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Abstract 

 

 

        The present thesis aims to make an in-depth study of adaptive identification, digital channel 

equalization, functional link artificial neural network (FLANN) and Artificial Immune Systems 

(AIS).Two learning algorithms CPSO and IPSO are also developed in this thesis. These new 

algorithms are employed to train the weights of a low complexity FLANN structure by way of 

minimizing the squared error cost function of the hybrid model. These new models are applied 

for adaptive identification of complex nonlinear dynamic plants and equalization of nonlinear 

digital channel. Investigation has been made for identification of complex Hammerstein models. 

     To validate the performance of these new models simulation study is carried out using 

benchmark   complex plants and nonlinear channels. The results of simulation are compared with 

those obtained with FLANN-GA, FLANN-PSO and MLP-BP based hybrid approaches. 

Improved identification and equalization performance of the proposed method have been 

observed in all cases.  
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INTRODUCTION 



 
 

1 
                                                                                                                     INTRODUCTION 

 

1.1 Background 

ATURE is the main source of inspiration for the development of various 

computational algorithms and tools. The design prospective of development 

of computational tools is termed as biologically inspired computing or 

computing with biological metaphors. Other aspect of using the computer to design 

various algorithms and to learn more about natural world is named as 

computationally motivated biology. The understanding of biological immune system 

(BIS) has increased dramatically over the recent few years by several researchers. It 

has provided a miraculous insight into how the body resists itself from infectious 

diseases. Through improved understanding and investigation, new algorithms 

inspired by BIS are developed under a new branch of computational intelligence 

known as artificial immune system (AIS) [1.1]-[1.4]. Like human nervous systems and 

Darwin evolutionary theory the biological immune systems offer a number of 

attractive features such as ability to remember, classify and neutralize the effect of 

foreign particles. The focus of this thesis is to develop and introduce new supervised 

learning paradigms inspired by mechanism found in natural immune systems and to 

develop methodology to apply these algorithms to effectively solve problems of 

communication and control such as channel equalization and identification. 

           System identification is one of the most important areas in control, 

communication and instrumentation because of its applicability to a wide range of 

problems. When a practical plant is considered its behavior is completely unknown. 

It may be nonlinear, dynamic, time varying or chaotic.  In general it is difficult to 

model such complex plants by conventional numerical analysis method where as 

adaptive system identification is an alternate way of efficient modeling of these plants. 

In the adaptive method of identification of complex plants and equalization of 

nonlinear channels a suitable nonlinear architecture such as multilayer 

perceptron[1.5], functional link artificial neural networks[1.6] or radial basis function 

neural network[1.7] is selected and its associated weights are trained using one of the 

evolutionary computing tools like genetic algorithm[1.8], particle swarm 

N 
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optimization[1.9], ant colony optimization[1.10] or bacterial foraging 

optimization[1.11]. The evolutionary tools as learning algorithm are preferred 

because they are based on the process of natural selection and do not require error 

gradient statistics to update the parameters. As a consequence, they are able to find 

global minimum parameters. Such type of approach offers flexibility, adaptability and 

versatility so that the identification model can able to meet specific goal and accuracy.  

         The Hammerstein plant is widely used because its structure reflects the 

nonlinearity of practical dynamic systems [1.12]. It plays a significant role in stability 

analysis and design of control systems. The structure of the plant is composed of a 

nonlinear static block in series with a linear dynamic system block. The identification 

of such practical plants is useful to determine the system parameters of the model 

from the known input output data of the plant. 

         The field of digital data communications has experienced an explosive growth in 

recent years and its demand reaches at the peak as additional services are being added 

to existing infrastructure. The telephone networks are originally designed for voice 

communication but, in recent times, the advances in digital communications using 

Integrated Service Digital Network (ISDN), data communications with computers, 

fax, video conferencing etc. have pushed the use of these facilities far beyond the 

scope of their original intended use. Similarly, introduction of digital cellular radio 

(DCR) and wireless local area networks (LAN’s) have stretched the limited available 

radio spectrum capacity to the limits it can offer. These advances in digital 

communications have been made possible by the effective use of the existing 

communication channels with the aid of signal processing techniques [1.13]. 

Therefore transmission bandwidth is one of the most precious resources in digital 

communication systems. Communication channels are usually modeled as band-

limited linear finite impulse response (FIR) filters with low pass frequency response. 

When the amplitude and the envelope delay response are not constant within the 

bandwidth of the filter, the channel distorts the transmitted signal causing inter-

symbol interference (ISI). The addition of noise during propagation also degrades the 

quality of the received signal.  
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1. 2 Motivation 

Over the last two decades a lot of research has gone into the development of 

identification models based on a range of soft computing techniques. Early models 

employed the MLP architecture using back propagation (BP) algorithm [1.5], while a 

lot of recent work is based on evolutionary optimization techniques such as GA and 

PSO. Thus the review of the existing literature reveals that varieties of ANN 

structures have been employed to develop new identification models. In most cases it 

is noticed that the development of these models and the testing involve large 

computational complexity as well as more time to learn the structure. Second issue is 

the accuracy of identification of existing techniques. Thus there is a need to develop 

simple but efficient nonlinear adaptive structure which involves less computation and 

better identification capability particularly for complex, nonlinear, dynamic and 

Hammerstein plants. 

         To recover the transmitted data faithfully at the receiver end, the effect ISI 

needs to be reduced and the additive noise to be suppressed. This is achieved by 

adaptive channel equalizer. But when the channels are nonlinear and complex, the 

equalization task becomes difficult [1.14]. Thus there is a need to develop simple but 

efficient adaptive equalizers which will provide better timing and accurate 

equalization particularly for complex and nonlinear channels.  

1. 3 Present Work 

The present work describes in brief the theory and principles of artificial immune 

system. This new concept is suitably applied for identification of complex nonlinear 

dynamic and Hammerstein plants. Studies on effective equalization of nonlinear 

channels has also been investigated in this study.The present research work comprises 

of a novel hybrid approach employing AIS learning tool to a low complexity 

FLANN for achieving better direct and inverse modeling of complex plants. 
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1. 4 Chapter wise contribution 

The work carried out in the present thesis is organized in seven chapters.  

 

Chapter-1 INTRODUCTION 

 

Chapter-2 BASIC ARCHITECTURES AND EVOLUTIONARY 

COMPUTING TECHNIQUES USED IN THE THESIS 

 

Chapter 2 deals with the basic architecture used in the thesis to develop adaptive 

models for identification of plants and equalization of channels. The structures used 

are broadly classified into two categories linear (FIR and IIR etc.) and nonlinear 

(Artificial neural structures like multilayer perceptron, functional link artificial 

neural network etc.). The basics of these structures are discussed in this chapter. To 

design adaptive identification and channel equalizer models their parameters need 

training which are to be carried out by various derivative based and derivative free 

learning algorithms. The derivative or gradient based algorithms include LMS, RLS, 

Back Propagation etc. Algorithms based on natural selection or derivative free are 

genetic algorithm (GA), particle swarm optimization (PSO).  The stepwise procedure 

of each of these learning algorithms is also briefly outlined in this chapter.  

 

Chapter-3 PRINCIPLE AND THEORY OF ARTIFICIAL IMMUNE 

SYSTEMS (AIS)  

 

The Biological immune system (BIS) is a multilayer protection system where each 

layer provides different types of defense mechanisms for detection, recognition and 

responses. Investigation is done on the functionality of BIS that is how the body 

restricts itself from the invasion of external microorganisms. The artificial immune 

system (AIS) is developed by following the principle of BIS. The four forms of AIS 

algorithm reported in the literature are immune network model, negative selection, 
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clonal selection and danger theory. An overview of each of these algorithms is 

discussed in this chapter.  

 

Chapter-4 APPLICATION OF AIS TO NONLINEAR SYSTEM 

IDENTIFICATION   

 

The first contribution of the thesis lies in this chapter. It contains novel contribution 

of system identification using AIS technique. In this chapter the nonlinear plants are 

classified into three categories such as static, dynamic and MIMO, depending upon its 

input-output relationship. The detail architecture of these plants is described. The 

identification model proposed here consists of a FLANN structure whose weights are 

trained with CLONAL selection principle of AIS. Simulation study is carried out on 

some benchmark identification problems. The proposed model is compared with 

other standard models like MLP with back propagation and FLANN structure with 

different evolutionary algorithms like GA, PSO etc. The efficiency of identification is 

determined by comparison of overall output response of the plant and the estimated 

model, sum of square errors (SSE) and overall CPU time required to train the model. 

The results are embodied in three different papers [2, 3, 5]. 

  

Chapter-5 APPLICATION OF AIS TO NONLINEAR NOISY CHANNEL 

EQUALIZATION 

 

The contribution in this chapter is the development of AIS based adaptive channel 

equalization. Transmission and storing of high density digital information plays an 

important role in the present age of communication and information technology. 

These data are distorted while reading out of the recording medium or arriving at the 

receiver end due to inter symbol interference in the channel. The adaptive channel 

equalizer alleviates this distortion and reconstructs the transmitted data faithfully. In 

this chapter, we propose a novel digital channel equalizer using CLONAL selection 

algorithm of AIS. Simulation study has been carried out to show superior 
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performance of the proposed equalizer particularly for nonlinear noisy channels 

compared to that offered by LMS and GA based training. The comparative bit error 

rate plots obtained by simulation of proposed and standard equalizers are embodied 

in the paper [4].  

 

Chapter-6 DEVELOPMENT OF NEW EVOLUTIONARY HYBRIED 

ALGORITHMS AND THEIR APPLICATION TO 

HAMMERSTEIN MODEL IDENTIFICATION 

 

In this chapter we propose two new hybrid evolutionary algorithms known as Clonal 

PSO (CPSO) and Immunized PSO (IPSO) by suitably combining the good features of 

PSO and AIS algorithms. The details of these two algorithms are outlined. The 

performance of these new algorithms has been assessed by employing them in 

identification of various standard Hammerstein models. The Hammerstein model is 

widely used because its structure effectually reflects the nonlinearity of practical 

dynamic systems. It finds extensive applications in stability analysis and control 

design. The nonlinear static part of the model to be estimated is represented by a 

single layer low complexity nonlinear functional link artificial neural network 

architecture. The weights of this structure and the dynamic part of the model are 

estimated by the proposed algorithms. The results obtained in this chapter are 

embodied in three different papers [1, 6,7]. 

 

 

Chapter-7 CONCLUSION AND SCOPE OF FUTURE WORK  

 

The overall conclusion of the thesis is presented in this chapter. It also contains some 

future research topics which need attention and further investigation. 
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2.1 Introduction 

DAPTIVE modeling essentially consists of two important components. The 

most important one is the structure of the model which is basically selected as a 

linear combiner, a multilayer perceptron (MLP) structure or a Functional Link 

Artificial Neural Network (FLANN). These structures contain connecting weights which 

are trained by various derivative based and derivative free learning algorithms. The 

derivative or gradient based algorithms include least means square (LMS), recursive least 

square (RLS), back propagation (BP) etc. Algorithms based on natural selection or 

derivative free are Genetic algorithm (GA), Particle swarm optimization (PSO) etc.. In 

this chapter the basics of various structures used and their corresponding learning 

algorithm adopted to design the adaptive identification and channel equalizer models are 

discussed in brief.  

2.2 Model Structures 

In this subsection a brief description of each of these structures is outlined. The key 

equations which   govern the function of the structures are also presented. 

2.2. 1 Adaptive Linear Combiner  

An adaptive linear combiner is a computational device that attempts to model the 

relationship between two signals in real time in an iterative manner. The general form of 

an adaptive linear combiner [2.1, 2.2] is shown in Fig 2.1. There is an input signal vector 

with elements Lxxx ...1,0 , a corresponding set of adjustable weights Lwww ..., 10 , a summing 

unit, and a single output signal, y . A procedure for adjusting or adopting the weights is 

called weight adjustment or adaptation procedure. The combiner is called linear because 

for fix stetting of weights its output is a linear combination of the input components. The 

main aspects of the model development of a adaptive liner combiner is  

(i) It is used as a multiple input and single output device. 

A 
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(ii) The output of the structure is computed from its input signal. 

(iii) The parameters within the structure are changed iteratively to alter the input 

output relationship of the device. 

 At any thk  instant the multiple input is represented as kX . The output of the combiner 

can be represented as   

ik

1L

0i

ikk xwy  (2.1) 

where lkw  denotes i
th

  weight at k
th

  instant. 

 

 

 

 

 

 

 

If the weight and input vectors are expressed as 

T

LKk1k0k ]xxx[X   (2.2) 

T

LKk1k0k ]www[W   (2.3) 

then the output  is given by    

k

T

kk WXy  (2.4) 

Z
-1 

Z
-1 

∑ 

 : 

 : 

 : 

xk 

xk-1 

xk-l+1 

w0k 

w1k 

w(L-1)k 

yk 

 : 

 : 

 : 

Fig. 2.1 Adaptive linear combiner 
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The weights of the combiner are to be updated using various learning algorithms such as 

the LMS or the RLS. 

2.2.2 Artificial Neural Network (ANN) 

      In past few decades the Artificial neural network (ANN) has emerged as a 

powerful learning tool to perform complex tasks in highly nonlinear dynamic 

environments. There are extensive applications of various types of ANN in the field 

of communication, control, instrumentation and forecasting. The tool takes its name 

from the network of nerve cells in the brain. ANN has been found to be an 

important technique for classification and optimization problem [2.3-2.6]. McCulloch 

and Pitts have developed the neural networks for different computing machines. The 

ANN is capable of performing nonlinear mapping between the input and output 

space due to its large parallel interconnection between different layers and the 

nonlinear processing characteristics. An artificial neuron basically consists of a 

computing element that performs the weighted sum of the input signal and the 

connecting weight. The sum is added with the bias or threshold and the resultant 

signal is then passed through a nonlinear function of sigmoid or hyperbolic tangent 

type. Each neuron is associated with three parameters whose learning can be adjusted; 

these are the connecting weights, the bias and the slope of the nonlinear function. For 

the structural point of view a NN may be single layer or it may be multilayer. In 

multilayer structure, there is one or many artificial neurons in each layer and for a 

practical case there may be a number of layers. Each neuron of the one layer is 

connected to each and every neuron of the next layer. The functional-link ANN is 

another type of single layer NN. In this type of network the input data is allowed to 

pass through a functional expansion block where the input data are nonlinearly 

mapped to more number of points. This is achieved by using trigonometric functions, 

tensor products or power terms of the input. The output of the functional expansion 

is then passed through a single neuron. 
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         The learning of the NN may be supervised in the presence of the desired signal or it 

may be unsupervised when the desired signal is not accessible. Rumelhart developed the 

Back-propagation (BP) algorithm, which is central to much work on supervised learning 

in MLP [2.3]. A feed-forward structure with input, output, hidden layers and nonlinear 

sigmoid functions are used in this type of network. In recent years many different types of 

learning algorithm using the incremental back-propagation algorithm [2.11], evolutionary 

learning using the nearest neighbor MLP [2.12] and a fast learning algorithm based on the 

layer-by-layer optimization procedure [2.13] are suggested in literature. In case of 

unsupervised learning the input vectors are classified into different clusters such that 

elements of a cluster are similar to each other in some sense. The method is called 

competitive learning [2.14], because during learning sets of hidden units compete with 

each other to become active and perform the weight change. The winning unit increases 

its weights on those links with high input values and decreases them on those with low 

input values. This process allows the winning unit to be selective to some input values. 

Different types of NNs and their learning algorithms are discussed in sequel. 

2.2.2.1 Single Neuron Structure 

In 1958 Rosenblatt demonstrated the use of perceptron [2.5]. The perceptron is a single 

level connection of neurons sometimes known as single layer feed forward network. The 

basic structure of an artificial neuron is presented in Fig. 2.2. The operation in a neuron 

involves the computation of the weighted sum of inputs and threshold [2.3-2.6]. The 

resultant signal is then passed through a nonlinear activation function.  

 

 

 

 

 

Fig. 2.2. Structure of a single neuron 
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The output of the neuron may be represented as, 

N

1j

jj )k(b)k(x)k(wf)k(y  (2.5) 

where )k(b  is the threshold to the neurons at the first layer, )k(w j   is the weight 

associated with the j
th

 input, N is the no. of inputs to the neuron and (.)f  is the nonlinear 

activation function. Different types of nonlinear function are described as follows 

Signum Function: For this type of activation function, we have 

0xif1

0xif0

0xif1

)x(f  (2.6) 

Threshold Function: This function is represented as, 

0xif0

0xif1
)x(f  (2.7) 

Sigmoid Function: This function is S-shaped, is the most common form of the 

activation function used in artificial neural network. It is a function that exhibits a 

graceful balance between linear and nonlinear behaviour.  

0a,
e1

1
)x(f

ax
 (2.8) 

where x is the input to the sigmoid function and a is the slope of the sigmoid 

function. For the steady convergence a proper choice of a is required.  
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Piecewise-Linear Function: This function is  

5.0xif,0

5.0x5.0if,x

5.0xif,1

)x(f  (2.9) 

where the amplification factor inside the linear region of operation is assumed to be 

unity. This can be viewed as an approximation to a nonlinear amplifier. 

Hyperbolic Tangent Function: This function is represented as 

0,
e1

e1
)xtanh()x(f

x

x

 (2.10) 

where x is the input to the hyperbolic function. 

2.2.2.2 Multi Layer Perceptron (MLP) 

In the multilayer neural network or multilayer perceptron (MLP), the input signal 

propagates through the network in a forward direction, on a layer-by-layer basis. This 

network has been applied successfully to solve some difficult and diverse problems by 

training in a supervised manner with a highly popular algorithm known as the error back-

propagation algorithm [2.3,2.4]. The scheme of MLP using four layers is shown in Fig. 

2.3. )k(x p  represent the input to the network, q  and r  represent the output of the 

two hidden layers and )k(ys  represents the output of the final layer of the neural 

network. The connecting weights between the input to the first hidden layer, first to 

second hidden layer and the second hidden layer to the output layers are represented by  

rsqrpq wandw,w respectively. 

If P1 is the number of neurons in the first hidden layer, each element of the output vector 

of first hidden layer may be calculated as, 

1

N

1p

qppqqq P,....3,2,1q,N,.....3,2,1p,bxwf  (2.11) 
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where qb is the threshold to the neurons of the first hidden layer, N is the no. of 

inputs and (.)f  is the nonlinear activation function in the first hidden layer chosen 

from (2.6)-(2.10) . The time index ‘k’ has been dropped to make the equations 

simpler. 

 

 

 

 

 

 

 

Let P2 be the number of neurons in the second hidden layer. The output of this layer 

is represented as, r and may be written as 

2

P

1q

rjqrrr P,.....3,2,1r,bwf
1

 (2.12) 

where, rb  is the threshold to the neurons of the second hidden layer. The output of 

the final output layer can be calculated as 

3

P

1r

srrsss P,.....3,2,1s,bwfy
2

 (2.13) 

where, sb is the threshold to the neuron of the final layer and P3 is the no. of neurons 

in the output layer. The output of the MLP may be expressed as 

Fig. 2.3 MLP Structure  
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2 1P

1r

s

P

1q

r

N

1p

qppqqqrrrsss bbbxwfwfwfy  (2.14 ) 

 

2.2.2.3 Functional-link Artificial Neural Network (FLANN) 

Pao originally proposed FLANN and it is a novel single layer ANN structure capable 

of forming arbitrarily complex decision regions by generating nonlinear decision 

boundaries [2.8]-[2.10]. Here, the initial representation of a pattern is enhanced by 

using nonlinear function and thus the pattern dimension space is increased. The 

functional link acts on an element of a pattern or entire pattern itself by generating a 

set of linearly independent function and then evaluates these functions with the 

pattern as the argument. Hence separation of the patterns becomes possible in the 

enhanced space. The use of FLANN not only increases the learning rate but also has 

less computational complexity [2.15]. Pao et al [2.10] have investigated the learning 

and generalization characteristics of a random vector FLANN and compared with 

those attainable with MLP structure trained with back propagation algorithm by 

taking few functional approximation problems. A FLANN structure is shown in Fig. 

2.4. 

Let X is the input vector of size N×1 which represents N number of elements; the k
th

 

element is given by 

Nk1),k(x)k(X  (2.15) 

Each element undergoes nonlinear expansion to form M elements such that the 

resultant matrix has the dimension of N×M.  

The functional expansion of the element 
nx by power series expansion is carried out 

using the equation given in (2.16) 
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1M...4,3,2ifor)k(x

1ifor)k(x

0ifor1

)k(s

i

i
 (2.16) 

For trigonometric expansion, the expanded elements are 

1M...5,3ifor)x(k)icos(

M...4,2ifor))k(xisin(

1ifor)k(x

0ifor1

)k(s i  (2.17) 

where 2/M,....,2,1i . The bias input is unity. So total expanded values including the 

bias becomes Q=M+2.  

Let the weight vector is represented as W having Q elements. The output y is given as 

)k(w)k(s)k(y i

Q

1i

i
 (2.18) 

In matrix notation the output can be, 

T
Y S W  (2.19) 

 

 

 

 

 

 

 

Fig. 2.4 Structure of the FLANN model 
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2. 3  Learning Algorithms of Various Models 

There are varieties of learning algorithms which are employed to train various 

adaptive models. The performance of these models depends on the rate of 

convergence, the training time ,computational complexity involved and minimum 

mean square error achieved after training. The learning algorithms may be broadly 

classified into two categories a) Gradient  based b) Evolutionary computing based 

algorithms .The gradient based adaptive algorithms include least means 

square(LMS),recursive least square (RLS),back propagation(BP), FLANN. Under 

evolutionary computing based algorithms we have employed genetic algorithm (GA) 

and particle swarm optimization (PSO). In this section the details of these algorithms 

are outlined. 

2.3.1 Gradient Based Adaptive Algorithms 

These types of algorithms are gradient search in nature and have been derived by taking 

the derivative of the squared error .During the process of training these algorithms tend to 

optimize the weights of the model. They are expressed in close form equations and are 

simple to implement. A brief description of each of them is presented below. 

2.3.1.1  Least Mean Square (LMS) Algorithm  

The general architecture of the LMS based adaptive filter is depicted in Fig. 2.7. Let X 

is N
th

 input pattern having one unit delay in each instant. This process is also called as 

adaptive linear combiner [2.1, 2.2]. Let 
T

1Lk1kkk ]x...xx[X  form of the L-by-1 

tap input vector where L-1 is the number of delay elements. Correspondingly, the tap 

weights 
T

k)1L(k1k0k ]w...ww[W form the elements of the L-by-1 tap weight vector. 

The output is represented as, 

1L

0i

ikikk xwy  (2.20) 
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The output can be represented in vector notation as 

k

T

kk

T

kk XWWXy  (2.21) 

Generally for the adaptive linear combiner the other data include a “desired response” 

or “training signal”, dk . This is accomplished by comparing the output with the 

desired response to obtain an “error signal” ek and then adjusting or optimizing the 

weight vector to minimize this signal. The error signal is, 

kkk yde  (2.22) 

The weights associated with the network are then updated using the LMS algorithm 

[2.1]. The weight vector can be updated by taking the derivative of the cost function 

which is the square of error defined in (2.22). 

kk1k WWW  (2.23) 

The change in weight at kth instant is kW  where 

kkk X.e..2W  (2.24) 

where  is the learning rate parameter (0 ≤  ≤ 1).  
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Fig. 2.5 Adaptive filter using LMS algorithm 
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This procedure is repeated till the Mean Square Error (MSE) of the network approaches a 

minimum value. The MSE at the time index ‘k‘ may be defined as, ]e[E 2

k , where E[ .] 

is the expectation value or average of the signal.  

2.3.1.2 Recursive Least Square (RLS) Algorithm  

The algorithms that result from the gradient descent methods have the disadvantages that 

they tend to be slow to approach the optimal weight vector and, once close to it, usually 

“rattles around” the optimal; vector rather than actually converge to it. This is due to the 

effects of approximations made in the estimate of the performance function gradient. To 

overcome these difficulties, another efficient approach known as RLS algorithm [2.1, 2.2] 

has been discussed in this section. In this algorithm the input data d,x  is used in such a 

way that optimality at each step is ensured. 

Steps involved in RLS Algorithm 

The step-by-step procedures for updating the optimal weight vector are given in this 

section. It is assumed that the inverse of the auto-correlation matrix, 
1

kR  of the input 

exists. The steps then proceeds as follows 

(i) Accept new samples )k(d),k(x  

(ii) Form )k(X by shifting )k(x into the information vector. 

(iii) Compute the a priori output )k(y 0  

)k(xW)k(y ot

ko  (2.25) 

 

(iv) Compute a priori error )k(e0  

)k(y)k(d)k(e oo  (2.26) 

 

(v) Compute the filtered information vector kZ  
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)k(XRZ 1

kk  (2.27) 

 

(vi) Compute the normalized error power q  

k

t Z)k(Xq  (2.28) 

 

(vii) Compute the gain constant v  

q1

1
v  

(2.29) 

 

(viii) Compute the normalized filtered information vector kZ
~

 

kk Z.vZ
~

 (2.30) 

 

(ix) Update the optimal weight vector 
o

kW  to 
o

1kW  

   ko

o

k

o

1k Z
~

)k(eWW  (2.31) 

 

(x) Update the inversion correlation matrix 
1

kR  to 
1

1kR  in preparation for the 

next iteration 

   
t

kk

1

k

1

1k Z
~

Z
~

RR  (2.32) 

Initially 
1

kR  is taken as  

N

1

k IR  (2.33) 

Where NI  is an identity matrix of size NN . The value is initially taken as a large 

number of about 10000 [2.2]. 
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2.3.1.3 Back propagation (BP) Algorithm  

An MLP network with 2-3-2-1 neurons (2, 3, 2 and 1 denote the number of neurons 

in the input layer, the first hidden layer, the second hidden layer and the output layer 

respectively) with the back-propagation (BP) learning algorithm, is depicted in Fig. 

2.6. The parameters of the neural network can be updated in both sequential and 

batch mode of operation. In BP algorithm, the weights and the thresholds are 

initialized as very small random values. The intermediate and the final outputs of the 

MLP are calculated by using (2.11), (2.12), and (2.13) respectively. 

 

 

 

 

 

 

The final output )k(ys  at the output of neuron ‘s’, is compared with the desired 

output )k(d  and the resulting error signal )k(e  is obtained as 

)k(y)k(d)k(e ss  (2.34) 

The instantaneous value of the total error energy is obtained by summing all error 

signals over all neurons in the output layer, that is 

3p

1s

2

s )k(e
2

1
)k(  (2.35) 

where P3 is the no. of neurons in the output layer.  

This error signal is used to update the weights and thresholds of the hidden layers as 

well as the output layer. The reflected error components at each of the hidden layers 

Fig. 2.6 Neural network using BP algorithm 
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is computed using the errors of the last layer and the connecting weights between the 

hidden and the last layer and error obtained at this stage is used to update the weights 

between the input and the hidden layer. The thresholds are also updated in a similar 

manner as that of the corresponding connecting weights. The weights and the 

thresholds are updated in an iterative method until the error signal becomes 

minimum.  

The weights are updated according to, 

)k(w)k(w)1k(w pqpqpq  (2.36) 

)k(w)k(w)1k(w qrqrqr  (2.37) 

)k(w)k(w)1k(w rsrsrs  (2.38) 

where, )k(w rs , )k(w qr and )k(wpq  are the change in weights of the second hidden 

layer-to-output layer, first hidden layer-to-second hidden layer and input layer-to-first 

hidden layer respectively. That is, 

r

P

1r

srrs

'

s

rs

s

rs

rs

2

bwf)k(e2

)k(dw

)k(dy
)k(e2

)k(dw

)k(d
2)k(w

 (2.39) 

Where,  is the convergence coefficient )10( .Similarly the )k(w qr  and 

)k(wpq  can be computed [ 2.4]. 

The thresholds of each layer can be updated in a similar manner, i.e. 

)k(b)k(b)1k(b sss  (2.40) 

)k(b)k(b)1k(b rrr  (2.41) 

)k(b)k(b)1k(b qqq  (2.42) 
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where, )k(b s , )k(b r and )k(bq  are the change in thresholds of the output, hidden 

and input layer respectively. The change in threshold is represented as, 

2P

1r

srrs

'

s

s

s

s

s

bwf)k(e2

)k(db

)k(dy
)k(e2

)k(db

)k(d
2)k(b

 (2.43) 

 

2.3.1.4 The FLANN Algorithm 

Referring to Fig. 2.4 the error signal )k(e  at k
th

 iteration can be computed as  

)k(y)k(d)k(e  (2.44) 

Let )k(  denotes the cost function at iteration k and is given by 

p

1j

2

j )k(e
2

1
)k(  (2.45) 

where P is the number of nodes at the output layer.  

The weight vector can be updated by least mean square (LMS) algorithm, as 

)k(
2

)k(w)1k(w  (2.46) 

where )k(  is an instantaneous estimate of the gradient of  with respect to the 

weight vector ( )w k . It is derived as 

)k(s)k(e2

w

)]k(s)k(w[
)k(e2

w

)k(y
)k(e2

w
)k(

 

         

 

(2.47) 
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Substituting the values of ˆ ( )k in (2.35) we get 

)k(s)k(e)k(w)1k(w  (2.48) 

 

where denotes the step-size )10( , which controls the convergence speed of the 

LMS algorithm. 

2.3.2 Evolutionary Computing based Algorithms 

 Though the gradient based algorithms are simple to implement, they employ derivative 

based learning rules to update the weights which at times lead to local optimal solution. In 

some cases the algorithms rather than converging to the optimum solution normally 

rattles around it and thus leads to the incorrect estimate of parameters of the model.  To 

overcome these limitations evolutionary algorithms are used which are based on the 

principle of natural selection and provide global optimal solution.  

2.3.2.1  Genetic Algorithm (GA) 

 Genetic algorithm is a part of evolutionary computing, which is a rapidly growing 

area of artificial intelligence. Genetic algorithm is inspired by Darwin's theory of 

evolution. In this case the problems are solved by an evolutionary process resulting in 

a best (fittest) solution (survivor). 

      Evolutionary computing was introduced in the 1960s by I. Rechenberg in his 

work "Evolution strategies". His idea was then developed by other researchers. 

Genetic Algorithm (GAs) was first imposed by John Holland and developed by his 

students and colleagues [2.16]and are available in the book "Adaption in Natural and 

Artificial Systems" published in 1975.  

2.3.2.1.1 Basic Principles of GA  

 The Algorithm begins with a set of possible solutions called chromosomes which are 

used to assess the cost surface of the problem. The process can be thought of as 
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solution breeding in that it creates a new generation of solutions by crossing two 

chromosomes. The solution variables or genes that provide a positive contribution 

to the population multiply and be passed through each subsequent generation 

until an optimal combination is obtained. 

       The population is updated after each learning cycle through three 

evolutionary processes: selection, crossover and mutation. These create the new 

generation of solution variables. 

 

        

      The selection function creates a mating pool of parent solution strings based upon 

the “survival of the fittest” criterion. From the mating pool the crossover operator 

exchanges gene information. This essentially crosses the more productive genes 

within the solution population to create an improved, more productive generation. 

Mutation randomly alters selected genes, which helps prevent premature 

convergence by pulling the population into unexplored areas of the solution surface 

and adds new gene information into the population. 

Fig. 2.7 A GA iteration cycle 
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2.3.2.1.2 Operators of GA  

As one can see from the iteration cycle of genetic algorithm selection, crossover and 

mutation are the most important parts of the genetic algorithm. The performance is 

influenced mainly by these three operators.  

Encoding of a Chromosome  

A chromosome should in some way contain information about solution that it 

represents. The most used way of encoding is a binary string.  

A chromosome then could look like this: 

Chromosome 1 : -       1101100100110110 

Chromosome 2 : -       1101111000011110 

Fig. 2.8 Chromosome 

 

Each chromosome is represented by a binary string. Each bit in the string can 

represent some characteristics of the solution. There are many other ways of 

encoding. The encoding depends mainly on the solved problem. For example, one 

can encode directly integer or real numbers; sometimes it is useful to encode some 

permutations and so on.  

Selection 

The selection process is used to weed out the weaker chromosomes from the 

population so that the more productive chromosomes may be used in the production 

of the next generation. There are many methods in selecting the best chromosomes. 

Examples are roulette wheel selection, Boltzman selection, tournament selection, 

rank selection, steady state selection and some others. In this thesis we have used the 

roulette wheel based selection as it performs better than the others.  
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Roulette wheel selection 

In this selection process the fitness of each chromosome in the population is 

evaluated. Then the population is divided into two pools a survival pool and a 

mating pool. The chromosomes from the mating pool will be used to create a 

new set of chromosomes through the evolutional processes of natural selection 

and the survival pool allows a number of chromosomes to pass onto the next 

generation. The chromosomes are selected randomly for the two pools but 

biased towards the fittest. Each chromosome may be chosen more than once and 

the fitter chromosomes are more likely to be chosen so that they will have a 

greater influence in the new generation of solutions. 

  The selection procedure can be described using a biased roulette wheel with the 

buckets of the wheel sized according to the individual fitness relative to the 

population's total fitness [2.16]. Consider an example population often chromosomes 

that have the fitness assessment of ƒ = {0.16, 0.16, 0.48, 0.08, 0.16, 0.24, 0.32, 0.08, 

0.24, 0.16} and the sum of the finesses are used to normalize these values, ƒmm=2.08. 

Figure 2.9 shows a roulette wheel that has been split into ten segments and each 

segment is in proportion to the population chromosomes relative fitness. The third 

segment therefore fills nearly a quarter of the roulette wheels area. The random 

selector points to a chosen chromosome, which is then copied into the mating pool 

because the third individual controls a greater proportion of the wheel, it has a 

greater probability of being selected. 

 

Chromosome segments          Population roulette wheel 

                Fig.2.9. Biased roulette-wheel that is used in the selection of the  mating pool  
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An individual is selected once the partial sum of fitness becomes greater than the 

random selector, which will be a value between zero and the sum of fitness. After the 

GA crossover and mutation operators update the selected mating pool chromosomes, 

these supersede the old population and consequently the genes from the unselected 

chromosomes are lost. 

Crossover  

The crossover operator exchanges gene information between two selected 

chromosomes, where this operation aims to improve the diversity of the solution 

vectors. The pair of chromosomes, taken from the mating pool, becomes the parents 

of two offspring chromosomes for the new generation. 

     A binary crossover operation can be either single point or two point crossover.  

The simplest way to do single point crossover is to choose randomly some crossover 

point and copy everything before this point from the first parent and then copy 

everything after the crossover point from the other parent. In Fig.2.10 the fifth 

crossover position is randomly chosen, where the first position corresponds to the 

left side. The bits from the right of the fourth bit are exchanged to produce two 

offspring chromosomes.  

Single point crossover can be illustrated as follows:  

 

 

 

 

 

 

Fig. 2.10 Single point Crossover 

     

 

1  0  1  0  0  1  0  1 

0  0  1  0  1  1  1  0 

 

1  0  1  0  1  1  1  0     

0  0  1  0  0  1  0  1 

 

Before crossover 

After crossover 
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In two point crossover two points are randomly chosen and the bits in between them 

are exchanged. 

 

 

 

 

 

 

Fig. 2.11 Double point Crossover 

 

Mutation  

After a crossover is performed, mutation takes place. Mutation is intended to prevent 

falling of all solutions in the population into a local optimum of the solved problem. 

Mutation operation randomly changes the offspring resulted from crossover. In case 

of binary encoding we can switch a few randomly chosen bits from 1 to 0 or from 0 

to 1. Mutation can be then illustrated as follows: 

 

 

 

 

 

 

 

 

 

                                    Selected bit for mutation    

                                      

          1    0    1    1    0    0    1    0 

 

          1    0    1    1    1    0    1    0 

 

 

Before mutation 

After  mutation 

Fig. 2.12 Mutation 

 

1  0  1  0  0  1  0  1 

0  0  1  0  1  1  1  0 

 

1  0  1  0  1  1  0  1     

0  0  1  0  0  1  1  0 

 

Before crossover 

After crossover 
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2.3.2.1.3 Parameters of GA  

Crossover and Mutation Probability  

There are two basic parameters of GA - crossover probability and mutation 

probability.  

Crossover probability 

 This probability controls the frequency at which the crossover occurs for every 

chromosome in the search process. This is a number between (0,l) which is 

determined according to the sensitivity of the variables of the search process. The    

crossover probability is chosen small for systems with sensitive variables. If there is 

crossover, offspring are made from parts of both parent's chromosome. Crossover is 

made in hope that new chromosomes will contain good parts of old chromosomes 

and therefore the new chromosomes will be better. However, it is good to leave some 

part of old population survives to next generation.  

Mutation probability 

 This parameter decides how often parts of chromosome will be mutated. If there is 

no mutation, offspring are generated immediately after crossover (or directly copied) 

without any change. If mutation is performed, one or more parts of a chromosome 

are changed. If mutation probability is 100%, whole chromosome is changed, if it is 

0%, nothing is changed. Mutation generally prevents the GA from falling into local 

extremes. Mutation should not occur very often, because then GA will in fact change 

to random search.  

Population size 

There are also some other parameters of GA. One another particularly important 

parameter is population size. It represents the number of many chromosomes in a 

population (in one generation). If there are too few chromosomes, GA has few 

possibilities to perform crossover and only a small part of search space is explored. 

On the other hand, if there are too many chromosomes, the solution using GA slows 

down.  
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2.3.2.2  Particle Swarm Optimization (PSO) 

2.3.2.2.1 Basic concept of PSO 

The Particle Swarm Optimization (PSO) was developed by Eberhart and Kennedy in 

1995 [2.23]-[2.25] inspired by swarm intelligence theory such as birds flocking, fish 

schooling etc. It refers to a relatively new family of algorithms where the individuals 

evolved through generation by cooperation and competition among each other. In 

other evolutionary algorithms the evolutionary operators are used to manipulate 

individuals. In [2.26] it has shown that PSO is comparable in performance with other 

evolutionary algorithms. 

 

2.3.2.2.2 Particle swarm optimization algorithm 

 

In PSO a swarm consists of a set of volume-less particles (a point) moving in a D-

dimensional search space, each representing s potential solution. Each particle flies in 

the search space with position and velocity which are dynamically adjusted according 

to its own as well as its companions flying experiences.  

The concept of movement of particles of PSO described in Fig. 2.13 . 
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Fig.2.13 Representation of PSO algorithm: (a) Initialization (b) Particles movement towards solution  

Fig.2.13 (a)  Fig.2.13 (b)  
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         The i
th

 particles is represented by a vector: ]x....x....x,x[X iDid2i1ii .The best 

previous position (the position giving the best fitness value) of the i
th

 particle is 

recorded and represented as ]p....p....p,p[P iDid2i1ii . At each iteration, the global 

best particle in the swarm is represented by ]p.....p....p,p[P gDgd2g1gg .The rate of 

change of position of the i
th 

particle is represented as ]v...v...v,v[V iDid2i1ii . The 

maximum velocity and the range of particles are given by 

]v.......v......v,v[V Dmaxdmax2max1maxmax  and ]x......x.....x,x[X Dmaxdmax2max1maxmax  . 

The velocity and position of the d
th

 element of the i
th 

particle at )1k( th

 search from 

the knowledge of previous search are modified as per the following 

 

))k(x)k(p(*r*c)k(v*)k(w)1k(V idid11idid  

                              ))k(x)k(p(*r*c idgd22  
(2.56) 

dmaxiddmax

dmaxiddmax

id
v)1k(v,v

v)1k(v,v
)1k(V

 

                               

(2.57) 
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(2.58) 

dmaxiddmax

dmaxiddmax

id
x)1k(x,x

x)1k(x,x
)1k(X

 

(2.59) 

 

where 1N....2,1i , D....2,1d and N1 is the number of particles . The symbols 1r and 

2r  represent random numbers between 0 and 1. Similarly 1c and 2c  denote 

acceleration constants that pull each particle towards its best and global best 

positions. The acceleration constants are usually taken as 2.05 for most applications. 

The inertia weight, W is employed to control the impact of pervious history of 

velocities on the current one in order for tradeoff between the global and local 

exploitations. At early stage of optimization it is desirable that the individual particles 

wonder though the entire search space, without clustering around the local optima. 

On the other a hand, during later stages it is very important to enhance convergence 

toward the global optima so as to find optimum solution efficiently .Large inertia 

weight enables the PSO to explore locally. So a self adaptive strategy is introduced 
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such that the value of w is decreased linearly as the generation goes on increasing 

[2.27] .The time-varying inertia weight is given by  

 

ffi w
k

kI
)ww()k(w                                

(2.60) 

where k is the search space number . iw  and fw  are the initial and final value of 

inertia weights taken values 0.4 and 0.9 respectively. I is the maximum number of 

search or generation. 

                

2.4 SUMMARY  

The basic architectures used to develop adaptive models are discussed in this chapter. 

The structures used are broadly classified into two categories linear (FIR, IIR etc.) and 

nonlinear (Artificial neural structures like MLP, FLANN etc.). The models 

parameters are trained by various derivative based and derivative free learning 

algorithms. The derivative or gradient based algorithms include LMS, RLS, Back 

Propagation etc. Algorithms based on natural selection or derivative free are genetic 

algorithm (GA), particle swarm optimization (PSO).  The stepwise procedure of each 

of these learning algorithms is also outlined in this chapter.  
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3.1 Artificial Immune Systems 

HE design prospective of development of computational tools inspired by 

nature is termed as biologically inspired computing. An immune system is a 

naturally occurring event-response system that can quickly adapt to the 

changing situations. The efficient mechanisms of a biological immune system (BIS) 

are ability to remember, classify and neutralize the effect of foreign particles. The 

understanding and investigation on BIS has increased dramatically over the recent few 

years by several researchers. These leads to development of new algorithms inspired 

by BIS, under a new branch of computational intelligence known as artificial immune 

system (AIS). The AIS is emerging as an active and attractive field involving models, 

techniques and applications of great diversity [3.1]. It offers powerful and robust 

information processing capabilities for solving complex problems.  Here the objective 

is to introduce new algorithms inspired by mechanism found in natural immune 

systems and to develop methodology to apply these algorithms to effectively solve 

problems of communication and control such as channel equalization and system 

identification.   

3.2 Biological Immune System 

The Biological Immune System is a complex network of specialized tissues, organs 

and cells. Its main function is to recognize the presence of strange elements in the 

body and to respond in order to eliminate or to neutralize the foreign invaders [3.2]. 

       All living organisms are exposed to many different microorganisms and viruses 

that are of causing illness. These microorganisms are called pathogens. In general 

organisms try to protect against pathogens using different mechanisms including high 

temperature, low pH and chemicals that repel or kill the invaders. More advanced 

organisms (vertebrates) have developed an efficient defense mechanism called the 

immune system [3.4]. Substances that can stimulate specific responses of the immune 

system are commonly referred to as antigens (pathogens usually act as antigens). Once 

T 
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the immune system gets stimulated it generates a number of antibodies which 

respond to the foreign antigens. To be effective the immune system should be able to 

distinguish between the self (cells, proteins in general any molecule that belongs to or 

is produced by the body) and non-self (antigens) .The self/ non-self discrimination is 

an essential characteristic of the immune system, since the outcome of an 

inappropriate response to self molecules is fatal.  

                The immune system can be envisioned as a multilayer system with defense 

mechanisms in several layers [3.5]. The three main layers include the anatomic 

barrier, the innate immunity and the adaptive immunity. They are described as 

follows  :  

3.2.1 Anatomic Barrier 

The first layer is the anatomic barrier, composed of the skin and the surface of 

mucous membranes. Infact skin prevents the penetration of most pathogens and also 

inhibits most bacterial growth because of its low pH. On the other hand, many 

pathogens enter the body by binding or penetrating through the mucous membranes; 

these membranes provide a number of nonspecific mechanisms that help to prevent 

such entry. Saliva, tears and some mucous secretions act to wash away potential 

invaders and also contain antibacterial and antiviral substances [3.2].  

 

3.2.2 Innate Immunity  

Innate immunity is the amount of immunity that gets transferred from the mother to 

the baby when the individuals are born. It has nonspecific response towards the 

foreign entities. It is mainly composed of the following mechanisms  

Physiologic barriers : This includes mechanisms like temperature, pH, oxygen 

tension and various soluble chemicals. The purpose of these mechanisms is to provide 

detrimental living conditions for foreign pathogens. For instance, the low acidity of 

the gastric system acts as a barrier to infection by ingested microorganisms, since they 

cannot survive the low pH of the stomach. 
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Phagocytic  barriers : Some specialized cells (like macrophages, neutrophils and 

natural killer cells) are able to ingest specific material, including whole pathogenic 

microorganisms. This ingestion has two purposes: to kill the antigen and to present 

fragments of the invader’s proteins to other immune cells and molecules. 

Inflammatory response : Activated macrophages produce proteins called 

cytokines. They work as hormone-like messengers that include the inflammatory 

response, which is characterized by vasodilation and rise in capillary permeability. 

These changes allow a large number of circulating immune cells to be recruited to the 

site of the infection. The cytokines are also produced by other immune cells and non-

immune cells, for example those that secrete cytokines when damaged [3.6].  

3.2.3 Adaptive Immunity  

Adaptive immunity [3.7], also called acquired or specific immunity, represents the 

part of the immune system that is able to specifically recognize and selectively 

eliminate foreign microorganism and molecules. The main characteristics of the 

adaptive immunity [3.8] are the following: 

Antigenetic specificity : It allows the immune system to distinguish subtle 

differences among antigens. 

Diversity : The adaptive immune system can generate billions of different 

recognition molecules that are able to uniquely recognize different structures of 

foreign antigens. 

Immunologic memory : The adaptive immune system can remember a previous 

encounter with an antigen. This helps to deliver a quick response in subsequent 

encounters. 

Self/non-self recognition : As the immune cells can distinguish its own cells from 

foreign antigens and so responds only to the non-self molecules.  

       It is important to note that the acquired immunity does not act independently of 

the innate immunity; on the contrary, they work together to eliminate foreign invaders. 

For instance, the phagocytic cells (innate immunity) are involved in the activation of the 
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adaptive immune response. Also, some soluble factors, produced during a specific 

immune response, have been found to augment the activity of these of these phagocytic 

cells [3.2].      

 An important part of the adaptive immune system is managed by white blood cells, 

called lymphocytes. These cells are produced in the bone marrow, circulate in the 

blood and lymph system, and reside in various lymphoid organs to perform 

immunological functions.   

B-cells and T-cells : They represent the major population of lymphocytes. The 

cells are produced by the bone marrow and are inert initially, i.e. they are not capable 

of executing their functions. In order to become immune-component, they have to go 

through a maturation process. In the case of B-cells, the maturation process occurs in 

the bone marrow itself. For T-cells, they have to migrate first to the thymus where 

they mature. In general, a mature lymphocyte can be considered as a detector that can 

detect specific antigens. There are billions of these detectors which circulate in the 

body, constituting an effective, distributed anomaly detection and response system 

[3.9].  

Humoral immunity : Mature B-cells express unique antigen-binding receptors 

(ABR) on their surface. The interaction of the ABR with specific antigen induces 

proliferation and differentiation of B-cells into antibody-secreting plasma cells. An 

antibody is a molecule that binds to antigens and neutralize them or facilitate their 

elimination. Antigen coated with antibodies can be eliminated in multiple ways: by 

phagocytic cells, by the complement system or by preventing them from performing any 

damaging function (e.g. binding of viral particles to host cells) [3.8]. 

 Cellular immunity : During their maturation, T-cells express an unique ABR on 

their surface called the T-cell receptor. Unlike B-cell ABR that can recognize antigens 

alone, T-cell receptors can only recognize antigenic peptides that are presented by 

cell-membrane proteins known as major histocompatibility complex (MHC) 

molecules. When a T-cell encounters antigens associated with an MHC molecule on a 

cell, the T-cell proliferates and differentiates into memory T-cells and various effector 

T-cells. The cellular immunity is accomplished by these generated effector T-cells. 
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There are different types of T cells that interact in a complex way to kill altered self-

cells (for instance, virus infected cells) or to activate phagocytic cells. 

Self/non-self discrimination : During the maturation process in the thymus the 

T-cells undergo a process of selection that ensures that they are able to recognize non-

self peptides presented by MHC. This process has two main phases: positive selection 

and negative selection [3.10]. 

Positive selection : During the positive selection phase, T-cells are tested for 

recognition of MHC molecules expressed on the corticatical epithelial cells. If a T-cell 

fails to recognize any of the MHC molecules, it is discarded; otherwise, it is kept. 

Negative selection : The purpose of negative selection is to test for tolerance of 

self cells. T-cells that recognize the combination of MHC and self peptides fail this 

test. This process can be seen as a filtering of a big diversity of T-cells; only those T-

cells that do not recognize self peptides are kept [3.11]. 

Immune Memory  : Immune lymphocytes are able to recognize specific antigens 

through their ABR. Most of the lymphocytes die when the antigen is eliminated; but 

some of them are kept as memory cells. The memory cells have longer life span and 

on the next appearance of the same antigen they respond quickly.   

3.2.4 BIS  Response   

The first encounter of naïve immune lymphocytes with an antigen generates the 

primary response shown in Fig3.1. As the body has never been exposed to that 

antigen before the time lag for primary response is more. During this time the 

antigen interacts with the mature lymphocytes, resulting in the proliferation of 

lymphocytes with a unique antigenic specificity.   The specificity of each T-cell and 

each B-cell is determined prior to its contact with the antigen through matching of a 

portion of structure. The process of population expansion of particular T-cells and B-

cells which recognize the specific antigen is called clonal selection [3.12], [3.9]. Among 

these proliferated lymphocytes most die when the antigen is eliminated; however 

some are kept as memory cells as discussed above. The next occurrence of the same 



   
 

40 
                          PRINCIPLE AND THEORY OF ARTIFICIAL IMMUNE SYSTEMS (AIS) 

 

antigen activates a secondary response. In this case the time lag is less and the antigen 

is detected easily because of the presence of the memory cells. The overall cross-

reactive response of the immune system to all the antigens is also presented in the Fig 

3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Computational aspects of Immune System 

From the point of view of information processing, the natural biological immune 

system exhibits many interesting characteristics. The following is a list of these 

characteristics [3.13]. 

Pattern matching : The immune system is able to recognize specific antigens and 

generate appropriate responses. This is accomplished by a recognition mechanism 

based on chemical binding of receptors and antigens. This binding depends on the 

molecular shape. 

Feature extraction : In general antibodies do not bind to the complete antigen, 

rather portion of it. In this way, the immune system can recognize an antigen just by 

matching segments of it.  
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Learning and Memory : The main characteristic of the adaptive immune system 

is that it is able to learn through the interaction with the previously encountered 

antigens. So next time when the same antigen is detected, the memory cells generate a 

faster and more intense response (secondary response). Memory cells work as an 

associative distributed memory. 

Diversity : Clonal selection and hypermutation mechanisms are constantly testing 

different detector configuration for known and unknown antigens. This is process 

explores the space of possible configurations looking for close-to-optimum receptors 

that can cope with the different types of antigens. Exploration is balanced with 

exploitation by favoring the reproduction of promising individuals. 

Distributed Processing : Unlike nervous system, the immune system does not 

possess a central controller. Detection and response can be executed locally and 

immediately without communicating with any central organ. This distributed 

behavior is accomplished by billions of immune molecules and cells that circulate 

around the blood and lymph systems and are capable of making decisions in a local 

collaborative environment. 

Self-regulation : Depending on the severity of the attack, response of the immune 

system can range from very light almost imperceptible to very strong. A stronger 

response uses a lot of resources to help repel the attacker. Once the invader is 

eliminated, the immune system regulates itself in order to stop the delivery of new 

resources and to release the used ones. 

Self-protection : By protecting the whole body the immune system is protecting 

itself. It means that there is no other additional system to protect and maintain the 

immune system. 

3.4 Theories of AIS  

The study and design of the artificial immune systems (AIS) is a relatively new area of 

research that tries to build computational systems that are inspired by the natural 

biological immune system. As we mentioned in subsection 3.3 there are many 
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desirable computational feature in BIS that can be used to solve computational 

problems. A typical AIS model/algorithm implements one or more of these features. 

The books [3.8] and [3.9] provides the detail of the modeling and applications of AIS. 

The four forms of AIS algorithm reported in the literature are immune network 

model, negative selection, clonal selection and danger theory.   

3.4.1  Immune Network Model  

The immune network model was proposed by Jerne [3.14]. This theory proposed 

that the immune system maintains a idiotypic network of interconnected cells for 

antigen recognition. These cells both stimulate and suppress each other in a certain 

way that leads to stabilization of network. The formation of such a network is 

possible by the presence of paratope and idiotope on the each antibody cell. The 

paratope present on one B-cell is recognized by other B-cells idiotopes so each cell 

recognize as well as recognized. In this network two cells are connected if the 

affinities they share exceed a certain threshold and the strength of the connection is 

directly proportional to the affinity they share. 

 

 

 

 

 

 

 

 

 

In network formation point of view two things are very important : antigen-antibody 

binding and antibody-antibody binding. This idiotypic network can also be thought 

of as having cognitive capabilities that makes it similar to a neural network [3.15].  
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Fig. 3.2 Presence of paratope and idiotope on antibody 
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3.4.2  Negative Selection Algorithm 

The purpose of negative selection is to provide tolerance for self-cells. It deals with 

the immune system’s ability to detect unknown antigens while not reacting to the 

self-cells [3.16]-[3.23]. During the generation of T-cells, receptors are made through a 

pseudo-random genetic rearrangement process. Then, they undergo a censoring 

process in the thymus, called the negative selection. There, T-cells that react against 

self-proteins are destroyed; thus, only those that do not bind to self-proteins are 

allowed to leave the thymus. These matured T-cells then circulate throughout the 

body to perform immunological functions and protect the body against foreign 

antigens. 

This algorithm is given by Forest et al. [3.16], [3.20] whose main steps are  

Step 1. In generation stage, the detectors are generated by some random process and 

censored by trying to match self samples as shown in Fig 2.  

Step 2. Those candidates that match are eliminated and the rest are kept as detectors.  

Step 3. In the detection stage, the collection of detectors (or detector set) is used to 

check whether an incoming data instance is self or non-self as shown in Fig 3.  

Step 4. If it matches any detector, then it is claimed as non-self or anomaly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3(a) Censoring Stage 



   
 

44 
                          PRINCIPLE AND THEORY OF ARTIFICIAL IMMUNE SYSTEMS (AIS) 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.3  Clonal Selection Algorithm 

The clonal selection principle of AIS describes how the immune cells eliminate a 

foreign antigen and is simple but efficient approximation algorithm for achieving 

optimum solution. The basic algorithm is first applied by Charsto et al. for solving 

optimization problems [3.25]-[3.26]. The steps involved in the clonal selection 

algorithm are 

Step 1: Initialize a number of antibodies (immune cells) which represent initial 

population size. 

Step 2: When an antigen or pathogen invades the organism; a number of antibodies 

that recognize these antigens survives. In Fig.3.4 only the antibody C is able to 

recognize the antigen3 as its structure fits to a portion of the pathogen. So fitness of 

antibody C is higher than others. 

Step 3: The immune cells recognize antigens under go cellular reproduction. During 

reproduction the somatic cells reproduce in an asexual form, i.e. there is no crossover 

of genetic material during cell mitosis. The new cells are copies (clones) of their 

parents as shown for antibody C in Fig.3.4. 

Step 4: A portion of cloned cells undergo a mutation mechanism which is known as 

somatic hypermutation as described in [3.25]. 

 

Fig. 3.3(b) Monitoring Stage 

Fig. 3.3 Basic of Negative Selection Algorithm (a) Censoring Stage (b) Monitoring Stage 
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Step 5: The affinity of every cell with each other is a measure of similarity between 

them. It is calculated by the distance between the two cells. The antibodies present in 

a memory response have on average a higher affinity than those of early primary 

response. This phenomenon is referred to as maturation of immune response. During 

the mutation process the fitness as well as the affinity of the antibodies gets changed. 

In each iteration after cloning and mutation those antibodies which have higher 

fitness and higher affinity are allowed to enter the pool of efficient cells. Those cells 

with low affinity or self-reactive receptors must be efficiently eliminated. 

Step 6: At each iteration among the efficient immune cells some become effecter cells 

(Plasma Cell), while others are maintained as memory cells. The effecter cells secrete 

antibodies and memory cells having longer span of life so as to act faster or more 

effectively in future when the organism is exposed to same or similar pathogen. 

Step 7: The process continues till the termination condition is satisfied else steps 2 to 

7 are repeated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Basic of Clonal Selection Algorithm 
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     The clonal selection algorithm has several interesting features such as population 

size is dynamically adjustable, exploration of the search space, location of multiple 

optima, capability of maintaining local optima solutions and defined stopping criteria. 

3.4.4  Danger Theory 

    This theory is given by Matzinger in 1994 [3.29]. The immune system in order to 

function properly, it’s very important that only the “correct” cells are matched as 

otherwise this could lead to a self-destructive autoimmune reaction. Classical 

immunology [3.31] stipulates that an immune response is triggered when the body 

encounters something non-self or foreign. It is not yet fully understood how this self–

nonself discrimination is achieved, but many immunologists believe that the 

difference between them is learnt early in life. In particular, it is thought that the 

maturation process plays an important role to achieve self-tolerance by eliminating 

those T- and B-cells that react to self. In addition, a “confirmation” signal is required: 

that is, for either B-cell or T- (killer) cell activation, a T- (helper) lymphocyte must 

also be activated. This dual activation is further protection against the chance of 

accidentally reacting to self. 

    In accordance to danger theory there must be discrimination happening that goes 

beyond the self–nonself distinction described above. For instance: 

1. There is no immune reaction to foreign bacteria in the gut or to the food we eat 

although both are foreign entities. 

2. Conversely, some auto-reactive processes are useful, for example against self 

molecules expressed by stressed cells. 

3. The definition of self is problematic—realistically, self is confined to the subset 

actually seen by the lymphocytes during maturation. 

4. The human body changes over its lifetime and thus self changes as well. Therefore, 

the question arises whether defenses against non-self learned early in life might be 

auto-reactive later. 

      Other aspects that seem to be at odds with the traditional viewpoint are 

autoimmune diseases and certain types of tumors that are fought by the immune 
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system (both attacks against self) and successful transplants (no attack against non-

self). 

     The Danger Theory takes care of “non-self but harmless” and of “self but harmful” 

invaders into our system. The central idea is that the immune system does not 

respond to non-self but to danger. Practically there is no need to attack everything 

that is foreign, something that seems to be supported by the counter-examples above. 

In this theory, danger is measured by damage to cells indicated by distress signals that 

are sent out when cells die an unnatural death. As shown in Fig.3.5 a cell that is in 

distress sends out an alarm signal, whereupon antigens in the neighborhood are 

captured by antigen-presenting cells such as macrophages, which then travel to the 

local lymph node and present the antigens to lymphocytes. Essentially, the danger 

signal establishes a danger zone around itself. Thus B-cells producing antibodies that 

match antigens within the danger zone get stimulated and undergo the clonal 

expansion process. Those that do not match or are too far away do not get 

stimulated. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Principle of Danger Theory 
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   In accordance with Danger theory Bretscher and Chon proposed a two signal 

model. According to this 

Signal1 : this is used for antigen recognition. Basically to determine the cell is a 

foreign cell. 

Signal2 : this is used for co-stimulation. This refers that the cell is really dangerous. So 

in accordance to the two signal model the danger theory operates by 3 steps 

Step1 : Become activated if you receive signals one and two together. Die if you 

receive signal one in the absence of signal two. Ignore signal two without signal one. 

Step2 : Accept signal two from antigen-presenting  cells only.  Signal one may come 

from any cell. 

Step3 : After activation revert to resting state after a short time . 

   The challenge is clearly to define a suitable danger signal. The danger signal helps to 

identify which subset of feature vectors is of interest. A suitably defined danger signal 

overcomes many of the limitations of self–nonself selection. It restricts the domain of 

nonself to a manageable size, removes the need to screen against all self, and deals 

adaptively with scenarios where self (or nonself) changes over time. 

 

3.5 Recent uses of AIS based Modeling 

In recent years the area of Artificial Immune System (AIS) based modeling has drawn 

attention of many researchers due to its broad applicability to different fields. Some of the 

significant application areas include optimization problem [3.25]-[3.26], [3.42], computer 

security [3.17]-[3.18], [3.37], design of intrusion detection [3.19]-[3.21], fault detection 

[3.22], fault tolerance [3.35]-[3.36], pattern recognition[3.27], distributed learning[3.33], 

sensor network[3.43], Job-shop scheduling[3.44], design of recommendation system[3.46]- 

[3.47] etc. The AIS is relatively young and emerging as an active and attractive field 

involving models, techniques and applications of great diversity. 

 

 



   
 

49 
                          PRINCIPLE AND THEORY OF ARTIFICIAL IMMUNE SYSTEMS (AIS) 

 

3.6 SUMMERY 

This chapter presents the functionality of BIS that is how the body restricts itself 

from the invasion of external microorganisms. It also outlines how the artificial 

immune system (AIS) is developed by following the principle of BIS. The four forms 

of AIS algorithm are discussed and the application areas are highlighted. In the 

present the clonal selection principle is chosen to be used  for various application as it 

is simple and easy to implement. 
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4.1 Introduction 

DENTIFICATION of Nonlinear plants finds extensive applications in stability 

analysis, controller design, modeling of intelligent instrumentation, analysis of 

power systems , modeling of multipath communication channels etc. When these 

practical plants are considered for identification their behaviors are completely 

unknown. The plant behavior may be nonlinear, dynamic, time varying, chaotic etc. 

So in general it is difficult to model practical nonlinear plants by conventional 

numerical analysis methods. Therefore adaptive methods of system identification 

have been proposed and are being used in practice. 

  4.2 Principle of Adaptive System Identification 

     The system identification concerns with the determination of a system on the 

basis of input output data samples. The identification task is to determine a suitable 

estimate of finite dimensional parameters which completely characterize the plant. 

The selection of the estimate is based on comparison between the actual output 

sample and predicted value on the basis of input data up to that instant. An adaptive 

automation is a system whose structure is alterable or adjustable in such a way that its 

behavior or performance improves through contact with its environment. 

      The essential and principal characterstics of an adaptive system is its time-varying, self-

adjusting performance. System identification [4.1, 4.2] is the experimental approach to 

process modeling. System identification includes the following steps  

Experiment design :  Its purpose is to obtain good experimental data and it 

includes the choice of   the measured variables and of the character of the input 

signals.                          

Selection of model structure : A suitable model structure is chosen using prior 

knowledge and trial and error.  

I 
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Choice of the criterion to fit : A suitable cost function is chosen, which reflects 

how well the model fits the experimental data.  

Parameter estimation : An optimization problem is solved to obtain the 

numerical values of the model parameters.  

Model validation: The model is tested in order to reveal any inadequacies.  

The adaptive systems have following characteristics [4.2] 

1) They can automatically adapt (self-optimize) in the face of changing (non-

stationary) environments and changing system requirements. 

2) They can be trained to perform specific filtering and decision making tasks. 

3) They can extrapolate a model of behavior to deal with new situations after 

trained on a finite and often small number of training signals and patterns. 

4) They can repair themselves to a limited extent. 

5) They can be described as nonlinear systems with time varying parameters.  

 

4.3 Classification of Nonlinear Systems 

         

        According to number of input output nodes the nonlinear plants are broadly 

classified into either single input single output (SISO) or multiple input multi output 

(MIMO) systems. Depending upon the input output relation of the plants they are 

divided into two groups 

 

(i)  Static systems  

In static systems the output at any instant of time depends upon the input at that 

instant. The system is essentially a memory-less one and is mathematically 

represented as 

ƒ[u(k)])k(y  (4.1) 

 

where ƒ[.]represents  the nonlinearity associated with the system. 
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(ii) Dynamic systems  

In dynamic systems the output at any instant depends upon the input at that instant 

as well as the past inputs and output values. These systems have memory to store past 

values. The nonlinear dynamic systems [4.5] is assumed to have one of the following 

form  

Model 1: 

)k(d)]1mk(u),...,1k(u),k(u[g)ik(y)1k(y
1n

0i

i  (4.2) 

Model 2: 

)k(d)ik(u)]1nk(y),..,1k(y),k(y[ƒ)1k(y
1m

0i

i          (4.3) 

Model 3: 

)k(d)]1mk(u...,

),1k(u),k(u[g)]1nk(y),..,1k(y),k(y[ƒ)1k(y
 (4.4) 

Model 4: 

)k(d)]1mk(u...

),...1k(u),k(u),1nk(y),..,1k(y),k(y[ƒ)1k(y
 (4.5) 

 

where d(k) is the noise associated with the nonlinear plant. The symbols u (k) and  

y(k) represents the input and output of the nonlinear plant at time instant k and m ≤ 

n. The terms ƒ[.]and g[.]denote nonlinear functions and αi and βi represent 

constant values.  
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4.4 Problems associated with existing gradient 

based models 

 

Many research work on nonlinear system identification have been reported in the 

literature but an important one is using multilayer perceptron (MLP) by Narendra 

and Parthasarathy (1990) [4.3]. Later on in [4.5] a new approach to identify such 

systems had proposed which provides identical or even better performance but 

employing a low complexity FLANN structure. However, the major disadvantage of 

these methods is that they employ derivative based learning rule to update their 

weights which at times leads incorrect estimate of the parameters because of the 

following reasons 

(i) Converge to local optima : In case of gradient based learning there is 

maximum probability of convergence of the weights of the model to local minima 

rather than global minima. 

(ii) Rattling around the optimal Solution : Due to the fixed step size of the 

search in gradient based method the estimated weights normally rattles around the 

optimal solution rather than converge to it. 

 

4.5 Proposed hybrid FLANN-AIS Model  

 

In this section we propose a low complexity FLANN structure whose weights are 

trained with clonal selection algorithm of AIS rather than conventional LMS based 

approach discussed in previous section (2.2.2.3) and (2.3.1.4). The clonal selection 

algorithm discussed in section (3.4.3) is simple but an efficient approximation 

algorithm for achieving optimum solution.  The detail about the application of the 

proposed hybrid technique for identification of nonlinear SISO and MIMO plant is 

discussed below in the following subsections.   
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4.5.1 Nonlinear SISO Plant Identification 

The block diagram of adaptive SISO system identification based on proposed method 

is shown in Fig.4.1. The symbols u(k), y(k), )k(y  and e(k) represent the input, output 

of plant, the estimated output of the model and the error signal respectively. The 

objective of the identification task is to minimize the error e(k) recursively such that 

)k(y  approaches y(k) when the same input u(k) is applied to the plant and the model. 

 

 

 

 

 

 

 

 

 

The stepwise procedure of the proposed identification algorithm is described as 

follows 

Step 1. Determination of output of plant : The input is a random signal 

drawn from a uniform distribution in the interval [-1, 1].Let ‘k’ be the numbers of 

Fig.4.1. Block diagram of Nonlinear SISO plant identification 
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input samples taken. The input sample is then passed through the plant to produce 

plant output y(k). 

Step 2. Functional expansion of input : Same input samples are passed through 

the model consisting FLANN structure. Each input sample under goes trigonometric 

expansion given by 

1M...5,3ifor)u(k)icos(

M...4,2ifor))k(uisin(

1ifor)k(u

0ifor1

)k(s i  (4.6) 

where 2/M,....,2,1i . The bias input is unity. So total expanded values including the 

bias become Q=M+2.  

Step 3. Initialization of a group of cells :  As it is an evolutionary algorithm 

we begin with a group of solutions .Here a group of weight vector of FLANN is 

taken. A weight vector consist of (M+2) no of elements. Each element of weight 

vector is represented by an immune cell which is basically a binary string of definite 

length. So a set of binary strings is initialized to represent a weight vector and n 

number of such weight vectors is taken each of which represent probable solution. 

Step 4. Decoding :  As each cell constitutes random binary bits they need to be 

converted to decimal values lying between some ranges to compute the fitness 

function. The equation that converts the binary to real number is given by 

DV)}12/()RR{(RRV L

minmaxmin  (4.7) 

where  Rmin , Rmax , RV and DV represent the minimum range, maximum range, 

decimal and decoded value of an L bit coding scheme respectively. 

Step 5. Calculation of output of model : Initially weight vector is taken as a 

random vector. The output of model is computed using expanded values of u(k) and 

weight vector . This is repeated for n times. 
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)k()k()k( wsy i

Q

1i
i

 (4.8) 

 

Step 6- Fitness Evaluation : The output of the model )n,k(y due to k
th

 sample 

and n
th 

vector, is compared with the plant output to produce error signal given by 

)n,k(y)n,k(y)n,k(e  
(4.9) 

For each n
th

 weight vector the mean square error (MSE) is determined and is used as 

fitness function given by 

K

)n,k(

)n(MSE

K

1k

2

e
 

(4.10) 

The objective is to minimize the fitness function of (4.10) by clonal selection 

principle. 

Step 7- Selection : To select the weight vector (corresponding cells) for which 

MSE is minimum.  

Step 8- Clone: The weight vector (corresponding cells) which yields best fitness 

value (minimum MSE) is duplicated. 

Step 9- Mutation: Mutation operation introduces variations into the immune 

cells. Probability of mutation Pm is a smaller value which indicates that the operation 

occurs occasionally. Total number of bits to mutate is the product of total number of 

cells, number of bits in each cell and probability of mutation of each cell. Among the 

cloned cells the cell to be mutated is chosen randomly. A random position of the cell 

is chosen first and then its bit value is altered. 

Step 10- Stopping Criteria: Steps 4-9 are repeated until a predefined MSE is 

obtained. The desired weight vector is achieved at this stage. This is known as 

memory cell.  
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4.5.2 Nonlinear MIMO Plant Identification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The block diagram of proposed model for adaptive MIMO plant identification is 

shown in Fig.4.2 in which the plant is considered as nonlinear and dynamic in nature. 

The proposed model is a nonlinear single layer functional link neural network 

(FLANN) with no hidden layer with its connecting weights trained by AIS based 

algorithm. Let 

)]k(u)....k(u)k(u)k(u[)k(u m321  (4.11) 

)]k(x).....k(x)k(x)k(x[)k(x n321  (4.12) 

)]k(x).....k(x)k(x)k(x[)k(x n321  
(4.13) 

)]k(e).....k(e)k(e)k(e[)k(e n321  (4.14) 

Fig.4.2. Block diagram of Nonlinear MIMO plant identification 
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where symbols u(k), x(k), )k(x and e(k) represent the input, output of plant, the 

estimated output of the model and the error signal respectively. 

The MSE of the outputs of the MIMO plant are given by 

K

)1,k(

mse

K

1k

2

1

e
 

(4.15) 

 

 

K

)n,k(

mse

K

1k

2

n

e
 

(4.16) 

where K is the total number of input samples applied. The Average MSE is defined by 

n

mse

AMSE

n

1i

i

 

(4.17) 

The objective of the identification task is to minimize the AMSE recursively such 

that  )k(x  approaches x(k) when the same input u(k) is applied to the plant and the 

model. The stepwise procedure of the proposed identification algorithm is described 

as follows 

Step 1. Determination of outputs of MIMO plant : Let ‘K’ be the total 

numbers of input samples taken. The input signals u(k) are fed to the plant to 

produce plant outputs x(k). 

Step 2. Functional expansion of inputs in the model : Same input samples 

are passed through the FLANN structure of the model. Each input sample undergo 

trigonometric expansion. 

1M...5,3ifor)(k)uicos(

M...4,2ifor))k(uisin(

1ifor)k(u

0ifor1

)k(s

1

1

1

i  (4.18) 

: 

: 
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Step 3. Decoding :  The cells which represents binary values are converted to 

decimal values in accordance with (4.7).  

Step 4. Initialization of a group of cells: 

Here a group of weight vector of FLANN is taken. Each element of weight vector is 

represented by a cell which is basically a binary string of definite length. So a set of 

binary strings is initialized to represent a weight vector and n number of such weight 

vectors is taken each of which represent probable solution. 

Step 5. Calculation of outputs of model: 

Initially weight vector is taken random value. The outputs of model is computed 

using expanded values of u(k) and and weight vector as follows 

)k()k()k( wsy i

Q

1i
i

 (4.19) 

 

Step 6. Fitness Evaluation: 

The output of the model )n,k(x due to k
th

 sample and n
th 

vector, is compared with 

the plant output to produce error signal. For each n
th

 weight vector the AMSE is 

determined as described in accordance with (4.17). 

Steps 7-10 are same as that for nonlinear SISO plant identification. 

 

4.6 System Simulation 

            

     To demonstrate the performance of the proposed identification model discussed in 

section 4.5 simulation study using MATLAB is carried out. Some benchmark 

nonlinear static, dynamic and MIMO plants are identified and the performance is 

compared with other standard models on the following basis 

I. Comparison of overall output responses of the plant and the estimated model. 

II. Comparison of sum of squared errors (SSE) between true (plant) and estimated 

(model) response. The sum of squared error is defined as 
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K

1k

2))k(y)k(y()k(SSE  (4.19) 

where y(k) is true output and )k(y is estimated output during testing. 

III. Comparison of overall CPU time required to train the model. 

          In order to have better idea about the improved performance of the proposed 

model the simulation study is broadly performed on 2 things 

A. Comparison of different structural models like FLANN, MLP. 

B. Comparison of same structure with different evolutionary algorithms like GA, 

PSO.   

4.6.1 Identification of Nonlinear Static Plants 

 

     The example of the nonlinear static plant taken here is described by (4.1) to (4.5). 

The nonlinearity ƒ[.] is given by 

Example 1: 

)k(x4.0)k(u3.0)k(u))k(u(ƒ 23

1  (4.20) 

Example 2: 

))k(u5sin(1.0))k(u3sin(3.0))k(usin(6.0))k(u(ƒ2  (4.21) 

Example 3: 

3)k(u2.0)k(u2.1)k(u8.0)k(u4.0

2.1)k(u3)k(u2.1)k(u4
))k(u(ƒ

2345

23

3  (4.22) 

Example 4: 

125.1))k(u4cos(1.0
2)k(u

2
))k(u(sin5.0))k(u(ƒ

3

3

4  (4.23) 

 

 where the input to the system u(k) is a uniformly distributed random signal over the 
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interval [-1, 1]. For identification the proposed algorithm discussed in section 4.5.1 is 

used. The model used for identification using FLANN structure is shown in Fig. 4.2. 

Simulation study is also carried out for the above functions using MLP structure 

trained by back propagation algorithms as presented in [4.5]. Investigation is also 

done by taking the same FLANN structure whose weights are trained with other 

evolutionary algorithms like GA and PSO on similar environment. 

     For simulation of all above functions the detail comparative study during training 

and testing of model is represented in Table I. In the proposed model the initial 

population of cells is taken as 78. The number of trigonometric expansion of input 

used in the FLANN depends upon the nonlinearity associated with the function. For 

identification of plants ƒ1, ƒ2, ƒ3 and ƒ4 the numbers of expansions are 5,11,7 and 11 

respectively. The weights of the FLANN structure are trained for 150, 300, 200 and 

3900 iterations respectively for ƒ1, ƒ2, ƒ3 and ƒ4 plants. Here for clonal selection based 

training each element of weight vector is represented by a cell which is basically a 

binary string of 10 bits. The values of Rmax and Rmin are chosen judiciously to attain 

satisfactory results. The probability of mutation is taken as 0.1. 

     For simulation using MLP, the structure is taken as {1_20_10_1}.The nonlinearity 

used at the node is hyperbolic tan function. In back propagation based training both 

the convergence parameter and momentum term is set to 0.1. The weights of MLP 

are trained for 50000 iterations.  

    For simulation using FLANN-GA based model, the structure of FLANN is same 

as that of the proposed model. The basic genetic algorithm described in section 2.3.2.1 

is used. Here each element of weight vector is represented by a chromosome. Initial 

population of chromosome is same as that of the immune cells taken. Binary coded 

GA is used where each chromosome is of length 10 bit. Roulette wheel scheme is 

used for selection. The fitness function is MSE as described in (4.10). The probabilities 

of crossover and mutations are taken values 0.8 and 0.1 respectively. The number of 

generations is taken same as that of the proposed model. 
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    In FLANN-PSO based model same structure of FLANN is taken. The basic 

genetic algorithm is described in section 2.3.2.2 is used. The weights are represented 

by position of the particles. Each position is associated with a corresponding velocity. 

The symbols 1r and 2r  represent random numbers between 0 and 1. Similarly 1c and 

2c  denote acceleration constants normally taken value 2.05. The initial and final time 

varying inertia weights wi and wf are taken ass 0.9 and 0.4 respectively. The number 

of search iteration taken is same as that of the number of generation in the proposed 

model.  

          The performance of all the models are compared in terms of estimated output 

and the error plots for ƒ1, ƒ2,ƒ3 and ƒ4 plants are shown in Figures 4.3 - 4.6. Table 4.1 

reveals that the proposed models offer lesser CPU time, lesser input samples and 

minimum sum of squared errors compared to other models.   

 

 

TABLE 4.1 

COMPARATIVE RESULTS OF STATIC SISO SYSTEMS OBTAINED THROUGH SIMULATION STUDY  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Static 

systems 
Training Testing 

No. of input 

samples used by 

structures 

CPU time required during Training 

(in Sec.) 

No. of  

input 

samples 

used by 

both 

structures 

Sum of square errors (SSE) 

MLP FLANN MLP 

BP 

FLANN 

AIS 

FLANN 

GA 

FLANN 

PSO 

MLP 

BP 

FLANN 

AIS 

FLANN 

GA 

FLANN 

PSO 

Ex-1 50000 90 105.5 10.5 21.7 18.5 90 0.017 0.010 0.042 0.303 

Ex-2 50000 60 100.0 18.0 51.6 36.4 60 0.916 0.029 2.748 5.670 

Ex-3 50000 75 110.3 56.3 104.1 74.2 75 0.023 0.019 0.761 0.893 

Ex-4 50000 60 120.8 704.7 2048.2 750.8 60 1.511 0.132 0.977 1.275 
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                    Fig.4.3 (a)                                                                                        Fig.4.3 (b) 

 

 

 

 

 

 

 

 

 

 

 

              

                 Fig.4.3 (c)                                                                                         Fig.4.3 (d) 

 

Fig.4.3. Identification of ƒ1:  (a) using MLP-BP (b) using proposed FLANN-AIS (c) using FLANN-GA 

(d) using FLANN-PSO 

 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u(k)
f1

(u
(k

))

PLANT

MODEL AIS

ERROR

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u(k)

f1
(u

(k
))

PLANT

MODEL MLP

ERROR

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u(k)

f1
(u

(k
))

PLANT

MODEL GA

ERROR

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u(k)

f1
(u

(k
))

PLANT

MODEL PSO

ERROR

 



  
 

64 
                                APPLICATION OF AIS TO NONLINEAR SYSTEM IDENTIFICATION 

 

 

 

 

 

 

 

 

 

 

 

 

       

                  Fig.4.4 (a)                                                                                        Fig.4.4 (b) 

 

 

 

 

 

 

 

 

 

 

 

  

                  Fig.4.4 (c)                                                                                        Fig.4.4 (d) 

 

Fig.4.4. Identification of ƒ2:  (a) using MLP-BP (b) using proposed FLANN-AIS (c) using FLANN-GA 

(d) using FLANN-PSO 
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                       Fig.4.5 (a)                                                                                        Fig.4.5 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

                       Fig.4.5 (c)                                                                                        Fig.4.5 (d) 

 

Fig.4.5. Identification of ƒ3:  (a) using MLP-BP (b) using proposed FLANN-AIS (c) using FLANN-GA 

(d) using FLANN-PSO 
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             Fig.4.6 (a)                                                                                        Fig.4.6 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

          Fig.4.6 (c)                                                                                        Fig.4.6 (d) 

 

Fig.4.6. Identification of ƒ4:  (a) using MLP-BP (b) using proposed FLANN-AIS (c) using FLANN-GA 

(d) using FLANN-PSO 
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4.6.2 Identification of Nonlinear Dynamic Plants 

 

In simulation study the benchmark nonlinear plants considered here are taken from 

[4.3], [4.5]. In all the plants the input is a uniformly distributed random signal over 

the interval [-1, 1]. The testing is carried out by the sinusoidal input given by 

250nfor
25

k2
sin2.0

250

k2
sin8.0

250kfor
250

k2
sin

)k(u  (4.24) 

 

The different examples simulated are 

Example 1 : 

     This dynamic system is assumed to be of second order and is given by the 

difference equation 

)]k(u[g)1k(y6.0)k(y3.0)1k(y  (4.25) 

where function g [.] is given by 

125.1)u4cos(1.0
2u

2
)u(sin5.0)u(g

3

3
 (4.26) 

For identification of the plant the model used is of the form 

)]k(u[N)1k(y6.0)k(y3.0)1k(y  
(4.27) 

 

where N[u(k)] represents either the proposed model or the MLP structure 

{1_20_10_1}. For MLP both convergence factor and momentum term is taken as 

0.1.The number of iteration and input sample for training used are 50000. The 

proposed FLANN-AIS based structure shown in Fig.4.7. is used for identification. In 

FLANN structure each input value is expanded to 5 trigonometric terms. Initial 

population of cell is taken as 20. The weights are trained for 200 iterations. The same 
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FLANN structure is also trained with GA and PSO in similar environment. The 

identification performance is compared in terms of estimated output and the error 

plot of different models shown in Fig.4.8.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig.4.7. Proposed FLANN-AIS based model structure for identification of dynamic system of Example-1 
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                       Fig.4.8 (a)                                                                                                     Fig.4.8 (b)   

 

 

 

 

 

 

 

 

 

                    Fig.4.8 (c)                                                                                                   Fig.4.8 (d)   

 

Fig.4.8. Identification of dynamic system Example-1 (a) using MLP-BP (b) using proposed FLANN-AIS 

(c) using FLANN-GA (d) using FLANN-PSO 
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Example 2 : 

     The dynamic system to be identified is described by the difference equation of 

Model 2. The second order difference equation which represents the system is given 

by 

u(k)1)]-y(kƒ[y(k),)1k(y  (4.28) 

The function ƒ[.] is given by 

yy

yyyy
yy 2

2

2

1

1121

21
0.1

)0.1)(5.2(
),(  ƒ  

(4.29) 

The model used for identification task is represented by 

)k(u)]1k(y),k(y[N)1k(y  (4.30) 

 

       Here N represents the structure of either MLP {2_20_10_1} or the new model 

structure of Fig.4.9. For MLP the convergence factor is taken as 0.05 and momentum 

term is 0.1. .The number of iteration and input sample for training is taken 50000. In 

FLANN structure the inputs are expanded to 8 terms (each input 4 terms). Weights 

are trained for 20 iterations. Initial population of cells is taken as 60 in clonal 

selection algorithm. The same FLANN structure is also trained with GA and PSO in 

similar environment. The results of plant output, model output and error plot is 

shown in Fig.4.10. 
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Fig.4.9. Proposed FLANN-AIS based model structure for identification of dynamic system of Example-2 
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                          Fig.4.10 (a)                                                                                                     Fig.4.10 (b)   

 

 

 

 

 

 

 

 

 

 

 

 

                     

                        Fig.4.10 (c)                                                                                                     Fig.4.10 (d)   

Fig.4.10. Identification of dynamic system Example-2  (a) using MLP-BP (b) using proposed FLANN-

AIS (c) using FLANN-GA (d) using FLANN-PSO 
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Example 3 : 

The example of the plant taken here is described by the difference equation of Model 

3 is represented by 

 (4.31) 

where the functions ƒ[.] and g[.] is given by  

2y0.1

)3.0y(y
)y(ƒ  (4.32) 

0.5)-8)(uu(u)u(g  (4.33) 

The model taken for identification is given by 

)k(uNy(k)] [ N)1k(y 21  
(4.34) 

where N1 and N2  represent two different FLANN structures. 

        For MLP both the structure of N1 [.] and N2 [.] are taken as {1_20_10_1}.The 

convergence factor and momentum term both are taken as 0.1.Weights of the 

structure are trained for 50000 iterations. No of input samples taken is 50000. The 

proposed identification structure is shown in Fig.4.11.The layer of FLANN for N1  is 

taken as 4 where as 3 for N2 . No of input samples is 200 and training is carried out 

for 100 iterations. Initial population of cells is taken as 30 in the clonal selection 

algorithm. The weights of the FLANN structure are also updated with GA and PSO 

based algorithms and comparative results are presented in Fig.4.12. 

 

 

 

 

)k(ugy(k)] [ ƒ)1k(y
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Fig.4.11 Proposed FLANN-AIS based model structure for identification of dynamic system of Example-3 
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             Fig.4.12 (a)                                                                                                          Fig.4.12 (b)   

 

 

 

 

 

 

 

 

 

 

 

    

              Fig.4.12 (c)                                                                                                          Fig.4.12 (d)   

 

Fig.4.12. Identification of dynamic system Example-3  (a) using MLP-BP (b) using proposed FLANN-

AIS (c) using FLANN-GA (d) using FLANN-PSO 
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Example 4 : 

In this example the plant is of Model-4 type and is given by 

1)]-u(ku(k),2),-y(k1),-y(kƒ[y(k),)1k(y  (4.35) 

where the functions ƒ[.] is represented as 

aa

aaaaaa
aaaaa 2

3

2

2

435321

54321
0.1

)0.1(
),,,,( ƒ  

(4.36) 

The model for identification of plant is of the form 

1)]-u(ku(k),2),-y(k1),-y(kN[y(k),)1k(y  (4.37) 

 

        For MLP structure of N is taken as {5_20_10_1}.The convergence factor and 

momentum term each is taken as 0.1. No of iterations and input samples for training 

is taken as 50000. The proposed identification structure used is shown in Fig.4.13. In 

FLANN for N the inputs are expanded to 20 terms (each input 4 terms). The number 

of input sample taken is 60. Weights are trained for 150 iterations. Initial population 

of cells is taken as 20. The weights of the FLANN structure are also trained with GA 

and PSO based algorithms. The responses of various models are displayed in Fig.4.14. 

Comparative Result : 

The comparisons of identification performance obtained in different examples are 

demonstrated in Table 4.2. It reveals that the proposed models offer smaller CPU 

time, lesser input samples and minimum sum squared errors compared to those 

obtained by other methods.   
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Fig.4.13. Proposed FLANN-AIS based structure for identification of dynamic system of Example-4 
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                          Fig.4.14 (a)                                                                                                          Fig.4.14 (b)   

 

 

 

 

 

 

 

 

 

 

 

 

                           Fig.4.14 (a)                                                                                                                  Fig.4.14 (b)   

 

Fig.4.14. Identification of dynamic system Example-4  (a) using MLP-BP (b) using proposed FLANN-

AIS (c) using FLANN-GA (d) using FLANN-PSO 
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TABLE 4.2 

COMPARATIVE RESULTS OF DYNAMIC SYSTEMS OBTAINED THROUGH SIMULATION STUDY  

Dynamic 

systems 

Training Testing 

No. of input 

samples used by 

structures 

CPU time required during Training 

(in Sec.) 

No. of  

input 

samples 

used by 

both 

structures 

Sum of square errors (SSE) 

MLP FLANN MLP 

BP 

FLANN 

AIS 

FLANN 

GA 

FLANN 

PSO 

MLP 

BP 

FLANN 

AIS 

FLANN 

GA 

FLANN 

PSO 

Ex-1 50000 100 131.5 2.3 3.9 2.6 600 220.5 37.30 66.20 73.85 

Ex-2 50000 150 114.8 8.8 16.6 9.1 1000 9.08 5.60 64.89 81.06 

Ex-3 50000 200 92.0 23.4 42.4 27.8 500 1.16 1.99 19.00 30.20 

Ex-4 50000 150 90.0 20.0 36.3 22.1 800 7.40 5.80 23.11 27.15 

 

4.6.3 Identification of Nonlinear MIMO Plants 

 

     The example taken here from [4.21] is a two input two output nonlinear discrete 

time system given by 

)k(d
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x

x
x  

(4.38) 

where the inputs u1(k) and u2(k) is given by 

100

k2
cos)k(u1  (4.39) 

100

k2
sin)k(u 2  (4.40) 

The symbols d1 (k) and d2 (k) represent white Gaussian noise with zero mean and 

standard deviation (0.03). For identification the model used is of the form 

)]k(u),k(u),k(x),k(x[ƒ)1k(x 212111  
(4.41) 
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)]k(u),k(u),k(x),k(x[ƒ)1k(x 212122  (4.42) 

 

          For identification of the MIMO plant the MLP structure of is taken as 

{2_20_10_2}.Each of the convergence factor and momentum term is taken as 0.1. No 

of iterations and input samples for training is taken 50000.The structure of the model 

for above plant is shown in Fig.4.15. Each input is expanded to 4 terms using 

trigonometric expansion.  The weights of Fig4.15 are updated using clonal selection 

algorithm. The initial population of cell is taken as 77. The weights of the model are 

trained for 100 iterations. The weights of the proposed structure are also trained with 

GA and PSO based algorithms under similar conditions. Both outputs of the MIMO 

plant, estimated output of the models and error are plotted in Fig.4.16-4.17. 

The identification performance is compared in Table 4.3. The results indicate that the 

suggested approach yields lesser CPU time and least MMSE errors compared to other 

models.   
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Fig.4.15. Proposed FLANN-AIS based structure for identification of MIMO Plant 
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                 Fig.4.16 (a)                                                                                                          Fig.4.16 (b)   

 

 

 

 

 

 

 

 

 

                    Fig.4.16 (c)                                                                                                          Fig.4.16 (d)   

 

Fig.4.16. Identification of MIMO plant Output1:  (a) using MLP-BP (b) using proposed FLANN-AIS (c) 

using FLANN-GA (d) using FLANN-PSO 
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                  Fig.4.17 (a)                                                                                                               Fig.4.17 (b)   

 

 

 

 

 

 

 

                  

                  Fig.4.17 (c)                                                                                                               Fig.4.17 (d)   
 

Fig.4.17. Identification of MIMO plant Output2:  (a) using MLP-BP (b) using proposed FLANN-AIS (c) 

using FLANN-GA (d) using FLANN-PSO 
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TABLE 4.3 

COMPARATIVE RESULTS OF MIMO SYSTEMS OBTAINED THROUGH SIMULATION STUDY  

 

 

 

 

 

 

4.7 Conclusion 

         

        The proposed method requires less training sample compared to the MLP 

counterpart. It also involves lesser CPU time for learning the weights and smaller 

sum of squared errors. The simulation study also reveals that the Clonal selection 

algorithm is faster in training and more accurate (minimum sum of square errors) 

compared to GA and PSO base FLANN model. The close agreement of output 

responses of the plant and the model exhibit that the AIS is a potential learning tool 

for developing accurate identification model for complex nonlinear plants. 

  

4.8 Summary 

     

       This chapter contains original contribution on system identification using AIS. 

In this chapter the nonlinear plants are classified into three categories such as static, 

dynamic and MIMO, depending upon its input-output relationship. The detail 

architecture of these plants is described. The identification model proposed here 

consists of a FLANN structure whose weights are trained with CLONAL selection 

MIMO 

Plants 

Training Testing 

No. of input 

samples used by 

structures 

CPU time required during Training 

(in Sec.) 

No. of  

input 

samples 

used by 

both 

structures 

Sum of square errors (SSE) 

MLP FLANN MLP 

BP 

FLANN 

AIS 

FLANN 

GA 

FLANN 

PSO 

MLP 

BP 

FLANN 

AIS 

FLANN 

GA 

FLANN 

PSO 

Ex Out-1 50000 

 

300 223.1 104.8 192.6 128.4 300 150.93 3.39 27.28 62.33 

Out-2 45.6 5.32 47.79 83.14 
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principle of AIS. Simulation study is carried out on some benchmark identification 

problems. The proposed model is compared with other standard models like MLP 

with back propagation and FLANN structure with different evolutionary algorithms 

like GA, PSO etc. The efficiency of identification is determined by comparison of 

overall output response of the plant and the estimated model, sum of square errors 

(SSE) and overall CPU time required to train the model. 
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Application of AIS to Nonlinear 
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5.1 Introduction 

RNASMISSION and storing of high density digital information plays an 

important role in the present age of communication and information 

technology. These data are distorted while reading out of the recording 

medium or arriving at the receiver end due to inter symbol interference in the 

channel. The adaptive channel equalizer alleviates this distortion and reconstructs the 

transmitted data faithfully.  

5.2 Need of Adaptive Channel Equalization 

    Digital Communication channels are often modeled as low pass FIR filter. When a 

sequence of symbols is transmitted, the low pass filtering effect of the channel distorts 

the transmitted symbols over successive time intervals causing symbols to spread and 

overlap with adjacent symbols. This resulting linear distortion is known as inter 

symbol interference (ISI). In addition to the linear distortion, the transmitted symbols 

are subjected to other impairments such as thermal noise, impulse noise and 

nonlinear distortion arising from the modulation/demodulation process, cross-talk 

interference, the use of amplifiers and converters, and the nature of the channel itself. 

Thus adaptive channel equalizers play an important role in recovering digital 

information from digital communication channels/storage media. 

 

5.3 Background and problems associated with 

existing digital channel equalizers 

 

          Adaptive channel equalization was first proposed and analyzed by Lucky in 

1965[5.1].  Adaptive channel equalizer employing a multilayer perceptron (MLP) 

structure has been reported [5.2], [5.4]. One of the major drawbacks of the MLP 

structure is the long training time required for generalization and thus, this network 

has very poor convergence speed which is primarily due to its multilayer architecture. 

T 
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A single layer polynomial perceptron network (PPN) has been utilized for the 

purpose of channel equalization [5.3] in which the original input pattern is expanded 

using polynomials and cross-product terms of the pattern and then, this expanded 

pattern is utilized for the equalization problem. An ANN based equalization 

technique has been proposed [5.7] to alleviate the ISI present during read back from 

the magnetic storage channel. Recently Sun et al have reported [5.8] an improved 

Viterbi detector to compensate the nonlinearities and media noise. Preparta had 

suggested [5.9] a simple and attractive scheme for dispersal recovery of digital 

information based on the Discrete Fourier Transform. Subsequently Gibson et al 

have reported [5.10] an efficient nonlinear ANN structure for reconstructing digital 

signals from the corrupted ones. In a recent publication [5.11] the authors have 

proposed optimal preprocessing strategies for perfect reconstruction of binary signals 

from dispersive communication channels. Touri et al have developed [5.12] 

deterministic worst case frame work for perfect reconstruction of discrete data 

transmission through a dispersive communication channel. Thus in recent past new 

adaptive equalizers have been suggested using soft computing tools such as Artificial 

Neural Network (ANN), FLANN [5.14]. It has been reported that these methods are 

best suited for nonlinear and complex channels. Recently, Chebyshev Artificial 

Neural Network has also been proposed for nonlinear channel equalization [5.15]. 

The drawback of these equalizers are that during training, the estimated weights do 

not reach to their optimum values due to the mean square error (MSE) being trapped 

to local minimum. In other words true Weiner solution is not achieved because of 

gradient based training. When the channel is highly noisy and nonlinear in nature the 

gradient based techniques do not perform satisfactorily. To alleviate this problem this 

section a new AIS based derivative free method is proposed in this section to develop 

an efficient channel equalizer. 

5.4 Baseband Communication System 

        In an ideal communication channel, the received information is identical to that 

transmitted. However, this is not the case for real communication channels, where 
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signal distortions take place. A channel can interfere with the transmitted data 

through three types of distorting effects: power degradation and fades, multi-path 

time dispersions and background thermal noise. Equalization is the process of 

recovering the data sequence from the corrupted channel samples. A typical base 

band transmission system is depicted in Fig.5.1., where an equalizer is incorporated 

within the receiver. 

 

      

 

 

 

 

 

 

5.5 Channel Interference  

            In a communication system data signals can either be transmitted sequentially 

or in parallel across a channel medium in a manner that can be recovered at the 

receiver. To increase the data rate within a fixed bandwidth, data compression in 

space and/or time is required. The interference occurs due to multipath propagation. 

          In telecommunication channels multiple paths of propagation commonly 

occur. Practically it means transmitting the same signal through a number of separate 

channels, each having a different attenuation and delay [5.17], [5.19]. Consider an 

open-air radio transmission channel that has three propagation paths, as illustrated in 

Fig.5.2 (a) [5.18].These could be direct, earth and sky bound. The reception of the 

transmitted data at the receiver is shown in Fig.5.2 (b).The direct signal is received 

first whilst the earth and sky bound are delayed. All three of the signals are 

attenuated with the sky path suffering the most. 

 

 

 

Fig.5.1. A baseband Communication System 
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Fig.5.2. Impulse Response of a transmitted signal in a channel which has 3 modes of propagation (a) The 

signal transmitted paths, (b) The received samples. 

         

       Multipath interference between consecutively transmitted signals will take place 

if one signal is received while the previous signal is still being detected [5.18]. The case 

in Fig.5.2. will occur if the symbol transmission rate is greater than1/ . Because as 

bandwidth efficiency leads to high data rates the multi-path interference commonly 

occurs. The transfer function of a multi-path channel is given by 




 
m

0i

21i ....z)2n(dz)1n(d)n(dz)in(d)z(H  (5.1) 

The model coefficients )in(d   describe the strength of each multipath signal. 
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5.6 Intersymbol Interference  

       Inter-symbol interference (ISI) has already been described as the overlapping of 

the transmitted data. It is difficult to recover the original data from one channel 

samples because there is no statistical information about the multipath propagation. 

Increasing the dimensionality of the channel output vector helps characterize the 

multipath propagation. This has the effect of not only increasing the number of 

symbols but also increases the Euclidean distance between the output classes. 

     When additive Gaussian noise,  , is present within the channel, the input sample 

will form Gaussian clusters around the symbol centers. These symbol clusters can be 

characterized by a probability density function (pdf) with a noise variance
2

 , where 

the noise can cause the symbol clusters to interfere. Once this occurs, equalization 

filtering will become inadequate to classify all of the input samples. Error control 

coding schemes can be employed in such cases but these often require extra 

bandwidth. 

         The expected number of errors can be calculated by considering the amount of 

symbol interaction, assuming Gaussian noise. Taking any two neighboring symbols, 

the cumulative distribution function (CDF) can be used to describe the overlap 

between the two noise characteristics. The overlap is directly related to the 

probability of error between the two symbols and if these two symbols belong to 

opposing classes, a class error will occur. 

 

 

 

 

 

 

 

 

 

Area of overlap = 

Probability of error 

 

Fig.5.3. Interaction between two neighboring symbols  
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              Fig.5.3 shows two Gaussian functions that could represent two symbol noise 

distributions. The Euclidean distance, L, between symbol canters and the noise 

variance, 
2 , can be used in the cumulative distribution function of (5.5) . 

dx
2

x
exp

2

1
)x(CDF

2

2x














 



 (5.2) 

The probability of error is given by  

)
2

L
(CDF*2)e(P   (5.3) 

Since each channel symbol is equally likely to occur, the probability of unrecoverable 

errors occurring in the equalization space can be calculated using the sum of all the 

CDF overlap between each opposing class symbol. The probability of error is more 

commonly described as the BER given by 
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1i n

i

msp

n
2

CDF
NN

2
log)(BER  (5.4) 

where Nsp is the number of symbols in the positive class, Nm is the number of  

number of symbols in the negative class and, i  is the distance between the ith 

positive symbol and its closest neighboring symbol in the negative class. 

 

5.7 Proposed AIS based Channel Equalizer 

       The basic block diagram of a digital channel equalizer with AIS based training is 

shown in Fig.5.4 in which the channel is considered as nonlinear in nature and is 

associated with additive white gaussian noise (AWGN). Since the equalizer is 

connected in series with the channel and its transfer function is inverse to the transfer 

function of the channel (1/H(z)) where H(z) = channel transfer function. The 

symbols u(k), d(k), y(k) and e(k) represent the input from the data source, desired, 

estimated output of the equalizer and the error signal respectively. 
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The output of the communication channel is represented by 

)k(n U(k))*ƒ(h )k(x
N

1K




 (5.5) 

where h= {h0, h1, h2} represents coefficient vector of the channel  filter 

and )}2k(u),1k(u),k(u{)k(U  is the binary input  vector applied. Symbols ƒ and 
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Fig 5.4.  An AIS based adaptive digital channel equalizer 
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n (k) signifies the nonlinearity and AWGN associated with the channel. The symbol 

* denotes linear convolution operation and N is the number of taps of the channel 

filter. At the same k
th

 instant the output of the equalizer is given by 

)k(w*)nk(x)k(y
_1Q

0n






  (5.6) 

where Q is order of equalizer, )k(w
_

is the adaptive weight vector associated with it. 

The desired signal d(k) is formed by delaying the input sequence u(k) by m samples. 

In practice m is usually taken as (Q/2) or ((Q+1)/2) depends on Q even or odd.   The 

error signal e(k) is represented by 

)k(y)k(d)k(e   (5.7) 

The objective of designing an adaptive equalizer is to minimize the error e(k) 

recursively such that y(k) approaches d(k). Here the mean square error (MSE) 

minimization is performed using clonal principle of AIS. 

The steps involve in update of the weights of the equalizer are  as follows : 

Step 1. Determination of output of channel: 

The input is a random binary signal drawn from a uniform distribution .Let ‘k’ be 

the numbers of input samples taken. The input sample is then passed through the 

channel to produce output x(k) as given in (5.5). 

Step 2. Equalizer input: 

The output of the channel x(k) is passed through the tap delay portion of the 

equalizer to produce the input vector. 

Step 3. Initialization of a group of cells: 

Here a group of weight vector of equalizer is taken. A weight vector consists of Q no 

of elements. Each element of weight vector is represented by a cell which is basically 

a binary string of definite length. So a set of binary strings is initialized to represent a 

weight vector and n number of such weight vectors is taken each of which represent 

probable solution. 
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Step 4. Decoding :  

 As each cell constitute random binary bits so they need to be converted to decimal 

values lying between some ranges to compute the fitness function. The equation that 

converts the binary to real number is given by 

DV)}12/()RR{(RRV L

minmaxmin   (5.8) 

where  Rmin , Rmax , RV and DV represent the minimum range, maximum range, 

decimal and decoded value of an L bit coding scheme representation. 

Step 5. Calculation of desired output of the equalizer: 

The desired signal d(k) is formed by delaying the input sequence u(k) by m samples. 

Step 6. Fitness Evaluation: 

The output of the equalizer y(k, n) due to k
th

 sample and n
th 

vector, is compared with 

the desired output d(k, n) to produce error signal given by 

)n,k(y)n,k(d)n,k(e   (5.9) 

For each n
th

 weight vector the mean square error (MSE) is determined and is used as 

fitness function given by 

K

)n,k(

)n(MSE

K

1k

2

e
  

(5.10) 

Step 7. Selection : To select the weight vector (corresponding cells) for which 

MSE is minimum.  

Step 8. Clone: The weight vector (corresponding cells) which yields best fitness 

value (minimum MSE) is duplicated. 

Step 9. Mutation: Mutation operation introduces variations into the immune 

cells. Probability of mutation Pm is a smaller value which indicates that the operation 

occurs occasionally. Total number of bits to mutate is the product of total number of 

cells, number of bits in each cell and probability of mutation of each cell. Among the 
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cloned cells the cell to be mutated is chosen randomly. A random position of the cell 

is chosen first and then its bit value is altered. 

Step 10. Stopping Criteria: The weight vector which provides the desired 

solution (minimum MSE) and corresponding cells are known as memory cells. Until 

a predefined MSE is obtained steps 4 -9 are repeated.  

 

5.8 System Simulation 

           

 In designing of the new equalizer represented in Fig.5.4 is simulated using 

MATLAB for nonlinear channels whose linear part is given by either of 

CH1: 0.2600 + 0.9300 Z
-1 

+ 0.2600 Z
-2 

(5.11) 

CH2: 0.3040 + 0.9030 Z
-1

 + 0.3040 Z
-2

     (5.12) 

 

Each of the above channels is assumed to be associated with three different types of 

nonlinearities represented by 

))k(ptanh()k(ƒ
1

  (5.13) 

)k(p*1.0)k(p*2.0)k(p)k( 32

2
ƒ   (5.14) 

))k(pcos(*5.0)k(p*1.0)k(p*2.0)k(p)k( 32

3
ƒ   (5.15) 

 

where p(k) is the output of each of linear part of the channels(6). The additive noise is 

white Gaussian with -5dB and -10dB strengths. In this study a 8-tap adaptive FIR filter 

is used as an equalizer. The desired signal is generated by delaying the input binary 

sequence by half of the order (four samples in this case) of the equalizer. For 

simulation of AIS the no of input sample taken is 80. Weights are trained for 190 

iterations. Initial population of cells is taken as 20. For simulating GA based equalizer 

the no of input sample taken is 80. Weights are trained for 190 iterations. Initial 

population of chromosome is taken as 20.  
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             Fig.5.5 (a)                                                                                                       Fig.5.5 (b)  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                             Fig.5.5 (c) 

 

Fig.5.5 BER at 5dB SNR: (a) using 1ƒ (b) using 2ƒ (c) using 3ƒ  nonlinearity based channel CH1 
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     Fig.5.6 (a)                                                                                                       Fig.5.6 (b) 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig.5.6 (c) 

 

Fig.5.6 BER at 10dB SNR: (a) using 1ƒ (b) using 2ƒ (c) using 3ƒ  nonlinearity based channel CH1 
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                   Fig.5.7 (a)                                                                                                       Fig.5.7 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.7 (c) 
 

 

Fig.5.7 BER at 5dB SNR: (a) using 1ƒ (b) using 2ƒ (c) using 3ƒ  nonlinearity based channel CH2 
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                       Fig.5.8 (a)                                                                                                       Fig.5.8 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       Fig.5.8 (c) 

 

 

Fig.5.8 BER at 10dB SNR: (a) using 1ƒ (b) using 2ƒ (c) using 3ƒ  nonlinearity based channel CH2 
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5.9 Case Study on AIS based Equalizer 

         To performance of the proposed AIS based equalizer is analyzed by training the 

weights of the equalizer in four different benchmark approaches as per following  

CASE 1 : The weights of the equalizer is trained at the middle of the range of NSR 

used for calculation of BER. Here the training is done at -15dB NSR which is at the 

middle of the BER range from 0-30dB. 

CASE 2 : Here the training is done at an interval of 5dB SNR in the range 0-30dB for 

calculation of BER .  

CASE 3 : The BER corresponds to taking the mean of the weight vectors trained at 

an interval of 5dB SNR. 

CASE 4 : The BER corresponds to taking the root mean square(RMS) of the weight 

vectors trained at an interval of 5dB SNR. 

The BER plot is done by considering the CH2 and using 1ƒ nonlinearity 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.9 BER plot of all four case studies 
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5.10 Conclusion 

 

         The CPU time required for training a typical equalizer is 0.047 sec for LMS, 

23.02 sec for GA and 16.265sec for AIS. Although LMS is much faster, from the BER 

plot it is observed that when the channel is highly noisy and nonlinear in nature it 

fails to equalize the transmitted output completely. Examination of BER plots Figs 

5.5 -5.8 and the CPU time also reveals that AIS is a much better candidate for channel 

equalization as compared to its GA counter part. These types of equalizers are more 

suitable for offline equalization or inverse modeling problems such as nonlinearity 

compensations of sensors and intersymbol compensation in high density digital 

magnetic recording etc.  

 

5.11 Summary 

 

     The contribution in this chapter is the use of AIS in adaptive channel 

equalization. Here a novel digital channel equalizer is proposed using CLONAL 

selection algorithm of AIS. Exhaustive simulation study of the proposed equalizer is 

carried out using benchmark examples to demonstrate its improved performance. 

The computed results show its superior performance compared to the LMS and GA 

based equalizers in terms of lower probability of error in BER plot. The CPU time 

required for training of AIS equalizer is also less as compared to the GA based 

equalizer.  Thus it is concluded that the AIS is a potential learning tool for efficient 

equalization of complex nonlinear channels under high noise conditions. 
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6.1 Introduction 

ANY practical systems have inherently nonlinear characteristics due to 

harmonic generation, intermediation, desensitization, gain expansion and 

chaos. Identification of such nonlinear complex plants plays a significant role 

in analysis and design of control systems. The Hammerstein model is widely used 

because its structure effectually reflects the nonlinearity of practical dynamic systems. 

Several identification algorithms for the Hammerstein model has been investigated by 

using correlation theory [6.1], orthogonal functions [6.2], polynomials [6.3], piecewise 

linear model [6.4], artificial neural networks [6.5], genetic algorithm [6.6], RBF 

networks [6.7], PSO [6.8]-[6.9] and bacterial foraging optimization techniques [6.10] . 

From the literature survey it is observed that for identification of such complex 

plants, the recent trend of research is to employ nonlinear structures and to train 

their weights by evolutionary computing tools. In recent years the area of Artificial 

Immune System (AIS) has drawn attention of many researchers due to its broad 

applicability to different fields. Following the principles of AIS and PSO in this 

section, we propose two new hybrid intelligent algorithm called Clonal PSO (CPSO) 

and Immunized PSO (IPSO) which offers low complexity and better identification 

performance. 

6.2 Proposed New Evolutionary Hybrid Algorithms 

      The Particle Swarm Optimization (PSO) is discussed in subsection 2.3.2.2. This 

algorithm gained a lot of attention in various optimal control system applications 

because of its faster convergence [6.19], reduced memory requirement, lower 

computational complexity and easier implementation as compared to other 

evolutionary algorithms. However, there are some problems associated with the basic 

PSO, such as premature convergence and stagnate at the local optimal solution. In 

[6.14] it is shown that the PSO performs well in early generations than any other 

evolutionary algorithm, but it degrades as the number of generations increase. So it 

M 
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has a slow fine tuning ability of the solution. Several research works have been 

carried out to improve the performance of PSO [6.15]-[6.18].  

    The AIS discussed in section 3 is relatively a young field consists of many models, 

algorithms. By suitably combining the good features of PSO and AIS algorithms in 

this section we propose two new hybrid intelligent algorithms CPSO and IPSO. 

6.2.1 Clonal PSO (CPSO) 

     In conventional PSO, the velocity of each particle in the next search is updated 

using the knowledge of its past velocity, personal and global best positions. Since the 

global best position after a search is the best among all personal best positions, their 

use in the updating the velocity has little contribution in moving to new positions. 

Therefore in the present investigation second term in the velocity update equation 

(2.56) of conventional PSO is eliminated. 

         Further according to clonal selection principle when an antigen or a pathogen 

invades the organism, a number of antibodies are produced by the immune cells. The 

fittest antibody undergoes cloning operation to produce number of new cells. These 

are used to eliminate the invading antigens. Employing this principle of AIS in PSO 

we propose here that each particle is led to the global best position wherefrom the 

next search is started. The above idea implies that during any kth search the position 

of the dth element of the ith
 

particle becomes equal to the global best position i.e.  

)k(p)k(x gdid . As a result the third term of the velocity updates equation (2.56) of 

conventional PSO becomes zero. Incorporating the above two ideas in the 

conventional PSO leads to a simplified velocity update equation by 

)k(v*)k(w)1k(V '

id

'

id  (6.1) 

)1k(V)k(X)1k(X '

id

'

id

'

id  (6.2) 

where 1N....2,1i , D....2,1d , The inertia weight w(k) is computed according to 

Eq. (2.60). 
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    In the CPSO algorithm the initial position of each particle is represented as shown 

in Fig. 6.2(a). According to this algorithm after every stage of update all particles 

migrate to the global best position wherefrom each particle disperses again according 

to individual’s magnitude and direction of velocity. This situation is depicted in Fig. 

6.2(b). The same process is repeated until the position of gbest finally represents the 

optimal solution of the problem. Fig. 6.2(c) represents the new cloned position 

updated due to change in velocity. 

6.2.2 Immunized PSO (IPSO) 

   The CPSO algorithm is simpler than conventional PSO and is expected to perform 

satisfactorily for different optimization problems. However one important 

observation in this new algorithm is that computation of every new position of a 

particle depends on two factors: that is time varying inertia weight w(k) and its initial 

magnitude of velocity. As a result the diversification in the solution space after each 

search becomes limited. Hence there is a chance that the final solution in this 

approach might lead to local minima. To overcome this shortcoming we propose 

another new algorithm called IPSO. 

         In this case, like the CPSO algorithm, each particle after a search occupies the 

global best position. Then the mutation operation is carried out on the position 

vector of the particles to enable random diversification of their positions. Since the 

position of each particle is changed unlike in CPSO, the third term remains. But the 

second term which contributes to change in velocity due to local best is not used. 

Thus the update equation becomes 

))k(x)k(p(*r*c)k(v*)k(w)1k(V idgd

"

2

"

2

"

id

"

id  (6.3) 

)1k(V)k(X)1k(X "

id

"

id

"

id  (6.4) 
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        From among the updated position of the particles the global best position is 

evaluated and cloned. Then the cloned cells undergo a mutation mechanism by 

following the hyper mutation concept of AIS. The mutation operation has fine-

tuning capabilities which helps to achieve better optimal solution. Following [6.17] 

the single dimension mutation (SDM) operation is defined as 

)1k(x*01.0)1k(x)1k(xm dTdTid 21
 (6.5) 

)1k(x*01.0)1k(x)1k(xm dTdTd)1i( 12
 (6.6) 

where T1 and T2 represent the particles’ positions to be mutated and are chosen 

randomly from the set of cloned positions. In order to increase the efficiency of 

mutation a new method Adaptive SDM (ASDM) is also proposed where the constants 

0.01 is replaced by a parameter z whose values varies with the number of search. The 

value of z(k) at Kth search is given by 

ffi z
k

kI
)zz()k(z  (6.7) 

 where iz  and fz are initial and final values of z  and are selected within the range 

[0,1]. The symbol I represents the maximum number of search. The fitness values of 

updated position as well as the mutated position of particles are then evaluated and 

the overall best location is selected .In the next search the best location is again cloned 

and the process continues. The IPSO introduces improved search of particles in the D 

–dimensional space using mutation and updated velocity is shown in Fig.6.3 (b) and 

6.3(c) . 

 

 

 

 

 

 



  
 

111 
                         DEVELOPMENT OF NEW EVOLUTIONARY HYBRID ALGORITHMS AND   

                               THEIR APPLICATION TO HAMMERSTEIN MODEL IDENTIFICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1gp  

2ix  

1iv
 

2iv
 

1ix  

5iv
 

3ix  

4iv
 

3iv
 

4ix  

5ix  

iDx  

iDv
 

Search 

Space 

Fig.6.2 Representation of CPSO algorithm: (a) Initialization (b) Cloned position and Updated velocity after one 

stage (c) Updated new cloned position achieved due to new velocities 

Fig. 6.2(a) Fig. 6.2(b) 
Fig. 6.2(c) 

1iv
 

2iv
 

iDp  

4iv
 

3iv
 

iDv
 

5iv
 

2gp  

1iv
 

2iv
 

iDp  

4iv
 

3iv
 

iDv
 

5iv
 

2gp  

Fig.6.1 Representation of conventional PSO algorithm: (a) Initialization (b) Updated position and velocity  

after one stage (c) Particles movement towards solution  

Fig. 6.1(a) Fig. 6.1(b) Fig. 6.1(c) 

1gp  

2ix  

1iv
 

2iv
 

1ix  

5iv
 

3ix  

4iv
 

3iv
 

4ix  

5ix  

iDx  

iDv
 

Search 

Space 

2ip  

1iv
 

2iv
 

1ip
 

5iv
 

3ip  

4iv
 

3iv
 

4ip  

5ip  

iDp  

iDv
 

2gp  

2ip  

1iv
 

2iv
 

1ip
 

5iv
 3ip  

4iv
 

3iv
 

4ip  

5ip  

iDp  

iDv
 

gDp  



  
 

112 
                         DEVELOPMENT OF NEW EVOLUTIONARY HYBRID ALGORITHMS AND   

                               THEIR APPLICATION TO HAMMERSTEIN MODEL IDENTIFICATION 

 

 

 

 

 

 

 

 

6.3 Identification of Hammerstein Model 

    The nonlinear dynamic system described by Hammerstein Model is composed of a 

nonlinear static block in series with a linear dynamic system block as shown in 

Fig.6.4. The model is described by  

)k(e)1k(x)z(B)k(y)z(A 11
 (6.8) 

))k(u(F)k(x  (6.9) 

n

n

1

1

1 za.....za1)z(A  (6.10) 

r

r

1

10

1 zb.....zbb)z(B
 

(6.11) 

where 
1z  denotes an unit delay. In this model u(k), y(k) and e(k) represent the input, 

output, and noise samples at instant k respectively. The intermediate signal x(k) is not 

accessible for measurement. The symbols n and r are known degrees of polynomials 
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Fig.6.3 Representation of IPSO algorithm: (a) Initialization (b) Cloned position obtained through mutation and 

 Updated velocity (c) Particles movement towards solution. 
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of )z(A 1
 and )z(B 1

 respectively. The function F(.) is assumed to be nonlinear and 

unknown. 

 

 

 

 

 

 

 

 

 

       The objective of the identification task of the Hammerstein model is to 

determine the system parameters {ai}, {bj} of the linear dynamic part and nonlinear 

static function F(.) from the known input and output data  u(k) and y(k). 

6.3.1 FLANN Structure of the Model 

    Here for identification purpose the nonlinear static part of the Hammerstein 

model is represented by a FLANN structure. The basic structure of FLANN with 

one input is shown in Fig.6.5. The input signal u(k) at the kth instant is functionally 

expanded to a number of nonlinear values to feed to an adaptive linear combiner 

whose weights are altered according to an iterative learning rule. The types of 

expansion suggested in the literature are either trigonometric, power series or square-

cube expansion. For trigonometric expansion the linear matrix is given by 

)u(k)icos(

))k(uisin(

)k(u

1

)}k(u{i

for

for

for

for

1M,...5,3i

M,....4,2i

1i

0i

 (6.12) 

where 2/M,....,2,1i . As a result the total expanded values including an unity bias 

input become 2M+2. Let the corresponding weight vector be represented as 

Nonlinearity 

F(.) 

u(k) x(k) 
Linear Dynamics 

)z(A

)z(B
z

1

1
1  

)z(A

1
1

 e(k) 

Σ 
y(k) 

+ 

+ 

Fig.6.4. The Hammerstein Model 
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)k(w i having 2M+2 elements. The estimated output of the nonlinear static part as 

shown in Fig.6.5 is given by 

2M2

1i

ii )k())k(u(w))k(u(F  (6.13) 

where )k( is approximation error. 

 

 

 

 

 

 

 

 

 

Substituting (6.11)  in (6.8) yields 

..))2k(u(Fb))1k(u(Fb[)k(y)z(A 10

1
 

                                    )k(e))1rk(u(Fb.. r  

(6.14) 

Similarly from (6.13) and (6.14) we get 

..)1k())1k(u(wb[)k(y)z(A
2M2

1i

ii0

1
 

                                    )k(e)1rk())1rk(u(wb..
2M2

1i

iir  

(6.15) 

 

Rearrangement of  (6.15) gives 
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Fig.6.5. Structure of FLANN Model 
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r

0i

r

0i

i2M22M2i

r

0i

11i

1

))k(e)]1ik(b)1ik(u(wb..

..))1ik(u(wb[)k(y)z(A

  (6.16) 

The identification structure of Hammerstein model corresponding to (6.16) is shown 

in Fig.6.6 
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Here we represent 

r

0i

i )]1ik(b)k(e)k(v  (6.17) 

TT

w

T

1w

T

a ],...,[
2M2

 (6.18) 

where 

T

n21

T

a ]a,...a,a[  (6.19) 

T

wwww )]1r(),...2(),1([
iiii

 

             

T

iri1i0 ]wb,....,wb,wb[  

(6.20) 

At the kth instant )k(   is given by 

TT

w

T

1w

T

a )]k(),...k(),k([)k(
2M2

 
(6.21) 

where 

T

a )]nk(y),...2k(y),1k(y[)k(  
(6.22) 

T

iiw ))]1rk(u()),...1k(u([)k(
i

 (6.23) 

Using (6.17)-(6.18) and (6.21) , (6.15) can be expressed as 

)k(v)k()k(y T
 

(6.24) 

      The objective here is to estimate the system parameters defined in (6.18). If 

derivative based least square method is taken then the estimate of these system 

parameters is given by 

NN

1Nk

1
NN

1Nk

T
s

s

s

s

)k(y)k()k()k(
 

(6.25) 

where N is the number of input output data.  Substituting 1w1  the parameters of 

linear dynamic part are estimated as ]b......b,a,........a[ r1n1 . But the derivative based 

learning rules to update the weight of the structure at times lead to local minima and 
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thus provides incorrect estimate of the parameters. To alleviate this problem the 

proposed technique is in the next subsection.  

6.3.2 Weight update of the Model  

The weights of the nonlinear FLANN structure is updated by the conventional PSO and 

proposed IPSO and CPSO algorithms. 

6.3.2.1 Identification algorithm using FLANN 

structure and PSO based training. 

 Step 1. Determination of output of the Hammerstein Model: 

Uniformly distributed random ‘k’ samples are generated to be used as input during 

training. These are passed through the nonlinear static part then though the linear 

dynamic part of the Hammerstein model to produce output y(k).  

Step 2. Functional expansion of input: 

The same input samples are also passed through the model consisting FLANN 

structure. Each input sample undergoes either trigonometric expansion as illustrated 

in (6.12), power series or square cube expansion. 

Step 3. Initialization of positions and velocities a group of particles: 

The weight vector of the Hammerstein model of Fig 6.3 is considered as a particle. 

Like in other evolutionary algorithm a set of particles representing a set of initial 

solutions is chosen. A weight vector consists of D number elements consisting of 

(M+2) number of elements for FLANN along with (n + r) elements for linear 

dynamic part. Each weight vector is represented by a particle which basically consists 

of a number of weights each initialized by a random number. For the i th particle, the 

position vector (which represents the weight vector) is given by 

]w........w.......ww[XW iDid2i1iii  (6.26) 
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where idw  is the dth weight of the ith particle. Similarly the velocity assigned to the 

ith particle is expressed as 

]v........v.......vv[V iDid2i1ii  (6.27) 

Initially the personal best position each ith particle has achieved is same as the initial 

ith weight vector iW  and is represented as 

]w........w.......ww[WP iDid2i1iii  (6.28) 

 

Step 4. Calculation of output of model: 

The output of model is computed using FLANN model according to (6.24) and the 

weight vector defined in (6.18). 

Step 5. Fitness Evaluation: 

The output of the model )k(y
i due to k

th

 sample and i
th 

particle, is compared with the 

output of the plant to produce error signal given by 

)k(y)k(y)k(e
iii  

(6.29) 

For each i
th

 weight vector the mean square error (MSE) is determined and is used as 

the fitness function given by 

K

)k(e

)i(MSE

K

1k

2

i

 

(6.30) 

The identification task is then reduces to a minimization of the MSE defined in [35] 

using PSO and new algorithms. 

Step 6. Updation : 

The velocity and the position of the dth weight of each ith particle for the next search 

are obtained by the update rule given in Eq. (2.56)-(2.60).  
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Step 7. Evaluation of global best position of particle: 

The fitness values of all particles are evaluated following step5. The best fitness value 

that is, the minimum MSE (MMSE) is obtained and its corresponding D weights are 

identified and termed as the global best. It is denoted by  

]w........w.......ww[WP gDgd2g1ggg  (6.31) 

 

Step 8. Stopping Criteria: 

The search process described in steps 1 to 6 continues until all the particles in the 

swarm (the weight vectors) have attained to the global best position corresponding to 

a predefined MSE is obtained. 

6.3.2.2 Identification algorithm using FLANN 

structure and CPSO based training. 

 

In CPSO steps 1 to 5 remain same as of basic PSO. 

 Step 6. Updation: 

The position and velocity of dth weight of each ith particle for the next search is 

obtained by the update rule given in (6.1)-(6.2). The maximum velocity and position 

of particles after updating is controlled by (2.58) and (2.59). 

Step 7. Evaluation of global best position of particle: 

The global best position of particles is evaluated in similar way as described in step 7 

of PSO. 

Step 8. Cloning Operation: 

The global best position is cloned in the sense that all particles of the swarm starts 

their next search from this position.. 

Step 9. Stopping Criteria: 

The search process of steps 4-8 continues until all the particles in the swarm (the 

weight vectors) have attained the global best corresponding to a predefined MSE. 
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6.3.2.3 Identification algorithm using FLANN 

structure and IPSO based training. 

 

Steps 1 to 5 these steps are identical to that of CPSO. 

Step 6. Updation: 

The position and velocity of dth weight of each ith particle for the next search is 

obtained by the update rule given (6.3)-(6.4). The maximum velocity and position of 

particles after updating is governed  by (20) and (22). 

Step 7. Evaluation of global best position of particle: 

The global best position of particles is evaluated in similar way following step 7 of 

PSO algorithm. 

Step 8. Cloning Operation : 

The global best particle position is cloned so that all particles occupy the same best 

position. 

Step 9. Mutation : 

Mutation process is incorporated to introduce variations in the cloned position. 

Probability of mutation Pm is taken to be greater than 0.5. The mutated children 

produced are given by  

)1k(x*)k(z)1k(x)1k(xm dTdTid 21
 (6.32) 

)1k(x*)k(z)1k(x)1k(xm dTdTd)1i( 12
 (6.33) 

 

Step 10. Stopping Criteria: 

The search process from steps 4-9continues until all the particles in the swarm (the 

weight vectors) have converged to the global best position yielding a predefined 

minimum MSE. 
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6.4 System Simulation 

To demonstrate the improved identification performance of the two new algorithms 

simulation study using MATLAB is carried out. Four different standard 

Hammerstein examples have been identified using CPSO and IPSO algorithms. The 

accuracy of identification of the proposed models has been assessed by comparing the 

following. 

1. True and estimated responses at the output of nonlinear static part. 

2. The true and estimated coefficients of the linear dynamic part. 

3. Comparison of overall output responses of estimated model and true output. 

4. Comparison of sum of square errors (SSE) between true and estimated response. 

The sum of square error is defined as 

K

1k

2))k(y)k(y()k(SSE  (6.34) 

where y(k) is true output and )k(y is estimated output during testing. 

Example 1 : 

The Hammerstein model described in [6.7] is given by 

)k(e)1k(x)z(B)k(y)z(A 11
 (6.35) 

)k(u5.0)k(u))k(u(F)k(x 3
 (6.36) 

211 z6.0z8.01)z(A  (6.37) 

11 z2.04.0)z(B  (6.38) 

The identification model of Fig.6.7 is simulated by uniformly distributed input lying 

between [-3.0, 3.0]. The noise )k(e is a zero mean white Gaussian distribution with 

standard deviation of 0.01. The number of input samples used to train the network is 

300. In the model the nonlinear static part is represented by a FLANN structure.  
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Fig 6.7 Identification structure of Hammerstein model for system simulation 
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Each input is passed through the FLANN structure where each is expanded to 4 

terms given by 

3,2ifor)k(u

1ifor)k(u

0ifor1

)}k(u{

i

i
 

(6.39) 

 

        The identification task is carried out using PSO, CPSO and IPSO algorithms. In 

all cases the initial population of particles is taken as 70. The weights of the model are 

trained for 40 generations. The positions of the birds are taken within range [-2, 2] 

and their corresponding velocities are taken in the range [-1.5, 1.5].In case of IPSO the 

probability of mutation Pm is taken as 0.8. The values of iz  and fz are set at 0.9 and 

0.05 respectively. The true and estimated outputs of nonlinear static part of the given 

example are compared in Fig.6.8. Comparison of estimates of the system parameters 

of linear dynamic part are shown in Table 6.1. The CPU time required for training of 

model structure is presented in Table 6.2. The responses of the overall plant and 

model output obtained by IPSO, CPSO and PSO algorithm are shown in Fig.6.9 (a), 

(b) and (c) respectively. The comparative results of sum of square errors (SSE) 

obtained during testing is presented in Table 6.2. 
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Fig 6.8 True and estimated nonlinear response of static part of the model of Example1 
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TABLE 6.1 

COMPARATIVE RESULTS OF ESTIMATES OF SYSTEM PARAMETERS FOR DYNAMIC PART OF  

MODEL OF EXAMPLE 1 

 

 

 

 

 

 

 

TABLE 6.2 

COMPARATIVE RESULTS OF CPU TIME AND SSE FOR MODEL OF EXAMPLE 1 OBTAINED THROUGH  

SIMULATION STUDY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters True Values Estimated  Values 

IPSO CPSO PSO 

a1 0.8 0.805 0.900 0.850 

a2 0.6 0.590 0.606 0.650 

b0 0.4 0.409 0.350 0.336 

b1 0.2 0.210 0.240 0.240 

 

Algorithm During training During testing 

CPU time 

(In Sec.) 

SSE 

IPSO 28.468 0.661 

CPSO 28.448 4.334 

PSO 27.813 10.683 
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Fig 6.9 (a)  
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Fig.6.9 Response matching of Model and estimated output during testing  of example1 using (a) IPSO (b) 

CPSO (c) PSO 
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Fig 6.9 (b)  
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Fig 6.9 (c)  
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Example 2 : 

      The standard model taken from [6.7] and is described by 

)k(e)1k(x)z(B)k(y)z(A 11
 (6.40) 

))k(u(F)k(x  

            

)0.3)k(u8.1(0.2

)8.1)k(u6.0(0.16.0/)k(u

)6.0)k(u6.0(0.0

)6.0)k(u8.1(0.16.0/)k(u

)8.1)k(u0.3(0.2

 

(6.41) 

211 z6.0z8.01)z(A  (6.42) 

11 z2.04.0)z(B  (6.43) 

 

       This system has saturation and dead- zone nonlinearity. The input signal is a 

uniformly distributed signal lying between [-3.0, 3.0]. The number of samples of 

above input signal used to train the network is 100. The white Gaussian noise )k(e is  

zero mean with standard deviation 0.01.In the FLANN structure of the model shown 

in Fig.6.7,each input sample is expanded to 3 terms given by 

2ifor))k(usin(

1ifor)k(u

0ifor1

)}k(u{i  
(6.44) 

 

            The initial population of particles is taken as 70. The weights of the model are 

trained for 40 generations. The positions of the birds are taken within the range [-2, 2] 

and their corresponding velocities are taken with in the range [-1.5, 1.5].In case of 

IPSO, the probability of mutation Pm is taken as 0.8. The values of iz  and fz are 

taken values 0.9 and 0.05 respectively. The true and estimated output of nonlinear 

static part of the model is presented in Fig.6.10. Comparison of estimates of the 

system parameters of linear dynamic part are shown in Table 6.3. Table 6.4 represents 

the comparative result of CPU time required for training of model and square errors 
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(SSE) obtained during testing. The responses of the overall plant and model output 

obtained by IPSO, CPSO and PSO algorithm are shown in Fig.6.11 (a), (b) and (c) 

respectively. 
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Fig 6.10 True and estimated nonlinear response of static part of the model of Example 2 
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Fig 6.11 (a)  
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Fig.6.11 Response matching of Model and estimated output during testing of example2 using (a) IPSO (b) 

CPSO (c) PSO 
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Fig 6.11 (b)  
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Fig 6.11 (c)  
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TABLE 6.3 

COMPARATIVE RESULTS OF ESTIMATES OF SYSTEM PARAMETERS FOR DYNAMIC PART OF  

MODEL OF EXAMPLE 2 

 

 

 

 

 

 

TABLE 6.4 

COMPARATIVE RESULTS OF CPU TIME AND SSE FOR MODEL OF EXAMPLE 2 OBTAINED THROUGH  

SIMULATION STUDY 

 

 

 

 

 

Example 3 : 

The Hammerstein model taken from [6.10] is described by 

)k(e)1k(x)z(B)k(y)z(A 11
 (6.45) 

))k(u(F)k(x  

            )k(u1.0)k(u3.0)k(u5.0)k(u 432
 

(6.46) 

3211 z02.0z15.0z9.01)z(A  (6.47) 

11 z5.17.0)z(B  (6.48) 

        For identification of above system the model of Fig.6.7 is taken into 

consideration. The input to this model is a uniformly distributed signal lying between 

[-1.0, 1.0].The number above input sample used to train the network is 300. The 

Parameters True Values Estimated  Values 

IPSO CPSO PSO 

a1 0.8 0.810 0.690 0.900 

a2 0.6 0.600 0.520 0.553 

b0 0.4 0.410 0.450 0.466 

b1 0.2 0.200 0.220 0.251 

 

Algorithm During training During testing 

CPU time 

(In Sec.) 

SSE 

IPSO 9.844 0.149 

CPSO 9.687 0.513 

PSO 9.578 2.410 
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white gaussian noise )k(e is zero mean with standard deviation 0.01. In FLANN each 

input sample is expanded to 5 terms given by 

3ifor))k(u*)1icos((

4,2ifor))k(u*)1isin((

1ifor)k(u

0ifor1

)}k(u{i
 

(6.49) 

 

         The initial population of particles is taken as 90. The weights of the model are 

trained for 40 generations. The positions of the birds are taken within range [-2, 2] 

and its corresponding velocities are taken in the range [-1.5, 1.5].In case of IPSO the 

probability of mutation Pm is taken as 0.8. The values of iz  and fz used are 1 and 0.01 

respectively. The true and estimated outputs of nonlinear static part of the given 

example are compared Fig.6.9. Comparison of estimates of the system parameters of 

linear dynamic part is shown in Table 6.5. The CPU time required for training of 

model structure is presented in Table 6.6. The responses of the overall plant and 

model output obtained by IPSO, CPSO and PSO algorithms are shown in Fig.6.10 

(a), (b) and (c) respectively. The comparative result of sum of square errors (SSE) 

obtained during testing is presented in Table 6.6.  
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Fig 6.12 True and estimated nonlinear response of static part of the model of Example 3 
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TABLE 6.5 

COMPARATIVE RESULTS OF ESTIMATES OF SYSTEM PARAMETERS FOR DYNAMIC PART OF  

MODEL OF EXAMPLE 3 

 

 

 

 

 

 

TABLE 6.6 

COMPARATIVE RESULTS OF CPU TIME AND SSE FOR MODEL OF EXAMPLE 3 OBTAINED THROUGH  

SIMULATION STUDY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters True Values Estimated  Values 

IPSO CPSO PSO 

a1 0.9 0.898 0.900 0.841 

a2 0.15 0.146 0.069 0.150 

a3 0.02 0.020 0.020 0.020 

b0 0.7 0.696 0.750 0.416 

b1 1.5 1.494 1.084 0.892 

 

Algorithm During training During testing 

CPU time 

(In Sec.) 

SSE 

IPSO 53.79 3.587 

CPSO 51.63 6.550 

PSO 50.84 10.325 
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Fig 6.13 (a)  
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Fig.6.13 Response matching of Model and estimated output during testing of example3 using (a) IPSO (b) 

CPSO (c) PSO 
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Fig 6.13 (b)  
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Fig 6.13 (c)  
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Example 4 : 

The Hammerstein model taken here is same as that of the example3, except that a 

different nonlinear static part given in (6.50) is used  

))k(u(sin*5.0))k(u(F)k(x 3
 (6.50) 

 

     For modeling of the above plant the weights of the model are trained for 40 

generations. In case of IPSO the values of iz  and fz are set to 0.9 and 0.05 

respectively. The rest conditions of simulation are same as that used in example 3. 

The true and estimated outputs of nonlinear static part of the given example are 

compared in Fig.6.14. Comparison of estimates of the system parameters of linear 

dynamic part are shown in Table 6.7. Table 6.8 represents the comparative result of 

CPU time required for training of model and square errors (SSE) obtained during 

testing. The responses of the overall plant and model output obtained by all these 

algorithms are shown in Fig.6.15. 
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Fig 6.14 True and estimated nonlinear response of static part of the model of Example 4 
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TABLE 6.7 

COMPARATIVE RESULTS OF ESTIMATES OF SYSTEM PARAMETERS FOR DYNAMIC PART OF  

MODEL OF EXAMPLE 4 

 

 

 

 

 

 

 

TABLE 6.8 

COMPARATIVE RESULTS OF CPU TIME AND SSE FOR MODEL OF EXAMPLE 4 OBTAINED THROUGH  

SIMULATION STUDY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters True Values Estimated  Values 

IPSO CPSO PSO 

a1 0.9 0.890 0.910 0.931 

a2 0.15 0.150 0.170 0.182 

a3 0.02 0.021 0.022 0.021 

b0 0.7 0.690 0.660 0.800 

b1 1.5 1.480 1.471 1.440 

 

Algorithm During training During testing 

CPU time 

(In Sec.) 

SSE 

IPSO 46.42 0.0016 

CPSO 44.04 0.0066 

PSO 44.00 0.1326 
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Fig 6.15 (a)  
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Fig.6.15 Response matching of Model and estimated output during testing of example4 using (a) IPSO (b) 

CPSO (c) PSO 
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Fig 6.15 (b)  
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Fig 6.15 (c)  
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6.5 Conclusion 

 

     In this section both the proposed hybrid algorithms are relatively simple 

compared to the original PSO algorithm. But the simulation study reveals that the 

IPSO algorithm offers superior identification performance compared to the other 

two. Out of the two algorithms proposed, the CPSO is computationally simpler but 

offers identification performance nearly similar to its PSO counterpart. Under 

identical conditions the IPSO requires more CPU time followed by PSO and CPSO. 

The above observations have been arrived at by comparing the SSE, the output 

response and the true and estimated parameters obtained from the simulation study 

of four benchmark examples. 

 

6.6 Summary 

 

In this chapter we propose two new hybrid evolutionary algorithms known as Clonal 

PSO (CPSO) and Immunized PSO (IPSO) by suitably combining the good features of 

PSO and AIS algorithms. The details of these two algorithms are outlined. The 

performance of these new algorithms has been assessed by employing them in 

identification of various standard Hammerstein models. The nonlinear static part of the 

model to be estimated is represented by a single layer low complexity nonlinear 

functional link artificial neural network architecture. The weights of this structure and 

the dynamic part of the model are estimated by the proposed algorithms. 
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7.1 Conclusions 

HE  thesis has proposed new hybrid  models for identification of complex 

dynamics and Hammerstein plants by using functional link artificial neural 

network and different clonal selection principle of AIS. The FLANN is 

selected as it is a single    layer low complex neural structure and its performance 

similar to that multilayer neural network. Clonal selection principle is relatively a 

new learning approach in the field of adaptive identification and equalization. 

Variants of this principle have been developed and have been applied for training the 

connective weights of the FLANN structure. In essence the identification and 

equalization models have been formulated as the squared error optimization problem 

of the FLANN and has been effectively solved by AIS approach. The performance of 

the new models has been obtained by simulation of bench mark identification and 

equalization examples. Further MLP structure with BP learning has been selected as 

identification model and its performance has been evaluated through simulation. 

Similarly GA based training of FLANN parameter has also been carried out and the 

performance of the resulting model has been obtained. The performance of all these 

models are compared. It is observed that the proposed models involve low 

complexity, consume less CPU time for training and testing and offer superior 

identification and equalization performance compared to corresponding convential 

BP or GA based models. 
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7.2 Scope of future work 

HE present work can be extended in many directions. Firstly the same study 

can be extended using RBF structure as back bone and tuning its parameters 

such as standard deviation, centre and weights by clonal selection principle. 

Another extension can also be carried out by formulating the identification problem 

as a multiobjective problem and then solving the same by using a multiobjective GA , 

PSO or BFO algorithms. Similarly other AIS algorithms such as danger theory or 

new evolutionary computing tool such as honey bee or ant colony algorithm can also 

be applied to update the structure parameter of the model. ALL the above stated 

research methodology can also be applied to complex control, classification 

,prediction and filtering problems. 
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