

Intelligent Optimisation of Analogue

Circuits Using Particle Swarm

Optimisation, Genetic Programming

and Genetic Folding

by

Ogri James Ushie

A thesis submitted for the degree of

Doctor of Philosophy

Department of Electronic and Computer Engineering

College of Engineering, Design and Physical Sciences

Brunel University London

April 2016

ii

Abstract

This research presents various intelligent optimisation methods which are: genetic

algorithm (GA), particle swarm optimisation (PSO), artificial bee colony algorithm (ABCA),

firefly algorithm (FA) and bacterial foraging optimisation (BFO). It attempts to minimise

analogue electronic filter and amplifier circuits, taking a cascode amplifier design as a case

study, and utilising the above-mentioned intelligent optimisation algorithms with the aim of

determining the best among them to be used. Small signal analysis (SSA) conversion of the

cascode circuit is performed while mesh analysis is applied to transform the circuit to

matrices form. Computer programmes are developed in Matlab using the above mentioned

intelligent optimisation algorithms to minimise the cascode amplifier circuit. The objective

function is based on input resistance, output resistance, power consumption, gain, upper-

frequency band and lower frequency band. The cascode circuit result presented, applied the

above-mentioned existing intelligent optimisation algorithms to optimise the same circuit and

compared the techniques with the one using Nelder-Mead and the original circuit simulated

in PSpice. Four circuit element types (resistors, capacitors, transistors and operational

amplifier (op-amp)) are targeted using the optimisation techniques and subsequently

compared to the initial circuit. The PSO based optimised result has proven to be best

followed by that of GA optimised technique regarding power consumption reduction and

frequency response.

This work modifies symbolic circuit analysis in Matlab (MSCAM) tool which utilises

Netlist from PSpice or from simulation to generate matrices. These matrices are used for

optimisation or to compute circuit parameters. The tool is modified to handle both active and

passive elements such as inductors, resistors, capacitors, transistors and op-amps. The

transistors are transformed into SSA and op-amp use the SSA that is easy to implement in

programming. Results are presented to illustrate the potential of the algorithm. Results are

compared to PSpice simulation and the approach handled larger matrices dimensions

compared to that of existing symbolic circuit analysis in Matlab tool (SCAM). The SCAM

formed matrices by adding additional rows and columns due to how the algorithm was

developed which takes more computer resources and limit its performance.

Next to this, this work attempts to reduce component count in high-pass, low-pass,

and all- pass active filters. Also, it uses a lower order filter to realise same results as higher

order filter regarding frequency response curve. The optimisers applied are GA, PSO (the

iii

best two methods among them) and Nelder-Mead (the worst method) are used subsequently

for the filters optimisation. The filters are converted into their SSA while nodal analysis is

applied to transform the circuit to matrices form. High-pass, low-pass, and all- pass active

filters results are presented to demonstrate the effectiveness of the technique. Results

presented have shown that with a computer code, a lower order op-amp filter can be applied

to realise the same results as that of a higher order one. Furthermore, PSO can realise the best

results regarding frequency response for the three results, followed by GA whereas Nelder-

Mead has the worst results.

Furthermore, this research introduced genetic folding (GF), MSCAM, and

automatically simulated Netlist into existing genetic programming (GP), which is a new

contribution in this work, which enhances the development of independent Matlab toolbox

for the evolution of passive and active filter circuits. The active filter circuit evolution

especially when operational amplifier is involved as a component is of it first kind in circuit

evolution. In the work, only one software package is used instead of combining PSpice and

Matlab in electronic circuit simulation. This saves the elapsed time for moving the simulation

between the two platforms and reduces the cost of subscription. The evolving circuit from GP

using Matlab simulation is automatically transformed into a symbolic Netlist also by Matlab

simulation. The Netlist is fed into MSCAM; where MSCAM uses it to generate matrices for

the simulation. The matrices enhance frequency response analysis of low-pass, high-pass,

band-pass, band-stop of active and passive filter circuits. After the circuit evolution using the

developed GP, PSO is then applied to optimise some of the circuits. The algorithm is tested

with twelve different circuits (five examples of the active filter, four examples of passive

filter circuits and three examples of transistor amplifier circuits) and the results presented

have shown that the algorithm is efficient regarding design.

iv

Dedication

The thesis is dedicated to God Almighty, for the wisdom and understanding to carry out the

research.

Also, I dedicate this doctorate work to my dear wife (Onyodo) and children (Ashikem, Inung

and Adaoshi) for their prayers, sacrifices and patience. Besides, I dedicated it to my lovely

parents (Father and my late Mother), my brothers and sisters.

v

Acknowledgements

I would like to appreciate those who supported me in one way or the other to realise the

dream of completing this research. A huge thanks to Dr Maysam F. Abbod (Reader), whom I

am indebted to, for his continuous guidance and advice during the research. I also appreciate

his support, encouragement and patience throughout the research period, and above all, I

acknowledged him for the opportunity given to me to do and achieve this doctorate. He is a

great mentor, friend and supervisor whom I have learnt so much from during the research. I

also appreciate the suggestions, time and dedication of my second supervisor, Dr Tatiana

Kalganova.

A big thank you goes to the Department of Electronic and Computer Engineering,

Prof Tassos Karayiannis, Dr Ali Mousavi, Dr Philip Collins and the Management of Brunel

University London for their support.

Also, I am grateful to Mohammed Al-Shammaa, Mary-Jane Sule, Dr Emeka Dumbili,

Jasper Ojoghoro and Pauldy Otermans for their suggestions and editorial assistance.

I am grateful to the former Vice-Chancellor of University of Calabar; Prof James

Epoke, who supported me to realise my dream. I would like to appreciate the financial

assistance from Tertiary Education Trust Fund (TETFUND) through the University of

Calabar, Calabar, Nigeria.

vi

Declaration

I certify that no art of this thesis has been previously submitted for a degree nor has it been

submitted as part of the requirements for a degree. I also certify that this thesis has been

written by me. Any assistance that I received in my research work and the preparation of the

thesis itself has been duly acknowledged and referenced.

Signature of Student

Ogri James Ushie

April 2016, London

vii

Table of Contents

Abstract ... ii

Dedication .. iv

Acknowledgements ... v

Declaration ... vi

Table of Contents .. vii

List of Figures ... xii

List of Tables ... xvii

List of Nomenclature .. xviii

Chapter 1 ... 1

Introduction ... 1

1.1 Introduction ... 1

1.2 Research Questions ... 2

1.3 Circuits Optimisation .. 3

1.4 Motivations ... 3

1.5 Aim and Objectives ... 3

1.6 Thesis Contributions ... 4

1.7 Thesis Overview ... 4

1.8 List of Publications ... 5

Chapter 2 ... 7

Literature Review .. 7

2.1 Introduction ... 7

2.2 Artificial Intelligence .. 7

2.3 Evolutionary Computing ... 9

2.3.1 Encoding .. 9

2.3.2 Initialisation ... 10

2.3.3 Fitness .. 10

2.3.4 Selection ... 10

2.3.5 Operators .. 10

2.3.5.1 Crossover .. 11

2.3.5.2 Mutation .. 11

2.3.6 Termination .. 12

2.4 Evolutionary Algorithm Classification ... 12

viii

2.4.1 Genetic Algorithm.. 12

2.4.2 Genetic Programming .. 14

2.4.3 Genetic Folding .. 16

2.4.3.1 The RNA Alphabet ... 17

2.4.3.2 The Folding Language .. 17

2.4.3.3 Genetic Encoding .. 18

2.4.3.4 Genetic Decoding .. 19

2.5 Swarm Intelligence Optimisation Methods ... 20

2.5.1 Particle Swarm Optimisation ... 20

2.5.1.1 PSO algorithm ... 22

2.5.1.2 Accelerated PSO ... 23

2.5.2 Firefly Algorithm ... 24

2.5.3 Artificial Bee Colony Algorithm ... 27

2.5.4 Bacterial Foraging Optimisation .. 29

2.6 Summary ... 31

Chapter 3 ... 35

Modified Symbolic Circuit Analysis in Matlab and its Applications in Electronic Circuit Simulation35

3.1 Introduction ... 35

3.2 Electronic Circuit Simulators .. 36

3.3 Symbolic Method .. 37

3.3.1 Mesh Analysis .. 38

3.3.2 Nodal Analysis ... 39

3.3.3 Development of Algorithm for New Modified Nodal Analysis .. 39

3.3.3.1 The A Matrix: ... 39

3.3.3.2 The X Matrix: ... 40

3.3.3.3 The I Matrix: ... 40

3.3.3.4 Presentation ... 40

3.4 Circuits Simulation and Results .. 40

3.4.1 Filter ... 41

3.4.1.1 Passive Filter ... 41

3.4.1.2 Active Filter .. 41

3.4.2 Operational Amplifier and its Small Signal Analysis .. 42

3.4.3 Transistor Amplifier ... 43

3.4.3.1 Frequency Response of Common-Emitter Amplifier ... 43

ix

3.4.3.2 Frequency Response of Common-Source Amplifier .. 44

3.5 Formulation of Objective Function and Circuits Simulation Examples 45

3.5.1 Seventh Order Chebyshev Circuit Objective Function Specifications 46

3.5.2 Circuits Simulation Results .. 51

3.5.2.1 Example 1: Seventh Order Chebyshev Filter Circuit .. 51

3.5.2.2 Example 2: Common-Emitter Circuit ... 53

3.5.2.3 Example 3: Combined Operational Amplifier and Transistor Circuit 54

3.5.2.4 Example 4: Common-Source Amplifier Circuit ... 55

3.6 Summary ... 57

Chapter 4 ... 58

Analogue Circuit Optimisation ... 58

4.1 Introduction ... 58

4.2 Use of Nelder-Mead to Minimise Analogue Circuits ... 59

4.3 Use of Genetic Algorithm to Minimise Analogue Circuits .. 59

4.4 Use of Particle Swarm Optimisation to Minimise Analogue Circuits .. 61

4.5 Use of Bacterial Foraging Optimisation to Minimise Analogue Circuits 62

4.6 Use of Firefly Algorithms to Minimise Analogue Circuits .. 64

4.7 Use of Artificial Bee Colony Optimisation to Minimise Analogue Circuits 64

4.8 Methodology ... 66

4.9 Results and Discussion ... 73

4.9.1 Example 1: Cascode Amplifier Circuit .. 73

4.9.2 Example 2: High-Pass Filter Circuit .. 75

4.9.3 Example 3: Low-Pass Filter Circuit ... 77

4.9.4 Example 4: All-Pass Filter ... 79

4.10 Summary ... 83

Chapter 5 ... 84

Genetic Programming ... 84

5.1 Introduction ... 84

5.2 Genetic Programming ... 85

5.2.1 Initialisation of Parameters .. 86

5.2.2 Decoding .. 87

5.2.3 Creation .. 87

5.2.4 Mutation ... 87

5.2.5 Crossover ... 87

x

5.3 Genetic Folding ... 88

5.4 Specifications of the Objective Function and Hardware Requirements 89

5.5 Algorithm Benchmark Testing on Mathematical Functions ... 89

5.5.1 Benchmark Testing Expression 1 .. 90

5.5.2 Benchmark Testing Expression 2 .. 96

5.5.3 Benchmark Testing Expression 3 .. 98

5.5.4 Benchmark Testing Expression 4 .. 100

5.6 Summary ... 102

Chapter 6 ... 103

Application of Evolutionary Computing in Analogue Circuit Evolution (Evolvable Hardware) 103

6.1 Introduction ... 103

6.2 Evolvable Hardware .. 103

6.3 Methodology ... 104

6.3.1 Genetic Programming .. 105

6.3.1.1 Initialisation .. 106

6.3.1.2 Coding of Circuit’s Components .. 106

6.3.1.3 Tree Creation .. 106

6.3.1.4 Mutation .. 106

6.3.1.5 Crossover .. 107

6.3.2 Genetic Folding .. 107

6.3.3 Creation of Netlist .. 109

6.3.4 Symbolic Circuit Analysis in Matlab ... 110

6.3.5 Objective Function Specifications for the Active Fourth-Order Low-Pass Filter 110

6.4 Results and Discussion ... 113

6.4.1 Active Filters Circuits .. 113

6.4.1.1 Example 1: Fourth-Order Active Low-Pass Filter Circuit .. 113

6.4.1.2 Example 2: Fifth-Order Active Low-Pass Filter Circuit with Feedback 118

6.4.1.3 Example 3: Fifth-Order Active High-Pass Filter Circuit with Feedback 120

6.4.1.4 Example 4: Active Band-Pass Filter Circuit ... 122

6.4.1.5 Example 5: Active Band-Stop Filter Circuit ... 124

6.4.2 Passive Filter Circuits .. 126

6.4.2.1 Example 1: 10
th
 Order Low-Pass Passive Filter Circuit .. 127

6.4.2.2 Example 2: Low-Pass Passive Filter Circuit ... 128

6.4.2.3 Example 3: High-Pass Passive Filter Circuit .. 130

xi

6.4.2.4 Example 4: Band-Pass Passive Filter Circuit .. 132

6.4.3 Transistor Amplifier Circuit ... 134

6.4.3.1 Example 1: Common-Collector Transistor Amplifier Circuit 134

6.4.3.2 Example 2: Common-Emitter Transistor Amplifier Circuit 136

6.4.3.3 Example 3: FET Transistor Amplifier Circuit .. 138

6.5 Summary ... 140

Chapter 7 ... 142

Conclusions and Future Work... 142

7.1 Conclusions ... 142

7.2 Future Work .. 144

References ... 145

Appendix ... 158

xii

List of Figures

Figure 2.1: The folding language. ... 17

Figure 2.2: TS diagram for equation 2.1. .. 18

Figure 2.3: TS diagram for genetic decoding illustration. .. 20

Figure 3.1: Small signal analysis of operational amplifier. .. 42

Figure 3.2: Common-emitter amplifier. .. 44

Figure 3.3: SSA of common-emitter amplifier. .. 44

Figure 3.4: Common-source amplifier. ... 45

Figure 3.5: SSA of common-source amplifier. ... 45

Figure 3.6: The proposed MSCAM algorithm. ... 46

Figure 3.7: Seventh order Chebyshev circuit [184]. ... 52

Figure 3.8: Seventh order Chebyshev PSpice (red) and MSCAM (black) frequency response. 52

Figure 3.9: Common-emitter circuit. .. 53

Figure 3.10: Common-emitter SSA. ... 53

Figure 3.11: Common-emitter SSA PSpice (black) and MSCAM (red) frequency response. 54

Figure 3.12: Example 3 circuit. ... 54

Figure 3.13: Example 3 SSA circuit. .. 55

Figure 3.14: Example 3 original circuit PSpice (red), SSA PSpice (green) and MSCAM (black)

frequency response curves. ... 55

Figure 3.15: Common-source amplifier. ... 56

Figure 3.16: Common-source amplifier SSA. .. 56

Figure 3.17: Example 4 Pspice (red) and MSCAM (black) SSA frequency response. 56

 .. 67

Figure 4.1: Cascode amplifier initial circuit [186]. ... 67

Figure 4.2: Cascode amplifier minimised circuit. ... 68

Figure 4.3: SSA for the minimised cascode amplifier circuit. .. 68

Figure 4.4: The proposed algorithm flow chart. ... 69

Figure 4.5: Frequency response curve for all the optimised circuits and initial cascade circuit. 74

Figure 4.6: Original high-pass filter circuit [187]. .. 76

Figure 4.7: Nelder-Mead optimised high-pass filter circuit. ... 76

Figure 4.8: Frequency response curve for the high-pass filter. ... 77

xiii

Figure 4.9: Original low-pass filter circuit [187]. ... 78

Figure 4.10: Nelder-Mead optimised low-pass filter circuit. ... 78

Figure 4.11: Frequency response curve for the low-pass filter. .. 78

Figure 4.12: Original 7th order all-pass filter circuit [187]. ... 80

Figure 4.13: Nelder-Mead optimised all-pass filter of the 7th order circuit. .. 80

Figure 4.14: Frequency response curve for the all-pass filter. .. 81

Figure 5.1: The GP algorithm for benchmark testing. .. 85

Figure 5.2: 1st iteration GP evolved TS for expression in equation 5.2 with 593.28 errors. 90

Figure 5.3: Three-dimensional plots for expression in equation 5.2 for 1st iteration with 593.28 errors.

 .. 91

Figure 5.4: 1st iteration plot of errors against generations for expression in equation 5.2. 91

Figure 5.5: 20th iteration GP evolved TS for expression in equation 5.2 with 83.72 errors. 92

Figure 5.6: Three-dimensional plots for expression in equation 5.2 for the 20th iteration with 83.72

errors. .. 92

Figure 5.7: 20th iteration plot of errors against generations for expression in equation 5.2. 93

Figure 5.8: 41st iteration GP evolved TS for expression in equation 5.2 with 3.63 errors. 93

Figure 5.9: Three-dimensional plots for expression in equation 5.2 for the 41st iteration with 3.63

errors. .. 94

Figure 5.10: 41st iteration plot of errors against generations for expression in equation 5.2. 94

Figure 5.11: 52nd iteration GP evolved TS for expression in equation 5.2 with zero error. 95

Figure 5.12: Three-dimensional plots for expression in equation 5.2 for the 52nd iteration with zero

error and the same as original expression. .. 96

Figure 5.13: Plot of errors against generations for expression in equation 5.2. 96

Figure 5.14: 65th iteration GP evolved TS for expression in equation 5.3 with zero error. 97

Figure 5.15: Plot of Y against X for expression in equation 5.3 with zero error. 98

Figure 5.16: Plot of errors against generations for expression in equation 5.3. 98

Figure 5.17: 30th iteration GP evolved TS for expression in equation 5.4 with zero error. 99

Figure 5.18: Plot of Y against X for expression in equation 5.4 with zero error. 99

Figure 5.19: Plot of errors against generations for expression in equation 5.4. 100

Figure 5.20: 86th iteration GP evolved TS for expression in equation 5.5 with zero error. 100

Figure 5.21: Plot of Y against X for expression in equation 5.5 with zero error. 101

Figure 5.22: Plot of errors against generations for expression in equation 5.5. 101

Figure 6.1: The GP algorithm. .. 105

Figure 6.2: Tree representations of active fourth order low-pass filter. .. 107

xiv

Figure 6.3: 1st iteration tree representations of the active fourth order-low pass filter. 114

Figure 6.4: 1
st
 iteration GP evolved circuit for the active fourth order low-pass filter. 114

Figure 6.5: 1st iteration frequency response for GP evolved circuit (black), and the PSpice simulation

of original circuit (red) for the active fourth order low-pass filter. ... 114

Figure 6.6: 7th iteration tree representations of the active fourth order low-pass filter. 115

Figure 6.7: 7th iteration GP evolved circuit for the active fourth order low-pass filter. 115

Figure 6.8: 7th iteration frequency response for GP evolved circuit (black), and the PSpice simulation

of original circuit (red) for the active fourth order low-pass filter. ... 116

Figure 6.9: 12th iteration tree representations of the active fourth order-low pass filter. 116

Figure 6.10: 12th iteration GP evolved circuit for the active fourth order low-pass filter. 117

Figure 6.11: 12th iteration frequency response for GP evolved circuit (black), and the PSpice

simulation of original circuit (red) for the active fourth order low pass filter. 117

Figure 6.12: 18th iteration GP evolved circuit for the active fourth order low-pass filter [187]. 118

Figure 6.13: GP evolved/reduced/PSO component adjusted circuit for the active 4th-order low-pass

filter. .. 118

Figure 6.14: 18th iteration Frequency response for GP evolved circuit (Red), PSpice simulation of GP

evolved circuit (black), PSpice simulation of reduced GP evolved circuit without PSO (blue) and with

PSO (Green) for the active 4th-order filter circuit. ... 118

Figure 6.15: (a) GP evolved TS for the active low-pass filter with feedback and (b) U representation.

 .. 119

Figure 6.16: GP evolved circuit for the active low-pass filter with feedback [187]. 119

Figure 6.17: GP evolved/reduced/PSO component adjusted circuit for the active low-pass filter with

feedback. ... 120

Figure 6.18: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved

circuit (black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved

circuit with PSO (Green) for the active low-pass filter with feedback. .. 120

Figure 6.19: (a) GP evolved TS for the active high-pass filter with feedback and (b) S representation.

 .. 121

Figure 6.20: GP evolved circuit for the active high-pass filter with feedback. 121

Figure 6.21: GP evolved/reduced/PSO component adjusted circuit for the active high-pass filter with

feedback. ... 121

Figure 6.22: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved

circuit (black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved

circuit with PSO (Green) for the active high-pass filter with feedback. ... 122

Figure 6.23: GP evolved TS for the active band pass filter (U and S as Figure 6.15 and Figure 6.19).

 .. 123

Figure 6.24: GP evolved circuit for the active band-pass filter. ... 123

xv

Figure 6.25: GP evolved/reduced/PSO component adjusted circuit for the active band-pass filter. .. 123

Figure 6.26: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved

circuit (black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved

circuit with PSO (Green) for the active band-pass filter. .. 124

Figure 6.27: (a) GP evolved TS for the band-stop filter (b) W representation and (c) T representation.

 .. 125

Figure 6.28: GP evolved circuit for the active band-stop filter. .. 125

Figure 6.29: GP evolved/reduced/PSO component adjusted circuit for the active band-stop filter. .. 126

Figure 6.30: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved

circuit (black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved

circuit with PSO (Green) for the active band-stop filter. .. 126

Figure 6.31: Example 1 evolved circuit tree representations. ... 127

Figure 6.32: Example 1 evolved circuit. ... 128

Figure 6.33: Example 1 frequency response curve for MSCAM (blue or solid) and PSpice (black or

dashed). ... 128

Figure 6.34: Example 2 evolved circuit tree representations. ... 129

Figure 6.35: Example 2 evolved circuit .. 129

Figure 6.36: Example 2 frequency response for MSCAM (blue or solid) and PSpice (black or dashed).

 .. 130

Figure 6.37: High-pass evolved circuit tree representations. .. 131

Figure 6.38: GP evolved circuit for the passive high pass filter. .. 131

Figure 6.39: GP evolved/reduced circuit for the passive high pass filter. .. 131

Figure 6.40: High-pass frequency response for MSCAM (blue or solid) and PSpice (black or dashed).

 .. 132

Figure 6.41: Band-pass evolved circuit tree representations. ... 133

Figure 6.42: Band-pass evolved circuit tree representations. ... 133

Figure 6.43: Band-pass frequency response for MSCAM (red or solid) and PSpice (black or dashed).

 .. 134

Figure 6.44: Common-collector transistor amplifier circuit. .. 135

Figure 6.45: GP evolved TS for common-collector transistor amplifier circuit. 135

Figure 6.46: GP evolved circuit for the common-collector transistor amplifier circuit. 136

Figure 6.47: Frequency response curve of the SSA simulation (black) and GP evolved circuit (red) for

the common-collector transistor amplifier. ... 136

Figure 6.48: Common-emitter transistor amplifier circuit. ... 137

Figure 6.49: GP evolved TS for common-emitter transistor amplifier circuit. 137

xvi

Figure 6.50: GP evolved circuit for the common-emitter transistor amplifier circuit. 138

Figure 6.51: Frequency response curve of the SSA simulation (black) and GP evolved circuit (red) for

the common-emitter transistor amplifier. .. 138

Figure 6.52: Common-source FET amplifier circuit... 139

Figure 6.53: GP evolved TS for the common-source FET amplifier circuit. 139

Figure 6.54: GP evolved circuit for the common-source FET amplifier circuit. 140

Figure 6.55: Frequency response curve of the SSA simulation (black), and the GP evolved circuit

(red) for the common-source FET amplifier. .. 140

xvii

List of Tables

Table 3.1: Simulation results time summarised. ... 57

Table 4.1: Summary or definition of GA’s symbols used. ... 59

Table 4.2: Components ranges. ... 70

Table 4.3: Results obtained from Example 1 simulation. ... 74

Table 4.4: Mean and standard deviation results obtained from Example 1 simulation. 75

Table 4.5: Results obtained from Example 2 simulation. ... 77

Table 4.6: Results obtained from Example 3 simulation. ... 79

Table 4.7: Results obtained from Example 4 simulation. ... 81

Table 4.8: Showing the cut-off frequencies for the original and optimised filter circuits. 82

Table 5.1: The GF representation for benchmark testing. .. 88

Table 6.1: The GF representation for circuit evolution... 108

xviii

List of Nomenclature

ABCA Artificial Bee Colony Algorithm

AMS Analogue Mixed Signal

AI Artificial Intelligence

AVR Automatic Voltage Regulator

BFO Bacterial Foraging Optimisation

BCO Bee Colony Optimisation

APSO Accelerated Particle Swarm Optimisation

CSD Canonical Signed Digit

CFA Chaotic Firefly Algorithm

CSI Computational Swarm Intelligence

CRPSO Craziness-Based Particle Swarm Optimisation

DE Differential Evolution

DRO Dynamic Rounding-Off

EWB Electronic Work Bench

EH Evolvable Hardware

EP Evolutionary Programming

ES Evolutionary Strategies

FA Firefly Algorithm

GA Genetic Algorithm

GABFA Genetic Algorithm Bacterial Foraging Algorithm

xix

GEP Gene Expression Programming

GF Genetic Folding

GP Genetic Programming

HBPSO Human Behaviours Based Particle Swarm Optimisation

KVL Kirchhoff's Voltage Law

LBG Linde-Buzo-Gray

 LUT Look-Up Table

LB Lower Bound

MSE Mean Square Error

MSCAM Modified Symbolic Circuit Analysis in Matlab

NA Nodal Analysis

NUFB TMUX Non-Uniform Filter Bank Trans-Multiplexer

Op-amp Operational Amplifier

OTA Operational Trans-Conductance Amplifier

PIC Peripheral Interface Controller

Pc Crossover Rate

PECS Power Electronics Circuits

PID Proportional Integral Derivative

Pm Mutation Rate

PSO Particle Swarm Optimisation

QMF Quadrature Mirror Filter

xx

QPSO Quantum Particle Swarm Optimisation

RMS Root Mean Square

SCAM Symbolic Circuit Analysis in Matlab

SI Swarm Intelligence

SPICE Simulated Programme with Integrated Circuit Emphasis

TS Tree Structure

UB Upper Bound

VLSI Very Large Scale Integration

VHDL-AMS Very-High-Speed Integrated Circuit Hardware Description Language-

Analogue Mixed Signal

1

Chapter 1

Introduction

1.1 Introduction

Electronics is a field in technology and physics concerned with circuit design using

microchips and transistors, and with the movement and behaviour of electrons in a vacuum,

semiconductor, conductor or gas. The application of electronics to human activities has

become a part of life and almost all aspects of human endeavours required it for better

functionality or productivity. Electronics is a very rapid growing industry because of its

demand in a day-to-day application and the need to overcome some challenges facing the

society. The objective of an electronics engineer is to design circuits that are smaller, faster

and cheaper. Other objectives are: to reduce power consumption and increase system

reliability.

Electronics is growing on a daily basis and one of the latest advances is a terahertz

(THz) transmitter [1]. Panasonic, the Japanese National Institute of Information and

Communications Technology and Hiroshima University claim to have produced a terahertz

(THz) transmitter capable of signal transmission of data at a per-channel rate of over 10

Gbit/s through multiple channels at around 300 GHz. The technology is the latest

development in wireless communication which can transmit data at rates ten times higher

than existing technology allows [1].

Secondly, in the UK, a collaborative project for developing sensing technologies that

monitor machined metal parts is ongoing [2]. The project brings together partners to integrate

research and end users, Centre for Process Development (CPI), with the technology and

industrial scale manufacturing, BAE Systems, Element Six, Advanced Manufacturing Ltd,

The Advanced Manufacturing Research Centre, Printed Electronics Limited, DMG Mori

Seiki and The National Physical Laboratory involved. The ‘Intelligent Tooling’ project is

developing electronic components and embedded sensors within high-value machining

usages in manufacturing sectors such as aerospace, automotive, rail, energy and marine. Part

of the research team is aiming at designing and printing the electronic sensors, offering

expertise toward integration of printable and conventional electronics [2]. Every day

2

electronic devices are changing in size; as such, there is a need for more research regarding

electronics miniaturisation.

1.2 Research Questions

The world physical interpretation is analogue in nature that makes analogue circuits

very vital in circuit design. Although the quantity of digital circuit design outnumbered that

of analogue design, most digital circuit modelling requires the analogue module for

interfacing to the external world. This thesis intends to combine disparate concepts in new

ways to investigate a conventional circuit system optimisation. The research questions are:

 Whether introducing the concept of component count reduction in passive and

active filter circuits will reduce the size, power consumption and increase circuit

reliability.

 If there is an improvement on existing symbolic circuit analysis in Matlab

(SCAM) whether its capacity (matrices dimension) will be enhanced to handle 30

by 30 or more so that it can be used to simulate complex circuits. This is

important especially when operational amplifier (op-amp) is involved as circuit

component compared existing one that cannot handle matrices dimension more

than eight by eight. The SCAM formed matrices by adding additional rows and

columns due to how the algorithm was developed which takes more computer

resources and limit its performance.

 Whether combining the concepts: genetic programming (GP), genetic folding

(GF), modified symbolic circuit analysis in Matlab (MSCAM) and automatically

generated Netlist for the evolution of passive and active filter circuits will aid to

develop an independent Matlab toolbox. The simulator uses only Matlab compare

to existing GP which combine Matlab and PSpice.

Power consumption in electronic circuit designs has been a source of concern for

engineers because of its effect on the environment. The more a system is complex, the less

reliable it would be or in other words, the fewer the elements in a system, the greater the

reliability of the system. Electronic circuit’s minimisation increases system reliability,

reduces power consumption and reduces component count and size. Also, optimisation can be

used to vary component values if the desired component values are not available in a

developing country where some component values seem to be a problem.

3

The process of converting electrical circuit into its equivalent matrices requires

tedious mathematical computation. Because it is a human method, it is also prone to error or

may take longer time and each circuit has to undergo the same process each time a circuit has

to be solved. Instead of combining two platforms (PSpice and Matlab) for electronic circuit

simulation, only Matlab is used in this research to develop an algorithm for the evolution of

filter circuits. This reduces elapsed time used for transferring the simulation to and from the

two packages, and can also serve as a useful tutorial on how to use GP in Matlab to design

analogue circuits. Simulation programme with integrated circuit emphasis (Spice) is also

known as PSpice and the latter is used throughout the thesis.

 1.3 Circuits Optimisation

A circuit optimisation is a process of finding the best or an alternative design for

existing electronic circuits. Circuit optimisation helps to reduce component count, cost, size

and increases system reliability in circuits. There have been advances in analogue circuit

optimisation. Among such advances in recent time is the introduction of a look-up table

(LUT) based analogue design automation. The LUT algorithm is used to extract circuit

parameters from complex physics-based models of transistor used by PSpice [3].

1.4 Motivations

The motivation of this research is centred on the fact that most optimisation packages

are expensive, not independent, not flexible, and not open access. Therefore, this work is

motivated to develop a standalone optimisation algorithm that is flexible, open source and

less expensive because only one simulator is required. The Matlab toolbox uses only Matlab

software compare to existing GP which combine Matlab and PSpice software packages which

will reduce payment of subscription to two software.

 1.5 Aim and Objectives

The overall aim of this piece of research is to embark on analogue electronic circuit

optimisation in terms of component count reduction, improve on existing algorithms and to

develop a toolbox or an independent algorithm that can be used as a tutorial in Matlab for

circuit evolution.

 This research objective is to survey optimisation methods to identify the best

method and use it to optimise analogue circuit.

4

 This work intends to search for independent optimisation techniques if any and

possible improvement if any.

 Lastly, one of its objectives is to develop an automated independent optimisation

algorithm for electronic circuit evolution without combining with other packages.

 1.6 Thesis Contributions

To the best of my knowledge regarding this research and since most of my

contributions to knowledge or the ideas have been published by me, several findings from the

research are considered significant. The following summarises the main contributions of this

research:

 The work presents genetic algorithm (GA), firefly algorithm (FA), bacterial

foraging optimisation (BFO), artificial bee colony (ABC), and particle swarm

optimisation (PSO). These algorithms are used because there are intelligent

methods to justify the research topic. Analogue electronic circuits are optimised

using cascode amplifier by applying all these artificial intelligent algorithms for

the purpose of identifying the best algorithm.

 The research attempts to reduce component count in high, low, and all pass active

filters. Also, a lower order filter is simulated to achieve the same results as that

simulated with higher order ones as regards their frequency response.

 Modified Matlab symbolic circuit analysis and simulation tool that generates

matrices that make use of Netlist from PSpice are presented. The matrices can be

applied to calculate circuit components or for optimisation.

 The research introduces the use of GF, MSCAM and GP for the evolution of

active and passive filter circuits. Instead of combining PSpice and Matlab in

electronic circuit simulation, the work only used Matlab. This reduces elapsed

time use for transferring simulation between the software packages and reduces

cost of subscription.

 1.7 Thesis Overview

This thesis is comprised of seven chapters. Chapter 1 (this chapter) which is made up

of the following sections: introduction, research questions, circuit optimisation, motivations,

aim & objectives, thesis contributions, thesis overview and list of publications. The

remaining chapters of the thesis are briefly described below:

5

 In Chapter 2, a detailed background theory, literature survey, the concept, principle

of inspiration of various evolutionary algorithms and artificial intelligent methods are

presented. The developer and the period in which the algorithms were developed are also

stated and some area applied.

Chapter 3 describes MSCAM and its applications in an electronic circuit simulation

are illustrated. It improves on existing SCAM so that the developed algorithm can handle

matrices dimension more than a matrix size of eight by eight.

Chapter 4 presents circuit optimisation. One circuit is used as an example to

implement five different artificial intelligent methods (GA, FA, BFO, ABCA, and PSO) with

a sole aim to determine the best method among them.

In Chapter 5, the use of GF, MSCAM, GP and automatically generated symbolic

Netlist to develop an independent algorithm is presented. The benchmark testing of the

developed algorithm for its efficiency with four mathematical functions is implemented. The

algorithm evolved the expression in the form of tree structure illustrated in the chapter.

In Chapter 6, application of EA in analogue circuit evolution as an evolvable

hardware (EH) is described. The chapter emphasises the use of GF, MSCAM, GP and

automatically generated symbolic Netlist for the evolution of analogue circuit such as low-

pass, high-pass, band-pass and band-stop for both passive and active filter circuit. In other

words, the developed algorithm in Chapter 5 is modified and applied in analogue circuit

evolution.

Chapter 7 is the conclusions and future work. It illustrates deduction based on results

& discussion and possible future work.

1.8 List of Publications

The highlights of the publications are:

Conference Papers/Posters

 O. J. Ushie and M. F. Abbod, ''Intelligent Optimization Methods for Analogue

Electronic Circuits: GA and PSO Case Study," International Conference on

6

Machine Learning, Electrical and Mechanical Engineering (ICMLEME'2014), on

Jan. 8-9, 2014 Dubai (UAE), pp. 193-199, 2014.

 O. J. Ushie ''Intelligent Minimisation Methods for Analogue Electronic Circuits

Using PSO and GA," Brunel University Research Student Conference, 11 – 12

March, 2014.

 O. J. Ushie ''Intelligent Minimisation Methods for Analogue Electronic Circuits

Using PSO and GA," School of Engineering and Design Research Student

Conference, Brunel University London, 23 – 26 June, 2014.

Journal Papers

 O. J. Ushie, M. F. Abbod, E. C. Ashigwuike and S. Lawan, “Constrained

Nonlinear Optimization of Unity Gain Operational Amplifier Filters Using PSO,

GA and Nelder-Mead’’ The International Journal of Intelligent Control and

Systems (IJICS), vol. 20, pp. 26-34, 2015.

 O. J. Ushie, M. Abbod, and E. C. Ashigwuike, “Naturally Based Optimisation

Algorithm for Analogue Electronic Circuits: GA, PSO, ABC, BFO, and Firefly a

Case Study,” Journal of Automation and Systems Engineering (JASE), vol.9 issue

3, pp 173-184, 2015

 O. J. Ushie, M. F. Abbod, and E. C. Ashigwuike, “Matlab Symbolic Circuit

Analysis and Simulation Tool using PSpice Netlist for Optimization,”

International Journal of Engineering and Technology Innovation vol. 5, pp. 75-86,

2015.

 O. J. Ushie, M. Abbod, and Brian E. Usibe, “Genetic Folding/Programming

Toolbox: Analogue Circuit Design Case Study,” Journal of Automation and

Systems Engineering (JASE), vol.10 issue 1, pp 40-64, 2016

 O. J. Ushie, M. F. Abbod, and Julie C. Ogbulezie, “The Use of Genetic

Programming to Evolve Passive Filter Circuits” International Journal of

Engineering and Technology Innovation, (submitted 13/01/2016 under review).

 O. J. Ushie, M. F. Abbod, and E. C. Ashigwuike, “Evolution of Active Filter

Circuits Design Using Genetic Programming” International Journal of Electronics

and Communications, Elsevier (submitted 19/05/2016 under review).

http://www.ezconf.net/index.php?co_id=25&mo_id=0&PHPSESSID=2bd23eff560ad1149436c80794310e6e

7

Chapter 2
1

Literature Review

2.1 Introduction

Optimisation is a process of finding an optimal solution for a model [6]. As long as

the society continues to exist, the need to improve its standard of living will also continue.

Societal problems arise from a diverse field such as engineering, manufacturing, finance,

music, medicine, computational art, chemistry and physics. The desire to obtain the best

solution is faced in day-to-day life and cannot be overemphasised. Optimisation is applied in

our everyday activities to minimise or maximise something. An organisation minimises cost,

maximises profits and maximises performance. Tourists maximise their enjoyment to a

minimal cost during a holiday.

This chapter surveys various intelligent optimisation techniques applied in this

research to optimise analogue electronic circuits. The methods surveyed are: GA, GP, GF,

PSO, FA, ABCA and BFO.

2.2 Artificial Intelligence

Artificial intelligence (AI) which is the study of computer techniques that emulate

aspects of human intelligence or writing computer programmes that emulate the behaviour of

organisms to solve a problem [7]. It can also be defined as the enterprise of constructing a

physical symbols system that can reliably pass the Turning test [8]. Turning test was named

after a famous man who was working as a director of programming at Manchester University,

who contributed to artificial intelligence. Turning developed a concept known as ‘Turning

test’. The test involves a person communicating through teletype with an unidentified party

that might be either a computer or another person. If the computers at the other destination

response in a humanlike way, it may fool the person into thinking it is another human [9]. AI

involves three things: knowledge representation, search and application of these ideas.

Search is the process of solving a problem where the basic technique or method being

applied involves examining many possibilities while finding a solution. Planning for

1
 Majority of Chapter 2 has been published in [4, 5].

8

Christmas vacation involves search. One may decide to visit wife’s family, one’s family or

travel to the US. If one decides to travel to the US, one may search for a flight, may rent a car

or a hotel and so on. The knowledge representation in AI involves the research studies of the

problem to find a language to encode the ideas so that the computer can use it. Knowledge

representation and search form the core of the AI. The application involves natural language

processing and vision [9].

 The optimisation methods are developed based on the behaviour of organisms that are

translated into algorithms. These algorithms are applied to write computer programmes to

optimise the analogue circuits and used for other applications mentioned in the introduction

of this chapter. Classification of the algorithm gives a clear understanding on how to analyse

it and how it works. Algorithms that apply similar problem-solving technique can be grouped

together. Algorithm can be labelled or classified as:

 Deterministic versus randomised: Deterministic algorithms yield on a given set of

input the same results and always follow the same computational steps. On the other

hand, randomised or stochastic algorithm has some randomness introduced by random

function. Solutions in the population are always different each time the programme is

run due to the random function. Although the final results may be of no big

difference, the path of individual is not repeated on the same input. The randomised

algorithms have the effect of disturbing the input, easy to implement and superior to

deterministic regarding runtime [10].

 Offline versus online: online algorithms do not know their input initially, but the input

is supplied online; an example of an online algorithm is ski, whereas offline

algorithms know their input at the beginning [10].

 Exact versus approximate versus heuristic versus operational: Exact algorithm aims at

computing an optimal solution given such a specified goal. Often, it is quite expensive

regarding memory, run time and not possible for large input. Approximation algorithm

aims at computing the solution that is never worse than a factor or guaranteed factor

worse than optimal solution example travelling salesman problem. Heuristic

algorithms find the optimal solution without providing a guarantee which they always

do. The operational algorithm does not optimise the objective function but chain a

sequence of computational operations directed by expert knowledge, for example

ClustalW [10].

9

 Other classes of algorithms according to the main concept are listed as: divide and

conquer algorithms, greedy algorithms, simple recursive algorithms, dynamic

programming algorithms, backtracking algorithms, and branch and bound algorithms

[10].

2.3 Evolutionary Computing

An algorithm is defined as any well-defined computational process that takes a set of

values or some values as input and yield set of values or some values as output. In other

words, an algorithm is a series of computational steps that change the input into output [10].

An algorithm is referred to be correct if, for every set of input instance, it produces the

correct output as solution. It can be detailed as a hardware design or even as in English as

computer code. The only condition is that the description must provide precise steps of the

computational process to be followed. An optimisation algorithm is the process that is

executed iteratively and also involves comparing of various solutions till a satisfactory or an

optimum solution is found [11].

An evolutionary algorithm (EA) has been in use for the past decades for the provision

of solutions for many engineering and computer science problems. The EA is classified into:

GA [12], GP [13], GF [14], evolutionary programming (EP) [15], evolutionary strategies

(ES) [16], gene expression programming (GEP) [17] and differential evolution (DE) [18, 19].

The following operations are involved while considering evolutionary computing: encoding,

initialisation, fitness, selection, operators and termination.

2.3.1 Encoding

Encoding is the process of representing strings of genes called potential solutions

(individuals as in GA whereas particles as in PSO). GA encodes potential solution typically

in a form of a real string or a form of a fixed-length string of binary numbers [20]. PSO

represents its potential solution known as particles in a form of a fixed-length of real-valued

vector or a form of a real string or a form of a fixed-length string of binary numbers. GP

represents its potential solutions in a form of a variable-sized of tree structure (TS) of values

and functions [21]. The encoding process is dependent on the types of technique to be used

and the problem involved.

10

2.3.2 Initialisation

Initialisation of a set of a population size is a first step in the EA. Each population has

a number of particles or individuals, encoding sets and parameters. It is important to specify

how many individuals or particles the population has. A small population size may converge

too quickly. It is better that the first population size specification should have a large number

of individuals or particles to be able to explore the whole search space that may consume the

memory resources and time. Therefore, other genetic parameters and the population size are

chosen carefully.

2.3.3 Fitness

In EA, the fitness function of an individual is the measured value of an objective

function that provides a measure of how well individuals have performed in a problem space.

In calculating fitness, the particle or individual has to be first decoded, evaluated and then

determine how well it has performed as regard objective function. Therefore, each individual

or particle is evaluated depending on how well the particle or individual is closed to the

optimal solution called fitness value. These values guide the search to direct the individuals

or particles toward an optimal solution. The thesis makes use of the error that is the RMS

value of the difference between the objective function and the evolving function within a

frequency range.

2.3.4 Selection

GA uses the best solution (solution with high fitness) to pass to the next generation

called a selection of the fittest [11]. Selection method determines the number of trials or times

an individual is selected for reproduction. In other words, it determines which and how many

parents to be chosen, how many offspring to create, and which individuals will be swapped

with the next generation. The most widely used method is roulette wheel method. It gives

each individual its fitness value and depending on these values, a chosen individual will

survive to the next generation.

2.3.5 Operators

The operators are mutation and crossover.

11

2.3.5.1 Crossover

It is the process of swapping parts of solution(s) with another in chromosomes with

the purpose of mixing the solution [11]. Crossover is the procedure of taking two

chromosomes and using them to reproduce new offspring. After the selection, the population

is made up of better individuals. Selection does not create new ones. Crossover operator is

applied to the search domain with the hope of creating good offspring or the main task is to

mix the solutions. Crossover involves three steps:

a. Two pairs of chromosomes for the mating are randomly selected. If two parents (A, B)

are being selected:

00100/00101110101 (B)

10101\00101101010 (A)

b. The crossover point is created at random along the chromosome length. For a one-point

crossover as in this case, the random point is = 5, the head is the left part of the cross

point and the remainder is the tail. The swap parts take the form to create new offspring:

Head (B) | Tail (A) = e;

Head (A) | Tail (B) = f;

c. Finally, the chosen parts are replaced between the two chromosomes (A, B) depending

on the cross point and connected again by (|) operator as follows:

0010000101101010 (e)

1010100101110101 (f)

Crossover operator proceeds if the two parents have a percentage for the mating less than

the probability value Pc. However, the Pc value is known as the crossover rate that

depends on either an adapted value or a fixed value.

2.3.5.2 Mutation

It is the process of changing parts of solution randomly, thereby increasing the

diversity of the population and avoiding the algorithm to converge to local optimum [11].

Crossover exploits the newest solution to finding better ones, whereas mutation explores the

entire search domain. The mutation operator is introduced to avoid early convergence to local

optima by randomly sampling new points in the search domain. The mutation rate is

represented as Pm. The mutation operator process as follows:

101011(B)

12

100001(b)

Notice only two genes have been changed 3rd, 5th.

2.3.6 Termination

The termination condition is the number of generations the algorithm should run or

certain conditions the algorithm should satisfy before it stops.

2.4 Evolutionary Algorithm Classification

EA are globally oriented, straightforward to apply in problems where there is little or

no knowledge about the solution to the problem. Because EA is random in nature and it needs

no derivative information, it is able of searching in the solution domain with greater

possibility of locating the global solution. Among the EA mentioned in Section 2.3, the

review will only cover GA, GP and GF which are used in this research.

2.4.1 Genetic Algorithm

GA was developed by John Holland and co-workers in the 1960s and 1970s; it applies

the Charles Darwin's theory of evolution based on survival of the fittest. Holland was the first

to use selection, mutation, recombination and crossover in the study of an artificial system

[11]. GA is a population–based stochastic technique that makes use of the principle of

survival of the fittest to produce a better solution [22]. Individuals in the population are

encoded accordingly as strings. After the decoding, the fitness is evaluated which serve as

criteria for selection of pairs of individuals for the next reproduction. During iteration,

individuals are selected for reproduction according to their performance in the problem

domain evaluated from fitness. GA operators are: selection, mutation, and crossover

discussed above.

GA has many advantages over traditional optimisation algorithms. The most famous

two are parallelism and ability to deal with complex problems. GA can handle various types

of optimisation, whether objective function is stationary or changes with time (non-

stationary), continuous or discontinuous linear or nonlinear, or with random noise. Offsprings

in the populations behave like independent elements, makes the population explore the search

domain in many directions simultaneously. Different groups of encoded strings and different

parameters can be implemented or manipulated at the same time, making GA parallelism. In

13

summary, GA has some advantages over traditional optimisation algorithms, and one of them

is its ability to handle complex problems and parallelism. Its disadvantages include: setting its

right parameters (mutation, crossover and selection criteria), formulation of population size,

and proper fitness function [11]. Also, it is time-consuming because GA requires many

generations to converge to a solution and large population sizes.

The GA is summarised as follows:

a. Formulate an objective function

b. Encode a solution into strings

c. Generate an initial population

d. Evaluate the individual’s fitness in the population with regard to the objective

function

e. Specify GA parameters (crossover, mutation, generation and population size)

f. Perform crossover with probability PC

g. Perform mutation with probability Pm

h. Select elite for the next generation

i. Update generation

j. End according to criteria

GA is popular among EAs. Application of genetic learning for a combinational logic

design that has a case-based memory of past problem-solving attempt that learnt to improve

the quality of the result for similar design problems is explained in the paper [23]. The

algorithm is applied to parity checker and the presented result has improvement. Zarifia et al.

[24] introduced a GA method for neural spike detection. The new approach solves the

problem of vulnerability to noise, human intervention and lengthy training by conventional

methods of spike detection. Bechouat et al. [25] compared PSO and GA as different

approaches for selection and generation of duty cycle to obtain the maximum power in

photovoltaic system. Furthermore, the extension of GA and its use to improve circuit’s

parameters is presented [26]. An automated combinational and digital circuit design using

GA is presented [22, 27-29].

It has been successfully applied to automate the process of analogue circuit design

[30-32]. Taherzadeh-Sani et al. [33] presented a method for determining the sizes of devices

in analogue IC using GA. The efficiency of the GA using the approach is illustrated by the

authors; they demonstrated how GA can be used for selection of the best device sizes in

14

analogue circuits. Some useful guidelines for automated design of analogue circuit by

performing evolutionary operations are discussed [34]. Besides GA application to optimise

active filter design using electronic work bench (EWB) is presented by Al-Azawi and Abdul-

Whab [35]. They stressed the need for component count reduction, especially in op-amp

which consumes power, and further emphases that it also reduces cost of design. Also, the

paper shows how GA solves complex problem easier as compared to traditional optimisation

method. The authors claim GAs to be the best solution. This research compared GA and PSO

in component count optimisation and concluded that PSO is the best technique suitable as

regard result presented. GA uses to optimise component values selections in references [36-

38]. Results presented show a low design error as a result of freedom of component selection

allowed by GA and reduces mathematical computation of transfer function.

A modified GA kernel for efficiency improvement on the analogue IC design cycle is

illustrated [39]. Furthermore, competitive co-evolutionary DE (CODE), a new algorithm with

practical user-defined specifications is proposed to design analogue ICs [40]. A directly

performance-constrained template-based automatic layout is retargeting and optimisation for

analogue ICs is presented in [41]. In addition, a new CMOS wideband low noise amplifier

with gain control is proposed [42]. Besides, a new approach to an optimal analogue test

point’s selection is analysed [43]. Furthermore, simulation-based approach in which the

simulator and the search algorithm are being optimised for analogue circuit synthesis is

illustrated [44].

2.4.2 Genetic Programming

GP is the newest concept in the research area of evolutionary computation (EC). It

was created by John Koza and originated from the GA. GP differ from GA in that, GP is

represented by variable length tree structures containing whatever elements that are needed to

solve the problem, whereas GA is represented by a fixed length of numerical strings. The TS

in GP population is popular because it is used to create neural networks, determine designs

for analogue electric circuits and parallelise computer programmes. The TS is great because it

can produce solutions of complexity and arbitrary size, as opposed to GA with fixed-length.

GP has been used successfully in a different number of applications: arts and entertainment,

biology and bio-information, medicine, time series prediction, control, modelling and

regression image and signal processing. In GP, a population is randomly created and each

individual in the population is evaluated to ascertain its fitness that serves as selection

15

criteria. The best individual is selected and reproduced, mutated or crossover with other

individuals to produce new individuals for the next generation [21, 45-47].

In preparation for implementing GP according to Kennedy and Eberhart [48], five

steps are involved:

1. State the function set

2. State the terminal set.

3. State the fitness measure.

4. Select the system control parameters.

5. State the terminal conditions.

The function set is limited by programming language used to run the GP. The function

set includes mathematical functions (cos, sin, tan, exp, etc.), arithmetic operators (+, -, x, #, /,

etc.), Boolean operators (AND, OR, NOT, NOR, etc.). The terminal sets composed of

variables and constants; for example, in circuit evolution, it comprises of resistors, capacitor,

inductors transistor, diode, op-amps, etc. A fitness measure is often chosen to be inversely

proportional to an error produced by programme output or it may be the score of programme

achieves in as regard objective function. The two major control parameters are the maximum

number of generations and population size. Others parameters used are crossover probability,

reproduction probability and mutation. The termination conditions may be the maximum

number of generation or if the objective function is achieved.

The GP algorithm; according to Koza [46], is based on the three steps:

1. Generate a random population composed of the original function and termination

criteria for the problem.

2. Perform the following sub-steps iteratively until the termination criteria are reached:

(a) Each programme in the population is executed such that a fitness measure that

specifies how well the problem is solved is clearly formulated.

(b) New population is created by selecting individual(s) with probability based on

fitness and then these operations are applied:

(i) Reproduction: Copy existing individual to the new population.

(ii) Crossover: Two individuals are created for the new population by

randomly recombining chosen parts of two existing individuals.

3. The single best individual in the population produced while the run is taken as the

result.

16

A basic introduction to GP that specify how you can create: an individual using

terminals and functions, random population using full, grow and ramped-half-and-half is in

[49]. The paper also described GP operators and how to evaluate fitness. GP Matlab toolbox

that illustrates how it can be represented using Matlab is in [50, 51]. GP algorithms have been

applied in different areas: Balasubramaniam and Kumar have used GP as a novel approach to

finding a solution to matrix Riccati differential equation for a non-linear singular system. The

goal is to reduce calculation effort and results presented show that GP approach is better

regarding accuracy as compared to the traditional Runge-Kutta method [52]. Other

applications include: GP application in area of software repairs are in [53, 54], while a fully

automated technique to locate and repair bugs in software is illustrated [53]. Also solving

iterated functions using GP is in [55]. GP- based feature optimiser integration with patter

recognition and fisher criterion methods to non-intrusive load supervising for load

identification is illustrated [56].

GP has been applied to automatically synthesise similar human designs in a number of

fields. These include: analogue electrical circuit, antennas, mechanical systems, controllers,

quantum computing circuits, optical lens system, bioinformatics, robotics, sorting networks,

assembly code generation, scheduling and software repair. Others are: communication

protocols, empirical model discovery, reverse engineering and symbolic regression.

According to the authors, despite differences in the techniques and representations, results

presented shared common features [45, 47]. Hou et al. [57] presented GP based on the tree

representation for a passive filter synthesis and the results presented show that their method

can generate both economical and compliant passive filter circuits. The paper also specifies

how the authors intended to add more design objectives such as component value sensitivity

and group delay variation to be considered in their future work. Chang et al. applied the

same technique as that of Hou et al. and claimed that their technique is better with regard to

its efficiency compared to traditional technique and faster than previous work [58].

2.4.3 Genetic Folding

The GF is a class of EA based on numbers of genes structurally organised in order of

linear numbers separated by dots [14]. GF is one of the classes of EA based on a generic

meta-heuristic optimization technique. The main aspect of the GF algorithm is a population-

based methodology motivated by biological evolution. GF imitates the Ribo Nucleic Acid

(RNA) secondary structure folding procedure of the complementary bases on itself.

17

2.4.3.1 The RNA Alphabet

All organisms on the earth contain one trillion genes that have a complex mission and

function to accomplish. Gene is made up of deoxyribo nucleic acid (DNA [59]. The

information carried in DNA consists of thousands of genes. The significant genetic

information that DNA contains influences the function of cells. DNA is made up of

nucleotide units that consist of three components: a deoxyribose sugar, a phosphate and a

base. The main unit of a genetic code is the base pair. A base pair consists of two nucleic acid

bases, which are chemically bonded. DNA has four different bases: adenine (A), guanine (G),

cytosine (C), and thymine (T). The links of four types of bases are: CGTA  , . The amino

acid is formed by combined DNA base pairs. Sequences of amino acids are assembled into

functional proteins or RNA. RNA is another group of nucleic acids whose function is for

protein synthesis, information carrier from DNA to ribosomal sites of protein in a cell [119].

The four different bases are adenine, cytosine, guanine, and uracil abbreviated as A, C, G,

and U, respectively. The bases are linked to each other in RNA thus: CGUA  , . This

idea is applied in genetic folding.

2.4.3.2 The Folding Language

As illustrated above, RNA sequences are folded with complementary bases. In GF,

the arrangement of chromosomes is understood in terms of the folding procedure. Figure 2.1

demonstrates a simple idea of GF language for the expression sin ((a* b) + (c-d)) that mimics

the same process of the RNA folding to be represented in the secondary structure:

Figure 2.1: The folding language.

The outcomes in each operation are signified by indices to be applied later. Index one

is the outcomes of sin (4+3) which is referred to as index ‘4’ and ‘3’. However, the operator

‘sin’ is the addition of the subtraction in index ‘3’ and the multiplication of index ‘4’. In

Figure 2.1 the reading process is from down to up and the overall result is indexed number

one. In GF representation, the chromosome comprises of a simple floating string of genes

whereas the gene pool comprises of multiple complexes of genes.

18

2.4.3.3 Genetic Encoding

The TS representation is helpful to explain the encoding and decoding process of the

GF algorithm. The elements in the TS can be easily calculated in a recursive manner. For

example, equation (2.1) can be encoded in GF as:

)()(srqp  (2.1)

The TS diagram for expression in (2.1) is represented in Figure 2.2

Figure 2.2: TS diagram for equation 2.1.

The TS expression view like (from top to down and from left to right):

pqrssqrt  (2.2)

The expression in equation (2.2) is read as the following road map: the “sqrt” is one

operand operator with the value (minus) as an input value. Then the minus operator is a two

operands operator with two values (× and +); the multiplication operator is a two terminals

operator that have two values (p and q), and the plus operator is a two terminals operator that

have two values (s and r). Two steps involved in representing equation (2.2) using GF is as

follows:

19

Step 1) all elements are given a position number in order

 srqpsqrt 

 1 2 3 4 5 6 7 8

Step 2) elements are folds over their complementary location genes:

 2.0 3.4 5.6 7.8 0.5 0.6 0.7 0.8

The GF in equation (2.2) begins with the operator “sqrt” (position 1) and ends with

the element “s” (position 8). The “sqrt” operator (position 1) calls the “minus” operator

(position 2). The “minus” operator has in the left child (LC) (position 3) the “multiplication”

operator and in the right child (RC) (position 4) the “plus” operator. The “multiplication”

operator (position 3) has the terminals (p and q) in the LC and RC respectively. The “plus”

operator (position 4) has the terminals (s and r) in the RC and LC respectively. The indices of

the element’s positions are used to represent terminals.

2.4.3.4 Genetic Decoding

The decoding process in GF is a reverse technique of encoding GF. The decoding

technique requires two steps to be followed:

Step 1) use the value of the genes to call the next gene to be read

 2.3 4.5 6.7 0.4 0.5 0.6 0.7

 Step 2) substitute each gene’s position with its appropriate operator

 dcba

 1 2 3 4 5 6 7

The diagram in Figure 2.3 shows the representation of GF chromosomes in the TS diagram:

20

Figure 2.3: TS diagram for genetic decoding illustration.

 Drawing the GF chromosome in the TS diagram starts with the gene in the position

“1”. Position “1” has the minus operator with two values (LC.RC). Starting with the LC

refers to position “2”. Position “2” is the “multiplication” operator with two values (LC.RC).

The LC refers to position “4” which has a value “0.4” value refers to “a” which is a terminal

value. The RC value refers to position “5”. Position “0.5” value refers to “b” a terminal value.

RC refers to position “3”. Position “3” is the “plus” operator with two values (LC.RC). The

LC refers to position “6” which has a value “0.6” value refers to “c” a terminal value. The RC

value refers to position “7”. Position “0.7” value refers to “d” a terminal value.

2.5 Swarm Intelligence Optimisation Methods

Swarm is defined as a population of interacting individuals or particles that is able to

optimise certain global objective through cooperative search of domain. Social behaviour of

animals is applied to develop an algorithm to solve problems in the society. Individual

amongst the group relates so that the problem is better solved than just each individual

contribution. The problem-solving behaviour that develops from the communications

amongst swarm of specious is called swarm intelligence (SI) [48]. The inspiration comes

from social insects such as termites, ants, wasps, bees, schools of fish and flocks of birds.

Some of SI optimisation methods are: PSO, FA, ABCA and BFO.

2.5.1 Particle Swarm Optimisation

PSO is a population-based random optimisation method developed by Kennedy and

Eberhart 1995 [60]. It is inspired by a social behaviour of a school of fish or flock of bird.

Compared to GA, PSO has no genetic operators such as mutation, reproduction and crossover

but dynamically adjusts its velocity. Also, PSO has fewer parameters compared to GA and

21

does not implement survival of the fittest. In PSO, potential solutions are flown or moved in

search of the needed solution in the problem space and each particle is updated in the process.

The particles as a whole are referred to as swarm. Suitable parameter selection guide, detailed

PSO algorithm and improved PSO algorithm with leadership; during exploration search, a

particle is selected as a leader to guarantee that the swarm converges rapidly to the global

optimum solution [60-62]. PSO has been used for combinational logic circuits design [63-

69]. Also PSO applications and comprehensive survey is presented in [70]. Furthermore, a

proposed PSO-based dynamic rounding-off (DRO) technique; which serves an improvement

on the existing DRO technique is in [71].

Some studies on the use of PSO in analogue circuit designs are as follow: In power

electronics circuits (PECS), PSO technique is used for design and optimisation of PECs with

no mathematical analysis required. To enhance population diversity, a simple mutation

operator is introduced into PSO. Results presented demonstrate the efficiency of PSO

approach in terms of high global search capability, easy implementation and fast convergence

[72]. It is used to improve analogue circuit performance and optimal design of analogue

circuits using a PSO technique as in [73, 74]. The emphasis is on PSO suitability to solve

both single-objective and multi-objective discrete optimisation problem. Furthermore, the

usage of PSO in microwave amplifier; the PSO technique used to a single stage amplifier

circuit to obtain the best-optimised result in the design in terms of desired low noise and

desired gain [75, 76]. Also, PSO application for design of analogue circuits as regard device

sizes. Results presented show that PSO method is promising and accurate approach in

determining components sizes in an analogue circuit [77]. In addition, the automated discrete

component selection of values of capacitor and resistor for analogue active filter synthesis

using the craziness-based PSO (CRPSO) is discussed in [78]. A new variant of Human

behaviours based PSO (HBPSO) is presented and applied in circuit design for optimisation of

switching functioning of inverter circuit [79]. Other applications of PSO in circuit

optimisation are illustrated [80-82]. Also, Vural and Yildirim [83] used PSO in analogue

active filter to select component values. The work is aimed at optimising overall design error

of fourth-order Butterworth low-pass active filter. The same circuit is analysed by the same

authors applying PSO, ABCA, GA, in which their performances are evaluated [84].

The first application attempt in the use of swarm intelligence to formulate an optimal

power flow problem that consider controllable and uncontrollably distributed generator in

22

power networks is presented in [85]. The use of adaptive PSO based on clustering that solve

the problem of PSO algorithm being trapped into local optima while solving complex

multimodal function optimisation problems is given in [86]. Despite all these studies, there is

no research that attempts to optimise an operational amplifier filter circuit in terms of

component count reduction that this work intends to address.

2.5.1.1 PSO algorithm

 The following steps are involved while using PSO.

a. Formulate an objective function

b. Initialise a population of particles with random ‘position’ and ‘velocity’ in n-

dimensions of the problem space i=0

c. Calculate the fitness of each particle to obtain pbest

d. Compare each particle’s fitness with its previous best fitness obtained. If the new

value is better than pbest, then set the pbest as the new value and pbest location as the

new location in n-dimensional space

e. Compare pbest of particle with each other and update the gbest location with the

highest fitness

f. Change the position and velocity of the particle according to equations (2.3) and (2.4)

respectively

g. Repeat step (c) to (f) until convergence is reached based on designed criteria.

11   ttt vxx (2.3)

)()(tttttt xgcxpcwvv  22111  (2.4)

where xt = position, vt = velocity, w = initial function or weight is taken as constant between

0.5 to 0.9. c1 and c2 acceleration constant or the learning parameters and the both take

approximate value of 2. α1 and α2 are random variable and each takes values between 0 and 1.

pt = pbest and gt = gbest. During PSO implementation, the velocity of each particle is

adjusted iteratively by the gbest (the best position obtained by particles in its neighbourhood)

and its pbest (personal best position i.e., the best position obtained by particles so far) [87].

The movement of swarm in PSO consist of two main components: a stochastic (random)

component and a deterministic component (algorithms follow a rigorous procedure, and

values of both design variables and the path and the functions are repeatable).

23

2.5.1.2 Accelerated PSO

The use of particle best is to increase the variety in the quality solutions; it can also be

achieved by simulation applying some randomness so that there is no compelling factor for

using personal best unless optimisation problem is multimodal and nonlinear. The global

best is only used in accelerated PSO (APSO) that accelerates the convergence of the

algorithm. The APSO was developed by Yang in 2008 and further developed by Gandomi et

al. [88]. Therefore, in APSO, the formula for the velocity vector is:

)()2/1(211 ttt xgbestccvv   (2.5)

where α is the random variable and the values ranges from 0 to 1. This implies that ½ is out

of inconvenience [11], using the standard normal distribution c1αt, where the second term is

replaced by αt drawn from N(0,1).

tttt cxgbestcvv 121)( (2.6)

where αt can be drawn from any suitable distributions or Gaussian distribution. The position

is updated as:

11   ttt vxx (2.7)

Further simplification gives the update of position in single step as:

ttt cgbestcxcx 1221)1( (2.8)

For a typical APSO, c1 is from 0.1 to 0.4, c2 is from 0.1 to 0.7, but for most unimodal

objective functions c1 = 0.2, c2 = 0.5 can be taken as initial values. In order to decrease

randomness as iteration progress the APSO use:

te   01 (2.9)

or

t 01  , (0 < β < 1) (2.10)

where initial value of randomness parameter; α0 ranges from 0.5 to 1 and the number of

iteration is t.

24

2.5.2 Firefly Algorithm

The FA inspired by flashing behaviour and patterns of fireflies was developed by Xin-

She Yang lately in 2007 and first published in 2008 [89]. Flashing light characteristics of

fireflies that produce short flashes and rhythmic uniquely to a given species is applied to

develop an algorithm. The importance of the flashes is to attract mating partners, attract

potential prey and serve as a warning to potential predators. The light intensity becomes

weaker and weaker as the distance increases because it is being absorbed by air. The

reduction in the light intensity limits the visibility to several hundred metres at night, which

enable communications among fireflies. Light intensity I of the firefly is inversely

proportional to the distance d.

The following features of firefly are used developed FA:

a. Fireflies are being attracted to one another irrespective of their sex (unisex).

b. The attractiveness of fireflies is directly proportional to the brightness of their flash.

c. The brightness of the firefly light is controlled or influenced by the landscape of the

objective function. The brightness can simply be in proportionate to the value of the

objective function for maximisation of problem while other forms the brightness can

be specified similarly to the fitness function in GA.

Firefly algorithm according to Xin-She Yang [11]

Formulate objective function f(y) y = (y1, . . ., yd)T

Create initial population of m fireflies yi (I = 1, 2, . . ., m)

Light intensity Ii at yi is calculated by f(yi)

Specify absorption coefficient β.

while (p < MaxGeneration),

for i = 1 : m (all m fireflies)

 for j = 1 : m (all m fireflies) (inner loop)

 if (Ii < Ij)

 Move firefly i toward j

 end if

 Vary attractiveness with distance d via exp[-βd
2
]

 Calculate current solution and update light intensity.

end for j

end for i

25

Determine the new global best g after ranking the fireflies

end while

Variations of attractiveness and light intensity can be expressed mathematically

according to Xin-She Yang [11] as follow:

  2d

I
d

SI  (2.11)

where Is refers to as light intensity at the source, fixed light absorption coefficient β for a

given medium, I varies with d.

deII  0 (2.12)

where I0 is original light intensity at d = 0. From Is/d
2
 and to avoid singularity at d = 0, the

combined effect of both absorption and the inverse-square law can be approximated to

Gaussian form as follow:

 
2

0
d

d eII  (2.13)

Because light intensity is proportional to firefly’s attractiveness, therefore attractiveness  of

a firefly by

2

0
de   . (2.14)

where 0 is the attractiveness at d = 0. Because it is faster to calculate 1/(1+d
2
) than

exponential function, the function is approximated as

2

0

1 d





 . (2.15)

Both equation (2.14) and equation (2.15) define characteristic distance  /1 with a range

0 to 1
0

e for equation (2.14) or 0 /2 for equation (2.15). In some applications, the

attractiveness function  d can be decreasing function generalised form as:

 
dn

d e   0 , (n>=1) (2.16)

For a fixed β, the characteristic length becomes

26

n/1  ,1 n (2.17)

On the other hand, for a given range of distance λ in an optimisation problem, the absorption

coefficient β can be used as an initial value. i.e.

n


1
 (2.18)

The distance d between every two fireflies i and j at yi and yj, respectively, is the Cartesian

distance.

 




m

k

kjkijiij yyyyd

1

2
,, (2.19)

where yi,k is the kth component of the spatial coordinate yi of ith firefly. In a two-dimensional

case, is represented as:

   22
jijiij yyxxd  (2.20)

Firefly i movement as a result of attraction to another j is determined by

t
i

t
i

t
j

dt
i

t
i yyeyy ij 




)(
2

0
1 . (2.21)

where the third term is randomisation, with εi being a vector of random numbers generated

from uniform distribution or Gaussian distribution and α is the random parameters. The

second term is due to the attraction.

FA has been popular in recent years and has over 850 publications. Fister et al. [90]

presented a comprehensive review of FA. The work reviewed how FA is hybrid or modified

and used for different applications. Also, the multi-objective optimisation enhanced FA has

been investigated [91-93]. A decentralised algorithm for synchronicity based on firefly

features is presented [94]. The FA is applied to the sensor system and the result presented

shows that the algorithms can efficiently synchronise sensor network.

The flashing features inspired FA used in optimisation is used to develop an algorithm

[95, 96]; the first reference provides a detailed FA while the second reference indicates the

development of the algorithm. The result presented shows how PSO betters firefly algorithm.

27

Furthermore, the use of FA to construct codebook for vector quantisation is in [97]. Higher

quality result is presented for reconstructed images better than those obtained from the Linde-

Buzo-Gray (LBG), PSO, and quantum-PSO (QPSO). In addition, Gandomi et al. [98]

researched on different chaotic maps and compared their performance, and stated that some

chaotic maps can improve the performance of FA; some parameters in FA can be replaced

with these chaotic maps. A support vector regression with the chaos-based FA presented by

Kazemet et al. [99] illustrated its application in stock market price forecasting. On the other

hand, Srivastava et al. [100] showed how a modified FA can be applied in software testing. It

was demonstrated with generated independent test sequences efficiently which have better

performance. In the area of image registration, Zhang and Wu applied FA [101]. Also, Zaman

and Matin [102] discovered that FA can perform better than PSO and found global results. A

non-convex economic dispatch problem with valve-loading effect was solved by Yang et al.

[103] using FA and obtained the best results compared to other techniques. In addition,

Imanirad et al. [104] applied FA to create alternative for decision makers with different

options. Chaotic FA (CFA) use to optimise time coordination of relays (optimise total

operating time and to minimise damage during faults). The algorithm is implemented in

Matlab, results are presented and compared to conventional FA [105].

2.5.3 Artificial Bee Colony Algorithm

ABCA of the honey bees inspired the bee algorithm. Many different forms of bee

algorithms have been developed which are: the virtual bee algorithm (VBA) [106], the honey

bee algorithm (HBA) [107], the honeybee-mating algorithm (HBMA) [108], the artificial bee

colony optimisation (ABCO) [109]. Honey bees store honey in constructed colony and live in

a colony as forage. Honey bees interact by ‘waggle dance’ and pheromone. Whenever the

bees find food source and carry nectar to the hive, the food source is communed by waggle

dance but it varies from species to species. ABCA was developed by Karaboga in 2005 [6].

The bees in a colony are grouped into three classes: onlooker bees (observer bees), scouts,

and employed bees (forager bees). In a given food source, only a single employed bee is

involved. That is to say, the number of food source is equal to the number of employed bee.

Employed bee of the abandoned food site becomes a scout to search for new food sources.

Employed bees and onlooker bees communicate with each other to enable onlooker bees

locate a food source to forage.

28

It is a population-based, random search technique carries out in the neighbourhood.

Detailed survey of ABCA was carried out by Karaboga et al. [110] Honey bee special

features such as communication and dance, decision-making, foraging, marriage, nest site

selection, allocation of task, mating and reproduction are being transformed into bee

algorithm. A modified version of ABC algorithm a best-so-far for solution update; the

authors developed improved algorithm that perform better than existing ABC algorithm.

Results presented demonstrated the efficiency of the technique in terms of speed of

convergence and quality solutions when compared to original ABCA [111]. The ABC

algorithm has been used for different areas of applications some of which are: ABCA has

been used successfully for scheduling task [112-114] and its usage for reliable and efficient

routing algorithm for emergency and disaster management situation has been reported [115].

Hong hybridised several forecasting methods: ABCA, chaotic sequence, recurrent

mechanism and seasonal adjustment in power engineering for electric load forecasting.

Results presented show that the technique is an alternative method in terms of forecasting

accuracy [116].

ABCA application in the area of electronic circuit design includes: its application by

Karaboga as an alternative technique in the design of digital filter [117]. In addition, ABCA

is used to optimise Nano-CMOS analogue mixed signal (AMS) where the authors claimed

that their work was the first to combined bee colony optimisation (BCO) and meta-modelling

for AMS design domain exploration. Results presented illustrate the suitability of the

technique [118]. Manoj and Elias [119] used ABCA in electronic circuit to design a non-

uniform filter bank trans-multiplexer (NUFB TMUX). The filter coefficients are represented

in canonical signed digit (CSD) format that is formulated as optimisation problem for ABCA

application. The authors presented results that are better than that obtained by rounding

coefficients of filters to their nearest CSD number. The results also outperformed that got

from using PSO and GA. Also, Agrawal and Shu [120] used ABCA as an alternative design

method for two-channel QMF (quadrate mirror filter) bank that has linear phase. Results

illustrated show improved performance as regard smallest peak reconstruction error and

better results for bigger tap QMF banks when compared to DE, PSO and other conventional

optimisation algorithms. Kockanat and Karabogo [121] released the first time proposal of

2D-ABCA adaptive filter algorithm in literature. The use of ABCA for investigation of the

design of CMOS inverter and results presented show that the approach is capable of

29

producing results within a very short time with acceptable error while satisfying all the design

conditions [122].

Bee algorithm

State the objective function f(y), y = (y1, y2, . . . yd)T

Encode f(y) into virtual nectar levels

Specify dance route (direction, strength) or protocol

While (criteria)

For loop over all m dimensions

Formulate current solution

Calculate the current solution

end for

Update the optimal solution set and communicate

end while

2.5.4 Bacterial Foraging Optimisation

Natural selection favours the survival of genes of potential animals that have foraging

strategies (techniques of handling, locating and ingesting food) as a result of them obtaining

enough food to enhance their reproduction and eliminate animals with weaker foraging

strategies. After many generations, weaker animals are reshaped or eliminated, and this led

scientists to discover evolutionary principle called foraging theory. A foraging animal

optimises the energy obtained per unit time while foraging in the face of environment (risk

from predators, destiny of prey and nature of physical search area) and constraints (reasoning

capabilities and sensing) [123]. The survival of an animal as regard its mobility and its

exploration for food depends upon their fitness criteria referred to as BFO. It is inspired by

the chemotaxis characteristics of bacteria which make it move away or toward specific

signals as it senses any chemical near it. The organism reshapes the poorer organism with

weak search experience. The genes of the fittest species are used for development chain and

have promised better animals in next generations. The foraging characteristic in evolutionary

species is being translated into algorithms that are applied to non-linear optimisation model.

The control mechanism on how bacteria forage is divided into four units: chemotaxis,

swarming, reproduction and elimination and dispersal.

30

a. Chemotaxis: The technique is accomplished by tumbling and swimming by flagella.

The rotation of flagella in every bacterium determines whether it should travel in a

specified direction (swimming) or different directions (tumbling) carried out in entire

lifetime. Mathematically it is defined as;

)()(),,(),,1(jiClkjlkj ii   (2.22)

where)(j is unit length random direction used to specify the direction to

move after a tumble.),,(lkji stands for ith bacterium at jth chemotaxis, lth

elimination or dispersal step, and kth reproduction. C(i) is the step size taken in the

random direction defined by tumble.

b. Swarming: During the technique of getting to the best food location, the bacterium in

the optimal path should send attractive signal to other bacteria for them to swarm

together toward the desired location. Swarming is mathematically represented as;






s

i

ii
cccc lkjJlkjpJ

1

)),,(,()),,(,(

=
  
  



s

i

p

m

i
mmrepellentrepellent

s

i

p

m

i
mmattractattract whwd

1 1

2

1 1

2)])(exp([)])(exp([

(2.23)

where)),,(,(lkjPJ cc  is the objective function value to be added to the actual objective

function to be minimised. p is the number of parameters to be minimised, s is the total

number of bacterial.

c. Reproduction: The least healthy bacteria are eliminated and the remaining healthiest

bacteria each break into two bacteria and are placed in same location. This maintains

the population of the bacteria constant.

d. Elimination and Dispersal: The population of bacteria in the search domain changes

gradually which may be as a result of consumption of nutrient or an event can happen

such that all the bacteria in an area are kill or a group is sent to another new part of

environment. This may possibly destroy the chemotactic progress, or enhance

chemotactic progress since dispersal may bring bacteria close to good food sources.

Detailed BFO Algorithm, its usage in non-linear optimisation models such as control

systems & distributed optimisation and design optimisation of Yagi-Uda Array are reported

respectively in [123, 124]. BFO is used in distributed control application in area of sensor

network. The authors suggested a general technique to control design applying discrete event-

31

triggered elements at the high level and hierarchical model consisted of continuous time-

triggered elements at the low level [125]. BFA is applied to training Neural Network (NN)

and result presented in the paper shows that BFO-NN technique obtains quality result than

that of GA-NN in terms of accuracy and convergence [126]. Also, a hybrid GA-BFA

proposed for proportional-integral-derivative (PID) controller for an automatic voltage

regulator (AVR) system [127, 128]. Result is compared to GA, PSO, and GA-PSO and it

proves its potential for optimisation. In addition, BFO application in the area of power system

in terms of: optimisation of voltage stability limit and real power loss, optimisation of active

power filter for load compensation and for estimation of three winding transformer parameter

[129-136].

In the area of communication, an improved adaptive BFA (ABFA) using the method

of adaptive delta modulation is applied to optimised both phase and amplitude of linear array

of antenna and Multi-colony BFO (MC-BFO) for complex radio frequency identification

(RFID) network planning problem was in [137, 138].

This research intends to address the following:

 Reduce component count in passive and active filters.

 Improve on existing SCAM to enable it matrices dimension more than 32 by 32 as

regard operational amplifier simulation compared existing that cannot handle matrices

dimension more than 8 by 8 and also extend it to handle active components.

 Use GP, GF and MSCAM and automatically generated Netlist for the evolution of

passive and active filter circuits.

2.6 Summary

This chapter presents definition and general background of optimisation, optimisation

algorithm and their area of applications to the society at large. Also, the elements of

evolutionary optimisation algorithm are discussed and illustrated, how they are formulated

and used while developing algorithm. This is followed by the review of literature on the

various optimisation methods used in this research. It also describes in detail the history of

these developed techniques, principle of inspiration and different application areas. Some of

their key features are highlighted below.

32

GA applies the principle of survival of the fittest to solve optimisation problems. GA

owns some advantages over traditional optimisation algorithms: its ability to handle complex

problems and parallelism. Its disadvantages include, setting its right parameters (mutation,

crossover and selection criteria), formulation of population size, proper fitness function.

Also, it is time-consuming because GA requires many generations to converge to a solution

and large population sizes. In the use of GA for circuits’ optimisation, the objective function

is formulated specifying the frequency response and called directly from the GA Matlab

optimisation toolbox under the fitness function option. The maximum and minimum

component values are fed at the upper and lower options respectively. Also, GA parameters

are set. The total number of components to be minimised is specified in the dialog box option

called number of variable option. The programme is automatically generated, applying

generate code option under the file menu in order to rank results.

GP originated from the genetic algorithm. GP differs from GA, in that GP is

represented by variable length structures containing whatever elements are needed to solve

the problem, whereas GA is represented by a fixed length of numerical strings. The TS is

great because it can produce solutions of complexity and arbitrary size, as opposed to GA

with fixed-length. In this work, GP is for circuits’ evolution, the objective function is

formulated specifying the lower and upper cut-off frequencies. A Matlab programme is coded

using GP algorithm for circuits’ evolution, and GP parameters are also initialised.

GF is based on numbers of genes structurally organised in order of linear digits

separated by dots. GF imitates the RNA secondary structure folding procedure of the

complementary bases on itself. GF is used to show how the TS in GP are linked from the top

to the bottom during circuit evolution. The GA, GP and GF are evolutionary computation

algorithm.

PSO is inspired by a social behaviour of a school of fish or flock of bird. Compared to

GA, PSO has no genetic operators such as mutation, reproduction and crossover but

dynamically adjusts its position and velocity. Also, PSO has fewer parameters compared to

GA and does not implement survival of the fittest. In PSO, potential solutions are flown or

moved in search of the needed solution in the problem space and each particle is updated in

the process. PSO is used in this work for circuits’ optimisation; the objective function is

formulated, specifying the frequency response and being called into a Matlab programme

coded using PSO algorithm for circuits’ optimisation, which is expected to sample

33

components values that will produce the frequency response. The maximum and minimum

component values are specified. In addition, PSO parameters are set.

FA inspired by flashing behaviour and patterns of fireflies. It is powerful optimisation

tool due to the effect of attractiveness function that is unique to firefly behaviour. FA’s

disadvantages include: it does not keep record of past better solution to guide the search

toward better solution; parameters do not change with time and are trapped into several local

optima. In this research, FA is used for circuit’s optimisation, the objective function is

formulated specifying the frequency response and being called into a programme coded in

Matlab using FA algorithm for circuits’ optimisation which is expected to sample

components values that will produce the frequency response. The maximum and minimum

component values are specified. Besides, FA parameters are initialised.

ABCA imitates foraging behaviour of bees. It has fewer control parameters, easy to

implement, easily hybridise with other algorithm and easy to be modify. Its disadvantages

are: it is compromised with its cost-benefit function, slow to converge and sometimes trapped

to local optimal. ABCA is used for circuits’ optimisation in this work; the objective function

is formulated, specifying the frequency response and being called into a Matlab programme

coded using ABCA algorithm for circuits’ optimisation which is expected to sample

components values that will produce the frequency response. The maximum and minimum

component values are specified. Also, ABCA parameters are set.

BFO is inspired by the chemotaxis characteristics of bacteria which make it move

away or toward specific signals as it senses any chemical near it. The survival of an animal as

regard its mobility and its exploration for food depends upon their fitness criteria referred to

as bacterial foraging optimisation. Its disadvantage is that it required a large number of

parameters. In this research, BFO is used for circuits’ optimisation, the objective function is

formulated specifying the frequency response and being called into a programme coded in

Matlab using BFO algorithm for circuits’ optimisation which is expected to sample

components values that will produce the frequency response. The maximum and minimum

component values are specified. In addition, BFO parameters are initialised. PSO, FA,

ABCA, and BFO are some swarm intelligent optimisation methods. Artificial intelligence

methods are used due to the following advantages over humans. Hardware advantages

include greater parallel speeds and greater serial speeds. Self-improvement advantages

include modification of motivational system, improvement of algorithms and design of new

34

mental modules. Co-operative advantages include transfer of skills, copyability, improved

communication and perfect co-operation. Compared to mathematical optimisation: simplex

method, branch and bound, Lagrange multipliers, interior point methods and cutting planes

that are unable to solve difficult problems due to memory needed and large amount of

computational time.

The next section is Chapter 3, which gives a brief review of symbolic circuit analysis

and description on how automatically generates matrices from Netlist created from PSpice or

automatically generated Netlist from simulation is transformed to matrices.

35

Chapter 3
2

Modified Symbolic Circuit Analysis in Matlab and

its Applications in Electronic Circuit Simulation

3.1 Introduction

 This chapter gives a brief review of symbolic circuit analysis. It describes MSCAM

and its usage in an electronic circuit simulation with illustrations. It improves on existing

SCAM, so that, the developed algorithm can handle matrices dimension of size more than

eight by eight whenever op-amp is involved as a circuit component. Besides, the chapter

gives a detailed description of how automatically generated matrices from Netlist; created

from PSpice or automatically generated Netlist from the simulation is transformed to

matrices. The remaining part of this chapter is subdivided as: electronic circuit simulation

techniques, discussed in Section 3.2 and symbolic method illustrated in Section 3.3. Circuit’s

simulation and results are presented in Section 3.4, the formulation of the objective function

and circuit’s simulation examples are demonstrated in Section 3.5 and summary of this

chapter is in Section 3.6.

A physical model can be explained quantitatively or qualitatively. In the qualitative

simulation, analysis of variables in a system is achieved by assigning a given range of

qualitative values. Whereas in a quantitative simulator, analysis of variables in a system is

achieved by assigning real values and the response to a given excitation is evaluated using

analytical (symbolic) or numerical [140]. The two main importance of symbolic simulator in

analogue circuits design are:

 It provides insight to novice or student designers, and it also interactively helps

experienced designers [141, 142].

 It also aids in automatically generating analytic analogue circuits [143].

2 The bulk of Chapter 3 has been published in [139].

36

 3.2 Electronic Circuit Simulators

There are many types of simulation software; some are licensed and some are free

with limited capacity. A simulator helps students to demonstrate or verify what has been

taught in the classroom. Some of the free analogue simulation software include: SPice which

is a general-purpose and open source analogue electronic circuit simulation [144, 145].

Furthermore, electric very large scale integration (VLSI) design system is an automation

simulator for integrated circuits and printed circuit board [146-148]. Also, gpsim is a

Microchip PIC (peripheral interface controller) microcontroller’s software designed for PIC

circuit simulations [149]. Other simulators include; DoCircuits is a cross-platform virtual

learning system, web-based that models an instrument as well as circuits applied in labs to

enhance students’ implementation of experiments in virtual environment [150]. PartSim a

free and easy to use circuit simulator; is another kind of simulator that can be run in web

browser [151]. Besides, SimOne is a European’s leading software applied for gas transport,

optimisation and distribution simulation [152]. Moreover, CircuitLab simulates analogue and

digital components side-by-side and also gives precise results for nonlinear circuit [153].

Other digital and analogues (mixed-signal) simulators are: EasyEDA, which is an enthusiast’s

web-based software for educators, electronics engineers and students [154]. Falstad circuit

simulator applet is a tool that boots with animated schematic of LRC circuit. In it, the green

indicator signifies positive voltage, grey colour signifies the ground, red signifies negative

voltage and moving yellow dots signifies current [155]. GeckoCIRCUITS is a power

electronic designing circuit tool with a fast circuit simulation capability [156]. Furthermore,

Ngspice is a mixed-levelled and mixed-signal circuit simulator. It is developed based on three

software packages: Spice3f5, Cider1b1 and XSpice [157, 158]. Also, NL5 is an analogue

simulator that operates with piecewise linear components [159]. SuperSpice from AnaSoft is

a circuit tool for both integrated circuit and board-level applications [160]. Also, SIMetrix is

a simulator that enhances engineers to simulate and model switching power electronics

systems which combine accuracy and speed in model environment [161]. Moreover, Maple is

a computer algebra system created to enable users to key in a mathematical symbol in a

traditional way [162]. Conclusively, multisim (national instrument (NI)) includes

microcontroller simulation that can export and import features to PCB (printed circuit board)

[163]. In most of these simulators, there are no detailed insight analyses of the simulation

37

procedure while processing, most optimisations cannot be carried out directly with them and

most researchers have no access.

 3.3 Symbolic Method

Symbolic circuit analysis has been used by many researchers in analogue circuit

simulation. Gielen et al. [141] introduced a symbolic analysis for analogue circuit design that

is interactive. It provides the designer of the analogue circuit with deep insight on how the

design process is carried out than mechanical simulators do. In addition, optimisation of

analogue circuit design using simulated annealing (SA) and symbolic simulation is also

developed by Gielen et al [164]. It is non-fixed-topology and efficient analogue design tool.

The method sizes all circuit components to satisfy design objective. Also, a tutorial overview

regarding applications and methods of symbolic analysis for analogue circuit is illustrated

[165]. Wambacq, et al. [166] illustrated approximated symbolic expression for small signal

analysis (SSA) of analogue IC applying symbolic computation. Yu and Sechen [167]

developed an approximate symbolic analysis of large analogue IC. This unified approach

used two new approximation (create a tree of two-graph and product terms in decreasing

order of magnitude in symbolic network function) during computation processes with

classical two-graph tree enumeration method. Also, related two-graph methods for symbolic

analysis of circuit are illustrated in [168-170]. However, determinant decision diagram

(DDD) combines with a canonical symbolic synthesis of the analogue circuit is presented

[171, 172]. Also, a symbolic circuit analysis application for the multi-physical system is

presented as a new modelling approach. The technique reduces the complexity of the

symbolic equations and solution by mixing numeric and symbolic strategies. The approaches

potential is demonstrated on usage for modelling and analysis of gas-pipeline nets and mixed

mechanical and electrical systems [173]. The use of symbolic analysis has aided in analogue

realisation; the fraction power of a realistic transfer function was introduced in analogue

circuit domain as already existed in digital domain. It helps in the design of analogue circuits

for such fractional order controller and solves the problem of running continued fraction

expansion algorithm every time [174]. Besides, SA and GA based technique for symbolic

description of analogue circuits is developed. It is a Matlab tool based on evolutionary

algorithms and modified nodal analysis of analogue circuits containing MOSFETs for

automatic simplified symbolic SSA [175].

38

The process involved in transforming electrical circuit into matrices required tedious

calculations and the same process has to be performed each time a circuit is to be resolved.

Also, transforming circuit’s equations by the human method may take a longer time or result

in an error to solve a simple circuit. The existing automated method (SCAM) [176, 177]

cannot handle some components such as MOSFET and BJT. Also to transform a circuit

whose matric is more than eight by eight tend to be very slow because it requires large

memory and in some circuit applications, it is inefficient.

The symbol(s) to be used in the code has to be symbolised. The essence is for the

computer to treat it as symbolic to form an equation with it and to enable the users to execute

a variety of symbolic evaluations in Science and Mathematics. The data structure which

stores a string representation of a symbol is called symbolic object. For illustration,

symbolising e, f, g and y is as follows:

syms e f g y, but if only one character is involved the sym is singular.

Two set of equations is formed from circuits either by nodal analysis method or mesh

analysis method [178].

3.3.1 Mesh Analysis

The mesh can be defined as a loop that does not comprise of any other loop. It uses

mesh current as circuit variables. The mesh analysis is most useful when the circuit has

mostly voltage sources. It applies Kirchhoff's voltage law (KVL), Ohm’s law and

simultaneous equations to find unknown currents in a circuit. It does not apply Kirchhoff’s

current law which makes it different from branch current method. It is useful to solve a

circuit with fewer variables and less simultaneous equations and to be useful to solve a circuit

without a calculator. Detailed procedures are as follow:

a. Assign a current loop

 Specify a direction of loops

 Given circuit’s number of loop = number of branches – 1

 Loop current can overlap

 All branches are covered in the loop

 Each loop is referred to as mesh

b. Write the KVL equation each mesh and if loop current overlap

39

 Currents are added if in the same direction

 Currents are subtracted if in the opposite direction

 Voltage sources are added if in the direction of mesh current

 Voltage sources are subtracted if opposite of the mesh current

c. The simultaneous equations are solved for the mesh current

 Obtain each branch currents from the mesh current

 Voltages are evaluated from the current

3.3.2 Nodal Analysis

The modified nodal analysis is called modified nodal analysis (MNA) for easy

formation of the algorithm. For the algorithm to handle components such as transistor and

operational amplifier, the transistor and operational amplifier are converted to SSA. The op-

amp representation differs from the one represented [177]. The new operational SSA

representation reduces the size of memory occupied, increases speed and can handle larger

matrix dimension size. Detailed illustration of the approach is explained below.

3.3.3 Development of Algorithm for New Modified Nodal Analysis

New modified nodal analysis (NMNA) applied to a circuit with op-amps, capacitor,

transistors, inductor, resistors, independent voltage and current sources results in a matrix

equation of the form:

IAX  (3.1)

For a given circuit with p number of nodes, the following illustrate how matrices A, I and X

are formed.

3.3.3.1 The A Matrix:

A matrix is p×p and comprises only known quantities, (the values of the gain of the

operational amplifier and the passive elements (the capacitors, inductors and

resistors). Component connected to ground only appears on the diagonal; while non-

grounded component appears both on and off the diagonal as summarised below:

a. A matrix p×p in size and holds only known quantities.

b. Have both active and passive elements

c. Components connected to ground only appear on the diagonal

40

d. Components not connected to ground appear both on and off the diagonal terms.

e. The op-amp is coded such that 1 is added to the operational amplifier output (i.e.

A(p,p)=A(p,p)+1), and negative input is added with Av while positive input is

subtracted with Av.

3.3.3.2 The X Matrix:

 Is a matrix of size p×1 vector that contains the unknown quantities (node voltages)

3.3.3.3 The I Matrix:

a. The I matrix is a p×1 vector that comprises only known quantities

b. It holds summation of current sources in a loop due to node voltage. The current

source is as a result of the voltage source or as a result of independent source.

c. The circuit is solved using Matrix manipulation below:

IAX 1  provided A is non-singular. (3.2)

The computer can easily accomplish the matrices evaluation that may be difficult by the

human method.

3.3.3.4 Presentation

The convention of representation obviously does not change the solution. However,

the procedure described below simplifies the formation matrices necessary for the solution of

the circuit.

a. The ground or reference node is labelled 0.

b. The other remaining nodes are labelled in sequential order from 1 to p.

c. Voltage at node 1 is call v_1, at node 2 is referred to as v_2 and so on.

d. The naming of independent voltage sources is quite flexible; it starts with the letter

“V” and one node must be unique from another node name.

e. The current as a result voltage source is labelled with “I1, I2 I3 and so no” whereas the

current source due to the voltage source is V1/R111 that is voltage source over

impedance. The current in particular branch is the sum of these current sources.

3.4 Circuits Simulation and Results

The developed algorithm discussed in Section 3.3.3 is used to write computer code in

Matlab. The programme is implemented with four different examples to demonstrate its

41

efficiency. Before, the continuation of the results analysis, a brief introduction to filter is

made.

3.4.1 Filter

The electronic and electrical filter design is a vital device in a modern communication

system and electronic. A filter is an electronic device that permits certain range of

frequencies to be transmitted and it is classified into four as regard frequencies passage or

rejection:

 A low-pass filter suppresses high frequencies but allows only the low frequencies to

be transmitted.

 Whereas a high-pass filter suppresses low frequencies but allows only the high

frequencies to be transmitted.

 A band-pass filter is a filter that passes a certain range of frequencies and rejects

frequencies outside the given range.

 Band-rejection filter is a device which passes most frequencies unchanged but

suppresses those in a specific range to very low levels. It is opposite of a band-pass

filter.

A digital filtering technique is worthy of mention since it is widely applied and

increasingly important. This filter executes the filtering task applying digital and analogue

components in addition to digital to analogue (D/A) converters, analogue to digital (A/D)

converters, shift registers, multiplexers and multiplier. Filter can also be classified in terms of

component combinations as passive and active filter.

3.4.1.1 Passive Filter

Passive filters are designed from the combination of inductance, capacitance and

resistance and can be designed to cover a range of frequency from 10 Hz to 500 MHz. The

passive filters have low sensitivity to component variation and do not need an external power

supply which makes it advantageous over active circuits. They are disadvantageous when

size and cost are considered because of the bulky coil.

3.4.1.2 Active Filter

The active filters are constructed from an op-amp (active source), capacitor and

resistor. The active filters have low output and high input impedances also, eliminate bulky

42

coils and expensive nature of passive filters. The major setback posed by the active filter is

that its gain reduces at high frequencies above 50 kHz, and also it requires a power source

[179, 180]. Operational transducer amplifier and a step-by-step method applied in the design

of active filter [181, 182].

3.4.2 Operational Amplifier and its Small Signal Analysis

The op-amp is a versatile electronic circuit that can perform basic mathematical

operations, such as division, multiplication subtraction and addition. It can also be applied to

do differentiation and integration. The op-amp is used as the integral element in filters,

amplifiers flip-flops and oscillators. The op-amp has the following properties: infinite input

resistance, zero output resistance, zero offsets voltage, infinite open-loop gain (A), infinite

frequency response and infinite common-mode rejection ratio.

The SSA is the procedure of replacing non-linear elements with linear ones. Also, in

some cases, the elements are being replaced by their internal operation of the components.

The small signal operation of an op-amp is shown in Figure 3.1.

Figure 3.1: Small signal analysis of operational amplifier.

The SSA of op-amp has VRin as a not-defined voltage that makes it difficult in the

simulation. The second option of the SSA of the op-amp explained in [183] is being used.

The summary of the op-amp nodal analysis detailed process is illustrated with the following

equations:

)(


 ininvout VVAV (3.3)

For instance, if an op-amp’s inputs are: Vin
+
 = V3, Vin

-
 = V4 and its output is Vout = V5, then

the output node voltage is given as

)(435 VVAV v  (3.4)

From equation (3.3),

43

0 

outinvinv VVAVA
(3.5)

From equation (3.5) analysis, if the output of an op-amp is in p node, then the matrix of

A(p,p) is added with 1. i.e.

1),(),( ppAppA (3.6)

In this particular case, as Vin
+
 is at p-2 node and Vin

-
 is at p-1 node, the expression will be:

 (3.7)

(3.8)

In other words, the op-amp’s output is added with 1, Vin
+
 input is added with (-Av) and Vin

-

input is added with Av as explained above. The algorithm is coded in such a way that each op-

amp is substituted as illustrated above.

3.4.3 Transistor Amplifier

The transistor amplifier will be discussed based on its SSA and frequency response

using common-emitter and common-source for illustration. The transistors are being replaced

by their SSA. The values of Rpi, Ro, gm, Cpi and Cmu are usually specified in the simulated

result from PSpice or obtained in literature or data sheet. Also, MOSFET is also transformed

into its SSA in a similar way.

3.4.3.1 Frequency Response of Common-Emitter Amplifier

 The common-emitter amplifier is capable of producing relatively high voltage and

current gains. The input resistance is medium and independent of load resistance RL. Its

output resistance is high and independent of source resistance. The coupling capacitor, C1,

couples the biasing network to the source voltage Vs. The coupling capacitor C2, connects the

load resistor RL, to the collector resistance RC. The by-pass capacitance Ce is applied to

increase the mid-band gain as it short circuit the emitter resistance Re at mid-band frequency.

The Re is for bias stability. The external capacitors Ce, C2, C1 are responsible for low

frequency response whereas the internal capacitances (Cpi and Cμ) are responsible for high

cut-off. Cpi is the emitter-base capacitance, the collector-based capacitance is Cμ, Rx is the

vAppAppA )1,()1,(

v A p p A p p A    ) 2 , () 2 , (

44

resistance of the silicon material between the base region and the intrinsic or internal base.

The common-emitter amplifier circuit is in Figure 3.2 whereas SSA is in Figure 3.3.

Figure 3.2: Common-emitter amplifier.

 Figure 3.3: SSA of common-emitter amplifier.

 3.4.3.2 Frequency Response of Common-Source Amplifier

The common-source amplifier has similar features to that of the common-emitter

amplifier explained in Section 3.4.3.1. The only difference is that common-source amplifier

input resistance is higher than that of the common-emitter amplifier. The common-source

amplifier circuit is in Figure 3.4 whereas SSA is in Figure 3.5.

Vs

Rs

R1
Rc

Re

R2

RL

C1

C2

Ce

Vcc

0

Vs

Rs

R2 Rc
R1 RL

C1 C2Cu

Cpi

Rx

Rpi Ro

gmVpi

0

45

Figure 3.4: Common-source amplifier.

Figure 3.5: SSA of common-source amplifier.

3.5 Formulation of Objective Function and Circuits Simulation Examples

Detail of the software environment is as: Matlab version: 8.0.0.783 (R2012b),

operating system: Microsoft Windows 7. Others are: RAM: 12 GB, system rating: 64-bit

operating system and processor: Intel (R) core (TM) I7-2600 CPU @ 3.40 GHz. The same

system specification is used throughout this research. The circuit simulation process is

summarized in flowchart shown in Figure 3.6. Four different circuits are considered in order

to demonstrate the potential of the developed algorithm. Example 1 (seventh order

Chebyshev filter) is used to illustrate the formulation of objective function.

Vs

Rs

R1
Rd

Rs

R2

RL
C1

C2

Cs

Vdd

0

Vs

Rs

R1 R2 Rds
Rd

RL

C1

Cgs

Cgd C2

0

gmVgs
Cds

46

Figure 3.6: The proposed MSCAM algorithm.

3.5.1 Seventh Order Chebyshev Circuit Objective Function Specifications

The symbolic matrices A and B obtained from MSCAM are used to formulate the

fitness function as:

]0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0);[(111RVA S  (3.9)

47









































































20202019

192019191916

181818171813

171817171716

1619161716161615

151615151514

141514141413

1318131413131310

12121211127

111211111110

101310111010109

9109998

898887

712787774

666561

565554

47454443

343332

232221

161211

000000000000000000

00000000000000000

00000000000000000

00000000000000000

0000000000000000

00000000000000000

00000000000000000

0000000000000000

00000000000000000

00000000000000000

0000000000000000

00000000000000000

00000000000000000

0000000000000000

00000000000000000

00000000000000000

0000000000000000

00000000000000000

00000000000000000

00000000000000000

bb

bbb

bbb

bbb

bbbb

bbb

bbb

bbbb

bbb

bbb

bbbb

bbb

bbb

bbbb

bbb

bbb

bbbb

bbb

bbb

bbb

B

 (3.10)

where)1()1()1(64111111 RRRCjb  

))1()((4112 RCjb  

616 1 Rb 

))1()((4121 RCjAb v  

1)1()1(42122  RRCjb 

223 1 Rb 

232 1 Rb 

)1(2233 RCjb  

234 Cjb  

48

)(243 CjAb v  

1)1()1(73244  RRCjb 

345 1 Rb 

747 1 Rb 

354 1 Rb 

)1()1(5355 RRb 

556 1 Rb 

661 1 Rb 

))1((565 RAb v 

1)1()1(6566  RRb

774 1 Rb 

)1()1()1(12107377 RRRCjb  

))1()((10378 RCjb  

12712 1 Rb 

))1()((10387 RCjAb v  

1)1()1(108388  RRCjb 

889 1 Rb 

898 1 Rb 

49

)1(8499 RCjb  

4910 Cjb  

)(4109 CjAb v  

1)1()1(13941010  RRCjb 

91011 1 Rb 

131013 1 Rb 

91110 1 Rb 

)1()1(1191111 RRb 

111112 1 Rb 

12127 1 Rb 

)1(111211 RAb v 

1)1()1(12111212  RRb

131310 1 Rb 

)1()1()1(18161351313 RRRCjb  

))1()((1651314 RCjb  

181318 1 Rb 

))1()((1651413 RCjAb v  

1)1()1(161451414  RRCjb 

50

141415 1 Rb 

141514 1 Rb 

)1(1461515 RCjb  

61516 Cjb  

)(61615 CjAb v  

1)1()1(191561616  RRCjb 

151617 1 Rb 

191619 1 Rb 

151716 1 Rb 

)1()1(17151717 RRb 

171718 1 Rb 

181813 1 Rb 

)1(171817 RAb v 

1)1()1(18181818  RRb

191916 1 Rb 

)1()1(201971919 RRCjb  

))1()((20719120 RCjb  

))1()((2072019 RCjAb v  

51

1)1(2072020  RCjb 

ABC  1 (3.11)

where C holds the unknown voltage drops across all the nodes to be evaluated. Cn is the

voltage drops across the last node (n) being calculated to get its frequency response. The

values of each component are substituted to determine the unknown.

3.5.2 Circuits Simulation Results

3.5.2.1 Example 1: Seventh Order Chebyshev Filter Circuit

Seventh order Chebyshev filter circuit is used as example 1; it is an online tutorial

titled “Minimising Component-Variation Sensitivity in Single Op-amp Filters” [184]. The

circuit is in Figure 3.7 and the PSpice simulation that produce the frequency response curve

shown in Figure 3.8. The circuit’s netlist from PSpice is fed to the modified symbolic circuit

analysis (MSCAM) program developed to simulate the frequency response curve, which is

the same as that of PSpice as shown in Figure 3.8 indicated with different colours and line

style. Same technique is applied to other examples. The MSCAM simulation is with the cut-

off frequency of 7100 Hz while that of PSpice simulation is 7600 Hz with error of 6.57% and

a gain of 1.

52

Figure 3.7: Seventh order Chebyshev circuit [184].

Figure 3.8: Seventh order Chebyshev PSpice (red) and MSCAM (black) frequency response.

16

18

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

U3

OPAMP

+

-

OUT

R111

16.9k
R2

16.9k

4

R3

10k

2

V1

1Vac

0Vdc

C2 1200p

C1 1200p

R6

16.9k

R4 95.3k

1

0V 0V

5

R5 10k

6

7 U4

OPAMP

+

-

OUT

U5

OPAMP

+

-

OUT

U6

OPAMP

+

-

OUTR7

16.2k

R8

16.2k 11
R9

10k

8

C3 1500p

C4 1500p

R12

16.2k

R10 26.7k

12

0V

0V

R11 10k

U7

OPAMP

+

-

OUT

U8

OPAMP

+

-

OUT

U9

OPAMP

+

-

OUT

R13

16.2k
R14

16.2k
R15

10k

14

C5 2200p

C6 2200p

R18

16.2k

R16 12.7k

0V

0V

R17 10k

U10

OPAMP

+

-

OUT

R19

42.2k

20

C7 1200p

R20 42.2k

21

0V

17

0V
0

13

3 9

19

0V

V

0V

Vout
15

10

53

3.5.2.2 Example 2: Common-Emitter Circuit

A common-emitter circuit is used as example 2 to demonstrate how a transistor can be

transformed to its SSA that replaces the internal operation of transistor. The common emitter

circuit is in Figure 3.9. Its small signal equivalent circuit is shown in Figure 3.10 where gm =

69.6e-3 and VRpi = 0.713. The SSA frequency response simulated in PSpice and MSCAM

simulation is presented in Figure 3.11. The MSCAM and PSpice simulation of the SSA have

the same lower and upper cut-off frequencies at 32.5 Hz and 26.1 MHz respectively with

approximately zero error and a gain of 75.29.

Figure 3.9: Common-emitter circuit.

Figure 3.10: Common-emitter SSA.

Rs

100

R1

51.2k

R2
9.6k

Rc

2k

Re

400

RL

3k

C1

1u

C2

1u

Ce

50u

V1
1Vac

0Vdc

V2

10Vdc

0

Qbreakn

Q1

CL

3p

Vout

V1
1Vac

0Vdc

R111

100

R2

9.6k

R1

51.2k

Rpi

1.51k

Ro

58.3k

RL

3k

C111

1u

Cpi

10p

Cmu

2p

C2

1u

1 2 54

Rc

2k

3

CL

3p

Vout

0

I1

69.6e-3*0..713

1Aac

54

Figure 3.11: Common-emitter SSA PSpice (black) and MSCAM (red) frequency response.

3.5.2.3 Example 3: Combined Operational Amplifier and Transistor Circuit

Example 3 is a circuit that combines op-amp and transistor. It demonstrates how the

Matlab code can be applied to implement a circuit that the component comprises of both

transistor and op-amp in figure 3.12. Its SSA equivalent circuit is shown in Figure 3.13. The

PSpice simulation of the SSA and MSCAM simulation frequency responses are shown in

Figure 3.14. The different line colours and styles differentiate the frequency response curve.

The MSCAM, SSA and PSpice simulation have the same cut-off frequency of 185 kHz with

MSCAM having 0.2 error due to difference in frequency at 100 Hz due to scaling between

the software packages and a gain of 3.169.

Figure 3.12: Example 3 circuit.

U1

OPAMP

+

-

OUT

V1
1Vac

0Vdc
Q1

0

Vout

8

RL

1k

R3

100

R5

8.2k

R4

3.9k

3

R2

12k

21

4

7
R111

1

Cb

1n

CL

1n

5 6

55

Figure 3.13: Example 3 SSA circuit.

Figure 3.14: Example 3 original circuit PSpice (red), SSA PSpice (green) and MSCAM (black) frequency

response curves.

3.5.2.4 Example 4: Common-Source Amplifier Circuit

The common-source amplifier is as example 4 circuit shown in Figure 3.15. The

equivalent SSA is illustrated in Figure 3.16. The frequency response curve of both PSpice

simulation and MSCAM analysis of the FET amplifier circuit indicated with different colours

and line styles in Figure 3.17. The MSCAM and PSpice simulation of the SSA have the same

lower and upper cut-off frequencies at 30.9 Hz and 25.7 MHz respectively with

approximately zero error and a gain of 2.68.

IN-

OUT+

OUT-

IN+

G1

V(6)*GAIN
GVALUE

PARAMETERS:

GAIN = 69.6m

Rpi

1.51k

Ro

58.3k

Cmu

2p

Cpi

10p

6 7

U1

OPAMP

+

-

OUT

V1
1Vac

0Vdc

R3

100

3

R2

12k

1

4
Vout

8

RL

1k

R4

8.2k

R5

3.9k

R111

1

2

0

Cb

1n

CL

1n

5

56

Figure 3.15: Common-source amplifier.

Figure 3.16: Common-source amplifier SSA.

Figure 3.17: Example 4 Pspice (red) and MSCAM (black) SSA frequency response.

R1

50k

Rg1
2.2Meg

Rg2
1Meg Rs

1k

RL

10k

C1

1u

C2

1u

V1
1Vac

0Vdc

VDD1

10Vdc

0

Vout

CL

3p

M1
Mbreakn

Rd

2.2k

Cs

50u

V1
1Vac

0Vdc

R111

50K

Rg1

1M

Rg2

2.2M

Rd

2.2k

Rds

90.086k RL

3k

C111

1u

Cpi

10p

Cgs

1p

1

C2

1u

42 53

0

Cds

1p

I4

0.863e-3*2.486

1Aac

CL

3p

Vout

57

Table 3.1 shows the elapsed time for each example and technique. The SCAM

simulation capability is limited in terms of the size of circuit and component it can simulate.

Table 3.1: Simulation results time summarised.

Examples
PSpice small signal

analysis

MSCAM matrix

size /time

SCAM matrix size

/time

Example 1 7
th

order

None but large signal

analysis 0.16 sec

20 by 20

0.025 sec

20 by 20

Unable to simulate

Example 2

CE Amp
0.05 sec

5 by 5

0.008 sec

Cannot handle BJT

transistor

Example 3

Op-amp/BJT
0.3 sec

8 by 8

0.031 sec

Cannot handle BJT

transistor

Example 4

FET Amp.
0.3 sec

5 by 5

0.03 sec

Cannot handle FET

transistor

3.6 Summary

A modified symbolic circuit analysis in Matlab (MSCAM) that enhanced circuit’s

capacity simulation (circuit’s matrices dimension) so that it can be used to simulate complex

circuits is introduced and a detailed review of symbolic analysis is presented also in this

chapter. Brief introduction of electronic circuit simulation techniques is also carried out. This

chapter also analysed the SSA of transistor and op-amp. Description of how four different

circuits illustrate the developed algorithm using modified nodal analysis in combination with

the newly introduced SSA of transistors and Op-amp. Due to the introduction of the transistor

SSA, the MSCAM can also simulates circuits with fewer number of BJT and FET. These

four examples are presented to demonstrate the efficiency of the developed algorithm.

Appendix subdivided into A and B is included in case someone wants to test the four

examples.

The next chapter is Chapter 4, which describes five different optimisation tools and

how there are applied to optimised analogue circuits

58

Chapter 4
3

Analogue Circuit Optimisation

4.1 Introduction

The application of electronics by human activities has become part of life and almost

all aspects of human endeavours required it for better functionality or productivity.

Electronics is a very rapid growing industry because of its demand in a day-to-day

application and the need to overcome some problems or challenges in the society. The

objective of an electronics engineer is to design circuits that are smaller, faster, cheaper, and

having the ability to communicate wirelessly, to reduce power consumption and increase

reliability of the circuits. Human methods of electronic circuit design require tedious

mathematical calculations and at times prone to errors. The intelligent optimisation

techniques are easy to implement and do not require tedious mathematical computations.

This chapter describes how five intelligent optimisation techniques are used in

analogue circuit optimisation. The different optimisation techniques analysed here are: PSO,

ABCA, BFO, FA and GA. Besides, Nelder-Mead which is easy and straight forward to be

used from the optimisation toolbox is described and used for comparison purpose only and to

justify why one should write a complicated programme for the same similar solution. The

remaining part of this chapter is subdivided as: the use of Nelder-Mead to minimise analogue

circuits, which is discussed in Section 4.2 and application of GA to minimise analogue

circuits illustrated in Section 4.3. PSO used to minimise analogue circuits is explained in

Section 4.4 while use of BFO to minimise analogue circuits is demonstrated in Section 4.5.

Application of FA to minimise analogue circuits is discussed in Section 4.6, ABCA used to

minimise analogue circuits is demonstrated in Section 4.7, methodology explained in Section

4.8, results and discussion are illustrated in Section 4.9 and summary of this chapter is in

Section 4.10.

3
 A substantial part of Chapter 4 has been published in [5, 185].

59

4.2 Use of Nelder-Mead to Minimise Analogue Circuits

In Nelder-Mead; fminco-constrained nonlinear minimisation, an objective function is

formulated as illustrated in Section 3.5.1 or the one discussed under Section 4.8 and the same

objective function is used for all the methods for the same circuit. The objective function is

being called right from the optimisation toolbox in the dialog box option called objective

function option. The following options are set: algorithm option is set at the interior point and

derivative option is set at approximated by solver. The maximum component values are fed at

start point option. The maximum and minimum component values are fed at the upper and

lower options respectively. The X-tolerance is set at 1E-8 whereas function tolerance is set at

1E-4. These are settings that give the best result.

4.3 Use of Genetic Algorithm to Minimise Analogue Circuits

In the case of GA, the objective function is formulated as illustrated in Section 3.5.1

and it is called directly from Matlab GA optimisation toolbox under the fitness function

option. The maximum and minimum component values are fed at the upper and lower

options respectively. Also, GA parameters settings include: probability of crossover PC = 0.8,

population size N = 50, probability of mutation Pm = 0.05 and the number of iterations Nit =

100. The total number of components to be minimised is specified in the dialog box option

called number of variable option. The programme is automatically generated applying

generate code option under the file menu in order to rank results. The summaries of

parameters applied are in Table 4.1.

Table 4.1: Summary or definition of GA’s symbols used.

Symbols Meaning
Value

used
Remarks

PC probability of crossover

(single point)

0.8 probability of crossover value used to obtain

the best approximate frequency response curve

Pm probability of mutation

(Gaussian)

0.05 probability of mutation value used to obtain the

best approximate frequency response curve

Nit number of iteration 100 number of iterations used to obtain the best

approximate frequency response curve

N number of individuals

(chromosome-binary)

50 number of individuals used to obtain the best

approximate frequency response curve

60

NC number of components to

be minimised

7 number of components to be optimised

61

4.4 Use of Particle Swarm Optimisation to Minimise Analogue Circuits

As earlier defined, PSO is a population-based stochastic optimisation method

developed by Eberhart and Kennedy 1995 [60]. It was inspired by social interaction of flock

of bird and school of fish. In comparison with GA, PSO does not execute genetic operators,

crossover, reproduction and mutation, but adjusts its velocity dynamically. Also, PSO needs

fewer control parameters to obtain the same result as GA control parameters and it does not

apply survival of the fittest principle. In PSO, particles explore for the required solution in the

problem space the potential solution is updated while the process is ongoing. A swarm is the

collection of particles that make up the population. PSO suitable parameter or element

selection guide as well as improved PSO algorithm with leadership and detailed PSO

algorithm are illustrated in [60, 61].

The following steps are implemented while applying PSO to minimise filter circuits:

a. Formulation of an objective function to calculate fitness as in Section 3.5.1

b. Initialisation of particles using cascode amplifier design component value to illustrate the

PSO. Number of iteration Nit

= 30, number of components to be minimised NC = 7,

number of particle N = 20, acceleration constants c1 = c2 = 1.49618 (these are values

used to obtain the best approximate frequency response curve after several trials),

component maximum values = 5 3 1 11 16 16 40 and component minimum values = 0.01

0.3 0.5 0.1 14 14 0.1. The component maximum and minimum values are got in the same

magnitude above and below the initial component values but the increment/decrement

not more than half of the initial value.

Each particle generates random component values within a specified range according to

expression:

)()(NCNrandMinValueMaxValueMinValueXP  (4.1)

 where Xp represents the randomly generated population of size NC by N, MinValue is the

component Minimum Values, MaxValue is the component Maximum Values whereas N

and NC as defined in (b).

c. The fitness values of all the particles are calculated.

The personal best (pbest) of each particle is evaluated with respect to the objective

function.

d. The fitness of each particle is compared with its former best fitness found. If the current

value obtain is better than pbest, then set the pbest as the current value and pbest position

as the current position.

62

e. Compare pbest of all the particles with one another and update the lbest position with the

highest fitness

f. The position and velocity of the particles are altered according to equations (4.2) and

(4.3) respectively.

Steps (c) to (f) are repeated until the design criteria are met which is the number of iteration

used.

ttt vxx 1 (4.2)

)()(
22111 tttttt

xlcxpcwvv 


 (4.3)

where xt is the position, vt is the velocity, w is the initial weight, c1 and c2 are the acceleration

constant, α1 and α2 are the random variable, pt is the pbest and lt is the lbest.

4.5 Use of Bacterial Foraging Optimisation to Minimise Analogue Circuits

The use of BFO to minimise circuits involves the following steps:

1. Initialisation: In this research, the following were considered: number of bacteria S = 8,

number of iteration in chemotactic loop (Nc

> Ns) Nc = 5, number of components p = 7,

number of swimming length Ns = 4, maximum number of dispersal or elimination

imposed on bacteria Ned = 2, maximum number of reproduction Nre = 4, probability that

dispersal and elimination will continue Ped = 0.25 attraction coefficient wattract = 0.2,

attraction coefficients dattract = 0.1, repulsion coefficient wrepellent

= 10, and repulsion

coefficient hrepellent = 0.1 component maximum values = 5 3 1 11 16 16 40 and

component minimum values = 0.01 0.3 0.5 0.1 14 14 0.1.The objective function is

formulated as illustrated in Section 3.5.1

2. 1 ll ; dispersal-elimination loop

3. 1 kk ; reproduction loop

4. 1 jj ; chemotactic loop that is subdivided into:

i. For each bacterium i = 1, 2, 3, …, S, evaluate objective function),,,(lkjiJ

a. let)),,(),,,((),,,(),,,((lkjPlkjJlkjiJlkjiJ i
CCsw  (4.4)

where

  
  



s

i

p

m

i
mmrepellentrepellent

s

i

p

m

i
mmattractattractCC whwdJ

1 1

2

1 1

2)])(exp([)])(exp([ (4.5)

63

where dattract is the depth attraction coefficients, wattract is the width attraction coefficient,

hrepellent is the height repulsion coefficient, wrepellent

is the width repulsion coefficient

m
 is a

given cell location,
i

m
 is the neighbouring cell location, S is the number of bacteria and p is

the number of components.

b. Let),,,(lkjiJJ swlast  to save the value since better cost via run.

c. Loop end

ii. Tumble: create a random vector pi  ),(each element between (-1,1)

iii. Move: let
)()(

)(
)(

ii

i
i

T 


 (4.6)

)()(),,(),,1(jiClkjlkj ii   (4.7)

This is the results in step size C(i) in tumble direction of the i th bacterium.

iv. Evaluate),,,(lkjiJ and let

)),,(),,,((),,,(),,,((lkjPlkjJlkjiJlkjiJ i
CCsw  (4.8)

v. Swim:

a. let m = 0

b. while sNm 

i. let 1mm

ii. lastsw JlkjiJ ),,,(then),,,(lkjiJJ swlast  ,)()(),,(),,1(jiClkjlkj ii  

and use the new),,1(lkji  to compute),,,(lkjiJ as in step 4(iv)

iii. Else sNm 

vi. Increment counter to next bacteria (i+1) until all the bacteria undergoes chemotaxis

5. Reproduction

a. For a given l and k, for each i = 1, 2, 3, …, S, let 





1

1
),,,(

CNj

j
sw

i
health lkjiJJ is the

ith bacterium health sorted in ascending order.

b. The bacteria with minimum health (Jhealth) values split and replaced their parents’

location and those highest values die.

6. If reNk  , repeat step 2 to 5 until maximum number of reproduction step is complete

or next chemotactic loop is started.

64

7. Dispersal-elimination: for i = 1, 2, 3, …, S, a random number is created and if equal

or less than Ped, disperse the bacterium to new location otherwise it should maintain

its position.

8. edNl  , repeat step 1; else stop.

4.6 Use of Firefly Algorithms to Minimise Analogue Circuits

1. Initialisation Parameter: The following parameters are initialised: number of

components = 7, Max Generation = 100, absorption coefficient 6.0 attractiveness

o = 1, randomisation parameter α = 0.01 (α can be varied (decreases gradually as

solution approaches optimal) to improve convergence). These are values determined as

best values. Component maximum values = 5 3 1 11 16 16 40 and component

minimum values = 0.01 0.3 0.5 0.1 14 14 0.1. The objective function is also formulated

as illustrated in Section 3.5.1.

2. Light intensity Ii at yi which is directly proportional to attractiveness is calculated by

2

0

1 d





 . (4.9)

3. Update firefly positions:

a. Calculate the square root of the distance between the first firefly and the second

firefly as

 




m

k

kjkijiij yyyyd

1

2
,, (4.10)

b. Calculate  with the value of o , and β

2

0
de   (4.11)

c. Move firefly i toward j if (Ii<Ij) according to equation (4.12) bearing in mind that if

+ o is attraction and - o is repulsion.

t
i

t
i

t
j

dt
i

t
i yyeyy ij 




)(
2

0
1 (4.12)

d. Update firefly position

4. Repeat step 2 until maximum iteration

4.7 Use of Artificial Bee Colony Optimisation to Minimise Analogue Circuits

The steps involved are as the following:

65

1. Initialisation Parameter: The parameters initialise are: colony size (employed bees and

onlooker bees) NP = 20, the number of food sources is equivalent to half of the

colony size (NP/2), a food source is discarded by its employed bee if could not be

improved through "limit" trials (limit = 100), max Cycle = 2500, runtime = 100,

number of parameters of the problem to be optimized (D = 7), component maximum

values = 5 3 1 11 16 16 40 and component minimum values = 0.01 0.3 0.5 0.1 14 14

0.1.

2. Search by employed bees: An employed bee finds a new food source within the

vicinity of a current food source by changing one randomly selected position variable

value and maintaining other variables unaltered in each iteration. Let the location of

the ith food source be; Si = (Si,0, Si,1, …, Si,Ns-1) where Si,0, Si,1, …, Si,Ns-1 are Ns

variables of solution and optimisation problem. To search for neighbouring food

source S’i, a randomly chosen variable Sij in Si altered as S’ij

)(' kjijijij SSSS   (4.13)

where α is the uniform random number (-1,1) and Skj stands for the variable at the jth

location in randomly chosen food source Sk which is one of the employed bees other

than Si. S’ij is set to extreme value in the range if its position falls outside acceptable

range. Whenever a new food source is located, the quantity of nectar of both new and

current food source are compared. If the quantity of nectar in the new food source is

more than the current food source, the employed bee relocates to the new source.

3. Choice of onlookers: When all employed bees undergo the process in section 2

above, they share the nectar information about the food sources with onlookers in

hive. The onlooker bee chooses a food source based on the quantity of nectar. In other

words, good sources acquire more onlookers than bad sources.

4. Search by onlooker bees: As each onlooker chooses food source, also it locates a new

food source close to the food source. This is achieved by altering a randomly chosen

position variable of the source as illustrated in employed bee. The quantities of nectar

found in the new food source by onlookers at a food source are compared to

determine the best neighbouring food source. If the quantity of nectar found in the

best neighbouring food source is better than the food source, the position is moved to

the best food source.

5. Search by scouts: If all the onlookers end their search, some employed bees become

scout controlled by limit. When onlookers and employed bee associated with a

66

particular food source cannot determine a better neighbouring food source in iteration

limit, the source is discarded and the employed in that particular food source becomes

a scout. The scout randomly looks for the position of new food source. Whenever it

determines a new food source, it again becomes the employed bee in that food source.

6. Update the best solution: If all the scouts become employed bees, the location of the

best food source discovered so far is updated.

7. Termination: The algorithm stops if termination criterion is satisfied, otherwise repeat

steps 2-6.

4.8 Methodology

Cascode amplifier circuit is used to illustrate the methodology as a case study. Its

original circuit is presented in Figure 4.1 while its minimised circuit is shown in Figure 4.2.

The PSpice simulation of SSA module of the original circuit of the cascode amplifier is used

to specify the objective function for the minimised circuit and Matlab code is written to get

equivalent component values that satisfy the specifications. The minimised circuit is

converted into its SSA as in Figure 4.3. The mesh analysis technique is applied to transform

the circuit into its matrices form. BFO, Firefly and ABC, GA and PSO algorithms are

applied to get equivalent component values for the minimised cascode amplifier circuit. The

best individual or particle for a given iteration that satisfied the objective function

specification is taken as solution. The same component values of the circuits and the

objective function specification are analysed with Nelder-Mead constrained nonlinear

minimisation to analyse the effectiveness of the technique. The optimise unit of the circuit is

considered as a black box, and output/input impedance is optimised such that they are not

affected.

The input impedance Rs and output impedance RL of the circuit are taken as constants

and are given fixed value while others remaining components are given range of values as

demonstrated in Table 4.2. The upper and lower limits of the component values enable the

programme to choose their values at random to evolve a circuit which satisfies the objective

function. The multi-objective optimisation function is based on gain, power, upper-frequency

band, and lower-frequency band. Figure 4.4 summarises the technique in the form of a

flowchart.

67

Figure 4.1: Cascode amplifier initial circuit [186].

R1
15k

R3

30k

RC
750

RS

1

RE
1.3k

RL
50k

Q2N2222A
Q1

CC2

100UF

CC1

100UF

VCC
10Vdc

VS
1Vac
0Vdc Ce

100UF

0

Q2N2222A

Q2 CB

100UF

R2
15k

68

Figure 4.2: Cascode amplifier minimised circuit.

Figure 4.3: SSA for the minimised cascode amplifier circuit.

Q2N2222A

Q1
Rs

1k

R2

R1

Re

Rc

RL

Cb

1n

CL

Ce

V1
1Vac

0Vdc

V2

10Vdc

0

Vout

Ic
gm

V1

1Vac
0Vdc

Rs

Rb

Rpi

Re

Ro

Rc

RL

Cb Cmu CL

Cpi

Ce

Loop 1 Loop 8Loop 7Loop 4Loop 2

Loop 3 Loop 6Loop5

0

69

Figure 4.4: The proposed algorithm flow chart.

The weighed objective function is formulated based on:

)10/()10(max1/()1/(8

12

4

11 vf
ApowerEcfEcfO  (4.14)

where Of represents objective function, cf11 is the difference in value between the achieved

and targeted lower-frequency response, cf12 is the difference in value between the achieved

and targeted upper-frequency response, max-power is the difference in value between the

achieved and targeted max-power needed by the circuit, Av is the range specified for the

amplifier gain to be minimised, while Rout and Rin are the ranges specified for the output and

input resistances of the amplifier to be minimised respectively. The components that are

given value ranges shown in Table 4.2. Their specified values used in the optimisation are as

follow:

70

cf11 = targeted (cf11) – 32.544 Hz

cf12 = (targeted (cf12) – 20.444E6)/E6 Hz

Max-power = 0.7236 mW, Av = 20 to 46, Rout = 650 Ω to 800 Ω, Rin = 7 kΩ to 7.5 kΩ.

The constants for this work are:

Cpi

= 10 pF, Cmu

= 2 pF, Rs = 100 Ω, RL

= 15 kΩ, Ro = 100 kΩ, Vcc = 10 V, V1

= 1 V, Vbe

=

0.648 V, IC = 1 mA, hFE

= 250, q = 1.6E-19 C, kb = 1.38e-23 J/K, Temperature = 300 K.

Table 4.2: Components ranges.

Component name Minimum value Maximum value

CL (F) 0.01E-6 5E-6

Re (Ω) 0.3E3 3E3

Rc (Ω) 0.5E3 1E3

R1 (Ω) 14E3 16E3

R2 (Ω) 14E3 16E3

Cb (F) 0.1E-6 11E-6

Ce (F) 0.1E-6 40E-6

Formulas used in the simulation are:

 qTempkV bT / (4.15)

)/()(2121 RRRRRb  (4.16)



  2   f (4.17)

Tcm VIG / (4.18)

FEcB hII / (4.19)

mFEpi GhR / (4.20)

)/()(pibpibin RRRRR  (4.21)

)/()(ococout RRRRR  (4.22)

71

BCi IIA / (4.23)

))/(ococmv RRRRGA  (4.24)

]0;0;0;0;0;0;0;1[TA (4.25)



































8887

78777674

676665

565553

474442

353332

24232221

1211

000000

0000

00000

00000

00000

00000

0000

000000

aa

aaaa

aaa

aaa

aaa

aaa

aaaa

aa

B (4.26)

where)))/(1((11 bbS CjRRa  

bRa 12

bRa 21

)))/(1((22 ebpi CjRRa  

piRa 23

))/(1(24 eCja  

piRa 32

)))/(1((33 pipi CjRa  

))/(1(35 piCja  

))/(1(42 eCja  

)))/(1((44 pie CjRa  

72

eRa 47

))/(1(53 piCja  

CIa 55

)/1(56 mGa 

)/1(65 mGa 

oRa 66

oRa 67

eRa 74

oRa 76

eco RRRa  (77

cRa 78

cRa 87

)))/(1((88 LcL CjRRa  

 ABC  1 (4.27)

where C contains unidentified voltages in all the nodes to be found. Cn is the voltage across

the load resistor at node n being analysed to determine its frequency response within a given

range of frequency (1 Hz to 1 GHz). The frequency response curves in Figure 4.5 are plot of

gain in magnitude against its frequency for original circuit, and that of circuits optimised

using Nelder-Mead, BFO, Firefly and ABC, GA and PSO. Firefly parameters are specified

as: runtime = 100, number of iteration = 150, generation (N) = 40,  = 0.5,  = 1, β = 0.2.

Also, ABCA parameters are set as follow: number of colony size (NP) = 20, food source

73

which must be improved (limit) = 100, food number = NP/2, runtime = 100 and number of

cycle for foraging (maxcycle) = 2500.

GA parameters are specified as: crossover (Pc) = 0.8, pop-size = 50, mutation (Pm) =

0.05 and generation = 100. Whereas PSO parameters are set as: initial weight (w = 0.7298),

acceleration constants (c1 = c2 = 1.49618), number of particles = 20 and number of iteration =

30. In addition, BFO parameters selections are: number of bacteria in pop (S) = 8, number of

bacteria reproductions (splits) per generation (Sr) = S/2, algorithm runtime = 100, Limits the

length of a swim when it is on a gradient (Ns) = 4, number of chemotactic step per bacteria

lifetime (Nc) = 5, number of reproduction steps, Nre = 4, probability that each bacteria is

eliminated (Ped) = 0.25 and number of elimination-dispersal events (Ned) = 2.

 4.9 Results and Discussion

The optimised and original circuits are simulated in PSpice to get their frequency

response. The 0.707 (-3dB) of the maximum gain is used to set the cut-off frequencies, which

serves as reference. Example 1 shows cascode amplifier circuit, Example 2 describes a high-

pass filter; Example 3 illustrates a low-pass one and Example 4 for an all-pass filter.

4.9.1 Example 1: Cascode Amplifier Circuit

The results got from example 1 are summarised in Table 4.3. The original circuit

simulated in PSpice enabling to obtained bandwidth, power and frequency response. Figure

4.5 shows the frequency response curves with unique line styles for the Nelder-Mead,

original circuit, BFO, ABCA, FA, PSO and GA optimised circuits. Results presented have

demonstrated that GA and PSO are useful optimisation tools for electronics. However, PSO

has proved to be the best among the five-swarm algorithm techniques regarding power

reduction and frequency response. Also, results presented revealed that FA, Nelder-Mead,

ABCA and BFO are not good enough because they have narrow bandwidth in terms of

frequency response and power consumption instead of reduction, it rather increases. It further

revealed that PSO is better than GA regarding higher power reduction and better frequency

response and they have least mean and standard deviation errors as in Table 4.3. The

components mean and standard deviation are presented in Table 4.4.

74

Figure 4.5: Frequency response curve for all the optimised circuits and initial cascade circuit.

Table 4.3: Results obtained from Example 1 simulation.

Circuit

element

Initial

Circuit

Nelder-

Mead

Firefly ABC BFO GA PSO

CL (µF) 100 18.74 13.07 11.98 24.79 6.86 14.66

Re (kΩ) 1.3 1.91 1.92 0.99 2.70 1.43 2.76

Rc (Ω) 750 504 990 621 533 665 549

Cb (µF) 100 9.76 0.11 5.49 1.57 6.13 11

R1 (kΩ) 15 14.75 0.50 4.99 12.82 4.86 9.57

R2 (kΩ) 15 14.75 4.20 7.10 3.81 14.13 12.12

Ce (µF) 100 48.73 26.42 50 24.57 30.58 50

R3 (kΩ) 30 - - -

C4 (µF) 100 - - -

Q2N2222 2 1 1 1 1 1 1

Rs (Ω) 1 1 1 1 1 1 1

RL (kΩ) 50 50 50 50 50 50 50

V1ac (volt) 1 1 1 1 1 1 1

V2dc (volt) 12 12 12 12 12 12 12

75

Earth 1 1 1 1 1 1 1

cf1 (Hz) 102 338.80 3.27E3 410.87 831.80 338.80 204.20

cf2 (MHz) 48.95 36.31 47.70 26.02 23.24 45.69 47.75

Power (mW) 22.10 25.5 23.6 42.4 31.9 18.4 18.0

Percentage of

power change

 +15.4% +6.79% +91.86% +44.3% -16.7% -18.6%

Number of

component

16 13 13 13 13 13 13

Objective

function error

 6.74E3 53.44 7.47E3 6.98E3 6.83E3 6.70E3

Number of

trials

 100 100 100 100 100

Mean error 56.316 6454 5123 26.658 26.587

Std error 0.2026 5304 39.106 0.0043 0.0255

Table 4.4: Mean and standard deviation results obtained from Example 1 simulation.

Device Firefly ABC BFO GA PSO

mean std mean std mean std mean std mean std

CL (F) 10.50 3.214 9.368 5.842 10.63 4.270 1.257 1.014 20.00 0

Re (Ω) 0.655 0.501 1.005 0.571 9.156 5.887 0.343 0.171 0.013 0.030

Rc (Ω) 4.234 0.021 4.935 0.595 4.175 7.230 5.041 0.585 4.013 0.126

Cb (F) 5.056 1.526 5.031 2.985 8.659 5.606 6.057 2.736 9.861 0.816

R1 (Ω) 0.508 0.017 0.948 0.310 21.56 7.116 1.022 0.285 0.506 0.036

R2 (Ω) 8.985 0.186 8.971 0.301 6.464 8.398 9.106 0.302 8.500 0

Ce (F) 3.292 6.296 15.73 8.424 14.81 4.272 0.153 0.053 0.102 0.000

4.9.2 Example 2: High-Pass Filter Circuit

The original circuit (high-pass filter) [187] is in Figure 4.6 while the minimised

Nelder-Mead circuit is in Figure 4.7. The optimised and original circuit’s frequency response

curve with unique line style is shown in Figure 4.8. The component values for minimised

PSO, GA circuit and summary of results obtained simulated for the high-pass filter is in

Table 4.5.

For high and low unity gain filters,

76

221 QAV 

(4.28)

which means that Q = 0.707. The analysis simply implies that, the quality factor is positioned

at 0.707.

Figure 4.6: Original high-pass filter circuit [187].

Figure 4.7: Nelder-Mead optimised high-pass filter circuit.

U1

OPAMP

+

-

OUT

V1
1Vac

0Vdc

0

0V

C1

100n

R1

2.1k

U2

OPAMP

+

-

OUT

C2

100n

C3

100n

R2

1.65k

0A

R3
3.16k

0A
0V

0V

0V
0V

0V

Vout

U1

OPAMP

+

-

OUT

V1
1Vac

0Vdc

0

C1

3.55n

R1

39.55k

0A

Vout

77

Figure 4.8: Frequency response curve for the high-pass filter.

Table 4.5: Results obtained from Example 2 simulation.

Circuit element Initial Circuit Nelder-Mead GA PSO

C1 (nF) 100 3.55 3.16 3.60

C2 (nF) 100 - - -

C3 (nF) 100 - - -

R1 (kΩ) 2.1 39.55 38.16 37.00

R2 (kΩ) 1.65 - - -

R3 (kΩ) 3.16 - - -

Op amp U1 1 1 1 1

Op amp U2 1 - - -

Ground 1 1 1 1

V1 (ac volt) 1 1 1 1

No. of Components 10 5 5 5

Component reduction

percentage

- 50% 50% 50%

Elapsed time - - 3.36 seconds 0.66 seconds

Objective function error - 4.82E3 3.2E3 3.2E3

4.9.3 Example 3: Low-Pass Filter Circuit

The original circuit (low pass filter) [187] is shown in Figure 4.9, while the minimised

Nelder-Mead circuit is in Figure 4.10. The optimised and original circuit’s frequency

response curve with unique line style is shown in Figure 4.11. The summary of simulated

results and component values for minimised PSO, GA circuit for the high pass filter are in

Table 4.6.

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT
V1

1Vac

0Vdc

0

U3

OPAMP

+

-

OUT

C1

1n
C2

820p
C4

330p

C3 1.5n
C5 4.7nR1

3.16k
R2

1.87k

R3

4.42k
R4

1.47k

R5

4.53k Vout

78

Figure 4.9: Original low-pass filter circuit [187].

Figure 4.10: Nelder-Mead optimised low-pass filter circuit.

Figure 4.11: Frequency response curve for the low-pass filter.

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT
V1

1Vac

0Vdc

0

C1

4.01n
C2

799.01p

C3 0.12n
R1

0.775k
R2

0.12k

R3

5.51k Vout

79

Table 4.6: Results obtained from Example 3 simulation.

Circuit elements Initial Circuit Nelder-Mead GA PSO

C1 (nF) 1 4.01 0.24 0.1

C2 (pF) 820 799.01 786.66 793.55

C3 (nF) 1.5 0.12 0.02 0.2

C4 (pF) 330 - - -

C5 (nF) 4.7 - - -

R1 (kΩ) 3.16 0.775 0.54 0.54

R2 (kΩ) 1.87 0.12 0.09 0.02

R3 (kΩ) 4.42 5.51 3.19 3

R4 (kΩ) 1.47 - - -

R5 (kΩ) 4.53 - - -

Ground 1 1 1 1

Op amp U1 1 1 1 1

Op amp U2 1 1 1 1

Op amp U3 1 - - -

V1 (ac volt) 1 1 1 1

No. of

Components

15 10 10 10

Component

reduction

percentage

- 33.33% 33.33% 33.33%

Elapsed time - - 4.98 seconds 0.99 seconds

Objective function

error

- 843.03 792.03 792.03

4.9.4 Example 4: All-Pass Filter

The original circuit (all-pass filter) [187] is in Figure 4.12, while the minimised

Nelder-Mead circuit is in Figure 4.13. The optimised and original circuit’s frequency

response curve with unique line style is shown in Figure 4.14. The summary of simulated

results and component values for minimised PSO, GA circuit for the all-pass filter are in

Table 4.7.

80

Figure 4.12: Original 7th order all-pass filter circuit [187].

Figure 4.13: Nelder-Mead optimised all-pass filter of the 7th order circuit.

U1

OPAMP

+

-

OUT

Vout

V1
1Vac

0Vdc

0

U2

OPAMP

+

-

OUT

R1

1k

R4

2k

C3 1n

R2

1k

R5

1k

R3

1k

R8

1k
U3

OPAMP

+

-

OUT

R7

1k

R6

1k

C2

1n

C1 1n

U4

OPAMP

+

-

OUT

R9

2k

C5

1n
R10

1k

R13

1k
U5

OPAMP

+

-

OUT

R12

1k

R11

1k

C4

1n

U6

OPAMP

+

-

OUT

R14

2k

C7

1n

R15

1k

R18

1k
U7

OPAMP

+

-

OUT

R17

1k
R16

1k

C6

1n

U1

OPAMP

+

-

OUT

Vout

V1
1Vac

0Vdc

0

U2

OPAMP

+

-

OUT

R1

1.33k

R4

0.78k

C3 1.55n

R2

1.33k

R5

1.33k

R3

1.33k

R8

1.33k
U3

OPAMP

+

-

OUT

R7

1.33k

R6

1.33k

C2

1.55n

C1 1.55n

U4

OPAMP

+

-

OUT

R9

0.78k

C5

1.55n
R10

1.33k

R13

1.33k
U5

OPAMP

+

-

OUT

R12

1.33k

R11

1.33k

C4

1.55n

81

Figure 4.14: Frequency response curve for the all-pass filter.

Table 4.7: Results obtained from Example 4 simulation.

Circuit element Initial Circuit Nelder-Mead GA PSO

C1 (nF) 1 1.55 1.76 1.82

C2 (nF) 1 1.55 1.52 1

C3 (nF) 1 1.55 1.52 1

C4 (nF) 1 1.55 1.58 1.09

C5 (nF) 1 1.55 1.58 1.09

C6 (nF) 1 - - -

C7 (nF) 1 - - -

R1(kΩ) 1 1.33 0.65 1.01

R2 (kΩ) 1 1.33 0.64 0.54

R3 (kΩ) 1 1.33 0.65 1.01

R4 (kΩ) 2 0.78 0.84 1

R5 (kΩ) 1 1.33 1.76 1.59

R6 (kΩ) 1 1.33 0.58 0.5

R7 (kΩ) 1 1.33 0.59 0.5

R8 (kΩ) 1 1.33 0.59 0.5

R9 (kΩ) 2 0.78 0.99 1

R10 (kΩ) 1 1.33 0.74 1.32

R11 (kΩ) 1 1.33 1.76 2

R12 (kΩ) 1 1.33 1.97 1.43

82

R13 (kΩ) 1 1.33 1.97 1.43

R14 (kΩ) 2 - - -

R15 (kΩ) 1 - - -

R16 (kΩ) 1 - - -

R17 (kΩ) 1 - - -

R18 (kΩ) 1 - - -

Ground 1 1 1 1

Op amp U1 1 1 1 1

Op amp U2 1 1 1 1

Op amp U3 1 1 1 1

Op amp U4 1 1 1 1

Op amp U5 1 1 1 1

Op amp U6 1 - - -

Op amp U7 1 - - -

V1 (ac volt) 1 1 1 1

No. of Components 34 25 25 25

Component reduction

percentage

- 26.47% 26.47% 26.47%

Elapsed time - - 18.55 seconds 4.05 seconds

Objective function error - 3.377E5 2.188E5 2.188E5

Table 4.8 illustrates the cut-off frequencies located at the quality factor points. Results

presented have revealed that, this technique can be used to reduce components in high, low

and all pass filters, particularly in appliance where a phase angle change has no effect.

Table 4.8: Showing the cut-off frequencies for the original and optimised filter circuits.

Circuit type High-pass

filter

Low-pass

filter

All-pass filter circuit

Low-pass High-pass

Original 1 kHz 33 kHz 10.30 kHz 100.5 kHz

Nelder-Mead 1.1 kHz 29 kHz 10.32 kHz 100.2 kHz

GA 1.3 kHz 34 kHz 10.31 kHz 100.3 kHz

PSO 1.2 kHz 34 kHz 10.30 kHz 100.4 kHz

83

4.10 Summary

This work presents four different swarm optimisation and GA algorithms for analogue

circuit optimisation. The results of the first example in this chapter illustrated showed how

equivalent analogue circuit can be found in terms of cut-off frequencies but do not give exact

performance as the initial circuit. The examples further showed that component count

reduction is achieved in analogue circuit same as it has been accomplished in digital circuits.

The original circuit has sixteen (16) components count whereas the optimised five methods

(Nelder-Mead, FA, BFO, ABC, PSO, and GA) all have thirteen components count but at

different level of power consumption as illustrated in Table 4.3. In this approach, BFO,

Nelder-Mead, ABC, and FA increased power consumption indicated at different values.

However, PSO and GA reduced power consumption indicated at different levels.

Op-amp filter circuits are minimised in the other three examples. In the high-pass

filter circuit, a third order filter is minimised to a single stage op-amp and it obtains an

equivalent result as that of third order with a component count reduction of five. In the low-

pass filter circuit, the fifth order filter circuit minimised to a three-stage op-amp filter and it

obtains an equivalent result in terms of cut-off frequencies as that of a fifth order one with a

component count reduction of five. In the all-pass filter, the seventh order filter is minimised

to a five stage op-amp with a component count reduction of nine. It means that with computer

programme, a lower order op-amp filter can be coded in such a way to realise a higher order

op-amp filter by finding the quality factor of 0.707 with its corresponding frequency as

detailed by the original circuit. In addition, PSO offers the best results regarding frequency

response for the four examples, followed by GA whereas Nelder-Mead gives the worst result.

Next is Chapter 5, which describes GP algorithm developments and how it is tested

with four different benchmark functions.

84

Chapter 5
4

Genetic Programming

5.1 Introduction

In artificial intelligence, GP is an EA-based methodology motivated by biological

evolution to search computer programmes that execute a user-defined task. Fundamentally,

GP is a set of algorithms and a fitness function to compute how well a computer has

implemented a task. GP is a domain-independent, systematic method for getting computers to

resolve problems automatically, beginning from what is required to be done as a high-level

statement. Using inspirations from biological evolution, GP begins from a randomly

generated computer programmes, and gradually refines them through procedures of sexual

recombination and mutation, until solutions are obtained. All these processes are carried out

without the user having to specify the form or know or structure of the solutions in advance.

This chapter demonstrates how GP and GF algorithms are used to develop a

standalone optimisation tool and how the developed algorithm is tested with four different

benchmark functions. The remaining part of this chapter is subdivided as: GP which is

discussed in Section 5.2 and GF which is illustrated in Section 5.3. Specifications of the

objective function for benchmark testing that is presented in Section 5.4 while algorithm

benchmark testing on mathematical functions which is demonstrated in Section 5.5 and the

summary of this chapter is in Section 5.6.

The GP and the GF algorithms discussed in Sections 2.4.2 and 2.4.3 respectively are

used to develop a computer code. The GF, MSCAM, and automatically simulated Netlist is

introduced into existing GP which is a new contribution in this work, it enhances the

development of independent Matlab toolbox. The simulator uses only Matlab compare to

existing GP which combine Matlab and PSpice. The newly developed code is then tested for

its efficiency using four benchmark expressions. A flowchart shown in Figure 5.1

summarises the GP algorithm and the benchmark testing procedure used in this work. A

randomly generated population is calculated to ascertain how well each individually evolving

expression is performing with regard to its individual objective function. If the evolving

4
 The bulk of Chapter 5 has been published in [188]

85

expression satisfies the objective with zero error, the iteration with zero error is taken as

solution else a generation continues. The evolving expression from the generation is extracted

and substituted with specified range of values of X and Y. The same values are being

substituted into an original expressions and a RMS difference is used as an error. The

procedure continues until a zero error is obtained or the objective function is satisfied.

Detailed processes involved are explained in the flowchart shown in Figure 5.1.

Figure 5.1: The GP algorithm for benchmark testing.

5.2 Genetic Programming

Detailed information about GP is discussed in Section 2.4.2. Here the GP analysis is

centred on how the GP algorithm is developed and represented for the benchmark testing.

86

The same approach is applied for all benchmark testing; the same parameters are used except

variation in Length of parameters and length of chromosome that is being determined by the

length of a TS or a function to be tested. For this case study, benchmark testing Expression

5.2 in Section 5.5.1 is used for an illustration. The illustration is based on the following

subheadings presented after summarising the GP algorithm:

The GP algorithm, according to Koza [46], is based on the three steps:

1. Generate a random population composed of the original function and termination

criteria for the problem.

2. Perform the following sub-steps iteratively until the termination criteria are

reached:

a) Each programme in the population is executed such that a fitness measure that

specifies how well the problem is solved is clearly formulated.

b) New population is created by selecting individual(s) with probability based on

fitness and then these operations are applied:

(i) Reproduction: Copy existing individual to the new population.

(ii) Crossover: Two individuals are created for the new population by randomly

recombining chosen parts of two existing individuals.

3. The single best individual in the population produced while the run is taken as the

result.

5.2.1 Initialisation of Parameters

 The following elements are initialised: Length of parameters = 63, population size =

100, maximum number of generation = 500, length of chromosome = Length of parameters

multiply by bit group (63 3 = 189), mutation = 0.10 and crossover = 0.90. These are the

settings that give the best result after several trials. The programme finds the required

solution to equation 5.2 whenever it has zero error. The population is randomly generated

after parameters initialisation of a size equal to length of the chromosome multiply by the

population size.



87

5.2.2 Decoding

 The string is coded into +, ×, -, 3, 4, Y, X and 7. In this case, a chromosome is divided

into a bit group of three, and each is converted to its decimal equivalent. The decimal

equivalent is interpreted as:

 ‘0’ represents plus

 ‘1’ represents multiplication

 ‘2’ represents minus

 ‘3’ represents 3

 ‘4’ represents 4

 ‘5’ represents Y

 ‘6’ represents X

 ‘7’ represents 7

5.2.3 Creation

 A tree is randomly generated using an operands or terminals (the terminals in this case

3, 4, Y, X and 7) and operators (+, × and -) defined in Section 5.2.2 above. Beginning with

many trees of different sizes and shapes is good. A tree is generated applying a grow or a full

method:

 Grow – path lengths in TS vary up to a maximum length.

 Full – all branches in TS must reach its maximum depth.

 Ramp half – and - half method – trees of varying depths from a minimum to a

maximum depth. Half of the tree is initialised with full and the other with grow. The

ramp half - and – half is used.

5.2.4 Mutation

Pick a mutation reference point in one parent and swap its subtree with another

randomly generated tree. In this research, the mutation rate of 0.1 is used.

5.2.5 Crossover

 Pick crossover reference points in both parents and then exchange the subtrees. An

offspring will be varying even if the parents are the same. The crossover rate of 0.9 is used. A

roulette wheel method is used to select two individuals from the present population, and the

88

ten randomly selected subtrees of the parents are swapped to create two offspring.

5.3 Genetic Folding

As discussed earlier in Section 2.4.3, GF is the structural arrangement of genes in

order of linear numbers separated by dots. In this research, the GF is used to show how

elements are structurally linked from beginning to end, so that the expression can be

substituted with respective values of X and Y. The GF representation of GP TS of Figure

5.11 is shown in Table 5.1 (Figure 5.11 is used in this case because it is the desired TS).

Table 5.1: The GF representation for benchmark testing.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ + + × × × - X × X × Y Y 7 ×

2.3 4.5 6.7 8.9 10.11 12.13 14.15 0.8 18.19 0.10 22.23 0.12 0.13 0.14 0.15

18 19 22 23 30 31 36 37 38 39 46 47

× × 3 × X 4 X Y X Y X Y

36.37 38.39 0.22 46.47 0.30 0.31 0.36 0.37 0.38 0.39 0.46 0.47

The GF begins with the series operator in location 1 and ends with element ‘Y’ in position 47.

The 1
st
 plus operator has the 2

nd
 plus operator in location 2 and the 3

rd
 plus operator in

location 3. The plus operator in location 2 has multiplication operators in location 3 and 5.

Also, the plus operator in location 3 has multiplication operator in location 6 and minus

operator in location 7. The multiplication operator in location 4 has multiplication operator

in location 8 and 7 as terminal in location 9 (terminal always end a branch) and so on.

Terminals are defined using their indices location. GF is best understood with the following

points:

1. The arrangement of the chromosome comprises of float string in the gene and the

location of the gene.

2. The gene structure is left child (LC) side separated by dot and right child (RC) side.

3. The dot stand for and.

4. The operator that has two operands is with LC and RC.

89

5. The operator that has one operand is with LC and 0 in the RC.

6. The terminal has 0 in LC and value in the RC.

5.4 Specifications of the Objective Function and Hardware Requirements

Detail of software environment is as: Matlab version: 8.0.0.783 (R2012b), operating

system: Microsoft Windows 7. Others are: RAM: 12 GB, system rating: 64-bit operating

system and processor: Intel (R) core (TM) I7-2600 CPU @ 3.40 GHz. The same system

specification is used in Chapter 6. X is given a range of value from -10 to 10 with increment

of 1 whereas Y is given a range value from -2 to 2 with an increment of 0.2. This information

is used to generate matrices of size 21 by 21 for both an original and an evolving expression.

The matrices are reshaped to size 1 by 441 and the RMS difference between the two matrices

(the original and the evolving expression matrices) give the error. Mathematically:

 Z’ is the reshaped matrix of size 1 by 441

 Z is the reshaped matrix of size 1 by 441

)'(ZZRMSW  (5.1)

where W is the error, Z’ is the original expression, and Z is the GP evolving expression, the

error controls the algorithm toward the required solution. The algorithm produces optimal

solution when the error is zero.

5.5 Algorithm Benchmark Testing on Mathematical Functions

To test for efficiency, validation and reliability of optimisation algorithm are often

performed using a test function or benchmark. Test function is vital to compare, validate and

compare the functioning of optimisation algorithms, specifically newly developed ones [189].

For a new GP algorithm developed, it is important to validate its performance by using

existing set of benchmarks. The basic requirements on a benchmark according to Feldt et al.

[190] are:

 Validity: mistakes that invalidate the expected output should be avoided,

 Comparability: findings should be compared to others researchers findings.

 Reproducibility: experiments and problems should be well documented so that other

researchers can reproduce the same solutions to a given problem.

90

5.5.1 Benchmark Testing Expression 1

743' 2223  XYYXYXZ (5.2)

Both X and Y is given a range of values from -50 to 50 with an interval of 1 and a three-

dimensional plot is represented after each iteration TS representation. The objective function

specification is described in Section 5.4. The GP algorithm evolved the expression with

593.28 errors in 1
st
 iteration and the GP TS is shown in Figure 5.2, its three-dimensional plot

is represented in Figure 5.3 and the plot of errors against generations is shown in Figure 5.4.

Figure 5.2: 1st iteration GP evolved TS for expression in equation 5.2 with 593.28 errors.

Simplification of the above TS gives;



Z  7(4 Y)  (X Y) (4Y)  (Y  X)33(4 4)Y 4(X  X))



Z  28XY 2 12XY  3XY 2 Y  4X 2



Z  31XY 2 12XY Y  4X 2

91

Figure 5.3: Three-dimensional plots for expression in equation 5.2 for 1st iteration with 593.28 errors.

Figure 5.4: 1st iteration plot of errors against generations for expression in equation 5.2.

The GP algorithm also evolved the expression with 83.72 errors in the 20
th

 iteration

and the GP TS is in Figure 5.5, its three-dimensional plot is represented in Figure 5.6 and the

plot of errors against generations is shown in Figure 5.7.

0
20

40
60

80
100

120

0

50

100

150
-4

-2

0

2

4
x 10

6

X-Axis

3D Plot of X, Y and Z

Y-Axis

Z-
A
xi

s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
592

592.5

593

593.5

594

594.5

Generations

Er
ro

rs

Plot of Errors Against Generations

92

Figure 5.5: 20th iteration GP evolved TS for expression in equation 5.2 with 83.72 errors.

Evaluation of the above TS gives;

23 6714))(2()()(YYYXXXYYXYXXZ 

7614 223234  YYXYYXXYZ

Figure 5.6: Three-dimensional plots for expression in equation 5.2 for the 20th iteration with 83.72 errors.

93

Figure 5.7: 20th iteration plot of errors against generations for expression in equation 5.2.

The GP algorithm evolved the expression in the 41
st
 iteration with 3.63 errors and the

GP TS is in Figure 5.8, its three-dimensional plot is represented in Figure 5.9 and the plot of

errors against generations is shown in Figure 5.10.

Figure 5.8: 41st iteration GP evolved TS for expression in equation 5.2 with 3.63 errors.

Its mathematical expressions are of form.



Z  X(X Y)  (X Y)YX(3X)Y(Y 7)74(X Y)



Z  X 3Y 2  3X 2Y Y 2  3Y  4X  7

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

Generations

Er
ro

rs

Plot of Errors Against Generations

94

Figure 5.9: Three-dimensional plots for expression in equation 5.2 for the 41st iteration with 3.63 errors.

Figure 5.10: 41st iteration plot of errors against generations for expression in equation 5.2.

The GP algorithm finally evolved the expression with optimal solution in the 52
nd

iteration with zero errors and the GP TS is in Figure 5.11, its three-dimensional plot that is

the same as that of original expression is represented in Figure 5.12 and the plot of errors

against generations is shown in Figure 5.13.

0
20

40
60

80
100

120

0

50

100

150
-4

-2

0

2

4
x 10

8

X-Axis

3D Plot of X, Y and Z

Y-Axis

Z
-A

xi
s

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

Generations

Er
ro

rs

Plot of Errors Against Generations

95

Figure 5.11: 52nd iteration GP evolved TS for expression in equation 5.2 with zero error.

Critical analysis of the evolved TS of Figure 5.11 gives the expression simplified bellow:



Z  X(X Y)  (X Y) X(3)  (X Y) (Y Y)7 (X  4))



Z  X(X 2Y 2) 3X(XY)Y 2  7  4X



Z  X 3Y 2  3X 2Y Y 2  4X  7

From the investigation of the TS or transforming the TS into equation, we can deduce that the

algorithm is efficient because it has successfully evolved the original equation.

96

Figure 5.12: Three-dimensional plots for expression in equation 5.2 for the 52nd iteration with zero error

and the same as original expression.

Figure 5.13: Plot of errors against generations for expression in equation 5.2.

5.5.2 Benchmark Testing Expression 2

6543' 234  XXXXY (5.3)

0
20

40
60

80
100

120

0

50

100

150
-4

-2

0

2

4
x 10

8

X-Axis

3D Plot of X, Y and Z

Y-Axis

Z
-A

x
is

97

The objective function specification is similar to that formed in Section 5.4. The GP

algorithm evolved the expression with optimal solution in the 65
th

 iteration with zero errors

and the GP TS of Figure 5.14. X is given a range of values from -10 to 10 with interval of 1

and the plot is represented in Figure 5.15, and the plot of errors against generations is shown

in Figure 5.16.

Figure 5.14: 65th iteration GP evolved TS for expression in equation 5.3 with zero error.

Careful analysis of the evolved TS of Figure 5.14 produces the expression simplified bellow:



Y  ((X  X)  (X  X)) ((X  X)  (X  3)) ((X  X)  (51)) ((X 5) (71))



Y  (X 2  X 2) (X 2  (3X)) (X 2  4)5X 6



Y  X 4  3X 3  4X 2 5X 6

From the above examination of the TS or transforming the TS into equation, we can conclude

that the algorithm is efficient because it has successfully evolved the original equation.

98

Figure 5.15: Plot of Y against X for expression in equation 5.3 with zero error.

Figure 5.16: Plot of errors against generations for expression in equation 5.3.

5.5.3 Benchmark Testing Expression 3

12' 24  XXY (5.4)

The objective function specification is similar to that formed in Section 5.4. The GP

algorithm evolved the expression with optimal solution in the 30
th

 iteration with zero errors

and the GP TS of Figure 5.17. X is given a range of values from -10 to 10 with an interval of

1. The plot is represented in Figure 5.18 and the plot of errors against generations is shown in

Figure 5.19.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

2000

4000

6000

8000

10000

12000

14000

X-Axis

Y-
Ax

is

Plot of Y against X

99

Figure 5.17: 30th iteration GP evolved TS for expression in equation 5.4 with zero error.

Critical analysis of the evolved TS of Figure 5.17 gives the expression simplified bellow:



Y 1 (X 2  X 2)1 X 2  (X 2 1)



Y  X 4 2X 2 1

From the investigation of the TS or transforming the TS into equation, we can deduce that the

algorithm is efficient because it has successfully evolved the original equation.

Figure 5.18: Plot of Y against X for expression in equation 5.4 with zero error.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

2000

4000

6000

8000

10000

X-Axis

Y-
Ax

is

Plot of Y against X

100

Figure 5.19: Plot of errors against generations for expression in equation 5.4.

5.5.4 Benchmark Testing Expression 4

422937' 234  XXXXY (5.5)

The objective function specification is similar to that formed in Section 5.4. The GP

algorithm evolved the expression with optimal solution in the 86
th

 iteration with zero errors

and the GP TS of Figure 5.20. X is given a range of values from -10 to 10 with an interval of

1. The plot is represented in Figure 5.21 and the plot of errors against generations is shown in

Figure 5.22.

Figure 5.20: 86th iteration GP evolved TS for expression in equation 5.5 with zero error.

Careful analysis of the evolved TS of Figure 5.20 gives the expression simplified bellow:

101

))7()6(())()8(()7()(222  XXXXXXXXXY

)4267()88(7 22234  XXXXXXXXXY

422937 234  XXXXY

From the examination of the TS or transforming the TS into equation, we can deduce that the

algorithm is efficient because it has successfully evolved the original equation.

Figure 5.21: Plot of Y against X for expression in equation 5.5 with zero error.

Figure 5.22: Plot of errors against generations for expression in equation 5.5.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.5

1

1.5

2
x 10

4

X-Axis

Y-
Ax

is

Plot of Y against X

102

5.6 Summary

This chapter described how the GP algorithm is formulated by explaining the different

units involve: initialisation of parameters, decoding, creation, mutation, crossover and

formulation of objective function. It also illustrated how GF is incorporated into the GP by

showing how the TS are structurally linked from the first element to the last. The developed

GP algorithm is tested with four different benchmark functions. The algorithm is efficient

because it successfully evolved the original benchmark equations.

The next chapter to be discussed is Chapter 6; it describes how the developed GP

algorithm is modified and applied to evolve analogue filter circuits.

103

Chapter 6

Application of Evolutionary Computing in Analogue

Circuit Evolution (Evolvable Hardware)

6.1 Introduction

This chapter is an extension of Chapter 5. The developed and tested algorithm in

Chapter 5 is modified and applied to analogue circuit evolution. The remaining part of this

chapter is presented as follow: evolvable hardware is discussed in Section 6.2, methodology

is illustrated in Section 6.3, results and discussions are presented in Section 6.4 and summary

of this chapter is in Section 6.5.

As mention earlier, an analogue circuit design is important because of the fact that the

world physical reading is analogue in nature. Although the volume of analogue circuit

designs is far less compared to digital circuit designs, the majority of digital circuit designs

require an analogue circuit for interfacing the outside world. Instead of using two platforms

(Matlab and PSpice) for analogue circuit simulation, only Matlab is proposed in this research.

This helps to reduce elapsed time needed to transfer simulation between the software

packages. The traditional techniques of filter design require tedious mathematical

computation.

6.2 Evolvable Hardware

Evolvable Hardware (EH) is a research field in EA used in electronic circuit

simulation with no manual engineering design. It is a combination of autonomous system,

fault tolerance, artificial intelligence and reconfigurable hardware. Some of EH’s applications

in electronic circuit simulations are discussed by different researchers [191-198]. Doboli et al.

[199] used very high speed integrated circuit hardware description language-analogue mixed

signal (VHDL-AMS) for creating high-level analogue and mixed signal. In the work, many

constraints are introduced to the VHDL-AMS instructions and case studies are illustrated. An

evolvable hardware simulation which automatically designs analogue circuits using parallel

GA was developed by Lohn et al. [31]. The algorithm evolves component values, circuit

topology and circuit size.

104

Vural et al. [200] proposed three EAs: harmony search (HS), DE and ABCA to

optimise CMOS amplifier area. Results are presented to demonstrate that the techniques meet

specifications, accommodates required functionalities and the design objective.

Other applications of GP as EH in addition to those discussed in Section 2.4.2

include: The use of current – flow analysis and GP for the invention of CMOS amplifier is

presented in [201]; the work illustrates how current-flow evaluation corrects and screens

circuits utilising topology-independent design rules. The approach is aimed to show how

connections are linked between transistors. Also, a tree representation method in circuit

design is illustrated by Senn et al. [202]. The authors combined GP and two-port theory for

analogue circuit design. The presentation of circuit as the two-port network enhanced the

encoding and evaluating of the circuit’s structure. The approach is also applied to active

(transistor) and passive linear circuits. Moreover, GP use for the automatic design of

analogue electronic circuits by Koza et al. [203] that has transistor as the active filter is

presented as part of examples. It uses single technique by applying GP for modelling both

circuit topology and sizing. Also, Peng et al. [204] used GP and bond graph (GPBG) in

electronic circuit analysis with active components that is an extension of their previous

research on passive component design. The analysis covers three models of a transistor, and

one model of an op amp are implemented and analysed as two-port BG components. It also

uses GP to create BG defining parameters and component topology in the design of active

filter.

Many studies on the use of an EA to evolve passive filters exist, but little has been

done or more work is needed in the field of active filters, specifically on op-amp as a part of

active filter components.

 6.3 Methodology

The detailed steps involved in modification or development of GP algorithm for

analogue circuit evolution are illustrated in the flowchart of Figure 6.1. Randomly generated

population is computed to know individually evolved circuit’s performance. If the evolving

circuit satisfies the objective function with less than zero without further reduction in error or

zero error, the circuit is referring to as the desired circuit otherwise generation continues. The

procedures regenerate until less than zero without further reduction in error or zero error is

got. Further processes involved are demonstrated in the flowchart in Figure 6.1 below.

105

Figure 6.1: The GP algorithm.

6.3.1 Genetic Programming

The aim of GP is to code a computer programme, initialise all the parameters

required, and it has the ability to solve a stated problem. GP can find a solution to problems

that can be compared and measured regarding fitness. As stated earlier, GP originated from

the genetic algorithm. GP differ from GA, in that: GP is represented by variable length

structures, containing whatever elements are needed to solve the problem, whereas GA is

represented by a fixed length of numerical strings. The TS is great because it can produce

solutions of complexity and arbitrary size, as opposed to GA with a fixed-length. GP

generates population randomly and each individual is evaluated to determine fitness. An

individual with the highest fitness is chosen to perform crossover, reproduction or mutation,

106

with other individuals to produce other individuals for next generation.

GP algorithm in combination to GF, MSCAM and automatically generated symbolic

Netlist are applied to evolve passive and active filter circuits. Also, the algorithm is tested

with SSA circuit of a common-collector, FET and transistor common-emitter. The first circuit

is used for illustration of detailed technique involved in the approach as show below:

6.3.1.1 Initialisation

 The GP algorithm is initialised with the following parameters: crossover = 0.90,

mutation = 0.10, length of parameters = 8191, length of chromosome = 24573 and population

size (PS) = 100. The randomly created population of matrix dimension = length of

chromosome by PS. These initial values give the best solutions.

6.3.1.2 Coding of Circuit’s Components

 The voltage source is fixed but added before the Netlist formation to reduce the

length of the chromosome. The chromosome is divided into bit group of three, and each is

converted to its equivalent decimal translated as:

 ‘0’ for series part (+)

 ‘1’ for parallel part (|)

 ‘2’ for capacitor (X)

 ‘3’ represents inductor (Y)

 ‘>3’ for operational amplifier (Z)

6.3.1.3 Tree Creation

Operators (| and +) and terminals (L, C and op-amp) defined in Section 6.3.1.2. are

used to create tree randomly which may be grow or full technique:

6.3.1.4 Mutation

Mutation point is selected in one individual’s subtree and exchanges its subtree with a

randomly created subtree. In this research, the mutation rate of 0.1 is used.

107

6.3.1.5 Crossover

Ten Crossover locations in both parents are selected and the subtrees are

interchanged. It creates offspring which are always different from their parents. The

crossover rate used is 0.9.

6.3.2 Genetic Folding

In GF genes are structure in order of linear numbers separated by dots. GF is applied

in this work to show how the chromosomes are structurally linked from beginning to end to

enhance evolving circuit extraction to generate the Netlist. Figure 6.2 shows an active fourth

order low-pass filter GP representation, whereas its GF representation is demonstrated in

Table 6.1.

Figure 6.2: Tree representations of active fourth order low-pass filter.

The TS expression is read from top to bottom and from left to right, where + stands for series

and | stands for parallel:

+V1+R1|C1+Op1+R2|C2+Op2+R3|C3+Op3+R4|C4+Op4 (6.1)

The expression in equation (6.1) is interpreted as follow: the 1
st
 series operator is two

operands operator that have values (V1, series). The V1 is a terminal. The 2
nd

 series operator is

108

two operands operators that have values (R1, parallel). The R1 is a terminal. The 1
st
 parallel

operator is two operand operators that have values (C1, series). The C1 is a terminal. The 3
rd

series operator is a two operands operator that has values (OP1, series) and so on. The

expression also is represented using GF in Table 6.1. Each element is given numbers in order

as in the 1
st
 row, the circuit’s elements are in the 2

nd
 row and the elements are folded over

their complementary location genes in the 3
rd

 row.

Table 6.1: The GF representation for circuit evolution.

1 2 3 6 7 14 15 30 31 62 63 126 127 254

+ R1 | C1 + OP1 + R2 | C2 + OP2 + R3

2.3 0.2 6.7 0.6 14.15 0.14 30.31 0.30 62.63 0.62 126.127 0.126 254.255 0.254

255 510 511 1022 1023 2046 2047 4094 4095 8190

| C3 + OP3 + R4 | C4 + OP4

510.511 0.510 1022.1023 0.1022 2046.2047 0.2046 4094.4095 0.4094 8190.0 0.8190

V1 and the 1
st
 series (+) are fixed to shorten the length of chromosome and are not included

Table 6.1. The GF begins with the series operator in location 1 and ends with element ‘OP4’

in position 8190. The 1
st
 series operator has the R1 terminal in location 2 (and terminal

always end a branch) and parallel operator in location 3. The parallel operator in location 3

has terminals C1 in location 6 and series operator in location 7. The series operator in location

7 has terminals OP1 in location 14 and series operator in location 15 and so on. The terminals

are defined using their indices location. GF is best understood with the following points:

7. The arrangement of the chromosome comprises of float string in the gene and the

location of the gene.

8. The gene structure is left child (LC) side separated by dot and right child (RC) side.

9. The dot stand for and.

10. The operator that has two operands is with LC and RC.

11. The operator that has one operand is with LC and 0 in the RC.

12. The terminal has 0 in LC and value in the RC.

109

6.3.3 Creation of Netlist

To evaluation how well evolving circuit has performed in the population with regard

to the desired circuit, evolving circuits are extracted and converted into a symbolic Netlist.

Variable are represented in Matlab programme as single variable as described in Section

6.3.1.2 and later encoded again to individual element types. The same component type is

encoded with unique subscripts to distinguish them if there are more than one element type in

the same circuit. The encoding is made symbolically. Using resistor as one component type

for illustration, all resistors are labelled Y. Supposing there are four resistors (4Y), there are

being substituted by [‘a-d’] so that if an element is chosen and it is ‘a’, it is labelled R1, if

another element is chosen and it is ‘b’, it is labelled R2, and so on. The evolving circuits in the

form of TS are described thus: an operand terminates a branch (op-amp, inductor, resistor and

capacitor) whereas an operator (parallel or series part) continues the TS. The TS is interpreted

from top to bottom and from left to right. The branches that proceed after the operand are

swapped with ‘0’. Likewise, the branches that proceed after the ‘0’ are swapped with ‘0’, so

that all the branches that proceed after the operands are swapped with ‘0’ up to the maximum

length of TS. All the ‘0’ elements are then removed to leave the remainder evolving circuit.

The stack separation evaluation technique is used to rearrange the GP evolved

elements as it is connected. The series sets are numbered from 0 to the highest number,

whereas the parallel sets are all numbered 0 since all are grounded apart from the special

cases where a component is connected between nodes. The components labels are

distinguished by subscript from 1 to the last element, for example, 4 resistors in a circuit are

labelled as R1 R2 R3 R4. The Netlist formation is thus: if an element is picked; it is between a

1
st
 node number and a 2

nd
 node number. It is vital to note that, the series components are

always connected to the next node number (in this case) that is not zero. For instance, the

extract from the above evolving circuit is as follow:

+V+R|C+Z+R|C+Z+R|C+Z+R|C+Z (6.2)

In equation (6.2), Z stands for op-amp and replacing the values of parallel and series part

into equation (6.2) form equation (6.3) as:

0V1R0C2Z3R0C4Z5R0C6Z7R0C8Z9 (6.3)

110

The symbolic Netlist is formed thus: It starts with the element name, followed by

node1, node2 and followed by its component value. If a circuit has op-amp as component(s),

Netlist starts with it and number it from first to the last before other components follow. The

formation continues thus: op-amp name, followed by its output node number, inverting node

number and non-inverting node number

 OAmp1 3 2 3

 OAmp2 5 4 5

 OAmp3 7 6 7

 OAmp4 9 8 9

 V 0 1 component value

 R1 1 2 component value

 R2 3 4 component value

 R3 5 6 component value

 R4 7 8 component value

 C1 0 2 component value

 C2 0 4 component value

 C3 0 6 component value

 C4 0 8 component value

6.3.4 Symbolic Circuit Analysis in Matlab

Gielen and Sansen [140] demonstrated how symbolic simulation is very useful when

creating a large part of analytical prototype automatically. In this section, the MSCAM

discussed in detail in Chapter 3 uses Netlist automatically generated from simulation

described in Section 6.3.3 to transform it to symbolic matrices. The symbolic matrices are

then substituted with their real values (using the eval command in Matlab) to acquire

frequency response. It is then compared with the specified frequency response set in the

objective function. The process continues till the set frequency is acquired.

6.3.5 Objective Function Specifications for the Active Fourth-Order Low-Pass Filter

Voltage gain in other words, frequency response is utilised to analyse fourth-order active

filter circuit.

111

a. Frequency range; 1 Hz to 1 MHz is set for the circuit and a cut-off frequency of 70

kHz is specified. Impedance of each operand node is evaluated using 3 items:

frequency, component value and component type.

b. Each operand node brings impedance upward. The operator node computes the

corresponding parallel or series (arithmetic) to acquire its impedance after getting

impedance from its branches and the process proceeds till the final circuit

impedance is computed.

c. The current flowing in the tree is got by division of the source voltage over the

circuit impedance. Starting from source, the current flowing in the series node is the

same as current flowing in from the source. Whereas in the parallel node, the

current flowing in is divided inversely proportional to the branches’ impedance and

proceeds until the node terminates.

d. The node voltage is the product of impedance and the current, and the voltage gain

is obtained by division of the voltage across the set output node by source voltage.

The procedure is demonstrated mathematically below.

The symbolic matrices A and B (equation (6.4) and equation (6.5) respectively),

automatically generated from MSCAM simulation is used to formulate fitness thus:

]0;0;0;0;0;0;0);[(111RVA S  (6.4)



































8887

7776

676665

5554

454443

3332

232221

11

000000

000000

00000

000000

00000

000000

00000

0000000

bb

bb

bbb

bb

bbb

bb

bbb

b

B (6.5)

where 111111 RCjb  

vAb 21

)1(1 222 RAb v 

112

223 1 Rb 

232 1 Rb 

2233 RCjb  

vAb 43

)1(1 344 RAb v 

345 1 Rb 

354 1 Rb 

3355 RCjb  

vAb 65

)1(1 466 RAb v 

467 1 Rb 

476 1 Rb 

4477 RCjb  

vAb 87

188  vAb

ABC  1 (6.6)

where C holds an unknown voltage drop across all the nodes to be determined, and Cn is the

voltage drops across the last node (n) being calculated to get its frequency response. The eval

command in Matlab is used to substitute or replace the values of variables in the

113

automatically generated symbolic matrices (matrices A and B). The command (logspace) in

Matlab is used to span the frequency range over 50 intervals for both evolving and targeted

circuits’ frequency response. The difference between the RMS of GP evolving circuit

frequency response and targeted frequency response is referred to as error. The relationship is

presented in equation (6.7):

)(2211 ffrmsW  (6.7)

where W stands for error, f11 is the targeted frequency response and f22 is the GP evolving

circuit frequency response.

 The use of PSO to minimise filter circuit discussed in Section 4.4 is then applied to

individual circuit. Part of the circuit is critically observed and certain number of components

are removed which is the mostly repeated pattern towards the end of circuit. The remaining

components are given range of values so that PSO can select the value within the limit.

6.4 Results and Discussion

The results are explained under three main headings: active filters, transistor amplifier and

passive filter circuits

6.4.1 Active Filters Circuits

Five different active filter circuits are used to illustrate the algorithm’s efficiency. The

algorithm successfully evolves all the 5 circuits with zero or less than zero error. Results

presented are the same as the objective function frequency response. The component values

are specified over a range of values while PSO selects value within a specified range.

6.4.1.1 Example 1: Fourth-Order Active Low-Pass Filter Circuit

In the 1
st
 iteration, the GP evolved circuit TS is shown in Figure 6.3 whereas its

equivalent circuit is shown in Figure 6.4. The MSCAM frequency response of the evolved

circuit is shown in black colour; whereas the GP evolved PSpice circuit simulation is

indicated in red colour as shown in Figure 6.5. The MSCAM simulation is with cut-off

frequency at 160 kHz while that of the original circuit specifications cut-off frequency

(PSpice simulation) is 67.9 kHz with error of 0.1736 and a gain of 1. It can be deduced from

the frequency response curve that the desired circuit is not achieved because there is variation

114

between the two curves. The algorithm is constraint to initially with at least the first element

type to enable formation of Netlist.

Figure 6.3: 1st iteration tree representations of the active fourth order-low pass filter.

Figure 6.4: 1
st
 iteration GP evolved circuit for the active fourth order low-pass filter.

Figure 6.5: 1st iteration frequency response for GP evolved circuit (black), and the PSpice simulation of

original circuit (red) for the active fourth order low-pass filter.

R1

1k
R2

1k
C1
1n

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

U3

OPAMP

+

-

OUT

43

6

V1
1Vac

0Vdc

1

5

2

0

R4 1k

C4 1n

Vout

115

For the 7
th

 iteration, the GP evolved circuit TS, which is shown in Figure 6.6 whereas

its equivalent circuit is shown in Figure 6.7. The MSCAM frequency response of the evolved

circuit is shown in black colour; whereas the optimised GP evolved PSpice circuit simulation

is shown in red colour as indicated in Figure 6.8. The MSCAM simulation is with the cut-off

frequency at 82 kHz while that of the original circuit specifications cut-off frequency (PSpice

simulation) is 67.9 kHz with error of 0.0342 and a gain of 1. Also, it can be inferred from the

frequency response curve that the desired circuit is not realised because there is variation

between the two curves.

Figure 6.6: 7th iteration tree representations of the active fourth order low-pass filter.

Figure 6.7: 7th iteration GP evolved circuit for the active fourth order low-pass filter.

R1

1k
R2

1k
C1

1n

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

43

V1
1Vac

0Vdc

1

5

2

0

C4
1n

R3

1k

U3

OPAMP

+

-

OUT

6

7

C5
1n

R4

1k

U4

OPAMP

+

-

OUT

8

9 Vout

116

Figure 6.8: 7th iteration frequency response for GP evolved circuit (black), and the PSpice simulation of

original circuit (red) for the active fourth order low-pass filter.

For the 12
th

 iteration, the GP evolved circuit TS is shown in Figure 6.9 whereas its

equivalent circuit is shown in Figure 6.10. The MSCAM frequency response of the evolved

circuit is shown in black colour whereas the optimised GP evolved PSpice circuit simulation

is shown in red colour indicated in Figure 6.11. The MSCAM simulation is with the cut-off

frequency at 81.13 kHz while that of the original circuit specifications cut-off frequency

(PSpice simulation) is 67.9 kHz with error of 9.7298E-7 and a gain of 1. Likewise, it can be

concluded from the frequency response curve that the desired circuit is not yet realised even

though the response is getting closer but there is variation between the two curves.

Figure 6.9: 12th iteration tree representations of the active fourth order-low pass filter.

117

Figure 6.10: 12th iteration GP evolved circuit for the active fourth order low-pass filter.

Figure 6.11: 12th iteration frequency response for GP evolved circuit (black), and the PSpice simulation

of original circuit (red) for the active fourth order low pass filter.

The GP evolved the desired circuit which is the same as that of original circuit in

terms of frequency response curve and components arrangements. Its TS is shown in Figure

6.2 that is used for the illustration of the method, whereas its equivalent circuit is shown in

Figure 6.12. The minimised circuit is shown in Figure 6.13. It takes thirty-six minutes to

evolve the circuit after eighteen iterations. The MSCAM frequency response of the evolved

circuit is shown in black colour whereas the optimised GP evolved PSpice circuit simulation

is shown in red colour as indicated in Figure 6.14. The MSCAM, original circuit

specifications and optimised circuit simulation with PSO application are with cut-off

frequencies at 67.9 kHz while that of optimised circuit simulation without PSO application

has cut-off frequency at 81.15 kHz with error of 8.6921E-10 and a gain of 1. The total

number of component count reduction is 3. Here it can be inferred from the frequency

response curve that the desired circuit is realised because there is no variation between the

two curves.

R1

1k
R2

1k
C1
1n

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

3

V1
1Vac

0Vdc

1 2

0

C4
1n

5

4

R3

1k

U3

OPAMP

+

-

OUTC5
1n

7

6

R4 1k

U4

OPAMP

+

-

OUT
9

C6

1n

Vout

8

118

Figure 6.12: 18th iteration GP evolved circuit for the active fourth order low-pass filter [187].

Figure 6.13: GP evolved/reduced/PSO component adjusted circuit for the active 4th-order low-pass filter.

Figure 6.14: 18th iteration Frequency response for GP evolved circuit (Red), PSpice simulation of GP

evolved circuit (black), PSpice simulation of reduced GP evolved circuit without PSO (blue) and with

PSO (Green) for the active 4th-order filter circuit.

6.4.1.2 Example 2: Fifth-Order Active Low-Pass Filter Circuit with Feedback

The GP evolved desired circuit TS is shown in Figure 6.15, whereas its equivalent

circuit is shown in Figure 6.16. The optimised GP evolved circuit is shown Figure 6.17. It

takes twenty minutes to evolve the circuit and ten iterations. The MSCAM frequency

response of the evolved circuit is shown in blue colour, the optimised GP evolved PSpice

circuit simulation is indicated in black colour and the optimised circuit simulation with PSO

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

U3

OPAMP

+

-

OUT

U4

OPAMP

+

-

OUT

R111

1k

R2

1k

R3

1k

R4

1kC1

1n C2

1n

C3

1n C4

1n

V1
1Vac

0Vdc

0

4

1

2

6

9

7

5

3

8

Vout

R1

0.9k
R2

0.9k
R3

0.9k

C1

1.35n
C2

1.35n
C3

1.35n

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

U3

OPAMP

+

-

OUT

3

6

7

V1
1Vac

0Vdc

1

Vout

5

2

4

0

119

is shown in red colour as indicated in Figure 6.18. The GP algorithm successfully evolved the

circuit with feedback loop (that is repeated in regular pattern) just with little modifications in

the code. It is easy to modify algorithm of existing circuit for another compared to human

method that the whole process has to start over. The MSCAM, original circuit specifications

and optimised circuit simulation with PSO application are with cut-off frequencies at 47.1

kHz while that of optimised circuit simulation without PSO application has cut-off frequency

at 32.04 kHz with error of 5.1093E-7 and a gain of 1. The total number of component count

reduction is 5.

Figure 6.15: (a) GP evolved TS for the active low-pass filter with feedback and (b) U representation.

Figure 6.16: GP evolved circuit for the active low-pass filter with feedback [187].

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

U3

OPAMP

+

-

OUT

R111

3.16k
R2

1.8k

R3

4.42k
R4

1.47k

R5

4.53k

8

4

C1

1n

C2

1.5n

C3
820p

C4

4.7n

C5
330p

V1
1Vac

0Vdc

5

21

3

6

9 Vout

7

0

120

Figure 6.17: GP evolved/reduced/PSO component adjusted circuit for the active low-pass filter with

feedback.

Figure 6.18: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved circuit

(black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved circuit with PSO

(Green) for the active low-pass filter with feedback.

6.4.1.3 Example 3: Fifth-Order Active High-Pass Filter Circuit with Feedback

The GP evolved desired circuit is shown in Figure 6.19, whereas its equivalent circuit

is shown in Figure 6.20. The optimised GP evolved circuit is shown in Figure 6.21. It takes

fourteen minutes to evolve the circuit and seven iterations. The MSCAM frequency response

of the evolved circuit is shown in blue colour, the optimised GP evolved PSpice circuit

simulation is indicated in black colour and the optimised circuit simulation with PSO is

shown in red colour as indicated in Figure 6.22. The MSCAM, original circuit specifications

and optimised circuit simulation with PSO application are with cut-off frequencies at 1134

Hz while that of optimised circuit simulation without PSO application has cut-off frequency

at 1004 Hz with error of 9.6085E-8 and a gain of 1. The total number of component count

reduction is 5.

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

R111

2.66k
R2

1.4k

R3

4k

4

C1

0.045n

C2

2.5n

C3
830p

V1
1Vac

0Vdc

5

21

3

Vout6

0

121

Figure 6.19: (a) GP evolved TS for the active high-pass filter with feedback and (b) S representation.

Figure 6.20: GP evolved circuit for the active high-pass filter with feedback.

Figure 6.21: GP evolved/reduced/PSO component adjusted circuit for the active high-pass filter with

feedback.

V1
1Vac

0Vdc

R1

2.10k

1

0

C1

100n
C2

100n

C3

100n

R2

3.16k

R3
1.65k

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

2

3 4

6

5

C4

100n

C5

100n

R4

3.16k

R5
1.65k

U3

OPAMP

+

-

OUT

8

Vout9

7

V1
1Vac

0Vdc

R1

1.8k

1

0

C111

93n
C2

93n

C3

93n

R3

2.9k

R2
1.3k

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

2

3

Vout

4

6

5

122

Figure 6.22: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved circuit

(black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved circuit with PSO

(Green) for the active high-pass filter with feedback.

6.4.1.4 Example 4: Active Band-Pass Filter Circuit

The GP evolved desired circuit TS is shown in Figure 6.23 whereas its equivalent

circuit is shown in Figure 6.24. The optimised GP evolved circuit is shown in Figure 6.25. It

takes twenty-six minutes to evolve the circuit after thirteen iterations. The MSCAM

frequency response of the evolved circuit is shown in blue colour, the optimised GP evolved

PSpice circuit simulation is indicated in black colour and the optimised circuit simulation

with PSO is shown in red colour as indicated in Figure 6.26. The MSCAM, original circuit

specifications and optimised circuit simulation with PSO application are with the lower and

upper cut-off frequencies at 31.42 Hz and 47.86 kHz respectively while that of optimised

circuit simulation without PSO application has lower and upper cut-off frequencies at 24.73

Hz and 64.57 kHz respectively with error of 3.5614E-7 and a gain of 1. The total number of

component count reduction is 6.

123

Figure 6.23: GP evolved TS for the active band pass filter (U and S as Figure 6.15 and Figure 6.19).

Figure 6.24: GP evolved circuit for the active band-pass filter.

Figure 6.25: GP evolved/reduced/PSO component adjusted circuit for the active band-pass filter.

V1
1Vac

0Vdc

1

0

C3

5u

C4

5u

R4

2k

R3
2k

U2

OPAMP

+

-

OUT

6

7

5

U1

OPAMP

+

-

OUT

R111

2k

R2

2k

2

C1 1n

C2
820p

3

4

C5

5u

R5

2k

8
U3

OPAMP

+

-

OUT
9

C6

1n

R6

2k

10
U4

OPAMP

+

-

OUT
Vout11

V1
1Vac

0Vdc

1

0

C3

3.8u

C4

3.8u

R4

2k

R3
1.9k

U2

OPAMP

+

-

OUT

6

7

5

U1

OPAMP

+

-

OUT

R111

1.9k

R2

1.9k

2

C1 1.2n

C2

1150p

3

4

Vout

124

Figure 6.26: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved circuit

(black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved circuit with PSO

(Green) for the active band-pass filter.

6.4.1.5 Example 5: Active Band-Stop Filter Circuit

The GP evolved desired circuit TS is shown in Figure 6.27, whereas its equivalent

circuit is shown in Figure 6.28. The optimised GP evolved circuit is shown in Figure 6.29. It

takes twenty-two minutes to evolve the circuit after eleven iterations. The MSCAM

frequency response of the evolved circuit is shown in blue colour, the optimised GP evolved

PSpice circuit simulation is indicated in black colour and the optimised circuit simulation

with PSO is shown in red colour as indicated in Figure 6.30. This complex circuit is evolved

within short time because the algorithm did not see it to be complex, what is needed is the

right specifications regarding objective function and parameters settings. The MSCAM,

original circuit specifications and optimised circuit simulation with PSO application are with

lower and upper cut-off frequencies at 45.7 kHz and 453.4 kHz respectively while that of

optimised circuit simulation without PSO application has lower and upper cut-off frequencies

at 55 kHz and 562 kHz respectively with error of 8.1899E-8 and a gain of 1. The total

component count reduction of 9.

125

Figure 6.27: (a) GP evolved TS for the band-stop filter (b) W representation and (c) T representation.

Figure 6.28: GP evolved circuit for the active band-stop filter.

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

U3

OPAMP

+

-

OUT

R111

1k

R2

1k

R4

1k

R5

1k

R3

1k

R7

1k

C1

1n

C2

1n
R6

1k

7

43 5

6

21

0

V1
1Vac

0Vdc

U4

OPAMP

+

-

OUT

U5

OPAMP

+

-

OUT

R9

1k

R10

1k

R8

1k

R12

1k

C3

1n

C4

1n
R11

1k

12

9

11

10

U6

OPAMP

+

-

OUT

U7

OPAMP

+

-

OUT

R14

1k

R15

1k

R13

1k

R17

1k

C5

1n

C6

1n 16

Vout18

R16

1k

14 15

17

13

8

126

Figure 6.29: GP evolved/reduced/PSO component adjusted circuit for the active band-stop filter.

Figure 6.30: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved circuit

(black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved circuit with PSO

(Green) for the active band-stop filter.

6.4.2 Passive Filter Circuits

Four different examples; two low-pass, one high-pass and one band-pass passive filter

circuits are used to demonstrate the efficiency of the algorithm. The algorithm has proved to

be efficient as it successfully evolves the four circuits with zero error. The results are the

same as the set frequency response specified in the objective function.

U1

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

U3

OPAMP

+

-

OUT

R111

1.03k

R2

1.03k

R4

1.03k

R5

1.03k

R3

0.5k

R7

0.5k

C1 0.55n

C2

0.55n
R6

0.5k

7

43 5

6

21

0

V1
1Vac

0Vdc

U4

OPAMP

+

-

OUT

U5

OPAMP

+

-

OUT

R9

1.03k

R10

1.03k

R8

1.43k

R12

1.43k

C3

1.7n

C4

1.7n

13

R11

1.43k

12

9

11

10

Vout

8

127

6.4.2.1 Example 1: 10
th

 Order Low-Pass Passive Filter Circuit

In example 1, the expected or desired circuit GP representation is shown in Figure

6.31 whereas the equivalent circuit representation is shown in Figure 6.32. It takes fifty-six

minutes to evolve the circuit after twenty eight iterations. The MSCAM frequency response

of the evolved circuit simulation is shown with the blue colour (solid) whereas the equivalent

circuit PSpice simulation is shown with black colour (dash) shown in Figure 6.33. The

desired circuit specifications are achieved as regard design and frequency response curve.

The MSCAM and original circuit specifications are with cut-off frequencies at 1.07 MHz

with zero error and a gain of 1.

Figure 6.31: Example 1 evolved circuit tree representations.

128

Figure 6.32: Example 1 evolved circuit.

Figure 6.33: Example 1 frequency response curve for MSCAM (blue or solid) and PSpice (black or

dashed).

6.4.2.2 Example 2: Low-Pass Passive Filter Circuit

In example 2, the expected or desired circuit GP representation is shown in Figure

6.34 whereas the equivalent circuit representation is shown in Figure 6.35. It takes three

hours and twenty-four minutes to evolve the circuit after one hundred and two iterations. The

MSCAM frequency response of the evolved circuit simulation is shown in blue colour

(solid), whereas the equivalent circuit PSpice simulation is shown in black colour (dash) as in

Figure 6.36. The MSCAM and original circuit specifications are with cut-off frequencies at

1.489 kHz with zero error and a gain of 1.

R111

50
RL

50C1

1.3n

C2

4.79n

C3

5.8n C4

5.8n

C5

5.8n

L1

8.05uH

L2

12.8uH

L3

13.8uH

L4

13.8uH

L5

10.9uH

V1
2Vac

0Vdc

1

0

2 43
Vout

6

0V

5 7

129

Figure 6.34: Example 2 evolved circuit tree representations.

Figure 6.35: Example 2 evolved circuit

R111

1k

RL

1k

C1

90n

C2

210n

C3

210n

C4

210n

C5

210n

C6

210n

C7

90n

L111

10uH

L2

178000uH

L3

210000uH

L4

190000uH

L5

190000uH

L6

190000uH

L7

178000uH

V1
2Vac

0Vdc

1

0

2 53 4
Vout

7 8

0V

6 9

130

Figure 6.36: Example 2 frequency response for MSCAM (blue or solid) and PSpice (black or dashed).

6.4.2.3 Example 3: High-Pass Passive Filter Circuit

In example 3, the expected or desired circuit GP representation is shown in Figure

6.37, whereas the equivalent circuit representation is shown in Figure 6.38. The optimised

circuit is shown in Figure 6.39. It takes thirty-eight minutes to evolve the circuit after one

hundred and two iterations. The MSCAM frequency response of the evolved circuit

simulation is shown in red colour (dash), whereas the equivalent circuit PSpice simulation is

shown in blue colour (dash) as in Figure 6.40. The desired circuit specifications are achieved

regarding design wise and frequency response curve. The MSCAM, original circuit

specifications, optimised circuit simulation with PSO application, optimised circuit

simulation without PSO application have cut-off frequencies at 8.35 MHz with zero error and

a gain of 0.0625. The total number of component count reduction is 2.

131

Figure 6.37: High-pass evolved circuit tree representations.

Figure 6.38: GP evolved circuit for the passive high pass filter.

Figure 6.39: GP evolved/reduced circuit for the passive high pass filter.

R111

750

R2

50

C111

291.9p

C2

274.1p

C3

431p

C4

2.019n

L1

632n

L2

813.7n

L3

1.733u

V1
1Vac

0Vdc

0

1 5432
Vout

6

R111

750

R2

50

C111

289p

C3

400p

C4

2n

L1

680n

L3

1.8u

V1
1Vac

0Vdc

0

1 532
Vout

6

132

Figure 6.40: High-pass frequency response for MSCAM (blue or solid) and PSpice (black or dashed).

6.4.2.4 Example 4: Band-Pass Passive Filter Circuit

In example 4, the expected or desired circuit GP representation is shown in Figure

6.41 whereas the equivalent circuit representation is shown in Figure 6.42. It takes two hours

to evolve the circuit after one hundred and two iterations. The MSCAM frequency response

of the evolved circuit simulation is shown with red colour (dash), whereas the equivalent

circuit PSpice simulation is shown in blue colour (dash) in Figure 6.43. The same algorithm

has been used for all these circuits evolution with little modifications in the cut-off frequency,

length of chromosome, bit groups, which are values to play with, and it eliminates

mathematical computations involving human methods. The GP evolved MSCAM simulation

and original circuit specifications are with the lower and upper cut-off frequencies at 8.242

kHz and 48.59 kHz respectively with zero error and a gain of 0.0625.

133

Figure 6.41: Band-pass evolved circuit tree representations.

Figure 6.42: Band-pass evolved circuit tree representations.

R111

750

R2

50

L2

350.3u

L1

511.3u

L3

511.3u

C2

180.5n

C1

123.7n

C3

123.7n

V1
1Vac

0Vdc

1 3
Vout

42

0

L4

239.2u

C4

264.3n

5

L5

1.048mC5

60.35n

6

L6

51.53u

7
C6

1.227u

8

134

Figure 6.43: Band-pass frequency response for MSCAM (red or solid) and PSpice (black or dashed).

6.4.3 Transistor Amplifier Circuit

The algorithm is also used to evolve SSA of transistor circuits and it is very efficient

to evolve them because the frequency responses of all the three evolving GP circuits of the

sampled transistors were the same as that of set frequency as illustrated below.

6.4.3.1 Example 1: Common-Collector Transistor Amplifier Circuit

The common collector transistor amplifier circuit is shown in Figure 6.44, GP evolved

desired SSA circuit TS is shown in Figure 6.45 whereas its equivalent circuit is shown in

Figure 6.46. It takes twenty-four minutes to evolve the circuit and twelve iterations. The

MSCAM frequency response of the evolved circuit is shown in black colour and the PSpice

simulation of the SSA circuit is indicated in black colour as shown in Figure 6.47. The GP

evolved SSA of common collector circuit MSCAM simulation and original circuit

specifications have the same lower and upper cut-off frequencies at 46.5 Hz and 95.35 MHz

respectively with 2% error and a gain of 0.95.

135

Figure 6.44: Common-collector transistor amplifier circuit.

Figure 6.45: GP evolved TS for common-collector transistor amplifier circuit.

Rs

100

R1

51.2k

R2
9.6k Re

400

RL

3k

C1

1u

C2

1uV1
1Vac

0Vdc

V2

10Vdc

0

Qbreakn

Q1

CL

3p

Vout

136

Figure 6.46: GP evolved circuit for the common-collector transistor amplifier circuit.

Figure 6.47: Frequency response curve of the SSA simulation (black) and GP evolved circuit (red) for the

common-collector transistor amplifier.

6.4.3.2 Example 2: Common-Emitter Transistor Amplifier Circuit

The common-emitter transistor amplifier circuit is shown in Figure 6.48, GP evolved

the desired SSA circuit TS which is shown in Figure 6.49 and its equivalent circuit is shown

in Figure 6.50. It takes twenty-two minutes to evolve the circuit and eleven iterations. The

MSCAM frequency response of the evolved circuit is shown in black colour and the PSpice

simulation of the SSA circuit is indicated in the black colour as shown in Figure 6.51. The

GP evolved SSA of common-emitter circuit MSCAM simulation and original circuit

specifications have the same lower and upper cut-off frequencies at 32.5 Hz and 26.1 MHz

respectively with zero error and a gain of 75.29.

V1
1Vac

0Vdc

R111

100

R2

9.6k

R1

51.2k

Rpi

1.51k

Ro

58.3k

RL

3k

C111

1u

Cpi

10p

Cmu

2p

1

C2

1u

2 54

Re

400

3

CL

3p

Vout

0

I1

69.6e-3*0..713

1Aac

137

Figure 6.48: Common-emitter transistor amplifier circuit.

Figure 6.49: GP evolved TS for common-emitter transistor amplifier circuit.

Rs

100

R1

51.2k

R2
9.6k

Rc

2k

Re

400

RL

3k

C1

1u

C2

1u

Ce

50u

V1
1Vac

0Vdc

V2

10Vdc

0

Qbreakn

Q1

CL

3p

Vout

138

Figure 6.50: GP evolved circuit for the common-emitter transistor amplifier circuit.

Figure 6.51: Frequency response curve of the SSA simulation (black) and GP evolved circuit (red) for the

common-emitter transistor amplifier.

6.4.3.3 Example 3: FET Transistor Amplifier Circuit

The FET transistor amplifier circuit is shown in Figure 6.52, GP evolved the desired

SSA circuit TS which is shown in Figure 6.53 and its equivalent circuit is shown in Figure

6.54. It takes twenty-six minutes to evolve the circuit and thirteen iterations. The MSCAM

frequency response of the evolved circuit is shown in black colour and the PSpice simulation

of the SSA circuit is indicated in the black colour as shown in Figure 6.55. The GP evolved

SSA of FET circuit MSCAM simulation, and original circuit specifications have the same

lower and upper cut-off frequencies at 30.9 Hz and 25.7 MHz respectively with zero error

and a gain of 2.68.

V1
1Vac

0Vdc

R111

100

R2

9.6k

R1

51.2k

Rpi

1.51k

Ro

58.3k

RL

3k

C111

1u

Cpi

10p

Cmu

2p

C2

1u

1 2 54

Rc

2k

3

CL

3p

Vout

0

I1

69.6e-3*0..713

1Aac

139

Figure 6.52: Common-source FET amplifier circuit.

Figure 6.53: GP evolved TS for the common-source FET amplifier circuit.

R1

50k

Rg1
2.2Meg

Rg2
1Meg Rs

1k

RL

10k

C1

1u

C2

1u

V1
1Vac

0Vdc

VDD1

10Vdc

0

Vout

CL

3p

M1
Mbreakn

Rd

2.2k

Cs

50u

140

Figure 6.54: GP evolved circuit for the common-source FET amplifier circuit.

Figure 6.55: Frequency response curve of the SSA simulation (black), and the GP evolved circuit (red) for

the common-source FET amplifier.

6.5 Summary

This work introduced the use of GF, MSCAM, automatically simulated Netlist and

GP for its first time use for active filter and passive filter circuits’ evolution. The developed

and tested algorithm in Chapter 5 is modified with the introduction of MSCAM and how

automatically simulated Netlist and being used for analogue circuits evolution. The same

algorithm has been used for all these circuits evolution with little modifications in the cut-off

frequency, length of chromosome, bit groups which are values to play with and it eliminates

mathematical computations involving human methods. The research has provided an

alternative approach of applying GP for the evolution of passive and active filter circuits or a

Matlab toolbox for analogue circuit evolution. The elapsed time used while transferring

simulation between software packages is reduced. Twelve different (eight examples of active

V1
1Vac

0Vdc

R111

50K

Rg1

1M

Rg2

2.2M

Rd

2.2k

Rds

90.086k RL

3k

C111

1u

Cpi

10p

Cgs

1p

1

C2

1u

42 53

0

Cds

1p

I4

0.863e-3*2.486

1Aac

CL

3p

Vout

141

filter and four examples of passive filter) circuits are used to demonstrate the efficiency of the

approach and algorithm successfully evolved all the circuits.

Chapter 7 is next which is centred on the conclusions and future work.

142

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In Chapter 1, a brief rational for analogue circuit optimisation, the motivation, aim

and objective, thesis contribution to knowledge and the list of publication made during this

work are presented. Chapter 2 presented definition and general background of optimisation

and optimisation algorithm. The review of various optimisation methods used in this research

is presented. It also described in detail the history of these developed techniques, principle of

inspiration and different application areas. Chapter 2 is concluded by stating the advantages

and disadvantages of each method and summary on how each technique can be used to

optimise analogue circuit is stated

In Chapter 3, MSCAM is introduced. The description of how the developed algorithm

using modified nodal analysis in combination with the newly introduced SSA is illustrated on

four different circuits. Results are presented to demonstrate the efficiency of the developed

algorithm.

In Chapter 4, four different swarm optimisation and GA algorithms for analogue

circuit optimisation are presented. The first result demonstrates how an equivalent analogue

circuit can be found by applying the optimisation techniques. The examples further show that

component count reduction is achieved in analogue circuit same as it has been accomplished

in digital circuits. Other three results show how the approach is used to minimise op-amp

filter circuits. In addition, PSO offers the best results regarding frequency response for the

four examples.

In Chapter 5, different units involve in the formulation GP algorithm is described. It

also illustrates how GF is incorporated into the GP by showing how the TS are structurally

linked from first element to the last. The developed GP algorithm is tested with four different

benchmark functions. The algorithm is efficient because it successfully evolved the

benchmark equations.

143

In Chapter 6, this unit introduces the use of GF, MSCAM automatically simulated

Netlist and GP for its first time use for active filter and passive filter circuits’ evolution. The

developed and tested algorithm in Chapter 5 is modified with the introduction of MSCAM

and how automatically simulated Netlist are being used for analogue circuits evolution.

Twelve different results (five examples of active filter, four examples of passive filter circuits

and three examples of transistor amplifier circuits) are used to demonstrate the efficiency of

the approach and algorithm successfully evolved all the circuits. In this final Chapter 7,

conclusions and future research are presented.

The three main contributions to knowledge in this research are:

 This research introduced the concept of component count reduction in passive and

active filter circuits which reduce the size, power consumption and increase circuit

reliability. It also surveyed five artificial intelligence methods, and have identified

PSO algorithm to be the best method among them in terms of power consumption

reduction, speed of convergence and use it to optimise analogue circuit

demonstrated in Chapter 2 and 4.

 This work presented MSCAM that uses Netlist from PSpice or simulation to

generate matrices. These matrices are used to calculate circuit parameters or used

for optimisation illustrated in Chapter 3. The MSCAM enhances the matrices

dimension of more than 30 by 30 so that it can be used to simulate complex

circuits. This is important especially when operational amplifier (op-amp) is

involved as circuit component compared existing SCAM that cannot handle

matrices dimension more than eight by eight. The SCAM formed matrices by

adding additional rows and columns due to how the algorithm was developed

which takes more computer resources and limit its performance.

 Also, this work has developed an automated algorithm that combines GF,

automatically generated Netlist from simulation, MSCAM and GP for the

evolution of active and passive filter circuits demonstrated in Chapter 5 and 6. The

GF, MSCAM, and automatically simulated Netlist is introduced into existing GP

which is a new contribution in this work, it enhances the development of

independent Matlab toolbox. The simulator uses only Matlab compare to existing

GP which combine Matlab and PSpice. The newly developed code is then tested

for its efficiency using four benchmark expressions.

144

7.2 Future Work

Although research demonstrated several contributions to Matlab toolbox and circuit

optimisation problems, there are still some areas this work can be improved further.

 The developed GP algorithm can be improved further to be able to handle branching

or intermediate nodes. In other words, how to improve on the computer code to

evolve a circuit system that the node numbering is non- linear. This will enable the

algorithm to find variety of circuit to a given circuit specification.

 Also to enhance the computer program to evolve a circuit with multi-feedback loop

that do not repeat regular pattern.

 To incorporate the PSO algorithm into the GP algorithm for automatic circuit

optimisation rather than applying PSO algorithm after circuit evolution. This will

reduce the elapse time used to evolve the truncated part during optimisation before

using the PSO algorithm.

145

References

[1] http://www.newelectronics.co.uk/electronics-news/fibre-optic-speeds-outside-of-

fibre/115165/#sthash.Xs0zThsf.dpuf. Feb. 27, 2016.

[2]) http://www.newelectronics.co.uk/electronics-news/printed-sensing-technology-for-metal-

tooling-applications/115151/#sthash.PuaqZ8AF.dpuf. Feb.27, 2016

[3] Y. Statter and T. Chen, "A novel high-throughput method for table look-up based analog design

automation," Integration, the VLSI Journal, vol. 52, pp. 168-181, 2016.

[4] O. J. Ushie and M. Abbod, " " Intelligent Optimization Methods for Analogue Electronic Circuits:

GA and PSO Case Study” ," International Conference on Machine Learning, Electrical and

Mechanical Engineering (ICMLEME'2014), pp. 193-194-199, on Jan. 8-9, 2014 Dubai

(UAE), 2014.

[5] O. J. Ushie, M. Abbod and E. C. Ashigwuike, " Regular paper Naturally Based Optimisation

Algorithm for Analogue Electronic Circuits: GA, PSO, ABC, BFO, and Firefly a Case Study

" J. Automation & System Engineering, vol. 9 -3, pp. 26-60, 2015.

[6] X. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications. John Wiley

& Sons, 2010.

[7] S. M. Kaplan, Wiley Electrical and Electronics Engineering Dictionary. IEEE Press, 2004.

[8] M. Ginsberg, Essentials of Artificial Intelligence. Newnes, 2012.

[9] H. Henderson, Artificial Intelligence: Mirrors for the Mind. Infobase Publishing, 2007.

[10] T. H. Cormen, Introduction to Algorithms. MIT press, 2009.

[11] X. Yang, Nature-Inspired Optimization Algorithms. Elsevier, 2014.

[12] John Henry Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence. MIT press, 1992.

[13] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT press, 1992.

[14] M. Mezher and M. F. Abbod, "A new genetic folding algorithm for regression problems," 14th

International Conference in Computer Modelling and Simulation (UKSim), pp. 46-51, 2012,

[15] D. Fogel, "Artificial intelligence through simulated evolution," 2009.

[16] I. Rechenberg, "Evolution Strategy: Optimization of Technical systems by means of biological

evolution," Fromman-Holzboog, Stuttgart, vol. 104, 1973.

[17] C. Ferreira and U. Gepsoft, What is Gene Expression Programming, 2008.

[18] A. F. Sheta, "Analogue filter design using differential evolution," International Journal of Bio-

Inspired Computation, vol. 2, pp. 233-241, 2010.

http://www.newelectronics.co.uk/electronics-news/fibre-optic-speeds-outside-of-fibre/115165/#sthash.Xs0zThsf.dpuf
http://www.newelectronics.co.uk/electronics-news/fibre-optic-speeds-outside-of-fibre/115165/#sthash.Xs0zThsf.dpuf
http://www.newelectronics.co.uk/electronics-news/printed-sensing-technology-for-metal-tooling-applications/115151/#sthash.PuaqZ8AF.dpuf
http://www.newelectronics.co.uk/electronics-news/printed-sensing-technology-for-metal-tooling-applications/115151/#sthash.PuaqZ8AF.dpuf

146

[19] K. S. Reddy and S. K. Sahoo, "An approach for FIR filter coefficient optimization using

differential evolution algorithm," AEU-International Journal of Electronics and

Communications, vol. 69, pp. 101-108, 2015.

[20] S. Sivanandam and S. Deepa, "Introduction to genetic algorithms. 2008," .

[21] J. R. Koza, F. H. Bennett III and O. Stiffelman, "Genetic programming as a darwinian invention

machine," in Genetic Programming, Springer, pp. 93-108, 1999.

[22] M. O'Dare and T. Arslan, "Generating test patterns for VLSI circuits using a genetic algorithm,"

Electron. Lett., vol. 30, pp. 778-779, 1994.

[23] S. J. Louis, "Genetic learning for combinational logic design," Soft Computing, vol. 9, pp. 38-43,

2005.

[24] M. H. Zarifia, N. K. Ghalehjogh and M. Baradaran-nia, "A new evolutionary approach for neural

spike detection based on genetic algorithm," Expert Syst. Appl., vol. 42, pp. 462-467, 2015.

[25] M. Bechouat, Y. Soufi, M. Sedraoui and S. Kahla, "Energy storage based on maximum power

point tracking in photovoltaic systems: A comparison between GAs and PSO approaches," Int

J Hydrogen Energy, vol. 40, pp. 13737-13748, 2015.

[26] D. H. Horrocks and Y. M. Khalifa, "Genetic algorithm design of electronic analogue circuits

including parasitic effects," in Proceedings of the First Online Workshop on Soft Computing

(WSC1), pp. 274-278, 1996.

[27] C. A. Coello, A. D. Christiansen and A. H. Aguirre, "Automated design of combinational logic

circuits using genetic algorithms," in Proceedings of the International Conference on

Artificial Neural Nets and Genetic Algorithms, pp. 335-338, 1997.

[28] J. F. Miller, D. Job and V. K. Vassilev, "Principles in the evolutionary design of digital circuits—

Part I," Genetic Programming and Evolvable Machines, vol. 1, pp. 7-35, 2000.

[29] A. Aggarwal, T. K. Rawat, M. Kumar and D. Upadhyay, "Optimal design of FIR high pass filter

based on L 1 error approximation using real coded genetic algorithm," Engineering Science

and Technology, an International Journal, 2015.

[30] A. Das and R. Vemuri, "An automated passive analog circuit synthesis framework using genetic

algorithms," IEEE Computer Society Annual Symposium in VLSI, ISVLSI'07, pp. 145-152,

2007.

[31] J. D. Lohn, S. P. Colombano, G. L. Haith and D. Stassinopoulos, "A parallel genetic algorithm

for automated electronic circuit design," in Proc. of the Computational Aerosciences

Workshop, NASA Ames Research Center, 2000, .

[32] M. Wojcikowski, J. Glinianowicz and M. Bialko, "System for optimisation of electronic circuits

using genetic algorithm," Proceedings of the Third IEEE International Conference in

Electronics, Circuits, and Systems, 1996. ICECS'96, pp. 247-250, 1996.

[33] M. Taherzadeh-Sani, R. Lotfi, H. Zare-Hoseini and O. Shoaei, "Design optimization of analog

integrated circuits using simulation-based genetic algorithm," SCS 2003. International

Symposium in Signals, Circuits and Systems, pp. 73-76, 2003.

147

[34] A. Yang, Y. Shan and L. T. Bui, Success in Evolutionary Computation. Springer, 2008.

[35] R. J. Al-Azawi and M. Abdul-whab, "Design Active Filter Based on Genetic Algorithm," IBN

Al-Haitham J. for Pure & Appl. SCI, vol.21 (1), 2008.

[36] D. H. Horrocks and M. C. Spittle, "Component value selection for active filters using genetic

algorithms," in Proc. IEE/IEEE Workshop on Natural Algorithms in Signal Processing,

Chelmsford, UK, pp. 3. 1993,

[37] T. Kaya and M. C. Ince, "The Design of Analog Active Filter with Different Component Value

using Genetic Algorithm," International Journal of Computer Applications, vol. 45, pp. 43-

47, 2012.

[38] R. S. Zebulum, M. A. Pacheco and M. Vellasco, "Artificial evolution of active filters: A case

study," Proceedings of the First NASA/DoD Workshop in Evolvable Hardware, pp. 66-75,

1999.

[39] M. Barros, J. Guilherme and N. Horta, "Analog circuits optimization based on evolutionary

computation techniques," Integration, the VLSI Journal, vol. 43, pp. 136-155, 1, 2010.

[40] B. Liu, Y. Wang, Z. Yu, L. Liu, M. Li, Z. Wang, J. Lu and F. V. Fernández, "Analog circuit

optimization system based on hybrid evolutionary algorithms," INTEGRATION, the VLSI

Journal, vol. 42, pp. 137-148, 2009.

[41] L. Zhang and Z. Liu, "Directly performance-constrained template-based layout retargeting and

optimization for analog integrated circuits," Integration, the VLSI Journal, vol. 44, pp. 1-11,

1, 2011.

[42] S. Wang, Y. Hwang, S. Yan and J. Chen, "A new CMOS wideband low noise amplifier with gain

control," Integration, the VLSI Journal, vol. 44, pp. 136-143, 2011.

[43] T. Golonek and J. Rutkowski, "Genetic-algorithm-based method for optimal analog test point

selection," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, pp. 117-

121, 2007.

[44] Ö S. Sönmez and G. Dündar, "Simulation-based analog and RF circuit synthesis using a modified

evolutionary strategies algorithm," Integration, the VLSI Journal, vol. 44, pp. 144-154, 3,

2011.

[45] J. R. Koza, "Human-competitive results produced by genetic programming," Genetic

Programming and Evolvable Machines, vol. 11, pp. 251-284, 2010.

[46] J. R. Koza, "Genetic programming as a means for programming computers by natural selection,"

Statistics and Computing, vol. 4, pp. 87-112, 1994.

[47] J. R. Koza, S. H. Al-Sakran and L. W. Jones, "Cross-domain features of runs of genetic

programming used to evolve designs for analog circuits, optical lens systems, controllers,

antennas, mechanical systems, and quantum computing circuits," Proceedings. 2005

NASA/DoD Conference in Evolvable Hardware, pp. 205-212, 2005.

[48] J. F. Kennedy, J. Kennedy and R. C. Eberhart, Swarm Intelligence. Morgan Kaufmann, 2001.

[49] M. Walker, "Introduction to genetic programming," Tech.Np: University of Montana, 2001.

148

[50] K. Rodríguez and R. Mendoza, "A Matlab Genetic Programming Approach to Topographic Mesh

Surface Generation," 2011.

[51] S. Silva and J. Almeida, "GPLAB-a genetic programming toolbox for MATLAB," in

Proceedings of the Nordic MATLAB Conference, pp. 273-278, 2003.

[52] P. Balasubramaniam and A. V. A. Kumar, "Solution of matrix Riccati differential equation for

nonlinear singular system using genetic programming," Genetic Programming and Evolvable

Machines, vol. 10, pp. 71-89, 2009.

[53] W. Weimer, S. Forrest, C. Le Goues and T. Nguyen, "Automatic program repair with

evolutionary computation," Commun ACM, vol. 53, pp. 109-116, 2010.

[54] S. Forrest, T. Nguyen, W. Weimer and C. Le Goues, "A genetic programming approach to

automated software repair," in Proceedings of the 11th Annual Conference on Genetic and

Evolutionary Computation, pp. 947-954, 2009.

[55] M. D. Schmidt and H. Lipson, "Solving iterated functions using genetic programming,"

Computation Conference: in Proceedings of the 11th Annual Conference Companion on

Genetic and Evolutionary Late Breaking Papers, pp. 2149-2154, 2009.

[56] Y. Lin and M. Tsai, "The Integration of a Genetic Programming-Based Feature Optimizer With

Fisher Criterion and Pattern Recognition Techniques to Non-Intrusive Load Monitoring for

Load Identification," International Journal of Green Energy, vol. 12, pp. 279-290, 2015.

[57] H. Hou, S. Chang and Y. Su, "Economical passive filter synthesis using genetic programming

based on tree representation." in IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND

SYSTEMS, pp. 3003, 2005.

[58] S. Chang and Y. Su, "Automated passive filter synthesis using a novel tree representation and

genetic programming," Evolutionary Computation, IEEE Transactions On, vol. 10, pp. 93-

100, 2006.

[59] D. W. Mount and D. W. Mount, Bioinformatics: Sequence and Genome Analysis. Cold spring

harbor laboratory press New York, 2001.

[60] I. C. Trelea, "The particle swarm optimization algorithm: convergence analysis and parameter

selection," Information Processing Letters, vol. 85, pp. 317-325, 2003.

[61] L. Zhou, Y. Shi, Y. Li and W. Zhang, "Parameter selection, analysis and evaluation of an

improved particle swarm optimizer with leadership," Artif. Intell. Rev., vol. 34, pp. 343-367,

2010.

[62] S. Das, A. Abraham and A. Konar, "Particle swarm optimization and differential evolution

algorithms: Technical analysis, applications and hybridization perspectives," in Advances of

Computational Intelligence in Industrial Systems, Springer, pp. 1-38, 2008.

[63] J. O. Ushie, J. A. Obu and I. P. Etim, "Optimizing digital combinational circuit using particle

swarm optimization technique," Lat. Am. J. Phys. Educ., vol. Vol. 6, pp. 72, 2012.

[64] P. W. Moore and G. K. Venayagamoorthy, "Evolving digital circuits using hybrid particle swarm

optimization and differential evolution," Int. J. Neural Syst., vol. 16, pp. 163-177, 2006.

149

[65] C. A. Coello Coello, E. H. Luna and A. H. Aguirre, "A comparative study of encodings to design

combinational logic circuits using particle swarm optimization," Conference in Evolvable

Hardware, 2004. Proceedings. 2004 NASA/DoD, pp. 71-78, 2004.

[66] E. H. Luna, C. Coello Coello and A. H. Aguirre, "On the use of a population-based particle

swarm optimizer to design combinational logic circuits," in Evolvable Hardware, 2004.

Proceedings. 2004 NASA/DoD Conference On, pp. 183-190, 2004.

[67] C. A. C. Coello, E. H. Luna and A. H. Aguirre, "Use of particle swarm optimization to design

combinational logic circuits," in Evolvable Systems: From Biology to Hardware, Springer, pp.

398-409, 2003.

[68] V. G. Gudise and G. K. Venayagamoorthy, "Evolving digital circuits using particle swarm,"

Proceedings of the International Joint Conference in Neural Networks, pp. 468-472, 2003.

[69] R. Yadav and M. Gupta, "New improved fractional order integrators using PSO optimisation,"

International Journal of Electronics, vol. 102, pp. 490-499, 2015.

[70] Y. Zhang, S. Wang and G. Ji, "A Comprehensive Survey on Particle Swarm Optimization

Algorithm and Its Applications," Mathematical Problems in Engineering, vol. 501, pp.

931256, 2015.

[71] M. Kotti, M. Fakhfakh and M. H. Fino, "On the dynamic rounding-off in analogue and RF

optimal circuit sizing," International Journal of Electronics, vol. 101, pp. 452-468, 2014.

[72] J. Zhang, Y. Shi and Z. Zhan, "Power electronic circuits design: A particle swarm optimization

approach," in Simulated Evolution and Learning, Springer, pp. 605-614, 2008.

[73] M. Fakhfakh, Y. Cooren, A. Sallem, M. Loulou and P. Siarry, "Analog circuit design

optimization through the particle swarm optimization technique," Analog Integr. Cir. Signal

Proc., vol. 63, pp. 71-82, 2010.

[74] M. Fakhfakh, Y. Cooren, M. Loulou and P. Siarry, "A Particle Swarm Optimization technique

used for the improvement of analogue circuit performances," Particle Swarm Optimization,

pp. 169-182, 2009.

[75] S. Ulker, "Design of Low Noise Microwave Amplifiers Using Particle Swarm Optimization,"

International Journal of Artificial Intelligence & Applications, vol. 3, 2012.

[76] S. Ulker, "Broadband Microwave Amplifier Design Using Particle swarm optimization," Journal

of Computers, vol. 11, pp. 2272-2276, 2011.

[77] P. P. Kumar and K. Duraiswamy, "An Optimized Device Sizing of Analog Circuits using Particle

Swarm Optimization," Journal of Computer Science, vol. 8, pp. 930, 2012.

[78] B. P. De, R. Kar, D. Mandal and S. Ghoshal, "Optimal analog active filter design using

craziness‐based particle swarm optimization algorithm," International Journal of Numerical

Modelling: Electronic Networks, Devices and Fields, 2014.

[79] N. M. Laskar, P. Paul, S. Nath and K. Baishnab, "Investigating the switching performance of an

inverter design using the Human Behavior based PSO," History, vol. 43, pp. 53-59, 2015.

150

[80] G. Karimi, H. Akbarpour and A. Sadeghzadeh, "Multi Objective Particle Swarm Optimization

based Mixed Size Module Placement in VLSI Circuit Design," Appl.Math, vol. 9, pp. 1485-

1492, 2015.

[81] S. Manjula and D. Selvathi, "Optimal Design of Low Power CMOS Power Amplifier Using

Particle Swarm Optimization Technique," Wireless Personal Communications, vol. 82, pp.

2275-2289, 2015.

[82] S. P. Mohanty, E. Kougianos and V. P. Yanambaka, "Ultra-fast variability-aware optimization of

mixed-signal designs using bootstrapped kriging," 16th International Symposium in Quality

Electronic Design (ISQED), pp. 239-242, 2015.

[83] R. A. Vural and T. Yildirim, "Component value selection for analog active filter using particle

swarm optimization," International Conference in Computer and Automation Engineering

(ICCAE), pp. 25-28, the 2nd 2010,

[84] R. A. Vural, T. Yildirim, T. Kadioglu and A. Basargan, "Performance evaluation of evolutionary

algorithms for optimal filter design," Evolutionary Computation, IEEE Transactions On, vol.

16, pp. 135-147, 2012.

[85] Q. Kang, M. Zhou, J. An and Q. Wu, "Swarm intelligence approaches to optimal power flow

problem with distributed generator failures in power networks," Automation Science and

Engineering, IEEE Transactions On, vol. 10, pp. 343-353, 2013.

[86] X. Liang, W. Li, Y. Zhang and M. Zhou, "An adaptive particle swarm optimization method

based on clustering," Soft Computing, pp. 1-18, 2014.

[87] C. Blum and X. Li, Swarm Intelligence in Optimization. Springer, 2008.

[88] A. H. Gandomi, G. J. Yun, X. Yang and S. Talatahari, "Chaos-enhanced accelerated particle

swarm optimization," Communications in Nonlinear Science and Numerical Simulation, vol.

18, pp. 327-340, 2013.

[89] X. Yang, Nature-Inspired Metaheuristic Algorithms. Luniver press, 2010.

[90] I. Fister, X. Yang and J. Brest, "A comprehensive review of firefly algorithms," Swarm and

Evolutionary Computation, vol. 13, pp. 34-46, 2013.

[91] B. Amiri, L. Hossain, J. W. Crawford and R. T. Wigand, "Community detection in complex

networks: Multi–objective enhanced firefly algorithm," Knowledge-Based Syst., vol. 46, pp.

1-11, 2013.

[92] X. Yang, "Multiobjective firefly algorithm for continuous optimization," Engineering with

Computers, vol. 29, pp. 175-184, 2013.

[93] M. K. Marichelvam, T. Prabaharan and X. S. Yang, "A discrete firefly algorithm for the multi-

objective hybrid flowshop scheduling problems," Evolutionary Computation, IEEE

Transactions On, vol. 18, pp. 301-305, 2014.

[94] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh and R. Nagpal, "Firefly-inspired sensor network

synchronicity with realistic radio effects," in Proceedings of the 3rd International Conference

on Embedded Networked Sensor Systems, pp. 142-153, 2005.

151

[95] X. Yang, "Firefly algorithms for multimodal optimization," in Stochastic Algorithms:

Foundations and Applications, Springer, pp. 169-178, 2009.

[96] S. Łukasik and S. Żak, "Firefly algorithm for continuous constrained optimization tasks," in

Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent

Systems, Springer, pp. 97-106, 2009.

[97] M. Horng, "Vector quantization using the firefly algorithm for image compression," Expert Syst.

Appl., vol. 39, pp. 1078-1091, 2012.

[98] A. Gandomi, X. Yang, S. Talatahari and A. Alavi, "Firefly algorithm with chaos,"

Communications in Nonlinear Science and Numerical Simulation, vol. 18, pp. 89-98, 2013.

[99] A. Kazem, E. Sharifi, F. K. Hussain, M. Saberi and O. K. Hussain, "Support vector regression

with chaos-based firefly algorithm for stock market price forecasting," Applied Soft

Computing, vol. 13, pp. 947-958, 2013.

[100] P. R. Srivatsava, B. Mallikarjun and X. Yang, "Optimal test sequence generation using firefly

algorithm," Swarm and Evolutionary Computation, vol. 8, pp. 44-53, 2013.

[101] Y. Zhang and L. Wu, "A novel method for rigid image registration based on firefly algorithm,"

International Journal of Research and Reviews in Soft and Intelligent Computing (IJRRSIC),

vol. 2, 2012.

[102] M. A. Zaman and A. Matin, "Nonuniformly spaced linear antenna array design using firefly

algorithm," International Journal of Microwave Science and Technology, vol. 2012, 2012.

[103] X. Yang, S. S. S. Hosseini and A. H. Gandomi, "Firefly algorithm for solving non-convex

economic dispatch problems with valve loading effect," Applied Soft Computing, vol. 12, pp.

1180-1186, 2012.

[104] R. Imanirad, X. Yang and J. S. Yeomans, "Modelling-to-generate-alternatives via the firefly

algorithm," Journal of Applied Operational Research, vol. 5, pp. 14-21, 2013.

[105] S. Gokhale and V. Kale, "An application of a tent map initiated Chaotic Firefly algorithm for

optimal overcurrent relay coordination," International Journal of Electrical Power & Energy

Systems, vol. 78, pp. 336-342, 2016.

[106] X. Yang, "Engineering optimizations via nature-inspired virtual bee algorithms," in Artificial

Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, Springer, pp.

317-323, 2005.

[107] D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, 2005.

[108] A. Afshar, O. B. Haddad, M. A. Mariño and B. Adams, "Honey-bee mating optimization

(HBMO) algorithm for optimal reservoir operation," Journal of the Franklin Institute, vol.

344, pp. 452-462, 2007.

[109] D. Karaboga and B. Basturk, "On the performance of artificial bee colony (ABC) algorithm,"

Applied Soft Computing, vol. 8, pp. 687-697, 2008.

[110] D. Karaboga, B. Gorkemli, C. Ozturk and N. Karaboga, "A comprehensive survey: artificial bee

colony (ABC) algorithm and applications," Artif. Intell. Rev., pp. 1-37, 2012.

152

[111] A. Banharnsakun, T. Achalakul and B. Sirinaovakul, "The best-so-far selection in artificial bee

colony algorithm," Applied Soft Computing, vol. 11, pp. 2888-2901, 2011.

[112] K. Ziarati, R. Akbari and V. Zeighami, "On the performance of bee algorithms for resource-

constrained project scheduling problem," Applied Soft Computing, vol. 11, pp. 3720-3733,

2011.

[113] Q. Pan, M. Fatih Tasgetiren, P. N. Suganthan and T. J. Chua, "A discrete artificial bee colony

algorithm for the lot-streaming flow shop scheduling problem," Inf. Sci., vol. 181, pp. 2455-

2468, 2011.

[114] C. S. Chong, M. Y. H. Low, A. I. Sivakumar and K. L. Gay, "A bee colony optimization

algorithm to job shop scheduling," in Simulation Conference, 2006. WSC 06. Proceedings of

the Winter, pp. 1954-1961, 2006.

[115] S. Chavan and T. S. Khot, "Efficient and Reliable Routing Algorithm to Enhance Connectivity

in Disaster Scenario: ABC Algorithm," International Journal of Science and Research, vol. 4

issue 5, 2015.

[116] W. Hong, "Electric load forecasting by seasonal recurrent SVR (support vector regression) with

chaotic artificial bee colony algorithm," Energy, vol. 36, pp. 5568-5578, 2011.

[117] N. Karaboga, "A new design method based on artificial bee colony algorithm for digital IIR

filters," Journal of the Franklin Institute, vol. 346, pp. 328-348, 2009.

[118] O. Garitselov, S. P. Mohanty, E. Kougianos and P. Patra, "Bee colony inspired metamodeling

based fast optimization of a nano-CMOS PLL," International Symposium in Electronic

System Design (ISED), pp. 6-11, 2011.

[119] V. Manoj and E. Elias, "Artificial bee colony algorithm for the design of multiplier-less

nonuniform filter bank transmultiplexer," Inf. Sci., vol. 192, pp. 193-203, 2012.

[120] S. Agrawal and O. Sahu, "Artificial bee colony algorithm to design two-channel quadrature

mirror filter banks," Swarm and Evolutionary Computation, vol. 21, pp. 24-31, 2015.

[121] S. Kockanat and N. Karaboga, "A novel 2D-ABC adaptive filter algorithm: A comparative

study," Digital Signal Processing, vol. 40, pp. 140-153, 2015.

[122] Y. Delican, R. Vural and T. Yildirim, "Artificial bee colony optimization based cmos inverter

design considering propagation delays," in Symbolic and Numerical Methods, Modeling and

Applications to Circuit Design (SM2ACD), International Workshop On, 2010, pp. 1-5, 2010.

[123] K. M. Passino, "Biomimicry of bacterial foraging for distributed optimization and control,"

Control Systems, IEEE, vol. 22, pp. 52-67, 2002.

[124] B. Mangaraj, I. Misra and S. Sanyal, "Application of bacteria foraging algorithm for the design

optimization of multi‐objective Yagi‐Uda array," International Journal of RF and Microwave

Computer‐Aided Engineering, vol. 21, pp. 25-35, 2011.

[125] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert and S. S. Sastry, "Distributed control

applications within sensor networks," Proc IEEE, vol. 91, pp. 1235-1246, 2003.

153

[126] Y. Zhang, L. Wu and S. Wang, "Bacterial foraging optimization based neural network for short-

term load forecasting," Journal of Computational Information Systems, vol. 6, pp. 2099-2105,

2010.

[127] D. H. Kim and J. H. Cho, "Intelligent control of AVR system using GA-BF," in Knowledge-

Based Intelligent Information and Engineering Systems, pp. 854-859, 2005.

[128] D. H. Kim, A. Abraham and J. H. Cho, "A hybrid genetic algorithm and bacterial foraging

approach for global optimization," Inf. Sci., vol. 177, pp. 3918-3937, 2007.

[129] M. Tripathy and S. Mishra, "Bacteria foraging-based solution to optimize both real power loss

and voltage stability limit," Power Systems, IEEE Transactions On, vol. 22, pp. 240-248,

2007.

[130] M. Tripathy, S. Mishra, L. Lai and Q. Zhang, "Transmission loss reduction based on FACTS

and bacteria foraging algorithm," in Parallel Problem Solving from Nature-PPSN , Springer,

pp. 222-231, 2006.

[131] S. Mishra and C. Bhende, "Bacterial foraging technique-based optimized active power filter for

load compensation," Power Delivery, IEEE Transactions On, vol. 22, pp. 457-465, 2007.

[132] S. Mishra, M. Tripathy and J. Nanda, "Multi-machine power system stabilizer design by rule

based bacteria foraging," Electr. Power Syst. Res., vol. 77, pp. 1595-1607, 2007.

[133] E. Ali and S. Abd-Elazim, "Coordinated design of PSSs and TCSC via bacterial swarm

optimization algorithm in a multimachine power system," International Journal of Electrical

Power & Energy Systems, vol. 36, pp. 84-92, 2012.

[134] D. Sumina, N. Bulić and I. Erceg, "Three-dimensional power system stabilizer," Electr. Power

Syst. Res., vol. 80, pp. 886-892, 2010.

[135] B. Sumanbabu, S. Mishra, B. Panigrahi and G. K. Venayagamoorthy, "Robust tuning of modern

power system stabilizers using bacterial foraging algorithm," IEEE Congress in Evolutionary

Computation, CEC 2007. pp. 2317-2324, 2007.

[136] S. Subramanian and S. Padma, "Bacterial foraging algorithm based parameter estimation of

three winding transformer," Energy and Power Engineering, vol. 3, pp. 135, 2011.

[137] H. Chen, Y. Zhu and K. Hu, "Multi-colony bacteria foraging optimization with cell-to-cell

communication for RFID network planning," Applied Soft Computing, vol. 10, pp. 539-547,

2010.

[138] T. Datta, I. S. Misra, B. B. Mangaraj and S. Imtiaj, "Improved adaptive bacteria foraging

algorithm in optimization of antenna array for faster convergence," Progress in

Electromagnetics Research C, vol. 1, pp. 143-157, 2008.

[139] O. J. Ushie, M. Abbod and E. Ashigwuike, "Matlab symbolic circuit analysis and simulation

tool ming PSpice netlist for circuits optimization," 2015.

[140] G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of Analog Integrated

Circuits. Springer Science & Business Media, 2012.

154

[141] G. G. Gielen, H. C. Walscharts and W. Sansen, "ISAAC: A symbolic simulator for analog

integrated circuits," IEEE Journal of Solid-State Circuits, vol. 24, pp. 1587-1597, 1989.

[142] H. Walscharts, G. Gielen and W. Sansen, "Symbolic simulation of analog circuits in s-and z-

domain," in Circuits and Systems, IEEE International Symposium On, pp. 814-817, 1989.

[143] G. Gielen, K. Swings and W. Sansen, "An intelligent design system for analogue integrated

circuits," in Proceedings of the Conference on European Design Automation, pp. 169-173,

1990.

[144] L. Nagel and D. Pederson, "Simulation program with integrated circuit emphasis (SPICE),"

Memorandum ERL-M382.Electronics Research Laboratory, College of Engineering,

University of California, Berkeley, CA, USA, 1973.

[145] L. W. Nagel, "SPICE2: A computer program to simulate semiconductor circuits," ERL Memo

ERL-M520, 1975.

[146] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons, 2011.

[147] S. Rubin, "ELECTRIC: An Integrated Aid for Top-Down Electrical Design," Schlumberger

Palo Alto Research, 1987.

[148] G. W. Zobrist, Progress in Computer-Aided VLSI Design: Implementations. Intellect Books,

1990.

[149] Gpsim, http://gpsim.sourceforge.net/gpsim.html. Nov 6, 2014.

[150] DoCircuits, http://www.docircuits.com/ Nov 6, 2014.

[151] PartsSim on Circuit Analysis Simulator by Aspen Lab, http://www.partsim.com/, Nov 6, 2014.

[152] Simone Software System Description, http://www.simone.eu/simone-simonesoftware.asp Nov

6, 2014.

[153] Effortless Schematics; Powerful Simulation, https://www.circuitlab.com/, Nov 6, 2014.

[154] An Easier EDA Experience, http://www.easyeda.com, Nov 6, 2014.

[155] RF Channels, http://www.falstad.com/circuit/, Nov 6, 2014.

[156] Gecko-Simulation, http://www.gecko-simulations.com/geckocircuits.html, Nov 6, 2014.

[157] Mixed Mode-Mixed Level Circuit Simulator,http://ngspice.sourceforge.net/presentation.html,
Nov 6, 2014.

[158] NGSPICE Online, http://www.ngspice.com, Nov 6, 2014.

[159] NL5 Circuit Simulator, http://nl5.sidelinesoft.com/index.php?lang=en, Nov 6, 2014.

[160] Anasoft SuperSpice, http://www.anasoft.co.uk/, Nov 6, 2014.

[161] Simetrix Technologies, http://www.simetrix.co.uk/ simetrix-simplis.html, Nov 6, 2014.

http://gpsim.sourceforge.net/gpsim.html.
http://www.docircuits.com/
http://www.partsim.com/,
http://www.simone.eu/simone-simonesoftware.asp
https://www.circuitlab.com/,
http://www.easyeda.com,/
http://www.falstad.com/circuit/,
http://www.gecko-simulations.com/geckocircuits.html,
http://ngspice./
http://www.ngspice.com,/
http://nl5.sidelinesoft.com/index.php?lang=en,
http://www.anasoft.co.uk/,
http://www.simetrix.co.uk/

155

[162] Maple (software), http://en.wikipedia.org/wikimaple_(software), Nov 6, 2014.

[163] NI Multisim , http://en.wikipedia.org/NI_Multisim, Nov 6, 2014.

[164] G. G. Gielen, H. C. Walscharts and W. Sansen, "Analog circuit design optimization based on

symbolic simulation and simulated annealing," Solid-State Circuits, IEEE Journal Of, vol. 25,

pp. 707-713, 1990.

[165] G. Gielen, P. Wambacq and W. M. Sansen, "Symbolic analysis methods and applications for

analog circuits: A tutorial overview," Proc IEEE, vol. 82, pp. 287-304, 1994.

[166] P. Wambacq, F. Fernández, G. Gielen, W. Sansen and A. Rodríguez-Vázquez, "Efficient

symbolic computation of approximated small-signal characteristics of analog integrated

circuits," Solid-State Circuits, IEEE Journal Of, vol. 30, pp. 327-330, 1995.

[167] Q. Yu and C. Sechen, "A unified approach to the approximate symbolic analysis of large analog

integrated circuits," Circuits and Systems I: Fundamental Theory and Applications, IEEE

Transactions On, vol. 43, pp. 656-669, 1996.

[168] W. Chen and G. Shi, "Implementation of a symbolic circuit simulator for topological network

analysis," IEEE Asia Pacific Conference in Circuits and Systems, APCCAS 2006. pp. 1368-

1372, 2006.

[169] B. Rodanski, "Modification of the two-graph method for symbolic analysis of circuits with non-

admittance elements," in International Conference on Signals and Electronic Systems

(ICSES–2002).–Wroclaw-Swieradow Zdroj, pp. 249-254, 2002.

[170] G. Shi, W. Chen and C. R. Shi, "A graph reduction approach to symbolic circuit analysis." in

ASP-DAC, pp. 197-202, 2007.

[171] C. Shi and X. Tan, "Canonical symbolic analysis of large analog circuits with determinant

decision diagrams," Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions On, vol. 19, pp. 1-18, 2000.

[172] X. Tan and C. Shi, "Hierarchical symbolic analysis of analog integrated circuits via determinant

decision diagrams," Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions On, vol. 19, pp. 401-412, 2000.

[173] R. Sommer, T. Halfmann and J. Broz, "Automated behavioral modeling and analytical model-

order reduction by application of symbolic circuit analysis for multi-physical systems,"

Simulation Modelling Practice and Theory, vol. 16, pp. 1024-1039, 2008.

[174] A. Pakhira, S. Das, I. Pan and S. Das, "Symbolic representation for analog realization of a

family of fractional order controller structures via continued fraction expansion," ISA Trans.,

2015.

[175] M. Shokouhifar and A. Jalali, "An evolutionary-based methodology for symbolic simplification

of analog circuits using genetic algorithm and simulated annealing," Expert Syst. Appl., vol.

42, pp. 1189-1201, 2015.

[176] Z. Erdei, L. A. Dicso, L. Neamt and O. Chiver, "Symbolic equation for linear analog electrical

circuits using Matlab," WSEAS Transactions on Circuits and Systems, vol. 9, pp. 493-502,

2010.

http://en.wikipedia.org/wikimaple_(software),
http://en.wikipedia.org/NI_Multisim,

156

[177] E. Cheever, "Symbolic Circuit Analysis in MATLAB (SCAM),” Swarthmore College.

http://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA_All.html, Feb. 2
nd

, 2014.

[178] J. O. Attia, Electronics and Circuit Analysis using MATLAB. CRC press, 2004.

[179] A. Waters, Active Filter Design. McGraw-Hill, 1991.

[180] W. G. Jung, Op Amp Applications Handbook. Newnes, 2005.

[181] R. L. Geiger and E. Sanchez-Sinencio, "Active filter design using operational transconductance

amplifiers: a tutorial," Circuits and Devices Magazine, IEEE, vol. 1, pp. 20-32, 1985.

[182] J. Tow, "A step-by-step active-filter design," Spectrum, IEEE, vol. 6, pp. 64-68, 1969.

[183] Matlab Basics and Using the Symbolic Editor. Available:

https://rophoenixmakerevolution.files.wordpress.com/2015/08/matlab_basics_and_the

_symbolic_editor.pdf. (01/08/2015).

[184] (). Minimizing Component-Variation Sensitivity in Single Op Amp Filters. Available:

http://www.maximintegrated.com/app-notes/index.mvp/id/738, May 22, 2014.

[185] O. J. USHIE, M. ABBOD, E. C. ASHIGWUIKE and S. LAWAN, "Constrained Nonlinear

Optimization of Unity Gain Operational Amplifier Filters Using PSO, GA and Nelder-Mead,"

Int. J. Intell. Control Syst., vol. 20, pp. 26-34, 2015.

[186] G. T. A. Kovacs, " EE113 Course Notes Electronic Circuits, Stanford University, Department of

Electrical Engineering," pp. 1-161, 1997.

[187] B. CARTER and R. MANCINI, "Op Amps for Everyone. [Sl]: Newnes," 2009.

[188] O. J. Ushie, M. F. Abbod, and B. E. Usibe, "Genetic Folding/Programming Toolbox: Analogue

Circuit Design Case Study," Journal of Automation & Systems Engineering, vol. 10, pp. 40-

40-64, 2016.

[189] M. Jamil and X. Yang, "A literature survey of benchmark functions for global optimisation

problems," International Journal of Mathematical Modelling and Numerical Optimisation,

vol. 4, pp. 150-194, 2013.

[190] R. Feldt, M. O’Neill, C. Rayn, P. Nordin and W. B. Langdon, "GP-beagle: A benchmarking

problem repository for the genetic programming community," Late Breaking Papers at

GECCO, 2000.

[191] K. K. Anumandla, R. Peesapati, S. L. Sabat, S. K. Udgata and A. Abraham, "Field

programmable gate arrays-based differential evolution coprocessor: a case study of spectrum

allocation in cognitive radio network," IET Computers & Digital Techniques, vol. 7, pp. 221-

234, 2013.

[192] E. A. Coyle, L. P. Maguire and T. M. McGinnity, "Design philosophy for self-repair of

electronic systems using the UML," IEE Proceedings-Software, vol. 149, pp. 179-186, 2002.

[193] W. Luo, Z. Zhang and X. Wang, "Designing polymorphic circuits with polymorphic gates: a

general design approach," IET Circuits, Devices & Systems, vol. 1, pp. 470-476, 2007.

http://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA_All.html
https://rophoenixmakerevolution.files.wordpress.com/2015/08/matlab_basics_and_the_symbolic_editor.pdf
https://rophoenixmakerevolution.files.wordpress.com/2015/08/matlab_basics_and_the_symbolic_editor.pdf
http://www.maximintegrated.com/app-notes/index.mvp/id/738,

157

[194] S. Maheshwari, "Analogue signal processing applications using a new circuit topology," IET

Circuits, Devices & Systems, vol. 3, pp. 106-115, 2009.

[195] J. F. Miller and P. Thomson, "Discovering novel digital circuits using evolutionary techniques,"

1998.

[196] A. Tyrrell, R. Krohling and Y. Zhou, "Evolutionary algorithm for the promotion of evolvable

hardware," IEE Proceedings-in Computers and Digital Techniques, pp. 267-275, 2004.

[197] S. Vakili, S. M. Fakhraie and S. Mohammadi, "Evolvable multi-processor: a novel MPSoC

architecture with evolvable task decomposition and scheduling," IET Computers & Digital

Techniques, vol. 4, pp. 143-156, 2010.

[198] J. Wang, Q. S. Chen and C. H. Lee, "Design and implementation of a virtual reconfigurable

architecture for different applications of intrinsic evolvable hardware," Computers & Digital

Techniques, IET, vol. 2, pp. 386-400, 2008.

[199] A. Doboli and R. Vemuri, "Behavioral modeling for high-level synthesis of analog and mixed-

signal systems from VHDL-AMS," Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions On, vol. 22, pp. 1504-1520, 2003.

[200] R. A. Vural, B. Erkmen, U. Bozkurt and T. Yildirim, "CMOS differential amplifier area

optimization with evolutionary algorithms," in Proceedings of the World Congress on

Engineering and Computer Science, 2013, .

[201] T. Sripramong and C. Toumazou, "The invention of CMOS amplifiers using genetic

programming and current-flow analysis," Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions On, vol. 21, pp. 1237-1252, 2002.

[202] A. Senn, A. Peter and J. G. Korvink, "Analog circuit synthesis using two-port theory and

genetic programming," in AFRICON, pp. 1-8, 2011.

[203] J. R. Koza, F. H. Bennett III, D. Andre, M. A. Keane and F. Dunlap, "Automated synthesis of

analog electrical circuits by means of genetic programming," IEEE Transactions On

Evolutionary Computation, vol. 1, pp. 109-128, 1997.

[204] X. Peng, E. D. Goodman and R. C. Rosenberg, "Robust engineering design of electronic circuits

with active components using genetic programming and bond graphs," in Genetic

Programming Theory and Practice V, Springer, pp. 185-200, 2008.

158

Appendix

A Netlist from PSpice and the modified Netlist for MSCAM

PSpice source file for Common-Emitter SSA Modified file version for MSCAM

V_V1 1 0 DC 0Vdc AC 1Vac

R_R111 1 2 100 TC=0,0

R_R2 0 3 9.6k TC=0,0

R_R1 0 3 51.2k TC=0,0

R_Rpi 3 0 1.51k TC=0,0

R_Ro 4 0 58.3k TC=0,0

R_RL 5 0 3k TC=0,0

C_C111 2 3 1u TC=0,0

C_Cpi 0 3 10p TC=0,0

C_Cmu 4 3 2p TC=0,0

C_C2 5 4 1u TC=0,0

R_Rc 0 4 2k TC=0,0

C_CL 0 5 3p TC=0,0

I_I4 4 0 DC 69.6e-3*0..713 AC 1Aac

V1 1 0 1

R111 1 2 100

R2 0 3 9.6e3

R1 0 3 51.2e3

Rpi 3 0 1.51e3

Ro 4 0 58.3e3

RL 5 0 3e3

C111 2 3 1e-6

Cpi 0 3 10e-12

Cmu 4 3 2e-12

C2 5 4 1e-6

Rc 0 4 2e3

CL 0 5 3e-12

I4 4 0 69.6e-3*0..713

PSpice source file for Example 3 Circuit Modified file version for MSCAM

R_R111 1 2 1 TC=0,0

C_Cpi 0 6 10p TC=0,0

R_R5 0 4 3.9k TC=0,0

V_V1 1 0 DC 0Vdc AC 1Vac

G_G1 7 0 VALUE { V(6)*69.6m }

R_Rpi 6 0 1.51k TC=0,0

R_RL 8 0 1k TC=0,0

R_R2 3 2 12k TC=0,0

C_CL 8 7 1n TC=0,0

C_Cmu 7 6 2p TC=0,0

R_Ro 7 0 58.3k TC=0,0

R_R4 7 4 8.2k TC=0,0

E_U1 5 0 VALUE {LIMIT(V(3,4)*1E6,-15V,+15V)}

C_Cb 5 6 1n TC=0,0

R_R3 2 7 100 TC=0,0

OAmp 5 3 4

Cmu 6 7 2e-12

I7 7 0 VALUE

Rpi 0 6 1.51e3

Cpi 0 6 10e-12

Ro 0 7 58.3e3

R2 3 2 12e3

R3 2 7 100

V1 1 0 1

R5 0 4 3.9e3

R4 4 7 8.2e3

RL 0 8 1e3

R111 1 2 1

Cb 5 6 1e-9

CL 7 8 1e-9

PSpice source file for Common-Source SSA Modified file version for MSCAM

C_Cgs 4 3 1p TC=0,0

C_C111 2 3 1u TC=0,0

R_Rg1 0 3 1M TC=0,0

V_V1 1 0 DC 0Vdc AC 1Vac

C_C2 5 4 1u TC=0,0

R_R111 1 2 50K TC=0,0

R_Rd 4 0 2.2k TC=0,0

R_Rds 4 0 90.086k TC=0,0

R_RL 5 0 3k TC=0,0

R_Rg2 0 3 2.2M TC=0,0

C_Cpi 0 3 10p TC=0,0

C_Cds 0 4 1p TC=0,0

I_I4 4 0 DC 0.863e-3*2.486 AC 1Aac

C_CL 0 5 3p TC=0,0

Cgs 4 3 1e-12

C111 2 3 1e-6

Rg1 0 3 1e6

V1 1 0 1

C2 5 4 1e-6

R111 1 2 50e3

Rd 4 0 2.2e3

Rds 4 0 90.086e3

RL 5 0 3e3

Rg2 0 3 2.2e6

Cpi 0 3 10e-12

Cds 0 4 1e-12

I4 4 0 0.863e-3*2.486

CL 0 5 3e-12

159

B Code for transforming Netlist to matrices.

%This program takes a netlist (similar to SPICE), parses it to derive the

%circuit equations, then solves them symbolically.
syms V1 I2 R111 R112 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

R21 R22 R23 C1 C2 C3 C4 C5 C6 C7 Av s numO J C111 L111 R999 ...
 v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14 v_15 v_16 v_17 v_18 v_19 v_20 v_21
fname='7thorderchebyshev.cir';
[Name, N1, N2, arg3]=textread(fname,'%s %s %s %s ');

PSpice source file for 7thorderchebyshev Modified file version for MSCAM

E_U1 3 0 VALUE {LIMIT(V(0,2)*1E6,-15V,+15V)}

E_U2 5 0 VALUE {LIMIT(V(0,4)*1E6,-15V,+15V)}

E_U3 7 0 VALUE {LIMIT(V(0,6)*1E6,-15V,+15V)}

R_R111 1 2 16.9k TC=0,0

R_R2 3 4 16.9k TC=0,0

R_R3 5 6 10k TC=0,0

R_R4 2 3 95.3k TC=0,0

R_R5 6 7 10k TC=0,0

R_R6 2 7 16.9k TC=0,0

V_V1 1 0 DC 0Vdc AC 1Vac

C_C1 2 3 1200p TC=0,0

C_C2 4 5 1200p TC=0,0

C_C4 8 9 1500p TC=0,0

R_R10 8 9 26.7k TC=0,0

R_R9 11 12 10k TC=0,0

C_C3 10 11 1500p TC=0,0

R_R12 8 13 16.2k TC=0,0

E_U4 9 0 VALUE {LIMIT(V(0,8)*1E6,-15V,+15V)}

R_R7 5 8 16.2k TC=0,0

R_R11 12 13 10k TC=0,0

E_U5 11 0 VALUE {LIMIT(V(0,10)*1E6,-15V,+15V)}

R_R8 9 10 16.2k TC=0,0

E_U6 13 0 VALUE {LIMIT(V(0,12)*1E6,-15V,+15V)}

E_U7 15 0 VALUE {LIMIT(V(0,14)*1E6,-15V,+15V)}

R_R16 14 15 12.7k TC=0,0

R_R14 15 16 16.2k TC=0,0

C_C5 16 17 2200p TC=0,0

E_U9 19 0 VALUE {LIMIT(V(0,18)*1E6,-15V,+15V)}

R_R15 17 18 10k TC=0,0

E_U8 17 0 VALUE {LIMIT(V(0,16)*1E6,-15V,+15V)}

R_R18 14 19 16.2k TC=0,0

R_R17 18 19 10k TC=0,0

R_R13 14 11 16.2k TC=0,0

C_C6 14 15 2200p TC=0,0

E_U10 21 0 VALUE {LIMIT(V(0,20)*1E6,-15V,+15V)}

R_R20 20 21 42.2k TC=0,0

R_R19 20 17 42.2k TC=0,0

C_C7 20 21 1200p TC=0,0

OAmp1 3 2 0

OAmp2 5 4 0

OAmp3 7 6 0

OAmp4 9 8 0

OAmp5 11 10 0

OAmp6 13 12 0

OAmp7 15 14 0

OAmp8 17 16 0

OAmp9 19 18 0

OAmp10 21 20 0

R111 1 2 16.9e3

R2 3 4 16.9e3

R3 5 6 10e3

R4 2 3 95.3e3

R5 6 7 10e3

C1 2 3 1200e-12

C2 4 5 1200e-12

R6 2 7 16.9e3

C3 8 9 1500e-12

R10 8 9 26.7e3

R11 12 13 10e3

R12 8 13 16.2e3

R9 11 12 10e3

R8 9 10 16.2e3

C4 10 11 1500e-12

R7 5 8 16.2e3

R18 14 19 16.2e3

R17 18 19 10e3

C5 14 15 2200e-12

R14 15 16 16.2e3

R16 14 15 12.7e3

C6 16 17 2200e-12

R15 17 18 10e3

R13 11 14 16.2e3

R20 20 21 42.2e3

C7 20 21 1200e-12

R19 17 20 42.2e3

V1 1 0 1

160

tic % start a stopwatch timer
%Initialize
numElem=0; %Number of passive elements.
numV=0; %Number of independent voltage sources
numO=0; %Number of op amps
numI=0; %Number of independent current sources
numI2=0;
numNode=0; %Number of nodes, not including ground (node 0).

%Parse the input file
for i=1:length(Name),
 switch(Name{i}(1)),
 case {'R','L','C' 'R111','L111','C111'},
 numElem=numElem+1;
 Element(numElem).Name=Name{i};
 Element(numElem).Node1=str2num(N1{i});
 Element(numElem).Node2=str2num(N2{i});
 try
 Element(numElem).Value=str2num(arg3{i});
 catch
 Element(numElem).Value=nan;
 end
 case 'V',
 numV=numV+1;
 Vsource(numV).Name=Name{i};
 Vsource(numV).Node1=str2num(N1{i});
 Vsource(numV).Node2=str2num(N2{i});
 try
 Vsource(numV).Value=str2num(arg3{i});
 catch
 Vsource(numV).Value=nan;
 end
 case 'O',
 numO=numO+1;
 Opamp(numO).Name=Name{i};
 Opamp(numO).Node1=str2num(N1{i});
 Opamp(numO).Node2=str2num(N2{i});
 Opamp(numO).Node3=str2num(arg3{i});
 case 'I'
 numI=numI+1;
 Isource(numI).Name=Name{i};
 Isource(numI).Node1=str2num(N1{i});
 Isource(numI).Node2=str2num(N2{i});
 try
 Isource(numI).Value=str2num(arg3{i});
 catch
 Isource(numI).Value=nan;
 end
 end
 numNode=max(str2num(N1{i}),max(str2num(N2{i}),numNode));
end

%Preallocate all of the cell arrays #################################
G=cell(numNode,numNode);
V=cell(numNode,1);
I=cell(numNode,1);
I2=cell(numNode,1);
if ((numV)~=0),
 E=cell(numNode,1);

161

end

%Fill the G matrix ##
%Initially, make the G Matrix all zeros.
[G{:}]=deal('0');

%Now fill the G matrix with conductances from netlist
for i=1:numElem,
 n1=Element(i).Node1;
 n2=Element(i).Node2;
 %Make up a string with the conductance of current element.
 switch(Element(i).Name(1)),
 case 'R',
 g = ['1/' Element(i).Name];

 case 'L',
 g = ['1/s/' Element(i).Name];
 case 'C',
 g = ['s*' Element(i).Name];
 case 'R111',
 g = ['1/' Element(i).Name];

 case 'L111',
 g = ['1/s/' Element(i).Name];
 case 'C111',
 g = ['s*' Element(i).Name];
 end

 %If neither side of the element is connected to ground
 %then subtract it from appropriate location in matrix.
 if (n1~=0) & (n2~=0),
 G{n1,n2}=[G{n1,n2} '-' g];
 G{n2,n1}=[G{n2,n1} '-' g];
 end

 %If node 1 is connected to graound, add element to diagonal
 %of matrix.
 if (n1~=0),
 G{n1,n1}=[G{n1,n1} '-' g];
 end
 %Ditto for node 2.
 if (n2~=0),
 G{n2,n2}=[G{n2,n2} '+' g];
 end

 %Go to next element.
 % i=i+4;
end
%The G matrix is finished ---

%Fill the V matrix ##
for i=1:numNode,
 V{i}=['v_' num2str(i)];
end
%The V matrix is finished ---

%Add each opamp output to the list of symbolic variables.
% for i=1:numO,

162

% SymString=[SymString J{i+numV} ' '];
% end

%Fill the I matrix ##
[I{:}]=deal('0');
for j=1:numNode,
 for i=1:numI,
 if (Isource(i).Node1==j),
 I{j}=[I{j} '-' Isource(i).Name];
 elseif (Isource(i).Node2==j),
 I{j}=[I{j} '+' Isource(i).Name];
 end
 end
end
%The I matrix is done ---

[E{:}]=deal('0');
for j=1:numNode,
 for i=1:numV,
 if (Vsource(i).Node1==j),
 E{j}= [E{j} '+' Vsource(i).Name];
 elseif (Vsource(i).Node2==j),
 E{j}= [E{j} '-' -Vsource(i).Name];
 end
 end
end

%The I matrix is done ---

[I2{:}]=deal('0');
 for j = 1: numNode
 for i=1:length(Name),
 % ismember('R111',Name) mean R111 is member of name while ~ attached to ismember mean not

member
 if ismember('R111',Name) & ~ismember('C111',Name) & ~ismember('L111',Name)
 R999=R111;
 elseif ~ismember('R111',Name) & ismember('C111',Name) & ~ismember('L111',Name)
 R999=1/(s*C11i);
 elseif ~ismember('R111',Name) & ~ismember('C111',Name) & ismember('L111',Name)
 R999=(s*L111);
 elseif ismember('R111',Name) & ismember('C111',Name) & ~ismember('L111',Name)
 R999=(R111 + 1/(s*C111));
 elseif ismember('R111',Name) & ~ismember('C111',Name) & ismember('L111',Name)
 R999=(R111+(s*L111));
 elseif ~ismember('R111',Name) & ismember('C111',Name) & ismember('L111',Name)
 R999=((s*L111)+(1/(s*C111)));
 elseif ismember('R111',Name) & ismember('C111',Name) & ismember('L111',Name)
 R999=(R111+(s*L111)+(1/(s*C111)));
 elseif ~ismember('R111',Name) & ~ismember('C111',Name) & ~ismember('L111',Name)
 R999=0;
 end
 end
 I2=E/R999;
 end

% I3 = char(I) + str(I2);

163

%Form the A, X, and Z matrices (As cell arrays of strings).
 Acell=[deal(G)];
 Xcell=[deal(V)];
 Zcell=[deal(I)];
% Z2cell=[deal(I2)];

 %Create assignments for three arrays
Astring='A=[';
Xstring='X=[';
Zstring='Z=[';
Z2string='Z2=[';

for i=1:length(Acell), %for each row in the arrays.
 for j=1:length(Acell), %for each column in matrix A.
 Astring=[Astring ' ' Acell{i,j}]; %Get element from Acell
 end
 Astring=[Astring ';']; %Mark end of row with semicolon
 Xstring=[Xstring Xcell{i} ';']; %Enter element into array X;
 Zstring=[Zstring Zcell{i} ';']; %Enter element into array Z;
% Z2string=[Z2string Z2cell{j} ';']; %Enter element into array Z2;
end
Astring=[Astring '];']; %Close array assignment.
Xstring=[Xstring '];'];
Zstring=[Zstring '];'];
% Z2string=[Z2string '];'];

%Evaluate strings with array assignments.
eval([Astring ' ' Xstring ' ' Zstring])

% A(4,4) = A(4,4)+1;
% A(4,3) = A(4,3)+Av;
% A(4,2) = A(4,2)-Av;
%
% A(8,8) = A(8,8)+1;
% A(8,7) = A(8,7)+Av;
% A(8,6) = A(8,6)-Av;
% if numO ~=0,

if numO ~=0,
 for i=1:numO,
 ss=char(N1(i,1)); % conversion to character (string)and opamp is being arranged fist from first to last
 numNode=str2num(ss); % conversion from character (string) to number
 A(numNode,numNode)= A(numNode,numNode)+1; % add 1 to o/p node voltage of opamp (ie Vout of

opamp has coefficient of 1)
 yy=char(N2(i,1));
 zz=str2num(yy);
 uu=char(arg3(i,1)); % Negative i/p of opamp (N2, N2,arg3 respectively arrangement for o/p, +ve, and -

ve i/p of opamp)
 vv=str2num(uu);
 if zz==0 | zz==numNode; % zz=numNode means if the is direct feedback from opamp o/p to any i/p of

opamp
 A(numNode,numNode-1) = A(numNode,numNode-1)+Av; % add Av to negative i/p voltage (V-ve) of

opamp
 elseif vv==0 | vv==numNode;
 A(numNode,numNode-1) = A(numNode,numNode-1)-Av; % add Av to positive i/p voltage (V+ve) of

opamp
 else
 A(numNode,numNode-1) = A(numNode,numNode-1)+Av;

164

 A(numNode,numNode-2) = A(numNode,numNode-2)-Av; % add Av to positive i/p voltage (V+ve) of

opamp
 end
 end
end
I3 = Z + I2;
 disp(A);
 disp(X);
 disp(I3);

