4,835 research outputs found

    Step-wedge cluster-randomised community-based trials: An application to the study of the impact of community health insurance

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BACKGROUND: We describe a step-wedge cluster-randomised community-based trial which has been conducted since 2003 to accompany the implementation of a community health insurance (CHI) scheme in West Africa. The trial aims at overcoming the paucity of evidence-based information on the impact of CHI. Impact is defined in terms of changes in health service utilisation and household protection against the cost of illness. Our exclusive focus on the description and discussion of the methods is justified by the fact that the study relies on a methodology previously applied in the field of disease control, but never in the field of health financing. METHODS: First, we clarify how clusters were defined both in respect of statistical considerations and of local geographical and socio-cultural concerns. Second, we illustrate how households within clusters were sampled. Third, we expound the data collection process and the survey instruments. Finally, we outline the statistical tools to be applied to estimate the impact of CHI. CONCLUSION: We discuss all design choices both in relation to methodological considerations and to specific ethical and organisational concerns faced in the field. On the basis of the appraisal of our experience, we postulate that conducting relatively sophisticated trials (such as our step-wedge cluster-randomised community-based trial) aimed at generating sound public health evidence, is both feasible and valuable also in low income settings. Our work shows that if accurately designed in conjunction with local health authorities, such trials have the potential to generate sound scientific evidence and do not hinder, but at times even facilitate, the implementation of complex health interventions such as CHI

    Sample size calculations for cluster randomised controlled trials with a fixed number of clusters

    Get PDF
    Background\ud Cluster randomised controlled trials (CRCTs) are frequently used in health service evaluation. Assuming an average cluster size, required sample sizes are readily computed for both binary and continuous outcomes, by estimating a design effect or inflation factor. However, where the number of clusters are fixed in advance, but where it is possible to increase the number of individuals within each cluster, as is frequently the case in health service evaluation, sample size formulae have been less well studied. \ud \ud Methods\ud We systematically outline sample size formulae (including required number of randomisation units, detectable difference and power) for CRCTs with a fixed number of clusters, to provide a concise summary for both binary and continuous outcomes. Extensions to the case of unequal cluster sizes are provided. \ud \ud Results\ud For trials with a fixed number of equal sized clusters (k), the trial will be feasible provided the number of clusters is greater than the product of the number of individuals required under individual randomisation (nin_i) and the estimated intra-cluster correlation (ρ\rho). So, a simple rule is that the number of clusters (Îș\kappa) will be sufficient provided: \ud \ud Îș\kappa > nin_i x ρ\rho\ud \ud Where this is not the case, investigators can determine the maximum available power to detect the pre-specified difference, or the minimum detectable difference under the pre-specified value for power. \ud \ud Conclusions\ud Designing a CRCT with a fixed number of clusters might mean that the study will not be feasible, leading to the notion of a minimum detectable difference (or a maximum achievable power), irrespective of how many individuals are included within each cluster. \ud \u

    ELSID-diabetes study-evaluation of a large scale implementation of disease management programmes for patients with type 2 diabetes. Rationale, design and conduct : a study protocol

    Get PDF
    Background: Diabetes model projects in different regions of Germany including interventions such as quality circles, patient education and documentation of medical findings have shown improvements of HbA1c levels, blood pressure and occurrence of hypoglycaemia in before-after studies (without control group). In 2002 the German Ministry of Health defined legal regulations for the introduction of nationwide disease management programs (DMP) to improve the quality of care in chronically ill patients. In April 2003 the first DMP for patients with type 2 diabetes was accredited. The evaluation of the DMP is essential and has been made obligatory in Germany by the Fifth Book of Social Code. The aim of the study is to assess the effectiveness of DMP by example of type 2 diabetes in the primary care setting of two German federal states (Rheinland-Pfalz and Sachsen-Anhalt). Methods/Design: The study is three-armed: a prospective cluster-randomized comparison of two interventions (DMP 1 and DMP 2) against routine care without DMP as control group. In the DMP group 1 the patients are treated according to the current situation within the German-Diabetes-DMP. The DMP group 2 represents diabetic care within ideally implemented DMP providing additional interventions (e.g. quality circles, outreach visits). According to a sample size calculation a sample size of 200 GPs (each GP including 20 patients) will be required for the comparison of DMP 1 and DMP 2 considering possible drop-outs. For the comparison with routine care 4000 patients identified by diabetic tracer medication and age (> 50 years) will be analyzed. Discussion: This study will evaluate the effectiveness of the German Diabetes-DMP compared to a Diabetes-DMP providing additional interventions and routine care in the primary care setting of two different German federal states

    Intraclass correlation coefficients for cluster randomized trials in care pathways and usual care: hospital treatment for heart failure.

    Get PDF
    BACKGROUND: Cluster randomized trials are increasingly being used in healthcare evaluation to show the effectiveness of a specific intervention. Care pathways (CPs) are becoming a popular tool to improve the quality of health-care services provided to heart failure patients. In order to perform a well-designed cluster randomized trial to demonstrate the effectiveness of Usual care (UC) and CP in heart failure treatment, the intraclass correlation coefficient (ICC) should be available before conducting a trial to estimate the required sample size. This study reports ICCs for both demographical and outcome variables from cluster randomized trials of heart failure patients in UC and care pathways. METHODS: To calculate the degree of within-cluster dependence, the ICC and associated 95% confidence interval were calculated by a method based on analysis of variance. All analyses were performed in R software version 2.15.1. RESULTS: ICCs for baseline characteristics ranged from 0.025 to 0.058. The median value and interquartile range was 0.043 [0.026-0.052] for ICCs of baseline characteristics. Among baseline characteristics, the highest ICCs were found for admission by referral or admission from home (ICC = 0.058) and the disease severity at admission (ICC = 0.046). Corresponding ICCs for appropriateness of the stay, length of stay and hospitalization cost were 0.069, 0.063, and 0.001 in CP group and 0.203, 0.020, 0.046 for usual care, respectively. CONCLUSION: Reported values of ICCs from present care pathway trial and UC results for some common outcomes will be helpful for estimating sample size in future clustered randomized heart failure trials, in particular for the evaluation of care pathways

    The batched stepped wedge design: A design robust to delays in cluster recruitment

    Get PDF
    Stepped wedge designs are an increasingly popular variant of longitudinal cluster randomized trial designs, and roll out interventions across clusters in a randomized, but step‐wise fashion. In the standard stepped wedge design, assumptions regarding the effect of time on outcomes may require that all clusters start and end trial participation at the same time. This would require ethics approvals and data collection procedures to be in place in all clusters before a stepped wedge trial can start in any cluster. Hence, although stepped wedge designs are useful for testing the impacts of many cluster‐based interventions on outcomes, there can be lengthy delays before a trial can commence. In this article, we introduce “batched” stepped wedge designs. Batched stepped wedge designs allow clusters to commence the study in batches, instead of all at once, allowing for staggered cluster recruitment. Like the stepped wedge, the batched stepped wedge rolls out the intervention to all clusters in a randomized and step‐wise fashion: a series of self‐contained stepped wedge designs. Provided that separate period effects are included for each batch, software for standard stepped wedge sample size calculations can be used. With this time parameterization, in many situations including when linear models are assumed, sample size calculations reduce to the setting of a single stepped wedge design with multiple clusters per sequence. In these situations, sample size calculations will not depend on the delays between the commencement of batches. Hence, the power of batched stepped wedge designs is robust to unexpected delays between batches

    Using Bayes Factors to evaluate evidence for no effect: examples from the SIPS project

    Get PDF
    Aims: To illustrate how Bayes Factors are important for determining the effectiveness of interventions. Method: We consider a case where inappropriate conclusions were publicly drawn based on significance testing, namely the SIPS Project (Screening and Intervention Programme for Sensible drinking), a pragmatic, cluster-randomized controlled trial in each of two healthcare settings and in the criminal justice system. We showhow Bayes Factors can disambiguate the non-significant findings from the SIPS Project and thus determine whether the findings represent evidence of absence or absence of evidence. We show how to model the sort of effects that could be expected, and how to check the robustness of the Bayes Factors. Results: The findings from the three SIPS trials taken individually are largely uninformative but, when data from these trials are combined, there is moderate evidence for a null hypothesis (H0) and thus for a lack of effect of brief intervention compared with simple clinical feedback and an alcohol information leaflet (B = 0.24, p = 0.43). Conclusion: Scientists who find non-significant results should suspend judgment – unless they calculate a Bayes Factor to indicate either that there is evidence for a null hypothesis (H0) over a (welljustified) alternative hypothesis (H1), or else that more data are needed

    Assistive devices, hip precautions, environmental modifications and training to prevent dislocation and improve function after hip arthroplasty

    Get PDF
    This is the protocol for a review and there is no abstract. The objectives are as follows: The aim of this review is to assess the effects of provision of assistive devices, education on hip precautions, environmental modifications and training in ADL and EADL for people undergoing hip arthroplasty
    • 

    corecore