_R111  1 2  1 TC=0,0  

C_Cpi   0 6  10p  TC=0,0  

R_R5    0 4  3.9k TC=0,0  

V_V1    1 0 DC 0Vdc AC 1Vac  

G_G1    7 0 VALUE { V(6)*69.6m } 

R_Rpi   6 0  1.51k TC=0,0  

R_RL    8 0  1k TC=0,0  

R_R2    3 2  12k TC=0,0  

C_CL    8 7  1n  TC=0,0  

C_Cmu   7 6  2p  TC=0,0  

R_Ro    7 0  58.3k TC=0,0  

R_R4    7 4  8.2k TC=0,0  

E_U1    5 0 VALUE {LIMIT(V(3,4)*1E6,-15V,+15V)} 

C_Cb    5 6  1n  TC=0,0  

R_R3    2 7  100 TC=0,0 

OAmp  5  3  4 

Cmu  6  7  2e-12 

I7  7  0  VALUE  

Rpi  0  6  1.51e3 

Cpi  0  6  10e-12 

Ro  0  7  58.3e3 

R2  3  2  12e3 

R3  2  7  100 

V1  1  0  1 

R5  0  4  3.9e3 

R4  4  7  8.2e3 

RL  0  8  1e3 

R111  1  2  1 

Cb  5  6  1e-9 

CL  7  8  1e-9 

 

PSpice source file for Common-Source SSA Modified file version for MSCAM 

C_Cgs         4 3  1p  TC=0,0  

C_C111         2 3  1u  TC=0,0  

R_Rg1         0 3  1M TC=0,0  

V_V1         1 0 DC 0Vdc AC 1Vac  

C_C2         5 4  1u  TC=0,0  

R_R111         1 2  50K TC=0,0  

R_Rd         4 0  2.2k TC=0,0  

R_Rds         4 0  90.086k TC=0,0  

R_RL         5 0  3k TC=0,0  

R_Rg2         0 3  2.2M TC=0,0  

C_Cpi         0 3  10p  TC=0,0  

C_Cds         0 4  1p  TC=0,0  

I_I4         4 0 DC 0.863e-3*2.486 AC 1Aac  

C_CL         0 5  3p  TC=0,0 

Cgs 4 3 1e-12  

C111 2 3 1e-6  

Rg1 0 3 1e6  

V1 1 0 1  

C2 5 4 1e-6  

R111 1 2 50e3  

Rd 4 0 2.2e3  

Rds 4 0 90.086e3  

RL 5 0 3e3  

Rg2 0 3 2.2e6  

Cpi 0 3 10e-12  

Cds 0 4 1e-12  

I4 4 0 0.863e-3*2.486  

CL 0 5 3e-12 
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B Code for transforming Netlist to matrices. 

%This program takes a netlist (similar to SPICE), parses it to derive the 

%circuit equations, then solves them symbolically.   
syms V1 I2 R111 R112 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R21 R22 R23 C1 C2 C3 C4 C5 C6 C7 Av s numO J C111 L111 R999 ...  
     v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14 v_15 v_16 v_17 v_18 v_19 v_20 v_21 
fname='7thorderchebyshev.cir'; 
[Name, N1, N2, arg3]=textread(fname,'%s %s %s %s ');     
  

PSpice source file for 7thorderchebyshev Modified file  version for MSCAM 

E_U1       3 0 VALUE {LIMIT(V(0,2)*1E6,-15V,+15V)} 

E_U2       5 0 VALUE {LIMIT(V(0,4)*1E6,-15V,+15V)} 

E_U3       7 0 VALUE {LIMIT(V(0,6)*1E6,-15V,+15V)} 

R_R111   1 2  16.9k TC=0,0  

R_R2       3 4  16.9k TC=0,0  

R_R3       5 6  10k TC=0,0  

R_R4       2 3  95.3k TC=0,0  

R_R5       6 7  10k TC=0,0  

R_R6       2 7  16.9k TC=0,0  

V_V1       1 0 DC 0Vdc AC 1Vac  

C_C1       2 3  1200p  TC=0,0  

C_C2       4 5  1200p  TC=0,0  

C_C4       8 9  1500p  TC=0,0  

R_R10     8 9  26.7k TC=0,0  

R_R9       11 12  10k TC=0,0  

C_C3        10 11  1500p  TC=0,0  

R_R12      8 13  16.2k TC=0,0  

E_U4        9 0 VALUE {LIMIT(V(0,8)*1E6,-15V,+15V)} 

R_R7         5 8  16.2k TC=0,0  

R_R11       12 13  10k TC=0,0  

E_U5        11 0 VALUE {LIMIT(V(0,10)*1E6,-15V,+15V)} 

R_R8        9 10  16.2k TC=0,0  

E_U6        13 0 VALUE {LIMIT(V(0,12)*1E6,-15V,+15V)} 

E_U7        15 0 VALUE {LIMIT(V(0,14)*1E6,-15V,+15V)} 

R_R16      14 15  12.7k TC=0,0  

R_R14      15 16  16.2k TC=0,0  

C_C5        16 17  2200p  TC=0,0  

E_U9        19 0 VALUE {LIMIT(V(0,18)*1E6,-15V,+15V)} 

R_R15      17 18  10k TC=0,0  

E_U8        17 0 VALUE {LIMIT(V(0,16)*1E6,-15V,+15V)} 

R_R18      14 19  16.2k TC=0,0  

R_R17       18 19  10k TC=0,0  

R_R13       14 11  16.2k TC=0,0  

C_C6         14 15  2200p  TC=0,0  

E_U10      21 0 VALUE {LIMIT(V(0,20)*1E6,-15V,+15V)} 

R_R20       20 21  42.2k TC=0,0  

R_R19       20 17  42.2k TC=0,0  

C_C7         20 21  1200p  TC=0,0 

OAmp1  3  2  0 

OAmp2  5  4  0 

OAmp3  7  6 0 

OAmp4  9  8  0 

OAmp5  11  10  0 

OAmp6  13  12  0 

OAmp7  15  14  0 

OAmp8  17  16  0 

OAmp9  19  18  0 

OAmp10  21  20  0 

R111  1  2  16.9e3 

R2 3  4  16.9e3 

R3  5  6 10e3 

R4  2  3  95.3e3 

R5  6  7  10e3 

C1  2  3  1200e-12 

C2  4  5  1200e-12 

R6  2  7  16.9e3 

C3  8  9  1500e-12 

R10  8  9  26.7e3 

R11  12  13  10e3 

R12  8  13  16.2e3 

R9  11  12  10e3 

R8  9  10  16.2e3 

C4  10  11  1500e-12 

R7  5  8  16.2e3 

R18  14  19  16.2e3 

R17   18  19  10e3 

C5  14  15  2200e-12 

R14   15  16  16.2e3 

R16  14  15  12.7e3 

C6  16  17  2200e-12 

R15  17  18  10e3 

R13  11  14  16.2e3 

R20  20  21  42.2e3 

C7  20  21  1200e-12 

R19  17  20  42.2e3 

V1  1  0  1 
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tic % start a stopwatch timer 
%Initialize 
numElem=0;  %Number of passive elements. 
numV=0;     %Number of independent voltage sources 
numO=0;     %Number of op amps 
numI=0;     %Number of independent current sources 
numI2=0; 
numNode=0;  %Number of nodes, not including ground (node 0). 
  
%Parse the input file 
for i=1:length(Name), 
    switch(Name{i}(1)), 
        case {'R','L','C' 'R111','L111','C111'}, 
            numElem=numElem+1; 
            Element(numElem).Name=Name{i}; 
            Element(numElem).Node1=str2num(N1{i}); 
            Element(numElem).Node2=str2num(N2{i}); 
            try 
                Element(numElem).Value=str2num(arg3{i}); 
            catch 
                Element(numElem).Value=nan; 
            end 
        case 'V', 
            numV=numV+1; 
            Vsource(numV).Name=Name{i}; 
            Vsource(numV).Node1=str2num(N1{i}); 
            Vsource(numV).Node2=str2num(N2{i}); 
            try 
                Vsource(numV).Value=str2num(arg3{i}); 
            catch 
                Vsource(numV).Value=nan; 
            end 
            case 'O', 
            numO=numO+1; 
            Opamp(numO).Name=Name{i}; 
            Opamp(numO).Node1=str2num(N1{i}); 
            Opamp(numO).Node2=str2num(N2{i}); 
            Opamp(numO).Node3=str2num(arg3{i}); 
        case 'I' 
            numI=numI+1; 
            Isource(numI).Name=Name{i}; 
            Isource(numI).Node1=str2num(N1{i}); 
            Isource(numI).Node2=str2num(N2{i}); 
            try 
                Isource(numI).Value=str2num(arg3{i}); 
            catch 
                Isource(numI).Value=nan; 
            end 
    end 
    numNode=max(str2num(N1{i}),max(str2num(N2{i}),numNode)); 
end 
  
%Preallocate all of the cell arrays ################################# 
G=cell(numNode,numNode); 
V=cell(numNode,1); 
I=cell(numNode,1); 
I2=cell(numNode,1); 
if ((numV)~=0), 
    E=cell(numNode,1); 
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end 
  
%Fill the G matrix ################################################## 
%Initially, make the G Matrix all zeros. 
[G{:}]=deal('0'); 
  
%Now fill the G matrix with conductances from netlist 
for i=1:numElem, 
    n1=Element(i).Node1; 
    n2=Element(i).Node2; 
    %Make up a string with the conductance of current element. 
    switch(Element(i).Name(1)), 
        case 'R', 
            g = ['1/' Element(i).Name]; 
             
        case 'L', 
            g = ['1/s/' Element(i).Name]; 
        case 'C', 
            g = ['s*' Element(i).Name]; 
            case 'R111', 
            g = ['1/' Element(i).Name]; 
             
        case 'L111', 
            g = ['1/s/' Element(i).Name]; 
        case 'C111', 
            g = ['s*' Element(i).Name]; 
      end 
     
    %If neither side of the element is connected to ground 
    %then subtract it from appropriate location in matrix. 
    if (n1~=0) & (n2~=0), 
        G{n1,n2}=[ G{n1,n2} '-' g]; 
        G{n2,n1}=[ G{n2,n1} '-' g]; 
    end 
     
    %If node 1 is connected to graound, add element to diagonal 
    %of matrix. 
    if (n1~=0), 
        G{n1,n1}=[ G{n1,n1} '-' g]; 
    end 
    %Ditto for node 2. 
    if (n2~=0), 
        G{n2,n2}=[ G{n2,n2} '+' g]; 
    end 
     
    %Go to next element. 
    %     i=i+4; 
end 
%The G matrix is finished ------------------------------------------- 
  
%Fill the V matrix ################################################## 
for i=1:numNode, 
    V{i}=['v_' num2str(i)]; 
end 
%The V matrix is finished ------------------------------------------- 
  
%Add each opamp output to the list of symbolic variables. 
% for i=1:numO, 
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%     SymString=[SymString J{i+numV} ' ']; 
% end 
  
%Fill the I matrix ################################################## 
[I{:}]=deal('0'); 
for j=1:numNode, 
    for i=1:numI, 
        if (Isource(i).Node1==j), 
            I{j}=[I{j} '-' Isource(i).Name]; 
        elseif (Isource(i).Node2==j), 
            I{j}=[I{j} '+' Isource(i).Name]; 
        end 
    end 
end 
%The I matrix is done ----------------------------------------------- 
  
[E{:}]=deal('0'); 
for j=1:numNode, 
    for i=1:numV, 
        if (Vsource(i).Node1==j), 
            E{j}= [E{j} '+' Vsource(i).Name]; 
        elseif (Vsource(i).Node2==j), 
            E{j}= [E{j} '-' -Vsource(i).Name]; 
        end 
    end 
end 
  
%The I matrix is done ----------------------------------------------- 
  
[I2{:}]=deal('0'); 
    for j = 1: numNode 
    for i=1:length(Name), 
          % ismember('R111',Name) mean R111 is member of name while ~ attached to ismember mean not 

member  
            if ismember('R111',Name) & ~ismember('C111',Name) & ~ismember('L111',Name)  
            R999=R111; 
            elseif ~ismember('R111',Name) & ismember('C111',Name) & ~ismember('L111',Name) 
            R999=1/(s*C11i); 
            elseif ~ismember('R111',Name) & ~ismember('C111',Name) & ismember('L111',Name) 
            R999=(s*L111);  
            elseif ismember('R111',Name) & ismember('C111',Name) & ~ismember('L111',Name) 
            R999=(R111 + 1/(s*C111)); 
            elseif ismember('R111',Name) & ~ismember('C111',Name) & ismember('L111',Name) 
            R999=(R111+(s*L111)); 
            elseif ~ismember('R111',Name) & ismember('C111',Name) & ismember('L111',Name) 
            R999=((s*L111)+(1/(s*C111))); 
            elseif ismember('R111',Name) & ismember('C111',Name) & ismember('L111',Name) 
            R999=(R111+(s*L111)+(1/(s*C111))); 
            elseif ~ismember('R111',Name) & ~ismember('C111',Name) & ~ismember('L111',Name) 
            R999=0; 
            end 
    end 
   I2=E/R999; 
    end 
  
%      I3 = char(I) + str(I2); 
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%Form the A, X, and Z matrices (As cell arrays of strings). 
    Acell=[deal(G)]; 
    Xcell=[deal(V)]; 
    Zcell=[deal(I)]; 
%     Z2cell=[deal(I2)]; 
     
    %Create assignments for three arrays 
Astring='A=['; 
Xstring='X=['; 
Zstring='Z=['; 
Z2string='Z2=['; 
  
for i=1:length(Acell),     %for each row in the arrays. 
    for j=1:length(Acell),      %for each column in matrix A. 
        Astring=[Astring ' ' Acell{i,j}]; %Get element from Acell 
    end 
    Astring=[Astring ';'];          %Mark end of row with semicolon 
    Xstring=[Xstring Xcell{i} ';'];    %Enter element into array X; 
    Zstring=[Zstring Zcell{i} ';'];    %Enter element into array Z; 
%     Z2string=[Z2string Z2cell{j} ';']; %Enter element into array Z2; 
end 
Astring=[Astring '];'];  %Close array assignment. 
Xstring=[Xstring '];']; 
Zstring=[Zstring '];']; 
% Z2string=[Z2string '];']; 
  
%Evaluate strings with array assignments. 
eval([Astring ' ' Xstring ' ' Zstring]) 
    
% A(4,4) =  A(4,4)+1; 
% A(4,3) =  A(4,3)+Av; 
% A(4,2) =  A(4,2)-Av; 
%  
% A(8,8) =  A(8,8)+1; 
% A(8,7) =  A(8,7)+Av; 
% A(8,6) =  A(8,6)-Av; 
% if numO ~=0, 
  
if numO ~=0, 
    for i=1:numO, 
            ss=char(N1(i,1)); % conversion to character (string)and opamp is being arranged fist from first to last 
            numNode=str2num(ss); % conversion from character (string) to number 
            A(numNode,numNode)= A(numNode,numNode)+1; % add 1 to o/p node voltage of opamp (ie Vout of 

opamp has coefficient of 1) 
            yy=char(N2(i,1)); 
            zz=str2num(yy); 
            uu=char(arg3(i,1)); % Negative i/p of opamp (N2, N2,arg3 respectively arrangement for o/p, +ve, and -

ve i/p of opamp)  
            vv=str2num(uu); 
            if zz==0 | zz==numNode; % zz=numNode means if the is direct feedback from opamp o/p to any i/p of 

opamp  
            A(numNode,numNode-1) =  A(numNode,numNode-1)+Av; % add Av to negative i/p voltage (V-ve) of 

opamp 
            elseif vv==0 | vv==numNode; 
            A(numNode,numNode-1) =  A(numNode,numNode-1)-Av; % add Av to positive i/p voltage (V+ve) of 

opamp 
            else 
            A(numNode,numNode-1) =  A(numNode,numNode-1)+Av; 
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            A(numNode,numNode-2) =  A(numNode,numNode-2)-Av; % add Av to positive i/p voltage (V+ve) of 

opamp 
            end 
    end 
end 
I3 = Z + I2; 
    disp(A); 
    disp(X); 
    disp(I3); 

 

  


