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ABSTRACT 
 

Adaptive direct modeling or system identification and adaptive inverse modeling or channel 

equalization find extensive applications in telecommunication, control system, instrumentation, 

power system engineering and geophysics. If the plants or systems are nonlinear, dynamic , 

Hammerstein and multiple-input and multiple-output (MIMO) types, the identification task 

becomes very difficult. 

Further, the existing conventional methods like the least mean square (LMS) and recursive least 

square (RLS) algorithms do not provide satisfactory training to develop accurate direct and 

inverse models. Very often these (LMS and RLS) derivative based algorithms do not lead to 

optimal solutions in pole-zero and Hammerstein type system identification problem as they 

have tendency to be trapped by local minima.  

In many practical situations the output data are contaminated with impulsive type outliers in 

addition to measurement noise. The density of the outliers may be up to 50%, which means 

that about 50% of the available data are affected by outliers. The strength of these outliers may 

be two to five times the maximum amplitude of the signal. Under such adverse conditions the 

available learning algorithms are not effective in imparting satisfactory training to update the 

weights of the adaptive models. As a result the resultant direct and inverse models become 

inaccurate and improper.  

Hence there are three important issues which need attention to be resolved. These are : 

(i) Development of accurate direct and inverse models of complex plants using some 

novel architecture and new learning techniques. 

(ii) Development of new training rules which alleviates local minima problem during 

training and thus help in generating improved adaptive models. 

(iii) Development of robust training strategy which is less sensitive to outliers in 

training and thus to create identification and equalization models which are robust 

against outliers. 

These issues are addressed in this thesis and corresponding contribution are outlined in seven 

Chapters. In addition, one Chapter on introduction, another on required architectures and 
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algorithms and last Chapter on conclusion and scope for further research work are embodied 

in the thesis.  

A new cascaded low complexity functional link artificial neural network (FLANN) structure is 

proposed and the corresponding learning algorithm is derived and used to identify nonlinear 

dynamic plants. In terms of identification performance this model is shown to outperform the 

multilayer perceptron and FLANN model. A novel method of identification of IIR plants is 

proposed using comprehensive learning particle swarm optimization (CLPSO) algorithm. It is 

shown that the new approach is more accurate in identification and takes less CPU time 

compared to those obtained by existing recursive LMS (RLMS), genetic algorithm (GA) and 

PSO based approaches. The bacterial foraging optimization (BFO) and PSO are used to 

develop efficient learning algorithms to train models to identify nonlinear dynamic and MIMO 

plants. The new scheme takes less computational effort, more accurate and consumes less 

input samples for training. Robust identification and equalization of complex plants have been 

carried out using outliers in training sets through minimization of robust norms using PSO and 

BFO based methods. This method yields robust performance both in equalization and 

identification tasks. Identification of Hammerstein plants has been achieved successfully using 

PSO, new clonal PSO (CPSO) and immunized PSO (IPSO) algorithms. Finally the thesis 

proposes a distributed approach to identification of plants by developing two distributed 

learning algorithms : incremental PSO and diffusion PSO. It is shown that the new approach is 

more efficient in terms of accuracy and training time compared to centralized PSO based 

approach. In addition a robust distributed approach for identification is proposed and its 

performance has been evaluated. 

In essence the thesis proposed many new and efficient algorithms and structure for 

identification and equalization task such as distributed algorithms, robust algorithms, 

algorithms for ploe-zero identification and Hammerstein models. All these new methods are 

shown to be better in terms of performance, speed of computation or accuracy of results.    
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Introduction 
 

 

1.1 Background 

UT of many applications of adaptive filtering, direct modeling and 

inverse modeling are very important.  The direct modeling or system 

identification finds applications in control system engineering 

including robotics [1.1], intelligent sensor design [1.2], process control [1.3], 

power system engineering [1.4], image and speech processing [1.4], geophysics 

[1.5], acoustic noise and vibration control [1.6] and biomedical engineering [1.7]. 

Similarly inverse modeling technique is used in digital data reconstruction [1.8], 

channel equalization in digital communication [1.9], digital magnetic data 

recording [1.10], intelligent sensor [1.2], deconvolution of seismic data [1.11]. 

The direct modeling mainly refers to adaptive identification of unknown plants. 

Simple static linear plants are easily identified through parameter estimation 

using conventional derivative based least mean square (LMS) type algorithms 

[1.12]. But most of the practical plants are dynamic, nonlinear and combination 
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of these two characteristics. In many applications Hammerstein and MIMO 

plants need identification. In addition the output of the plant is associated with 

measurement or additive white Gaussian noise(AWGN). Identification of such 

complex plants is a difficult task and poses many challenging problems. Similarly 

inverse modeling of telecommunication and magnetic medium channels is also 

important for reducing the effect of inter symbol interference (ISI) and 

achieving faithful reconstruction of original data. Similarly adaptive inverse 

modeling of sensors is required to extend their linearities for direct digital 

readout and enhancement of dynamic range. If the channel or the sensor 

characteristic is modeled as a nonlinear filter with large eigen-value ratio (EVR) 

together with AWGN building up of an accurate inverse model is also a difficult 

and challenging task. These two important and complex issues are addressed in 

the thesis and attempts have been made to provide improved efficient and 

alternate promising solutions.  

The conventional LMS and recursive least square (RLS) [1.13] techniques work 

well for identification of static plants but when the plants are of dynamic type, 

the existing forward-backward LMS [1.14] and the RLS algorithms very often 

lead to non optimal solution due to premature convergence of weights to local 

minima [1.15]. This is a major drawback of the use of existing derivative based 

techniques. To alleviate this burning issue this thesis suggests the use of 

derivative free optimization techniques in place of conventional techniques.  

In recent past population based optimization techniques have been reported 

which fall under the category of evolutionary computing [1.16] or computational 

intelligence [1.17]. These are also called bio-inspired techniques which include 

genetic algorithm (GA) and its variants [1.18], particle swarm optimization 

(PSO) and its variants [1.19], bacterial foraging optimization (BFO) and its 

variants [1.20] and artificial immune system (AIS) and its variants [1.21]. These 

techniques are suitably employed to obtain efficient iterative learning algorithms 

for developing adaptive direct and inverse models of complex plants and 

channels.  

Development of direct and inverse adaptive models essentially consists of two 

components. The first component is an adaptive network which may be linear 
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or nonlinear in nature. Use of a nonlinear network is preferable when nonlinear 

plants or channels are to be identified or equalized. The linear networks used in 

the thesis are adaptive linear combiner or all-zero or FIR structure [1.7] and 

pole-zero or IIR structure[1.7]. Under nonlinear category low complexity single 

layer function link artificial neural network (FLANN) [1.22] and multilayer 

perceptron network (MLP) [1.23] are used. The second component is the 

training or learning algorithm used to train the parameters of the model. As 

stated earlier the structures used are trained by bio-inspired techniques such as 

GA, PSO and modified PSOs, BFO and modified BFOs. Depending upon the 

complexity and nature of the plants to be identified proper combination of 

network of the model and corresponding bio-inspired learning rule is selected so 

that the combination yields the best possible performance in direct and inverse 

modeling tasks. This requires the knowledge of prior experience and simulation 

results. One of the objectives of the present investigation is to choose models 

with appropriate combination of structure and algorithm so that it provides best 

possible performance of direct and inverse models. The bio-inspired 

optimization tools can not directly be applied to develop direct and inverse 

models of plants as those are not aimed to be used for training of parameters of 

models. Therefore another motivation of investigation is to formulate the direct 

and inverse modeling problems as optimization problems and then to introduce 

bio-inspired techniques suitably to effectively optimize the cost function of the 

models. In conventional identification and equalization problems, the mean 

square error at the output is considered as the cost function to be minimized by 

using bio-inspired techniques.  

In many practical situations the training signal available is highly corrupted by 

outliers and may be as high as 50%. Under such constraints the training of the 

models gets severely affected if the squared error is used as the cost function for 

minimization. This is because this conventional cost function is not robust 

against outliers [1.24]. In statistics few cost functions have been defined which 

are robust in nature and are not affected by outliers. These are Wilcoxon norm, 

))2/exp(1( 2 σσ e−− and )
2

1log(
2e

+ , where σ  is a parameter to be adjusted during 
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training and 2e  is mean square error.  In this thesis robust identification, 

equalization and time series prediction schemes by minimization of the robust 

norm using bio-inspired techniques have been proposed. This is a novel 

contribution in this thesis.  

In recent years distributed signal processing has played an important role in 

sensor networks in which individual node collects local information but the 

objective is to compute the global solution. Some representative problems are 

parameter estimation using locally measured data and nonlinear identification 

using the local data in a cooperative manner. Attempts have been made to solve 

this interesting problem by using an approach based on newly introduced 

distributed PSO. In this work two distributed versions: incremental and 

diffusion type PSO techniques have been proposed and then used for robust 

identification of linear and nonlinear plants.  

 

1.2 Motivation 

In summary the main motivations of the research work carried in the present 

thesis are the following : 

(i) To formulate the direct and inverse modeling problems as error 

square optimization problems 

(ii) To introduce bio-inspired optimization tools such as PSO and BFO 

and their variants to efficiently minimize the squared error cost 

function of the models. In other words to develop alternate 

identification scheme.  

(iii) To achieve improved identification (direct modeling) of complex 

nonlinear all-zero, pole-zero, Hammerstein and MIMO plants and 

channel equalization (inverse modeling) of nonlinear noisy digital 

channels by introducing new and improved identification 

algorithms.  

(iv) To devise new bio-inspired training strategy for robust identification 

of complex plants and robust equalization of complex channels. 
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(v) To suggest distributed incremental and diffusion type PSO 

algorithms and use them for identification of linear and nonlinear 

plants using local data of each sensor node. 

(vi) To introduce distributed robust algorithms for identification of 

nonlinear plants.  

 

1.3 Major contribution of the thesis 
The following novel contributions have been made in the thesis : 

A low complexity functional link artificial neural network based nonlinear dynamic 

system identifier has been developed and its learning algorithm has been derived. 

Improved identification performance has been demonstrated through simulation study. 

A comprehensive learning particle swarm optimization technique has been used to 

effectively identify IIR plants. Further, extensive simulation study has been made on the 

use of the proposed method to effectively identify higher order plants with lower order 

models. The new approach has been shown to overcome local minima problem in a 

multimodal situation. 

The bacterial foraging optimization and particle swarm optimization have been used as 

learning tools in developing new models for identification of dynamic systems. Robust 

identification and prediction task has also been carried using PSO. Similarly a new 

approach to develop robust inverse model in presence of outliers has been successfully 

implemented using BFO.  

Identification of complex Hammerstein plants using two new PSO algorithms : clonal 

PSO and immunized PSO have been proposed. It is shown that the immunized PSO 

model outperforms its counterpart in all counts.  

Distributed incremental and diffusion type PSO algorithms have been suggested for 

identification of nonlinear plants with outliers in the training signal under a sensor 

network frame work. The results are observed to be superior to conventional 

method of identification. 
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1.4 Chapter wise contribution 

The research work undertaken is embodied in 10 Chapters. 

1. Introduction 

2. Selected adaptive architectures and bio-inspired techniques, principles and 

algorithms 

3. Development of a new cascaded functional link artificial neural 

network(CFLANN) for nonlinear dynamic system identification 

4. Identification of IIR plants using comprehensive learning particle swarm 

optimization 

5. Dynamic systems identification using PSO and BFO based learning 

algorithms. 

6. Robust identification and prediction using particle swarm optimization 

technique 

7. Robust adaptive inverse modeling using bacterial foraging optimization 

technique and applications 

8. Identification of Hammerstein plants using Clonal PSO and Immunized 

PSO algorithms 

9. Development of distributed PSO algorithms for robust nonlinear system 

identification 

10. Conclusion and scope for further work 

Out of 10 Chapters, the research contribution is contained in Chapters 3 to 9. 

A brief outline of chapter wise contribution is presented in sequel. Chapter 1 

outlines the introduction to the problem, the motivation of the research work 

and a condensed version of chapter wise contribution made in the thesis. 

Finally Chapter 10 deals with the overall conclusion of the investigation and 

scope for further research work.  

A brief outline of each of the linear and nonlinear networks used for 

identification and equalization purpose is presented in Chapter 2. This 
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includes all-zero and pole-zero adaptive filters under linear category and MLP, 

FLANN, CNN under nonlinear category. This Chapter also reviews the 

existing derivative based algorithms such as the LMS, recursive LMS (RLMS), 

FLANN, BP and evolutionary computing optimization algorithms like the 

GA, PSO, BFO and AIS. Various combinations of the structure and the 

learning algorithms are suitably used to obtain novel adaptive models for 

identification and equalization of complex plants and channels respectively.  

In Chapter 3, a new cascaded FLANN structure is proposed and the 

corresponding learning algorithm is derived and used to identify nonlinear 

dynamic plants. Four different identification models have been suggested. 

Results of identification through simulation demonstrate that the new models 

outperform the conventional MLP and FLANN based models in terms of 

computational load and accuracy.  

Identification of IIR plants or pole-zero systems finds extensive applications 

in echo cancellation, channel estimation, process control, array processing and 

speech recognition. In Chapter 4 a new adaptive IIR algorithm using 

comprehensive learning particle swarm optimization (CLPSO) is proposed 

which avoids potential local minima problem and provides accurate estimate 

of pole-zero coefficients of IIR plants. Simulation study of identification of 

some benchmark IIR plants reveals that the proposed method outperforms 

the existing recursive LMS (RLMS), GA and PSO based methods in terms of 

mean square error(MSE), execution time and product of population size and 

number of input samples used during training.  

Chapter 5 deals with the development of PSO and BFO based schemes to 

identify nonlinear dynamic single-input-single-output (SISO) and multiple-

input-multiple-output (MIMO) systems. The BFO and PSO based training of 

the weights of the FLANN identification model have been newly introduced. 

In both cases it is observed that the new training schemes in complex 

identification task work better in terms of speed of computation, accuracy 

and number of input samples used for training. However, both the new 

schemes offer almost similar identification performance.  
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The problem of robust identification and prediction is studied in depth in 

Chapter 6. Development of such identification scheme is required when 

either the training or input signal samples are contaminated with outliers. The 

existing squared error cost function based learning schemes fail to offer 

satisfactory identification performance. Therefore the use of new robust 

norms which are insensitive to outliers have been suggested as the cost 

function. Such cost functions are minimized by PSO method to develop 

robust identification of nonlinear dynamic systems and prediction models of 

complex time series. Simulation results show that the Wilcoxon norm 

produces the best robust models for identification and prediction compared 

to that produced by other norms used in the investigation. 

Inverse modeling plays an important role in channel equalization, sensor 

linearization and deconvolution operation in geophysics applications. In 

practice it is difficult to develop an inverse model using squared error norm 

when the training signal contains outliers. Therefore investigation has been 

made in Chapter 7 to identify robust norms of errors and use them to 

develop robust inverse models. To obtain such models the robust norms are 

minimized using BFO scheme. The robustness of the new inverse models is 

evaluated through simulation study using some benchmark channels and 

different percentage of outliers in the training signal. The results indicate that 

the use of squared error provides the least robust inverse models where as the 

Wilcoxon norm generates most robust models.  

Hammerstein plant contains all features of complex plants because it contains 

a static nonlinear part, a dynamic linear system and an additive coloured noise. 

Identification of such complex plants really poses difficulty. In Chapter 8, 

attempt has been made to identify such plants using two new PSO algorithms 

: clonal PSO (CPSO) and immunized PSO (IPSO). In this Chapter two new 

variants of PSO algorithm have been proposed and then used them in 

training the model parameters. The potentiality of the proposed method is 

demonstrated through simulation of benchmark Hammerstein plants. The 

potentiality of identification is evaluated by verifying three features : the 

response matching at the output of static nonlinear part, comparison of 
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estimated parameters of linear dynamic part with the corresponding true 

values and comparison of sum of squared errors (SSE) between true and 

overall estimated responses. Comparing all these test results, it is observed 

that the IPSO model outperforms its counterpart in all counts.  

In application like sensor networks linear and nonlinear identifications are 

required using local data of each sensor. To achieve this objective distributed 

signal processing algorithm for training is required. In Chapter 9 two such 

distributed algorithms known as incremental and diffusion PSO (INPSO and 

DPSO) algorithms have been proposed to identify linear and nonlinear plants. 

Further the squared and Wilcoxon norm of errors are minimized in a 

cooperative manner using distributed PSO algorithms. Simulation results 

demonstrate that both the distributed algorithms provide excellent 

identification performance when conventional squared error norm is used. 

When outliers are present in the training samples both the Wilcoxon norm 

based distributed algorithms provide superior performance compared to the 

conventional norm based training.   

The overall conclusion of the total investigation is listed in Chapter 10. This 

Chapter also contains the details of further research work that can be carried 

out in the same or the related field.  
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Selected Adaptive Architectures 
and Bio-Inspired Techniques, 
Principles and Algorithms 
 

 

2.1 Introduction 

HE main motive of the research work carried out in this thesis is to develop 

elegant and efficient adaptive identification schemes for complex nonlinear 

and dynamic plants, adaptive inverse models of nonlinear plants, equalization 

of complex channels and prediction of nonlinear time series. All these adaptive 

models inherently need suitable adaptive structures and appropriate learning rules to 

train the parameters of these models. In the present investigation, I briefly outline 

some selected adaptive architectures such as adaptive linear combiner, adaptive pole-

zero filters, functional link artificial neural network and multilayer artificial neural 

network. In addition we present some recently developed population based bio-

inspired derivative free techniques such as particle swarm optimization and its 

Chapter 

2 

T 
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variants, bacterial foraging optimization and its variants and artificial immune system 

and its variants for training the parameters or coefficients of the adaptive structures. 

An adaptive linear combiner or filter is feed forward in structure. These are [2.1, 2.2] 

often realized either as a set of program instructions running on an arithmetical 

processing device such as a microprocessor or DSP chip, or as a set of logic 

operations implemented in a field-programmable gate array (FPGA) or in a semi-

custom or custom Very large scale integrated (VLSI) circuit. An adaptive linear 

combiner is characterized by  

1. the input signal sampled employed,  

2. the structure that defines how the output signal of the combiner is 

computed from its input samples,  

3. the parameters of the structure which are iteratively changed based on some 

learning rule and 

4. the adaptive algorithms that guide how the parameters are to be adjusted 

iteratively until the predefined objective is fulfilled.   

By choosing a particular adaptive filter structure, one specifies the number and type 

of parameters that need adjustments. The adaptive algorithms used to update these 

parameters tend to minimize the cost function of the model.  The cost function 

normally are mean squared error of the model which is not robust to outliers in the 

training or desired signal samples. The thesis also introduces minimization of some 

robust cost functions of the error for updating the model parameters. Essentially the 

development of adaptive models for identification, equalization, prediction and 

function approximation is viewed as a minimization problem of some suitable cost 

functions. The main contribution of the thesis is to solve these complex 

optimization problems using bio-inspired based learning rules.  

In following section, the general adaptive filtering problem is presented and the 

mathematical notation for representing the form and operation of the adaptive 

filter is introduced.   
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2.2 The adaptive filtering problem 

Figure 2.1 shows a block diagram of an adaptive FIR filter or an adaptive linear 

combiner in which a sample from a digital input signal kx is fed into an adaptive 

filter, that computes a corresponding output signal sample ky  at time k . The 

output signal is compared to a second signal kd , called the desired signal.  

 

 

 

 

 

Fig. 2.1 The general adaptive filtering problem 

 

The difference signal given by 

kkk yde −=            (2.1) 

is known as the error signal. The error signal is used to adapt the parameters of the 

filter from time k to time )1( +k in a well-defined manner. This process of 

adaptation is represented by an oblique arrow. As the time index k  is incremented 

the output of the adaptive filter matches a better and better to the desired signal 

following an adaptation process such that the magnitude of ke decreases over time.  

In the adaptive filtering framework, adaptation refers to the mechanism by which the 

parameters of the system are changed from time index k  to time index )1( +k . The 

number and types of parameters within this system depend on the computational 

structure chosen for the system. Different filter structures that have been used for 

model development are presented below. 
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2. 2. 1  Adaptive FIR filter 

The general architecture of an FIR adaptive filter or a adaptive linear combiner [2.1] is 

depicted in Fig. 2.2. Let X is Nth input pattern having one unit delay in each instant. This 

process is also called as adaptive linear combiner [2.1-2.2]. Let                     

)]1(..).........1()([ +−−= MnxnxnxX n  form of the M -by-1 tap input vector and 1−M  is 

the number of delay elements. The tap weights T
Mn nwnwnwW )](.........)()([ 110 −=  form 

the elements of the M -by-1 tap weight vector. The output is represented as, 

)()()(
1

0
mnxnwny

M

m
m −= ∑

−

=

 (2.2)

The output can be represented in vector notation as 

n
T

nn
T
n XWWXny ==)(  (2.3)

 

 

 

 

 

 

 

2. 2. 2  Adaptive IIR filter 

The structure of a direct-form adaptive IIR filter [2.1]  is shown in Fig. 2.3. In this case, the 

output of the system is given by  

∑ ∑
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Fig. 2.2 Adaptive filter using Bio-inspired/Derivative based algorithms 
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The terms )(nam and )(nbm  represent the feed forward and feed back coefficients of the 

filter respectively. In matrix form, )(ny  may be written as  

n
T

n SWny =)(           (2.5) 

Where the combined weight vector is  

T
NMn nanananbnbnbW )](....).........()()(..............)()([ 121110 −−=    (2.6) 

And the combined input and output signal vector is  

T
n NnynynyMnxnxnxS )]1(...........)2()1()1(.........)1()([ +−−−+−−=  (2.7) 

 

 

 

 

 

 

 

 

 

   Fig. 2.3 Structure of an adaptive IIR filter 

The weight update operation of adaptive IIR filter is carried out using either conventional 

derivative based or derivative free learning algorithms. In addition to the linear structures 

nonlinear structure can be used for which the principle of superposition does not hold when 

the parameter values are fixed. Such systems are useful when the relationship between 

)(nd and )(nx is not linear in nature. This class of nonlinear structure consists of artificial 

neural network (ANN), functional link artificial neural network (FLANN) and radial basis 

function (RBF) network. These networks inherently contain distributed nonlinear elements in 

each path like the sigmoid function in ANN, sine / cosine terms in FLANN and Gaussian 

function in RBF network. In the next section details of these nonlinear structures are dealt.  
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2.3 Artificial neural network (ANN) 

Artificial neural network (ANN) takes its name from the network of nerve cells in the 

brain. Recently, ANN has proved to be an important technique for classification and 

optimization problems [2.3-2.5]. McCulloch and Pitts have developed the neural networks 

for different computing machines. There are extensive applications of various types of 

ANN in the field of communication, control, instrumentation and forecasting. The ANN is 

capable of performing nonlinear mapping between the input and output space due to its 

large parallel interconnection between different layers and the nonlinear processing 

characteristics. An artificial neuron basically consists of a computing element that performs 

the weighted sum of the input signal and the connecting weight. The sum is added with the 

bias or threshold and the resultant signal is then passed through a nonlinear function of 

sigmoid or hyperbolic tangent type. Each neuron is associated with three parameters whose 

learning can be adjusted; these are the connecting weights, the bias and the slope of the 

nonlinear function. For the structural point of view, a neural network (NN) may be single 

layer or it may be multilayer. In multilayer structure, there is one or many artificial neurons 

in each layer and for a practical case there may be a number of layers. Each neuron of the 

one layer is connected to each neuron of the next layer. The functional-link ANN is 

another type of single layer NN. In this type of network the input data is allowed to pass 

through a functional expansion block where the input data are nonlinearly mapped to more 

number of points. This is achieved by using trigonometric functions, tensor products or 

power terms of the input. The output of the functional expansion is then passed through a 

single neuron. 

Twp types of NNs used in this thesis are discussed next. 

2. 3. 1 Single neuron structure 

 

 

 

Fig. 2.4 Structure of a single neuron
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The basic structure of an artificial neuron is presented in Fig. 2.4. The operation in a neuron 

involves the computation of the weighted sum of inputs and threshold [2.3-2.5]. The resultant 

signal is then passed through a nonlinear activation function. This is also called as a perceptron, 

which is built around a nonlinear neuron. The output of the neuron may be represented as, 

( ) ( ) ( ) ( )
1

N

j j
j

y n w n x n nϕ α
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑  (2.8)

where ( )nα  is the threshold to the neurons at the first layer, ( )jw n  is the weight associated 

with the thj  input, N is the no. of inputs to the neuron and ( ).ϕ  is the nonlinear activation 

function. Different types of nonlinear function are shown in Fig. 2.5. 

 

 

 

 

 

 

Signum Function: For this type of activation function, we have 
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Threshold Function: This function is represented as, 

( ) 1 0
0 0

if v
v

if v
ϕ

≥⎧
= ⎨ <⎩

 (2.10)

Fig. 2.5 Different types of nonlinear activation function, 
(a) Signum function or hard limiter, 
(b) Threshold function, 
(c) Sigmoid function, 
(d) Piecewise Linear 
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Sigmoid Function: This function is S-shaped and is the most common form of the 

activation function used in artificial neural network. It is a function that exhibits a graceful 

balance between linear and nonlinear behaviour.  

( ) 1
1 avv

e
ϕ −=

+
 (2.11)

where v  is the input to the sigmoid function and a  is the slope of the sigmoid function. 

For the steady convergence a proper choice of a  is required.  

Piecewise-Linear Function: This function is  

( )

11,             
2

1 1,   +
2 2

10,            
2

v

v v v

v

ϕ

⎧ ≥ +⎪
⎪
⎪= > > −⎨
⎪
⎪ ≤ +⎪⎩

 (2.12)

where the amplification factor inside the linear region of operation is assumed to be unity. 

Out of these nonlinear functions the sigmoid activation function is extensively used in 

ANN. 

2. 3. 2  Multilayer perceptron (MLP) 

In the multilayer neural network or multilayer perceptron (MLP), the input signal propagates 

through the network in a forward direction, on a layer-by-layer basis. This network has been 

applied successfully to solve some difficult and diverse problems by training in a supervised 

manner with a highly popular algorithm known as the error back-propagation algorithm [2.3, 

2.4]. The scheme of MLP using four layers is shown in Fig. 2.6. ( )ix n  represent the input to the 

network, jf  and kf  represent the output of the two hidden layers and ( )ly n  represents the 

output of the final layer of the neural network. The connecting weights between the input to the 

first hidden layer, first to second hidden layer and the second hidden layer to the output layers 

are represented by ,  and ij jk klw w w  respectively. 
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If P1 is the number of neurons in the first hidden layer, each element of the output vector 

of first hidden layer may be calculated as, 

( )
1

N

j j ij i j
i

f w x nϕ α
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ ,  11, 2,3,... , 1, 2,3,...i N j P= =  (2.13)

where jα  is the threshold to the neurons of the first hidden layer, N is the number of 

inputs and ( ).ϕ  is the nonlinear activation function of the neurons of the first hidden layer 

which is defined in (2.11). The time index n has been dropped to make the equations 

simpler. Let P2 be the number of neurons in the second hidden layer. The output of this 

layer is represented as, kf and may be written as 

1

1

P

k k jk j k
j

f w fϕ α
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ ,   k=1, 2, 3, …, P2 (2.14)

where, kα  is the threshold to the neurons of the second hidden layer. The output of the 

final output layer can be calculated as 

Fig. 2.6 MLP Structure 
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( )
2

1

P

l l kl k l
k

y n w fϕ α
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ ,    l=1, 2, 3, … , P3 (2.15)

where, lα is the threshold to the neuron of the final layer and P3 is the number of neurons 

in the output layer. The output of the MLP may be expressed as 

( ) ( )
2 1

1 1 1

P P N

l n kl k jk j ij i j k l
k j i

y n w w w x nϕ ϕ ϕ α α α
= = =

⎡ ⎤⎛ ⎞⎧ ⎫
= + + +⎢ ⎥⎨ ⎬⎜ ⎟

⎩ ⎭⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑  

(2.16) 

 

The details of BP algorithm used to train the weights of various layers of the ANN are discussed 

in 2. 4. 1. 3.  

2. 3. 3   Functional link artificial neural network (FLANN) 

Pao originally proposed FLANN which is a novel single layer ANN structure capable of 

forming arbitrarily complex decision regions by generating nonlinear decision boundaries 

[2.6, 2.7]. In this structure, the initial representation of a pattern is enhanced by using 

nonlinear function and thus the pattern dimension space is increased. The functional link 

acts on an element of a pattern or entire pattern itself by generating a set of linearly 

independent function and then evaluates these functions with the pattern as the argument. 

Hence separation of the patterns becomes possible in the enhanced space. The use of 

FLANN not only increases the learning rate but also has less computational complexity 

[2.9]. Pao et al [2.8] have investigated the learning and generalization characteristics of a 

random vector FLANN and compared with those attainable with MLP structure trained 

with back propagation algorithm by taking few functional approximation problems. A 

FLANN structure with two inputs is shown in Fig. 2.7. 

Let X is the input vector of size N×1 which represents N number of elements; the nth 

element is given by: 

( ) ,1nn x n N= ≤ ≤X  (2.17)

Each element undergoes nonlinear expansion to form M elements such that the resultant 

matrix has the dimension of N×M.  
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The functional expansion of the element nx by power series expansion is carried out using 

the equation given in (2.18) 

n
i l

n

x
s

x
⎧

= ⎨
⎩

for 1                  
for 2,3, 4, ,

i
i M
=
= K

 (2.18)

where 1, 2, ,l M= L . 

For trigonometric expansion, the expanded elements are 

( )
( )

sin

cos

n

i n

n

x

s l x

l x

π

π

⎧
⎪⎪= ⎨
⎪
⎪⎩

for 1                   
for 2, 4, ,     
for 3,5, , +1

i
i M
i M

=
=
=

K

K

 (2.19)

where 1, 2, , 2l M= L .  

For Chebyshev expansion the terms are given by  

1)(0 =nxT  for 0=n  

nn xxT =)(1  for 1=n  

12)( 2
2 −= nn xxT  for 2=n  

)()(2)( 11 nnnnnnn xTxTxxT −+ −=  for 2>n       (2.20) 

In matrix notation the expanded elements of the input vector is denoted by S of size 

N×(M+1).  

The bias input is unity. So an extra unity value is padded with the S matrix and the 

dimension of the S matrix becomes N×Q, where ( )2Q M= + . 

Let the weight vector is represented as W having Q elements. The output y is given as 
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1

Q

i i
i

y s w
=

= ∑  (2.21)

In matrix notation the output is written as 

T= ⋅Y S W  (2.22)

 

 

 

 

 

2. 4 Learning algorithms 

There are many learning algorithms which are employed to train various adaptive models. 

The performance of these models depends on rate of convergence, training time, 

computational complexity involved and minimum mean square error achieved after 

training. The learning algorithms may be broadly classified into two categories (a) derivative 

based (b) derivative free. The derivative based algorithms include least means square(LMS), 

IIR LMS (ILMS), back propagation(BP) and FLANN-LMS. Under the derivative free 

algorithms, genetic algorithm(GA), particle swarm optimization(PSO), bacterial foraging 

optimization(BFO) and artificial immune system(AIS) have been employed. In this section 

the details of these algorithms are outlined in sequel.    

2.4.1 Derivative based algorithms 

These algorithms are gradient search in nature and have been derived by taking derivative of the 

squared error as the cost function. During the process of training these algorithms tend to drive 

the weights of the model to local minima. This leads to premature termination of the weights. As 
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Fig. 2.7 Structure of the FLANN model
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a result the mean square error does not attain the least possible value and hence the accuracy of 

prediction becomes inferior. However these learning algorithms are simple to implement and 

can be expressed in close form equations. A brief description of each of them is presented 

below. 

2.4.1.1  LMS algorithm for adaptive FIR filters 

In an adaptive FIR filter, at any k th instant the error signal, ke is 

computed as  

k k ke d y= −  

where 

kd  = the desired or training signal at k th instant 

ky  = the output of the filter at k th instant 

(2.23)

The weights associated with the filter are then updated using the LMS algorithm [2.1]. The 

weight updation equation for nth instant is given by  

( ) ( ) ( )1k k kw n w n w nΔ+ = +  (2.24)

where )(nwkΔ is the change of k th weight at n th iteration.  

The change in weight of each path in each iteration is obtained by minimizing the mean 

squared error [2.1]. Using this value the weight update equation is given as  

( ) ( ) ( ) T1 2k k k kw n w n e nη+ = + ⋅ ⋅ ⋅X  (2.25)

where η is the learning rate parameter (0 ≤  η ≤ 1). This procedure is repeated till the mean 

square error (MSE) of the network approaches a minimum value. The MSE at the time index k 

may be defined as, 2
kE eξ ⎡ ⎤= ⎣ ⎦ , where [ ].E  is the expectation value or average of the signal.  
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2.4.1.2   Adaptive IIR LMS (ILMS) algorithm 

Referring to Fig. 2.3, the error term is given by 

kkk yde −=           (2.26) 

where ky  is obtained from (2.4) and (2.5). The ILMS update rule is given as  

kkk MWW ∇−=+
ˆ

1          (2.27) 

where k∇̂  = estimate of the gradient at k th instant and is given by 

T
NkkNkkkk e ]...................[2ˆ

10 ββαα−=∇       (2.28) 

M  is a diagonal matrix of 1+N  learning parameters for zero coefficients and 

N parameters for pole coefficients and is represented as  

]...............................[ ηημμdiagM =       (2.29) 

The variables nkα  and nkβ  are given by 

Lnbx
a
y

lkn

L

l
lnk

n

k
nk ≤≤+=

∂
∂

= −
=

− ∑ 0;,
1

αα      (2.30) 

Lnby
b
y

lkn

L

l
lnk

n

k
nk ≤≤+=

∂
∂

= −
=

− ∑ 1;,
1

ββ      (2.31) 

Equations (2.26) to (2.31) represent the key equations of ILMS algorithm.  

2.4.1.3   Back propagation (BP) algorithm  

 

 

 

 

 
Fig. 2.8 Neural network using BP algorithm
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The generalized structure of MLP is shown in Fig. 2.6. To derive the BP algorithm a 

simplified neural network with two inputs and 2-3-2-1 neurons (2, 3, 2 and 1 denote the 

number of neurons in the input layer, the first hidden layer, the second hidden layer and the 

output layer respectively) is depicted in Fig. 2.8. The parameters of the neural network can 

be updated in both sequential and batch mode of operation. In BP algorithm, the weights 

and the thresholds are initialized as very small random values. The intermediate and the 

final outputs of the MLP are calculated by using (2.13), (2.14), and (2.15) respectively. 

The final output ( )ly n  at the output of neuron l , is compared with the desired output 

( )d n  and the resulting error signal ( )le n is obtained as 

( ) ( ) ( )l le n d n y n= −  (2.32)

The instantaneous value of the total error energy is obtained by summing all errors squared 

over all neurons in the output layer, that is 

( ) ( )
3

2

1

1
2

P

l
l

n e nξ
=

= ∑  (2.33)

where P3 is the no. of neurons in the output layer.  

This error signal is used to update the weights and thresholds of the hidden layers as well as 

the output layer. The reflected error components at each of the hidden layers is computed 

using the errors of the last layer and the connecting weights between the hidden and the 

last layer and error obtained at this stage is used to update the weights between the input 

and the hidden layer. The thresholds are also updated in a similar manner as that of the 

corresponding connecting weights. The weights and the thresholds are updated in an 

iterative method until the error signal becomes minimum.  

The  weights are updated according to the following equations 

( ) ( ) ( )1+ = + Δkl kl klw n w n w n  (2.34)
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( ) ( ) ( )1+ = + Δjk jk jkw n w n w n  (2.35)

( ) ( ) ( )1+ = + Δij ij ijw n w n w n  (2.36)

where, ( ) ( ) ( ),  and Δ Δ Δkl jk ijw n w n w n  are the change in weights of the second hidden 

layer-to-output layer, first hidden layer-to-second hidden layer and input layer-to-first 

hidden layer respectively. This can be computed as 

( ) ( )
( ) ( ) ( )

( )

( )
2

1

2 2

2

l
kl

kl kl

P

l kl k l k
k

d n dy n
w n e n

dw n dw n

e n w f f

ξ
μ μ

μ ϕ α
=

Δ = − =

⎡ ⎤
′= +⎢ ⎥
⎣ ⎦
∑

 (2.37)

where, μ  is the convergence coefficient ( 0 1μ≤ ≤ ). Similarly ( ) ( ) and Δ Δjk ijw n w n  can 

also be computed as 

The thresholds of each layer can be updated in a similar manner using equations 

( ) ( ) ( )1l l ln n nα α α+ = + Δ  (2.38)

( ) ( ) ( )1k k kn n nα α α+ = + Δ  (2.39)

( ) ( ) ( )1j j jn n nα α α+ = + Δ  (2.40)

where, ( ) ( ) ( ),  and l k jn n nα α αΔ Δ Δ  are the change in thresholds of the output, hidden 

and input layer respectively. The change in threshold is represented as, 

( ) ( )
( ) ( ) ( )

( )

( )
2

1

2 2

2

l
l

l l

P

l kl k l
k

d n dy n
n e n

d n d n

e n w f

ξ
α μ μ

α α

μ ϕ α
=

Δ = − =

⎡ ⎤
′= +⎢ ⎥
⎣ ⎦
∑

 (2.41)
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 2.4.1.4  The FLANN algorithm 

Referring the structure of the FLANN of Fig. 2.7, the error signal ( )e k  at kth iteration can 

be computed as  

( ) ( ) ( )e k d k y k= −  (2.42)

Let ( )kξ  denotes the cost function at iteration k and is given by 

( ) ( )2

1

1
2

P

j
j

k e kξ
=

= ∑  (2.43)

where P is the number of nodes at the output layer.  

The weight vector can be updated by least mean square (LMS) algorithm, as 

ˆ( 1) ( ) ( )
2

w k w k kμ
+ = − ∇  (2.44)

where ˆ ( )k∇  is an instantaneous estimate of the gradient of ξ  with respect to the weight 

vector ( )w k . This gradient is computed as  

( ) [ ( ) ( )]ˆ ( ) 2 ( ) 2 ( )y k w k s kk e k e k
w w w
ξ∂ ∂ ∂

∇ = = − = −
∂ ∂ ∂

 

        2 ( ) ( )e k s k= −  (2.45)

Substituting the values of ˆ ( )k∇ in (2.44) we get 

( ) ( ) ( ) ( )1w k w k e k s kμ+ = +  (2.46)

where μ denotes the step-size ( )0 1μ≤ ≤ , which controls the convergence speed of the 

algorithm. 
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2.5 Derivative free algorithms / Evolutionary computing 
based algorithms 

2.5.1  Genetic algorithm (GA) 

Genetic algorithms are a class of evolutionary computing techniques, which is a rapidly 

growing area of artificial intelligence. Genetic algorithms are inspired by Darwin's theory of 

evolution. Simply said, problems are solved by an evolutionary process resulting in a best 

(fittest) solution (survivor) - in other words, the solution is evolved.  

Evolutionary computing was introduced in the 1960s by Rechenberg in his work "Evolution 

strategies" (Evolutionsstrategie in original). His idea was then developed by other researchers. 

Genetic Algorithms (GAs) were invented by John Holland and developed by him and his 

students and colleagues [2.10]. This led to Holland's book "Adaption in Natural and Artificial 

Systems" published in 1975.  

The algorithm begins with a set of solutions (represented by chromosomes) called 

population. Solutions from one population are taken and used to form a new population. 

This is motivated by a hope, that the new population will be better than the old one. 

Solutions which are then selected to form new solutions (offspring) are selected according 

to their fitness - the more suitable they are, the more chances they have to reproduce.  

This is repeated until some condition (for example number of populations or improvement 

of the best solution) is satisfied.  

2.5.1.1 Outline of the basic genetic algorithm  

1. [Start] Generate random population of n chromosomes (suitable solutions for the 

problem)  

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population  

3. [New population] Create a new population by repeating following steps until the 

new population is complete  

a [Selection] Select two parent chromosomes from a population according 

to their fitness (the better fitness, the bigger chance to be selected)  
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b [Crossover] With a crossover probability cross over the parents to form 

new offspring (children). If no crossover was performed, offspring is the 

exact copy of parents.  

c [Mutation] With a mutation probability mutate new offspring at each locus 

(position in chromosome).  

d [Accepting] Place new offspring in the new population  

4. [Replace] Use new generated population for a further run of the algorithm  

5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population  

6. [Loop] Go to step 2  

The outline of the Basic GA provided above is very general. There are many parameters 

and settings that can be implemented differently in various problems.  

Elitism is often used as a method of selection. Which means, that at least one of a 

generation's best solution is copied without changes to a new population, so the best 

solution can survive to the succeeding generation.  

2.5.1.2 Operators of GA  

Overview  

The crossover and mutation are the most important parts of the genetic algorithm. The 

performance is influenced mainly by these two operators.  

Encoding of a Chromosome  

A chromosome should in some way contain information about solution that it represents. 

The most commonly used way of encoding is a binary string. A chromosome then could 

look like this: 

 

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110

Fig. 2.9 Chromosome 
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Each chromosome is represented by a binary string. Each bit in the string can represent 

some characteristics of the solution. There are many other ways of encoding. The encoding 

depends mainly on the problem to be solved. For example, one can encode directly integer 

or real numbers; sometimes it is useful to encode some permutations and so on.  

Crossover  

Crossover operates on selected genes from parent chromosomes and creates new offspring. 

The simplest way how to do that is to choose randomly some crossover point and copy 

everything before this point from the first parent and then copy everything after the 

crossover point from the other parent.  

Crossover is illustrated in the following Fig. 2.10 ( | is the crossover point) 

 

Chromosome 1 11011 | 00100110110

Chromosome 2 11011 | 11000011110

Offspring 1 11011 | 11000011110

Offspring 2 11011 | 00100110110

 

Fig. 2.10 Crossover 

There are other ways how to make crossover, for example we can choose more crossover 

points.  

Mutation  

Mutation is intended to prevent falling of all solutions in the population into a local 

optimum of the solved problem. Mutation operation randomly changes the offspring 

resulted from crossover. In case of binary encoding we can switch a few randomly chosen 

bits from 1 to 0 or from 0 to 1. Mutation can be then illustrated as follows (Fig. 2.11) 

 

 



S E L E C T E D  A D A P T I V E  A R C H I T E C T U R E S  A N D  B I O - I N S P I R E D  
T E C H N I Q U E S ,  P R I N C I P L E S  A N D  A L G O R I T H M S  

 

 32 

Original offspring 1 1101111000011110

Original offspring 2 1101100100110110

Mutated offspring 1 1100111000011110

Mutated offspring 2 1101101100110110

 

Fig. 2.11 Mutation 

The technique of mutation (as well as crossover) depends mainly on the encoding of 

chromosomes. For example when we are encoding by permutations, mutation could be 

performed as an exchange of two genes.  

 

2.5.1.3 Parameters of GA  

Crossover and Mutation Probability  

There are two basic parameters of GA - crossover probability and mutation probability.  

Crossover probability: It indicates how often crossover will be performed. If there is no 

crossover, offspring are exact copies of parents. If there is crossover, offspring are made 

from parts of both parent's chromosome. If crossover probability is 100%, then all 

offspring are made by crossover. If it is 0%, whole new generation is made from exact 

copies of chromosomes from old population (but this does not mean that the new 

generation is the same!). Crossover is made in hope that new chromosomes will contain 

good parts of old chromosomes and therefore the new chromosomes will be better. 

However, it is good to leave some part of old population survives to next generation.  

Mutation probability: This signifies how often parts of chromosome will be mutated. If 

there is no mutation, offspring are generated immediately after crossover (or directly 

copied) without any change. If mutation is performed, one or more parts of a chromosome 

are changed. If mutation probability is 100%, whole chromosome is changed, if it is 0%, 

nothing is changed. Mutation generally prevents the GA from falling into local extremes. 
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Mutation should not occur very often, because then GA will in fact change to random 

search. 

Other Parameters  

There are also some other parameters of GA. One another particularly important 

parameter is population size.  

Population size: It signifies how many chromosomes are present in population (in one 

generation). If there are too few chromosomes, then GA has few possibilities to perform 

crossover and only a small part of search space is explored. On the other hand, if there are 

too many chromosomes, then GA slows down.  

2.5.1.4 Selection  

Introduction  

The chromosomes are selected from the population to be parents for crossover. The 

problem is how to select these chromosomes. According to Darwin's theory of evolution, 

the best ones survive to create new offspring. There are many methods in selecting the best 

chromosomes. Examples are roulette wheel selection, Boltzman selection, tournament 

selection, rank selection, steady state selection and some others. In this thesis we have used 

the tournament selection as it performs better than the others.  

Tournament Selection 

A selection strategy in GA is simply a process that favours the selection of better 

individuals in the population for the mating pool. There are two important issues in the 

evolution process of genetic search, population diversity and selective pressure. Population 

diversity means that the genes from the already discovered good individuals are  exploited 

while promising the new areas of the search space continue to be explored. Selective 

pressure is the degree to which the better individuals are favoured. The tournament 

selection strategy provides selective pressure by holding a tournament competition among 

individuals [2.11].     

2.5.1.5 GA for Function optimization 

To understand the use of GA, minimization of a multimodal function given in (2.47) is 

carried out through simulation study.  
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f(k)=...  +5*exp(-0.1*((x-15)^2+(y-20)^2))... 

  -2*exp(-0.08*((x-20)^2+(y-15)^2))... 

  +3*exp(-0.08*((x-25)^2+(y-10)^2))... 

  +2*exp(-0.1*((x-10)^2+(y-10)^2))... 

  -2*exp(-0.5*((x-5)^2+(y-10)^2))... 

  -4*exp(-0.1*((x-15)^2+(y-5)^2))... 

  -2*exp(-0.5*((x-8)^2+(y-25)^2))... 

  -2*exp(-0.5*((x-21)^2+(y-25)^2))... 

  +2*exp(-0.5*((x-25)^2+(y-16)^2))... 

  +2*exp(-0.5*((x-5)^2+(y-14)^2));             (2.47) 

 

The function has global minimum point at [15, 5]. Single point crossover was applied and 

best 20 individuals having higher fitness values were selected for next generation. Mutation 

and crossover rate were taken as 0.25 and 0.8 respectively and population size was set at 20. 

Each parameter was represented by eight bits.  

 

 

 

 

 

 

 

 

 

The fitness value settles to the global minimum value very soon. Results given by GA was 

[15.1373    5.0980] and ming = -3.9757. 

Fig. 2.12 Multimodal function of (2.47) 
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Fig. 2.13 Fitness curve of the function vs iteration 

 

 

 

At iteration 1 the result is  
Table 2.1 

Initial Generation C1 

 

W Fitness 
7.1373       0.3922 
-16.2353   -16.3922 
20.0000    -7.7647 
-16.0784    -5.4118 
7.9216     3.8431 
9.1765   -10.1176 
-13.8824    -8.8627 
-8.8627     0.5490 
1.9608    12.4706 
-15.4510    16.5490 
2.5882   -14.3529 
15.4510   - 16.3922 
4.4706   -19.8431 
18.5882   -11.2157 
-19.6863   -7.6078 
-10.5882    7.4510 
13.7255    16.8627 
15.1373    5.4118 
-11.8431  -10.1176 
19.3725    12.1569 

-0.0009 
0.0000 
-0.0000 
0.0000 
0.0060 
-0.0000 
0.0000 
0.0000 
0.0069 
0.0000 
-0.0000 
-0.0000 
-0.0000 
-0.0000 
0.0000 
0.0000 
1.5280 
-3.9079 
0.0000 
-0.8527 

 

After 400 iterations, all W and fitness values become equal which provides the desired 

result.                                                        
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                                                                                Table 2.2 

C1 population after 400th iteration 

 

W Fitness 
 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
   15.1373    5.0980 
 

 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 
-3.9757 

 

 

2.5.2  Particle swarm optimization (PSO) 

2.5.2.1 Basic method 

Natural creatures sometimes behave as a swarm. One of the main stream of artificial life 

researches is to examine how natural creatures behave as a swarm and reconfigure the 

swarm models inside a computer. Swarm behavior can be modeled with a few simple rules. 

School of fishes and swarm of birds can be modeled with such simple models.  

In 2001 Kennedy and Eberhart developed a PSO [2.12] concept through simulation of bird 

flocking in two-dimensional space. The position of each agent is represented by XY axes 

position and also the velocity is expressed by xv (the velocity of X axis) and yv  (the velocity 

of Y axis). Modification of the agent position is realized by the position and velocity 

information. Bird flocking optimizes a certain objective function. Each agent knows its best 

value so far (pbest) and its XY position. This information is analogy of personal 

experiences of each agent. Moreover, each agent knows the best value so far in the group 
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(gbest) among pbests. This information is analogy of knowledge of how the other agents 

around them have performed. Namely, each agent tries to modify its position using the 

following informations 

1. the current positions ),( yx  

2. the current velocities ),( yx vv  

3. to go to the center of the swarm 

4. the distance between the current position and pbest 

5. the distance between the current position and gbest 

 

2.5.2.2 Particle swarm optimization algorithm 

This modification can be represented by the concept of velocity. Velocity of each agent can 

be modified by the following equation [2.12] : 

)()( 2211
1 k

ii
k
ii

k
i

k
i sgbestrandcspbestrandcwVV −××+−××+=+  (2.48)

where  
k

iV  : velocity of agent i  at iteration k  

w    :  weighting function, 

jc   :  weighting factor, 

rand   :  random number between 0 and 1, 
k
is   :  current position of agent i  at iteration k  

ipbest   :  personal best of agent i , 

gbest   :  global best of the group. 

The following weighting function [2.12] is usually utilized in (2.48) 

iter
iter

ww
ww ×

−
−=

max

minmax
max

)(
 

(2.49)

where 

maxw  :  initial weight, 

minw   :  final weight, 

maxiter   :  maximum iteration number, 

iter  :  current iteration number. 
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Using the above equation, a certain velocity, which gradually gets close to pbest and gbest 

can be calculated. The current position (searching point in the solution space) can be 

modified by the following equation [2.12] : 
11 ++ += k

i
k
i

k
i VSS          (2.50) 

The general flow chart of PSO is shown in Fig. 2.14 and the step wise procedure is detailed 

below  

1. Step. 1 Generation of initial condition of each agent  

Initial searching points )( 0
is and velocities )( 0

iv of each agent are usually generated 

randomly within the allowable range. The current searching point is set to pbest for each 

agent. The best-evaluated value of pbest is set to gbest and the agent number with the best 

value is stored. 

2. Step. 2 Evaluation of searching point of each agent  

The objective function value is calculated for each agent. If the value is better than the 

current pbest of the agent, the pbest value is replaced by the current value. If the best value 

of pbest is better than the current gbest, gbest is replaced by the best value and the agent 

number with the best value is stored. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig.  2.14 General flow chart of PSO 

3. Step. 3 Modification of each searching point 

START

Generation of initial 
condition of each agent
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The current search point of each agent is changed using (2.48), (2.49) and (2.50). 

4. Step. 4 Checking the exit condition 

If the current iteration number reaches the predetermined maximum iteration number, then 

exit. Otherwise, go to step 2. 

The features of the searching procedure of PSO can be summarized as follows: 

1. As shown in (2.48), (2.49) and (2.50), PSO can essentially handle continuous 

optimization problem. 

2. PSO utilizes several search points like genetic algorithm and the search points gradually 

get close to the optimal point using their pbest and the gbest information. 

3. The first term of the right-hand side (RHS) of (2.48) is corresponding to diversification 

in the search procedure. The second and third terms of that are corresponding to 

intensification in the search procedure. This method has a well-balanced mechanism to 

utilize diversification and intensification in the search procedure efficiently. 

4. The PSO can handle continuous optimization problems with continuous state variables 

in a n-dimension solution space.  

Feature (3) can further be explained as follows. The RHS of (2.48) consists of three terms. 

The first term is the previous velocity of the agent. The second and third terms are utilized 

to change the velocity of the agent. Without the second and third terms, the agent will keep 

on "flying" in the same direction until it hits the boundary. Namely, it tries to explore new 

areas and, therefore, the first term is corresponding to diversification in the search 

procedure. On the other hand, without the first term, the velocity of the "flying" agent is 

only determined by using its current position and its best positions in history. Namely, the 

agents will try to converge to their pbests and/or gbest and, therefore, the terms are 

corresponding to intensification in the search procedure.  

 

2.5.3   Bacterial foraging optimization (BFO) 

2.5.3.1 Introduction 

Natural selection tends to eliminate animals with poor "foraging strategies" (methods for 

locating, handling, and ingesting food) and favor the propagation of genes of those 

animals that have successful foraging strategies since they are more likely to enjoy 

reproductive success (they obtain enough food to enable them to reproduce). After 
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many generations, poor foraging strategies are either eliminated or shaped into good 

ones (redesigned). Logically, such evolutionary principles have led scientists in the field of 

"foraging theory" to hypothesize that it is appropriate to model the activity of foraging as 

an optimization process: A foraging animal takes actions to maximize the energy obtained per 

unit time spent foraging, in the face of constraints presented by its own physiology and 

environment   

2.5.3.2 Bacterial foraging 

Bacteria have the tendency to gather to the nutrient-rich areas by an activity called 

chemotaxis. It is known that bacteria swim by rotating whip like flagella driven by a 

reversible motor embedded in the cell wall. E. coli has 8-10 flagella placed randomly on a 

cell body. When all flagella rotate counterclockwise, they form a compact, helically 

propelling the cell along a helical trajectory, which is called run. When the flagella rotate 

clockwise, they pull on the bacterium in different directions, which causes the bacteria to 

tumble. The four steps involved in bacterial foraging are briefly outlined next.  

 

     
                  (a)                                                               (b)                                              (c)  

 

Fig. 2.15 Swimming, Tumbling and Chemotactic behavior of Ecoli 

 

(1)Chemotaxis : An  E. coli bacterium can move in two different ways; it can run (swim 

for a period of time) or it can tumble, and alternate between these two modes of operation 

in the entire lifetime. In the BFO, a unit walk with random direction represnts a tumble and 

a unit walk with the same direction in the last step indicates a run. After one step move, the 

position of the i th bacterium can be presented [2.13] as 

    

)()(),,(),,1( jiClkjlkj ii φθθ +=+                              (2.51) 
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where ),,( lkjiθ represents the i th bacterium at j th chemotactic, k th reproductive and l th 

elimination and dispersal step. )(iC is the length of unit walk in the random direction. It is 

assumed to be constant and )( jφ  is the direction angle of the j th step. During run 

operation, )( jφ  is same as )1( −jφ , otherwise, )( jφ  is a random angle directed within a 

range of [0,2π ].  

If the cost at ),,1( lkji +θ is better than the cost at ),,( lkjiθ then the bactrium takes 

another step of size )(iC  in the same direction otherwise it tumbles. This swim process is 

as long as it continue to reduce the cost function, but only to a maximum number of steps, 

sN . 

(2) Swarming : The bacteria in times of stresses release attractants to signal bacteria to 

swarm together. It however also releases a repellant to signal others to be at a minimum 

distance from it. Thus all of them will have a cell to cell attacrtion via attractant and cell to 

cell repulsion via repellant. The cell to cell signalling in E. coli swarm may be represented 

[2.13] by the function  
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(2.52)

                

where )),,(,( lkjPJ cc θ represents the objective function value to be added to the actual 

objective function, S is the total number of bacteria, p is the number of variables to be 

optimized, T
p ].,.........,[ 21 θθθθ = is a point in the p -dimensional serach domain,  

=ad depth of the attractant, =aw width of the attractant, =rh height of the repellant and 

=rw width of the repellant. 

(3) Reproduction : A reproduction step is taken after cN chemotactic steps. Let 

2/br SS =  be the number of population members who have had sufficient nutrients so 

that they reproduce i. e. split into two. For reproduction, the population is stored in order 

of ascending fitness function. The rS least haelthy bacteria die and the other rS bacteria 



S E L E C T E D  A D A P T I V E  A R C H I T E C T U R E S  A N D  B I O - I N S P I R E D  
T E C H N I Q U E S ,  P R I N C I P L E S  A N D  A L G O R I T H M S  

 

 42 

each split into two identical ones which occupy the same positions in the environment. 

This method keeps the population size constant.   

(4) Elimination and Dispersal : Since bacteria may be stuck around the initial positions or 

local optima, it is possible for the diversity of BFA to change either gradually or suddenly 

to eliminate the possibility of being trapped into local minima. The dispersion vent happens 

after a certain number of reproduction process. A bacterium is chosen, according to a 

preset probability edp , to be dispersed and moved to another position within the 

environment. These events may prevent the local minima trapping effectively, but 

unexpectedly disturb the optimization process. The mathematical treatment of this new 

concept is presented in[2.13].  

 

2.5.4  Artificial immune system (AIS) 

The human immune system is a very complex system formed by a large number of cells, 

molecules and diverse mechanisms. The main function of immunity is to protect our 

bodies from the invasion of external microorganisms. The cells and molecules responsible 

for immunity constitute biological immune system (BIS). The AIS is developed by 

following the principles of BIS. Bersini first used immune algorithms to solve practical 

problems. The books [2.14, 2.15] provide excellent materials about the various principles 

and algorithms of AIS. According to BIS theory our body immunity is composed of two 

defense lines: innate and adaptive immunity. Innate immunity is nonspecific which means 

that it is independent of the foreign antigen. The adaptive immunity has memory and 

learning capabilities and it is antigen dependent, meaning that each different type of antigen 

provokes a different immune response. The main components of the adaptive immunity 

are the cells called B lymphocytes or simply B cells. When B lymphocytes are stimulated by 

a specific antigen, they produce a large number of molecules called antibodies, which play a 

major role in the adaptive immune response. 

 The clonal selection principle of AIS describes how the immune cells eliminate a foreign 

antigen and is simple but efficient approximation algorithm for achieving optimum 

solution. The steps involved in the clonal selection algorithm are 

 



S E L E C T E D  A D A P T I V E  A R C H I T E C T U R E S  A N D  B I O - I N S P I R E D  
T E C H N I Q U E S ,  P R I N C I P L E S  A N D  A L G O R I T H M S  

 

 43 

Step 1 : Initialize a number of antibodies(immune cells) which represent initial population 

size. 

Step 2 : When an antigen or pathogen invades the organism; a number of antibodies that 

recognize these antigens survives. In Fig.2.16, only the antibody C is able to recognize the 

antigen as its structure fits to a portion of the pathogen. So fitness of antibody C is higher 

than others. 

Step 3 : The immune cells recognize antigens undergo cellular reproduction. During 

reproduction the somatic cells reproduce in an asexual form, i.e. there is no crossover of 

genetic material during cell mitosis. The new cells are copies (clones) of their parents as 

shown for antibody C. 

Step 4 : A portion of cloned cells undergo a mutation mechanism which is known as 

somatic hypermutation as described in [2.15] .  

Step 5 : The affinity of every cell with each other is a measure of similarity between them. It 

is calculated by the distance between the two cells. The antibodies present in a memory 

response have on average a higher affinity than those of early primary response. This 

phenomenon is referred to as maturation of immune response. During the mutation 

process the fitness as well as the affinity of the antibodies gets changed. In each iteration 

after cloning and mutation those antibodies which have higher fitness and higher affinity 

are allowed to enter the pool of efficient cells. Those cells with low affinity or self-reactive 

receptors must be efficiently eliminated. 

Step6: At each iteration among the efficient immune cells some become effecter cells 

(Plasma Cell), while others are maintained as memory cells. The effecter cells secrete 

antibodies and memory cells having longer span of life so as to act faster or more 

effectively in future when the organism is exposed to same or similar pathogen. 

Step7: The process continues till the termination condition is satisfied else steps 2 to 7 are 

repeated. 
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Fig. 2.16 The Clonal Selection Principle 

 

References 

[2.1] B. Widrow and S.D. Sterns, “Adaptive Signal Processing” Prentice-Hall, Inc. Engle- 

       wood Cliffs, New Jersey, 1985. 

[2.2] S. Haykin, “Adaptive Filter Theory”, 4th edition, Pearson Education Asia, 2002. 



S E L E C T E D  A D A P T I V E  A R C H I T E C T U R E S  A N D  B I O - I N S P I R E D  
T E C H N I Q U E S ,  P R I N C I P L E S  A N D  A L G O R I T H M S  

 

 45 

[2.3] S. Haykin, “Neural Networks: A comprehensive foundation” 2nd Edition, Pearson  
      Education Asia, 2002. 

[2.4] E. J. Dayhoff, “Neural Network Architecture – An Introduction” Van Norstand Reilold, New  
       York, 1990. 

[2.5] N. K. Bose and P. Liang., “Neural Network Fundamentals with Graphs, Algorithms,  
     Applications”, TMH Publishing Company Ltd, 1998.  

[2.6] Richard O. Duda, Peter E. Hart and David G. Stork, “Pattern Classification”, 2nd edition,  
      John Wiley & Sons, INC.2001. 

[2.7] Y.H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison Wesley, Reading,  
       Massachusetts, 1989. 

[2.8] Y. H. Pao, G. H. Park and D. J. Sobjic., “Learning and Generalization Characteristics of  
       the Random Vector Function”, Neuro Computation, 6: 163-180, 1994. 

[2.9] J. C. Patra and R. N. Pal, “A Functional Link Artificial Neural Network for Adaptive  
      Channel Equalization”, Signal Processing, vol.43, no.2, pp.181-195, May 1995. 

[2.10] D.E.Goldberg, “Genetic algorithms in search, optimization and machine learning”, Addition- 
      Wesley,1989. 

 
[2.11] D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in  

      GA”, Foundations of genetic Algorithms, I, pp. 53-69, 1991.  
 
[2.12] J. Kennedy, R. C. Eberhart and Y. Shi, “Swarm intelligence”, San Francisco:  

      Morgan Kaufmann Publishers, 2001.    

[2.13] K. M. Passino, “Biomimicry of Bacterial Foraging for distributed optimization and  
      control”, IEEE control system magazine, vol 22, issue 3, pp. 52-67, June 2002. 

[2.14] D.Dasgupta, Artificial Immune Systems and their Applications, Springer-Verlag,  
           1999.  
 
[2.15] L N de Castro and  F. J. Von Zuben , “Learning and Optimization  using Clonal   
          Selection Principle,” IEEE Trans on Evolutionary Computation, Special issue on  
          Artificial Immune Systems, vol. 6, issue  3, pp.239-251, 2002.  

 

 



 46

 

 

Development of a New Cascaded 
Functional Link Artificial Neural 
Network (CFLANN) for Nonlinear 
Dynamic System Identification 
 

 

3.1 Introduction 

HE identification of nonlinear dynamic system plays a key role in control, 

communication and pattern recognition areas [3.1]. It finds wide applications in 

many diverse fields such as electronic circuit design, environmental system analysis, 

biological and medical systems and control system design [3.2]. The dynamic system 

identification task is basically a model estimation process of capturing the dynamics of the 

system using the measured data. This adaptive model can be used for prediction, system 

design as well as control. Because of the emerging importance of identification problems 

various attempts are currently underway to develop efficient nonlinear dynamic models of 

Chapter 

3 

T 
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complex real processes [3.38].  

In recent years, the artificial neural network (ANN) has proved to be a potential tool for 

system identification in a highly nonlinear dynamic environment. The ANN model has two 

distinct advantages : (i) inherent ability to learn by optimizing an appropriate error function 

(ii) excellent approximation capability to match a nonlinear function. The ANN 

architectures used for this purpose are (i) the multilayer artificial neural network (MLANN),  

(ii) the radial basis function (RBF) network, (iii) the recurrent neural network (RNN) and 

(iv) the functional link ANN (FLANN). The MLANN trained with back propagation (BP) 

algorithm and many variations of it have been successfully employed for system 

identification task [3.3] - [3.7]. The MLANN structure offers robustness and effective 

modeling and control capability of complex dynamic plants. Several real processes such as 

control of truck-backer-upper problem [3.5] and robot arm [3.6] have also employed the 

MLANN. However this is associated with some inherent drawbacks, e.g., multiple local 

minima problem, the difficulty of selecting the number of hidden units and the possibility 

of over fitting. 

Subsequently the RBF neural networks have been introduced which have proved to be a 

useful alternative to the MLANN for effective identification of nonlinear dynamic systems 

[3.8]-[3.9]. The RBF neural network employs a simple structure, can learn functions with 

local variations and discontinuities effectively and also possesses good universal 

approximation capability [3.10].However, the RBF has the drawback that both the number 

and location of its centers must be chosen appropriately. In recent years wavelet neural 

network (WNN) [3.11], employing nonlinear wavelet basis functions, have been proposed 

as useful approaches to nonlinear system identification [3.12]-[3.16]. The use of −β spline 

and neuro fuzzy functions in place of wavelet basis function have also been suggested for 

system identification [3.16]. The advantage of using WNN is that the local characteristics of 

the wavelets enables efficient estimation of regressive functions resulting in localized 

regularities. Various forms of RNN and recurrent neuro-fuzzy model have also been 

successfully employed for identification and control tasks [3.17]-[3.22]. These networks are 

essentially dynamic systems where the internal states evolve according to certain nonlinear 

state equations. Because of their dynamic nature the identification of complex dynamic 

systems has been successfully validated. However this approach does not provide any 

solution to obtain minimal dimensions of the associated recurrent structure. 
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The learning capabilities of various neural networks used for system identification have 

significant effects on the overall performance of the adaptive systems. If the information 

content of the data input to the network can be modified in a suitable manner, the network 

would able to extract the hidden features of the data. This is the prime motivation behind 

functional link mapping used in FLANN. The functional link expansions map the original 

input space into higher dimensions which help to reduce the burden during the training 

phase of the networks. The functional link acts on each element of the input vector and 

generates a set of linearly independent functions. They represent the enhanced version of 

the input information and thus helps to improve the training time and learning accuracy. 

The FLANN is a single neuron single layer network first proposed by Pao [3.23]. The 

structure of the FLANN is simple as it represents a flat net with no hidden layers. 

Therefore the computation and learning algorithm used in the architecture is straight 

forward. It has already been applied to many diverse fields which include function 

approximations[3.25]-[3.26], pattern classification [3.23]-[3.24], intelligent control [3.27], 

nonlinear channel equalization [3.28]-[3.29], system identification [3.30]-[3.32], heating, 

ventilating and air conditioning (HVAC) system [3.33], signal enhancement [3.34], 

nonlinearity compensation of sensors [3.35]-[3.36] and financial forecasting [3.37]. It is in 

general observed that in many of these applications the number of functional expansions 

involved in the FLANN structure is exceedingly large. This leads to an increase in the 

computational burdens, hence the overall learning time. Thus there is a need to introduce 

an alternative ANN structure for modeling the nonlinear plants which associates structural 

simplicity, less computational load and performance equivalent to or better than those 

offered by either the MLANN or FLANN based models.  

Therefore the main objective of the current work is to introduce an efficient new FLANN 

model known as cascaded FLANN (CFLANN) with its learning algorithm for nonlinear 

dynamic system identification task and evaluate its performance by conducting simulation 

based identification experiments of typical nonlinear plants. The performance of the 

proposed model is validated and compared by using the same identification examples in 

MLANN  and FLANN based approaches.   
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3.2 Nonlinear dynamic system identification 

System identification is a key problem in system theory and is related with the mathematical 

representation of a system. A model of a system is represented by an operator Ρ  from an 

input space Χ into an output spaceΥ and the objective is to characterize the class P  to 

which Ρ  belongs. The problem of identification is to obtain a class PP ⊂ˆ and an element 

P̂ˆ∈Ρ so that Ρ̂ approximatesΡ  in some predefined sense. In static systems Χ and 

Υ represent subsets of nR and mR respectively, but in dynamical systems these are assumed 

to be bounded Lebesgue integrable function in the interval ],0[ T  or ],0[ ∞  [3.4]. The 

choice of the class of identification models and the specific methods used to determine P̂  is 

related to the desired accuracy and the analytical tractability. In many practical situations 

these decisions depend upon prior information associated with the plant to be identified.  

Fig. 3.1 shows the identification scheme of a dynamic nonlinear system. 

 

 

 

 

 

 

 

Fig. 3.1 Identification scheme of a dynamic system 

 

In this method compact sets n
i R⊂Χ are mapped into elements 

.),.........2,1(; =∈ iRy m
i in the output space by the operator Ρ . The elements of iΧ denote 

the input patterns corresponding to class iy . In dynamical systems the operator Ρ  of a 

given plant is defined by the input-output pairs ],0[)},(),({ Tttytx ∈ . The objective of 

identification is to obtain Ρ̂  so that 

System 
)(P  

Model 
)ˆ(P   

Σ

Update 
Algorithm 

)(xP

)(ˆ xP

e+

- 
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Χ∈≤Ρ−Ρ=− xxxyy ,)()(ˆˆ ε                            (3.1)                

where ε is a pre-specified small value and .  denotes the norm on the output space. In Fig. 

3.1 yxyx =Ρ=Ρ )(,ˆ)(ˆ and e denote the output of the model, the output of the system and 

the error between the two respectively. Therefore e is given by  

yye ˆ−=                                                                          (3.2)                        

The input x is assumed to be zero mean uniformly distributed random values lying between 

-1 to +1. The stability of the plant is assumed with a known parameterization but with 

unknown parameter values. In the present study single-input single-output (SISO) plants of 

four different nonlinear models are considered. These plants are described by the nonlinear 

difference equations (3.3)-(3.6) given in [3.4]. 

Model 1 : 

[ ]∑
−

=

+−−+−=+
1

0
1(,),........1(),()()1(

n

i
i mkxkxkxgikyky α            (3.3) 

Model 2 : 

∑
−

=

−++−−=+
1

0
)()]1(...,),........1(),([)1(

m

i
i ikxnkykykyfky β     (3.4) 

Model 3 : 

)]1(......,),........1(),([)]1(...,),........1(),([)1( +−−++−−=+ mkxkxkxgnkykykyfky    (3.5) 

Model 4 : 

)]1(.........,),........1(),()1(...,),........1(),([)1( +−−++−−=+ mkxkxkxnkykykyfky  (3.6) 

 

In these models )(kx and )(ky represent the input and the output of the SISO plant at the 

k th time instant respectively and nm ≤ . iα and iβ are coefficients of the linear combiner 

part of the models. In this chapter the nonlinear part of the given plants, (.)f and (.)g are 

modeled by Cascaded FLANN (CFLANN) structures instead of using the MLANN 

structure as suggested in [3.4]. It is assumed that the plants under consideration are 

bounded-input-bounded-output (BIBO) stable. In order to achieve stability and to ensure 

that the parameters of the model converge, a series-parallel scheme [3.4] is employed. In 

this scheme the output of the plant instead of that of the ANN models is fed back to the 

models during the training operation.   
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3.3 Cascaded functional link artificial neural network 

Before dealing with the CFLANN adaptive structure and its training algorithm this section first 

introduces the FLANN model and its associated training rules.  

3.3.1 The functional link artificial neural network (FLANN) 

When the FLANN structure is employed for identification and control task, its learning 

capability significantly affects its performance. In this model the input is nonlinearly 

mapped so that the network extracts the associated hidden information of the data. This is 

the main motivation behind functional link mapping [3.4] of the FLANN structure. Such 

mapping also reduces the need of addition layers of the network. The block diagram of an 

FLANN structure is shown in Fig. 3.2. Let the input signal vector be represented as  
TmkxkxkxkX )]1(.....).........1()([)( +−−=                 (3.7) 

Then the functional expansion (FE) block maps each element )(kx into 

)12( +p nonlinearly expanded independent components. For trigonometric expansion 

)]([ kxφ is given by 

 
T

p

T

kxkxkx

kxpkxpkxkxkxkx

)}]({)},....({)},({[

)}](sin{)},(cos{)}....(sin{)},(cos{),([)]([

1221 +=

=

φφφ

ππππφ   (3.8) 

where p is an integer. When each element of )(kX is expanded then the expanded vector 

is represented as 
T

Nppp mkxkxkxkxkxkX )}]({)}....1({)}...1({)}({)}....({[)]([ )12(222121 −−−= +++ φφφφφφ    (3.9) 

 where )12( += pmN  and m is the number of signal samples fed into the FLANN model. 

The output )(ˆ ky of Fig. 3.2 is then given by 

 )}()())(({)(ˆ kbkWkXfky T += φ         (3.10)    

where )(kb is the bias weight and {.}f denotes the tanh  function. )(kW represents the 

weight vector and is defined as  
T

N kwkwkwkW )](...).........(),([)( 21=          (3.11)   

The weights of the FLANN model are trained using the algorithm 

))(ˆ1)(()}.({)()1( 2 kykekXkWkW −+=+ φμ         (3.12)  

where the error term  
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)(ˆ)()( kykyke −=                  (3.13) 

The convergence coefficient is represented by μ  and its value lies between 0 and 1. 

Equations (3.8), (3.9), (3.10) and (3.12) represent the key equations of FLANN algorithm.  

3.3.2 Cascaded functional link artificial neural network (CFLANN)  

For the identification of complex nonlinear static and dynamic systems the number of 

branches in the FLANN increases exponentially with the increase in the complexity of the 

identification problem. As a result the structural complexity increases in case of FLANN 

model and even then at times the performance is not improved. Keeping this in view a 

structurally simple model known as a two-stage FLANN model is proposed which is 

expected to offer less computational load.  In this case the output of the first FLANN stage 

undergoes another functional expansion. The weights of cascaded FLANN of both the 

stages are updated by using a CFLANN algorithm. Referring to the proposed CFLANN 

identification model in Fig. 3.3, the output of stage-1 is given by 

)}(ˆtanh{)(ˆ 12 kyky =                                         (3.14) 

where )(ˆ1 ky is given by (3.10).  

In the second stage the output )(ˆ 2 ky undergoes nonlinear expansions in FE2 block. Its 

output is represented as  
T

M kykykyky )}](ˆ{).........(ˆ{)}(ˆ{[)}(ˆ{ 222212 ψψψψ =       (3.15)  

where )}(ˆ{ 2 kyiψ denotes the i th trigonometric expansion of Miky <<1)},(ˆ{ 2 . The 

estimated output of the second stage  i. e. the output of the CFLANN model is then given 

by  

)}(ˆtanh{)(ˆ 3 kyky =                                          (3.16) 

where 

)()()}(ˆ{)(ˆ 223 kbkHkyky T +=ψ                          (3.17) 

and 
T

M khkhkhkH )](...,),........(),([)( 21=                    (3.18) 

The weights of the second stage are trained using (3.19) 

))(ˆ1)(()}(ˆ{)()1( 2
2 kykekykHkH −+=+ ψμ        (3.19)  

where 

)(ˆ)()( kykyke −=                                                   (3.20) 
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and )(ky is the output of the plant or system to be identified. Based on the principle of 

back propagation algorithm, a weight update algorithm for CFLANN model is derived. 

The corresponding weight-update equation of the first stage is derived and is given by  

)}({)}](ˆ{)1())[(ˆ1))((ˆ1)(()()1( 2
2

2 kXkykHkykykekWkW T φψμ ′+−−+=+     (3.21) 

where )}(ˆ{ 2 kyψ ′ is the first order derivative of )}(ˆ{ 2 kyψ .  

 

 

 

 

 

 

 

 

 
Fig. 3.2 A FLANN model for identification of nonlinear dynamic systems 
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Equations (3.10), (3.14), (3.16), (3.17), (3.19) and (3.21) represent the key equations relating 

to the CFLANN algorithm.  

 

3.4 Simulation study 

To demonstrate the performance of the proposed CFLANN model, simulation results of 

nonlinear identification of four typical dynamic plants are presented. In these examples, the 

series-parallel model is used to identify the given dynamic plants and CFLANN algorithm 

is used to adjust the connecting weights of the CFLANN structure. To compare the 

performance of the proposed models the same examples are also simulated using MLANN 

and FLANN models. Keeping the best possible performance as the basis the parameters of 

FLANN and CFLANN were adjusted suitably. For training the MLANN and FLANN 

models 50, 000 iterations are carried out by using an uniformly distributed random signal 

over the interval [-1,1] as input. During the testing phase, the effectiveness of the proposed 

models is studied by using the parallel scheme where the input to the identified model [3.4] 

used is  

⎪
⎪
⎩

⎪⎪
⎨

⎧

>+

≤
=

250
25
2sin2.0

250
2sin8.0

250
250
2sin

)(
kforkk

kfork

kx
ππ

π

      (3.22) 

Example 1: The difference equation of the nonlinear plant [3.4] to be identified is given as 

)]([)1(6.0)(3.0)1( kxgkykyky +−+=+               (3.23) 

The linear parameters are 0.3 and 0.6 and the unknown function (.)g is considered as one 

of the nonlinear functions defined in (3.24)-(3.26).  

 
0.32.02.18.04.0

2.10.32.10.4)( 2345

23

−+−+
+−−

=
xxxx

xxxxg        (3.24)  

125.1)4cos(1.0
0.2

0.2)(sin5.0)( 3
3 +−

+
−= x

x
xxg ππ         (3.25) 

)5sin(1.0)3sin(3.0)sin(6.0)( xxxxg πππ ++=        (3.26) 

To identify the plant a series-parallel model described by the difference equation (3.27) is 

used 

)]([)1(6.0)(3.0)1(ˆ kxkykyky Ν+−+=+               (3.27) 
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where )]k(x[Ν  represents one of the MLANN, FLANN and CFLANN models. The 

MLANN model used for this purpose has {1-20-10-1} structure. The FLANN input is 

expanded to 14 terms by using trigonometric expansion. Both the convergence 

parameter,μ and the momentum parameter, η are chosen to be 0.1 for both the models. 

But in case of CFLANN model the input is expanded into 10 terms (5 terms in first stage 

and 5 terms in second stage) in examples shown in  (3.24), 12 stages (7 in first stage and  5 

in second stage) in examples shown in (3.25) and (3.26). The coefficient μ  is chosen to be 

0.1 in all examples. The comparison of responses of these dynamic systems are provided in 

Figs. 3.4(a)-3.4(i). From all these plots of Fig. 3.4, it is in general observed that the 

identification performance of CFLANN model is better than those obtained from the 

MLANN and FLANN models. The sum of squared errors (SSE) computed between the 

actual and estimated responses of various methods are shown in Table 3.1. It also shows 

improved performance of the proposed method compared to those offered by the other 

two.   
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(a) Comparison of output response using CFLANN method  (Example 1 with nonlinearity in (3.24)) 
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(b) Comparison of output response using FLANN method (Example 1 with nonlinearity in (3.24)) 
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(c) Comparison of output response using MLANN method (Example 1 with nonlinearity in (3.24)) 
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(d) Comparison of output response using CFLANN method  (Example 1 with nonlinearity in (3.25)) 
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(e) Comparison of output response using FLANN method (Example 1 with nonlinearity in (3.25)) 
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(f) Comparison of output response using MLANN method (Example 1 with nonlinearity in (3.25)) 
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(g) Comparison of output response using CFLANN method  (Example 1 with nonlinearity in (3.26)) 
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(h) Comparison of output response using FLANN method (Example 1 with nonlinearity in (3.26)) 
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(i) Comparison of output response using MLANN method (Example 1 with nonlinearity in (3.26) 

 

Fig. 3.4 Comparison of identification performance of nonlinear plants of (Example -1) 



D E V E L O P M E N T  O F  A  N E W  C A S C A D E D  F U N C T I O N A L  L I N K  
A R T I F I C I A L  N E U R A L  N E T W O R K ( C F L A N N )  F O R  N O N L I N E A R  

D Y N A M I C  S Y S T E M  I D E N T I F I C A T I O N  
 

60 

Example 2: In this example [3.4] the plant to be identified is of type Model-2 and is 

represented by the difference equation 

)()]1(),([)1( kxkykyfky +−=+                          (3.28)                      

The unknown nonlinear function f is given by  

2
2

2
1

1121
21 0.1

)0.1)(5.2(),(
yy
yyyyyyf

++
−+

=                    (3.29) 

In this case the series-parallel scheme used to identify the plant is given as 

)()]1(),([()1(ˆ kxkykyky +−Ν=+                      (3.30) 

In the simulation study the structure used for MLANN is {2-20-10-1}. In FLANN, the 

two inputs are expanded into 24 terms and the values of convergence parameter,μ and 

momentum parameter, η are set at 0.05 and 0.1 respectively in both MLANN and FLANN 

models. In case of the CFLANN model the two dimensional input is expanded into 17 

terms (14 term in the first stage and 3 terms in the second stage). The value of μ  is chosen 

to be 0.1. The response obtained from the plant and various models are compared in Figs. 

3.5(a)-(c). In this case also it is observed that the identification performance of the 

CFLANN is better than those obtained from the other two. It is also observed from the 

magnitude of the SSE shown in Table 3.1.   
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(a) Comparison of output response using CFLANN method 
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 (b) Comparison of output response using FLANN method 
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(c) Comparison of output response using MLANN method 

Fig. 3.5 Comparison of identification performance of nonlinear plant of Example-2 

 

Example 3: In this case the plant [3.4] belongs to Model-3 type and is given by the 

difference equation  

)](()([)1( kxgkyfky +=+                                        (3.31) 

where the unknown nonlinear functions (.)f and (.)g are represented as  

20.1
)3.0()(

y
yyyf
+
+

=                                             (3.32) 

)5.0)(8.0()( −+= xxxxg                                           (3.33) 

The series-parallel scheme used is given by  

)]([)]([)1(ˆ 21 kxkyky Ν+Ν=+                                (3.34) 
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where 1Ν  and 2Ν represent one of the MLANN, FLANN or CFLANN model. In 

MLANN the structure used for both 1Ν  and 2Ν are having the structure {1-20-10-1}, 

whereas in case of FLANN, 14 and 24 terms trigonometric expansions are used. The values 

of convergence parameter,μ and momentum parameter, η are chosen to be  0.1 in both 

MLANN and FLANN models. In the CFLANN model each of the 1Ν  and 2Ν is 

expanded into 14 terms (7 in first stage and 7 in second stage) and μ is taken as 0.1. The 

results of identification are plotted  in Figs. 3.6(a)-(c). It may be seen that the CFLANN 

model is estimating the plant response better than that of the MLANN and FLANN based 

methods. The SSE of Table 3.1 also indicates the same trend. 

0 50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

1

1.5

2

Iteration

O
ut

pu
ts

Plant
Model

 

(a) Comparison of output response Using CFLANN method 
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(b) Comparison of output response using FLANN method 
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(c ) Comparison of output response using MLANN 

Fig. 3.6 Comparison of identification performance of nonlinear plant of  Example-3 

 

Example 4: The plant [3.4] in this case belongs to Model-4 and is described by the 

difference equation  

)]1(),(),2(),1(),([)1( −−−=+ kxkxkykykyfky          (3.35) 

where the unknown nonlinear function f is given by 

2
3

2
2

435321
54321 0.1
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The series-parallel model used for identification of this plant is given as 

)]1(),(),2(),1(),([)1(ˆ −−−Ν=+ kukukykykyky       (3.37) 

In the MLANN model Ν  represents a {5-20-10-1} structure and in case of FLANN 

model the input and output are expanded to ten terms each using trigonometric expansion. 

Both the parameters μ and η  are chosen to be 0.1 in these two cases.  

In case of CFLANN model the input is expanded to 4 terms and output is expanded to 6 

terms in the first stage and in the second stage the output is expanded to 3 terms. The value 

of  μ  chosen is 0.1. Figs. 3.7(a)-(c) show the comparative performance of the output 

response of two models. The simulation results also indicate that the identification 

performance is best in the proposed model as may be evident from comparison of SSE 

shown in Table 3.1.  
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(a) Comparison of output response using CFLANN model 
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(b) Comparison of output response using FLANN model 
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(c) Comparison of output response using MLANN model 

Fig. 3.7 Comparison of identification performance of nonlinear plant of Example –4 
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The SSE computed by comparing the desired and the estimated outputs of the four 

identification examples of three different methods is shown in Table 3.1. It is observed that 

the proposed model yields minimum SSE in all cases compared to that obtained from the 

other two techniques. 
 

Table 3.1 

Comparison of the sum of squared errors (SSE) between the plant and the model outputs 

Nonlinear plants SSE 
 CFLANN FLANN MLANN 

Ex-1 using (3.24) 5.52 5.76 7.74 
Ex-1 using (3.25) 3.84 4.02 16.68 
Ex-1 using (3.26) 0.1917 0.1846 291.18 

Example-2 5.40 5.40 5.70 
Example-3 1.15 1.70 1.20 
Example-4 6.88 7.92 7.36 

 

The computational complexity required in the identification of the plants given in examples 

1-4 is presented in Table 3.2. It is in general observed that the proposed CFLANN model 

involves the lowest computational complexity compared to other two models. Further it is 

in general observed that the CFLANN offers best identification performance compared to 

the existing MLANN and FLANN based models.  

 

Table 3. 2 

Comparison of Computational Complexity of various system identification models 

Types of 
models 

No. of tanh ( ) No. of 
Cos/Sin 

No. of 
weights 

No. of Adds. No. of 
Muls. 

Example-1 
MLANN 31 0 261 230 230 
FLANN 1 14 15 14 15 

CFLANN 2 10  12 11 12 
Example-2 

MLANN 31 0 281 250 250 
FLANN 1 24 25 24 25 

CFLANN 2 17 19 18 19 
Example-3 

MLANN 62 0 522 460 460 
FLANN 2 38 40 39 40 

CFLANN 2 14 16 15 16 
Example-4 

MLANN 31 0 341 310 310 
FLANN 1 20 21 20 21 

CFLANN 2 13 15 14 15 
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3.5 Conclusion 

The Chapter has introduced a new Cascaded FLANN(CFLANN) model with its learning 

algorithm. This adaptive structure is then used to identify nonlinear complex plants. 

Computer simulation based experiments have been carried out to validate its performance 

and compare the same with those obtained by other standard methods. The results of 

simulation indicate that the proposed CFLANN structure involves least computation and 

offers best performance compared to those offered by the existing FLANN and MLANN 

based methods.  
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Identification of IIR Plants using 
Comprehensive Learning Particle 
Swarm Optimization 
 

 

4.1 Introduction 

URING the last two decades adaptive infinite-impulse response (IIR) filtering 

and identification have been an active field of research. They have been applied 

to linear prediction, adaptive differential pulse code modulation, channel 

equalization, process control, echo cancellation, adaptive array processing and intelligent 

instrumentation. Many real world systems such as speech synthesis and recognition, 

acoustical modeling and adaptive digital subscriber loop (ADSL) are recursive in nature and 

it is advantageous to model such plants using IIR adaptive filters. The main advantage of 

IIR system is that it provides significantly improved performance than an adaptive FIR 

filter having the same number of coefficients. This is due to the fact that the output feed 

back generates an infinite impulse response with a finite number of parameters. Further the 

Chapter 

4 
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output of an IIR filter approximates the desired response more effectively if both poles and 

zeros are present in a filter. Alternatively, to achieve a pre-specified performance, an IIR 

filter requires considerably fewer coefficients than the corresponding FIR filter. It is a fact 

that the adaptive IIR filters effectively substitute the conventionally-used adaptive FIR 

filters for many practical applications [4.1].  

As the error surface of IIR filters is usually multimodal with respect to the filter 

coefficients, the gradient based learning algorithms such as the least-mean-square (LMS)  

very often get stuck at local minima and its associated weights do not converge to the 

global optimum [4.2]. This algorithm tries to find out the minimum point of the error 

surface by moving in the direction of negative gradient. Like most of the learning 

algorithms it may lead the filter to a local minimum when the error surface is multimodal. 

In addition, the convergence behavior depends on the choice of the step size and initial 

values of filter coefficients.  

The adaptive IIR filtering has two distinct approaches which correspond to different 

formulations of prediction error. These are equation-error [4.3, 4.4] and output-error 

formulations [4.5, 4.6]. In the equation-error method the feed back coefficients are updated 

in an FIR form which are then copied to a second filter implemented in all-pole form. This 

formulation is essentially a type of adaptive FIR filtering. However this approach may lead 

to biased estimates of the filter coefficients. On the other hand the output-error 

formulation updates the coefficients of the feedback path directly in a pole-zero recursive 

form. This approach does not generate biased estimates of the coefficients. But the 

adaptive algorithm may converge to a local minimum of the mean square error (MSE) 

leading to an incorrect estimate of the coefficients. In addition, its convergence properties 

are not easily predicted [4.10]. Out of the two formulations of adaptive IIR filtering, the 

output error based approach provides improved performance in system identification if the 

problem of local minima associated with this algorithm is overcome.  

Thus the main motive of this chapter is to propose a new adaptive algorithm using a 

population based bio-inspired technique known as particle swarm optimization(PSO) for 

identification of IIR or pole-zero systems which is expected to overcome the local minima 

problem and to provide accurate estimates of the pole-zero coefficients. To improve the 

performance of complex multimodal problems, further a comprehensive learning PSO 

(CLPSO) algorithm has recently been proposed [4.9]. In this chapter the identification of 

IIR systems is also carried out using this structured stochastic search algorithm. Since the 
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proposed technique is independent of the adaptive filter structure and is capable of 

converging to the global solution for multimodal problems, it is expected to be a potential 

candidate for identification of IIR systems.  

4.2 Related work 

Swarm Intelligence (SI) is an artificial intelligence technique which involves the study of 

collective behavior in decentralized and self organized systems. SI systems are typically 

made up of a population of simple agents interacting locally with one another and with 

their environment. Although there is no centralized control structure dictating how 

individual agent should behave, local interactions between such agents lead to the 

emergence of global behavior. Natural examples of SI include ant colonies, bird flocking, 

animal herding, bacterial growth, honey bees and fish schooling. The SI refers to the 

problem solving behavior which emerges from the interaction between the individuals of 

such system. The algorithmic models of such behaviors have shown to adapt well in 

changing environments and are flexible and robust. The last decade has witnessed rapid 

growth of research interests in various SI paradigms, one of which is particle swarm 

optimization (PSO) [4.7, 4.8]. The PSO is a global optimization algorithm for dealing with 

problems in which the best solution can be represented as a point or surface in an n-

dimensional space. Its main advantage over other optimization strategies such as simulated 

annealing [4.17] is that the large number of members that make up the particle swarm 

enable the technique to be resilient to the problem of local minima. The PSO algorithm is 

easy to implement and has been shown to perform well for many optimization problems.  

In [4.6], Johnson presented a tutorial on adaptive IIR filtering techniques highlighting the 

common basis between filtering and system identification. Subsequently another tutorial on 

adaptive IIR filtering was published [4.11-14] that dealt with different algorithms, error 

formulations and realizations. These filters are mostly direct-form realization. The direct 

form is a convenient and simple structure but can not ensure stability of the adaptive filter. 

To overcome this problem, the parallel [4.15] and lattice [4.16] forms have been proposed. 

These structures offer simple stability monitoring with less complexity than that of direct 

form. A review paper has been reported [4.26] on adaptive IIR filtering algorithms for 

system identification using a unifying frame work. For achieving efficient system 

identification neural network has also been introduced in the literature [4.55-4.56] 
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The drawback of all adaptive IIR filter structures is that they produce error surfaces that 

inherently tend to be multimodal. Therefore the local optimization techniques such as the 

gradient descent algorithms, are not suitable because they are likely to be trapped to local 

minimum solution. An alternative to gradient based techniques is a structured stochastic 

search of the error surface. These type of global searches are structure independent because 

a gradient is not calculated and the filter structure does not directly influence the parameter 

updates. Due to this feature, these types of algorithms are potentially capable of globally 

optimizing IIR filter structures. Several structured stochastic search approaches have 

appeared in the literature, using simulated annealing [4.17], genetic algorithm (GA) [4.18]  

and PSO [4.7, 4.8]. An adaptive genetic algorithms for determining the optimum filter 

coefficients in a recursive adaptive filter is presented in [4.19]. The GA has also been 

applied to optimize the parameters of adaptive IIR filters [4.20]. In another publication 

[4.21] GA based approach applied for system identification and control of both continuous 

and discrete time systems has been reported. For efficient adaptive IIR filtering a fast 

genetic search algorithm has been introduced [4.22] in the LMS algorithm. In another paper 

[4.23] the nonlinear parameters of the IIR filters have been estimated using GA. A 

hierarchical GA based algorithm is proposed in [4.24] for design and optimization of IIR 

filter structure. In a recent article [4.25] a new learning algorithm is introduced embedding 

the genetic search into the gradient descent algorithm to accelerate the learning process and 

to provide global search capability. It is reported that this method outperforms the LMS 

algorithm and the gradient lattice algorithm in terms of convergence speed and ability to 

locate the global optimal solution.  

The basics of PSO is dealt in Section 2.5.2. The research papers on PSO which have 

appeared in the literature have focused on two fronts : improving the performance of PSO 

[4.27-4.37] by incorporating a number of modifications in the algorithm and application of 

these PSO algorithms in diverse fields such as minimization of functions of many variables 

[4.38], image segmentation [4.39, 4.40], design of antennas [4.41] and stock market 

prediction [4.42], design of tree structures [4.43], learning to pay games [4.44] and 

multimodal biomedical image reistration [4.45] and design of adaptive IIR filter [4.46]. 

Various variants of PSOs are PSO with decreasing inertia weights [4.27], PSO with fuzzy 

adaptive inertia weights [4.28], self-organizing hierarchical PSO with time varying 

accelerating coefficients [4.29], PSO with linearly decreasing maxV [4.30], PSO with 
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constriction factor [4.31], local version of PSO with constriction factor [4.32], dynamic 

neighborhood PSO [4.33], unified PSO [4.34], fully informed PSO [4.35], fitness-distance-

ratio based PSO [4.36] and cooperative PSO [4.37]. Some researchers have proposed 

hybridization by combining PSO with other search techniques to improve the performance 

of the PSO. Evolutionary operators such as selection, crossover and mutation have also 

been suggested in PSO to retain the best particles [4.47] and to improve the ability to 

escape from local minima [4.48]. Two recent reported works in this direction are PSO with 

crossover [4.49] and PSO with mutation [4.50]. In order to maintain the diversity and to 

escape from local optima, relocation of particles when these are too close to each other 

[4.51] or use of some collision-avoiding mechanisms [4.52] have been proposed in the 

literature. Negative entropy has been employed in PSO [4.53] to discourage premature 

convergence. Deflection, stretching and repulsion mechanisms have been introduced in 

[4.54] to find as many minima as possible by preventing particles from entering to 

previously discovered minimal region.    

 

4.3 Basics of modified PSO and CLPSO algorithms 
 
The introduction of constriction factor K  in the velocity equation (2.48) of conventional 

PSO has improved the convergence of the PSO algorithm [4.31]. Accordingly the velocity 

equation is modified as  

))()((*)(2*))()((*)(1*)(*)( 21 dXdPdrandcdXdPdrandcdVKdV igiiiiii −+−+=  (4.1) 

where 
φφφ 42

2
2 −−−

=K          (4.2) 

and 21 cc +=φ , 4>φ                     (4.3) 

Usually φ  is set to 4.1 and K = 0.729. As a result each of the )( ii XP − terms is calculated 

by multiplying 0.729 * 2.05= 1.49445.  

In the original PSO, each particle learns from its pbest  and gbest  simultaneously. In the 

PSO, the social learning aspect is restricted only to the gbest . This appears to be 

somewhat an arbitrary decision. In addition, all particles in the swarm learn from the gbest  

even if the current gbest  is far from the global optimum. Under such situations, the 

particles are attracted easily and trapped in to an inferior local optimum. As the fitness 
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value of the particle is decided by all dimensions, a particle which has discovered the value 

corresponding to the global optimum in one dimension may have a low fitness value 

because of poor solution in other dimensions. In order to prevent this Liang et al have 

proposed [4.9] a novel learning strategies which differ mainly in three aspects compared to 

the PSO reported in [4.7], [4.8]. 

(i) Instead of using particle’s own pbest  and pbest  as the exemplars, all particles’ pbest  

are used as exemplars to guide a particle’s flying direction 

(ii) Each dimension of a particle may learn from the corresponding dimension of different 

particles’ pbest . 

(iii) Instead of learning from two exemplars ( gbest and pbest ) at the same time in very 

generation as in the original PSO, each dimension of the particle trained from just one 

exemplar for a few generations. 

In the CLPSO algorithm the velocity update equation [4.9] is given by  

))()()((*)(*)( )( dXdpbestdrandcdVwdV idfiii i
−+=     (4.4) 

where )(dfi  gives which particles’ pbest s will be used for the i th particle. The term 

)()( dpbest dfi
represents the corresponding dimension of a particle’s pbest including its 

own and such a decision depends on the learning probability cP . For each dimension of 

particle i , a random number is generated. If this number is larger then cP , the 

corresponding dimension learns from its own pbest , otherwise it learns from another 

particle’s pbest  until the particle ceases improving for a certain number of generations 

called the refreshing gap m , then if  is reassigned for the particle. In the later case the 

tournament selection procedure is employed. The above stated operations increase the 

diversity of swarms which results in enhanced performance when solving complex 

multimodal problems. It is reported that different values of cP  yielded a solution which is 

different from that obtained by taking same cP  for all particles. If different values of cP  for 

different particles are taken then the particles have different levels of exploration and 

exploitation ability in the population. The empirical relation for i th particle is given by  

 
)1)10(exp(

)1)
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)1(10(exp(
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−
−
−
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       (4.5) 
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where =sP size of population. In many practical problems bounds are imposed on the 

ranges of the variables. Two search ranges are suggested : 

(i) ],[ maxmin XX  and  

(ii) ))(),(max(),(min( minmax dXdXdX i  

The refreshing gap parameter m also influences the results as it affects the convergence 

velocity. The details of the CLPSO algorithms is available in [4.9].  

 

4.4 Adaptive system identification of IIR systems 

The block diagram of an adaptive system identification of an IIR plant is shown in Fig. 4.1. 

The model is an output-error adaptive IIR filter and is characterized by the recursive 

difference equation given in (4.6) 

∑ ∑
−

=

−

=

−+−=
1

1

1

0

)(ˆ)(ˆ)(ˆ)(ˆ
N

m

M

m
mm mnxbmnynany       (4.6) 

where )(nx  and )(ˆ ny  represent the n th input and output of the plant respectively. The 

present estimated output )(ˆ ny  depends on the past estimated output samples 

1,.......2,1),(ˆ −=− Nmmny .  )}(ˆ),(ˆ{ nbna mm  represent adjustable coefficients which at the 

end of the adaptation process give the estimated pole-zero parameters of the IIR plant.  

 

 

 

 

 

 

 

Fig. 4.1 Adaptive identification of IIR systems using output-error adaptive IIR filter as the model 

 

The output )(nd  of the plant is represented by (4.7)  

IIR Plant 

Learning algorithm 

+

− 

∑ 

∑ 

)(ny )(nd  

)(ˆ ny
Model 

)(ne  
)(nx

)(nv  
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∑ ∑
−

=

−

=

+−+−=
1

1

1

0
)()()()()()(

N

m

M

m
mm nvmnxnbmnynand      (4.7) 

where )(ny  and )(nv  denote the output and measurement noise respectively. This noise is 

uncorrelated with the input )(nx . The pole and zero parameters of the IIR plant are 

)(nam  and )(nbm  respectively. In the system identification configuration of Fig. 4.1, the 

model is represented by output-error adaptive IIR filter of the form  

)(
),(ˆ1

),(ˆ
)(ˆ nx

znA
znBny ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=                  (4.8)                        

where the feed forward and feed back transfer functions are given by  

∑
−

=

−=
1

1
)(ˆ),(

N

m

m
m znaznA and ∑

=

−=
M

m

m
m zmbznB

0
)(ˆ),(ˆ                (4.9) 

respectively. 

Unlike the equation-error formulation, the pole-polynomial ),(ˆ1 znA−  is adapted directly 

in an IIR filter form. Such formulation is a natural generalization of the adaptive FIR filter 

where 0),(ˆ =znA . Equation (4.6) may also be written as an inner product form  

)()(ˆ)(ˆ nnny
T

φθ=                  (4.10)      

where the estimated coefficient vector )(ˆ nθ  and the signal vector )(nφ  are given by (4.11) 

T
MN nbnbnanan )](ˆ),.......,(ˆ),(ˆ...,),........(ˆ[)(ˆ 1011 −−=θ       

and TMnxnxNnynyn )]1(),...(),1(ˆ),..1(ˆ[)( +−+−−=φ        (4.11) 

The output )(ˆ ny  is a nonlinear function of )(ˆ nθ  because the delayed output signals 

)(ˆ kny −  of )(nφ  depend on previous coefficient values. The output error is given by 

)(ˆ)()( nyndne −=  and is generated by subtracting the estimated output in (4.6) from 

)(nd . It is evident that )(ne  is a nonlinear function of θ  and hence the mean square 

output error is not a quadratic function and therefore it can have multiple minima. The 

gradient based adaptive algorithms like the LMS could converge to one of the local 

solutions yielding inaccurate estimates of pole zero parameters. The CLPSO algorithm is 

therefore has been employed in this chapter in updating those parameters of the model so 

that the parameter estimates would be optimal.  
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4.5 CLPSO based identification of IIR systems 

The identification of IIR system is formulated as an optimization problem. The steps 

involved in the CLPSO based algorithm for identification are the following : 

Step-1 Input samples of a suitable window length )(L are selected from a zero mean 

uniform random sample. It is represented by )(lx , where 1,........,0 −= Ll  and lies 

between +0.5 to -0.5. 

Step-2 )1( −+= NMD number of random numbers are generated which represents the 

initial position of particle X . The first )1( −N random numbers denote the initial feedback 

parameters and the remaining M random numbers represent the feed-forward parameters 

of the model of the plant. Another set of 1−+ NM random numbers are also generated to 

represent the corresponding velocities V of the particles. Here D denotes dimension of the 

particle. 

Step-3 The procedure in Step-2 is repeated for a specified population size sP . The complete 

set of population constitutes a swarm. 

Step-4 Input samples of window size )(L are applied sample by sample to the plant of 

known coefficients and then added with noise to generate the desired signal )(ld . 

Step-5 The same input is also applied to the model sequentially to get the output signal 

)(ˆ lyi which is the estimated output of the model corresponding to the l th input sample 

and for the i th particle. 

Step-6 The Mean Square Error (MSE) of i th particle (which represents the cost function) 

is computed using 2
1

0
))(ˆ)(([1 lyld

L
J

L

i
ii ∑

−

=

−=                        (4.12)                      

Step-7 In the same way the cost functions of all other particles are also evaluated for every 

generation. The particle giving the minimum cost function, provides the best possible 

representation of the unknown plant to be modeled.  

Step-8 The pbest represents the best positions (i. e. set of model parameters that gives the 

minimum cost function value) for a particular particle. It is initialized as the initial position 

of the particle. The gbest represents the best position in the swarm. It is initialized as the 

position of the particle which gives the minimum cost function value in the swarm. 
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Step-9 k is the iteration number initialized to 1. The first particle is chosen i. e. ,1=i where 

i is the particle number. Linearly decreasing inertia weight within the range 0.9 to 0.4 is 

used for updating the velocity and position of particles in each iteration. The inertia weight 

at k th generation is given by  

itr
kww

wwk
*)( 10

0
−

−=                           (4.13)                      

where k =generation counter (from 1 to itr ) 

itr  =number of iterations 

9.00 =w and 4.01 =w  

Step-10 The refreshing gap parameter m is adjusted depending on the function or problem 

to be optimized. The  iflag represents the number of generations the i th particle has not 

improved its own pbest . The flag is initialized to 0 for all particles. 

Step-11 Another parameter iPc called as the learning probability of a particle is initialized 

according to the empirical formula given in (4). 

Step-12 If mflagi < then go to Step-(20). 

Step-13 Starting with 1=d for every dimension of a particle a random number is generated 

(rand). 

Step-14 If iPcrand < then go to Step-17 else to Step-15. 

Step-15 Set idf i =)( , which gives the number of the particle whose pbest will be used for 

the present particle. 

Step-16 Now if Dd < then increment d and go to Step-13 or else go to Step-19. 

Step-17 Two particles are selected randomly by using 

⎡ ⎤
⎡ ⎤sii

sii

Pdranddf
Pdranddf

*)(2)(2
*)(1)(1

=
=                               (4.14)                      

where =sP population size 

⎡ ⎤= ceiling operator 

Step-18 Subsequently the cost function for the two randomly selected particles )(1 df i and 

)(2 df i are computed using their respective pbest . 

If ))(2())(1( pbestdfpbestdf ii
JJ < , then )(1)( dfdf ii = else )(2)( dfdf ii = . Then go to Step-16. 

Step-19 Reinitialize iflag to zero. 
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Step-20 d is set to 1 representing the dimension of the i th particle. 

Step-21 New velocities and positions are calculated using  

)()()(
))(),(max(),(min()(

))()((*)(*)(*)(

minmax

)(

dVdXdX
dVdVdVdV

dXdpbestdrandcdVwdV

iii

ii

idfiiki i

+=
=

−+=
    (4.15) 

where =c acceleration coefficients 

Step-22 If Dd < then increment d and go to Step-21 else go to Step-23. 

Step-23 If ],[)( maxmin XXdX i ∈ then go to Step-24 else go to Step-27. 

Step-24 Calculate the cost function for new position of particle. 

Step-25 If )()( ipbestiX JJ < for the i th particle then go to Step-26 else increment flag and go 

to Step-27. 

Step-26 Reinitialize )()( iXipbest = and also initialize 0)( =iflag . If gbestiX JJ <)( then 

)(iXgbest = . 

Step-27 If sPi < then increment i and go to Step-12 or else go to Step-28. 

Step-28 If itrk < , then increment k and go to Step-9. 

Step-29 The elements corresponding to gbest particle provide the estimated coefficients of 

the IIR system.  

 

4.6 Simulation study 

By conducting simulation experiments on identification of four bench mark IIR systems 

(2nd order to 5th order) the performance of proposed CLPSO based method is compared 

with those obtained from three other standard methods, recursive LMS (RLMS), GA and 

PSO. The new algorithm is used in adaptive IIR identification to improve the performance 

of the existing algorithms especially when the error surface is multimodal. The block 

diagram of Fig. 4.1 is simulated using output-error formulation. The plant (the unknown 

system) is a fixed IIR filter with transfer function )(zH , while the adaptive system is an 

adaptive IIR filter with transfer function )(ˆ zH whose coefficients are updated by different 

learning algorithms. The transfer function of the plant is represented by  
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In the present simulation both full-order and reduced-order modeling are considered. Local 

minima phenomena are observed in the reduced-order modeling, while the full-order 

modeling is used to demonstrate the fast convergent behavior and global search ability of 

the proposed algorithm. The CLPSO based algorithm discussed in the previous section is 

used to compute the best estimate of the pole-zero parameters. The input is a zero mean 

white random signal with uniform distribution. The additive noise )(nv  is a white random 

process uncorrelated with )(nx and with 30dB SNR.  The Initial common parameters used 

for CLPSO, PSO, GA and LMS are listed below : 

CLPSO : D = no. of weights to be optimized, sP = Population size =40 to 150, minX = 

lower bound of weights =  -1.3, maxX  = upper bound of weights = 1.3, maxV = maximum 

velocity = maxX , 0w = max inertia weight = 0.9 , 1w = minimum inertia weight = 0.4, 

=c acceleration factor = 1.042, X = positions of particles and V = velocities of the 

particles, m = refreshing gap = 5 and L  = 25. 

PSO : D = no. of weights to be optimized, sP = Population size=120 to 400 X = 

positions of particles and V = velocities of the particles, K =constriction factor = 0.729, 

== 21 cc acceleration coefficients = 1.49445 and L  = 500. 

GA : D = no. of weights to be optimized, sP = Population size = 80 to 120, =N no. of 

bits = 20 to 40, maxW = max. of weights , minW = min of weights, =cP probability of 

crossover =0.9, mP = probability of mutation = 0.01, L  = 1000 

LMS : D = no. of weights to be optimized, μ = convergence coefficients = 0.1, L  = 10, 

000. 

Example-1 The plant is a second order IIR filter [4.46] with M=1, L=2. The difference 

equations of plant : ∑ ∑
= =

−+−=
2

1

1

0

)()()(
i j

ji jnxbinyany  

)()()( nvnynd +=  

}25.0,25.1{}{},4.0,3.0{}{ −=−= ji ba  
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Full-order model : ∑ ∑
= =

−+−=
2

1

1

0
)(ˆ)(ˆ)(ˆ

i j
ji jnxbinyany  

Reduced – order model : ∑ ∑
= =

−+−=
1

1

0

0

)()(ˆ)(ˆ
i j

ji jnxbinyany  

The convergence characteristics of using GA, PSO and CLPSO based training are shown in 

Fig. 4.2(a) for full-order and in Fig. 4.2(b) for reduced order. Fig. 4.2(a) reveals that GA and 

PSO can not reach the minimum MSE even after 500 generations where as the new 

algorithm can converge to the optimal solution with a MSE level of 510−   in only 200 

generations. Similarly the convergence plot of Fig. 4.2(b) for reduced order model exhibits 

superior MSE performance of CLPSO compared to other two. The results clearly show 

that for reduced order the multimodal situation does not affect the convergence 

performance of CLPSO but does so in other two cases. 
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Fig. 4.2(a) Comparison of convergence characteristics of different methods for an exact 2nd order IIR 
model 
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Fig. 4.2(b) Comparison of convergence characteristics of different methods for a reduced order      
(1st order) IIR model 
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Example-2 The adaptive system is a third-order IIR filter [4.25] to model a plant of the 

same order )3,2( == LM  with }5.0,4.0,2.0{}{},2.0,25.0,6.0{}{ −−=−= ji ba .The convergence 

plots of full-order and reduced-order )2,1( == LM   are shown in Fig. 4.3(a) and (b) 

respectively. The plots indicate that the convergence performance of the new method is 

superior to the GA and PSO based methods under multimodal situation (Fig. 4.3(b)) and as 

well as when full-order models are used. The CLPSO method clearly exhibits best 

performance.  
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Fig. 4.3(a) Comparison of convergence characteristics of different methods for an exact 3rd order IIR 
model 
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 Fig. 4.3(b) Comparison of convergence characteristics of different methods for a reduced order 
 (2nd  order) IIR model 
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Example-3 In this experiment the plant is of fourth order IIR system [4.15]  

}729.0,81.0,9.0,1{}{},14.0,2101.0,2775.0,04.0{}{ −−=−−−= ji ba The adaptive IIR system is 

having 4,3 == LM  for full-order model and 3,2 == LM  for reduced order model. The 

convergence characteristics for the two models are shown in Fig. 4.4 (a) and (b). It is 

observed that standard GA and PSO exhibits faster convergence initially, but they fail to 

improve further because the chromosomes and the swarm quickly become stagnant and 

hence lead to suboptimal solution. However the new algorithm does not stagnate allowing 

it to reach the minimum noise floor level. The convergence plot of Fig. 4.4(b) for reduced 

order model also reveals that both the GA and PSO based algorithms get trapped to local 

solution while the new algorithm clearly exhibits superior performance.  
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Fig. 4.4(a) Comparison of convergence characteristics of different methods for an exact 4th order IIR 
model 

 

0 100 200 300 400 500 600
10-4

10-3

10-2

10-1

100

No. of generations

M
S

E

CLPSO
PSO
GA

 

Fig.4.4(b) Comparison of convergence characteristics of different methods for a reduced order (3rd 
order) IIR model 
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Example-4 In this example the plant is a fifth order low pass Butterworth IIR filter taken 

from [4.46]. The plant is represented by  

∑∑
==

−+−=
5

0

5

1
)()()(

j
j

i
i jnxbinyany  

)()()( nvnynd +=  

}1084.0,5419.0,0837.1,0837.1,5419.0,1084.0{}{
}0113.0,1112.0,3864.0,9738.0,9853.0{}{

=
−−−−−=

j

i

b
a  

The full-order IIR model is given by ∑∑
==

−+−=
5

0

5

1
)(ˆ)(ˆˆ)(ˆ

j
j

i
i jnxbinyany  

The corresponding reduced order model is also simulated. The convergence behaviors of 

the exact and reduced-order models are shown in Fig. 4.5(a) and (b) respectively. It is 

observed that both the full and reduced order GA and PSO based models fail to escape 

from local minima where as the proposed model is not affected and exhibits significant 

improvement in the convergence performance in both exact and reduced structures.  
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Fig. 4.5(a) Comparison of convergence characteristics of different methods for an exact 5th order IIR 
model 
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Fig. 4.5(b) Comparison of convergence characteristics of different methods for a reduced order  
(4th order) IIR model 

 
 

Table 4.1 summarizes the comparison performance of GA, PSO and CLPSO based 

methods in terms of minimum MSE after convergence, execution time in seconds, the 

product of population size and number of input samples used during training. All the three 

parameters indicate the performance measure of a learning algorithm. In all the examples,  

these three parameters are observed to be substantially low in case of the new algorithm. 

For example, GA and PSO based approach take 40 to 80 times and 20 to 150 times more 

computation of fitness function compared to that required by the new method.  The 

estimated feed forward and feed back coefficients of the IIR systems obtained from RLMS, 

GA, PSO and CLPSO based methods are also listed in Table 4.2 along with the 

corresponding plant parameters. In all the cases studied it is observed that the estimated 

coefficients obtained from the new method are in close agreement with the true 

coefficients of the plant compared to those obtained by other three methods.  
 
The CLPSO is an improved version of conventional PSO algorithm. The CLSPO is 

inherently a population based algorithm. As a result its initial rate of convergence is poor. 

In the IIR identification problem the prime objective is the accuracy of the final solution 

instead of faster convergence. Being fully aware of such a characteristic the CLPSO was 

selected for training of the IIR model to provide best identification of IIR plants under 

multimodal situation. The initial motivation to carry out the research has been successful as 

may be evident from the set of simulation results provided in various examples. 
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Table 4.1 
Comparison of performance between GA, PSO & CLPSO based training of weights 

 
MSE at -30dB noise Execution time in second No. of times )*( LPs

used 
GA PSO CL-PSO GA PSO CL-PSO GA PSO CL-PSO 

2nd order IIR system 
-21 -41 -50 18.03 2.47 0.27 53 40 1 

 
3rd order IIR system 

-30 -39 -50 40.28 17.42 0.68 80 155 1 
 

4th order IIR system 
-21 -41 -49 146.7 48.24 1.70 48 80 1 

 
5th order IIR system 

-31 -21 -48 62.64 7.06 1.03 40 20 1 
 

 
 
 
 

Table 4.2 
Comparison between true and estimated pole-zero parameters obtained from RLMS, GA, PSO and 

CLPSO 
 

Actual 
Parameters 

Estimated Parameters at -3odB NSR 

 GA PSO CLPSO RLMS 
2nd order IIR system 

1.25 
-0.25 
0.3 
-0.4 

0.9787 
0.0285 
0.1428 
-0.4562 

1.2513 
-0.2514 
0.2996 
-0.4013 

1.2514 
-0.2423 
0.2959 
-0.4042 

1.2510 
-0.2765 
0.3177 
-0.4030 

3rd order IIR system 
-0.2 
-0.4 
0.5 
0.6 

-0.25 
0.2 

-0.1406 
-0.5012 
0.3222 
0.2352 
-0.2110 
0.0109 

-0.1996 
-0.4110 
0.5016 
0.5569 
-0.2302 
0.1761 

-0.1951 
-0.4051 
0.5000 
0.5957 
-0.2362 
0.1966 

-0.2002 
-0.4005 
0.4903 
0.5897 
-0.2518 
0.1940 

4th order IIR system 
1 

-0.9 
0.81 

-0.729 
-0.04 

-0.2775 
0.2101 
-0.14 

0.9801 
-0.7998 
0.7939 
-0.5838 
-0.2025 
-0.4145 
0.0755 
-0.1685 

0.9948 
-0.8964 
0.8093 
-0.7290 
-0.0388 
-0.2779 
0.2136 
-0.1385 

1.0043 
-0.8887 
0.8032 
-0.7277 
-0.0492 
-0.2766 
0.2122 
-0.1354 

1.007 
-0.8794 
0.7557 
-0.7301 
-0.0582 
-0.2520 
0.2579 
-0.1156 
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4.7 Conclusion 

This chapter has suitably employed the recently developed CLPSO tool to identify the 

feed-forward and feed-back coefficients of IIR systems. The new identification algorithm is 

outlined in details and has been applied on few bench mark systems. Simulation study 

reveals that the proposed method outperforms the existing standard RLMS, GA, PSO 

based methods in terms of minimum MSE after convergence, execution time and product 

of population size and number of input samples used in training. Further the new method 

exhibits significant improvement in convergence behavior when reduced-order models are 

used compared to those obtained by GA and PSO methods. This clearly indicates that the 

new method can converge to the optimal solution even under multimodal environment in 

which local minima problems can be encountered. Therefore the proposed method 

provides fastest convergence, least training time and best estimates of feed-forward and 

feed-back coefficients compared to other three methods.   
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Dynamic System Identification 
using FLANN Structure and PSO 
and BFO Based Learning 
Algorithms 
 

 

5.1 Introduction 

ONLINEAR system identification of complex dynamic plants finds potential 

applications in many areas of engineering such as control, communication, power 

system and instrumentation. In recent years, modeling of real time processes has 

gained significant importance in these areas. Many interesting papers have been reported in 

the literature to identify both static and dynamic nonlinear systems. The Artificial Neural 

Network (ANN) has been applied for many identification and control tasks [5.1-5.3] but at 

the expense of large computational complexity. Narendra and Parathasarathy [5.4] have 

employed the multiplayer perceptron (MLP) networks for effective identification and 

Chapter 

5 

N 
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control of dynamic systems such as truck-backer-upper problem [5.5] and robot arm 

control [5.6]. Subsequently the Radial Basis Function (RBF) network has been introduced 

[5.7] to develop system identification model of nonlinear dynamic systems [5.8-5.9]. One 

practical difficulty in this model is the selection of an appropriate set of RBF centres for 

effective learning. Further the wavelets in place of RBF has been suggested in neural 

network [5.10-5.11] to develop efficient identification models. The Functional Link 

Artificial Neural Network (FLANN), a computationally efficient single layer ANN, has 

been reported in the literature as an useful alterative to MLP for many applications. In the 

literature the trigonometric [5.12] and Chebyshev [5.13-5.14] based FLANN architecture 

have been proposed for identification of nonlinear dynamic systems [5.13 -5.14]. 

The swarm intelligence is the property of a system whereby the collective behavior of 

unsophisticated agents that are interacting locally with their environment create coherent 

global functional patterns. This type of intelligence is described by five principles such as 

proximity, quality, diverse response, stability and adaptability. Swarm intelligence provides a 

useful paradigm for complementing powerful adaptive systems. Both particle swarm 

optimization (PSO) and bacterial foraging optimization (BFO) algorithms belong to the 

family of swarm intelligence and share few computational attributes. These are  

(i) Individual elements are updated in parallel 

(ii) Each new value depends on its previous value as well as contribution from its 

neighbors 

(iii)        All updates are performed according to the same rules. 

In recent years, evolutionary computational methods belonging to the swarm intelligence 

category have proven to be promising tools to solve many engineering and financial 

problems. These are found to be powerful methods in domains where analytic solutions 

have not been proved to be effective. The BFO [5.15] is one such evolutionary computing 

approach which is based on the foraging behaviour of E. coli bacteria in our intestine. In 

this case foraging is considered as an optimization process in which the bacterium tries to 

maximize the collected energy per unit foraging time. The BFO has been successfully 

applied to many real world problems like harmonic estimation [5.16], transmission loss 

reduction [5.17], active power filter for load compensation [5.18], power network [5.19], 

load forecasting [5.20], independent component analysis [5.21], identification of nonlinear 

dynamic systems [5.22-5.23], stock market prediction [5.24] and adaptive channel 

equalization [5.25]. 
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The basics of PSO algorithm is dealt in Section 2.5.2. The BFO and PSO are derivative free 

optimization tools in the sense that they do not need the computation of derivatives during 

training of the weights of the adaptive structure and therefore the solution is less likely to 

be trapped to local minima. On the other hand the least mean square (LMS) and the 

recursive least square (RLS) algorithms calculate the slope of the error surface at a current 

position in all directions, but moves in the direction of the most negative slope. Such 

optimization methods work satisfactorily when the error surface contains no local minima. 

But most of the real life problems are multimodal and also are distorted due to additive 

noise. In case of BFO there are number of parameters which are combinedly used for 

searching the total solution space. As a result the possibility of avoiding the local minima is 

higher. The distinct advantages of the BFO and PSO have motivated many researchers to 

use these tools for identification of complex nonlinear and dynamic systems. The 

connecting weights of the FLANN model are updated using BFO and PSO techniques 

instead of using derivative based algorithm. To facilitate the development of the new 

models efficient BFO and PSO based identification algorithms are proposed in this 

chapter.  

 

 

5.2 Dynamic system identification of nonlinear system 
 
The basic principle of system identification is discussed in and depicted in Fig. 3.1. This 

section also deals with four different identification models and the associated difference 

equations given in (3.3) - (3.6). In this chapter single-input single-output (SISO) and multi-

input multi-output (MIMO) plants of four different nonlinear models are considered. The 

nonlinear functions )(⋅f and (.)g associated with the plant are implemented using 

FLANN-BP rule, FLANN-BFO and FLANN-PSO structures. It is assumed that the plant 

under consideration is bounded-input-bounded-output (BIBO) stable. In order to achieve 

the stability and to ensure that the parameters of the ANN model to converge a series-

parallel scheme is employed. In this scheme the output of the plant instead of that of the 

ANN models is fed back to the models during the training operation [5.4].   
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5.3 A generalized FLANN Structure based identification 
model 

 
A generalized adaptive identification model of a complex dynamic nonlinear plant is shown 

in Fig. 5.1. The output of the model )1(ˆ +ky at thk )1( +  instant is given by  

)]([)]([)1(ˆ 21 kyNkxNky +=+         (5.1) 

where 1N  and 2N  represent the low complexity FLANN structures of feed forward and 

feed back paths respectively. The weights of these structures are updated using PSO and 

BFO algorithms. Using functional expansion block-1, the input )(kx is nonlinearly 

expanded as  
Tkxnkxnkxkxkxku )}](cos{)},(sin{...............)}........(cos{)},(sin{),(,1[)( ππππ=   (5.2) 

          T
n kukuku )](................),........(),([ 1210 +=                                                            (5.3) 

There are n number of sine and equal number of cosine expansions of the input sample. 

The first term )(0 ku is an unity input. Hence altogether there are )12( +n number of terms 

in the input vector. Let the weight vector corresponding to the kth input vector defined in 

(5.3) is given by  
T

n kwkwkwkwkw )](........,..........),........(),(),([)( 12210 +=     (5.4) 

The estimated output of the feed forward path is thus given by  

)()()1(ˆ 1 kwkuky T=+         (5.5) 

In the similar way, the estimated output of the feedback path is computed as  

)()()1(ˆ2 khkvky T=+                                                                                                (5.6) 

where T
m kvkvkvkv )](.....,..........),........(),([)( 1210 +=      (5.7) 

Tkynkynkykyky )}](cos{)},(sin{.....................)},.......(cos{)},(sin{),(,1[ ππππ=  (5.8) 

Here 1)(0 =kv .  

The net estimated output , )1(ˆ +ky of the model is given by 

)1(ˆ)1(ˆ)1(ˆ 21 +++=+ kykyky        (5.9) 
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Fig. 5.1 A generalized adaptive model of a complex dynamic nonlinear plant 

 
5.4 BFO and PSO based nonlinear system identification 
 
BFO based identification algorithm 

The steps involved in BFO based identification algorithm is presented here.  

Step -1 Initialization of parametrs used 

(i) bS  = No. of bacteria to be used for searching the total region 

(ii) isN = Number of input sample 

(iii) p = Number of parameters of the FLANN model to be optimized 

Σ

Fu
nc

tio
na

l E
xp

an
sio

n 
Bl

oc
k-

2 

1−z

Nonlinear Dynamic 
Plant 

Fu
nc

tio
na

l E
xp

an
sio

n 
Bl

oc
k-

1 
Σ Σ

Σ

)(kx

1 

1

)(kx

)}(sin{ kxπ

)}(cos{ kxπ

)}(sin{ kxnπ
)}(cos{ kxnπ

)}(cos{ kymπ

)}(sin{ kymπ

)}(cos{ kyπ

)}(sin{ kyπ

)(ky
)(0 kh

)(0 kw
)(1 kw
)(2 kw
)(3 kw

)(2 kw n

)(12 kw n+

)(12 kh m+

)(2 kh m

)(3 kh

)(2 kh

)(1 kh

)(ke

)1( +ky

)1(ˆ1 +ky

)1(ˆ2 +ky

)1(ˆ +ky

)(ky

BFO/PSO 
based training 

+
+

+

- 



D Y N A M I C  S Y S T E M  I D E N T I F I C A T I O N  U S I N G  F L A N N  S T R U C T U R E  
A N D  P S O  A N D  B F O  B A S E D  L E A R N I N G  A L G O R I T H M S  

 

 98 

(iv) sN = Swimming length after which tumbling of bacteria is undertaken in a chemotactic 

loop. 

(v) cN  = Number of iterations to be undertaken in a chemotactic loop. Always cN  > sN . 

(vi) reN = Maximum number of reproduction to be undertaken 

(vii) edN = Maximum number of elimination and dispersal events to be imposed over the 

bacteria. 

(viii) edP  = Probability with which the elimination and dispersal operation continues. 

(ix) The location of each bacterium )1,1,1( bSp −−θ is specified by random numbers 

between [0,1] 

(x) The runlength unit )(iC of  i th bacterium is assumed to be constant for all bacteria. 

Step-2 Generation of desired signal for training 

(i) An uniformly distributed random signal over the interval [-1, 1] is generated and 

simultaneously fed to nonlinear dynamic plant and to the adaptive model which to be 

trained by BFO algoithm. A series-parallel identification scheme is used for achieving 

stability during training [5.4].   

 (ii) The output of the nonlinear plant acts as the desired signal for training. 

Step -3 Iterative Identification Algorithm  

In this step the bacterial population, chemotaxis, reproduction, elimination and dispersal 

operations are performed to train the weights of the model. 

 Initially 0=== lnj   

(i) Elimination dispersal loop 1+= ll  

(ii) Reproduction loop 1+= nn  

(iii) Chemotaxis loop 1+= jj  

(a) For ,...,.........2,1 bSi = the cost function, (in this case mean squared error) ),,,( lnjiJ for 

each i th bacterium is calculated as follows : 

(1) isN signal samples are passed through the model.  

(2)The output is then compared with the corresponding desired signal to calculate the 

error. 

(3)The sum of squared error averaged over isN is finally stored in ),,,( lnjiJ . The cost 

function of the model is calculated for isN  input samples as 
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)(1
1

2 ke
N

J
isN

kis
∑
=

=                                                             (5.10)     

where  

)(ˆ)()( kykyke −=  
(4)End of For loop. 

(b)For bSi ....,.........2,1= , the tumbling/swimming decision is taken. 

Tumble: A random vector ),(iΔ with its element ),(imΔ ,.,.........2,1 pm = is computed where 

each element is a random number in the range [-1, 1]. 

Move: The move operation is implemented as  

)()(
)()(),,(),,1(

ii
iiClnjlnj

T

ii

ΔΔ

Δ
×+=+ θθ      (5.11) 

The second term results in an adaptable step size in the direction of tumble for bacterium 

i . 

The new cost function ),,1,( lnjiJ + is computed corresponding to the new location of the 

bacteria. 

Swim – (i) Let c =0; (counter for swim length) 

(ii) While sNc < (have not climbed down too long) 

Let 1+= cc  

If )1()( −< jJjJ then by using (5.10) the new cost function ),,1,( lnjiJ +  is computed 

else 

let sNc = . This is the end of while statement. 

(c)The operation of next bacterium is processed if bSi ≠  

(d)If )min(J  {minimum value of J achieved by all the bacteria} is less than the tolerance 

limit specified then all the loops are broken. 

Step 4. If cNj < , the chemotaxis loop beginning from (iii) is continued. 

Step 5. Reproduction  

(a) For given n and ,l and for each bSi .,.........2,1=  let J  be the health of i th bacterium. 

The bacteria are sorted in ascending order of cost functions J  (higher cost means lower 

health). 
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(b) One half ( )2/br SS = bacteria with higher J values die and the remaining rS  bacteria 

providing minimum MSE values split and are placed at the same location as their parents. 

Step 6. If reNk < the reproduction loop from (ii) is continued. 

Step 7. Elimination –Dispersal  

Bacteria are eliminated and dispersed with probability edP . This is achieved by eliminating a 

bacterium and dispersing it to a random location. Same numbers of new bacteria with 

random locations are added. This process keeps the number of bacteria in the population 

constant. 

In the present study swarming operation is not used to keep the algorithm simple and 

simultaneously  sacrificing little accuracy in the identification task.  

 

PSO based nonlinear system identification 

The updating of the weights of the PSO based model is carried out using the training rule 

as outlined in the following steps: 

Step 1. K (K≥500) samples of uniformly distributed random signal in the interval [-1, 1] are 

generated and simultaneously fed to actual nonlinear system and the adaptive model. A 

series-parallel identification scheme is used.   

Step 2. The output of the plant provides the desired signal. Hence K numbers of desired 

samples and K numbers of estimated outputs using (5.9) are produced by feeding all the K 

input samples. 

Step 3 . Each of the desired output is compared with the corresponding model output and 

K errors are produced.  

Step 4 . The mean square error (MSE) for a given plant (corresponding to ith particle) is 

determined by using the relation. 

K
iMSE

K

k
ke∑

== 1

2

)(  This is repeated for I times. 

Step 5. Since the objective is to minimize MSE (i), i = 1 to I the PSO based optimization 

method is used. 

Step 6. The velocity and position of each particle is updated using (4.1) and (4.2) 

respectively. 
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Step 7. In each iteration the minimum MSE, (MMSE) which shows the learning behavior 

of adaptive model from iteration to iteration is stored. 

Step 8. When the MMSE has reached the pre-specified level, the optimization process is 

stopped. 

Step 9. At this step the particles attain the same position, which represents the desired 

solution i. e. the estimated coefficients of the given dynamic plant.  

 

Primarily the identification problem is a optimization problem in the sense that the average 

mean squared error is to be iteratively minimized. The popular population based 

optimization algorithms are BFO and PSO. The algorithms have been selected to be used 

to change the parameters of the identification model in such a way that the squared error 

fitness function is minimized. This section has dealt the BFO and PSO based nonlinear 

system identification problem to be used in the simulation study. 

 
5.5 Simulation study 
 
In this section simulation study is carried out to assess the performance of the proposed 

models when nonlinear identification of static and dynamic plants described by (3.3)-(3.6). 

In these examples, the series-parallel model is used to identify these plants and BFO and 

PSO algorithms are used to train the connecting weights of the FLANN structure of the 

models. The performance of the proposed (FLANN-BFO and FLANN-PSO) approaches 

is obtained from simulation and compared with that obtained by FLANN-BP method 

[5.12]. For training the weights of FLANN-BP model, 50,000 iterations are carried out by 

using an uniformly distributed random signal over the interval [-1,1] as input. During the 

test phase, the effectiveness of the proposed models are studied by using the parallel 

scheme where the input to the identified model used is given by  

⎪
⎪
⎩

⎪⎪
⎨

⎧

>+

≤
=

250
25

2sin2.0
250
2sin8.0

250
250
2sin

)(
kforkk

kfork

kx
ππ

π
      (5.12) 

A quantitative measure for performance evaluation used is the normalized mean square 

error (NMSE) defined in [5.26] as 
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∑
=

−=
DT

kD

kyky
T

NMSE
1

2
2 )](ˆ)([1

σ
       (5.13) 

where )(ky  and )(ˆ ky  represent the plant and model outputs at k th discrete time, 

respectively and 2σ denotes variance of the plant output sequence over the test duration 

DT .  

 

Static Systems  

Two examples of static systems [5.4, 5.12] used in the simulation study are 

Example 1 : xxxxf 4.03.0)( 23
1 −+=  

Example 2 : )5sin(1.0)3sin(3.0)sin(6.0)(2 xxxxf πππ ++=  

In case of FLANN-BFO and FLANN-PSO nine input nodes for first example and eleven 

input nodes for second example are used to obtain the best possible identification results. 

The number of connecting weights including the threshold is ten and twelve respectively. 

These weights are updated using the bacterial foraging or particle swarm optimization 

algorithm. But in case of FLANN-BP, fifteen input nodes including a bias input are used to 

achieve similar performance. In both cases the input pattern is expanded using 

trigonometric expansion and the nonlinearity used is tanh(.) function. The convergence 

coefficient is set to 0.1 in case of FLANN-BP where as the parameters used for FLANN-

BFO are :  bS  = 16, isN  = 100, p =10, sN =3, cN =5, reN =100-130, edN =5, edP = 0.25, 

)(iC = 0.0075. Similarly the parameters used in case of PSO based simulation are no. of 

particles=30, no. of input samples =200, 1,042.1 max21 === vcc . The results of 

identification of Examples 1 and 2 are  shown in Figs. 5.2(a) – (d). From these results it is 

clear that the BFO and PSO based FLANN models provide excellent agreement between 

plant and model responses. Using the same number of expansions in both the examples the 

estimation error provided by the FLANN-BFO and FLANN-PSO are found (Table 5.1) to 

be lower than that of FLANN-BP approach.  
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(a) FLANN-BFO (nine expansions) 
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(b) FLANN-PSO (nine expansions) 
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(c) FLANN-BFO (eleven expansions) 
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(d) FLANN-PSO (eleven expansions) 

 
Fig. 5.2 Response matching of static systems ((a), (b) for Example 1 and (c) and (d) for  

Example 2) 
 
 

Dynamic (SISO) Systems 

 

Example 3: The difference equation of the plant [5.4, 5.12] to be identified is given as 

)]([)1(6.0)(3.0)1( kxgkykyky +−+=+                      (5.14)      

The linear parameters are 0.3 and 0.6 and the unknown nonlinear functions (.)ig are given 

by 
0.32.02.18.04.0

2.10.32.10.4)( 2345

23

1 −+−+
+−−

=
xxxx

xxxxg                        (5.15) 

125.1)4cos(1.0
0.2

0.2)(sin5.0)( 3
3

2 +−
+

−= x
x

xxg ππ      (5.16) 

To identify the plant,  a series-parallel model is used whose difference equation is given as  

)]([)1(6.0)(3.0)1(ˆ kxkykyky Ν+−+=+                        (5.17) 

where )]k(x[Ν  represents either the FLANN-BP, FLANN-BFO or FLANN-PSO model. 

The FLANN input is expanded to nine terms by using trigonometric expansion and BFO 

or PSO algorithm is used to update its connecting weights. The parameters used for BFO 

based FLANN model are same as used in Example 1 except that reN =60. The parameters 

used for PSO are : no. of particles=30, no. of input samples=200, 

1042.1 max21 === vandcc . In case of FLANN-BP the input is expanded to fourteen 

trigonometric terms and delta rule is used to train the weights. Both convergence 
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parameter,μ and momentum parameter, η are chosen to be 0.1. The results of 

identification of  (5.14) with nonlinear functions defined in (5.15) and (5.16) are shown in 

Figs. 5.3 (a) and (b) and Figs. 5.4(a) and (b) respectively.  
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(a) Using FLANN-BFO (nine expansions) 
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(b) Using FLANN-PSO (nine expansions) 

 
 

Fig. 5.3 Comparison of response of the dynamic plant  of Example 3 using nonlinearity  
defined in (5.15) 
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(a) Using FLANN-BFO (nine expansions) 
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(b) Using FLANN-PSO (nine expansions) 

Fig. 5.4 Comparison of response of the dynamic plant of Example 3 using nonlinearity  
defined in  (5.16) 

 
 

From these results it is evident that the FLANN-BFO and FLANN-PSO methods provide 

accurate identification performance. Further, from Table 5.1 it is observed that the BFO 

and PSO based approches yield lower NMSE compared to its FLANN-BP counterpart.  

 

Example 4 : In this example the plant [5.4, 5.12] to be identified is of Model-2 type and is 

represented by the difference equation 

)()]1(),([)1( kxkykyfky +−=+                                        (5.18)                      
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The unknown nonlinear function f is given by  

2
2

2
1

1121
21 0.1

)0.1)(5.2(
),(

yy
yyyy

yyf
++

−+
=                             (5.19) 

In this case the series-parallel scheme of the model used  is given by 

)()]1(),([()1(ˆ kxkykyky +−Ν=+                              (5.20) 

The symbol N represents the model defined in example 4. In FLANN-BFO and FLANN-

PSO, each of the two inputs are expanded to six terms each and the BFO or PSO is used 

to train the weights. The parameters used for BFO based FLANN model are bS  = 16, isN  

= 100, p =13, sN =3, cN =5, reN =240, edN =5, edP = 0.25 and )(iC = 0.0075. For PSO 

the parameters used are no. of particles=30, no. of input samples =500, 

1042.1 max21 === vandcc .In case of FLANN-BP the two inputs are expanded into 24 

terms and the convergence and the momentum parameters are set at 0.05 and 0.1 

respectively. The response obtained from the plant and the two models are shown in Figs. 

5.5(a) and (b). In this case also it is observed that the response matching of FLANN-BFO 

and FLANN-PSO is excellent. Results presented in Table 5.1 also indicate improved 

performance of the two new models compared to the results of FLANN-BP model. 
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(a) Using FLANN-BFO (twelve expansions) 
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(c) Using FLANN-PSO (twelve expansions) 

Fig. 5.5 Comparison of response of the dynamic plant of Example 4 
 
 
 

Example 5: In this case the plant is of Model-3 type and is described by the difference 

equation  

)]([)]([)1( kxgkyfky +=+                                           (5.21) 

where the unknown nonlinear functions (.)f and (.)g are represented as  

20.1
)3.0()(

y
yyyf
+
+

=                                                               (5.22) 

)5.0)(8.0()( −+= xxxxg                                               (5.23) 

The model is represented by a series-parallel scheme  

)]([)]([)1(ˆ 21 kxkyky Ν+Ν=+                                       (5.24) 

where 1Ν  and 2Ν represent the FLANN-BP, FLANN-BFO or FLANN-PSO model.  In 

FLANN-BP model 1Ν  and 2Ν structures contain 14 and 24 trigonometric expansions 

respectively whereas in case of FLANN-BFO and FLANN-PSO seven and five number of 

expansions are used. The convergence and momentum parameters are chosen to be 0.1 in 

case of FLANN-BP model. The parameters used for BFO based FLANN model are bS  = 

16, isN  = 100, p =14, sN =3, cN =5, reN =120, edN =5, edP = 0.25 and )(iC = 0.0075. For 

PSO, the parameters used are no. of particles=30, no. of input samples =500, 

1,042.1 max21 === vcc . The responses obtained from the plant and various models are 
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compared in Figs. 5.6(a) and (b) and the computed NMSE is presented in Table 5.1. These 

results also indicate superior performance of the proposed technique over its FLANN-BP 

counterpart. 
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(a) Using FLANN-BFO (twelve expansions) 
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(b) Using FLANN-PSO (twelve expansions) 

Fig. 5.6 Comparison of response of the dynamic plant of Example 5 

 

Example 6 : MIMO System 

The two input and two output nonlinear disceret time plant [5.14] is described by 
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where )(1 kn  and )(2 kn are white Guassian noise with zero mean and covariance of 0.0009.   

The estimated outputs are given by 

)](),(),(),([)1(ˆ
)](),(),(),([)1(ˆ

212122

212111

kxkxkykyfky
kxkxkykyfky

=+
=+

      (5.26) 

The inputs )(1 kx and )(2 kx  are  

⎟
⎠
⎞

⎜
⎝
⎛=

100
2cos)(1

kkx π  

⎟
⎠
⎞

⎜
⎝
⎛=

100
2sin)(2

kkx π          (5.27) 

The block diagram for the identification of the MIMO plant (5.25) is given in Fig. 5.7.  
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Fig. 5.7 Block diagram of nonlinear MIMO plant identification 
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In case of FLANN-BP model, each of the inputs )()(),(),( 2121 kxandkxkyky are 

expanded into three terms each using Chebyshev polynomials [5.13]. The weights are 

updated using delta rule. A parallel scheme is used for the identification purpose. The actual 

and model responses of the MIMO system are displayed in Figs.5.8 (a) and (b) for 

FLANN-BFO and Figs. 5.8 (c) and (d) for FLANN-PSO. The proposed methods show 

improved agreement between the estimated and true responses. However the FLANN-BP 

method shows poor response matching capability as evident fron Figs. 5.8 (e) and (f).   
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(a) First output using FLANN-BFO 
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(b) Second output using FLANN-BFO 
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(c) First output using FLANN-PSO 
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(d) Second output using FLANN-PSO 
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(e)First output using FLANN-BP 
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(f) Second output using FLANN-BP 

Fig. 5.8 Response matching of MIMO system of Example 6 



D Y N A M I C  S Y S T E M  I D E N T I F I C A T I O N  U S I N G  F L A N N  S T R U C T U R E  
A N D  P S O  A N D  B F O  B A S E D  L E A R N I N G  A L G O R I T H M S  

 

 112 

Table 5.1 

Comparison of NMSE(dB) computed for different examples of two different models 

Example No. For higher input expansion For same number of input expansions 

FLANN-BP  

NMSE(dB) No. of 
exapnsions 

No. of 
expansions 

FLANN-
BP 

 

FLANN-

BFO  

 

FLANN

-PSO 

Ex-1      -23.21 14 09 -20.66 -27.30 -29.77 

Ex-2 -34.19 14 11 -30.71 -38.98 -42.65 

Ex-3with (5.15) -25.48 14 09 -18.51 -27.09 -20.90 

Ex-3with (5.16) -32. 82 14    09 -28.16 -33.77 -31.02 

Ex-4 -21.01 24   12 -20.57 -22.75 -22.88 

Ex-5     -19.24     38   12     -18.29     -21.09     -22.58 

 
 
 

Table 5.2 
Comparison of Computational Complexities of various system identification models 

 
Types of models No. of  

tanh ( ) 
No. of 

Cos/Sin 
No. of 
weights 

No. of 
Adds. 

No. of  
Muls. 

Example-1 
FLANN-BP 1 14 15 14 15 

FLANN-BFO/ 
FLANN-PSO 

0 09 10 9 10 

Example-2 
FLANN- BP 1 14 15 14 15 

FLANN-BFO/ 
FLANN-PSO 

0 11 12 11 12 

Example-3 
FLANN- BP 1 14 15 14 15 

FLANN-BFO/ 
FLANN-PSO 

0 09 10 9 10 

Example-4 
FLANN- BP 1 24 25 24 25 

FLANN-BFO/ 
FLANN-PSO 

0 12 13 12 13 

Example-5 
FLANN-BP 2 38 40 39 40 

FLANN-BFO/ 
FLANN-PSO 

0 12 14 13 14 

 

 

Extensive simulation studies exhibit that the FLANN structure with BFO and PSO based 

training models provide better output response as well as require substantially lesser 

number (about 200 to 600) of iterations to converge compared to 50,000 iterations required 

by FLANN-BP model. In BFO based training, only 100 input samples and 16 number of 

bacteria population are required for convergence whereas in case of PSO 200-500 input 
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samples and 30 particles are required. The computational requirements involved per 

iteration of the algorithm both in the proposed and FLANN-BP methods are evaluated and 

listed in Table 5.2. This comparison also indicates that the FLANN-BFO and FLANN-

PSO methods involve lesser operations compared to FLANN-BP in all the examples 

simulated. As shown in Table 5.1, the NMSE obtained in each example by the proposed 

FLANN-BFO and FLANN-PSO models is also less in comparison to the FLANN-BP 

approach.  

 
5.6 Conclusion  
 
This Chapter introduces the problem and importance of adaptive nonlinear system 

identification. Then the shortcomings of the conventional identification methods are 

highlighted. Two new approaches based on swarm intelligence are proposed to identify 

complex nonlinear dynamic plants. The corresponding BFO and PSO based identification 

algorithms are presented in this chapter. The performance of the proposed methods are 

assessed by simulating various standard nonlinear dynamic and MIMO systems. These 

results have also been compared with those obtained by FLANN-BP based approach. The 

comparison reveals that the new methods of identification are fast, more accurate and 

involve less computation compared to its FLANN-BP counterpart. Thus the proposed new 

approaches are promising methods of achieving efficient nonlinear dynamic system 

identification.  
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Robust Identification and Prediction 
using Particle Swarm Optimization 
Technique 
 

6.1 Introduction 
 

HE objective of identification is to determine a suitable mathematical model of a given 

system/process, useful for predicting the behavior of the system under different 

operating conditions. Its another objective is to design a controller which allows the 

system to perform in a desired manner. Most of the practical plants and systems are nonlinear 

and dynamic in nature and hence identification of such complex plants is a challenging task. 

Accurate and fast identification of real time nonlinear complex processes is still a difficult 

problem. Further, in many practical situations, building of a proper model of a plant becomes 

difficult when outliers are present or few data are missing from the output samples of the plant 

or the training signal. Under such adverse conditions the training of models becomes ineffective 

when conventional learning algorithms such as the least mean square (LMS) or recursive least 

square (RLS) type algorithms are used. But all these derivative based algorithms have been 
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derived by minimizing the square of the error as the cost function. In recent past many 

bioinspired and evolutionary computing tools such as genetic algorithm (GA), particle swarm 

optimization (PSO), bacterial foraging optimization (BFO) and ant colony optimization (ACO) 

have been reported and have been applied to optimization and identification tasks. In case of the 

derivative free algorithms conventionally the mean square error (MSE) is used as the fitness or 

cost function. Use of MSE as cost function leads to improper training of adaptive model  when 

outliers are present in the desired signal. Therefore there is a need for identification of complex 

plants which are nonlinear and dynamic in nature. It is a fact that the traditional regressors 

employ least square fit which minimizes the Euclidean norm, while the robust estimator is based 

on a fit which minimizes another rank based on a norm called Wilcoxon norm [6.1]. It is known 

in statistics that linear regressors developed using Wilcoxon norm are robust against outliers. 

Using such norm new robust machines have recently been proposed for approximation of 

nonlinear functions [6.2]. In the present investigation a new method of robust identification of 

nonlinear dynamic systems or plants is developed by minimizing robust cost function (RCF) 

[6.1], [6.44], [6.47] of errors  of a functional link artificial neural network (FLANN) model using 

a derivative free PSO technique. The identification performance of the new method is evaluated 

through simulation study and is compared with the results obtained from corresponding 

Euclidean norm based PSO technique. Hence the main contribution of the paper is the 

formulation of complex identification task as a robust optimization problem of RCF of the 

FLANN model. The second contribution is the effective minimization of this norm employing a 

population based derivative free PSO technique which essentially adjusts the connecting weight 

of feed forward and feed back paths of the model. The third contribution is the selection of 

appropriate FLANN structure as the backbone of the model which is a single layer ANN 

structure and offers low complexity. The robust identification performance in presence of 

outliers in the training signal is then shown through simulation of some bench mark nonlinear 

dynamic identification problems. Many research papers have been reported in the literature to 

identify both static and dynamic nonlinear systems. The Artificial Neural Network (ANN) has 

been employed for many identification and control purpose[6.3-6.5] but at the expense of large 

computational complexity. Narendra and Parathasarathy [6.6] have used the MLP architecture 

with back propagation learning algorithm for effective identification and control of dynamic 

systems [6.7] and robot arm control [6.8]. Similarly the Radial Basis Function (RBF) network has 

been introduced to develop system identification model of nonlinear dynamic systems [6.9-6.10]. 

In recent past, the wavelets in place of RBF has been suggested in neural network [6.11-6.12] to 
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develop efficient identification model. Further, the Functional Link Artificial Neural Network 

(FLANN), a computationally efficient single layer ANN, has been reported in the literature as an 

useful alternative to MLP for many applications. This single layer ANN has also been 

successfully employed for identification of nonlinear systems [6.13]. Recently Chebyshev-

FLANN has been proposed for identification of nonlinear dynamic systems [6.14].   

The basics of PSO is dealt in Section 2.5.2. In addition to the applications of PSO described in 

Section 4.2 it is also applied for reactive power and voltage control [6.15, 6.16], economic 

dispatch [6.17] -[6.20], power system reliability and security [6.21], generation expansion problem 

[6.22, 6.23], state estimation [6.24, 6.25], controller  tuning [6.26, 6.27], system identification and 

control [6.28, 6.29], capacitor placement [6.30, 6.31], short term load forecasting [6.32], generator 

contribution to transmission systems [6.33], industrial applications [6.34], task assignment 

problem [6.35], to solution of Sudoku puzzles [6.36], electromagnetic design [6.37], unit 

commitment problem [6.38] and optimization of multimodal functions [6.39].  

In the past many robust learning algorithms have been proposed for training different adaptive 

networks. A robust BP learning algorithm that is resistant to the noise effects has been derived 

in [6.40]. However the convergence of this algorithm is very slow. Another robust learning 

algorithm has been reported [6.41] for recurrent neural network. This algorithm is based on 

filtering outliers from data followed by estimating parameters from the filtered data. The new 

method makes better prediction of electrical demand compared to conventional methods.  In a 

letter [6.42] a robust learning method has been proposed for RBF network and has been applied 

for function approximation. Kadir Liano has reported [6.43] a mean log squared error (MLSE) 

cost function (CF) and has shown that the new cost function yields algorithm which is robust 

compared to conventional squared error based cost function. In another publication the authors 

have used the fuzzy-neural network and β -spline membership function for function 

approximation with outliers in training data [6.44] and have shown that their algorithm is more 

flexible and efficient than the one reported in [6.38]. In 1998 a robust interval regression analysis 

has been suggested which provides robust performance against outliers as well as improvement 

in rate of convergence [6.45]. A robust objective function is suggested in [6.46] for RBF 

networks to reduce the influence of outliers. The authors have shown that the proposed 

objective function yields better function approximation compared to its least square (LS) 

counterpart. In [6.47], the authors have proposed robust learning algorithms of fuzzy neural 
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network to reduce the outlier effects during training. They have tested the robustness of their 

algorithm through simulation of various function approximation problems. Chuang et al have 

recently proposed [6.48] a robust TSK fuzzy modeling approach with improved performance 

for function approximation in presence of outliers. A novel regression approach has recently 

been reported [6.49] to enhance the robust capability of the support vector regressor. In their 

approach they have used a cost function which works satisfactorily when maximum 10% 

outliers are present in the training set. In 2004, a robust analysis of linear models is presented 

using Wilcoxon norm [6.1] and it has been shown that the proposed norm is more robust to 

outliers compared to its least square counterpart.  Recently Hsieh et al have proposed robust 

learning rules for neural network, fuzzy neural network and kernel based regressor using a 

Wilcoxon norm [6.2] which is different from other reported norms and have shown that the 

new norm-based algorithm exhibit robust better performance when the percentage of outliers is 

as high as 40%.  

6.2 Formulation of PSO based nonlinear system 
identification model  

 

The identification scheme of a dynamic nonlinear system is shown in Fig. 6.1 in which  

)(),(ˆ),( nynynx and )(ne denote the input, output of the model, the output of the system 

and the error between the two at n th time instant respectively. The input )(nx is an 

uniformly generated white signal. Therefore, 

)(ˆ)()( nynyne −=                                         (6.1)                        

In the present study, identification of single-input single-output dynamic (SISO) plants of 

four different nonlinear models [6.6] described by the difference equations given in (3.3)-

(3.6) are considered. 

 

 

 
 
 
 
 
 
 

Fig. 6.1 Identification scheme of a dynamic system 
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The nonlinear functions associated with these plants are implemented using single layer 

nonlinear FLANN structure and its weights are trained by minimizing three different CFs 

using PSO algorithm. It is assumed that the plant under consideration is bounded-input-

bounded-output (BIBO) stable. In order to achieve the stability and to ensure that the 

parameters of the FLANN model converge, a series-parallel scheme is employed. In this 

scheme the output of the plant instead of that of the ANN models is fed back to the 

models during the training phase [6.6].  Fig. 6.2 depicts a detailed diagram for identification 

of a nonlinear dynamic plant using a PSO based robust norm minimization technique. The 

architecture of the proposed adaptive model is taken to be two functional link artificial 

neural networks (FLANNs) [6.50] as shown in the same figure. The output for n th input 

sample at k th generation, )(kyn is used as input to the feedback FLANN structure. In this 

method N input samples )1(),( Nnnx ≤≤ uniformly distributed between [-1, 1] are used 

to develop the model. The same set of input is used for all particles. The output )(kyn may 

be computed as 

)()()( ' kkyky nn η+=          (6.2) 

where )(kη represents outliers at randomly selected locations and zero magnitude at 

remaining samples at k th generation. For developing the proposed FLANN-PSO based 

adaptive identification model the combined feed forward and feed back weights are 

considered as one particle. In the beginning, P such particles called a swarm is chosen to 

represent a population of random solutions. Each weight-particle of the model which is 

updated using PSO based technique has a random velocity and flies within the solution 

space. Each particle has also memory to keep track of its previous best position and the 

corresponding fitness value. Similarly each swarm remembers its best solution achieved so 

far. The velocity and position of each weight-particle are updated using its personal best 

position and global best position of the swarm. 

The output of the model for p th particle, n th input sample and at k th generation is given 

by  

)()(ˆ)(ˆ , kWkZky p

T

npn =         (6.3) 

where  
T

nLnLnLnnn zzzzzkZ ].......................[)(ˆ
,,1,,2,1 11 +=  
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T
pLpLpLppp kwkwkwkwkwkW )](....).........()(..).........()([)( ,,1,,2,1 11 +=       (6.4) 

)1( 11,1
Llz nl ≤≤ and )1( 12,2

LLlz nl −≤≤  represent the trigonometrically expanded values 

of the input and output vectors respectively. )(kW p denotes the weight vector of forward 

and backward structure of the FLANN model . When the n th input sample )(nx  is applied 

the input and output of the shift register contents of Fig.6.2 are given by 

)]1(......,),........1(),([ 1 +−− Tnxnxnx and )](....),........2(),1([ 2Tkykyky nnn −−−   respectively. The 

symbols 1T and 2T  represent number of input and output nodes. Each feed forward input 

sample )(nx is nonlinearly expanded by using trigonometric expansion scheme such as  

)}](.2).12cos{()},(.2).12sin{()}...(.2.3cos{)},(.2.3sin{)},(.2cos{)},(.2sin{),([ nxsnxsnxnxnxnxnx ππππππ −−
 

The symbol s  represents the number of sine or cosine expansions of each input sample. 

The main motivation of employing nonlinear expansions of input samples is to create a 

nonlinear environment using an adaptive linear combiner which is expected to improve 

identification of nonlinear dynamic systems. This single layer adaptive architecture 

effectively substitutes the needs of multilayer artificial neural network. In the same way 

each feed back sample )1( −kyn is expanded to same number of trigonometric terms. In 

the present investigation trigonometric expansion is chosen as it is observed to perform 

better than the power series based expansions [6.50]. 1L   and 2L represent the number of 

expanded terms for feed forward and feed back inputs respectively where )12(11 +×= sTL  

and )12(22 +×= sTL . The total number of expanded terms thus becomes 21 LLL += . 

The error produced at n th input sample, k th generation and for p th particle is given by 

)(ˆ)()( ,, kykyke pnnpn −=         (6.5) 

where )(kyn  represents the output of the nonlinear dynamic plant corresponding to n th 

input sample and at k th generation.  

This plant output serves as a training signal for all particles of the proposed model.  
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In the first part of the investigation, the mean square error defined in (6.6) is computed for 

each particle and the PSO tool is used to minimize this CF by iteratively changing the 

weight-particles of the adaptive identification model.    

NkekE
N

n
pnp /)()(

1

2
,∑

=

=           (6.6) 
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  Fig. 6.2 Identification of nonlinear dynamic plants using FLANN architecture and PSO 

based robust CF minimization 
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6.3 Weight update of FLANN model by squared 
error minimization using PSO 

The initial (k=0) position vector of each particle is represented by a single weight vector 

)0(pW defined in (6.4) and is formed by combining the feed-forward and feedback weight 

vectors of the FLANN model. This initial set of vectors are obtained by generating random 

numbers lying between -0.5 to +0.5. The corresponding sets of initial velocity vector 

associated with the position vectors of particle is assumed to be random numbers lying 

between -0.5 to +0.5 and is denoted as )0(pWΔ . For each particle, N input samples are 

applied successively and the corresponding initial squared error norm, )0(pE is computed 

using (6.3), (6.5) and (6.6). The initial best position vector of a particle corresponds to its 

own position vector. That is )0()0( pb WW p = and the associated cost function of each 

particle is );0(pE Pp ≤≤1 . The initial potentiality of a p th particle is represented by the 

twin parameters )0({ pbW  and )}0(pE . The initial global best position )0(gW is obtained 

by comparing all )0(pbW and choosing the one which provides minimum )0(pE . In the 

next generation the velocity and position of each particle are updated as  

)]()()[()]()()[()()1( 2211 kWkWkRckWkWkRckWkW
p

p bgpbpp −∗+−∗+Δ=+Δ α    (6.7) 

)1()()1( +Δ+=+ kWkWkW ppp        (6.8) 

where )(kW pΔ  = velocity or rate of change of position change of p th particle vector at 

the k th generation of PSO. 

)(kW p  = position vector of p th weight-particle at k th generation 

)(kW pb = the best position vector of p th particle which yields the best fitness value until 

k th generation 

)(kW g  = The best position vector among all the particles in the population achieved up to 

k th generation. 

1c  and 2c  represent positive constants. 1R  and 2R  represent two vectors of random 

numbers each of which lies in the range of 0 to 1. The second and third terms of (6.7) 

represent the self thinking of a particle and the social collaboration among particles 

respectively. α  represents the inertia weight which balances between global and local 
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searches. It may be a fixed positive or a time varying constant.  By linearly decreasing α  

from a relatively large value to a small value in succeeding generations, the particle tends to 

have a more global search ability in the beginning of the search but attains more local 

search ability towards the last generation [6.39].  

To obtain the best position of a weight particle at k th generation the two successive fitness 

values )1( −kE p  and )(kE p are compared and the weight vector associated with minimum 

fitness value is selected as its personal best position vector, )(kE
pb . This process is 

repeated for all particles. The global best weight vector, )(kW g  is then selected from 

among local best weight vectors which associate minimum fitness value. This process is 

repeated for many generations until the fitness function defined in (6.6) attains lowest 

possible minimum. The corresponding global best weight particle )(kW g  provides the 

desired solution. It means that this weight vector of the FLANN model generates output 

which is in close agreement with the plant output.  

 

6.4 Development of robust identification and 
prediction models using PSO based training 
with robust norm minimization 

 
Three robust cost functions reported in the literature are used in the development of 

identification model. The PSO is then used to iteratively minimize these norms of the error 

terms obtained from the model and hence the resulting identification model is expected to 

be robust. These cost functions are defined as follows  

(a) Robust Cost Function-1 (Wilcoxon Norm) [6.1, 6.2]  

A score function is first defined as an increasing function ℜ→]1,0[:)(uφ such that  

∞<∫ duu)(
1

0

2φ          (6.9) 

The score function has the characteristics   

∫ =
1

0
0)( duuφ  and  ∫ =

1

0

2 1)( duuφ        (6.10) 

The score associated with the score function φ  is defined as  
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li
l

iia ∈⎟
⎠
⎞

⎜
⎝
⎛
+

= ,
1

)( φφ           (6.11) 

where l  is a fixed positive integer.  

From (6.10) it may be observed that )(.........)2()1( laaa φφφ ≤≤≤ . The Wilcoxon norm 

[6.1, 6.2] is a pseudo-norm on 'ℜ and is defined as   

'
21

11
1 ]..,,.........,[,)())(( ℜ∈=== ∑∑

==

T
l

l

i
ii

l

i
i vvvvviavvRaC     (6.12) 

where )( ivR denotes the rank of iv among )()2()1(21 ......,......,,........., ll vvvvvv ≤≤  are the 

ordered values of lvvv ......,,........., 21 , )]1/([)( += liia φ . In statistics, different types of 

score functions have been dealt but the commonly used one is given by 

)5.0(12)( −= uuφ .  

(b) Robust Cost Function-2 [6.47] 

It is defined as  

))2/exp(1( 2
2 σσ eC −−=         (6.13) 

where σ  = a parameter to be adjusted during training 

and 2e  = mean square error defined in (6.6) 

(c) Robust Cost Function – 3 (Mean Log Squared error) [6.44] 

The third cost function is defined as 

)
2

1log(
2

3
eC +=          (6.14) 

where 2e is defined in (6.6). 

The weight-update of the identification model of Fig. 6.2 is carried out by minimizing these 

cost functions of the errors defined in (6.12), (6.13) and (6.14) using PSO algorithm. In this 

approach the steps outlined from (6.3) to (6.5) remain same. Subsequent steps involved are 

detailed as follows : 

Let the error vector of p th particle at k th generation due to application of N input 

samples to the model be represented as T
pNpp kekeke )](.....,),........(),([ ,,2,1 . The errors are 

then arranged in an increasing manner from which the rank )}({ , keR pn of each n th error 

term is obtained. The score associated with each rank of the error term is evaluated as  
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)5.0
1

(12)( −
+

=
N

iia         (6.15) 

where ,i  )1( Ni ≤≤  denotes the rank associated with each error term. At k th generation 

of each p th particle the Wilcoxon norm is then calculated as  

∑
=

=
N

i
pip keiakC

1
, )()()(         (6.16) 

Similarly the other two CFs are computed using (6.13) and (6.14). The steps involved in the 

first and second generations in the PSO based minimization of these CFs are detailed in 

Figs. 6.3 and 6.4 respectively. The computations required in subsequent generations are just 

repetitions of the steps outlined in Fig. 6.4. The learning strategy described in Figs. 6.3 and 

6.4 continues until the CF decreases to the possible minimum values. At this stage the 

training is complete and the global best weight vector gW  represents the feed forward and 

feedback weights of the FLANN based model.  
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Fig. 6.3 Steps involved in the first generation weight update mechanism using PSO based CF minimization 
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6.5 Simulation study 

In this section, simulation study is carried out to assess the identification performance of 

the proposed algorithm and results of nonlinear identification of static and dynamic plants 

described by (3.3)-(3.6) are presented in presence of 10% to 50% of outliers in the desired 

signal. The outliers are uniformly distributed random values within the range of -1 to +1 

and are added at random locations (10% to 50%) of the training samples. In these 
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Fig. 6.4 Steps involved in 2nd generation weight-update mechanism using PSO based CF minimization 
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examples, the series-parallel model is used to identify these plants. In the scheme-1, MSE is 

used as the cost function where as in schemes-2, 3 and 4 the  CFs used are 21 , CC and 3C  

respectively. The performance of the proposed three schemes are obtained from simulation 

studies and compared with that obtained by scheme-1. For training the weights of FLANN 

model an uniformly distributed random signal in the interval [-1,1] is used as input. During 

the testing phase, the effectiveness of the proposed models are evaluated by using the test 

signal  

⎪
⎪
⎩

⎪⎪
⎨

⎧

>+

≤
=

250
25

2sin2.0
250
2sin8.0

250
250
2sin

)(
kforkk

kfork

kx
ππ

π

      (6.17) 

A quantitative measure for performance evaluation used is the normalized mean square 

error (NMSE) defined in [6.51] as 

∑
=

−=Γ
S

k
kyky

S 1

2
2 )](ˆ)([1

σ
        (6.18) 

where )(ky  and )(ˆ ky  represent the plant and model outputs at k th discrete time, 

respectively and 2σ denotes variance of the plant output sequence over S number of test 

samples.   

Identification of Static Systems  

Identification of two different static plants is carried out through simulation experiments. 

Example 1 : xxxxf 4.03.0)( 23
1 −+=       (6.19) 

Example2: )5sin(1.0)3sin(3.0)sin(6.0)(2 xxxxf πππ ++=     (6.20) 

Fig. 6.5 shows desired signal of Example-1 with outliers of 50% added to it within the 

range of (-1, 1). The input to the model is expanded into eleven trigonometric terms to get 

the best identification results in all schemes. The number of connecting weights including 

the threshold is twelve, which are updated using four different schemes. The parameters 

used in the study are no. of particles=30, no. of input samples=200, 

1042.1 max21 === vandcc . Simulation is carried out using 10% to 50% of outliers in 

the training samples but the results shown in Figs. 6.6(a) – (d) are for 50% outlier only. It is 

evident from these plots that the scheme-2 based model provides accurate response 

matching in presence of 50% of outlier whereas the scheme-1 based model exhibits poor 

identification performance. In both examples, NMSE obtained from scheme-2 listed in 
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Table 6.1 is much lower than that obtained from scheme-1 model.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.5  Plot of desired signal with 50% outliers used in Example-1 
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(a) Scheme-2 learning with 50% outliers 
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(b) Scheme-1 learning with 50% outliers 
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(c) Scheme-2 learning with 50% outliers 
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             (d) Scheme-1learninmg with 50% outliers 

 
Fig. 6.6 Response matching of static systems ((a) and (b) for Example 1 and (c) and (d) for  

Example 2) 

 

Identification of SISO Dynamic Systems 

Example 3: The difference equation of the plant is 

)]([)1(6.0)(3.0)1( kxgkykyky +−+=+                   (6.21)   

The linear parameters are 0.3 and 0.6 and two unknown nonlinearities (.)ig  used in the 

study are                    

125.1)4cos(1.0
0.2

0.2)(sin5.0)( 3
3

1 +−
+

−= x
x

xxg ππ      (6.22)  

)5sin(1.0)3sin(3.0)sin(6.0)(2 xxxxg πππ ++=       (6.23) 
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To identify the plant a series-parallel model described by (6.24) is used   

)]([)1(6.0)(3.0)1(ˆ kxkykyky Ν+−+=+                  (6.24) 

The term )]k(x[Ν  represents a FLANN model using various schemes. The input is 

expanded to 14 terms by using trigonometric expansions and PSO algorithm is used to 

update its connecting weights. The parameters used are no. of particles=30, no. of input 

samples=200, 1042.1 max21 === vandcc . The results of identification of (6.21) with 

nonlinear functions defined in (6.22) and (6.23) in prersence of 50% and 40% outliers are 

shown in Figs. 6.7(a),  (b) and Figs. 6.8(a), (b) respectively . It is observed that the FLANN 

with scheme-2 learning exhibits robust performance compared to that offered by the model 

using scheme-1. This is also supported by the NMSE listed in Table 6.1.  
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(a) Using Scheme-2 learning with 50% outliers 
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(b) Using Scheme -1 learning with 50% outliers 

Fig.6.7 Comparison of response of the dynamic plant  of Example 3 using nonlinearity defined in 
(6.22) 



R O B U S T  I D E N T I F I C A T I O N  A N D  P R E D I C T I O N  U S I N G  P A R T I C L E  
S W A R M  O P T I M I Z A T I O N  T E C H N I Q U E  

 132 

0 100 200 300 400 500 600
-6

-4

-2

0

2

4

6

Discrete Time

O
ut

pu
ts

Plant
Model

 
(a) Using Scheme-2 learning with 40% outliers 
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(b) Using Scheme-1 learning with  40% outliers 

 

Fig. 6.8 Comparison of response of the dynamic plant of Example 3 using nonlinearity defined in  
(6.23) 

 
 
 

Example 4 : In this example the plant to be identified is of Model-2 type and is 

represented by the difference equation 

)()]1(),([)1( kxkykyfky +−=+                   (6.25)                      

The unknown nonlinearity associated with the plant is given by  

2
2

2
1

1121
21 0.1

)0.1)(5.2(
),(

yy
yyyy

yyf
++

−+
=               (6.26) 

In this case the series-parallel scheme of the model is given by 
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)()]1(),([()1(ˆ kxkykyky +−Ν=+                      (6.27) 

The two inputs are expanded into 12 terms and scheme-1 and scheme-2 based training are 

used. The parameters used are no. of particles=30, no. of input samples =500, 

1042.1 max21 === vandcc . The response obtained from the plant and the two models 

are shown in Figs. 6.9(a) and (b).  These figures and Table 6.1 indicate that scheme-2 

provides robust identification compared to that offered by scheme-1 method.  
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(a) Using Scheme-2 learning with 50% outliers 
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(b) Using Scheme-1 learning with 50% outliers 

 

Fig. 6.9 Comparison of response of the dynamic plant of Example 4 

 

Example 5: In this case the plant is of Model-3 type and is given by the difference 

equation  
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)]([)]([)1( kxgkyfky +=+                              (6.28) 

where the unknown nonlinear functions (.)f and (.)g are represented as  

20.1
)3.0()(

y
yyyf
+
+

=                                               (6.29) 

)5.0)(8.0()( −+= xxxxg                                   (6.30) 

The model is represented by a series-parallel scheme  

)]([)]([)1(ˆ 21 kxkyky Ν+Ν=+                            (6.31) 

where 1Ν  and 2Ν represent the FLANN model with scheme-1 or scheme-2 training. 1Ν  

and 2Ν structures contain seven and five number of expansions. For PSO the parameters 

used are no. of particles=30, no. of input samples =500, 1042.1 max21 === vandcc . 

The response obtained from the plant and various models are compared in Figs. 6.10(a) 

and (b) and the computed NMSE is presented in Table 6.1. These results also indicate 

superior performance of the proposed scheme-2 technique over its scheme-1 counterpart. 
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(a) Using Scheme-2 learning with 50% outliers 
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                                                                        (b)Using Scheme-1 learning with 50% outliers 

 

Fig. 6.10 Comparison of response of the dynamic plant of Example 5 

 

Example 6: The plant in this case is category Model-4 and is described by the difference 

equation  

)]1(),(),2(),1(),([)1( −−−=+ kxkxkykykyfky          (6.32) 

where the unknown nonlinear function f is given by 

2
3

2
2

435321
54321 0.1

)0.1(
],,,,[

aa
aaaaaa

aaaaaf
++

+−
=         (6.33) 

The series-parallel model used for identification of this plant is given as 

)]1(),(),2(),1(),([)1(ˆ −−−Ν=+ kxkxkykykyky       (6.34) 

In case of scheme-1 and scheme-2 models, the input is expanded to six terms and output is 

expanded by nine terms. Figs. 6.11(a)-(b) show the comparative performance of the output 

response of two models. The simulation results also indicate that the identification 

performance is best in the proposed model as may be evident from comparison of NMSE 

shown in Table 6.1.  
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(a) Using Scheme-2 learning with 40% outliers 
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(b)Using Scheme-1 learning with 40% outliers 

 

 

Fig. 6.11 Comparison of response of the dynamic plant of Example 6 

 
 

  

Example 7 : Identification of Box-Jenkin’s System  

A total of 296 pairs input-output samples are generated with a sampling period of 9s. The 

gas combustion process has one variable, gas flow )(kx and one output variable, the 

concentration of 2CO , )(ky . The output )(ky  is influenced by four past output samples 

)3(),2(),1( −−− kykyky and )1( −kx .Uniformly distributed random values between  

[−3, 3] is added at 10% to 50% random location of the desired samples. Figs. 6.12 (a) and 

(b) display the actual and estimated values obtained by using scheme-2 and scheme-1 
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methods of training respectively. It is evident from these figures that scheme-2 provides 

better identification performance in comparison to scheme-1 based method in presence of 

strong outliers in the training signal. 
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(a) Using Scheme-2 learning with 50% outliers 

10 20 30 40 50 60 70 80 90

44

46

48

50

52

54

56

58

60

Discrete Time

O
ut

pu
ts

Model
Plant

 

(b) Using Scheme-1 learning with 50% Outliers 
 
 

Fig. 6.12 Output response matching of  Example 8 
 
 

 

Example 8 : Prediction of Mackey Glass Time Series  

The Mackey-Glass System (MGS) is a standard benchmark system for identification. This is 

a chaotic time series generated by solving the time-delay differential equation 

10)(1
)()()(
τ
τ
−+
−

+−=
tx
txatbx

dt
tdx           (6.35) 



R O B U S T  I D E N T I F I C A T I O N  A N D  P R E D I C T I O N  U S I N G  P A R T I C L E  
S W A R M  O P T I M I Z A T I O N  T E C H N I Q U E  

 138 

The MG Series is periodic for 17<τ  and is non-periodic otherwise. Initial values are taken 

as random values. The differential equation is solved using Euler’s method. A set of 1100 

samples are generated with b = 0.9, a = 0.2 and 30=τ . The first 100 samples are 

discarded due to their random nature. Out of the remaining 1000 samples, 800 samples are 

used as training data and the remaining 200 as test samples.  

 The model of the system can be represented by 

})1((),......,2(),(),({)( τττ −−−−=+ Ntxtxtxtxfptx      (6.36) 

where 4=p and 4=N . 

)3(,)2(),(),( τττ −−− txtxtxtx are used as the inputs and )( ptx + is used as the output. 

The training data set is corrupted by adding random values from a uniform distribution of 

[−15, 15] to the uncorrupted data set. Simulation is carried out in presence of 10% to 50% 

of outliers in the training signal. The result of response matching is shown in Figs. 6.13(a) 

and (b) for 50% outlier only. From these figures it is observed that scheme-2 based model 

identify the system correctly in presence of 50% outlier in the training signal where as the 

scheme-1 based model fails to identify the system.  
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(a) Using Scheme-2 learning with 50% outliers 
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                                               (b) Using Scheme-1learning with 50% outliers 

Fig. 6.13 Output response matching of Example 8 
 
 
 

Example 9 : Prediction of Sunspot Time Series 

The series consists of 288 data points of yearly averages of sunspots starting from the year 

1700 to the year 1987. The sunspots problem is a typical time series prediction problem, in 

which the sunspots number is to be predicted for the following year based on data of the 

past years.  Out of the 288 data, first 225 data are used for training and rest 63 data used for 

testing purpose. The training data set is corrupted by adding random values from a uniform 

distribution defined between [−15, 15] to the uncorrupted data. Simulation is carried out in 

presence of 10% to 50% of outliers in the training signal. The response matching of the 

system with 40% outliers and NMSE obtained for 10% to 40% outliers is given in Figs. 

6.14(a) and (b). The identification performance of scheme-1 is severely degraded at 40% 

outliers. It is clearly observed that the schem-2 model performs better in all cases in 

comparison to the scheme-1 based model in presence of outliers.  
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(a) Using Scheme-2 learning  with 40% outliers 
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(b) Using Scheme-1 learning with 40% outliers 

 

Fig. 6.14 Output response matching of  Example 9 
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Table 6.1 

Comparison of NMSE obtained in Example-1 to Example-6 from models using three robust cost 
functions and conventional MSE CF 

 
Example No. % of outliers NMSE (in dB) 

  RCF-1  RCF-2 RCF -3 MSE 

10 -19.85,  -17.10 -14.05  -12.58 

20 -28.86, -18.23 -10.91 -9.64 

30 -26.43, -16.74 -11.63 -10.14 

40 -27.42, -15.51 -10.56 -9.33 

 

 

1 

50 -24.03 -16.69 -11.59 -8.67 

10 -34.52 -22.98 -19.38 -19.06 

20 -42.46 -23.49 -16.91 -15.88 

30 -36.64 -21.14 -17.89 -16.52 

40 -35.78 -23.80 -16.82 -15.77 

 

 

2 

50 -37.10 -22.29 -15.70 -14.91 

10 -26.44 -21.88 -21.78 -20.80 

20 -32.87 -22.65 -21.50 -20.39 

30 -34.82 -21.62 -20.51 -19.70 

40 -30.56 -21.99 -20.98 -19.87 

 

 

3 with (6.22) 

50 -27.79 -20.83 -20.19 -19.23 

10 -38.51 -27.98 -19.92 -19.15 

20 -42.70 -27.80 -20.41 -19.27 

30 -38.45 -26.23 -20.51 -19.58 

40 -52.52 -25.84 -20.93 -20.55 

 

 

3 with (6.23) 

50 -37.92 -25.97 -20.63 -20.19 

10 -23.82 -22.87 -22.00 -21.43 

20 -24.97 -24.14 -23.04 -20.48 

30 -28.55 -24.84 -24.09 -21.80 

40 -26.21 -21.49 -21.04 -19.71 

 

 

4 

50 -22.56 -18.55 -18.01 -18.31 

10 -14.73 -9.36 -8.37 -4.07 

20 -14.49 -13.77 -11.45 -9.74 

30 -15.65 -14.76 -10.58 -8.30 

40 -17.39 -14.97 -9.12 -4.87 

 

 

5 

50 -23.82 -8.23 -5.11 -4.53 

10 -16.37 -16.86 -16.53 -16.53 

20 -16.36 -11.91 -7.35 -5.07 

30 -13.18 -12.42 -9.74 -8.71 

40 -13.80 -13.26 -7.91 -5.53 

 

 

6 

50 -13.53 -12.23 -11.26 -11.28 
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6.6 Conclusion 
In this Chapter a novel method of robust identification of nonlinear dynamic system using 

a low complexity single layer FLANN model has been proposed. The robust identification 

task is formulated as an optimization of RCFs of the error terms of the model. The 

connecting weights of the FLANN model are iteratively adjusted using PSO technique to 

achieve this objective. The proposed technique is robust because it provides excellent 

identification performance of complex plants even when the training signal of the model 

contains up to 50% of outliers. The robust performance of the model using different RCFs 

is demonstrated using simulation of wide varieties of benchmark examples. The 

introduction of the new CFs in the model and PSO based minimization of these CFs are 

contributing to robust and improved performance compared to standard squared error 

norm based model. Further comparison of identification performance between the models 

using different RCFs indicate that the second scheme which employs Wilcoxon norm as 

the CF outperforms other three schemes. Robust identification performance using 

Wilcoxon norm is also observed in case of Mackey Glass, Box Jenkin’s and Sunspot time 

series when strong outliers are also present in training set.  
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Robust Adaptive Inverse Modeling 
using Bacterial Foraging 
Optimization Technique and 
Applications 
 

7.1 Introduction  

 
HE inverse model of a system having an unknown transfer function is itself a 

system having a transfer function which is in some sense a best fit to the reciprocal 

of the unknown transfer function. Sometimes the inverse model response contains 

a delay which is deliberately incorporated to improve the quality of the fit. In Fig. 7.1, a 

source signal )(ns is fed into an unknown system that produces the input signal )(nx for the 

adaptive filter. The output of the adaptive filter is subtracted from a desired response signal 

that is a delayed version of the source signal, such that 
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)()( Δ−= nsnd         (7.1) 

where Δ is a positive integer value. The goal of the adaptive filter is to adjust its 

characteristics such that the output signal is an accurate representation of the delayed source 

signal. 

There are many applications of adaptive inverse model of a system. If the system is a 

communication channel then the inverse model is an adaptive equalizer which compensates 

the effects of inter symbol interference (ISI) caused due to restriction of channel bandwidth 

[7.1]. Similarly if this system is the model of a high density recording medium then its 

corresponding inverse model reconstruct the recorded data without distortion [7.5]. If the 

system represents a nonlinear sensor then its inverse model represents a compensator of 

environmental as well as inherent nonlinearities [7.44]. The adaptive inverse model also 

finds applications in adaptive control [7.4] as well as in deconvolution in geophysics 

application [7.3].  

 

 

 

 

 

 

         

 

Fig. 7.1 Inverse Modeling 

 

Channel equalization is a technique of decoding of transmitted signals across nonideal 

communication channels. The transmitter sends a sequence )(ns that is known to both the 

transmitter and receiver. However, in equalization, the received signal is used as the input 

signal )(nx to an adaptive filter, which adjusts its characteristics so that its output closely 

matches a delayed version )( Δ−ns of the known transmitted signal. After a suitable 
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adaptation period, the coefficients of the system either are fixed and used to decode future 

transmitted messages or are adapted using a crude estimate of the desired response signal 

that is computed from )(ny . This latter mode of operation is known as decision-directed 

adaptation. 

Channel equalization is one of the first applications of adaptive filters and is described in the 

pioneering work of Lucky [7.1]. Today, it remains as one of the most popular uses of an 

adaptive filter. Practically every computer telephone modem transmitting at rates of 9600 

bits per second or greater contains an adaptive equalizer. Adaptive equalization is also useful 

for wireless communication systems. Qureshi [7.2] has written an excellent tutorial on 

adaptive equalization. A related problem to equalization is deconvolution, a problem that 

appears in the context of geophysical exploration [7.3].  

In many control tasks, the frequency and phase characteristics of the plant hamper the 

convergence behavior and stability of the control system. We can use an adaptive filter 

shown in Fig. 7.1 to compensate for the nonideal characteristics of the plant and as a method 

for adaptive control. In this case, the signal s(n) is sent at the output of the controller, and the 

signal x(n) is the signal measured at the output of the plant. The coefficients of the adaptive 

filter are then adjusted so that the cascade of the plant and adaptive filter can be nearly 

represented by the pure delay z-∆. Details of the adaptive algorithms as applied to control 

tasks in this fashion can be found in [7.4]. 

Transmission and storing of high density digital information plays an important role in the 

present age of information technology. Digital information obtained from audio, video or 

text sources needs high density storage or transmission through communication channels. 

Communication channels and recording medium are often modeled as band-limited 

channel for which the channel impulse response is that of an ideal low pass filter. When a 

sequence of symbols are transmitted/recorded, the low pass filtering of the channel distorts 

the transmitted symbols over successive time intervals causing symbols to spread and 

overlap with adjacent symbols. This resulting linear distortion is known as inter symbol 

interference. In addition nonlinear distortion is also caused by cross talk in the channel and 

use of amplifiers. In the data storage channel, the binary data is stored in the form of tiny 

magnetized regions called bit cells, arranged along the recording track. At read back, noise 

and nonlinear distortions (ISI) corrupt the signal. An ANN based equalization technique 

has been proposed [7.5] to alleviate the ISI present during read back from the magnetic 
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storage channel. Recently, Sun et al have reported [7.6] an improved Viterbi detector to 

compensate the nonlinearities and media noise. Thus adaptive channel equalizers play an 

important role in recovering digital information from digital communication 

channels/storage media. Preparta had suggested [7.7] a simple and attractive scheme for 

dispersal recovery of digital information based on the discrete Fourier transform. 

Subsequently Gibson et al have reported [7.8] an efficient nonlinear ANN structure for 

reconstructing digital signal which has passed through a dispersive channel and corrupted 

with additive noise. In a recent publication [7.9] the authors have proposed an optimal 

preprocessing strategies for perfect reconstruction of binary signals from a dispersive 

communication channels. Touri et al have developed [7.10] deterministic worst case frame 

work for perfect reconstruction of discrete data transmission through a dispersive 

communication channel. In recent past, new adaptive equalizers have been suggested using 

soft computing tools such as artificial neural network (ANN), polynomial perceptron 

network (PPN) and the functional link artificial neural network (FLANN) [7.11]. It is 

reported that these methods are best suited for nonlinear and complex channels. Recently, 

Chebyshev artificial neural network has also been proposed for nonlinear channel 

equalization[7.12]. The drawback of these methods are that the estimated weights may 

likely fall to local minima during training.  

For this reason genetic algorithm (GA) has been suggested for training adaptive channel 

equalizers[7.13]. The main attraction of GA lies in the fact that it does not rely on Newton-

like gradient-descent methods, and hence there is no need for calculation of derivatives. 

This makes them less likely to be trapped in local minima. But only two parameters of GA,  

the crossover and the mutation, help to avoid local minima problem. There is still some 

situations when the weights in GA optimization are trapped to local minima.  

In recent years bacterial foraging optimization (BFO) has been proposed [7.14] and has been 

applied in harmonic estimation of power system signals[7.15], adaptive inverse modeling[7.16], 

image segmentation[7.17], image filtering[7.18], optimal power flow[7.19], economic load 

dispatch[7.20 -7.21], parameter estimation[7.22], independent component analysis[7.23], 

recognition of handwriting[7.24], tuning of power system stabilizers[7.25], controller 

optimization[7.26], design of multiple optimal power system stabilizers[7.27], optimization of 

coefficients of PI controller[7.28-7.30], optimization in dynamic environments[7.31], 

Hammerstein model identification[7.32], D-STATCOM[7.33], function minimization and 

control[7.34], load compensation [7.35], load forecasting[7.36]. A hybrid GA and BFO algorithm 
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has been developed for global optimization in [7.37]. Adaptation of run length unit by using 

Takagi-Sugeno fuzzy scheme based on the minimum value of cost function has been reported in 

[7.15] .The chemotactic step size is made adaptive to accelerate the convergence speed near the 

optima[7.38] and mathematical analysis of reproduction operator is reported in [7.39]. The BFO 

is an useful alternative to GA and requires less number of computations. In addition, the BFO is 

also a derivative free optimization technique. The number of parameters that are used for 

searching the total solution space is higher in BFO compared to those in GA. Hence the 

possibility of avoiding the local minimum is higher in BFO. In this scheme, the foraging 

(methods for locating, handling and ingesting food) behaviour of E. Coli bacteria present in our 

intestines is mimicked.  

In case of the derivative free algorithms conventionally the mean square error (MSE) is used as 

the fitness or cost function. Use of MSE as cost function leads to improper training of adaptive 

model  when outliers are present in the desired signal. It is a fact that the traditional regressors 

employ least square fit which minimizes the Euclidean norm, while the robust estimator is based 

on a fit which minimizes another rank based on a norm called Wilcoxon norm [7.40]. It is 

known in statistics that linear regressors developed using Wilcoxon norm are robust against 

outliers. Using such norm new robust machines have recently been proposed for approximation 

of nonlinear functions [7.41]. In the present investigation we develop a new method of robust 

inverse model of complex nonlinear channels and systems by minimizing robust cost function 

(RCF) [7.41], [7.42] and [7.43] of errors of the model using a derivative free BFO technique. The 

performance of the new method is evaluated through simulation study and is compared with the 

results obtained from corresponding error square norm based BFO technique. 

7.2 Data recovery by adaptive channel equalization 

Reading out of high density data from the recording medium or recovery of binary data 

from the noisy digital channel needs ISI compensation. This is achieved by employing an 

adaptive inverse model shown in Fig. 7.2. The transmitted symbols are represented as )(kx  

at time instance, k . They are then passed into the channel model which may be linear or 

nonlinear. An FIR filter is used to model a linear channel whose output at time instant k  

may be written as  
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where )(iw are the channel tap values and N  is the length of the FIR system or channel. 

The “NL” block represents the nonlinear distortion of the symbols in the channel and its 

output may  be expressed as  

)),1(.........................),........1(),0(
)1(),........1(),(()(

−
+−−=

Nwww
Nkxkxkxkz ψ         (7.3) 

where (.)ψ is some nonlinear function generated by the “NL” block.  The channel output 

)(kz is corrupted with additive white Gaussian noise )(kq of variance 2σ . This corrupted 

received signal is given by )(kr . The received signal )(kr is then passed into the digital 

channel equalizer to produce )(ˆ kx  which recovers the transmitted symbol )(kx .  From 

initial tap values (at 0)(,0 == iwt ), the weights are updated until the cost function,  

∑ =

N

k
ke

1
2 )( , is minimized. Where =N No. of input samples used for training and 

)(ˆ)()( kxkxke d −= . The received or recorded data is given by )()()( kqkzkr += . The 

minimization of this cost function is iteratively performed by BFO scheme which is dealt in 

the Chapter 2 

 

 

 

 

 

 

 

 

 

 
Fig. 7.2 A Digital Communication System with BFO based adaptive inverse 

model 
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7.3 BFO based training of weights of inverse model 

The updating of the weights of the BFO based inverse model is carried out using the 

training rule as outlined in the following steps: 

Step -1 Initialization of various parameters 

(i) bS  = No. of bacteria to be used for searching the total region 

(ii) isN = Number of input samples 

(iii) p = Number of parameters to be optimized 

(iv) sN = Swimming length after which tumbling of bacteria will be undertaken in a 

chemotactic loop. 

(v) cN  = Number of iterations to be undertaken in a chemotactic loop. Always cN  > sN . 

(vi) reN = Maximum number of reproduction to be undertaken 

(vii) edN = Maximum number of elimination and dispersal events to be imposed over the 

bacteria. 

(viii) edP  = Probability with which the elimination and dispersal continue. 

(ix) The location of each bacterium  P (1- p , 1- bS , 1) is specified by random numbers on 

[0,1]. 

(x) The value of )(iC (i.e. run length unit). It is assumed to be constant for all bacteria. 

Step-2 Generate desired signal 

(i) Random binary input [1,-1] is applied to the channel.. 

 (ii) The output of the channel is contaminated with white Guassian noise of known 

strength to produce the input signal for the equalizer. 

(iii) The binary input is delayed by half of the order of the equalizer to act as the desired 

signal, )(kd . 

Step -3 Iterative algorithm for optimization 

This section models the bacterial population, chemotaxis, reproduction, elimination and 

dispersal. Initially 0=== lkj  

(i) Elimination dispersal loop 1+= ll  

(ii) Reproduction loop 1+= kk  

(iii) Chemotaxis loop 1+= jj  
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(a) For ,...,.........2,1 bSi = the cost function, (in this case mean squared error) ),,,( lkjiJ for 

each i th bacterium is calculated as follows : 

(1) isN number of binary input are passed through the equalizer.  

(2)The output is then compared with the corresponding desired signal, )(kd  to calculate 

the error, )(ke . 

(3)The sum of squared error averaged over isN is finally stored in ),,,( lkjiJ . 

(4)End of For Loop. 

(b)For bSi ........,,.........2,1= the tumbling/swimming decision is taken. 

Tumble : Generate a random vector ),(iΔ with each element, ),(imΔ ,.,.........2,1 pm = a 

random number in the range of [-1, 1]. 

Move: Let 
)()(

)()(),,(),,1(
ii

iiClkjPlkjP
T

ii

ΔΔ

Δ
×+=+       

This results in an adaptable step size in the direction of tumble for bacterium i . The cost 

function (mean squared error) ),,1,( lkjiJ + is computed. 

Swim – (i) Let c =0; (counter for swim length) 

(ii) While sNc < (have not climbed down too long) 

Let 1+= cc  

If )1()( −< jJjJ then 
)()(

)()(),,(),,1(
ii

iiClkjPlkjP
T

ii

ΔΔ

Δ
×+=+   

and the ),,1( lkjP + is used to compute the new ),,1,( lkjiJ +    

ELSE let sNc = . This is the end of the WHILE statement. 

(c)Go to next bacterium )1( +i if bSi ≠ to process the next bacterium. 

(d)If )min( J  {minimum value of J among all the bacteria} is less than the tolerance limit 

then break all the loops. 

Step-4. If cNj < ,go to (iii) i.e. continue chemotaxis loop since the life of the bacteria is not 

over. 

Step-5 Reproduction  

(a) For the given k and ,l and for each bSi ........,,.........2,1= let iJ  be the health of the i th 

bacterium. The bacteria are sorted in ascending order of cost J  (higher cost means lower 

health). 
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(b) The 
2
b

r
S

S = bacteria with highest J  value die and other rS  bacteria with the best value 

split and the copies that are made are placed at the same location as their parent.  

Step-6. If reNk < go to Step-2. In this case, the number of specified reproduction steps has 

not reached and the next generation in the chemotactic loop is to be started. 

Step-7. Elimination –Dispersal  

The bacterium, which has an elimination-dispersal probability above a preset value edP ,  is 

eliminated by dispersing to a random location and new replacements are randomly 

initialized over the search space. By this the total population is maintained constant.  

 

7.4 Development of robust inverse modeling using BFO 
based training with robust norm minimization 

 

Three robust cost functions defined in literature [7.41-7.43] are used in the development of 

robust adaptive inverse models. The BFO algorithm is then used to iteratively minimize 

these norms of the error obtained from the model and hence the resulting inverse model is 

expected to be robust against outliers. These cost functions are defined in Section 6.4 of 

Chapter 6. The weight-update of  inverse model of Fig. 7.2 is carried out by minimizing 

these cost functions of the errors defined in (6.16), (6.17) and (6.18) using BFO algorithm. 

In this approach, the procedure outlined from Step-1 to Step-7 of section 7.3 remains the 

same. The only exception is detailed as follows :  

Let the error vector of p th bacterium at k th generation due to application of N input 

samples to the model be represented as T
pNpp kekeke )](.....,),........(),([ ,,2,1 . The errors are 

then arranged in an increasing manner from which the rank )}({ , keR pn of each n th error 

term is obtained. The score associated with each rank of the error term is evaluated as  

)5.0
1

(12)( −
+

=
N

iia         (7.4) 

where )1( Ni ≤≤  denotes the rank associated with each error term. At k th generation of 

each p th particle the Wilcoxon norm is then calculated as  
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∑
=

=
N

i
pip keiakC

1
, )()()(         (7.5) 

Similarly other two CFs are computed using (6.10), (6.17) and (6.18). The learning process 

continues until the CF decreases to the possible minimum values. At this stage the training 

is completed and the resulting weight vector represents the final weights of the inverse 

model.  

 

7.5 Simulation study 

In this section, the simulation study of the proposed inverse model in presence of 10% to 

50% of outliers in the desired signal is carried out. Fig. 7.2 is simulated for various 

nonlinear sensor/systems/channels using the algorithm given in section7.4. Three standard 

linear systems used in the simulation study are  :  

21

21

21

304.0903.0304.0:3
260.0930.0260.0:2
209.0995.0209.0:1

−−

−−

−−

++

++

++

zzS
zzS
zzS

       (7.6) 

The eigen value ratio (EVR) of S1, S2 and S3 are 6.08, 11.12 and 21.71 respectively [7.11] . 

This ratio indicates the severity or contouring capacity of the system or channel.  To study 

the effect of nonlinearity on the equalization performance, two different nonlinearities are 

introduced to the channel  

)(1.0)(2.0)()(:2
))(tanh()(:1

32 kykykykzNL
kykzNL

−+=

=        (7.7) 

where )(ky  is the output of each of these linear systems (S1 through S3). The additive noise 

in the channel or measurement noise in sensor is white Gaussian with -30dB strength. In 

this study an 8-tap adaptive FIR filter is used as an inverse model. The desired signal is 

generated by delaying the input binary sequence by half of the order (4 in this case) of the 

inverse model. Outliers are added by simply replacing the bit value from 1 to -1 or -1 to 1 

at randomly selected locations (10% to 50%) of the desired signal. In this simulation work, 

we have considered the following parameters of BFO : bS  = 8, isN  = 100, p =8, sN =3, 

cN =5, reN =40-60, edN =10, edP = 0.25, )(iC = 0.0075. For the sake of clarity different cost 

functions of the inverse models used in the simulation are mentioned here. These are 

CF1  - Wilcoxon norm 
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CF2 - mean square error, 2e  

CF3 - )exp1( 2

2

σσ
e

−
− , where σ  is a constant. 

CF4 - ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

2
1log

2e  

The bit error ratio (BER) plot of BFO trained inverse model  pertaining to different 

nonlinear channels/sensors with different cost functions with 0%-50% of outliers are 

obtained through simulation and are plotted in the Figs. 7.3(a)-(f) to 7.8(a)-(f). The BER 

was computed for the nonlinear channels/systems with different EVR values at SNR 15dB 

in presence of 0% and 50% outliers in the desired signal and the results are plotted in Figs. 

7.9 and 7.10 for 40% and 50% outliers respectively. Few notable observations obtained 

from these plots are : 

(a)Keeping CF, SNR and percentage of outliers in the desired signal same, the BER 

increases with increase in the EVR of the channel. Similarly under identical conditions of 

simulation the squared error cost function based model performs the worst where as the 

Wilcoxon norm based model provides the best performance (least BER).  

(b)As the outliers in the desired signal increases the Wilcoxon norm based model continues 

to provide lowest BER performance compared to that provided by other norms.  

(c)With no outlier in the desired signal, the BER plot of all four CFs are almost same (Figs. 

7.3(a), 7.4(a), 7.5 (a), 7.6 (a), 7.7(a) and 7.8(a)).  

(d)At high outliers the conventional CF2 based model performs the worst followed by CF4 

based model. In all cases the Wilcoxon norm (CF1) based inverse model performs the best 

and hence is more robust against low to high outliers in the training signal.  

(e)The accuracy of inverse models based on CF3 and Cf4 norms developed using outliers is 

almost identical.  

(f)In addition, the plots of Figs. 7.9 and 7.10 indicate that at 50% outliers in the desired 

signal the BER increases with increase in the EVR of the nonlinear channels or systems.  

(g) Further, the BER of the inverse model in all channels and SNR conditions is highest in 

square error norm (CF2) based training compared to the all other three norms used. 

However the Wilcoxon norm (CF1) based inverse model yields minimum BER among all 

cases studied.  
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(c) 20% Outliers 
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(e) 40% Outliers 
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(f) 50% Outliers  
Fig. 7. 3. Comparison of BER of four different CFs based nonlinear equalizers with [.209, .995, .209] as 

channel coefficients and NL1 
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(c)  20% Outliers 
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(f) 50% Outliers 
Fig. 7. 4. Comparison of BER of four different CFs based nonlinear equalizers with [.209, .995, .209] as 

channel coefficients and NL2 
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(b) 20% Outliers 
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(d) 30% Outliers 
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(e) 40% Outliers 
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(f) 50% Outliers 
Fig. 7.5. Comparison of BER of four different CFs based nonlinear equalizers with [.260, .930, .260] as channel 

coefficients and NL1 
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(c) 20% Outliers  
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(e) 40% Outliers 
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(f) 50% Outliers 
Fig. 7. 6 Comparison of BER of four different CFs based nonlinear equalizers with [.260, .930, .260] as 

channel coefficients and NL2 
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(c)  20% Outliers 
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(e) 40% Outliers 
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(f) 50% Outliers 
Fig. 7. 7. Comparison of BER of four different CFs based nonlinear equalizers with [.304, .903, .304] as 

channel coefficients and NL1 
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(c) 20% Outliers  
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(d) 30% Outliers 

0 5 10 15 20 25 30
10-5

10-4

10-3

10-2

10-1

100

SNR in dB

P
ro

ba
bi

lit
y 

of
 e

rro
r

CF-1
CF-2
CF-3
CF-4

 

(e) 40% Outliers 
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(f) 50% Outliers 

Fig. 7. 8 Comparison of BER of four different CFs based nonlinear equalizers with [.304, .903, .304] as 
channel coefficients and NL2 
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Fig. 7. 9 Effect of EVR on the BER performance of the four CF-based equalizers in presence of 50% 
outliers 
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Fig. 7. 10 Effect of EVR on the BER performance of the four CF-based equalizers in presence of 40% 
outliers 
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7.6 Conclusion 

This chapter examines and evaluates the learning capability of different norms of error when the 

training signal (of the inverse model) is contaminated with strong outliers. To facilitate such 

evaluation different nonlinear channels with varying EVRs are used. The population based BFO 

learning tool is developed to minimize four different norms. The robustness of these norms is 

assessed through simulation study. It is in general observed that the conventional squared error 

norm (CF2) is least robust to develop inverse models of nonlinear systems under varying noise 

conditions. Whereas the Wilcoxon norm (CF1) is the most robust one. In terms of robust 

performance, the order of the norms is CF1, CF3, CF4 and CF2.  
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Identification of Hammerstein 
Plants using Clonal PSO and 
Immunized PSO Algorithms 
          

8.1 Introduction  

 
RACTICALLY   it is difficult to model physical systems by mathematical analysis 

method.  But through system identification, a suitable model can be developed 

which is mathematically equivalent to a given physical system. Many practical 

systems possess inherent nonlinear characteristics due to harmonic generation, 

intermediation, desensitization, gain expansion and chaos. Identification of such nonlinear 

complex plants plays a significant role in analysis and design of control systems. The 

Hammerstein model is widely used because its structure describes the nonlinearity 

associated with practical dynamic systems. Several methods have been proposed in the 

literature for identification of Hammerstein model by using correlation theory [8.1], 

orthogonal functions [8.2], polynomial functions [8.3], piecewise linear model [8.4], artificial 

Chapter 
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neural networks [8.5], genetic algorithm [8.6], radial basis function (RBF) networks [8.7], 

particle swarm optimization (PSO) [8.8, 8.9] and bacterial foraging optimization (BFO) 

[8.10] techniques . The Particle Swarm Optimization (PSO) was developed by Eberhart and 

Kennedy in 1995 [8.11] inspired by swarm intelligence theory such as birds flocking, fish 

schooling etc. It gained a lot of attention in various optimal control system applications 

because of its faster convergence [8.12], reduced memory requirement, lower 

computational complexity and easier implementation as compared to other evolutionary 

algorithms. However, there are some problems associated with the basic PSO, such as 

premature convergence and stagnation at the local optimal solution. In [8.13] it is shown 

that the PSO performs well in early generations than any other evolutionary algorithm, but 

it degrades as the number of generations increases. Therefore it has a slow fine tuning 

ability of the solution. Several studies have been made to improve the performance of PSO 

[8.14] - [8.17].  

The biological immune system (BIS) is a multilayer protection system where each layer 

provides different types of defense mechanisms for detection, recognition and responses. It 

also resists infectious diseases and reacts to foreign substances. Following the principle of 

BIS a new tool of computational intelligence known as artificial immune system (AIS) 

[8.18]- [8.20] has evolved which finds applications in optimization problems [8.21, 8.22], 

computer security [8.23, 8.24], fault detection [8.25, 8.26], job scheduling [8.27] and 

clustering. The four forms of AIS algorithm reported in the literature are immune network 

model [8.19], negative selection [8.23, 8.28], clonal selection [8.21, 8.22] and danger theory 

[8.29].  

 In this chapter two new hybrid algorithms known as Clonal PSO (CPSO) and Immunized 

PSO (IPSO) have been proposed by suitably combining the good features of PSO and AIS 

algorithms. The performance of these new algorithms has been assessed by employing 

them in identification of various standard Hammerstein models. The nonlinear static part 

of the model is represented by a single layer low complexity nonlinear functional link 

artificial neural network (FLANN) architecture [8.30, 8.31]. The weights of the FLANN 

structure and the dynamic part of the model are estimated by the proposed algorithms. 
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8.2 Identification of Hammerstein plants using FLANN 

8. 2. 1 Hammerstein model 

The nonlinear dynamic system described by Hammerstein model is composed of a 

nonlinear static block in series with a linear dynamic system block as shown in Fig.8.1. 

 

 

 

 

 

 

 

         Fig. 8.1 The Hammerstein Model 

 

The model in general is  described by  
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where 1−z  denotes an unit delay. In this model )(),( kyku and )(ke represent the input, 

output, and noise samples at instant k respectively. The intermediate signal )(kx is not 

accessible for measurement. The symbols n and r are known degrees of polynomials of 

)z(A 1−  and )z(B 1−  respectively. The function (.)F is assumed to be nonlinear and 

unknown. 

 The objective of the identification task of the Hammerstein model is to determine the 

system parameters }{},{ ji ba of the linear dynamic part and response matching at the 

nonlinear static part and the output of the model using known input and output samples 
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8. 2. 2 FLANN architecture for modeling nonlinear static part  

In this Chapter, the nonlinear static part of the Hammerstein model is represented by a 

FLANN structure. Its input signal )(ku  at the k th instant is functionally expanded to a 

number of nonlinear values to feed to an adaptive linear combiner whose weights are 

altered according to an iterative learning rule. The types of expansion suggested in the 

literature are either trigonometric, power series or Chebyshev expansion. For trigonometric 

expansion the linear matrix is given by 
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where 2/,........,2,1 Mi = . As a result the total expanded values including an unity bias 

input become 22 +M . Let the corresponding weight vector be represented as             

)(kwi  having 22 +M  elements. The estimated output of the nonlinear static part as 

shown in Fig. 8.2 is given by 
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where )k(ε is approximation error. 

 

 

 

 

 

 

 

Fig. 8.2 Structure of FLANN model 
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Similarly from (8.6) and (8.7) we get 
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Rearrangement of  (8.8) gives 
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The identification structure of Hammerstein model corresponding to (8.9) is shown in Fig. 

8.3. 

Here )(kv and θ  represented as  
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At the k th instant )k(ϕ   is given by 
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Using (8.10)-(8.11) and (8.14) , (8.8) can be expressed as 
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Fig. 8. 3 Adaptive Identification model of the generalized Hammerstein Plant 
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The objective here is to estimate the system parameters defined in (8.11). If derivative 

based least square method is taken then the estimate of these system parameters is given by 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= ∑∑

+

+=

−
+

+=

Λ NN

Nk

NN

Nk

T
s

s

s

s

kykkk
1

1

1

)()()()( ϕϕϕθ                                                           (8.18) 

where N is the number of input output data.  Substituting 1ˆ1 =w  the parameters of linear 

dynamic part are estimated as rn bbaa ˆ,.......ˆ,ˆ,......ˆ 11 .  Equation (8.18) provides an estimate of 

the parameters which involves matrix inversion and hence computationally very expensive. 
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Further the input in this case is obtained from an nonlinear model. The conventional 

derivative based method to estimate the pole-zero parameters often leads to instability 

during training. Hence it is motivating to devise efficient and reliable methods to efficiently 

identify Hammerstein plant using two new population based CPSO and IPSO algorithms.   

 

8.3 Proposed clonal PSO and immunized PSO 
algorithms 

 

In PSO algorithm,  a swarm consists of a set of volume-less particles (a point) moving in a 

D-dimensional search space, each representing a potential solution. The i th particle is 

represented by a vector: ]........,[ 21 iDidiii xxxxX = .The best previous position (the 

position giving the best fitness value) of the i th particle is recorded and represented as 

]........,[ 21 iDidiii ppppP = . At each iteration, the global best particle in the swarm is 

represented by ].........,[ 21 gDgdggg ppppP = .The velocity of the i th particle is 

represented as ]......,[ 21 iDidiii vvvvV = . The maximum velocity and the range of particles 

are given by ].............,[ maxmax2max1maxmax Dd vvvvV =  and ]...........,[ maxmax2max1maxmax Dd xxxxX = . 

The velocity and position of the d th element of the i th particle at )1( +k th search from 

the knowledge of previous search are modified according to (8.19)-(8.22). 

))()((**)(*)()1( 11 kxkprckvkwkV idididid −+=+ ))()((** 22 kxkprc idgd −+        (8.19) 

⎩
⎨
⎧

−<+−
>+

=+
didd

didd
id vkvv

vkvv
kV

maxmax

maxmax

)1(,
)1(,

)1(                                                                     (8.20) 

)1()()1( ++=+ kVkXkX ididid                                                                                   (8.21) 

⎩
⎨
⎧

−<+−
>+

=+
didd

didd
id xkxx

xkxx
kX

maxmax

maxmax

)1(,
)1(,

)1(                                                                  (8.22) 

where DdNi ,.......2,1,,......2,1 1 == and 1N  is the number of particles . The symbols 1r and 

2r  represent random numbers between 0 and 1, 1c and 2c  denote acceleration constants.  

The inertia weight, w  is employed to control the impact of pervious history of velocities 

on the current one in order for tradeoff between the global and local exploitations and is 

given by [8.16]. 
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itr
kww

wkw
*)(

)( 10
0

−
−=                                                                                   (8.23) 

where k =generation counter (from 1 to itr ) 

itr  =number of iterations 

9.00 =w and 4.01 =w  

 

8. 3. 1. The CPSO Algorithm 

In conventional PSO, the velocity of each particle in the next search is updated using the 

knowledge of its past velocity, personal and global best positions. Since the global best 

position after a search is the best among all personal best positions, their use in updating 

the velocity has little contribution in moving to new positions. Therefore in the present 

investigation second term in the velocity update equation (8.19) of conventional PSO is not 

considered. 

Further according to clonal selection principle when an antigen or a pathogen invades the 

organism, a number of antibodies is produced by the immune cells. The fittest antibody 

undergoes cloning operation to produce number of new cells. These are used to eliminate 

the invading antigens. Employing this principle of AIS in PSO it is proposed here that each 

particle moves to the global best position after a search is complete wherefrom each 

individual starts its next search. The above idea implies that during any k th search the 

position of the d th element of the i th particle becomes equal to the global best position 

i.e.  )()( kpkx gdid = . As a result the third term of the velocity updates equation (8.19) of 

conventional PSO becomes zero. Incorporating the above two ideas into the conventional 

PSO algorithm leads to a simplified velocity update equation  

)(*)()1( '' kvkwkV idid =+                                                                                              (8.24)    

)1()()1( ''' ++=+ kVkXkX ididid                                                                                   (8.25) 

where 1....2,1 Ni = , Dd ....2,1= , The inertia weight )(kw is computed according to  

(8.23). According to this algorithm after every search all particles migrate to the global best 

position wherefrom each particle disperses again according to individual’s magnitude and 

direction of velocity. The same process is repeated until the position of gbest finally 

represents the optimal solution of the problem. 
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 8. 3. 2 The IPSO algorithm 

The CPSO algorithm is relatively simpler than conventional PSO and performs 

satisfactorily when applied to different optimization problems. However one important 

observation in this new algorithm is that computation of every new position of a particle 

depends on two factors: i.e. time varying inertia weight w(k) and its initial velocity. As a 

result the diversification in the solution space after each search becomes limited. Hence 

there is a chance that the final solution in this approach might lead to a local one. To 

overcome this shortcoming another new algorithm called immunized PSO algorithm is 

proposed by introducing mutation process into the algorithm. 

 In this case, like the CPSO algorithm, each particle after a search occupies the global best 

position. Then the mutation operation is carried out on the position vector of the particles 

to enable random diversifications of their positions. Since the position of each particle is 

changed unlike in CPSO, the third term remains. But the second term which contributes to 

change in velocity due to local best is not used. Thus the update equation becomes 

))()((**)(*)()1( "
2

"
2

"" kxkprckvkwkV idgdidid −+=+                                                  (8.26) 

)1()()1( """ ++=+ kVkXkX ididid                                                                                   (8.27) 

From among the updated positions of the particles the global best position is selected and 

then cloned. Then the cloned cells undergo a mutation mechanism by following the hyper 

mutation concept of AIS [8.21, 8.22]. The mutation operation has fine-tuning capabilities 

which helps to achieve better optimal solution. The single dimension mutation (SDM) 

operation [8.16]  is defined as 

)1(*01.0)1()1(
21

+++=+ kxkxkxm dTdTid                                                                 (8.28) 

)1(*01.0)1()1(
12)1( +++=++ kxkxkxm dTdTdi                                                            (8.29) 

where 1T  and 2T  represent the particles’ positions to be mutated and are chosen randomly 

from the set of cloned positions. In order to increase the efficiency of mutation an adaptive 

SDM (ASDM) is also proposed where the constants 0.01 is replaced by a parameter z 

whose values varies with the number of search. The value of )(kz  at k th search is given by 

ffi z
I

kIzzkz +⎟
⎠
⎞

⎜
⎝
⎛ −

−= )()(                                                                                     (8.30) 
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where iz  and fz are initial and final values of z   and are selected within the range [0,1]. 

The symbol I represents the maximum number of search. The fitness values of updated 

position as well as the mutated position of particles are then evaluated and the overall best 

location is selected for evaluation. In the next search the best location is again cloned and 

the process continues. The IPSO introduces improved search of particles in the                

D-dimensional space using mutation. 

 

8.4 Weight update of the Hammerstein model  
 

8.4.1 Identification algorithm using FLANN structure and PSO 
based training 

Step 1. Determination of output of the Hammerstein Model: 

Uniformly distributed random ''k  samples are generated to act as input during training. 

These are passed through the nonlinear static part and subsequently though the linear 

dynamic part of the Hammerstein model to produce output )(ky .  

Step 2. Functional expansion of input: 

The same input samples are also passed through the model consisting FLANN structure. 

Each input sample undergoes either trigonometric expansion as illustrated in (8.5), power 

series or square cube expansion. 

Step 3. Initialization of positions and velocities of swarm: 

The weight vector of the Hammerstein model of Fig.8.3 is considered as a particle. Similar 

to other evolutionary algorithms a set of particles representing a set of initial solutions is 

chosen. The weight vector of D  elements comprises of )2( +M number of elements for 

FLANN along as well as )( rn + elements for linear dynamic part. Each weight vector 

consists of  2+++= rnMD   weights which are each initialized as random numbers. For 

the i  th particle, the position vector (which represents the weight vector) is given by 

]...............[ 21 iDidiiii wwwwXW ==                                                                          (8.31) 

where idw  is the d th weight of the i th particle. Similarly the velocity assigned to the i th 

particle is expressed as 
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]...............[ 21 iDidiii vvvvV =                                                                                    (8.32) 

Initially the personal best position each i th particle achieved is same as the initial i th 

weight vector iW  and is represented as 

]...............[ 21 iDidiiii wwwwWP ==                                                                       (8.33) 

Step 4. Calculation of output of model: 

The output of model is computed using FLANN model according to (8.17) and the weight 

vector defined in (8.13). 

Step 5. Fitness Evaluation: 

The output of the model )(ˆ kyi due to k th sample and i th particle is compared with the 

output of the plant to produce error signal given by 

)(ˆ)()( kykyke iii −=                                                                                              (8.34) 

For each i th weight vector the mean square error (E) is determined and is used as the 

fitness function given by 

K

ke
iE

K

k
i∑

== 1

2 )(
)(                                                                                              (8.35) 

The identification task is then reduces to a minimization of the MSE defined in (8.35) using 

PSO and new algorithms. 

Step 6. Updation: 

The velocity and the position of the d th weight of each i th particle for the next search are 

obtained by the update rule given in eqs. (8.19)-(8.23).  

Step 7. Evaluation of global best position of particle: 

The fitness values of all particles are evaluated following step5. The best fitness value that 

is, the minimum MSE (MMSE) is obtained and its corresponding D  weights are identified 

and termed as the global best. It is denoted by  

]...............[ 21 gDgdgggg wwwwWP ==                                                                       (8.36) 

Step 8. Stopping Criteria: 

The search process described in steps 1 to 6 continues until all the particles in the swarm 

(the weight vectors) have achieved the global best position corresponding to a predefined 

mean square error. 
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8.4.2 Identification algorithm using FLANN structure and 
CPSO based training 

In CPSO, steps 1 to 5 of basic PSO remain the same . 

 Step 6. Updation: 

The position and velocity of d th weight of each i th particle for the next search is obtained 

by the update rule given in (8.24)-(8.25). The maximum velocity and position of particles 

after updating is controlled by (8.20) and (8.22). 

Step 7. Evaluation of global best position of particle: 

The global best position of particles is evaluated in similar way as described in step 7 of 

PSO. 

Step 8. Cloning Operation: 

The global best position is cloned in the sense that all particles of the swarm start their next 

search from this position.. 

Step 9. Stopping Criteria: 

The search process of steps 4 to 8 continues until all the particles in the swarm (the weight 

vectors) have attained the global best corresponding to a predefined mean square error. 

 

8.4.3. Identification algorithm using FLANN structure and IPSO 
based training 
 
Steps 1 to 5 are same as those of CPSO. 

Step 6. Updation: 

The position and velocity of d th weight of each i th particle for the next search is obtained 

by the update rule given (8.26)-(8.27). The maximum velocity and position of particles after 

updating are governed  by (8.20) and (8.22). 

Step 7. Evaluation of global best position of particle: 

The global best position of particles is evaluated in similar way following step 7 of PSO 

algorithm. 

Step 8. Cloning Operation: 

The global best particle position is cloned so that all particles occupy the same best 

position. 

Step 9. Mutation: 



I D E N T I F I C A T I O N  O F  H A M M E R S T E I N  P L A N T S  U S I N G  C L O N A L  P S O  
A N D  I M M U N I Z E D  P S O  A L G O R I T H M S  

 188 

Mutation process is incorporated to introduce variations in the cloned position. Probability 

of mutation mP  is taken to be greater than 0.5. The mutated children produced are given by  

)1(*)()1()1(
21

+++=+ kxkzkxkxm dTdTid                                                                (8.37) 

)1(*)()1()1(
12)1( +++=++ kxkzkxkxm dTdTdi                                                          (8.38) 

Step 10. Stopping Criteria: 

The search process from described in steps 4 to 9 continues until all the particles in the 

swarm (the weight vectors) have converged to the global best position yielding a predefined 

minimum mean square error. 

 

8.5 Simulation study 

To demonstrate the improved identification performance of the two new algorithms 

simulation study using MATLAB is carried out. Four standard Hammerstein plants are 

used for identification using CPSO and IPSO algorithms. The accuracy of identification of 

the proposed models are assessed by comparing the following results. 

1. True and estimated responses at the output of nonlinear static part. 

2. The true and estimated coefficients of the linear dynamic part. 

3. Comparison of sum of squared errors (SSE) between true and overall estimated 

responses. The sum of squared error is defined as 

∑
=

−=
K

k

kykykSSE
1

2))(ˆ)(()(                                                                                         (8.39) 

where y(k) is true output and )k(y
Λ

is estimated output during testing. 

Example 1 

The Hammerstein plant used for identification [8.32] is given by 

)()1()()()( 11 kekxzBkyzA +−= −−                                                                             (8.40) 

)(5.0)())(()( 3 kukukuFkx +==                                                                                (8.41) 
211 6.08.01)( −−− ++= zzzA                                                                                         (8.42) 

11 2.04.0)( −− += zzB                                                                                                   (8.43) 
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The input to the plant and the identification model is an uniformly distributed input lying 

between [-3.0, 3.0]. A zero mean white Gaussian noise with standard deviation of 0.01 is 

added to the plant. The number of input samples used to train the network is 300. In the 

model the nonlinear static part is represented by a FLANN structure. Each input sample is 

expanded to four terms by power series expansion as  

⎪
⎩

⎪
⎨

⎧

=

=
=

=Φ

3,2)(
1)(
01

)}({
iforku
iforku
ifor

ku
i

i
                                                                               (8.44) 

These expanded inputs are weighted by the coefficient of the FLANN. The weights are 

updated by using GA, CLONAL, PSO, CPSO and IPSO algorithms. In all cases the initial 

population of particles is taken as 70. The weights of the model are trained for 40 

generations. The positions of the particles are considered within range [-2, 2] and their 

velocities are limited within the range [-1.5, 1.5]. In case of IPSO the probability of 

mutation mP  is taken as 0.8. The values of iz  and fz are set at 0.9 and 0.05 respectively. 

The true and estimated outputs of nonlinear static part of the plant are compared in Fig.8.4. 

Comparison of estimates of the system parameters of linear dynamic part are shown in 

Table 8.1 along with percentage of error within pair of brackets.  

tCoefficienActual
CoeffcientEstimatedtCoefficienActualerrorofPercentage −

=                               (8.45) 

The CPU time required for training of the model is presented in Table 8.2. The 

comparative results of sum of squared errors (SSE) obtained during testing is presented in 

Table 8.2. 
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Fig.8.4 Comparison of response at the output of nonlinear static part of the plant and the 
corresponding models of Example 1 

 
 

 

 

 

Table 8.1 

Comparison of true and estimated parameters of system for dynamic part of the model of Example 1 

 

Parameters True 
Values 

 
IPSO 

Estimated 
CPSO 

Values 
PSO 

 
CLONAL 

 
GA 

a1 0.8 0.805 (0.6 %) 0.900 (12.5 %) 0.850 (6.2 %) 0.826 (3.2 %) 0.835 (4.3 %) 

a2 0.6 0.590 (1.6 %) 0.606 (1.0 %) 0.650 (8.3 %) 0.614 (2.3 %) 0.630 (5.0 %) 

b0 0.4 0.409 (2.2 %) 0.350 (12.5 %) 0.336 (16.0 %) 0.456 (14.0 %) 0.345 (13.7 %) 

b1 0.2 0.210 (5.0 %) 0.240 (20.0 %) 0.240 (20.0 %) 0.236(18.0 %) 0.240 (20.0 %) 
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Table 8.2 

Comparison of CPU time and SSE for identifying the plant of Example 1 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2 

In this example [8.32] the plant  is described by 

)()1()()()( 11 kekxzBkyzA +−= −−                                                                             (8.46) 

))(()( kuFkx =   

          

⎪
⎪
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⎩

⎪⎪
⎪

⎨

⎧

≤≤
<≤−
<≤−
−<≤−+
−<≤−−

=

)0.3)(8.1(0.2
)8.1)(6.0(0.16.0/)(

)6.0)(6.0(0.0
)6.0)(8.1(0.16.0/)(
)8.1)(0.3(0.2

ku
kuku
ku
kuku
ku

                                                          (8.47)     

211 6.08.01)( −−− ++= zzzA                                                                                         (8.48) 
11 2.04.0)( −− += zzB                                                                                                   (8.49) 

This system has saturation and dead- zone nonlinearity. The input signal is a uniformly 

distributed signal lying between [-3.0, 3.0] and a total of 100 such samples are used for 

training. Zero mean white Gaussian noise, )(ke is with standard deviation 0.01.In the 

FLANN, each input sample of the FLANN is expanded as 

⎪
⎩

⎪
⎨

⎧

=
=
=

=Φ
2))(sin(

1)(
01

)}({
iforku

iforku
ifor

kui
                                                                               (8.50) 

Algorithm During 
Training 

CPU 
Time 
(Sec.) 

During 
Testing 

SSE 

IPSO 28.468 0.661 

CPSO 28.448 4.334 

PSO 27.813 10.683

CLONAL 35.125 1.948 

GA 41.213 7.358 
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 The initial population of particles is taken as 70. The weights of the model are trained for 

40 generations. The positions of the birds are considered within the range [-2, 2] and their 

corresponding velocities are taken within the range [-1.5, 1.5].In case of IPSO, the 

probability of mutation mP  is taken as 0.8. The values of iz  and fz are 0.9 and 0.05 

respectively. The true and estimated output of nonlinear static part of the model is 

presented in Fig. 8.5. Comparison of true and estimated of the system parameters along 

with percentage of error of linear dynamic part shown in Table 8.3. Table 8.4 shows the 

comparative result of CPU time required for training of model and sum of squared errors 

(SSE) obtained during testing. 
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Fig. 8.5 Comparison of response at the output of nonlinear static part of the plant and the 
corresponding models of Example 2 

 
 

Table 8.3 

Comparative results of estimates of system parameters for dynamic part of the model of Example 2 

 

Parameters True 
Values 

 
IPSO 

Estimated 
CPSO 

Values 
PSO 

 
CLONAL 

 
GA 

a1 0.8 0.810 (1.2 %) 0.690 (13.7 %) 0.900 (12.5 %) 0.752 (6.0 %) 0.861(7.62 %) 

a2 0.6 0.600 (0.0 %) 0.520 (13.3 %) 0.553(7.83 %) 0.582 (3.0 %) 0.563 (6.17 %) 

b0 0.4 0.410 (2.5 %) 0.450 (12.5 %) 0.466(16.5 %) 0.378(5.5 %) 0.441 (10.2 %) 

b1 0.2 0.200 (0.0 %) 0.220 (10.0 %) 0.251 (25.5 %) 0.160(20.0 %) 0.236(18.0 %) 



I D E N T I F I C A T I O N  O F  H A M M E R S T E I N  P L A N T S  U S I N G  C L O N A L  P S O  
A N D  I M M U N I Z E D  P S O  A L G O R I T H M S  

 193 

Table 8.4 

Comparison of CPU time and SSE for identifying the plant of Example 2 

 

 

 

 

 

 

 

 

 

Example 3 

The third Hammerstein model [8.10] chosen for identification is 

)()1()()()( 11 kekxzBkyzA +−= −−                                                                           (8.51) 

))(()( kuFkx =                                    

          )(1.0)(3.0)(5.0)( 432 kukukuku +++=                                                        (8.52) 
3211 02.015.09.01)( −−−− +++= zzzzA                                                            (8.53) 

11 5.17.0)( −− += zzB                                                                                                    (8.54) 

Fig.8.3 represents the plant model. is taken into consideration. The input to this model is a 

uniformly distributed signal lying between [-1.0, 1.0].The number of input sample used 

during training is 300. The white Gaussian noise with zero mean and standard deviation 

0.01 is added at the output of the plant. In FLANN each input sample is expanded to 5 

terms  

⎪
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⎨

⎧
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iforkui

iforku
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kui
                                                              (8.55) 

 The initial population of particles is taken as 90. The weights of the model are trained for 

40 generations. The positions of the particles are considered within range [-2, 2] and their 

Algorithm During 
Training 

CPU 
Time 
(Sec.) 

During 
Testing 

SSE 

IPSO 9.844 0.149 

CPSO 9.687 0.513 

PSO 9.578 2.410 

CLONAL 14.906 0.486 

GA 19.104 1.231 
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velocities are taken in the range [-1.5, 1.5]. In case of IPSO the probability of mutation mP  

is taken as 0.8. The values of iz  and fz used are 1 and 0.01 respectively. The true and 

estimated outputs of nonlinear static part of the given example are compared Fig.8.6. 

Comparison of true and estimated system parameters along with percentage of error of 

linear dynamic part is shown in Table 8.5. The CPU time required for training of model 

structure is presented in Table 8.6. The comparative result of sum of squared errors (SSE) 

obtained during testing is presented in Table 8.6. 
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Fig. 8.6 Comparison of response at the output of nonlinear static part of the plant and the 
corresponding models of Example 3 

 
 

Table 8.5 

Comparative results of estimates of system parameters for dynamic part of the model of Example 3 

 

Parameters True 
Values 

 
IPSO 

Estimated 
CPSO 

Values 
PSO 

 
CLONAL 

 
GA 

a1 0.9 0.898 (0.2 %) 0.900 (0.0 %) 0.841(6.5%) 1.037 (15.2%) 1.011(12.3 %) 

a2 0.15 0.146 (2.6 %) 0.069 (54.0 %) 0.150(0.0 %) 0.522 (248 %) 0.471 (214 %) 

a3 0.02 0.020 (0.0 %) 0.020 (0.0 %) 0.020(0.0 %) 0.188(940 %) 0.195 (975 %) 

b0 0.7 0.696(0.5 %) 0.750(7.14 %) 0.416(40.5 %) 0.830(18.5%) 0.846(20.8 %) 

b1 1.5 1.494(0.4 %) 1.084 (27.7 %) 0.892 (40.5%) 1.067(28.8 %) 0.992(33.8 %) 
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Table 8.6 

Comparison of CPU time and SSE for identifying the plant of Example 3 

 

 

 

 

 

 

Example 4 

The Hammerstein plant used in this example is same as that of the Example3, except that a 

different nonlinear static part given in (8.56) is used  

))((sin*5.0))(()( 3 kukuFkx π==                                                                      (8.56) 

For modeling this plant the weights of the model are trained for 40 generations. In case of 

IPSO the values of iz  and fz are set to 0.9 and 0.05 respectively. The remaining conditions 

of simulation are same as that used in example 3. The true and estimated outputs of 

nonlinear static part of the given example are compared in Fig. 8.7. Comparison of the 

estimates of the system parameters of linear dynamic part is provided in Table 8.7. Table 

8.8 compares the CPU time required for training the model and sum of squared errors 

(SSE) obtained during testing.  

 

Algorithm During 
Training 

CPU 
Time 
(Sec.) 

During 
Testing 

SSE 

IPSO 53.79 3.587 

CPSO 51.63 6.550 

PSO 50.60 21.779

CLONAL 57.68 19.77 

GA 64.71 19.96 
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Fig. 8.7 Comparison of response at the output of nonlinear static part of the plant and the 
corresponding models of Example 4 

 
 

 

 

 

Table 8.7 

Comparative results of estimates of system parameters for dynamic part of the model of Example 4 

 

Parameters True 
Values 

 
IPSO 

Estimated 
CPSO 

Values 
PSO 

 
CLONAL 

 
GA 

a1 0.9 0.890(1.1 %) 0.910 (1.1 %) 1.000(11.1 %) 0.935 (3.89 %) 0.942(4.67 %) 

a2 0.15 0.150 (0.0 %) 0.170 (13.3 %) 0.310(3.8 %) 0.240(60.0 %) 0.203(35.3%) 

a3 0.02 0.021 (5.0 %) 0.022 (10.0 %) 0.088(340 %) 0.075(275%) 0.078 (290 %) 

b0 0.7 0.690(1.4 %) 0.750(7.1 %) 0.597(14.7%) 0.462(34.0 %) 0.475(32.1%) 

b1 1.5 1.480(1.3 %) 1.471(1.93 %) 0.875 (41.6 %) 1.201(19.9 %) 1.122(25.2%) 
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Table 8.8 

Comparison of CPU time and SSE for identifying the plant of Example 4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

8.6 Conclusion 

In this Chapter two modified PSO based algorithms have been proposed by incorporating 

some modifications on the standard PSO algorithm and those have been used in training 

the weights of FLANN structure of nonlinear static part and the parameters of linear 

dynamic part of Hammerstein plant identification models. Both the proposed algorithms 

are relatively simple compared to the original PSO algorithm. But the simulation study 

reveals that the IPSO algorithm offers best identification performance compared to other 

algorithms. Out of the two algorithms proposed, the CPSO is computationally simpler but 

offers identification performance nearly similar to its PSO counterpart. Under identical 

conditions the IPSO requires more CPU time followed by PSO and CPSO. The above 

observations have been arrived at by comparing the SSE, the output response and the true 

and estimated parameters obtained from the simulation study of four benchmark examples. 
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Development of Distributed Particle 

Swarm Optimization Algorithms for 

Robust Nonlinear System 

Identification 

 

9.1 Introduction 

 

HE wireless sensor networks provide a smart interaction with the physical world 

and are deployed at low cost and in large numbers in remote environments. They 

yield autonomous and intelligent measurements, answer queries and also perform 

monitoring tasks. Application areas include environment monitoring, battlefield 

surveillance, health care, home automation and so on [9.1]. In a traditional centralized 

solution, the nodes in the network collect observations and send them to a central location 

for processing. The central processor then performs the required estimation tasks and 

broadcast the result back to the individual nodes. This mode of operation requires a 

powerful central processor, in addition to extensive amounts of communication between 

Chapter 

9 

T  
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the nodes and the processor. Distributed processing extracts information from data 

collected at different points that are distributed over a geographical area. In the distributed 

mode of solution, each system uses its own local data and as well as interact with its 

surrounding nodes to obtain global solution so that the amount of processing and 

communications is significantly reduced [9.2] – [9.4]. In a distributed scenario all the nodes 

coordinate with each other by some means and the distributed algorithm guides the system 

towards a promising solution without being influenced by the local information of each 

individual node. Though each sensor is characterized by low power constraint and limited 

computation and communication capabilities, potential networks can be built to perform 

various high level tasks with sensor collaboration [9.5] such as distributed estimation, 

distributed detection and target localization and tracking. Applications range from sensor 

networks to precision agriculture, environment monitoring, disaster relief management, 

smart spaces and medical applications [9.2], [9.6], [9.7]. The distributed parameter 

estimation has been suggested in [9.8]-[9.12] assuming that the joint distribution of sensors’ 

observations is known and that the messages can be sent from the sensors to the fusion 

center without distortion.  

The effectiveness of any distributed implementation depends on the modes of cooperation 

that are allowed among the nodes. Two such modes of cooperation available are as shown 

in Fig. 9.1. In the first approach the overall system parameters are estimated in a 

cooperative fashion by using local estimates and sharing them with their pre-identified 

neighbours. This mode of operation requires a cyclic pattern of collaboration among the 

nodes, and it tends to require the least amount of communication and power [9.3], [9.13], 

[9.14]. 

 

 

   

 

 

             (a) Incremental                                                                (b) diffusion                          

 

Fig. 9.1 Two modes of cooperation 



D E V E L O P M E N T  O F  D I S T R I B U T E D  P A R T I C L E  S W A R M  O P T I M I Z A T I O N  

A L G O R I T H M S  F O R  R O B U S T  N O N L I N E A R  S Y S T E M  I D E N T I F I C A T I O N  

 
203 

The second approach employs diffusion protocols for establishing cooperation among 

individual nodes [9.15]-[9.17]. Each node obtains local estimates of interested parameters 

and share this information with their neighbours. The amount of communication in this 

case is higher than in an incremental case. The communications in the diffusion 

implementation can be reduced by allowing each node to communicate only with subset of 

its neighbours. Both incremental and diffusion algorithms are distributed and cooperative 

in nature. They are also capable of responding in real time to environmental changes.  

Recently an adaptive distributed strategy is proposed based on incremental techniques for 

linear estimation in a cooperative fashion [9.18]. A study of distributed estimation 

algorithms based on diffusion protocols to implement cooperation among individual 

adaptive nodes is reported in [9.19]. Distributed evolutionary optimization frame work 

based on a swarm intelligence principle has been recently reported [9.20] for sensor 

networks.  A different version of particle swarm optimization algorithm has been reported 

for a swarm of robotic applications [9.21]. An RF IC optimization methodology based on 

an elitist distributed particle swarm optimization algorithm is presented in [9.22].  

The literature reviews reveals that the recently reported distributed algorithms have been applied 

only for linear estimation of interested parameters of a region. On the other hand in many 

practical simulations the local input and output data collected at each node of the network is 

nonlinearly related which means that each node functions as an individual nonlinear filter. The 

research work reported in this chapter is based on the following motivations : 

(i) There is a need to develop novel algorithms using evolutionary computing strategy. 

(ii) To assess the performance of new algorithms when used for system identification. 

(iii) To evolve methodology for robust identification of plants using distributed 

algorithms and robust norm. 

In this chapter two novel distributed PSO algorithms : incremental PSO(INPSO) and 

diffusion PSO (DPSO) are proposed and applied to system identification. In this method 

of identification minimization of mean square error is taken as the cost function. But when 

outliers are present in the training samples this conventional cost function does not provide 

satisfactory performance. Therefore to achieve robust identification performance against 

outliers a robust norm is introduced and used as cost function. In this chapter performance 
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of a new identification scheme using combination of INPSO and DPSO along with robust 

norm has been assesses through simulation study. 

 

9.2 Distributed system identification 

(a) INPSO based system identification 

The basic concept of the incremental PSO (INPSO) algorithm is as follows :  

Each node performs its own calculation using its local data, updates its particles’ positions, 

velocities, personal best (pbest) positions and transfer the global best position to its next 

neighbour. The adjacent node updates its own particles’ positions, velocities and pbests 

using its local data and the gbest vector received from the previous node and transmit the 

new updated gbest to its neighbour. This process continues for several cycles through the 

network until the desired solution is obtained. Fig. 9.2 shows the schematic representation 

of an INPSO based identification scheme. In this scheme it is assumed that 

)1( NnN   sensor nodes present in a small region, participate in the identification 

task using their local measurements },{ nn DX . In this case T

nMnnn xxxX ]............[ 21  

and T

nMnnn dddD ].............[ 21  represent the input and desired samples of n th node. 

Each desired sample is contaminated with white Gaussian noise )(nvm . At each n th node 

the swarm consists of K  number of particles. In any l th )1( Ll  search, the position 

vector, the best position vector and the velocity vector of k th particle of first node is 

represented by )(),( 11 lBlP kk and )(1 lV k  respectively. During a specific search, a pair of 

input-output samples },{ mm dx produces an error and hence a total of M  errors are 

generated for a particle. The mean square error, )(1 lE k of the k th particle at l th search is 

thus computed and is used as the fitness or cost function. The initial position vector of any 

k th particle is taken to be its initial personal best position vector. From the set of )(1 lB k , 

Kk 1 , the best position vector corresponding to the least )(1 lE b  is chosen as the 

global best position vector. The values of )(),(),( 111 lVlBlP kkk  associated with k th 
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population of first node and the global best position vector )(lGN  of N th node are used 

to update the velocity vector and then the position vector. These update equations are   

 

)]()([*)(*)]()([*)(**)()1( 1122111111 lPlGlrandclPlBlrandclVwlV kkkkkkkklk   (9.1) 

)1()()1( 111  lVlPlP kkk         (9.2) 

where )(),( 11 lBlP kk  are position and local best position vectors at l th search of k th 

particle of node 1. )(1 lG  represents the global best position vector at l th search of node 1. 

)(1 lrand k  and )(2 lrand k  are random numbers in the range [0, 1]. 1c  and 2c  represent the 

acceleration coefficients and w  is the inertia weight which balances the global and local 

searches. The inertia weight at l th search is given by 

L

lww
wlw

*)(
)( 10

0


         (9.3) 

where 

l  = search number 

L = total number of searches 

9.00 w  and 4.01 w  

The dotted portion of Fig. 9.2 indicated by 1A  corresponds to node 1 of the incremental 

sensor network. The contents of block 2A , 1NA  and NA  of Fig. 9.2 are identical to that of 

1A  except that the initialized values of the positions and velocities of the particles are 

different. The updated values are used to obtain the new personal best and global best 

position vectors required for next search. After completion of l th search at the k th node, 

the global position vector )(lGn  is evaluated and communicated to )1( k th neighbour. 

This process is repeated until the average MSE of the cluster of nodes reduces to the lowest 

possible value. Under this situation, the final global best position vector gives the estimate 

of the weight vector of the model. On the other hand identification of nonlinear system is 

achieved when the response of the model matches with the plant output.  
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Fig. 9.2 INPSO based nonlinear identification scheme 
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(b) DPSO based system identification 

The diffusion based distributed mechanism using LMS is reported in [8.9]. Diffusion PSO 

(DPSO) algorithm uses similar cooperation strategy. The main objective in this case is to 

develop an adaptive distributed procedure that approximates the solution and delivers a 

good estimate to every node in the network. In DPSO each node updates its particles’ 

positions, velocities and pbest using its local data and transmits the gbest vector to all other 

neighbouring nodes. Every node then finds out the best gbest and employs this gbest and 

its local available data for computing its new positions, pbest and gbest. Such an update 

strategy reduces the amount of information that is communicated among the particles and 

thus increases the stability of the algorithm.  The information exchange mechanism of 

DPSO is shown in Fig. 9.3.  

Like in the case of INPSO, the global best position, nG  at all nodes are evaluated using 

local data. Similarly the position and velocities of all particles at nodes are simultaneously 

evaluated. The computed global best information nG  is exchanged between all participating 

nodes. Then each node locally compares and selects the best of global best positions ( bnG ) 

and use it for updating the velocity and position of particles of that node. The velocity and 

position update equations remain same as given in (9.1) and (9.2). The above stated 

procedure is repeated until the average MSE of all nodes attains the lowest possible value.  
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Fig. 9.3 DPSO based nonlinear identification scheme 
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9.3 Distributed robust identification of plants 

When the measured data contains outliers of different densities and strengths then the 

conventional learning algorithms based on squared error minimization provide poor 

identification performance. This is because of improper training of the identification model 

and hence the scheme is not robust. To improve the identification performance under such 

adverse conditions the learning strategy needs improvement. Attempt has been made to 

fulfill this objective by selecting and employing robust norm from the statistics literature. 

One such norm is Wilcoxon norm [9.27] which has been proven to be a robust norm 

against outliers. The detail of this norm is available in Section 6.4 of Chapter 6.  

The distributed strategy of training used for identification using INPSO and DPSO 

algorithms outlined in the previous sections are almost identical. The only exception in this 

case is a new cost function which is the Wilcoxon norm evaluated from the error vector. 

This norm of errors is minimized using INPSO and DPSO algorithms as suggested in the 

previous section. The performance of these two algorithms in identification of plant is 

evaluated through simulation study and is presented in subsequent section.  

  

9.4 Stepwise distributed PSO algorithms 

The objective of an adaptive identification algorithm is to change the coefficients of the 

model iteratively so that the squared error, )(2 ke  or any other robust norm (Wilcoxon 

norm) is minimized and subsequently reduced to a best possible minimum.  In this case the 

architecture of the model is an adaptive linear combiner and the learning algorithm used to 

change the coefficient values is either INPSO or DPSO. The steps involved in these two 

algorithms are outlined as follows :  

1 )100( MM number of input signal samples uniformly distributed  between -

0.5 to +0.5 are generated. 

2 Ten of these input samples are assigned to each node. In this way all 100 samples 

are assigned to all 10 nodes.    

3 Each ten input samples is passed to the nonlinear model of a corresponding node 

and measurement noise of known strength is added to the output. The resultant 

signal acts as the desired output at that node. This process is repeated at all nodes 
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using their corresponding models and the estimated output in each is obtained. 

This process is repeated for all nodes.  

4 By comparing the output sample with the corresponding estimated output of the 

model the error signal is obtained.   

5 The mean square error (MSE) defined in (9.4)/Wilcoxon norm defined in (6.12) 

of k th  particle is determined  

M
kMSE

M

m
me

 1

2

)(          (9.4) 

This is repeated for all particles. 

6 The MSE/Wilcoxon norm is minimized by using INPSO and DPSO based 

techniques using the procedure outlined in Figs. 9.2 and 9.3 respectively.  

7 The velocity and position of each particle is updated using (9.1) and (9.2). 

8 In case of INPSO, the gbest is transmitted to the next node, but in case of 

DPSO, the same value is transmitted to all other neighbouring nodes. This 

process is repeated for each of ten nodes. 

9 In each iteration, the average MSE/average Wilcocon norm (expressed in dB) is 

stored and is plotted against iteration(cycle) to show the learning characteristics 

of the distributed PSO algorithm.  

10 When the MSE/Wilcoxon norm reaches the pre-specified level, the optimization 

process is stopped. 

11 At this stage all the particles attain almost the same positions which represent the 

estimated coefficient vector of the overall system. 

 To validate and compare the performance of proposed INPSO and DPSO algorithms the 

conventional PSO algorithm is also simulated to obtain the estimated parameters. To 

achieve this all the data collected at different nodes are accumulated at one node and are 

used in the identification task [9.23]. 

 

9.5 Simulation study 

Identification of standard linear and nonlinear plants is carried out under distributed 

environment using newly developed INPSO and DPSO algorithms. Zero mean white 
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Gaussian noise is added to the plant output to generate the training signal. To facilitate 

comparison estimation of parameters is also carried out using centrally available measured 

data and PSO algorithm for training the model.  

A. Identification of linear plants  

Three non-minimum phase all-zero systems [9.24, 9.25] used in this simulation are  

)3(771.0)2(385.0)1(9.0)()(.1  nwnwnwnwnx  

)4(99.0)3(64.0)2(52.1)1(8.0)()(.2  nwnwnwnwnwnx  

)5(4.1)4(3.0)3(5.0)2(75.0)1(33.2)()(.3  nwnwnwnwnwnwnx   

The zeros of these systems are located at 85.075.0 j and 0.6, 8602.06.0 j  and 

9274.02.0 j  and 563.0587.0,851.1 j  and 678.0827.0 j  respectively. The 

output of the plant is added with white Gaussian noise of strength -30dB to produce the 

output of the known plants. Uniform random signal within the range of -0.5 to +0.5 is 

generated and used as input signal. This is passed through both the plant and adaptive 

model simultaneously. Table 9.1 shows the number of nodes and number of input samples 

used in the simulation study. It is observed that the product of number of nodes and 

number of input samples are kept constant in all cases. The parameters estimated using 

distributed PSO algorithm are listed in Table 9.2. This Table also shows the percentage 

deviation of coefficients, the MSE during testing and training time in seconds obtained by 

three different methods.  

Table 9.1 
Comparison of simulation parameters used in INPSO, DPSO and PSO  based models 

 

Example 
no. 

Parameters used in simulation 

 
 
 

Ex-1 

 INPSO DPSO PSO 

No. of nodes 10 10 1 

No. of input samples at 
each node 

50 50 500 

No. of particles at each 
node 

10 10 100 

 
 

Ex-2 

No. of nodes 10 10 1 

No. of input samples at 
each node 

100 100 1000 

No. of particles at each 
node 

100 100 1000 

 
Ex-3 

No. of nodes 10 10 1 

No. of input samples at 
each node 

100 100 1000 

No. of particles at each 
node 

60 60 600 
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Table 9.2 
Comparison of estimated parameters using INPSO, DPSO and PSO techniques 

 

Example no. Actual 
Parameters 

Estimated parameters 

  INPSO  % of 
Deviation 

DPSO % of 
Deviation 

PSO % of 
Deviation 

Ex -1 1 
0.9 

0.385 
-0.771 

0.999 
0.8988 
0.3842 
-0.7682 

0.0100    
0.1333    
0.2078    
0.3632 

1.0000 
0.9007 
0.3906 
-.7735 

0    
0.0778    
1.4545    
0.3243 

0.999 
0.9015 
0.3840 
-.7714 

0.1000    
0.1667    
0.2597    
0.0519 

MSE during 
testing 

 9.13 x 10-4  8.84 x 10-4  9.16 x 10-4  

Execution 
time in 
second 

 0.1260  0.1143  1.0888  

Ex-2 1 
-0.80 
1.52 
-0.64 
0.99 

0.9882 
-0.8021 
1.4948 
-0.6466 
0.9763 

1.1800    
0.2625    
1.6600    
1.0312    
1.3838 

0.9998 
-0.7965 
1.4983 
-0.6369 
0.9855 

0.0200    
0.4375    
1.4276    
0.4844    
0.4545 

0.9858 
-0.8007 
1.4991 
-0.6484 
0.9869 

1.4200    
0.0875    
1.3750    
1.3125    
0.3131 

MSE during 
testing 

 0.0050  0.0037  0.0013  

Execution 
time in 
second 

 2.1755  2.1617  21.6401  

Ex-3 1 
-2.33 
0.75 
0.5 
0.3 

-1.40 

0.9923 
-2.3216 
0.7381 
0.5272 
0.3207 
-1.2800 

0.7700    
0.3605    
1.5867    
5.4400    
6.9000    
8.5700 

0.9986 
-2.3779 
0.6928 
0.5094 
0.2563 
-1.2929 

0.1400    
2.0558    
7.6267    
1.8800   
14.5667    
7.6500 

0.9994 
-2.1757 
0.9921 
0.5232 
0.3154 
-1.2543 

0.0600    
6.6223   
32.2800    
4.6400    
5.1333    
10.410 

MSE during 
testing 

 0.0476  0.0561  0.1798  

Execution 
time in 
second 

 3.2648  3.2563  32.5122  

 
 
 

Observation of results indicates that both distributed methods provide excellent 

identification performance which is comparable or even better. Further the training time of 

the new methods is much less compared to that of conventional PSO based method.  

 

B. Identification of nonlinear plants 

The new algorithms are also used to estimate nonlinear parameters. Four nonlinear plants 

are simulated using combinations of two linear plants cascaded with two different 

nonlinearities [9.26].  

Linear plants 

4.   H(z) = 0.3040 + 0.9030z-1 + 0.3040z-2 and 
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5.   H(z) = 0.2600 + 0.9300z-1 + 0.2600z-2  

Two different nonlinearities used to make nonlinear plants are   

NL1 : )}(tanh{)( kakb   

NL2 : )(1.0)(2.0)()( 32 kakakakb   

where )(ka is the output of the linear part of the node H(z)  and )(kb is the output of the 

non-linear part of the node. The output of the system is added with white Gaussian noise 

of different strengths of –20dB and –30dB.  The convergence characteristics of INPSO, 

DPSO and conventional PSO obtained from simulation study for the nonlinear estimation 

problem of Examples 4 and 5 are shown in Figs.9.4 (a)-(h) for -30dB and -20dB additive 

noise. The convergence characteristics shown in Figs. 9.4(a)-(h) also indicate that the new 

distributed approaches converge to noise floor levels below that achieved by the PSO 

method. However the convergence performance of DPSO and INPSO is observed to be 

almost identical.  

The output responses obtained by these methods are compared during test phase and are 

shown in Figs.9.5 (a) and (b). The comparison shows excellent agreement between the 

actual and estimated responses obtained by new methods. In addition the response 

achieved by the new methods is also comparable with that of conventional PSO based 

method. Table.9.3 provides the CPU time taken by the new algorithms during training 

phase when they are implemented under identical conditions. It also lists the sum of 

squared error (SSE) obtained from actual and estimated responses for different examples. 

Observation of this Table indicates that at both noise levels the CPU time taken by INPSO 

and DPSO based algorithms is less in comparison to that obtained from PSO model. 

Therefore, considering all counts the INPSO and DPSO approaches are observed to be 

better distributed candidates for parameter estimation or response matching of complex 

plants.   
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Fig 9.4 (a) Convergence of  Ex-4 with NL1 at -30dB 
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Fig 9.4 (b) Convergence of Ex-4 with NL1 at -20dB 
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Fig. 9.4 (c)  Convergence of Ex-5 with NL1 at -30dB 
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Fig. 9.4 (d)  Convergence of  Ex-5 with NL1 at -20dB 
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Fig. 9.4 (e) Convergence of Ex-4 with NL2 at -30dB 
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Fig. 9.4 (f)  Convergence of Ex-4 with NL2 at -20dB 
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Fig. 9.4 (g) Convergence of Ex-5 with NL2 at -30dB 
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Fig. 9.4 (h) Convergence of Ex-5 with NL2 at -20dB 
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Fig. 9.5 (a) Response matching of Ex-4 with NL1 at -20dB 
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Fig. 9.5 (b) Response matching of Ex-5 with NL2 at -30dB 
 

 
 

Table 9.3 
     Comparison of CPU time and sum of squared error obtained using PSO, INPSO and DPSO 

 

Examples CPU Time in second during training Sum of squared error (SSE) during testing 

 PSO INPSO DPSO PSO INPSO DPSO 

Ex-4 with NL1  
at  -30dB 

.0200 .0141 .0133 .0009 .0013 .0007 

Ex-4 with NL1  
at  -20dB 

.0240 .0156 .0135 .0077 .0117 .0134 

Ex-4 with NL2  
at  -30dB 

.0216 .0156 .0136 .0026 .0022 .0074 

Ex-4 with NL2  
at  -20dB 

.0195 .0159 .0138 .0067 .0120 .0127 

Ex-5 with NL1 
at  -30dB 

.0203 .0156 .0136 .0008 .0012 .0006 

Ex-5 with NL1  
at  -20dB 

.0206 .0154 .0135 .0076 .0117 .0068 

Ex-5 with NL2  
at  -30dB 

.0219 .0159 .0138 .0027 .0034 .0079 

Ex-5 with NL2  
at  -20dB 

.0208 .0159 .0141 .0064 .0105 .0129 
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C. Robust distributed identification of nonlinear plants 

Here the training signal is contaminated with outliers at locations ranging from 10% to 50%. 

The magnitudes of such disturbance are varied between -5 to +5, -10 to +10 and -20 to +20. 

The Wilcoxon norm of errors is used to train the model using INPSO and DPSO algorithms. 

For comparison purpose the squared error norm based models are also simulated. In all cases 

the SSE is obtained as performance measure to compare the performance between the two 

methods. Simulation results presented in Tables 9.4 – 9.7 clearly indicate that the Wilcoxon 

norm based distributed INSPO and DPSO algorithms show least SSE in all cases compared to 

their squared error counterpart. This is true for all variations of density and strength of outliers 

studied. In presence of outliers both the robust distributed PSOs are observed to provide almost 

identical identification performance.  

 

9.6 Conclusion 

The chapter presents two distributed PSO algorithms : INPSO and DPSO and use them for 

identification of nonlinear plants using locally measured data. In all cases it is observed that the 

two algorithms provide almost similar performance. Further it is observed that the two 

algorithms do not provide satisfactory identification performance when outliers are present in 

the training signal. To enhance the robustness of these two algorithm Wilcoxon norm based 

training is incorporated in this chapter. The results of identification using such training scheme 

indicate that with high density outliers up to 50% and with strength of outliers as high as -20 to 

20, the proposed distributed approach shows more robust performance in identification of 

nonlinear plants.  
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Table 9.4 

Comparison of sum of squared error (SSE) during  testing for Ex-4 with nonlinearity NL1 

Percentage of outliers INPSO using DPSO using  

 Wilcoxon norm Error square Wilcoxon 
norm 

Error square 

Outlier within the range of  (-5 to +5) 

0% .0009 .0009 .0009 .0010 

10% .0012 .1546 .0013 .2379 

20% .0011 .4424 .0009 .2317 

30% .0024 .2639 .0009 .1038 

40% .0022 .2170 .0023 1.8967 

50% .0049 1.4475 .0065 1.1638 

Outlier within the range of (-10 to +10) 

10% .0011 .9845 .0013 .8314 

20% .0013 .4424 .0009 .5018 

30% .0014 .2230 .0009 .1125 

40% .0029 .7623 .0030 2.4375 

50% .0032 2.5405 .0114 3.0345 

Outlier within the range of  (-20 to +20) 

10% .0011 1.7893 .0013 1.5053 

20% .0011 .8412 .0009 .6650 

30% .0014 1.4450 .0009 .0474 

40% .0025 .9239 .0038 2.4375 

50% .0066 2.3882 .0114 2.9731 
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Table 9.5 

Comparison of sum of squared error (SSE) during  testing for Ex-4 with nonlinearity NL2 

Percentage of outliers INPSO using DPSO using  

 Wilcoxon norm Error square Wilcoxon 
norm 

Error square 

Outlier within the range of  (-5 to +5) 

0% .0053 .0055 .0048 .0049 

10% .0068 .2426 .0063 .2423 

20% .0060 .4347 .0052 .2234 

30% .0048 .2520 .0056 .1087 

40% .0067 .2003 .0102 1.9191 

50% .0164 1.8002 .0206 1.2163 

Outlier within the range of (-10 to +10) 

10% .0061 1.0322 .0063 .8194 

20% .0054 .4347 .0052 .4813 

30% .0057 .1941 .0056 .0183 

40% .0086 .8069 .0112 2.4849 

50% .0134 2.2508 .0222 3.2130 

Outlier within the range of  (-20 to +20) 

10% .0061 2.12 .0063 1.4678 

20% .0062 .8495 .0052 .6416 

30% .0051 1.3547 .0056 .1548 

40% .0087 .9210 .0136 2.4849 

50% .0160 2.5370 .0222 3.1524 
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Table 9.6 

Comparison of sum of squared error (SSE) during  testing for Ex-5 with nonlinearity NL1 

Percentage of outliers INPSO using DPSO using  

 Wilcoxon norm Error square Wilcoxon 
norm 

Error square 

Outlier within the range of  (-5 to +5) 

0% .0008 .0067 .0008 .0071 

10% .0013 .2434 .0011 .2937 

20% .0012 .4424 .0007 .2778 

30% .0019 .2639 .0008 .1022 

40% .0025 .2841 .0022 1.8401 

50% .0050 1.8163 .0068 1.1896 

Outlier within the range of (-10 to +10) 

10% .0012 .9888 .0011 .8712 

20% .0012 .4424 .0008 .5170 

30% .0014 .1728 .0008 .1550 

40% .0025 .9108 .0032 2.4375 

50% .0042 1.8111 .0105 3.0536 

Outlier within the range of  (-20 to +20) 

10% .0012 2.1028 .0011 1.5606 

20% .0011 .8412 .0008 .6981 

30% .0013 1.3217 .0008 .1296 

40% .0015 .9397 .0036 2.4375 

50% .0039 2.3882 .0102 2.9796 
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Table 9.7 

Comparison of sum of squared error (SSE) during  testing for Ex-5 with nonlinearity NL2 

Percentage of outliers INPSO using DPSO using  

 Wilcoxon norm Error square Wilcoxon 
norm 

Error square 

Outlier within the range of  (-5 to +5) 

0% .0051 .0083 .0043 .0100 

10% .0057 .3227 .0058 .2994 

20% .0053 .4347 .0047 .2693 

30% .0048 .2520 .0052 .1065 

40% .0060 .2026 .0097 1.8385 

50% .0149 2.2513 .0236 1.2425 

Outlier within the range of (-10 to +10) 

10% .0073 1.0266 .0058 .8571 

20% .0049 .4347 .0047 .4977 

30% .0049 .1941 .0052 .1030 

40% .0060 1.0471 .0112 2.4849 

50% .0106 1.9260 .0243 3.2359 

Outlier within the range of  (-20 to +20) 

10% .0073 2.2317 .0058 1.5579 

20% .0051 .8495 .0047 .6686 

30% .0050 1.3819 .0052 .1354 

40% .0071 .9210 .0130 2.4849 

50% .0171 2.5370 .0257 3.1592 
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Conclusion and Scope for Further 
Work  
 

10.1 Conclusion 

N this chapter the conclusion of the overall thesis is presented and some of the future 

research problems which may be attempted by interested readers are outlined. The thesis 

has investigated on two key problems : efficient direct modeling or system identification of 

complex  and noisy plants like Hammerstein, dynamic SISO and MIMO and inverse modeling 

(normal and robust) of nonlinear channels. The novelty of the present work is the introduction 

of bio-inspired techniques to direct and inverse modeling problems. These techniques have been 

essentially used for training the weights of the model. The bio-inspired techniques used are        

(i) PSO (ii) modified PSO such as CLPSO, CPSO, IPSO and (iii) BFO. In Chapter 3 a new 

cascaded FLANN (CFLANN) structure using a novel learning algorithm is employed for 

identification of nonlinear dynamic plants. It is shown through exhaustive simulation that the 

new model offers least computation compared to MLANN and FLANN models. In all cases 

studied, the proposed CFLANN has produced improved response matching and least sum of 

squared errors between the actual and estimated outputs [ 10.3].  

Chapter 

10 

I  
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Identification of standard IIR plants has been carried out in Chapter 4 using an improved PSO 

(CLPSO) based  algorithm. In terms of convergence behaviour, execution time and product of 

population size and input samples, it is observed that the new IIR identification scheme offers 

improved performance compared to RLMS, GA and PSO based methods. Further it is 

observed that the proposed method shows better convergence characteristics than the GA and 

PSO based methods [10.5] when the reduced order models are used. This shows that the new 

method is capable of offering better optimal solution compared to GA and PSO based 

identification schemes.  

In Chapter 5, two new bio-inspired techniques called PSO and BFO are introduced to develop 

efficient identification models for nonlinear dynamic SISO and MIMO plants. In all cases the 

structure used is essentially a low complexity FLANN. The population based PSO and BFO 

techniques provide improved learning of the models compared to that provided by gradient 

descent algorithm. Further, the computation time offered by the new methods is less than the 

existing BP trained models. It is further observed that the identification performance of BFO 

and PSO based models is almost similar [10.1, 10.4, 10.6, 10.9, 10.14] but BFO based model is 

computationally faster than the PSO based model during training.  

If squared error cost function is used, the training data contaminated with outliers degrades the 

identification performance. In Chapter 6, three robust norms are introduces as the cost 

functions and PSO based training to design robust identification models has been suggested. 

These new models produce improved identification of complex plants even when 50% outliers 

in the training samples are present. Out of the three robust norms used it is shown through 

simulation of many benchmark problems that the model developed using PSO based 

minimization of Wilcoxon norm of errors performs the best compared to that offered by 

standard squared error norm and other two robust norms [ 10.2, 10.7, 10.10].  

In Chapter 7 robust adaptive inverse models have been developed using robust cost functions 

and its BFO based minimization of the cost functions. The inverse model is extensively used in 

designing equalizers for communication and magnetic media so that ISI is minimized. The BFO 

is shown to be an efficient learning candidate to design robust inverse models. From the 

simulation study it is observed that the conventional squared error norm is the least and 

Wilcoxon norm is the best robust norms to develop inverse models of different types of linear 

and nonlinear channels.  
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The identification of Hammerstein plants is a challenging task. This is studied in Chapter 8 

using CPSO and IPSO algorithms. These two new algorithms have been suitably applied for 

identification task. In this case in the identification task involves response matching of nonlinear 

static part and matching of parameters of dynamic part of the plants. Identification of standard 

Hammerstein plants has been carried by simulation study and it is in general observed that the 

new scheme of identification is superior to GA, AIS and PSO based training schemes [10.8, 

10.12, 10.13].  

In sensor networks, distributed parameter estimation plays an important role to estimate the 

temperature, pressure and humidity of a region using local measurements. Distributed linear, 

nonlinear and robust identifications are therefore have gained importance in sensor network 

environment. This problem has been studied in Chapter 9. We have assumed that the input-

output data is linear or nonlinear. Further, the cost function used is squared error or robust 

norm of errors like Wilcoxon norm. Two new distributed PSO algorithms : incremental PSO 

and diffusion PSO are developed to identify linear as well as nonlinear plants using local 

measurements. The new distributed algorithms are applied for parameter estimation of linear 

plants and response matching of nonlinear plants. It is in general observed that the diffusion 

PSO algorithm performs better than its counter part. Further the training samples are corrupted 

with outliers and the identification performance of Wilcoxon norm  minimization based model 

is shown to perform better than that offered by squared error minimization based model. It is 

observed in case of identification of both linear and nonlinear systems [10.11].  

10.2 Further research extension 

The work carried out in the present thesis can be extended in many directions. The proposed 

identification schemes are population based and hence take more training time and are not 

suitable for online applications. The differential evolution or such fast bio-inspired techniques 

can be applied to reduce the training time and hence may be applied for online control 

applications. The bio-inspired training methodology can also be effectively applied to develop 

efficient forecasting models for prediction of complex financial or other times series like stock 

market, exchange rates, interest rates, oil price etc. Improved learning algorithms using bio-

inspired techniques can be developed to reduce the population size and number of input 

samples used during training. Further the identification problem can be viewed as a multi-
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objective problem by considering the structure complexity and mean square error as two 

objectives. Then suitable multi-objective bio-inspired techniques may be used to achieve efficient 

reduced or pruned structure model for identification. Research work can also be carried out on 

the convergence analysis of bio-inspired optimization algorithms. Little progress is reported in 

the literature in this direction. Similarly effects of finite register length on the performance of 

such algorithms is important when such algorithms are implemented in DSP processor or 

VHDL. Therefore investigation can also be made in this field both using fixed and floating - 

point arithmetic.  
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