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ABSTRACT 

Harmony Search (HS) is an emerging metaheuristic algorithm inspired by the improvisation 

process of jazz musicians. In the HS algorithm, each musician (= decision variable) plays (= 

generates) a note (= a value) for finding the best harmony (= global optimum) all together. This 

algorithm has been employed to cope with numerous tasks in the past decade. In this thesis, HS 

algorithm has been applied to design digital filters of orders 24 and 48 as well as the parameters 

of neural network problems. Both multiobjective and single objective optimization techniques 

were applied to design FIR digital filters. 2-dimensional digital filters  can be used for image 

processing and neural networks can be used for medical image diagnosis. Digital filter design 

using Harmony Search Algorithm can achieve results close to Parks McClellan Algorithm 

which shows that the algorithm is capable of solving complex engineering problems. Harmony 

Search is able to optimize the parameter values of feedforward network problems and fuzzy 

inference neural networks. The performance of a designed neural network was tested by 

introducing various noise levels at the testing inputs and the output of the neural networks with 

noise was compared to that without noise. It was observed that, even if noise is being introduced 

to the testing input there was not much difference in the output. Design results were obtained 

within a reasonable amount of time using Harmony Search Algorithm. 
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 Introduction 

1.1 Why Digital Filters? 

What are Digital Filters? 

In signal processing, a digital filter is a system that performs mathematical operations on 

sampled, discrete-time signal to reduce or enhance certain aspects of the signal as it may be 

necessary. 

The applications of digital filters are widespread some of which includes the following: 

• Communication Systems 

• Image processing and enhancement 

• Instrumentation 

• Processing of biological signals 

The digital filters are used in communication systems because of their ability to minimize error 

probability and producing quality signal. In image processing, the digital filters are used mainly 

to suppress either the high frequencies in the image, or the low frequencies i.e. enhancing or 

detecting the edges in the image. Filters alter the frequency spectrum of the input signal and 

thus are used in instrumentation. The digital filters have also been used for biomedical signal 

processing. 

Before proceeding with the details and moving onto further depth, I will like to mention that in 

this thesis I have tried to show how to solve complex problems such as Digital Filters and 

Neural network designs in less time in an efficient manner as an alternative to other 

metaheuristic algorithms using a particular metaheuristic algorithm called Harmony Search 

Algorithm. This metaheuristic algorithm was initially used with Particle Swarm Optimization 

for the design of Infinite Response Filters for improved performance and also for many 

industrial applications discussed in the Chapter 2 in Section 2.2. However designing of FIR 

digital Filters and  feedforward neural networks is a new concept which have not been addressed 

by others before. 
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1.2 Types of Filters 

1.2.1 Based on frequency response 

Based on the frequency response, the filters can be categorized into four common types as 

shown in Figure 1-1. 

 

 

Figure 1.1 Types of filters based on frequency response             

 

1.2.2 Based on impulse response 

Based on the impulse response, there are two categories of digital filters; namely finite impulse 

response filters(FIR) and infinite impulse response filters(IIR). The significant difference 

between FIR and IIR filter is that in case of FIR filter, the output decays to 0 in a finite amount 

of time, whereas in case of IIR filter the output takes an infinite amount of time to decay to 0. 

1.3 FIR Filters 

FIR Filters are digital filters with the finite impulse response. They are also known as non-

recursive digital filters as they do not have feedback. 
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Figure 1.2 Block diagram of FIR filter 

 

Figure 1.3 FIR in direct form 

                                   

T=decay 

ℎ0, ℎ1……ℎ𝑛−1 = Filter coefficients 

𝑥[𝑘], 𝑥[𝑘 − 1], ……𝑥[𝑘 − 𝑁 + 1]=Input and a delayed version of the input 

𝑦[𝑘] = Output of the filter 

The output of the filter can be written in the following equation form: 

𝑦[𝑘] = ℎ0𝑥[𝑘] + ℎ1𝑥[𝑘 − 1] +⋯+ ℎ𝑛−1𝑥[𝑘 − 𝑁 + 1]                           (1. 1) 

 

 

Figure 1.4 FIR filter in transposed direct form 
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1.3.1 Linear phase FIR filters 

 

Depending on the order of the filters and the symmetry of the filter coefficients, the linear phase 

filters can be of four types [25] as shown in the following Table: 

 

Table 1.1 Symmetric filters 

 Order Symmetry 𝑯(𝒘) 𝒂𝒕 𝒘 = 𝟎 𝑯(𝒘)𝒂𝒕 𝒘 = 𝝅 𝑻⁄  

Type I Even Even            Any                 Any 

Type II Odd Even            Any                   0 

Type III Even Odd              0                 Any 

Type IV Odd Odd              0                   0 

                                                    

      If ℎ0, ℎ1………ℎ𝑁−1 are the filter coefficients, where 𝑁 is the length of the filter, then the 

following relations hold for the coefficients of the different kinds of filters. 

Type I: ℎ𝑘 = ℎ𝑁−𝑘+1, 𝑁 is odd 

Type II:ℎ𝑘 = ℎ𝑁−𝑘+1, 𝑁 is even 

Type III:ℎ𝑘 = −ℎ𝑁−𝑘+1, 𝑁 is even 

Type IV:ℎ𝑘 = −ℎ𝑁−𝑘+1, 𝑁 is odd 

The amplitude response of the four types of filters can be expressed in the following equations: 

      Type I: 

𝐻(𝑤) = ℎ(𝑀) + 2 ∑ ℎ𝑛 cos((𝑀 − 𝑛)𝑤)

𝑀−1

𝑛=0

                                                                       (1.2) 

     Type II: 

𝐻(𝑤) = 2 ∑ ℎ𝑛 cos((𝑀 − 𝑛)𝑤)

𝑁
2⁄ −1

𝑛=0

                                                                                    (1.3) 

    Type III 

𝐻(𝑤) = 2 ∑ ℎ𝑛 sin((𝑀 − 𝑛)𝑤)

𝑀−1

𝑛=0

                                                                                       (1.4) 

    Type IV 
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𝐻(𝑤) = 2 ∑ ℎ𝑛

𝑁
2⁄ −1

𝑛=0

cos((𝑀 − 𝑛)𝑤)                                                                                (1.5) 

          Where, 𝑀 = (𝑁 − 1) 2⁄  

 

 In the following figure, the filter coefficient values of Type I Linear phase filter can be shown: 

 

 

Figure 1.5 Type I Linear phase FIR coefficients 

 

The coefficients are symmetric around the central coefficient. The phase response of the 

linear phase FIR filter is given below: 
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Figure 1.6 Phase response of linear phase FIR filter 

We can see that the phase response of the filter varies linearly. The discontinuities are mainly 

due to two reasons: 

1)2𝜋 + 𝜃 = 𝜃 resulting the phase being confined from −𝜋 𝑡𝑜 𝜋 

2) The sign reversal of the frequency response. 

1.3.2 Equiripple design of linear phase FIR filters 

 

The finite length Impulse response of Filter (FIR) has the exact linear phase. FIR filters can be 

realized by the causal system because after time delaying any non-causal sequence can be 

causal. 

The transfer function of the Type I Filter is given as: 

𝐻(𝑐,𝑤) = 𝑒
−𝑗(

𝑀−1
2

)𝑤𝑇

{
 

 

ℎ (
𝑀 − 1

2
) + ∑ 2ℎ(𝑛)𝑐𝑜𝑠 [(

𝑀 − 1

2
− 𝑛)𝑤𝑇]

𝑀−3
2

𝑛=0
}
 

 

            (1.6) 

         

                       𝐻(𝑐, 𝑤) = 𝑒
−𝑗(

𝑀−1
2

)𝑤𝑇
𝐴(𝑐, 𝑤)                                                                      (1.7) 
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Where, 

                                                   𝐴(𝑐, 𝑤) = 𝒄𝑻𝑐𝑜𝑠 𝑤                                                                (1.8) 

 And, 

              cos𝑤 = [1    𝑐𝑜𝑠(𝑤𝑇)      𝑐𝑜𝑠(2𝑤𝑇)   … . .    𝑐𝑜𝑠 (
𝑀 − 1

2
𝑤𝑇)]

𝑇

                   (1.9) 

The coefficient vector 𝑐𝑇  is optimized initially using some random values and then the 

objective function value is reduced at every iteration by following the structure of the algorithm 

which has been reduced by minimizing the value of the error at every iteration. The minimax 

error approximation method is used to calculate the error. It calculates the difference in error 

between the frequency response of the passband and stopband. An ideal filter has a magnitude 

of 1 and 0 in the passbands and stopband. The expression of the minimax function has been 

shown below: 

            𝑒𝑝(𝑐) = [∑𝑊𝑝(𝑤𝑖)

𝑙𝑝

𝑖=1

||𝐴(𝑐, 𝑤𝑖)| − 𝐴𝑑(𝑤𝑖)|
2𝑝
]

1
2𝑝⁄

                                  (1.10) 

                                     𝑓𝑜𝑟 𝑊𝑝(𝑤𝑖) ≥ 0; 0 ≤ 𝑤𝑖 ≤ 𝑤𝑝 

        𝑒𝑠(𝑐) = [∑𝑊𝑠

𝑙𝑠

𝑖=1

(𝑤𝑖)||𝐴(𝑐, 𝑤𝑖)| − 𝐴𝑑(𝑤𝑖)|
2𝑝
]

1
2𝑝⁄

                                      (1.11) 

                                      𝑓𝑜𝑟 𝑊𝑠(𝑤𝑖) ≥ 0; 𝑤𝑠 ≤ 𝑤𝑖 ≤ 𝜋 

Where 𝑒𝑝(𝑐) and 𝑒𝑠(𝑐) are the error values in the passband and stopband respectively. 𝐴(𝑐, 𝑤𝑖) 

is the magnitude response of the obtained filter and 𝐴𝑑(𝑤𝑖) is the magnitude response of the 

ideal filter and i is the number of samples to calculate the error. The minimax optimization 

problem is to search for the optimal coefficient vector 𝒄 that minimizes the objective function 

𝒆(𝒄): 

                        min
               𝒄

𝒆(𝒄)                                                                                                 (1.12) 

 𝑊𝑠(𝑤𝑖) represents the weighing function which is given by: 

𝑊𝑠(𝑤𝑖) = {
1    𝑝𝑎𝑠𝑠𝑏𝑎𝑛𝑑 𝑎𝑛𝑑 𝑠𝑡𝑜𝑝𝑏𝑎𝑛𝑑
0                               𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

                                                              (1.13) 

The weighing scores usually differ with the error values; so, if the errors of the passband and 

stopband differ by a margin the weighing values will increase or decrease accordingly. 



 

8 
 

The interval 0 − 𝑤𝑝  is the passband and 𝑤𝑐 − 1 is the stopband of the filter. The response 

usually varies from 1 − 𝛿𝑝 to 1 + 𝛿𝑝 in the passband and in the stopband, it varies from −𝛿𝑠 to 

𝛿𝑠  . The transition region which ranges from 𝑤𝑝 to 𝑤𝑠  can accept any value.𝛿𝑝 denotes the 

passband ripple whereas 𝛿𝑠 denotes the stopband ripple. The diagrammatic representation is 

shown below: 

 

Figure 1.7 Lowpass filter design specifications [25] 

The above design problem can be formulated as a linear problem shown below in the following 

equations: 

Minimize 𝛿 

Such that:      1 − 𝛿 ≤ 𝐻(𝑤) ≤ 1 + 𝛿, 𝑓𝑜𝑟 𝜔 ∈ [0, 𝜔𝑝]                                             (1.14) 

                                      −(𝛿𝑠𝛿) 𝛿𝑝 ≤ 𝐻(𝑤)⁄ ≤ (𝛿𝑠𝛿) 𝛿𝑝⁄ , 𝑓𝑜𝑟 𝜔 ∈ [𝑤𝑠, 1] 

Where 𝐻(𝑤) is the frequency response of the filter and is given by: 

𝐻(𝑤) = ∑ ℎ(𝑛)𝑇𝑟𝑖𝑔(𝑤, 𝑛)

⌈𝑁−1⌉
2

𝑛=0

                                                                                          (1.15) 

Where 𝑇𝑟𝑖𝑔 is the trigonometric function depending on the type of the filter and whether the 

filter is odd or even and 𝑁 is the filter length. 
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1.3.3 Constrained equiripple FIR filters 

 

The design of such filters requires constrained equiripple approximation of an approximate 

function. The design is as shown below: 

 

Figure 1.8 Design of equiripple FIR filters using FIRPM 

As shown in the above figure, 0.4 is the cut off frequency for the design of the equiripple 

bandpass filter. The filter has been designed using Parks Mc Clellan Algorithm which is very 

efficient. This reduces the maximum error in each iteration as it is an iterative algorithm. The 

MATLAB function firpm is based on Parks McClellan method and is used to design linear 

phase FIR filters with a given length and specified passbands and stopbands. The syntax of the 

function is shown below: 

b=firpm(n,f,a,w) 

where n is the filter order, which is one less than the filter length. f and a define the passbands 

and stopbands whereas w is the weight vector of length equal to the number of bands. 

1.3.4 Difference between equiripple design and least squared FIR filter design 

 

There are two methods available broadly for the design of an efficient and optimal filter design, 

Equiripple filter design and the Least Squares Filter design. The Equiripple filter design has 
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equal ripples in the passband and stopband, so the signal distortion which happens at the edge 

of the passband is avoided in case of Equiripple Filter Design but it has a large transition width. 

       On the other hand, the Least Squares Filter design has a smaller bandwidth as compared to 

Equiripple filter design, hence the passband width is larger. The passband ripple exhibits a spike 

at the passband edge due to Gibb’s phenomenon which causes signal distortion at the edge. 

1.3.5 Why are FIR filters preferred over IIR filters? 

 

Table 1.2 Comparison between FIR and IIR filters 

 

1.3.6 General phase FIR filters 

 

GFIR filters also known as General Finite Impulse response filters requires constant group 

delay in the system. These filters are asymmetric filters as they do not have same coefficients 

on the left and right-hand side, therefore each coefficient is different from the other. The 

complexity of the design makes it difficult to optimize and get a good result, so because of this 

only the passband delay is taken into account. 

A 𝑁𝑡ℎ order general FIR filter [25] consists of (𝑁 + 1) asymmetric impulse responses and can 

be represented by a distinct coefficient vector 𝑐 as 

                       𝑐 = [𝑐0, 𝑐1, 𝑐2, 𝑐3, …… . 𝑐𝑁]
𝑇                                                        (1.16)     

The frequency response of the general FIR filter can be expressed as: 

𝐻(𝑤) =∑ 𝑐𝑛𝑧
−𝑛|𝑧 = 𝑒𝑗𝑤𝑇 = |𝐻(𝑤)|

𝑁

𝑛=0
𝑒𝑗𝜃(𝑤)                                  (1.17) 

The group delay 𝜏(𝑤) of a digital filter can be computed from the derivative of phase 𝜃(𝑤) 

with respect to frequency 𝑤 as: 

Property FIR filters IIR filters 

    Phase or group delay Linear phase is always 

possible 

It is hard to design 

Stability They are always stable They can exhibit unstable 

behavior and limit cycles 

Order required Large Small 

Implementation Can have multirate or 

polyphase implementations 

No multirate or polyphase 

implementations 
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𝜏(𝑤) = −
𝜕𝜃(𝑤)

𝜕𝑤
                                                                                                  (1.18) 

The objective function of the weighted least-squares magnitude response error in a passband   

is defined by: 

𝑒𝑚𝑝(𝑐) =∑𝑊𝑚𝑝(𝑤𝑖)

𝐼𝑚𝑝

𝑖

||𝐻(𝑐, 𝑤𝑖)| − 𝐻𝑑𝑝(𝑤𝑖)|
2
                                          (1.19) 

𝑓𝑜𝑟 ∀𝑤𝑖 ∈  𝜎𝑚𝑝                                                           

  where  𝐻𝑑𝑝(𝑤𝑖) = 1  in the passband, 𝐼𝑚𝑝  denotes the corresponding number of discrete 

frequency points; 𝑊𝑚𝑝(𝑤𝑖)  denotes the corresponding frequency error weights, and 𝜎𝑚𝑝 

denotes the corresponding union of frequency points of interest. 

                         𝑒𝑚𝑠(𝑐) =∑ 𝑊𝑚𝑠(𝑤𝑖)
𝐼𝑚𝑠

𝑖
||𝐻(𝑐, 𝑤𝑖)| − 𝐻𝑑𝑠(𝑤𝑖)|

2
               (1.20) 

𝑓𝑜𝑟 ∀𝑤𝑖 ∈  𝜎𝑚𝑠  

where  𝐻𝑑𝑠(𝑤𝑖) = 0  in the stopband, 𝐼𝑚𝑠  denotes the corresponding number of discrete 

frequency points; 𝑊𝑚𝑠(𝑤𝑖)   denotes the corresponding frequency error weights, and 𝜎𝑚𝑠 

denotes the corresponding union of frequency points of interest. 

Similarly, the objective function of the weighted least square errors group delay response error 

in the passband is defined by: 

         𝑒𝑔(𝑐) =∑ 𝑊𝑔(𝑊𝑖)|𝜏(𝑐, 𝑤𝑖) − 𝜏𝑑(𝑤𝑖)|
2

𝐼𝑔

𝑖=0
                                    (1.21) 

                                                             𝑓𝑜𝑟 ∀𝑤𝑖  ∈  𝜎𝑔  

where 𝜏𝑑(𝑤) denotes the desired group delay in the passband; 𝐼𝑔 denotes the number of discrete 

frequency points, 𝑊𝑔(𝑤𝑖) denotes the corresponding frequency error weights and 𝜎𝑔 denotes 

the corresponding union of frequency points of interest. 

The design optimization problem for a general FIR digital filter is to search for an optimal 

coefficient vector 𝑐 that simultaneously minimizes its magnitude and group delay errors. For 

the case of a lowpass digital filter consisting of a passband and a stopband, a joint objective 

function defined by [24] is adopted such that: 
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𝑒(𝑐) = [𝑚𝑎𝑥 (𝑒𝑚𝑝(𝒄), 𝑒𝑚𝑠(𝒄)) +  𝛼 𝑒𝑔𝑝(𝒄)]

1
2
                                     (1.22) 

The parameter 𝛼 denotes a group delay error weighting factor. In this paper, the filter design 

problem is formulated as a joint objective function with constraints such that 

  min
𝑐

𝑒(𝑐)   

                        𝑒𝑚𝑝𝑝(𝑐) ≤  𝛿𝑚𝑝       𝑓𝑜𝑟 ∀𝑤𝑖 ∈  𝜎𝑚𝑝 

                                             𝑒𝑚𝑠𝑝(𝑐) ≤   𝛿𝑚𝑠     𝑓𝑜𝑟  ∀𝑤𝑖  ∈   𝜎𝑚𝑠        (1.23) 

                    𝑒𝑔𝑝(𝑗) ≤  𝛿𝑔       𝑓𝑜𝑟  ∀𝑤𝑖  ∈    𝜎𝑔 

The parameters  𝑒𝑚𝑝𝑝(𝑐), 𝑒𝑚𝑠𝑝(𝑐) 𝑎𝑛𝑑 𝑒𝑔𝑝 denote respectively passband peak magnitude 

error, stopband peak magnitude error, and passband peak group delay error; and the parameters 

𝛿𝑚𝑝, 𝛿𝑚𝑠 𝑎𝑛𝑑 𝛿𝑔denote respectively small positive passband magnitude, stopband magnitude, 

and group delay tolerance limits. The design problem formulation in (1.19)-(1.22) can be 

generalized to the case of a highpass filter or a bandpass filter or a bandstop filter or a multi-

band filter. 

1.4 Quantization of coefficients 

During the approximation step, the coefficients of the digital filter are calculated with the high 

accuracy inherent to the computer employed in the design. When these coefficients are 

quantized for practical implementations then the time and frequency responses of the realized 

digital filter deviate from the ideal response. In some cases, the quantized filter may even fail 

to meet the prescribed specifications. The sensitivity of the filter response to errors in the 

coefficients is highly dependant on the type of the structure. 

The finite numerical resolution of digital filter representations has an impact on the properties 

of filters. The quantization of coefficients, state variables, algebraic operations and signals plays 

an important role in the design of recursive filters. Compared to non-recursive filters, the impact 

of quantization is often more significant due to feedback process. Several degradations from 

the desired characteristics are the potential consequences of a finite word length in practical 

implementations. 

A recursive filter of the order 𝑁 ≥ 2 can be decomposed into the second-order-sections(SOS). 

Due to the grouping of poles/zeros to the filter coefficients with the limited amplitude range, a 

realization has been made by the cascaded SOS. The transfer function of SOS is given below: 
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𝐻(𝑧) =
𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2

1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2
                                                                            (1.24) 

This can, however, be split into the recursive and non-recursive part. The transfer function of 

the recursive part of the filter is given below: 

𝐻(𝑧) =
1

1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2
                                                                            (1.25) 

        

1.4.1 Initial Coefficient Values for Populations 

 

     Let  𝑐𝑘
[𝑢]

 and 𝑐𝑘
[𝑙]

 be the upper and the lower bounds for the 𝑘𝑡ℎ coefficient 𝑐𝑘 of a LP or HP 

or BP or BS prototype filter such that: 

                  𝑐𝑘
[𝑙] ≤ 𝑐𝑘 ≤ 𝑐𝑘

[𝑢] 𝑓𝑜𝑟 1 ≤ 𝑘 ≤
𝑁

2
+ 1                                         (1.26) 

      The initial coefficient 𝑐𝑝𝑘 for the population member p is computed by: 

𝑐𝑝𝑘 = 𝑐𝑘
[𝑙] + 𝑟𝑎𝑛𝑑 ∗ (𝑐𝑘

[𝑢] − 𝑐𝑘
[𝑙])  𝑓𝑜𝑟 𝑝 = 1: 𝑃, 𝑘 = 1:𝐾                     (1.27) 

 Where 𝑟𝑎𝑛𝑑 is the uniformly distributed value between 0 and 1. 

 

1.5 Filter Design Problems 

There are basically two classes of digital filters, namely Finite Impulse response (FIR) and 

Infinite Impulse response(IIR). Due to the absence of a denominator we find that the FIR filters 

are more stable. FIR Filters are guaranteed to be of linear phase with the use of symmetric or 

asymmetric coefficients. FIR filters include general phase FIR Filters and Linear Phase FIR 

filters in which each of their transfer functions, frequency responses and group delay have been 

described earlier in this chapter. 

For symmetric filters, there are four types of (𝑀 − 1)𝑡ℎ order linear phase FIR digital Filter of 

length M depending on the number of points M of the impulse response and the type of 

symmetry. 

Impulse response ℎ, distinct coefficient vector 𝑐, the frequency responses 𝐻(𝑐, 𝑤) of Type I 

linear phase FIR digital Filter [25] is given below: 
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Type I M odd and even symmetry 

𝒉 𝒉 = [ℎ(0), ℎ(1), ℎ(2), … . . ℎ(𝑛), ℎ(𝑀 − 2), ℎ(𝑀 − 1)]𝑇 

             ℎ(𝑛) = ℎ(𝑀 − 1 − 𝑛) 𝑓𝑜𝑟 𝑛 = 0,1,2,3… . . , (
𝑀−3

2
) 

𝒄 
          𝒄 = [𝑐0, 𝑐1, 𝑐2……𝑐(𝑀−1

2
)
]
𝑇

 

          =[ℎ (
𝑀−1

2
) , 2ℎ (

𝑀−1

2
− 1) ,…… . . ,2ℎ(2), 2ℎ(1), 2ℎ(0)]

𝑇

 

𝐻(𝒄,𝑤) 
          𝑒−𝑗(

𝑀−1

2
)𝑤𝑇 {ℎ (

𝑀−1

2
) + ∑ 2ℎ(𝑛)𝑐𝑜𝑠 [(

𝑀−1

2
− 𝑛)𝑤𝑇]

𝑀−3

2
𝑛=0 } 

         = 𝑒−𝑗(
𝑀−1

2
)𝑤𝑇𝐴(𝑐, 𝑤) 

𝐴(𝒄, 𝑤)         𝐴(𝒄, 𝑤) = 𝑐𝑇 cos𝑤 

        [1     𝑐𝑜𝑠(𝑤𝑇)      𝑐𝑜𝑠(2𝑤𝑇)…… . 𝑐𝑜𝑠 (
𝑀−1

2
𝑤𝑇)]

𝑇

 

 

The number of impulse responses 𝑀 is related to the filter order 𝑁 by 𝑀 = 𝑁 + 1. 

Problem formulation 

An 𝑁𝑡ℎ order non-recursive digital filter can be represented by the transfer function 

𝐻(𝑧) = ∑ℎ𝑛𝑧
−𝑛 = 𝒄𝑻𝒛(𝑧)                                                                                     (1.28)

𝑁

𝑛=0

 

Where 𝒄𝑻 is the real coefficients vector. N is the total number of filter coefficients.𝑁 − 1 is the 

order. For optimization problem, the coefficient vector is: 

𝑐𝑇 = [𝑐1, 𝑐2…… . 𝑐𝑛]                                                                                                  (1.29) 

The frequency response can be gained by substituting 𝑧 = 𝑒𝑗𝑇𝑤 where 𝑇  is the sampling period 

in seconds and 𝑤 is the frequency. 

For the design of the linear phase FIR digital filter, we assume 𝜎 = 𝑤𝑖,   1 ≤ 𝑖 ≤ 𝑀, be the 

group of frequencies to evaluate the frequency response. Therefore the error at each sample 

point in 𝑤𝑖 is given as: 

𝑒𝑖 = 𝐻𝑑(𝑤𝑖) − 𝐻(𝑤𝑖)                                                                                               (1.30) 
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For the symmetric digital filter the group delay is constant which is mentioned as: 

𝜏 =
𝑁

2
                                                                                                                                    (1.31) 

The main aim of the Filter design problem is to find the optimal coefficient vector c that 

minimizes the magnitude and group delay errors. For linear phase, the group delay error is 

constant; so it minimizes only the passband and stopband magnitude errors whereas for the 

general phase FIR filter the coefficient vector c simultaneously minimizes the magnitude and 

group delay errors. 

𝑐 = min
𝑐
𝑒(𝑐)                                                                                                                         (1.32) 

For linear phase FIR filter, the minimax objective function 𝑒(𝑐)  can be decomposed into 

passband magnitude error function 𝑒𝑝(𝑐) and stopband magnitude error function 𝑒𝑠(𝑐) as 

𝑒(𝑐) = [𝑒𝑝(𝑐) +  𝑒𝑠(𝑐)]
1
𝑝⁄                                                                                                (1.33) 

For the general phase FIR filter the joint objective function can be decomposed into passband 

magnitude error function 𝑒𝑚𝑝(𝑐) , stopband magnitude error function 𝑒𝑚𝑠(𝑐) and group delay 

error 𝑒𝑔𝑝(𝑐) defined by [24] as: 

𝑒(𝑐) = [𝑚𝑎𝑥 (𝑒𝑚𝑝(𝑐), 𝑒𝑚𝑠(𝑐)) + 𝛼𝑒𝑔𝑝(𝑐)]

1
2
                                                             (1.34) 

In this study I have designed four types of linear phase FIR filters of orders 24 and 48. For order 

48, the coefficient vector 𝒄 will have 25 coefficient values whereas for order 24, the coefficient 

vector will have 13 values i.e. one more than the order of the filter. This is due to the symmetric 

nature of the filter. I have also designed two types of general phase FIR filter of order 24 where 

the coefficient vector will have 25 values due to its antisymmetric nature. All the coefficient 

values are in the range of -1 to 1. 

In the section below, some important deterministic algorithms, heuristic, metaheuristic and 

evolutionary algorithms generally used for designing such FIR filter problems have been 

described. The objective of each of the algorithms is to minimize the objective error function 

for all the filter design problems. 
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1.5.1 Deterministic algorithms 

Deterministic digital signal processing is procedure used to display the information in a 

measured data. The procedure utilizes different mathematical formulas and implements them 

with the help of digital techniques to get appropriate deterministic statistics. Finite impulse 

response filter is used in deterministic digital signal processing as a filter with impulse response 

to all finite length inputs. It is computed to settle at zero at its finite time. 

These algorithms used specific rules for moving from one solution to another. These algorithms 

have been successfully applied to many engineering design problems. They always give the 

same output, with the underlying machine passing through the same sequence of states. 

1.5.2 Heuristic algorithms 

The Heuristic search method enhances the capability to explore and exploit locally as well as 

globally to obtain optimal design FIR Filter parameters. Heuristic algorithms are superior or 

atleast comparable to other algorithms and can be efficiently used for higher order filter designs. 

Heuristic algorithms are the algorithms which are designed to solve the problems faster and in 

an efficient manner than traditional methods by sacrificing optimality, accuracy, precision or 

the completeness for speed. Heuristic algorithms are often employed with the approximate 

solutions that are sufficient and the exact solutions that are computationally expensive. The 

heuristic algorithms find solutions among all possible ones but they do not guarantee that the 

best solution will be found, and therefore they are considered as not-accurate algorithms. 

Approximate algorithms entail the interesting issue of quality estimations of the solution they 

find. These problems can be a real challenge in solving strong mathematical problems. The 

main goal of the heuristic algorithms is to find as good solution as possible to all instances of 

the problem. 

Usually, heuristic algorithms are used for problems that cannot be solved [1]. Classes of time 

complexity are defined to distinguish the problems according to their hardness. Turing 

machines are an abstraction that is used to formulate the notion of the algorithm and also its 

computational complexity. Class P consists of those problems that are solved on a deterministic 

turing machine in polynomial time. Class NP consist of all those problems whose solution can 

be found in polynomial time on a non-deterministic Turing machine. A subclass of NP, Class 

NP-complete includes problems such as a polynomial algorithm for solving one of them can be 

transformed into polynomial algorithms for solving all other NP problems. The class NP-hard 



 

17 
 

can be understood as the class of problems that are NP-complete or harder. Some of the heuristic 

algorithms are: 

Swarm intelligence which employs a large number of agents interacting locally with one 

another and the environment. 

Tabu Search which uses dynamically generated tabus to guide the solution search to optimum 

solutions. It examines the potential solution to the problem and checks the local intermediate 

neighbours to find the improved solution. 

Simulated Annealing is used in global optimization to give a reasonable approximation of a 

global optimum in a function for the search space. 

1.5.3 Metaheuristic algorithms 

Metaheuristic algorithms are basically higher level heuristic algorithms which are used for IIR 

filter designs. The term ‘meta’ means higher-level or beyond , so metaheuristic means literally 

to find the solution using higher-level techniques. They are considered as higher-level 

techniques or strategies which intend to combine with lower level techniques for exploration 

and exploitation of the huge space for parameter search when used in filter design problems. 

Metaheuristic algorithms are a combination of heuristic and randomization. It is formally 

defined as an iterative generation process which guides a subordinate heuristic by combining 

the different concepts intelligently for exploring and exploiting the search space. The main goal 

of metaheuristics is to efficiently explore the search space in order to find the optimal solutions. 

The techniques which constitute the metaheuristic algorithms range from the simple local 

search procedures to complex learning processes. Metaheuristic algorithms are non-

deterministic algorithms. They incorporate mechanisms to avoid getting trapped in the confined 

areas of the search space. 

Metaheuristics are not problem specific. They usually make use of the domain-specific 

knowledge in the form of heuristics that are controlled by the upper level-strategy. Today’s 

more advanced metaheuristics make use of the search experience to guide the search. The 

metaheuristic is a general algorithm framework for addressing the interactable problems. 

Metaheuristics are approximation algorithms that cannot always produce provably optimal 

solutions but they do have the potential to produce good solutions in a reasonable amount of 

time. 
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1.5.4 Evolutionary algorithms 

Evolutionary Algorithms are used in finding the solution for problems where there is no explicit 

solution and that is what is exactly required for digital filter design problem. Their particular 

strength is that they can efficiently search for a solution in a very large space. 

Evolutionary Algorithms(EA) consist of several heuristics, which are able to solve optimization 

tasks by initiating some aspects of natural evolution. They may use different levels of 

abstraction, but they are always working on the populations of possible solutions for a given 

task. Evolutionary methods are used in hard optimization problems rather than pattern 

recognition. 

1.5.4.1Genetic algorithms 

In nature, every living organism has a set of rules, a blueprint so to speak and describing how 

the organism is created. The genes of an organism represent these rules and are connected 

together into long strings called chromosomes. Each gene represents the specific property of an 

organism and the collective set of gene settings are referred to as organism’s genotype. The 

physical expression of the genotype is called the phenotype. Yet in rare cases, it will be 

expressed in the organism as a completely new trait. It is a local search technique used to find 

approximate solutions to optimization and search problems. Genetic algorithms are a particular 

class of Evolutionary algorithms that use techniques inspired by evolutionary biologies such as 

inheritance, mutation, selection, and crossover. They are typically implemented as a computer 

solution in which a population of abstract representations of candidate solutions to an 

optimization problem evolves towards better solutions.  The evolution normally starts from a 

population of completely random individuals and occur in generations. In each generation the 

fitness of the whole population is evaluated, multiple individuals are stochastically selected 

from the current population and modified to form a new population. The new population is then 

used in the next iteration of the algorithm. Genetic Algorithms uses crossover and mutation as 

a search mechanism. Some applications of genetic algorithms are as follows: 

1) Automotive design 

2) Engineering design 

3) Robotics 

4) Evolvable hardware 

5) Optimized telecommunications routing 
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1.5.4.1 Differential evolution 

In evolutionary computation, differential evolution is a method that optimizes a problem by 

iteratively trying to improve a candidate solution with regard to a given measure of quality. 

Here each variable’s value is represented by a real number. Differential Evolution is a design 

tool of great utility that is accessible for practical applications. DE has been used in several 

scientific and engineering applications to discover effective solutions to nearly intractable 

problems without appealing to expert knowledge or complex design problems. If a system is 

amenable to be rationally evaluated, DE can provide the means for extracting the best possible 

performance from it. The Differential Evolution uses mutation as a search mechanism and 

selection to direct the search towards the prospective regions in the feasible region. DE is a 

population based search technique which utilizes NP variables as a population of D dimension 

parameter vectors for each generation. The initial population is chosen randomly. In the case of 

the available preliminary solution, the initial population is generated by adding normally 

distributed random deviations to the preliminary solutions. The basic idea behind DE is a new 

scheme for generating trial parameter vectors. If the resulting vector yields a lower objective 

function value than the predetermined population member, the newly generated vector replaces 

the vector with which it was compared. The best parameter vector is evaluated for every 

generation in order to keep track of the progress that is made during the optimization process. 

DE maintains two arrays each of which holds a population size NP and D dimensional real-

valued vectors. The primary array holds the current vector population, while the secondary 

array accumulates vectors that are selected for the next generation. 

Table 1.3 Comparing the performance of three metaheuristic algorithms using Test functions 

[26] 
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The above table shows that for the Multimodal Separable functions, the Differential Evolution 

(DE) and Harmony Search (HS) algorithms are a very efficient method for finding the optimal 

solution and its convergence speed is much faster than the Particle Swarm optimization. 

1.6 Neural Networks 

A neural network is a massively parallel structure which is composed of many nonlinear 

processing elements connected to each other through weights. It is a trainable nonlinear 

dynamic system which stores various patterns with distributed coding. When compared with 

sequential digital computers, we find that neural networks have a faster response due to parallel 

processing and a higher performance due to nonlinear processing.  

Neural networks basically have a multilayer structure consisting of a sigmoidal type of 

nonlinear operation at the output of each hidden neuron and the output of each output neuron. 

Neural network classifiers are free model estimators. They usually do not provide assumptions 

on how the outputs depend on the inputs. Instead, they decide the boundaries of the classes and 

adjust themselves to the training set by the learning algorithm. 

1.7 Contributions 

The main contribution of the work done here is the implementation of HS Algorithm and 

adapting the algorithm to utilise it in designing FIR filters and neural networks. The algorithm 

has been initially used for several other applications mentioned in Chapter 2. The disadvantage 

of the other algorithms like GA and PSO is that they require fine tuning of parameters in order 

to obtain a feasible solution. Also, diversification and intensification are the two major 

components whose balanced combination is very important for the success of any metaheuristic 

algorithm. Harmony search successfully balances these two major components by pitch 

adjustment and harmony considering rate and therefore it ensures a certain level of efficiency 

and that the evolving system will not get trapped in the local minima. 

1.8 Motivation and Outline of Thesis 

The main objective of this project is the requirement of an efficient optimization algorithm that 

will be able to optimize complex designs problems such as for the advanced digital filters and 

neural networks making the filter processes much more efficient and noise free. Since the 

algorithm produced some effective results in the initial runs, hence it motivated me to explore 

more with the algorithm by applying it to different design problems and comparing the results 
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with those already present algorithms.  The coefficient values have to be optimized using an 

optimization algorithm for reducing the noise to the minimum and designing a good filter for 

real time applications. Likewise, for designing complex neural networks optimization algorithm 

plays a vital role in determining the weights and bias of the network. The weights and bias are 

the important optimization aspects which helps to reduce the error between the actual output 

and the desired output in such a way that the neural network will give the same output even by 

introducing some amount of noise at the input. There are some algorithms based on 

evolutionary methods which can design digital filters with comparatively less time. Various 

types of complex neural network designs have been adopted from [18] in my thesis which 

includes two layers neural network using XOR, Advanced feedforward neural networks (0-9) 

digit and also the two layer neural network design results for fuzzy inference networks. 

The thesis clearly presents Harmony Search algorithm and its applications in designing the 

advanced digital filter designs and neural network problems. 

The first chapter illustrates the theory about the digital filters, the various types of digital filters, 

the comparison between the two types and details about the types of filters have also been 

described. The conventional methods used for designing filters and common strategies used for 

the same have also been highlighted in Chapter 1. It basically contains the main goals of the 

thesis. 

In the second chapter, some of the state of art of methods for designing the FIR digital filter 

designs are discussed and the literature has been reviewed. The Harmony Search Algorithm, its 

pros and cons, strengths and weakness along with the improvements and the basic introduction 

to neural networks have been discussed in Chapter 2. 

The third Chapter describes the methodology or the creation of work required to obtain each of 

the Neural Networks and filter design results mentioned in the Chapter 4.  

Chapter 4 shows the evidences that the harmony search Algorithm can be used as a good 

alternative to the Parks McClellan algorithm through the results which have been shown. 

Chapter 5 states the conclusion of the thesis. 
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Review of Literature 

Digital filtering is a ubiquitous operation in digital signal processing applications and is realized 

using infinite impulse response(IIR) or Finite impulse response(FIR) filters. Although FIR 

Filter requires a large number of coefficients when compared to the IIR Filters, it is compared 

to IIR Filters due to stability and phase linearity properties.  

An optimization algorithm is a procedure which is executed iteratively by comparing various 

solutions to an optimum solution is found. The main objective of an optimization algorithm 

could be simply to minimize the cost of production and to maximize the efficiency of the of the 

production. In an optimal problem formulation, the optimal design is achieved by comparing 

few alternative solutions. In this particular method, the feasibility of each design solution is first 

investigated. Therefore, an estimate of underlying objective of each solution is compared with 

the others and the best solution is recorded. The design parameters, however, can vary from 

product to product. The purpose of the formulation is to create the mathematical model of the 

optimal design problem, which can be solved using optimization algorithm. 

The formulation of optimization algorithm begins with identifying the design variables which 

are primarily varied during the optimization process. The design problem involves many design 

parameters, of which some are highly sensitive to the proper working of the design. These 

parameters are known as the design variables. The constraints represent some functional 

relationships among the design variables and parameters satisfying certain physical 

phenomenon and certain resource limitations. There are mainly two types of constraints: 

Inequality constraints and Equality constraints. 

The learning problem in neural networks is formulated in terms of minimization of a loss 

function. The function is composed of error and regularization terms. The error term mainly 

evaluates how the neural network problem fits the data set. The regularization is used to prevent 

overfitting, by controlling the effective complexity of the neural network design. The loss 

function depends on adaptive parameters (bias and synaptic weights) of the neural network. We 

can group them conveniently into a single n-dimensional weight vector w. There are many 

training algorithms that can be used in the training process of the neural network. 

In this thesis study, I have made use of the Harmony Search Algorithm to solve the complex 

neural network design problems. This Algorithm has also been used in designing advanced 
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digital filter designs which can be used for many real-time applications. Digital filters are an 

essential part and one of the most important features of modern day circuit designs and plays a 

vital role in the improvement of the overall system by producing better results. Harmony Search 

Algorithm is just a successful example which transforms the qualitative improvisation process 

into some quantitative rules by idealization, thus turning the beauty and harmony of music into 

an optimization procedure through a search for a perfect harmony. 

2.1 Survey of Harmony Search Applications 

In the real world, modern science and industry are rich in the problems of optimization. HS was 

originally proposed by Geem [2] and applied to solve the optimization problem of water 

distribution networks in 2000, the applications of the HS have covered many areas including 

industry, optimization benchmarks, power systems, medical science, control systems, 

construction design, and information technology [3]. 

The Industry is a prominent area full of various practical optimization issues subject to multi-

modal, constrained, nonlinear, and dynamical. The HS algorithm proposed by Saka [4] 

determines the optimal steel section designations from the available British steel section table 

and implements the design constraints from BS5950. Recently, an enhanced harmony search 

(EHS) in [5] is developed enabling the HS algorithm to quickly escape from local optima. The 

proposed EHS algorithm is utilized to solve four classical weight minimization problems of 

steel frames including two-bay, three-storey planar frame subject to a single-load case, onebay, 

ten-storey planar frame consisting of 30 members, three-bay, twenty-four storey planar frames, 

and Spatial 744 member steel frame. In [6], the HS is used to select the optimal parameters in 

the tuned mass dampers [6]. Fesanghary et al. [7] propose a hybrid optimization method based 

on the global sensitivity analysis and HS for the optimal design of shell and tube heat 

exchangers. There is a lot of work focused on the optimization issues concerning power 

systems, such as cost minimization. A modified HS algorithm is proposed to handle non-convex 

economic load dispatch of real-world power systems. The economic load dispatch and 

combined economic and emission load dispatch problems can be converted into the 

minimization of the cost function [8]. Sinsuphan et al. [9] combine the HS with sequential 

quadratic programming and GA to solve the optimal power flow problems. The objective 

function to be optimized is the total generator fuel costs in the entire system. The chaotic self-

adaptive differential HS algorithm, proposed by Arul et al. [10], is employed to deal with the 

dynamic economic dispatch problem. Li and Duan [11] modify the HS by adding a Gaussian 
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factor to adjust the bandwidth (bw). With this modified HS, they develop a pre-training process 

to select the weights used in the combining of feature maps to make the target more conspicuity 

in the saliency map. In their method based on the HS, Fourie et al. [12] design a harmony filter 

using the improved HS algorithm for a robust visual tracking system. 

2.2 What is Harmony Search Algorithm? 

Harmony Search Algorithm is an emerging metaheuristic algorithm that was inspired by the 

observation that the aim of music is to search for a perfect state of harmony. There is a parallel 

idea between HS and how the Jazz musicians create harmony when they play music. 

HS algorithm is based on a few parameters: hmcr, par, and bw. The parameter hmcr is called 

the Harmony memory considering rate and it denotes the rate of choosing candidates from the 

Harmony Memory(HM) and generally ranges from 0.7 to 1. The parameter par is called the 

pitch adjusting rate and indicates the rate of choosing the neighboring value and can be selected 

from 0 to 1. The parameter bw is called the bandwidth denotes the amount of maximum rate of 

change of change in the pitch adjustment. 

2.3 Design of Harmony Search Algorithm 

This section discusses the projected effective harmony Search. Initially a brief outline about HS 

is given and lastly, the alteration procedures of the proposed effective Harmony Search are 

discussed. 

Harmony Search Algorithm is one of the efficient optimization algorithm developed by Geem 

et al. [13]. It is inspired by the music improvisation process. The analogy between music 

improvisation and optimization can be established by creating a correspondence between music 

player to the decision variable. In order to execute the technique in real time optimization each 

decision variable chooses and possible range together to make a solution. This solution is then 

improved by creating harmony memory, and pitch adjusting. Over the year various optimization 

algorithms [14-16] are proposed but HSA remains one of the best choices for function 

optimization. In order to introduce the HS algorithm for engineering optimization. [17].  

The various involved in Harmony Search algorithm are discussed as follows [13]: 

Step 1 Initialize harmony memory.  

Step 2 Improvising new harmony vectors.  
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Step 3 Update Harmony Memory.  

Step 4 Check Stopping criterion.  

During optimization, harmony search algorithm attempts to find the harmony vector x which 

minimizes (or maximizes) a specified objective function 𝑓(𝑥). The algorithm consists of four 

steps which are described below: 

The above four steps are discussed in the following subsections [1]-[4] [18]: 

1. Initialize the harmony memory: In this step, each parameter 𝑚 for 𝑚 = 1 𝑡𝑜 𝑀 of 

each of the 𝑃  initial harmony vectors 𝑥𝑝 = [𝑐𝑝1, 𝑐𝑝2, 𝑐𝑝3, … . , 𝑐𝑝𝑚]  for 𝑝 = 1 𝑡𝑜 𝑃  is 

generated randomly within the upper limit 𝑢 and the lower limit 𝑣 of the 𝑚𝑡ℎ parameter 

as:                  

𝑐𝑝𝑚 = 𝑣 + 𝑟𝑎𝑛𝑑 ∗ (𝑢 − 𝑣) 𝑓𝑜𝑟 𝑝 = 1 𝑡𝑜 𝑃 𝑎𝑛𝑑 𝑚 = 1 𝑡𝑜 𝑀     (2.1) 

          The harmony memory consisting of 𝑥𝑝 for 𝑝 = 1 𝑡𝑜 𝑃 are arranged in the ascending 

order of increasing objective function 𝑓(𝑥𝑝)  for 𝑝 = 1 𝑡𝑜 𝑃  such that 𝑓(𝑥1) ≤ 𝑓(𝑥2) ≤

𝑓(𝑥3)… .≤ 𝑓(𝑥𝑝) as: 

[

𝑐11 ⋯ 𝑐1𝑝
⋮ ⋱ ⋮
𝑐𝑝1 ⋯ 𝑐𝑝𝑚

]                                                           (2.2) 

2. Improvising a new solution- In this step, HS improvises 𝑄  harmony vectors 𝑥𝑚
′ =

[𝑐𝑞1
′ , 𝑐𝑞2

′ , 𝑐𝑞3
′ , … . . , 𝑐𝑞𝑚

′ ]  𝑓𝑜𝑟 𝑞 = 1 𝑡𝑜 𝑄 based on two considerations, namely memory 

considerations and pitch adjustment. 

 For the memory consideration, each parameter value 𝑐𝑞𝑚
′  for 𝑚 = 1 𝑡𝑜 𝑀 of the new 

harmony vector is randomly selected among the corresponding 𝑃  parameter values 

{𝑐1𝑚, 𝑐2𝑚, 𝑐3𝑚,……..,   𝑐𝑝𝑚} with a probability 𝐶 ∈ [0,1]. 

 

𝑐𝑞𝑚
′ = {

𝑐𝑞𝑚
′ ∈ {𝑐1𝑚, 𝑐2𝑚, 𝑐3𝑚, … , 𝑐𝑝𝑚} 𝐶 ∈ [0,1]               (2.3𝑎)

𝑐𝑞𝑚
′ = 𝑐𝑞𝑚

′ (𝑜𝑙𝑑)                                                          (2.3𝑏)
 

            For the pitch consideration, an additional search for good harmony in the search space 

is achieved by adjusting each continuous parameter 𝑐𝑞𝑚
,

 in a new solution vector at a pitch 

adjusting rate (𝐴) for 𝐴 ∈ [0,1] as 

           𝑐𝑞𝑚
′ = {

𝑐𝑞𝑚
′ + 𝑟𝑎𝑛𝑑𝑛 ∗ 𝑏𝑤                                                    (2.4𝑎)

𝑐𝑞𝑚
′ = 𝑐𝑞𝑚

′                                                                    (2.4𝑏)
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where 𝑟𝑎𝑛𝑑𝑛  is the normally distributed pseudorandom numbers and 𝑏𝑤  is an arbitrary 

distance bandwidth which determines the maximum change to each parameter of the new 

harmony vector. 

The upper and lower bound are applied to each parameter of each of the 𝑄 new harmony vectors 

such that: 

Replace any new parameter 𝑐𝑞𝑚
′ < 𝑣                                    (2.5𝑎) 

Replace any new parameter 𝑐𝑞𝑚
′ > 𝑢                                    (2.5𝑏) 

3. Harmony Memory Update: In order to update the population with 𝑄 new harmony vectors 

𝑥𝑞
′ = [𝑐𝑞1

, , 𝑐𝑞2
′ , 𝑐𝑞3

′ , … , 𝑐𝑞𝑀
′ ]  for 𝑞 = 1 𝑡𝑜 𝑄 , the objective function 𝑓(𝑥𝑞

′ )  of each of the 

harmony vectors is calculated. Among the 𝑃 existing harmony vectors and 𝑄 new harmony 

vectors, the top 𝑃 harmony vectors based on the ranking of their objective functions are 

selected for next improvisation. 

4. Stopping criterion: The improvisation process in steps 3 and 4 is terminated when the 

maximum number of improvisations is reached. Finally, the best harmony memory vector 

𝑥𝑏𝑒𝑠𝑡  is selected among all the harmony vectors to be the solution for the optimization 

problem. 

𝒙𝒃𝒆𝒔𝒕 ∈ (𝒙𝟏, 𝒙𝟐, 𝒙𝟑……𝒙𝒑)                                 (2.6) 

 

2.4 Improvements in Harmony Search Algorithm 

Because the effects of optimization are mostly depended on the initialization of HM, the 

selection of parameters such as HMCR and the new ways of solution. So, if the harmony search 

algorithm faces with bad optimization or unsuitable parameters selection or complex 

optimization objective, some shortage such as weak local searching ability and convergence 

precision will appear. Since the harmony search algorithm was invited, some experts put 

forward many effective suggestions to improve the algorithm, which include two aspects, one 

is improving algorithm itself (including HM parameters optimization) and other is combining 

with other algorithms.  

Basic Harmony Search Algorithm uses fix value for PAR and BW and initializes these 

parameters in step 1, and these parameters cannot be updated in the iterative process. Because 

the small PAR and big BW results in bad algorithm effect, so it needs to add definite iterative 

items to find the best value. 
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In 2007, Mahdevi put forward the Improved Harmony Search Algorithm(IHS), it brought 

forward the dynamic adaptive PAR and BW strategy, and the two parameters can vary 

dynamically between maximum and minimum, while the PAR was increasing linearly with the 

number of iterations and the BW index decreasing with the number of iterations. 

𝑃𝐴𝑅(𝑔𝑛) = 𝑃𝐴𝑅𝑚𝑖𝑛 +
(𝑃𝐴𝑅𝑚𝑎𝑥 − 𝑃𝐴𝑅𝑚𝑖𝑛)

𝑁𝐼
× 𝑔𝑛    (2.7) 

Where, 

𝑃𝐴𝑅(𝑔𝑛) = Pitch Adjusting Rate for each generation 

𝑃𝐴𝑅𝑚𝑖𝑛=   Minimum Pitch Adjusting Rate 

𝑃𝐴𝑅𝑚𝑎𝑥 = Maximum Pitch Adjusting Rate 

𝑁𝐼 = Number of Solution vector generation 

𝑔𝑛 = Generation Number 

𝑏𝑤(𝑔𝑛) = 𝑏𝑤𝑚𝑎𝑥𝑒𝑥𝑝(𝑐. 𝑔𝑛)                                      (2.8) 

𝑐 =
𝑙𝑛 (

𝑏𝑤𝑚𝑖𝑛
𝑏𝑤𝑚𝑎𝑥

)

𝑁𝐼
                                                             (2.9) 

2.5 Why is Harmony Search successful? 

Presently in the event, when we compare HS with other metaheuristic algorithms, we can 

recognize its methods for taking care of intensification and diversification in the HS system, 

and presumably, comprehend why it is an exceptionally fruitful metaheuristics calculation. In 

the HS calculation, diversification is basically measured by the pitch adjustment and 

randomization [19]. In this case, there are two subcomponents for diversification, which may 

be an essential component for high proficiency of the HS strategy. The principal subcomponents 

of making new music or creating new arrangements by means of randomization would be in 

any event at the same level of effectiveness as different calculations by randomization. In any 

case, an extra subcomponent for Harmony search diversification is the pitch adjustment. Pitch 

adjusting is carried out by adjusting the pitch in the given bandwidth by a small random amount 

relative to the existing pitch or solution from the harmony memory. Pitch adjustment is the 

refinement process of local solutions. Both the memory considering and the pitch altering 
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guarantee that the great local arrangements are held while the randomization and the harmony 

memory considering will investigate the worldwide search space adequately. The 

randomization explores the search space more efficiently and effectively; while the pitch 

adjustment ensures that the newly generated solutions are good enough, and are not too far from 

the existing good solutions. The intensification factor in HS is mainly represented by Harmony 

Memory Accepting Rate 𝑟𝑎𝑐𝑐𝑒𝑝𝑡 . A high Harmony acceptance rate means that the good 

solutions from the history/memory are likely to be selected or inherited. Otherwise, if the 

acceptance rate is too low then the solutions will converge more slowly. This intensification is 

enhanced by the controlled pitch adjustment. Such interactions between various components 

could be another important factor for the success of HS algorithm over other algorithms. 

2.6 Introduction to Neural Networks 

Neural networks have the potential for very complicated behavior and their ability to learn is 

one of their major advantages over the traditional non-linear system. The massive 

interconnections for inter-processing units in multilayer networks provide the tool for neural 

network models. Neural networks are currently used for pattern recognition and fuzzy logic as 

well as in control.  

Computers are great at solving algorithmic and math problems, but often the world can’t easily 

be defined with a mathematical algorithm. The key to Artificial Neural Networks(ANNs) is that 

their design enables them to process information in a similar way to our own biological brains, 

by drawing inspiration from how our own nervous system functions. 

One of the most impressive features of Artificial Neural Networks is their ability to learn. The 

artificial neural networks are inspired by the biological nervous system, especially the brain. 

ANNs can model the learning process by adjusting the weighted connections found between 

the neurons in the network. This effectively emulates the strengthening and weakening of 

synaptic connections found in our brains. The strengthening and weakening of connections is 

what enables the network to learn. Learning algorithms are extremely useful when it comes to 

certain problems that either can’t be practically written by a programmer or can be done more 

efficiently by a learning algorithm. 

There are different algorithms that can be used for training Artificial Neural Networks, each 

with their own separate advantages and disadvantages. The learning process within artificial 
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neural networks is the result of altering the network’s weights with some kind of learning 

algorithm. The objective is to find the set of solution matrix of the weights. 

There are three major learning paradigms: 

a) Supervised learning: The learning algorithm would fall under this category that if the 

desired output for the network is provided with the input while training the network. By 

providing the neural network with both the input and output pair, it is possible to 

calculate an error based on its target output and the actual output. It can then use that 

error to make connections to the network by updating its weights. Supervised learning 

is performed off-line. 

b) Unsupervised learning: This learning algorithm uses no external teacher and is based 

on the only local information. It is also referred to as self-organization, in the case that 

it self-organizes the data presented to the network and detects their emergent collective 

properties. Paradigms of unsupervised learning are Hebbian learning and competitive 

learning. From human neurons to artificial neurons, the aspect of learning concerns the 

distinction or not of separate phase, during which the network is trained and a 

subsequent operation phase. A neural network leans-on-line if it learns and operates at 

the same time. Unsupervised learning is performed on-line. 

2.7 Why Neural Networks? 

Neural networks take a different approach to problem solving than that of conventional 

computers. Conventional computers take an algorithmic approach; i.e. the computer follows a 

set of instructions in order to solve a problem. Unless the specific steps that the computer needs 

to follow are known the computer is not able to solve the problem. This restricts the problem-

solving ability of conventional computers to problems that we already understand and know 

how to solve. Neural networks process information in the same manner that the human brain 

does. The network is composed of a large number of highly interconnected processing 

elements(neurons) working in parallel to solve a particular problem. Neural networks learn by 

example. They cannot be programmed to solve a particular task. 

Neural networks are widely used in pattern recognition because of their ability to generalize 

and to respond to unexpected inputs/patterns. During training, neurons are taught to recognize 

various specific patterns and whether to fire or not when that pattern is received. If a pattern is 

received during the execution stage that is not associated with the output, the neuron selects the 
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output that corresponds to the pattern from the set of patterns that it has been taught of, that is 

least different from the input. This concept is called generalization. 

2.8 Types of Neural Networks 

2.8.1 Feedforward neural networks 

 

Feedforward neural networks [18] are artificial neural networks where the connections between 

units do not form a cycle. Feedforward neural networks were the first type of artificial neural 

networks invented and are simpler than their counterpart. They are called feedforward because 

information only travels forward in the network, first through the input nodes, then through the 

hidden nodes and finally through the output nodes. 

Feedforward neural networks are primarily used for supervised learning in cases where the data 

needs to be learned is neither sequential nor time dependent. That is, feedforward neural 

networks compute a function 𝑓  on fixed size input 𝑥  such that 𝑓(𝑥) ≈ 𝑦 for training pairs 

(𝑥, 𝑦). 

Feedforward neural networks are the ideal candidates for performing classification (e.g. 

categorical) tasks, and the activation of hidden units can be used to analyze their internal, 

categorical classifications. 

2.8.2 Fuzzy neural networks 

 

A fuzzy neural network [18], [20]-[21] combines the features of fuzzy systems (with an ability 

to process fuzzy information using fuzzy algorithms) and the features of neural networks (with 

a learning ability and a high speed parallel structure) to form a network which can learn from 

the given data and environments. 

There are mainly three types of fuzzy neural networks [18], [20]-[21], namely Min-Competitive 

Fuzzy Neural Network (MCFNN), Min-Max Fuzzy Neural Network (MMFNN) and Min-Sum 

Fuzzy Neural Network (MSFNN) which can be designed for pattern classification, recognition, 

interpolation and other applications. 

The MCFNN can be combined with the Maximum Fuzzy Neurons (Max-FNs) and the Input 

Fuzzy Neurons (Input-FN’s) to form a fuzzy neural network for pattern recognition [18], [20]. 
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The MCFNN, MMFNN and the MSFNN can be used for non-fuzzy and fuzzy pattern 

classification [18], [21]. 

Efficient self-organizing learning algorithms can be used for training the networks. After being 

trained by the labeled data, each of the fuzzy neural networks can find the fuzzy and hard 

partition between the classes. Each fuzzy neural network can build the decision boundaries by 

creating subsets of the pattern space. These are free model estimators and do not assume how 

the outputs depend on the inputs. Instead, each of them adjusts itself to a given training set by 

learning algorithms and decide the boundaries of classes. When given an unknown pattern, each 

fuzzy network uses the used the learned knowledge to estimate the membership value of the 

pattern in each class and classify the input pattern according to the membership values. Each of 

the fuzzy neural networks is represented by a set of fuzzy inference rules and these networks 

have been used for various applications. 
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Methodology and Analysis 

3.1 FIR Filter Design 

In this thesis, I have designed two types of FIR Filters using Harmony Search Algorithm Linear 

Phase FIR and General Phase FIR [25]. 

The objective function and problem formulation for a specific type of filter and neural network; 

the parameters of the optimization methods have been employed in this section. The objective 

is to minimize the magnitude and group delay error of FIR filters and the search continues until 

the objective function converges. 

The transfer function 𝐻(𝑐, 𝑧) of a digital filter with the coefficient vector 𝒄 of dimension 𝑲 × 𝟏 

is given, its frequency response 𝐻(𝑐, 𝑤) can be expressed in terms of magnitude response 

|𝐻(𝑐, 𝑤)| and phase response 𝜃(𝑤) as: 

      𝐻(𝑐, 𝑤) = |𝐻(𝑐, 𝑤)|𝑒𝑗𝜃(𝑐,𝑤)                                             (3.1) 

The group delay 𝜏(𝑐, 𝑤) of a digital filter can be computed by taking the negative partial 

derivative of the phase response 𝜃(𝑐, 𝑤) with respect to the frequency 𝑤 as: 

𝜏(𝑐, 𝑤) = −
𝜕𝜃(𝑐, 𝑤)

𝜕𝑤
                                                              (3.2) 

Then the objective function 𝒆(𝒄) of the least pth frequency response error is defined by: 

𝒆(𝒄) =∑𝑊(𝑤)

𝜋

0

|𝐻(𝑐, 𝑤 − 𝐻𝑑(𝑤))|
𝑝
                               (3.3) 

The discrete frequency weighing function 𝑊(𝑤) can be normalized such that  

∑𝑊(𝑤𝑖)

𝐼

𝑖=1

= 1                                                                          (3.4) 

Where 𝐼= Number of frequency points 

The optimization problem is to search for an optimal coefficient vector 𝒄  that minimizes the 

objective function 𝑒(𝑐)  as: 
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min
𝑐
𝑒(𝑐)                                                                                        (3.5) 

For each of the linear phase FIR Filters the passband magnitude error, stopband magnitude error 

is calculated and then the total error is calculated which needs to be optimized whereas for each 

of the general phase FIR Filters the magnitude as well as the group delay error is calculated.  

 

3.2 Neural Network Design 

3.2.1 Design using XOR neural network 

 

One of the common backpropagation problems that can be solved using neural networks is the 

Exclusive-OR problem [18] which requires the network to be trained in such a manner that it is 

able to produce the similar inputs and distinguished input results separately, with similar inputs 

producing 0 at the output and different inputs with 1 at the output. A network has been designed 

for this particular problem with 2 hidden neurons as shown in Figure 3.1. The network contains 

9 parameter values (6 weighing coefficients, 3 bias values) that need to be optimized in order 

for the network to produce successful exclusive-OR results which are later tested and verified 

in order to prove the neural network parameters produce the same results for all sort of input 

noise and values. 

 

Figure 3.1 Neural network design for two input XOR problem [18] 

The neural network consists of two inputs (denoted by x1 and x2), one bias value of -1  denoted 

by b1 and b2 to the input of each of the two hidden neurons; two hidden neurons with outputs 

denoted by (𝑦1
[1]
 𝑎𝑛𝑑 𝑦2

[1]
).   
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The sum of the scaled inputs of each of the three neurons 𝑧𝑖
[ℎ]

 for 𝑖 = 1,2;… . . ℎ = 1,2 is passed 

through binary sigmoid activation function y with the slope parameter defined by: 

𝑦𝑖
[ℎ]
=

1

1 + 𝑒−𝑟𝑛𝑧𝑖
[ℎ]                                                            (3.6) 

The slope parameter determines the slope of the transition region within the range −𝐿 ≤ 𝑧 ≤ 𝐿 

as well as determining the value of ±𝐿. The function saturates to 1 or 0. The slope parameter 

here is assumed as 2. 

The objective function to be minimized is equal to the sum of absolute output differences over 

the four XOR patterns: 

𝑒(𝑐) =∑|𝑦1
2 − 𝑦𝑖|

4

𝑖=1

                                                      (3.7) 

Stepwise Procedure for execution: 

a. The inputs to each of the two hidden neurons have been defined as 𝑥1 𝑎𝑛𝑑 𝑥2 along 

with the output y. All these values were defined inside a for loop which is created for 

the four XOR patterns. 

b. 𝑧1 𝑎𝑛𝑑 𝑧2 is calculated based on the two scaled inputs and its respective weighing 

coefficients 𝑤1,𝑤2,𝑤3 𝑎𝑛𝑑 𝑤4.  

c. 𝑇ℎ𝑒 𝑠𝑖𝑔𝑚𝑜𝑖𝑑  activation function y for each value of i is calculated based on the slope 

of the transition range 𝑟𝑛 and the respective values of 𝑧1  𝑎𝑛𝑑 𝑧2. 

d. Then the net output 𝑦 of the XOR neural network is calculated using equation (3.6). 

e. The last step is to calculate the value of e(c) which is the sum of the absolute output 

differences over the four XOR patterns and serves as the objective function required to 

be minimized by the Harmony Search Algorithm. 

f. The search continues until the objective function is optimized and the output obtained 

is equal to the pattern of the ideal output. 

3.2.2 Design using feedforward neural networks 

 

This is a simple design for a feedforward neural network problem using the simplified sigmoid 

function [18]. The idea is to simplify a more complex neural network problem with a large 

number of input and weighing function values in order to produce predefined output results. In 
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this particular problem, the first layer contains 100 bits as input which may be -1 or +1. There 

are 10 hidden neurons in the second layer and 4 output neurons in the third layer. The output of 

a neuron is the sigmoid activation function produces either negative or positive 1. In this 

multilayer Feedforward neural network system, the output of a neuron 𝑗 at a layer ℎ due to a 

𝑘th input pattern 𝑋𝐾 can be expressed as: 

 

𝑦𝑗𝑘
[ℎ]
= 𝐹 (∑ 𝑤𝑖𝑗

[ℎ]
𝑦𝑖𝑘
[ℎ−1]

+ 𝑏𝑗
[ℎ]

𝑁ℎ−1

𝑖=1

)                                          (3.8) 

 

             for 𝑗 = 1 𝑡𝑜 𝑁ℎ, ℎ = 1 𝑡𝑜 𝐿, 𝑘 = 1 𝑡𝑜 𝐾 

 

In equation (3.8) , 𝑦𝑖𝑘
[ℎ−1]

 is the output of the neuron 𝑖  at layer ℎ − 1 , 𝑤𝑖𝑗
[ℎ]

 is the weight     

between a neuron 𝑖 at layer ℎ − 1 and a neuron 𝑗 at layer ℎ, 𝑏𝑗
[ℎ]

 is the bias of the neuron 𝑗 at 

the layer ℎ; 𝑁ℎ is the number of neurons at layer ℎ.F represents sigmoid activation function. 

With 1 hidden layer, 10 hidden neurons and 4 output neurons, the hundred bits of input require 

1000 weighing functions needing to be trained in the first layer. For the second stage, the 

outputs of each of the hidden neurons calculated by using eqn. 3.8 are then again multiplied 

with a weight thus requiring 40 more weights to be optimized for the 4 output neurons. Each 

neuron requires a bias that also needs to be optimized to a certain value in order to produce the 

desired output results therefore 14 neurons will require 14 bias coefficients to be trained during 

the optimization. Therefore, a total of 1054 parameters comprising of 1040 weight values and 

14 bias values are required to be optimized in order to achieve a predefined set of output values. 

These parameters are optimized using Harmony Search algorithm and are then compared to the 

predefined output function values. 
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Figure 3.2 Training pattern pairs [22] 

 

 

Stepwise procedure for execution: 

a. The first hundred bits of input is defined using a matrix for each of the 0-9 pixels which 

may be -1 or +1. 

b. The output required to be obtained is defined. 

c. The switch case concept has been applied to the program in order to increase the 

efficiency of the program. For each of the parameters the number of hidden neurons 

required to be used is defined in this section. For instance, for 1054 parameters the 

number of hidden neurons required to be used is 10. Similarly for 844 parameters the 

number of hidden neurons required is 8. 

d. The first layer is defined with the number of weighing functions required to be trained 

for 100 bits of inputs and its sum is calculated. A for loop is used for defining the number 

of patterns and number of hidden neurons. Each input pattern contains hundred digits 

which is also defined using a for loop. The number of weighing functions required to be 

trained depends on the number of hidden neurons multiplied by the number of input bits. 

e. In the second layer the output for each of the hidden neurons is calculated using 

equation 3.8 and the number of weights required to be optimized is calculated by 

multiplying the number of hidden neurons by four output neurons. The number of k 

patterns and output neurons is defined using a for loop in layer 2. 

f. In the next step the bias coefficients are trained during the optimization procedure. The 

number of bias coefficients is calculated based on the summation of the number of 

hidden neurons and the four output neurons. This is how the number of parameters is 

calculated in order to achieve a predefined set of output values. 
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g. The parameter values and the output function values are calculated along with the 

errors for each of the four output neurons. The error is calculated as the difference 

between the absolute values of actual output and obtained output. Then the Mean square 

error of each of the four output neurons have been calculated by taking the sum of 

square of the errors and dividing the sum of squares by forty. 

h. The parameters are optimized using Harmony Search Algorithm and then compared to 

the predefined output function values. The search continues until the obtained output is 

equal to the ideal output (without noise) and the Mean square errors obtained are 

almost equal to zero.  

 

3.2.3 XOR design using min-sum fuzzy inference network 

 

Min Sum Fuzzy Inference Network MSFIN) [18], [21] is a three-layer feedforward network. 

TRAN-FN’s are used in the first layer and MIN-FN’s are used in the second layer for the 

MSFIN. The weight functions from the first to the second layer of the MSFIN are different 

from those of MMFIN (Minmax Fuzzy Inference Networks). The algorithms for the 𝑗𝑡ℎ MIN-

FN in the second layer of the MSFIN classifier are as follows: 

𝑠𝑗
2 = min

𝑖=1
(𝑤𝑖𝑗

[1]
(𝑥𝑖))                              𝑗 = 1,2…… . .𝑀                       (3.9) 

𝑤𝑖𝑗
[1](𝑥𝑖) = {

1 + 𝑎𝑖𝑗
[1]
(𝑥𝑖 − 𝜃𝑖𝑗)      𝑖𝑓 1 ≥ 1 + 𝑎𝑖𝑗

[1]
(𝑥𝑖 − 𝜃𝑖𝑗) ≥ 0

1 − 𝑎𝑖𝑗
[1]
(𝑥𝑖 − 𝜃𝑖𝑗)      𝑖𝑓 1 ≥ 1 − 𝑎𝑖𝑗

[1]
(𝑥𝑖 − 𝜃𝑖𝑗) ≥ 0 

0,                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (3.10) 

where 𝑎𝑖𝑗
[1], 𝑎𝑖𝑗

[2] 𝑎𝑛𝑑 𝜃𝑖𝑗  are the parameters of the triangular membership function which are to 

be determined by the learning algorithm. 

SUM-FN is used in the third layer of MSFIN. The algorithm is: 

  𝑠𝑝
3 =

{
 
 

 
 ∑ 𝑤𝑗𝑝

2 𝑠𝑗
2𝑀

𝑗=1

∑ 𝑠𝑗
2𝑀

𝑗=1

         𝑖𝑓 ∑𝑠𝑗
2 ≠ 0

𝑀

𝑗=1

0                       𝑖𝑓  ∑𝑠𝑗
2

𝑀

𝑗=1

= 0

                                                   (3.11) 
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𝑤𝑗𝑝
2  is the connection weight between the 𝑗𝑡ℎ MIN-FN in the second layer and the 𝑝𝑡ℎ SUM-

FN in the third layer. The training data sets for the fuzzy exclusive XOR Problem is recorded 

in TABLE 3.1.  

Stepwise procedure for execution: 

a. In the first section the number of training data sets(Table 3.1) and the number of hidden 

neurons is defined in a for loop and the triangular membership function is calculated 

using equation 3.10. The minimum of each neuron is calculated. The sum of the first 

layer is calculated. 

b. In the second layer 𝑠𝑗 i.e. the sum from the first layer is multiplied by the corresponding 

connection weight using equation (3.11).The algorithm for the jth MIN-FN is calculated 

here. Then the sum of the second layer is calculated. 

c. The third layer calculates the pth SUM-FN. The errors for each of the neurons is 

calculated by taking the difference of the absolute values of actual output and obtained 

output. The Mean Square error is calculated by dividing the sum of square of the errors 

by nine since the number of training patterns are nine.The error rate is also calculated. 

d. The errors for each of the neurons are required to be minimized using Harmony Search 

Algorithm and the search continues until the desired results are obtained. 

 

 

 

 

Table 3.1 Training data sets: Nine training Samples for Fuzzy Exclusive XOR Problem 

 

For each of the objective functions that are designed for the respective problem, the Harmony 

search algorithm has been coded in the main function using all its relevant control parameters 

𝑋2 0.0 0.5 1.0 

𝑋1 𝑦1, 𝑦2 𝑦1, 𝑦2 𝑦1,𝑦2 

0.0 0,1.00 0,0 1.00,0 

0.5 0,0 0,0 0,0 

1.0 1.00,0 0,0 0,1.00 
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and has been implemented to design both the FIR Filters and the Neural Networks. The 

algorithm was found to be successful due to its extensive exploration and exploitation property 

in the search space. Though the algorithm has been found to be extremely parameter sensitive 

the best strategy that has been observed is to set the Harmony Consideration rate (HMCR) very 

high and the Pitch adjustment rate (PAR) low for better results. The value is usually set between 

(0.9 − 1) for HMCR and (0.3 − 0.5) for PAR. 
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Experiments and Specifications 

According to [25], I have designed four types of Linear phase FIR Filters i.e. Lowpass, 

Highpass, Bandpass and Bandstop filters of order 24 ; two types of filters for order 48 i.e. 

Lowpass and Bandpass and two types of General phase FIR filters i.e. Lowpass and Bandpass 

filters of order 24. For the general phase FIR filters of 24 order the number of iterations required 

were 2000 for lowpass and 2000 for bandpass. For linear phase FIR filters of order 48 the 

number of iterations required were 5000 and 6000. For linear phase FIR filters of order 24 the 

number of iterations required were 3000 for lowpass,2000 for bandpass, 3000 for highpass and 

2000 for bandstop. Each of the filter designs using Harmony Search algorithm were compared 

with the state of art of design i.e. Parks McClellan (FIRPM) algorithm. The specifications of 

the ACER laptop used for execution of the results are AMP Quad Core Processor with TURBO 

Core Technology upto 3.40 GHz, AMD Redeon R7 Graphics,16GB DDR4 Memory and 1000 

GB HDD. In each of the tables given below, ℎ(𝑛) corresponds to the elements of each of the 

coefficient vector  𝑐. 

4.1 Results 

For Type I, LP-FIR filter of order 24, Filter designs using HS are given below: 

4.1.1  Linear phase order 24 FIR filter design obtained Using HS 

 

Figure 4.1 Order 24 linear phase lowpass FIR digital filter using HS 
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Table 4.1 Coefficients of order 24 Type I Lowpass LP-FIR filter by HS 

          ℎ(𝑛)           Coefficients          ℎ(𝑛)      Coefficients 

  h (1) = h (25)   -0.350237552828043 

 

 h (8) = h (18)    -0.072649905467191 
 

  h (2) = h (24)   -0.565252101711701 

 

 h (9) = h (17)    -0.033197972446944 
 

  h (3) = h (23)   -0.253185656265041 

 

 h (10)=h (16)     0.028746381580727 

 

  h (4) = h (22)    0.032547044606794 
 

 h (11) =h(15)      0.053433481135664 
 

  h (5) = h (21)    0.142361273702732 

 

 h (12) =h(14)      0.038835320237712 
 

  h (6) = h (20)    0.081416921142883 

 

 h (13) =h(13)    -0.030929528348338 

 

  h (7) = h (19)   -0.028252610807596 
 

  

 

 

Figure 4.2 Order 24 linear phase bandpass FIR digital filter using HS 
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              Table 4.2 Coefficients of order 24 Type1 Bandpass LP-FIR filter by HS 

          ℎ(𝑛)           Coefficients          ℎ(𝑛)      Coefficients 

  h (1) = h (25)   0.350303134708427 

 

 h (8) = h (18)    0.047079368719908 
 

  h (2) = h (24)   0.052209310071158 

 

 h (9) = h (17)   -0.107236712478247 
 

  h (3) = h (23)  -0.551036508540813 

 

 h (10)=h (16)   -0.086029699446602 

 

  h (4) = h (22)  -0.093899507511783 
 

 h (11) =h(15)     0.046593406215097 
 

  h (5) = h (21)   0.228883288820410 

 

 h (12) =h(14)   -0.005652692935345 
 

  h (6) = h (20)   0.032025438939093 

 

 h (13) =h(13)    0.011843243684736 

 

  h (7) = h (19)   0.023604472736934 
 

  

 

 

                     Figure 4.3 Order 24 linear phase highpass FIR digital filter using HS 
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Table 4.3 Coefficients of order 24 Type1 Highpass LP-FIR filter by HS 

          ℎ(𝑛)           Coefficients          ℎ(𝑛)      Coefficients 

  h (1) = h (25)  -0.499820574150641 

 

 h (8) = h (18) -0.074222182119480 
 

  h (2) = h (24)   0.634523380847690 

 

 h (9) = h (17)   0.000375203770619 
 

  h (3) = h (23)   0.000357974532578 

 

 h (10)=h (16)   0.051272559778609 

 

  h (4) = h (22)  -0.204376733181727 
 

 h (11) =h(15)    0.000304996944570 
 

  h (5) = h (21)   0.000369942776821 

 

 h (12) =h(14)   -0.064917786714292 
 

  h (6) = h (20)   0.115655528658297 

 

 h (13) =h(13)    0.000130710993405 

 

  h (7) = h (19)   0.000367750795238 
 

  

 

 

Figure 4.4 Order 24 linear phase bandstop FIR digital filter using HS 
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Table 4.4 Coefficients of order 24 Type1 Bandstop LP-FIR filter by HS 

          ℎ(𝑛)           Coefficients          ℎ(𝑛)      Coefficients 

  h (1) = h (25)  0.744112519996535 

 

 h (8) = h (18)    0.031448299802474 

  h (2) = h (24) -0.038178211008451 

 

 h (9) = h (17)   -0.006067218708003 
 

  h (3) = h (23)  0.447923987568812 

 

 h (10)=h (16)    0.014756011526648 

 

  h (4) = h (22)  0.088740783386581 
 

 h (11) =h(15)   -0.046961029411774 
 

  h (5) = h (21) -0.291105613775601 

 

 h (12) =h(14)   -0.066086576947304 
 

  h (6) = h (20) -0.082217719472732 

 

 h (13) =h(13)    0.032709290917292 

 

  h (7) = h (19)  0.119815317593663 
 

  

 

4.1.2 Linear Phase Results compared with FIRPM for order 24 

For Type I order 24, Linear Phase filters designed using HS were compared with the state of 

art of designs using PM algorithm. 

 

Figure 4.5 Lowpass FIR filter comparing HS and FIRPM 
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Figure 4.6 Bandpass FIR filter comparing HS and FIRPM 

                             

 

Figure 4.7 Highpass FIR filter comparing HS and FIRPM 
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Figure 4.8 Bandstop FIR filter comparing HS and FIRPM 

         

Table 4.5 Order 24 FIR type 1 filter design results comparison (PM: Parks McClellan; HS: 

Harmony Search) 

Filter  Alg Peak(Stopband1) 

error 

Peak(Passband) 

error 

Peak(Stopband2) 

error 

Time 

elapsed(sec) 

Iterations 

Lowpass HS 0.046628260027534 0.044666427086463 - 77.348587 3000 

 PM 0.046804417806560 0.044663349407852 - 0.049528 - 

Bandpass HS 0.059338371436313 0.061796132957827 0.064082926953406 74.295309 2000 

 PM 0.059579921275612 0.061630490482057 0.063817460882562 0.182275  

Highpass HS 0.045290834602924 0.048374884643127 - 129.882131 3000 

 PM 0.045273829394664 0.048082904678732 - 0.183603 - 

Filter  Alg Peak(Passband1) 

error 

Peak(Stopband) 

error 

Peak(Passband2) 

error 

Time 

elapsed(sec) 

Iterations 

Bandstop HS 0.053218190592352 0.055317396941249 0.057826084207768 75.851723 2000 

 PM 0.053132020244947 0.055140706326915 0.057141822013960 0.190047  
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4.1.3 Linear Phase order 48 results obtained Using HS 

For Type I, LP-FIR filter of order 48, Filter designs using HS are given below: 

 

Figure 4.9 Order 48 linear phase lowpass FIR digital filter using HS 
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Table 4.6 Coefficients of order 48 Type1 Lowpass LP-FIR filter by HS 

          ℎ(𝑛)           Coefficients          ℎ(𝑛)      Coefficients 

  h (1) = h (49)   -0.352251700188307 h (14) =h (36)    -0.030936996191454 
 

  h (2) = h (48)   -0.568281184170916 h (15) =h (35)    -0.005923780693295 
 

  h (3) = h (47)   -0.252443433102352 

 

h (16) =h (34)     0.018577221563863 

 

  h (4) = h (46)    0.036519496366527 h (17) =h (33)      0.018584013068112 
 

  h (5) = h (45)    0.146955245209471 

 

h (18) =h (32)      0.000510603408968 
 

  h (6) = h (44)    0.081553019599817 

 

h (19) =h (31)    -0.013180094027982 

 

  h (7) = h (43)   -0.033958722373520 h (20) =h (30)    -0.010513552330539 

  h (8) = h (42)   -0.080402902213771 

 

h (21) =h (29)     0.001753422586218 

  h (9) = h (41)   -0.036880265716685 
 

h (22) =h (28)     0.008607651735627 

 h (10) = h (40)    0.029613946733669 
 

h (23) =h (27)     0.005963507675716 

 h (11) = h (39)    0.049671031599446 

 

h (24) =h (26)    -0.001109695183876 

 h (12) = h (38)    0.016559466462641 

 

h (25)     -0.006997367396814 

 h (13) = h (37)   -0.024255040884726   
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Figure 4.10 Order 48 linear phase bandpass FIR digital filter using HS 
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Table 4.7 Coefficients of order 48 Type1 Bandpass LP-FIR filter by HS 

          ℎ(𝑛)           Coefficients          ℎ(𝑛)      Coefficients 

  h (1) = h (49)   0.356276607381141 h (14) =h (36)    -0.018822185172538 
 

  h (2) = h (48)   0.058406454737794 h (15) =h (35)    -0.037862669876357 

  h (3) = h (47)  -0.558783198285375 h (16) =h (34)     0.000078752517054 

  h (4) = h (46)  -0.106140643669705 h (17) =h (33)     -0.002928708021000 
 

  h (5) = h (45)   0.224822827668657 h (18) =h (32)     0.002485914158717 

  h (6) = h (44)   0.035674626523712 h (19) =h (31)     0.022726216510685 

 

  h (7) = h (43)   0.036829784372809 h (20) =h (30)     0.003856380313290 

  h (8) = h (42)   0.063163275710184 
 

h (21) =h (29)    -0.012244614366438 

  h (9) = h (41)  -0.101527156684745 h (22) =h (28)    -0.004991469559354 

 h (10) = h (40)  -0.076430796730980 h (23) =h (27)    -0.006681096771392 

 h (11) = h (39)   0.010845194001327 
 

h (24) =h (26)     0.000634917771595 

 h (12) = h (38)   0.017763420355727 
 

h (25)     -0.006997367396814 

 h (13) = h (37)   0.046444592625196   
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4.1.4 Linear Phase Results compared with FIRPM for order 48 

For Type I order 48, Linear Phase filters designed using HS were compared with the state of 

art of designs using PM algorithm. 

 

Figure 4.11 Lowpass FIR Filter comparing HS and FIRPM 

 

Figure 4.12 Bandpass FIR Filter comparing HS and FIRPM 
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Table 4.8 Order 48 FIR type 1 filter design results comparison (PM: Parks McClellan; HS: 

Harmony Search) 

Filter  Alg Peak(Stopband1) 

error 

Peak(Passband) 

error 

Peak(Stopband2) 

error 

Time 

elapsed(sec) 

Iterations 

Lowpass HS 0.006322975019476 0.005518869333202 - 218.325517 5000 

 PM 0.004620232061237 0.004630930079829 - 0.417 - 

Bandpass HS 0.009021703930327 0.008856677587438 0.011149104523132 177.263734 6000 

 PM 0.006700546942702 0.006700259956931 0.006699594292274 0.134  

 

 

      Table 4.9 Lowpass, Highpass, Bandpass, and Bandstop digital filter cutoff frequencies 

          𝑤𝑠1       𝑤𝑝1       𝑤𝑝2 𝑤𝑠2 

            LP           -          -        0.30𝜋          0.40𝜋 

            HP        0.45𝜋        0.55𝜋          -             - 

            BP        0.25𝜋        0.35𝜋         0.6𝜋           0.7𝜋 

            BS        0.40𝜋        0.30𝜋        0.65𝜋           0.55𝜋 

 

Table 4.10 Linear Phase FIR Filter Coefficients (Order 24) 

Symbol Description LP BP HP BS 

𝑐𝑘
[𝑢]

 Upper bound of filter coefficients 0.4 0.4      1     -1 

𝑐𝑘
[𝑙]

 Lower bound of filter coefficients -0.06 -0.85 -1 1 

𝑁 Filter order 24 24 24 24 

𝑁𝑐 Number of distinct filter coefficients 13 13 13 13 

𝜏 Group delay 12 12 12 12 

𝑝 Least pth order 128 128 128 128 

𝐾 Number of frequency points 1001 1001 1001 1001 

𝐾𝑠1 Number of SB1 frequency points 601 251 451  

𝐾𝑝 Number of PB frequency points 301 251 451  

𝐾𝑠2 Number of SB2 frequency points - 301 -  

𝐾𝑝1 Number of PB1 frequency points    301 

𝐾𝑠 Number of SB frequency points    151 

𝐾𝑝2 Number of PB2 frequency points    351 

𝑃 HS population size 13 13 13 13 

𝐻𝑀𝑆 Harmony memory Size 20 40 40 40 

𝐻𝑀𝐶𝑅 Harmony Memory Considering Rate 1 1 1 1 

𝑃𝐴𝑅 Pitch Adjusting Rate 1 1 1 1 
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Table 4.11 Linear Phase FIR Filter Coefficients (Order 48) 

Symbol Description LP BP HP BS 

𝑐𝑘
[𝑢]

 Upper bound of filter coefficients 0.4 0.4      1     -1 

𝑐𝑘
[𝑙]

 Lower bound of filter coefficients -0.06 -0.85 -1 1 

𝑁 Filter order 48 48 48 48 

𝑁𝑐 Number of distinct filter coefficients 25 25 25 25 

𝜏 Group delay 24 24 24 24 

𝑝 Least pth order 128 128 128 128 

𝐾 Number of frequency points 1001 1001 1001 1001 

𝐾𝑠1 Number of SB1 frequency points 601 251 451  

𝐾𝑝 Number of PB frequency points 301 251 451  

𝐾𝑠2 Number of SB2 frequency points - 301 -  

𝐾𝑝1 Number of PB1 frequency points    301 

𝐾𝑠 Number of SB frequency points    151 

𝐾𝑝2 Number of PB2 frequency points    351 

𝑃 HS population size 25 25 25 25 

𝐻𝑀𝑆 Harmony memory Size 20 40 40 40 

𝐻𝑀𝐶𝑅 Harmony Memory Considering Rate 1 1 1 1 

𝑃𝐴𝑅 Pitch Adjusting Rate 1 1 1 1 
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4.1.5 General FIR Results obtained Using HS for Order 24 

The design results for order 24 General FIR are given below: 

 

Figure 4.13 Order 24 general phase lowpass FIR digital filter using HS 

 

Figure 4.14 Order 24 general phase bandpass FIR digital filter using HS 
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Table 4.12 Coefficients of order 24 type1 Lowpass LP-GFIR filter by HS 

          ℎ(𝑛)           Coefficients          ℎ(𝑛)      Coefficients 

  h (1)     0.003694355886800   h (14)     -0.349274760606803 
 

  h (2)    -0.014763144385305   h (15)     -0.281777065191755 

  h (3)     0.019138733095744   h (16)     -0.131713463510407 

  h (4)     0.029696469927572   h (17)       0.010160648724700 
 

  h (5)     0.010324290013704   h (18)      0.071265833011746 

  h (6)    -0.021176484456728   h (19)      0.038805264958585 

 

  h (7)    -0.037457015110282   h (20)     -0.012903371150532 

  h (8)    -0.015822054394316 
 

  h (21)     -0.039696912918417 

  h (9)     0.042017179968997   h (22)     -0.020267304233717 

  h (10)     0.067378097042448   h (23)      0.012058478029507 

  h (11)     0.012260570149869 
 

  h (24)      0.025281495999975 

  h (12)    -0.126984670588759 
 

  h (25)      0.022924670774612 

  h (13)    -0.286188318756668   
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Table 4.13 Coefficients of order 24 type1 Bandpass LP-GFIR filter by HS 

          ℎ(𝑛)           Coefficients          ℎ(𝑛)      Coefficients 

  h (1)     0.008955930739267   h (14)      0.214694042527110 
 

  h (2)     0.001114354403548   h (15)     -0.197727540988785 

  h (3)     0.034974459821717   h (16)     -0.153166617948601 

  h (4)    -0.000092077325015   h (17)       0.074427505357468 
 

  h (5)    -0.064014282529663   h (18)      0.040258614507933 

  h (6)     0.003260108992233   h (19)      0.008805782460207 

 

  h (7)     0.011201551182595   h (20)      0.047473011653316 

  h (8)    -0.005278327714543 
 

  h (21)     -0.022077632319768 

  h (9)     0.111053586481819   h (22)     -0.060993629166203 

  h (10)     0.079942705918041   h (23)      0.002321752182706 

  h (11)    -0.250953318560656 
 

  h (24)     -0.003273050473436 

  h (12)    -0.170263059050198 
 

  h (25)     -0.000600764453942 

  h (13)     0.283193531374874   

 

Table 4.14 Order 24 General FIR Type 1 filter design results using HS 

 

 

 

 

Filter Alg Peak(Stopband) 

error 

Peak(Passband) 

error 

Group delay error Peak(Stopband2) 

Lowpass HS 0.051502483774843 0.051227181069569 0.003694355886800 - 

Lowpass Paper 0.051242944505630 0.050130894010477 0.038164522218185  

Filter Alg Peak(Passband) 

error 

Peak(Stopband1) 

error 

Peak(Stopband2) 

error 

Group delay 

Bandpass HS 0.062123033806461 0.059023845560883 0.064299164927664 0.010449261319422 

Bandpass Paper 0.060228252610734 0.060148302523172 0.059976240658255 0.043592307120207 
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4.1.6 Design using XOR neural network 

                        Table 4.15 2-input one output Neural network design parameters 

 

 

 

 

 

 

 

                                 Table 4.16 2-input one output Neural network design 

Iterations Results Outputs Error Values 
2000 Desired 0 1.0e-04 * 

0.540526889129954 Obtained 0.007352053380723 

2000 Desired 1 1.0e-04 * 

0.540554301567679 
Obtained 0.992647760194555 

2000 Desired 1 1.0e-04 * 

0.540543852259729 Obtained 0.992647831256971 

2000 Desired 0 1.0e-04 * 

0.540527266975788 Obtained 0.007352055950384 

 

To verify the results obtained produce a XOR output, an input grid of 100 by 100 is selected of 

the two inputs X1 and X2 and the output results are plotted at every instant of input. The result 

is shown in Figure 5.6.3. 

 

Parameters                    Obtained Values 

W1                 5.000000000000000 

W2                 5.000000000000000 

W3                -5.000000000000000 

W4                -4.999712367554367 

W5                 5.000000000000000 

W6                -4.999122246789436 

B1                 2.676347853329807 

B2                -2.676165488769043 

B3                -2.498565477908653 
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            Figure 4.15 Two dimensional view of XOR neural network 
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4.1.7 Digit recognition using feedforward neural network  

Table 4.17 Computational results of the feedforward neural network design for ten hidden 

neurons (without noise) 

Number Of Iterations` Time elapsed(sec) Best Cost Value 

4000 694.592215 3.0309e-15 

 

Table 4.18 Comparison of results with the ideal output and the Mean Square errors for each of 

the four output neurons 

Digits Results 4- Output Neurons 

(Number of hidden 

neurons=10) 

Mean Square errors 

Zero Desired -1  1 -1  1       0    0       0       0 

Obtained -1  1 -1  1       0    0       0       0 

One Desired  1 -1 -1 -1       0    0       0       0 

Obtained  1 -0.99 -0.99 -1       0    0       0       0 

Two Desired -1  1 -1 -1       0    0       0       0 

Obtained  -1  1 -1 -1       0    0       0       0 

Three Desired  1  1 -1 -1       0    0       0       0 

Obtained 1 1 -1 -1       0    0       0       0 

Four Desired -1 -1  1  -1       0    0       0       0 

Obtained -1 -1  1  -1       0    0       0       0 

Five Desired  1 -1  1  -1       0    0       0       0 

Obtained  1 -0.99 1 -1       0    0       0       0 

Six Desired -1  1  1  -1       0    0       0       0 

Obtained -0.99  1  1  -1       0    0       0       0 

Seven Desired  1  1  1  -1       0    0       0       0 

Obtained 1  1  1  -1       0    0       0       0 

Eight Desired -1 -1 -1   1       0    0       0       0 

Obtained -1 -1 -1  1       0    0       0       0 

Nine Desired  1 -1 -1   1       0    0       0       0 

Obtained  1 -1 -1  0.99       0    0       0       0 
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Table 4.19 Computational results of the feedforward neural network design for ten hidden 

neurons (40% noise) 

Number of Iterations` Time elapsed(sec) Best Cost Value 
2000 316.970887 3.2738e-10 

 

Table 4.20 Comparison of results with the ideal output and the Mean Square errors for each of 

the four output neurons 

Digits Results 4- Output Neurons 

(Number of hidden 

neurons=10) 

Mean Square errors 

Zero Desired -1  1 -1  1       0    0       0       0 

Obtained -1  1 -1  1       0    0       0       0 

One Desired  1 -1 -1 -1       0    0       0       0 

Obtained  1 -0.99 -0.99 -1       0    0       0       0 

Two Desired -1  1 -1 -1       0    0       0       0 

Obtained  -1  1 -1 -1       0    0       0       0 

Three Desired  1  1 -1 -1       0    0       0       0 

Obtained 1 1 -1 -1       0    0       0       0 

Four Desired -1 -1  1  -1       0    0       0       0 

Obtained -1 -1  1  -1       0    0       0       0 

Five Desired  1 -1  1  -1       0    0       0       0 

Obtained  1 -0.99 1 -1       0    0       0       0 

Six Desired -1  1  1  -1       0    0       0       0 

Obtained -0.83  1  1  -1       0    0       0       0 

Seven Desired  1  1  1  -1       0    0       0       0 

Obtained 1  1  1  -1       0    0       0       0 

Eight Desired -1 -1 -1   1       0    0       0       0 

Obtained -1 -1 -1  1       0    0       0       0 

Nine Desired  1 -1 -1   1       0    0       0       0 

Obtained  1 -1 -1  0.82       0    0       0       0 
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             Figure 4.16 Plot of the 1054 weight vectors for ten hidden neurons 
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Table 4.21 Computational results of the feedforward neural network design for eight hidden 

neurons (without noise) 

Number Of Iterations` Time elapsed(sec) Best Cost Value 
4000 521.707630 4.4439e-06 

 

Table 4.22 Computational results of the feedforward neural network design for eight hidden 

neurons (without noise) 

Digits Results 4- Output Neurons 

(Number of hidden 

neurons=8) 

Mean Square errors 

Zero Desired -1  1 -1  1     

Obtained -0.99  0.99 -0.99  1         0        0        0         0 

One Desired  1 -1 -1 -1     

Obtained  0.99 -1 -0.99 -0.99         0        0        0         0 

Two Desired -1  1 -1 -1     

Obtained  -0.99  1 -0.99 -0.99         0        0        0         0 

Three Desired  1  1 -1 -1     

Obtained 0.99 1 -1 -0.99         0        0        0         0 

Four Desired -1 -1  1  -1     

Obtained -1 -1 0.99 -0.99         0        0        0         0 

Five Desired  1 -1  1  -1     

Obtained  0.99 -0.99 0.99 -0.99         0        0        0         0 

Six Desired -1  1  1  -1     

Obtained -0.99 0.99 0.99 -1         0        0        0         0 

Seven Desired  1  1  1  -1     

Obtained 0.99  1  0.99 -0.99         0        0        0         0 

Eight Desired -1 -1 -1   1     

Obtained -1 -0.99 -0.99  0.99         0        0        0         0 

Nine Desired  1 -1 -1   1     

Obtained  0.99 -0.99 -0.99  0.99         0        0        0         0 
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Table 4.23 Computational results of the feedforward neural network design for eight hidden 

neurons (40% noise) 

Number Of Iterations` Time elapsed(sec) Best Cost Value 
2000 285.544329 1.2818e-07 

     

Table 4.24 Computational results of the feedforward neural network design for eight hidden 

neurons (40% noise) 

Digits Results 4- Output Neurons 

(Number of hidden 

neurons=8) 

Mean Square errors 

Zero Desired -1  1 -1  1     

Obtained -0.99  0.65 -0.99  1         0        0        0         0 

One Desired  1 -1 -1 -1     

Obtained  0.99 -1 -0.55 -0.99         0        0        0         0 

Two Desired -1  1 -1 -1     

Obtained  -0.99  1 -0.99 -0.99         0        0        0         0 

Three Desired  1  1 -1 -1     

Obtained 0.99 1 -1 -0.99         0        0        0         0 

Four Desired -1 -1  1  -1     

Obtained -1 -1 0.79 -0.99         0        0        0         0 

Five Desired  1 -1  1  -1     

Obtained  0.99 -0.99 0.99 -0.99         0        0        0         0 

Six Desired -1  1  1  -1     

Obtained -0.99 0.99 0.99 -1         0        0        0         0 

Seven Desired  1  1  1  -1     

Obtained 0.99  1  0.77 -0.99         0        0        0         0 

Eight Desired -1 -1 -1   1     

Obtained -1 -0.99 -0.99  0.99         0        0        0         0 

Nine Desired  1 -1 -1   1     

Obtained  0.99 -0.99 -0.99  0.99         0        0        0         0 
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Figure 4.17 Plot of the 844 weight vectors for eight hidden neurons 
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4.1.8 XOR design using min-sum fuzzy inference network  

 

Table 4.25 Computational results of the min sum fuzzy neural network design (without noise) 

 

            Table 4.26 Comparison of results of the min-sum fuzzy inference network 

Number 

of 

training 

sets 

Outputs Results Obtained Error values 

corresponding to the obtained 

output 

(1.0e-06 *) 
9 Desired                   0                1 0.004863132444635 

Obtained                   0                1 0.024103069540260 

Desired                   0               0     0 

Obtained                   0               0     0 

Desired                   1               0 0.001852336950492 

Obtained                   1               0 0.053895729460855 

Desired                   0               0     0 

Obtained                   0               0     0 

Desired                   0               0     0 

Obtained                   0               0     0 

Desired                   0               0     0 

Obtained                   0               0     0 

Desired                   1               0 0.042581973502820 

Obtained                   1               0 0.112744241219114 

Desired                   0               0     0 

Obtained                   0               0     0 

Desired                   0               1 0.009299800117205 

Obtained                   0               1 0.079220469739738 

 

 

No of 

Iterations 

Number 

of 

Training 

data sets 

Number 

of 

hidden 

neurons 

Time 

Elapsed(sec) 

Mean Square error Error rate 

(in %) 

3000 9 8 48.782043 3.650675033056877e-08 7.922046973973806e-06 
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Figure 4.18 Plot of the 64 best solution vectors for eight hidden neurons 
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Conclusions 

The harmony search algorithm has been used to design Type 1 linear phase FIR digital filter 

coefficients and the complex neural network parameters. The results have been compared with 

the state of art methods. The HS algorithm focusses on the optimum selection of control 

parameters values and formulations which requires more mathematical and logical 

requirements to be able to modify the algorithm of this optimization method. HS has proven to 

be a suitable alternative since it gave results almost near to PM in almost all designs. The HS 

algorithm generates new vector after considering all the existing vectors whereas the genetic 

algorithm (GA) only considers the two parent vectors. This increases the flexibility of HS 

algorithm and produces better solutions. 

HS imposes fewer mathematical requirements and does not require initial value settings of the 

decision variables. There are few important parameters HMCR, HMS, PAR, and bw, but PAR 

and bw are very important parameters in fine tuning of optimal solution vectors. The process 

of searching for the best harmony can be considered as analogous to finding a solution to the 

optimization problem [8] since both the processes are intended to produce the best or the 

optimal result under the given conditions. 

The value of HMCR in the basic HS algorithm is fixed at its initialization and does not change 

until the search ends. As the value of HMCR decreases, harmony memory is used less 

efficiently, the algorithm converges much more slowly, and more time is consumed. As the 

value of HMCR increases, harmony memory is used more efficiently, the method converges 

more rapidly, less time is consumed, and the HS is easily trapped in a local optimum. To 

enhance the power of the HS algorithm, HMCR is usually valued in the interval [0.9,1]. The 

meta-heuristic algorithm handles intensification and diversification. Its intensification and 

diversification are represented by HMCR and PAR, respectively, and its superiority is 

confirmed by the existence of a large number of successful applications to diverse scientific 

and engineering problems. 

The power and efficiency of the HS algorithm seem obvious after comparison with other 

metaheuristics; however, there are some unanswered questions concerning the whole class of 

HS algorithms. At the moment, the HS algorithm like almost all other metaheuristics is a higher-

level optimization strategy which works well under appropriate conditions, but sometimes it is 
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not understandable to us that how they work so well. For example, when choosing the harmony 

accepting rate, we usually use a higher value, say, 0.7 to 0.95. This is obtained by experimenting 

with the simulations, or using a similar inspiration from genetic algorithms when the mutation 

rate should be low, and thus the accepting rate of the existing gene components are high. 

However, it is very difficult to say what range of values and which combinations are surely 

better than others. In general, there lacks a theoretical framework for metaheuristics to provide 

some analytical guidance to the following important issues: How to improve the efficiency for 

a given problem and what conditions are required for a good rate of convergence? Also, how 

to prove the global optima for a given metaheuristic problem is a concern. These are still open 

questions that need further research. The encouraging thing is that many researchers are 

interested in tackling these difficult challenges, and important progress has been made 

concerning the convergence of algorithms such as simulated annealing. Any progress 

concerning the convergence of HS and other algorithms would be influentially profound. 

Even without a solid framework, the scientists are encouraged to develop more hybrid 

algorithms. In fact, the algorithm development itself is a metaheuristic process similar to the 

manner to the key components of HS algorithms: to use the existing successful algorithms; to 

develop slightly different variants based on the existing algorithms, and to formulate 

heuristically completely new metaheuristic algorithms. By using the existing algorithms, the 

right algorithms can be found out for the right problem. Often, we have to change and 

reformulate the problem slightly or to improve the algorithms slightly so as to find the solutions 

more efficiently. Sometimes, we have to develop new algorithms from scratch to solve some 

tough optimization problems.  There are many ways to develop new algorithms, and from the 

metaheuristic point of view, the most heuristic way is probably to develop new algorithms by 

hybridization. That is to say, new algorithms are often based on the right combination of the 

existing metaheuristic algorithms. For example, combining a trajectory type simulated 

annealing with multiple agents, the parallel simulated annealing can be developed. In the 

context of HS algorithms, the combination of HS with PSO, the global-best harmony search 

has been developed [23]. As in the case of any efficient metaheuristic algorithms, the most 

difficult thing is probably to find the right or optimal balance between diversity and intensity 

of the found solutions; here the most challenging task in developing new hybrid algorithms is 

probably to find the right combination of which feature/components of existing algorithms. 

The design examples of the digital filters show that the results in most of the cases are either 

equal or very close to that of FIRPM. Also 40% input noise is introduced to the neural network 
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design problem, the obtained output in most of the cases i equal to the desired output except for 

one or two in which the output is not accurate due to noise. All over, as per observation, HS has 

proven to produce quality results with a satisfactory performance. 
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