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Summary

Stepped wedge designs are an increasingly popular variant of longitudinal cluster
randomized trial designs, and roll out interventions across clusters in a randomized,
but step-wise fashion. In the standard stepped wedge design, assumptions regarding
the effect of time on outcomes may require that all clusters start and end trial par-
ticipation at the same time. This would require ethics approvals and data collection
procedures to be in place in all clusters before a stepped wedge trial can start in any
cluster. Hence, although stepped wedge designs are useful for testing the impacts of
many cluster-based interventions on outcomes, there can be lengthy delays before a
trial can commence.
In this paper we introduce “batched” stepped wedge designs. Batched stepped wedge
designs allow clusters to commence the study in batches, instead of all at once, allow-
ing for staggered cluster recruitment. Like the stepped wedge, the batched stepped
wedge rolls out the intervention to all clusters in a randomized and step-wise fash-
ion: a series of self-contained stepped wedge designs. Provided that separate period
effects are included for each batch, software for standard stepped wedge sample size
calculations can be used. With this time parameterization, in many situations includ-
ing when linear models are assumed, sample size calculations reduce to the setting of
a single stepped wedge design with multiple clusters per sequence. In these situations
sample size calculations will not depend on the delays between the commencement of
batches. Hence, the power of batched stepped wedge designs is robust to unexpected
delays between batches.

KEYWORDS:
cluster randomised trial; intracluster correlation; sample size calculation; within-cluster correlation
structure

1 INTRODUCTION

The stepped wedge cluster randomised trial design, where clusters are randomised to switch from a control to an intervention
condition at different pre-specified time points, has found application in a wide variety of research areas (examples in Mdege
et al.1). Figure 1 displays an example of a conventional stepped wedge design with four periods and three treatment sequences.
The period lengths are typically of equal duration and define the times at which different clusters cross from the control to
the intervention condition. Stepped wedge designs are useful when intervention conditions applied at the level of the cluster
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cannot be removed once implemented, e.g. educational interventions, or when assessing changes in policy that will be rolled
out across systems. A crucial advantage of stepped wedge trials is that they may require fewer clusters and smaller total sample
sizes than standard cluster randomised trials, due to the within-cluster comparisons enabled by the stepped wedge design2. It is
well-recognised that the grouping of participants in clusters must be accounted for in sample size calculations and analysis of
data from stepped wedge trials. In addition, due to the dependence between time and treatment in the stepped wedge, it is also
essential to account for time in these calculations and analyses3.

FIGURE 1 An example of a standard stepped wedge design, with 4 periods and 3 sequences (0 indicates periods in which the
control condition is implemented; 1 indicates periods in which the intervention is implemented).

In the most commonly-used sample size formulas and statistical models for the design and analysis of stepped wedge trials
(e.g4,5,6) it is assumed that the effect of “time” on outcomes is identical across clusters, and that time is divided up into distinct
trial periods. If clusters commence study participation at different times (i.e. not all on the same date), then a distinction must
be drawn between “calendar time” and “time-on-trial” (the amount of time since a cluster commenced trial participation).
This distinction is particularly important for stepped wedge designs, where time and treatment are confounded. When clusters
commence participation in a trial at the same calendar time, then calendar time and time-on-trial will be aligned: this is the case
in Figure 1, where all clusters commence the study at the same time. When clusters are not aligned in calendar time, researchers
must consider the distinction between calendar time and time-on trial, and parameterize time to align with their assumptions
about the effect of time on outcomes in their statistical models. Three different time parameterizations that could be chosen
when clusters are not aligned in calendar time are displayed in Figure 2: calendar time effects could be shared across clusters;
time-on-trial effects could be shared across clusters; or separate period effects could be assumed in each batch. If clusters are
not aligned in calendar time, but a standard stepped wedge sample size formula is applied, the assumption is that time-on-trial
has an identical impact across all clusters, and there is no impact of calendar time (corresponding to time-on-trial effects that
are shared across batches as in the middle panel of Figure 2). Further, when the standard sample size formulas are applied, it is
required that there are no systematic differences between the batches of clusters that commence trial participation at different
time points.
In practice, the great majority of cluster randomised stepped wedge trials have been designed so that all the clusters commence

their participation at the same calendar time. This is likely to be for two reasons: firstly because clusters may all have expressed
an interest in collaborating from an early stage in the development of the trial, and are all ready to go when the trial begins,
but secondly, perhaps, because of concerns about the most appropriate way to model calendar time versus time-on-trial, and the
lack of methodological guidance. There may be situations where it is to a triallist’s advantage to stagger the commencement of
different clusters.
In this paper we formalize the situation where different groups of clusters commence trial participation at different calendar

times, defining the “batched stepped wedge design”. In the batched stepped wedge design, different groups of clusters commence
participation in a stepped wedge trial at different times, in a “batched” structure. The models we consider allow for systematic
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A: Calendar time effects shared across batches

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

Batch 1 β1 β2 β3 β4

Batch 2 β2 β3 β4 β5

Batch 3 β3 β4 β5 β6

B: Time-on-trial effects shared across batches

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

Batch 1 β1 β2 β3 β4

Batch 2 β1 β2 β3 β4

Batch 3 β1 β2 β3 β4

C: Separate time effects in each batch

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

Batch 1 β11 β12 β13 β14

Batch 2 β21 β22 β23 β24

Batch 3 β31 β32 β33 β34

FIGURE 2 Three different ways in which the effect of time can be parameterised in a design where clusters commence study
participation in three batches: the �s parameterise the time effects. For example, in the top panel, �1 parametrises the effect of
month 1 on outcomes. The top panel indicates how effects of time are shared across batches when the effects of calendar time
are assumed to be constant across batches; the middle panel indicates how the effects of time are shared across batches when
time-on-trial effects are assumed to be constant across batches; the bottom panel indicates that no time effects are shared across
batches when separate time effects are estimated in each batch.

differences between clusters that commence study participation at different time points, and for differences in the effects of
calendar and time-on-trial across these batches. This batched stepped wedge design is an alternative to the standard stepped
wedge design: the batched design shares some of the benefits of the stepped wedge but allows for randomization of clusters
to stepped wedge trial sequences in batches or blocks. Like the standard stepped wedge, the batched stepped wedge design
ensures that all clusters eventually receive the intervention; treatment switches are unidirectional (i.e. the intervention is never
removed once implemented); and the intervention is rolled out to each cluster in a randomized order. Examples when all batches
are identical are shown in Figure 3; examples when batches differ are shown in Figure 4. This batched stepped wedge design
can thus be conducted similarly to standard cluster randomized trials, where clusters may be randomised to the control or the
intervention condition in groups as clusters are recruited to the trial, rather than all at once.
Although guidance for researchers and statisticians in sample size and power calculations for batched stepped wedge and

related designs is lacking, researchers have already sought to implement designs similar to batched stepped wedge designs. For
example, in a study assessing the impact of a mobility program for patients aged 60+ years across 8 veterans affairs hospitals in
the USA on discharge destination of patients, Hastings et al.7 sought to implement a batched stepped wedge design, with two
batches of clusters. In reference to this batched structure, Hastings et al.7 stated, “The full implications of a blocked random-
ization from a statistical perspective require further study”. Similarly, the EAGLE study8, investigating the impact of a quality
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improvement intervention on the reduction of anastomotic leak following right colectomy, is randomizing hospitals in batches
to a series of dog-leg designs (the dog-leg can be considered as an incomplete three-sequence stepped wedge design)9.
The batched stepped wedge design may be appealing to researchers for three reasons: (1) depending on assumptions made

about the outcome regression model, the power of a batched stepped wedge design will be unaffected by delays to the com-
mencement of subsequent batches; (2) it can allow trials to get started sooner, by allowing clusters to come on-line in batches
(i.e. ethics approvals and data collection procedures can be rolled out across clusters after the study has commenced); and (3) it
does not require data to be collected by all clusters in all periods (i.e. this design can be thought of as an “incomplete” stepped
wedge design. Expanding on the first reason: in this paper we show that for linear mixed models, if separate period effects are
included for each batch of a batched stepped wedge (as in the bottom panel of Figure 2), then the power of the batched stepped
wedge design is equivalent to the power of a standard stepped wedge design with multiple clusters assigned to each sequence.
We also show that this will also hold when further assumptions about the effect of time are made when binary outcomes are
analysed using non-linear link functions and generalised estimating equations. That is, under these assumptions, the designs in
Figure 3 would have equivalent power to detect a difference as the design in Figure 1 with 3 clusters per sequence - although we
would encourage trialists to include more than 9 clusters in any stepped wedge trial10.
In this paper we provide researchers with guidance regarding the statistical aspects of batched stepped wedge designs, making

recommendations regarding the inclusion of batch and period effects in the outcome regression model. In Section 2 we describe
the batched stepped wedge design; in Section 3 we consider sample size calculations for the batched stepped wedge assuming
linear mixed models for outcomes; in Section 4 we consider binary outcomes modeled with generalized linear models fit via
generalized estimating equations. In Sections 3 and 4 we discuss what assumptions must be made in the specification of the
outcome regression model to ensure the robustness property of the batched stepped wedge (where study power is robust to delays
in the recruitment and/or commencement of the next batch) will hold. In Section 5 we discuss under what conditions standard
stepped wedge sample size software can be applied to batched stepped wedge designs and demonstrate this calculation via an
example. In Section 6 we present the results of a simulation study, and conclude with a discussion of our results in Section 7.

2 WHAT IS A BATCHED STEPPEDWEDGE DESIGN?

Simply put, a batched stepped wedge design is a series of stepped wedge cluster randomised trials. There may be some overlap
in time between the successive stepped wedge components of the batched stepped wedge design, i.e. some trial periods during
which data is being collected from more than one batch of the design. The component stepped wedge trials may be identical (as
in the batched stepped wedge designs in Figure 3), or they may differ (as in Figure 4). Different sets of clusters contribute data
in different batches of the study, and within each batch, clusters are randomised to the different sequences of the component
stepped wedge design. A batched stepped wedge design allows for the recruitment of clusters throughout the duration of a study:
once enough clusters for one of the component stepped wedges have been recruited, these clusters can be randomised to the
sequences of the next batch, and the next stepped wedge component can commence. The models that we propose account for
systematic differences between the clusters in different batches.
In a standard stepped wedge design, the implicit assumption is that all clusters commence participation in the trial at the

same time11 (or that there are assumptions made regarding the effect of time-on-trial as discussed in the Introduction). This is
in contrast to the way in which parallel, or standard, cluster randomised trials are conducted. When parallel cluster randomised
trials are conducted, clusters are often recruited throughout the duration of the trial. As is well known, in the (unstratified)
parallel cluster randomised trial, so long as equal numbers of clusters (with equal numbers of participants) are assigned to the
control and intervention arms at each randomisation point, this successive recruitment has no impact on the power of the study.
This also holds for cluster randomised crossover designs provided equal numbers of clusters with equal numbers of participants
implement the control and the intervention arm at each time point (again, this observation is limited to unstratified designs).
The reason for this is that for these parallel and cluster randomised trial designs, treatment condition and time are independent:
at each time point of the study, half of the clusters and participants will be in the control condition, and the other half will
be in the intervention. In the stepped wedge design, treatment and time are not independent: the proportion of clusters in the
intervention condition increases as time passes2. Depending on how time and randomisation batch are accounted for in the
outcome regression model used to inform sample size calculations, the batched randomisation could have an impact on study
power for batched stepped wedge designs, due to the confounding of time and treatment.
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It is now well-recognised that time/period effects need to be accounted for in sample size and power calculations for stepped
wedge designs3. Time/period effects must similarly be accounted for in sample size calculations for batched stepped wedge
designs; researchers must provide adequate justification if they do not account for period effects in this calculation. Further,
clusters that are included in different batches of the design may differ from each other, and thus it is recommended that batch
effects be included in the outcome regression model. When there is an overlap between batches (e.g. the middle and bottom
panels of Figure 3; the top panel of Figure 4), we also recommend that separate fixed period effects be included for each
batch (equivalent to fixed batch-by-period interaction terms being included in the model). There are three key reasons for this
recommendation: the first is that it requires making the fewest assumptions about the effects of time on outcomes and whether
these effects are shared across batches; the second is that under this assumption, the variance of the treatment effect estimator for
the batched stepped wedge is a combination of the variance for each component stepped wedge; the third (and most important)
is that under this assumption, in many situations, study power will be robust to delays in the commencement of batches
We now consider the variance of the treatment effect estimator for batched stepped wedge designs. We first consider linear

mixed models in Section 3, discussing batched stepped wedge designs with identical and non-identical components separately,
and then discuss generalized linear models fit via GEE in Section 4.

3 BATCHED STEPPEDWEDGE DESIGNS AND LINEAR MIXED MODELS

3.1 Batched stepped wedges with identical components
We first suppose that the batched stepped wedge design being considered is composed of B batches of identical T -period and
K-sequence designs (for the standard stepped wedge K = T − 1), and initially suppose that one cluster is assigned to each
sequence of each batch. We consider the following linear mixed model for the outcome Ybkti from participant i = 1,… , m in
period t = 1,… , T from cluster k = 1,… , K in batch b = 1,… , B:

Ybkti = �bt + �Xbkt + �bkt + �bkti, �bkti ∼ N(0, �2� ). (1)

In this model we have numbered the periods within each batch separately and thus period is identical to time-on-trial: Y11T i
represents the outcome for the ith participant in cluster 1 in the final period (period T ) of the first batch. If there is one period of
overlap between successive batches, period T of batch 1 would correspond to period 1 of batch 2. Our model set-up automatically
allows for separate period effects in each batch through the inclusion of the �bt period terms (i.e. the scenario in the bottom panel
of Figure 2): there are B × T period terms in total. These fixed period effects could alternatively be parameterised as period
effects (where the effect for each period is shared by all clusters contributing data in that period, no matter their batch), batch
effects, and terms for the period-by-batch interaction. This would require either constraining some of the �bt to be identical, or
re-numbering period from 1 to the total number of periods in the entire study (e.g. in Design 1 of Figure 3, the period subscript
would range from 1 to 12; in Design 2 of Figure 3, the period subscript would range from 1 to 10). Given that later in this paper
we recommend that separate period effects be included for each batch, throughout this paper we will number period within
each batch (conceiving of time as time-on-trial; although this distinction from calendar time is immaterial when including an
interaction with the batch term).
The treatment effect of interest is �, assumed to be constant across batches, and the treatment group of cluster k in batch b

at time period t is indicated by the binary variable Xbkt. The T -length vector of random effects �bk =
(

�bk1,… , �bkT
)T for

cluster k in batch b is assumed to have a multivariate normal distribution, centered around zero, with a variance matrix such
that var(�bkt) = �2� and cov(�bkt, �bks) = rts�2� , with 0 ≤ rts ≤ 1. If rts = r|t−s| for some 0 < r < 1, the discrete-time decay
model of12 is returned; if rts = r for some 0 < r ≤ 1, the nested exchangeable model is returned, with r = 1 corresponding to
the Hussey and Hughes model4.
It is mathematically convenient to collapse Model 1 to cluster-period means when investigating the statistical power of

designs13:

Ybkt =
1
m

m
∑

i=1
Ybkti = �bt + �Xbkt + �bkt + �bkt, �bkt ∼ N

(

0,
�2�
m

)

. (2)

In the following result we consider the variance of the treatment effect estimator for models of the form given in Equations 1
and 2.
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Result 1. Suppose that each batch of the batched stepped wedge design is identical, and models of the form in Equations 1
and 2 are considered, so that the cluster-period means from each cluster share a common variance matrix, denoted by V . V is a
T × T matrix, with the (t, s) element given by cov(Ybkt, Ybks). If Xbk is the T × 1 vector containing the treatment indicators of
cluster k in batch b for all T periods, then Xbk = Xb′k = Xk for all pairs of batches b and b′, and the variance of the treatment
effect estimator �̂ is given by:

var(�̂) = 1
B

[ K
∑

k=1
XT
k V

−1Xk −
1
K

( K
∑

k=1
XT
k V

−1
K
∑

k=1
Xk

)]−1

= 1
B
var0(�̂), (3)

where var0(�̂) is the variance of the treatment effect estimator for one of the components of the batched design with one cluster
per sequence. This result can be generalised to the situation where Cb clusters are assigned to each sequence of batch b. When
this is the case,

var(�̂) = 1
∑B
b=1 Cb

var0(�̂). (4)

Result 1 indicates that when batch-by-time interaction terms are included in the model for the outcome, the treatment effect
estimator is simply a weighted combination of treatment effect estimators obtained from each batch separately. Specifically, the
estimator from each batch is weighted by its variance.
Result 1 is a consequence of the more general result discussed in Section 3.2, with the proof provided in Section 1 of the

SupplementaryMaterial available online. Equation 3 indicates that the variance of the treatment effect estimator from the batched
stepped wedge design with B batches of identical T -period stepped wedge designs onK clusters is equivalent to the variance of
the treatment effect estimator for a single T -period stepped wedge design with B ×K clusters. When Cb clusters are assigned to
each sequence of batch b, the variance of the treatment effect estimator for the batched design is equivalent to that of the single
component design with

∑B
b=1 Cb clusters per sequence. When all batches are identical and a model such as that in Equation 1 is

assumed, sample size calculations for batched stepped wedge designs are thus straightforward.We demonstrate such calculations
in Section 5.
Model 1 can be extended to allow for closed or open cohort schemes (as described inKasza et al.14, for example), to incorporate

treatment effect heterogeneity (as described in Kasza et al.15, for example), and to allow for differing numbers of subjects in
each cluster in each period (as described in Kasza at al.16, for example). When treatment effect heterogeneity is included in the
model, the variance matrix V will not be identical across the clusters within a batch. However, the variance of the treatment
effect estimator for a batch (denoted by var0(�̂) in Equation 3) will be common across batches. Hence when treatment effect
heterogeneity is included in the model, the variance of the treatment effect estimator from the batched stepped wedge design
with B batches of identical component designs with Cb clusters per sequence in batch b is again equivalent to the variance of
the treatment effect estimator for a single component with

∑B
b=1 Cb clusters per sequence.

When different clusters have different numbers of participants in each cluster-period, theremay not be a common joint variance
matrix var0(�̂) across batches. When cluster sizes differ, but each cluster is expected to collect the same number of observations
in each of their data collection periods (i.e. cluster k collects mk observations in each period), researchers could calculate the
mean and coefficient of variation of cluster sizes and use the approximation presented in17 to obtain a common var0(�̂) for each
batch of the design.

3.2 Batched stepped wedges with non-identical components
We now consider batched stepped wedge designs with non-identical components (examples in Figure 4): we suppose that there
are B batches of stepped wedge designs, where batch b is a Tb-period stepped wedge design, withKb clusters. Result 2 provides
the variance of the treatment effect estimator when batches are no longer identical.

Result 2. If Ybkti is the outcome for participant i = 1,… , mbkt in period t = 1,… , Tb in cluster k = 1,… , Kb in batch
b = 1,… , B, and Yb is theMb =

∑Kb
k=1

∑Tb
t=1 mbkt-length vector of outcomes from all clusters in batch b, we suppose that

Yb ∼ N(Zbb + �Xb,Σb)

where b is the Tb-length vector of period effects for batch b, Zb is the design matrix associated with these period effects for
cluster b (of dimensionMb × Tb), � is the treatment effect of interest (assumed to be shared across all batches), Xb is theMb-
length vector indicating if a participant is in a cluster-period in the control condition (Xbkti = 0) or the intervention condition
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(Xbkti = 1), and Σb is theMb ×Mb covariance matrix of the outcomes from all clusters in batch b. Then if �̂ is the generalised
least squares estimator of �,

var(�̂) =

( B
∑

b=1

1
varb(�̂)

)−1

, (5)

where varb(�̂) is the variance of the generalised least squares estimator of � obtained by considering batch b only. Further, if
varb(�̂) = var0(�̂) then var(�̂) =

1
B
var0(�̂).

The proof of Result 2 is provided in Section 1 of the Supplementary Material. This result assumes normally distributed
outcomes where only the treatment effect is shared across batches; no assumptions are made regarding the equality of within-
cluster correlation structures within or between batches. However, if varb(�̂) = var0(�̂) for some var0(�̂) for all b = 1,… , B
then Equation 5 collapses to the result given in Result 1, i.e. the situation where all batches are identical. Once again, the
treatment effect estimator is the weighted sum of the estimators obtained for each batch, with each batch’s estimator weighted
by its variance.

4 BINARY AND COUNT OUTCOMES AND BATCHED STEPPEDWEDGES

Several modelling options are available when researchers are interested in binary, rather than continuous outcomes. One option,
discussed in Hussey and Hughes4, and taken in Hemming et al.5, is to apply Equation 1 to binary outcomes, setting �2� equal
to p(1 − p), where p = P (Ybkti = 1). The generalized least squares estimator of � is then considered, and results in Section 3
apply. However, it has been pointed out that the variance of the treatment effect estimator may not be adequately approximated
when this approach is applied18. Zhou et al.18 developed an alternative approach, assuming a truncated normal distribution for
cluster random effects, to ensure that estimated probabilities lie between 0 and 1. When batch and period are parameterised as in
Equation 1 (i.e. separate period effects are included for each batch in the outcome regressionmodel), the variance of the treatment
effect estimator can be written as the sum of variances for each stepped wedge component as for the continuous outcome.
When binary or count outcomes are of interest, researchers are frequently interested in estimating a marginal treatment effect

instead of the conditional treatment effect. The use of generalized estimating equations (GEE) for the analysis of longitudinal
cluster randomized trials allows for estimation of suchmarginal effects, and implications of this analysis approach for sample size
calculations have previously been discussed6,19. When the GEE approach is used, a working correlation matrix structure must
be assumed. This working correlation structure describes the pattern of within-cluster correlations; an exchangeable correlation
structure would imply equal correlations between all observations in a cluster, for example. As discussed in Li et al.6, when
GEE is the intended analysis approach, power calculations can proceed via generalized least squares. We now state the main
result for this scenario.

Result 3. If Ybkti is the outcome for participant i = 1,… , mbkt in period t = 1,… , Tb in cluster k = 1,… , Kb in batch
b = 1,… , B, with �bkti = E[Ybkti], we assume

g(�bkti) = �bt + �Xbkt. (6)

where g is the link function, �bt is the fixed effect for period t in batch b, � is the treatment effect of interest, and Xbkt is the
indicator for whether cluster k in batch b and period t is in the intervention or control condition. Let �b be the vector of means
for batch b. If �b = (�b1,… , �bTb)

T is the set of time effects for batch b, �̂b is the generalised least squares estimator of �b, and �̂
is the generalised least squares estimator of � then

var(�̂) =
⎛

⎜

⎜

⎝

B
∑

b=1

)�b
)�̂

T

W −1
b
)�b
)�̂

−
)�b
)�̂

T

W −1
b
)�b
)�̂b

[

)�b
)�̂b

T

W −1
b
)�b
)�̂b

]−1
)�b
)�̂b

T

W −1
b
)�b
)�̂

⎞

⎟

⎟

⎠

−1

=

( B
∑

b=1

1
varb(�̂)

)−1

(7)

where varb(�̂) is the variance of the treatment effect estimator obtained via GEE when batch b is considered separately, andWb
is the covariance matrix of the observations from batch b.Wb has the form A1∕2b RbA

1∕2
b . Ab is a diagonal matrix with elements
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given by var(Ybkti) and Rb is the assumed correlation matrix of the observations from batch b. If a binomial distribution for
outcomes is assumed �bkti = P (Ybkti = 1) and diagonal elements of Ab will be given by var(Ybkti) = �bkti(1 − �bkti).

The proof of this result is shown in the Appendix. As was the case in the linear mixed model scenario, the treatment effect
estimator is again a weighted sum of each batch’s treatment effect estimator. However, in contrast to the linear model discussed
in Section 3, the variance of the treatment effect estimator depends on the assumed period effects through �bkti in the model in
Equation 6. For example, when calculating sample sizes for a batched stepped wedge trial where a marginal model will be used
to analyse binary outcomes, researchers must include predicted prevalences of the outcome in each period of the trial in sample
size calculations. For binary outcomes that will be analysed in this way, the variance of the batched stepped wedge design will
collapse to the simplified form given in Equation 4 only if no period effects are included in the model. This is a strict assumption,
requiring the prevalence of the outcome in the control arm to be the same for the entire trial duration and across batches (i.e.
there are no secular time effects and no batch effects).
Result 3 applies not only to binary outcomes analysed with a logit link function; the proof given in the Appendix does not

rely on the choice of link function or the outcome type. Thus, Result 3 holds for binary outcomes with a linear link function, or
for count outcomes with a log link function, to name just two alternatives.

5 DEMONSTRATION OF POWER CALCULATIONS FOR BATCHED STEPPEDWEDGE
DESIGNS

We demonstrate how to calculate power for a batched stepped wedge design with two identical batches. The example we consider
is from Unni et al.20: in that paper, various different stepped wedge-like designs were considered for the Patient-Centered Care
Transitions in Heart Failure Trial (PACT-HF), including a batched design with “early” and “late” blocks, shown in Figure 5.
Each of these blocks was a 5-sequence, 6-period stepped wedge design, with one cluster assigned to each sequence, with 54
patients in each cluster in each of these periods. The primary outcome considered was a binary outcome, that was a composite
of a number of clinical outcomes, with a prevalence of 28% under the control condition, and an intracluster correlation of 0.01.
We assume that this intracluster correlation was conditional on the inclusion of a “batch” term in the model (a point we return
to in the Discussion), but in practice we would recommend assessing the impact of varying this correlation on study power. The
aim was to detect a 25% reduction in the prevalence of the outcome: that is, a reduction from 28% to 21%. The effect on the logit
link scale is -0.38.
We consider two methods for calculating the power of this design: first, we assume a linear model for the binary outcome

(applying the results of Section 3.1); second, we assume that a generalised estimating equations approach will be taken to fitting
a model with a logit link (applying the results of Section 4).
To perform the power calculation for the first approach, one need only calculate the power of a standard 6-period stepped

wedge design with 2 clusters assigned to each sequence. The Shiny CRT calculator5 accommodates this by allowing users to
set the number of clusters assigned to each sequence; the Stata steppedwedge program21 accommodates this through the “k”
option. When the linear model is assumed, this study has a power of 77% to detect the difference. There are two additional ways
to use the Shiny CRT calculator to calculate the power of the batched design. The user could get the precision of each of the
component designs separately using the the “Precision" tab on the Shiny CRT calculator, and then combine these according
to Result 1. Alternatively, the user could upload the design matrix for the batched design (ensuring that there is no overlap
between successive batches) and obtain the power of the design directly. Were a design matrix uploaded with an overlap between
successive batches, the Shiny CRT calculator would assume that batches with overlapping periods share period effects (that is,
calendar time effects would be shared across batches as in the top panel of Figure 2).
For the second method we use the R swdpwr package22 to calculate the power of the batched stepped wedge design. Since

the GEE approach depends on the baseline prevalence of the outcome, we consider two different scenarios:

1. The prevalence of the outcome under the control condition remains at 28% for the entire duration of the trial.

2. The prevalence of the outcome under the control condition is initially 30%, but decreases to 28% by the final period of
the trial, in a linear fashion. That is, at the time that the second batch starts data collection, the prevalence of the outcome
under the control condition is 29%.

Since there is no change in the underlying prevalence of the condition over time in the first scenario, the power of the batched
stepped wedge using the GEE approach is equivalent to the power of the 6-period stepped wedge with 2 clusters assigned to
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each sequence. The power of this design can be obtained directly by using the swdpower command in the swdpwr package, and
is 98.8%. Power is high due to the omission of period effects in this calculation.
For the second scenario, the variance of the treatment effect estimator must be obtained for each of the two component designs

separately. We assume that the treatment effect is -0.38 on the logit link scale for both batches, with the aim to detect a reduction
from 29% to 21.75% for the first batch, and from 28% to 21% in the second batch. The swdpower command cannot provide
the power of the batched design directly. However, the variance of the treatment effect estimator can be obtained for each batch
separately from the power calculated by the command. These variances are then combined using Result 3. The power of the
batched design to detect a change from 28% to 21% is 80.8%. Commands to replicate this calculation are provided in Section 2
of the Supplementary Material.

6 SIMULATION STUDY

We conducted a simulation study to verify our theoretical results, inspired by the PACT-HF design discussed in Section 5. As
in the design schematic in Figure 5, we consider a design consisting of two batches, each a 6-period stepped wedge design.
However, we vary the number of overlapping periods between the two batches from 0 (indicating no overlap between the two
batches, as in Figure 5) to 5 (batches that overlap completely); the key aim of this simulation study is to assess whether inclusion
of separate period effects for each batch has an impact on empirical power. Does power decrease as the number of batch-by-time
terms in the model increases? In the simulation we increase the total number of clusters to 40 (4 clusters assigned to each of the
10 sequences). We simulate both binary and continuous outcomes for a range of correlation parameter values. Code to replicate
this simulation study and the nested loop plots is available at https://github.com/jkasza/BatchSW.
Table 1 lists the parameters considered for the simulation study for the continuous outcomes. Along with varying the number

of periods of overlap between successive batches, the intracluster correlation and the cluster autocorrelation, datasets were
simulated with an effect size of 0 (to allow an examination of significance level) and 0.15. For each combination of parameters
in Table 1, 1000 datasets were simulated, with separate time effects in each batch (as in the bottom panel of Figure 2). The
period effects for each batch in each period were simulated from a normal distribution with mean 0 and variance 1. With 1000
simulated datasets, the Monte Carlo standard error associated with a power of 80% is expected to be around ±1.3%23. Each
simulated dataset was analysed using a linearmixed-effectsmodel with random effects for cluster and cluster-period, and separate
categorical fixed period effects for each batch (i.e. period effects, batch effects, and period by batch interaction terms). Our focus
here is on the comparison of theoretical and simulated power, so for each set of parameters, we calculated the percentage of
hypothesis testsH0 ∶ � = 0 rejected at the two-sided 5% significance level.

TABLE 1 The continuous outcome simulation settings. 1000 datasets were simulated for each combination of parameters (108
combinations).

Parameter Meaning Values
T Number of periods in each stepped wedge design 6
B Number of batches 2
K Number of clusters assigned to each sequence 4
m Number of observations in each cluster in each sequence 10
NO Number of periods of overlap between successive batches 5, 4, 3, 2, 1, 0
� Intra-cluster correlation 0.01, 0.05, 0.1
r Cluster autocorrelation 1, 0.95, 0.75
� Effect size 0, 0.15

Figure 6 displays the empirical type I error rates and power for each set of parameters using nested loop plots24. This figure
indicates that the number of periods of overlap does not have an impact on empirical type I error rates and power: as the number
of periods of overlap changes, there is no pattern to the variation in empirical type I error rates or power. This provides support
for our theoretical result, which indicates that if period, batch, and batch by period interaction terms are included in the model,
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the degree of overlap has no impact on study power. As expected, Figure 6 does indicate that the intracluster correlation and
cluster autocorrelation do have an impact on empirical power levels. It is interesting to note that for some combinations of the
cluster autocorrelation and intracluster correlation (e.g. when the cluster autocorrelation is 0.75, and the intracluster correlation
is equal to 0.05 or 0.1), the empirical power is slightly inflated. However, this does not change as the overlap between batches
decreases. That is, empirical power does not decrease as the number of time effects included in the model increases.
Table 2 lists the parameters considered for the simulation study for the binary outcomes. As was the case for the simulation

study for continuous outcomes, 1000 datasets were simulated for each combination of parameters. Binary data was simulated
using the method of Qaqish25, as coded by Li et al19. The range of intracluster correlations permitted by the simulation method
of Qaqish is limited, so we only consider intracluster correlations of 0.01 and 0.05 for the binary outcomes. Each simulated
dataset was analysed via GEE with a logit link with an exchangeable working correlation structure, with separate coefficients
for period (treated as a continuous covariate) in each batch (this choice is to match the sample size calculation in the R swdpwr
package22). Again, our focus is on the comparison of theoretical and simulated power, so for each set of parameters and each
analysis choice, we calculated the percentage of hypothesis tests H0 ∶ � = 0 rejected at the two-sided 5% significance level.
Theoretical power for each combination of parameters was also calculated, using the swdpwr package. Figure 7 displays the
empirical type I error rates and power for each set of parameters for the binary outcomes analysed via GEE with an exchangeable
working correlation. As for the simulation study for continuous outcomes, the simulated power and type I error rates do not
depend on the degree of overlap between successive batches, aligning with our theoretical results.

TABLE 2 The binary outcome simulation settings. 1000 datasets were simulated for each combination of parameters (24
combinations).

Parameter Meaning Values
T Number of periods in each stepped wedge design 6
B Number of batches 2
K Number of clusters assigned to each sequence 4
m Number of observations in each cluster in each sequence 10
P (Ybkt = 1|Xbkt = 0) Probability of the outcome in a non-treatment period 0.4 + t × 0.01
NO Number of periods of overlap between successive batches 5, 4, 3, 2, 1, 0
� Intra-cluster correlation 0.01, 0.05
r Cluster autocorrelation 1
P (Ybkt = 1|Xbkt = 1) Change in probability of the outcome caused by the intervention 0, 0.025
−P (Ykt = 1|Xkt = 0)

7 DISCUSSION

The batched stepped wedge design is a promising alternative to the standard stepped wedge design. By allowing clusters to come
on-line to the study in batches, the batched stepped wedge design has the potential to get started sooner than a standard stepped
wedge, which typically requires all clusters to commence at the same point in time. If separate period effects are included for
each batch (as in the bottom panel of Figure 2), the power of the batched stepped wedge design will, depending on the assumed
outcome regression model, be robust to delays in the commencement of batches. This holds when linear models for the outcome
are assumed, or when the prevalence of the outcome in the control condition is not expected to change over time. Hence, in these
settings, study power will be unaffected if there is an unanticipated delay before the next batch commences study involvement
when separate period effects are assumed for each batch. Under this assumed model, standard stepped wedge software can be
used to calculate the required sample size and study power for batched stepped wedge designs.
Our key result indicates that in certain situations a batched stepped wedge design consisting of B identical stepped wedge

designs provides the same power to detect an effect as one of the stepped wedge components with B clusters assigned to each
sequence. However, the choice of variance components will have an impact on sample size and power calculations for all batched
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stepped wedge designs. Inclusion of the batch term implies that variance components must now be treated as “within-batch”
variance components, and will likely be smaller than if a model without batch effects was considered. When batch effects are
included in the outcome regression model, variance components will be conditional on the inclusion of these batch effects in
the model. Hence, researchers must consider the impact of batches on variance components and intracluster correlations when
considering sample size and power.
Our key results have broad applicability. They generalise to batches of any other type of longitudinal cluster randomised trial

design. and do not rely on the design type. For example, our results apply to a “batched dog-leg” design. Provided that separate
period effects are included for each batch, the variance of such a design would have the form given in Sections 3 and 4: summing
over the variances of treatment effect obtained for each of the individual component designs. Further, our key results do not
depend on the precise form of the variance of the treatment effect estimator for each batch. The models considered in the Results
could be extended to allow for closed or open cohorts, treatment effect heterogeneity, etc. The key result only requires that
separate period effects are included in the outcome model for each batch: if this is the case, then the variances of the treatment
effect estimators for each batch can be combined according to Results 1, 2, or 3 as appropriate.
We recommend that separate period effects are included for each stepped wedge batch (i.e. the time parameterization as in

the bottom panel of Figure 2) to provide robustness to the sample size calculation in case of unexpected recruitment and set-up
delays. In addition to allowing for robustness to delays and making the fewest assumptions about the effect of time on outcomes,
assuming separate period effects across batches would be appropriate for trials where clusters in different batches are from
geographically distinct areas, or where clusters in different batches are otherwise distinct. Additionally, if batch effects are not
included in the outcome regression model and batches are assumed to have shared period effects for overlapping periods, then
study power will depend on the separation between successive batches. If unexpected delays between batches occur, the power
of the study will not be robust to this change, in that it will differ from that calculated a priori. Future work will investigate the
impact of increasing degrees of overlap between successive batches when period effects are shared across batches.
Adaptive variants of the batched stepped wedge design are a logical next step of this work. Such adaptations may include

sample size re-estimation, or more formal stopping rules for efficacy or futility of the intervention based on assessments at
suitable time points, for example after participants in each batch have completed their followup. While adaptive variants of the
stepped wedge design have been discussed in the literature, these do require that all clusters commence data collection at the
same time. These adaptive variants will be explored in future work.
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FIGURE 3 Four examples of batched stepped wedge designs with identical component designs (0 indicates control periods; 1
indicates intervention periods). Each of these designs has three batches of three-period stepped wedge designs, with differing
degrees of overlap between successive batches. Design 1 (top row): no overlap between successive batches; Design 2 (second
from top): overlap of one period between successive batches; Design 3 (second from bottom): overlap of two periods between
successive batches; Design 4 (bottom row): variable overlap between successive batches.
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FIGURE 4 Two examples of batched stepped wedge designs without identical component designs (0 indicates control periods;
1 indicates intervention periods).
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FIGURE 5 The design schematic for the PACT-HF trial: two batches of a 5-sequence stepped wedge design.
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FIGURE 6 Empirical and theoretical type I error rates (left panel) and power (right panel) for the simulated continuous out-
comes. ICC=intracluster correlation; CAC = cluster autocorrelation. Within each panel, sub-panels correspond to a different
value of the CAC. The theoretical and empirical Type I error rate or power is displayed for each combination of number of
periods of overlap, ICC, and CAC, with the empirical result plus and minus 2 standard errors also displayed.
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FIGURE 7 Empirical and theoretical type I error rates (left panel) and power (right panel) for the simulated binary outcomes
analysed via GEE. ICC=intracluster correlation. The theoretical and empirical Type I error rate or power is displayed for each
combination of number of periods of overlap and ICC, with the empirical result plus and minus 2 standard errors also displayed.
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Appendix to “The batched stepped wedge design: a design robust

to delays in cluster recruitment”

Jessica Kasza, Rhys Bowden, Richard Hooper, Andrew Forbes

jessica.kasza@monash.edu

School of Public Health and Preventive Medicine,

Monash University,

553 St Kilda Road, Melbourne 3004, Victoria, Australia

1 Proof of results

Result 1. We consider the following linear mixed model for the outcome Ybkti from participant i = 1, . . . ,m

in period t = 1, . . . , T from cluster k = 1, . . . ,K in batch b = 1, . . . , B:

Ybkti = βbt + θXbkt + αbkt + εbkti, εbkti ∼ N(0, σ2
ε ). (1)

The treatment effect of interest is θ, assumed to be constant across batches, and the treatment group of cluster

k in batch b at time period t is indicated by the binary variable Xbkt. βbt is the average outcome under the

control condition in period t of batch b. The T -length vector of random effects αbk = (αbk1, . . . , αbkT )
T

for

cluster k in batch b is assumed to have a multivariate normal distribution, centered around zero. We suppose

that the vector of cluster-period means is a sufficient statistic for the treatment effect, and that the cluster-

period means from each cluster share a common variance matrix, denoted by V . V is a T × T matrix, with

the (t, s) element given by cov(Ybkt, Ybks).

Supposing that each batch of the batched stepped wedge design is identical, and Xbk is the T × 1 vector

containing the treatment indicators of cluster k in batch b for all T periods, then Xbk = Xb′k = Xk for all

pairs of batches b and b′, the variance of the treatment effect estimator θ̂ is given by:

var(θ̂) =
1

B

[
K∑
k=1

XT
k V
−1Xk −

1

K

(
K∑
k=1

XT
k V
−1

K∑
k=1

Xk

)]−1
=

1

B
var0(θ̂), (2)

where var0(θ̂) is the variance of the treatment effect estimator for one of the components of the batched design

1
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with one cluster per sequence. This result can be generalised to the situation where Cb clusters are assigned

to each sequence of batch b. When this is the case,

var(θ̂) =
1∑B

b=1 Cb
var0(θ̂). (3)

Proof. The proof of this result follows directly from the proof of the more general Result 2, and is shown at

the end of the proof of that result below.

Result 2. If Ybkti is the outcome for participant i = 1, . . . ,mbkt in period t = 1, . . . , Tb in cluster k =

1, . . . ,Kb in batch b = 1, . . . , B, and Yb is the Mb =
∑Kb

k=1

∑Tb

t=1mbkt-length vector of outcomes from all

clusters in batch b, we suppose that

Yb ∼ N(Zbγb + θXb,Σb)

where γb is the Tb-length vector of period effects for batch b, Zb is the design matrix associated with these

period effects for cluster b (of dimension Mb×Tb), θ is the treatment effect of interest (assumed to be shared

across all batches), Xb is the Mb-length vector indicating if a participant is in a cluster-period in the control

condition (Xbkti = 0) or the intervention condition (Xbkti = 1), and Σb is the Mb×Mb covariance matrix of

the outcomes from all clusters in batch b. Then if θ̂ is the generalised least squares estimator of θ,

var(θ̂) =

(
B∑
b=1

1

varb(θ̂)

)−1
, (4)

where varb(θ̂) is the variance of the generalised least squares estimator of θ obtained by considering batch b

only. Further, if varb(θ̂) = var0(θ̂) then var(θ̂) = 1
B var0(θ̂).

Proof. First write Y = (Y1, . . . , YB)′, the
∑B
b=1Mb-length vector of all outcomes from the batched stepped

wedge trial. Then we can write

Y ∼ N(Gβ,Σ) (5)

with

G =



Z1 0M1×T2
· · · 0M1×TB

X1

0M2×T1 Z2 · · · 0M2×TB
X2

...
...

0MB×T1
0MB×T2

· · · ZB XB


, β =



γ1

γ2
...

γB

θ


, Σ =



Σ1 0M1×M2
· · · 0M1×MB

0M2×M1 Σ2 · · · 0M2×MB

...
. . .

0MB×M1
0MB×M2

· · · ΣB


(6)

2
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where 0n×m is an n×m matrix of zeros. Then the generalised least squares estimator of β is given by:

β̂ = (GTΣ−1G)−1GTΣ−1Y

and

var(β̂) = (GTΣ−1G)−1.

The blocked structure of G and Σ means that

GTΣ−1G =



ZT1 Σ−11 Z1 0M1×M2
· · · 0M1×MB

ZT1 Σ−11 X1

0M2×M1
ZT2 Σ−12 Z2 · · · 0M2×MB

ZT2 Σ−11 X2

...
. . .

...

0MB×M1 0MB×M2 · · · ZTBΣ−1B ZB ZTBΣ−11 XB

XT
1 Σ−11 Z1 XT

2 Σ−12 Z2 · · · XT
BΣ−1B ZB

∑B
b=1X

T
b ΣbXb


(7)

and var(θ̂) is the final entry in (GTΣ−1G)−1

var(θ̂) =

{
B∑
b=1

XT
b Σ−1b Xb −

B∑
b=1

XT
b Σ−1b Zb

(
ZTb Σ−1b Zb

)−1
ZTb Σ−1b Xb

}−1

=

{
B∑
b=1

(
XT
b Σ−1b Xb −XT

b Σ−1b Zb
(
ZTb Σ−1b Zb

)−1
ZTb Σ−1b Xb

)}−1
. (8)

Note that varb(θ̂) =
(
XT
b Σ−1b Xb −XT

b Σ−1b Zb
(
ZTb Σ−1b Zb

)−1
ZTb Σ−1b Xb

)−1
(i.e. the variance of θ̂ were

only batch b used to estimate θ).

Hence,

var(θ̂) =

{
B∑
b=1

varb(θ̂)
−1

}−1
. (9)

If varb(θ̂) = var0(θ̂) for b = 1, . . . , B, then

var(θ̂) =
(
Bvar0(θ̂)−1

)−1
=

1

B
var0(θ̂). (10)

Result 3. If Ybkti is the outcome for participant i = 1, . . . ,mbkt in period t = 1, . . . , Tb in cluster k =

3
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1, . . . ,Kb in batch b = 1, . . . , B, with µbkti = E[Ybkti], we assume

g(µbkti) = βbt + θXbkt. (11)

where g is the link function, βbt is the fixed effect for period t in batch b, θ is the treatment effect of interest,

and Xbkt is the indicator for whether cluster k in batch b and period t is in the intervention or control

condition. Let µb be the vector of means for batch b. If βb = (βb1, . . . , βbTb
)T is the set of time effects for

batch b, β̂b is the generalised least squares estimator of βb, and θ̂ is the generalised least squares estimator of

θ then

var(θ̂) =

 B∑
b=1

∂µb

∂θ̂

T

W−1b

∂µb

∂θ̂
− ∂µb

∂θ̂

T

W−1b

∂µb

∂β̂b

[
∂µb

∂β̂b

T

W−1b

∂µb

∂β̂b

]−1
∂µb

∂β̂b

T

W−1b

∂µb

∂θ̂

−1

=

(
B∑
b=1

1

varb(θ̂)

)−1
(12)

where varb(θ̂) is the variance of the treatment effect estimator obtained via GEE when batch b is considered

separately, and Wb is the covariance matrix of the observations from batch b. Wb has the form A
1/2
b RbA

1/2
b .

Ab is a diagonal matrix with elements given by var(Ybkti) and Rb is the assumed correlation matrix of the

observations from batch b.

If a binomial distribution for outcomes is assumed µbkti = P (Ybkti = 1) and diagonal elements of Ab will

be given by var(Ybkti) = µbkti(1 − µbkti).

Proof. If Ybkti is the outcome for participant i in period t in cluster k in batch b, then write µbkti = E[Ybkti]

and consider some link function g so that

g(µbkti) = βbt + θXbkt.

Consider the vectors of all parameters (including the treatment effect θ) β = (β11, β12, . . . , β1T , . . . , βB1, βB2, . . . , βBT , θ)
T ,

all observations Y and all means µ. Then, by [2] the GEE estimator for β is given by the solution to

DTV −1(Y − µ) = 0 (13)

where D = ∂µ
∂βT , V = A1/2RA1/2 where R is the working correlation matrix and A has diagonal elements

given by φvar(Ybkti). φ is a dispersion parameter; for our derivations we will assume that this is equal to

1. R is supposed to have a block-diagonal structure, with the blocks Rb corresponding to batches. That is,

we only assume that observations in distinct batches are independent but make no assumptions about the

supposed correlation within batches. The estimator β̂ will be approximately normally distributed with mean

4
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β and covariance matrix given by (DTV −1D)−1. Of interest is the variance of θ̂, which corresponds to the

element in the lower right hand corner of this matrix.

Since separate period effects are assumed for each batch in the model in Equation 11, we can write

g(µ) =



W1 X1

W2 X2

. . .
...

WB XB





β1

β2
...

βB

θ


(14)

where βb = (βb1, . . . , βbT )T is the vector of time effects for batch b, and Wb is the corresponding design matrix

for these time effects. Xb is the vector of treatment effect indicators for batch b. With Yb, µb and Vb defined

similarly, Equation 13 can be written as

B∑
b=1

DT
b V
−1
b (Yb − µb) = 0

where

Db =

(
0 · · · 0 ∂µb

∂βb
0 · · · 0 ∂µb

∂θ

)
.

Hence we can write the variance of the estimator β as

(
B∑
b=1

DT
b V
−1
b Db

)−1
=



∂µ1

∂β1

T
V −11

∂µ1

∂β1
· · · ∂µ1

∂β1

T
V −11

∂µ1

∂θ

...
. . .

...

· · · ∂µB

∂βB

T
V −1B

∂µB

∂βB

∂µB

∂βB

T
V −1B

∂µB

∂θ

∂µ1

∂β1

T
V −11

∂µ1

∂θ · · · ∂µB

∂βB

T
V −1B

∂µB

∂θ

∑B
b=1

∂µb

∂θ

T
V −1b

∂µb

∂θ



−1

. (15)

Interest is in the variance of θ̂, which is given by the bottom right entry of this matrix:

var(θ̂) =

 B∑
b=1

∂µb
∂θ

T

V −1b

∂µb
∂θ

− ∂µb
∂θ

T

V −1b

∂µb
∂βb

{
∂µb
∂βb

T

V −1b

∂µb
∂βb

}−1
∂µb
∂βb

T

V −1b

∂µb
∂θ

−1

=

(
B∑
b=1

1

varb(θ̂)

)−1
(16)

where varb(θ̂) is the variance of the treatment effect estimator obtained when batch b is considered indepen-

dently.

5
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2 Code to replicate power calculations

This code uses version 1.6 of the swdpwr R package [1].

###################

# Demonstration for PACT-HF study #

###################

#2 batches of a 5-sequence, 6-period stepped wedge design

#54 patients in each cluster in each period

#Baseline prevalence of 28%

#ICC 0.01

#Reduction to 21%

library(swdpwr)

onebatch <- matrix(c(c(0,1,1,1,1,1),c(0,0,1,1,1,1), c(0,0,0,1,1,1),

c(0,0,0,0,1,1), c(0,0,0,0,0,1)),5,6,byrow=TRUE)

completedesign <- rbind(onebatch, onebatch)

PACTHF_K <- 54

# ICC=0.01, Hussey and Hughes within-cluster correlation structure

PACTHF_alpha0 <- 0.01

PACTHF_alpha1 <- 0.01

# P(outcome|control) = 0.28

# P(outcome|treatment) = 0.21

# First: assume that there is no underlying trend in probability of outcome

PACTHF_meanresponse_start = 0.28

PACTHF_meanresponse_end0 = 0.28

PACTHF_meanresponse_end1 = 0.21

PACTHFpower_nochange <- swdpower(K = PACTHF_K, design = completedesign,

family = "binomial", model = "marginal",

6
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link = "logit", type = "cross-sectional",

meanresponse_start = PACTHF_meanresponse_start,

meanresponse_end0 = PACTHF_meanresponse_end0,

meanresponse_end1 = PACTHF_meanresponse_end1,

typeIerror = 0.05, alpha0 = PACTHF_alpha0, alpha1 = PACTHF_alpha1)

#Power is 98.8%

#Allowing for baseline prevalence to change over time

PACTHF_batch1 <- swdpower(K = PACTHF_K, design = onebatch,

family = "binomial", model = "marginal",

link = "logit", type = "cross-sectional",

meanresponse_start = 0.30,

meanresponse_end0 = 0.29,

meanresponse_end1 = 0.2175,

typeIerror = 0.05, alpha0 = PACTHF_alpha0, alpha1 = PACTHF_alpha1)

PACTHF_batch2 <- swdpower(K = PACTHF_K, design = onebatch,

family = "binomial", model = "marginal",

link = "logit", type = "cross-sectional",

meanresponse_start = 0.29,

meanresponse_end0 = 0.28,

meanresponse_end1 = 0.21,

typeIerror = 0.05, alpha0 = PACTHF_alpha0, alpha1 = PACTHF_alpha1)

#Variance of treatment effect estimator for each batch:

PACTHFtreateff_batch1 <- abs(as.numeric(PACTHF_batch1$treatment.effect.beta))

PACTHFpower_batch1 <- as.numeric(PACTHF_batch1$Power)

PACTHFvar_batch1 <- 1/(( qnorm(1-PACTHFpower_batch1) + qnorm(0.025))/PACTHFtreateff_batch1)^2

PACTHFtreateff_batch2 <- abs(as.numeric(PACTHF_batch2$treatment.effect.beta]))

PACTHFpower_batch2 <- as.numeric(PACTHF_batch2$Power)

PACTHFvar_batch2 <- 1/(( qnorm(1-PACTHFpower_batch2) + qnorm(0.025))/PACTHFtreateff_batch2)^2

7

Page 24 of 48Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

#The effect size we wish to detect is -0.38

PACTHF_var_batches <- 1/(1/PACTHFvar_batch1 + 1/PACTHFvar_batch2)

PACTHFpower_batches <- pnorm(qnorm(0.025)+0.38/sqrt(PACTHF_var_batches))

#Power is 80.7698%

References

[1] J. Chen, X. Zhou, F. Li, and D. Spiegelman. swdpwr: A SAS macro and an R package for power

calculation in stepped wedge cluster randomized trials. ArXiV, page arxiv:2011.06031v1, 2020.

[2] S. L. Zeger and K.-Y. Liang. Longitudinal data analysis for discrete and continuous outcomes. Biometrics,

42:121–130, 1986.

8

Page 25 of 48 Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

The batched stepped wedge design: a design robust to delays in
cluster recruitment

Jessica Kasza1 | Rhys Bowden1 | Richard Hooper2 | Andrew B. Forbes1

1School of Public Health and Preventive
Medicine, Monash University, Melbourne,
Australia

2Centre for Primary Care and Public Health,
Queen Mary University of London, United
Kingdom

Correspondence
*Jessica Kasza, Monash University, 553 St
Kilda Road, Melbourne, Victoria 3004,
Australia. Email: jessica.kasza@monash.edu

Summary

Stepped wedge designs are an increasingly popular variant of longitudinal cluster
randomized trial designs, and roll out interventions across clusters in a randomized,
but step-wise fashion. In the standard stepped wedge design, assumptions regarding
the effect of time on outcomes may require that all clusters start and end trial par-
ticipation at the same time. This would require ethics approvals and data collection
procedures to be in place in all clusters before a stepped wedge trial can start in any
cluster. Hence, although stepped wedge designs are useful for testing the impacts of
many cluster-based interventions on outcomes, there can be lengthy delays before a
trial can commence.
In this paper we introduce “batched” stepped wedge designs. Batched stepped wedge
designs allow clusters to commence the study in batches, instead of all at once, allow-
ing for staggered cluster recruitment. Like the stepped wedge, the batched stepped
wedge rolls out the intervention to all clusters in a randomized and step-wise fash-
ion: a series of self-contained stepped wedge designs. Provided that separate period
effects are included for each batch, software for standard stepped wedge sample size
calculations can be used. With this time parameterization, in many situations includ-
ing when linear models are assumed, sample size calculations reduce to the setting of
a single stepped wedge design with multiple clusters per sequence. In these situations
sample size calculations will not depend on the delays between the commencement of
batches. Hence, the power of batched stepped wedge designs is robust to unexpected
delays between batches.

KEYWORDS:
cluster randomised trial; intracluster correlation; sample size calculation; within-cluster correlation
structure

1 INTRODUCTION

The stepped wedge cluster randomised trial design, where clusters are randomised to switch from a control to an intervention
condition at different pre-specified time points, has found application in a wide variety of research areas (examples in Mdege
et al.1). Figure 1 displays an example of a conventional stepped wedge design with four periods and three treatment sequences.
The period lengths are typically of equal duration and define the times at which different clusters cross from the control to
the intervention condition. Stepped wedge designs are useful when intervention conditions applied at the level of the cluster
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cannot be removed once implemented, e.g. educational interventions, or when assessing changes in policy that will be rolled
out across systems. A crucial advantage of stepped wedge trials is that they may require fewer clusters and smaller total sample
sizes than standard cluster randomised trials, due to the within-cluster comparisons enabled by the stepped wedge design2. It is
well-recognised that the grouping of participants in clusters must be accounted for in sample size calculations and analysis of
data from stepped wedge trials. In addition, due to the dependence between time and treatment in the stepped wedge, it is also
essential to account for time in these calculations and analyses3.

FIGURE 1 An example of a standard stepped wedge design, with 4 periods and 3 sequences (0 indicates periods in which the
control condition is implemented; 1 indicates periods in which the intervention is implemented).

In the most commonly-used sample size formulas and statistical models for the design and analysis of stepped wedge trials
(e.g4,5,6) it is assumed that the effect of “time” on outcomes is identical across clusters, and that time is divided up into distinct
trial periods. If clusters commence study participation at different times (i.e. not all on the same date), then a distinction must
be drawn between “calendar time” and “time-on-trial” (the amount of time since a cluster commenced trial participation).
This distinction is particularly important for stepped wedge designs, where time and treatment are confounded. When clusters
commence participation in a trial at the same calendar time, then calendar time and time-on-trial will be aligned: this is the case
in Figure 1, where all clusters commence the study at the same time. When clusters are not aligned in calendar time, researchers
must consider the distinction between calendar time and time-on trial, and parameterize time to align with their assumptions
about the effect of time on outcomes in their statistical models. Three different time parameterizations that could be chosen
when clusters are not aligned in calendar time are displayed in Figure 2: calendar time effects could be shared across clusters;
time-on-trial effects could be shared across clusters; or separate period effects could be assumed in each batch. If clusters are
not aligned in calendar time, but a standard stepped wedge sample size formula is applied, the assumption is that time-on-trial
has an identical impact across all clusters, and there is no impact of calendar time (corresponding to time-on-trial effects that
are shared across batches as in the middle panel of Figure 2). Further, when the standard sample size formulas are applied, it is
required that there are no systematic differences between the batches of clusters that commence trial participation at different
time points.
In practice, the great majority of cluster randomised stepped wedge trials have been designed so that all the clusters commence

their participation at the same calendar time. This is likely to be for two reasons: firstly because clusters may all have expressed
an interest in collaborating from an early stage in the development of the trial, and are all ready to go when the trial begins,
but secondly, perhaps, because of concerns about the most appropriate way to model calendar time versus time-on-trial, and the
lack of methodological guidance. There may be situations where it is to a triallist’s advantage to stagger the commencement of
different clusters.
In this paper we formalize the situation where different groups of clusters commence trial participation at different calendar

times, defining the “batched stepped wedge design”. In the batched stepped wedge design, different groups of clusters commence
participation in a stepped wedge trial at different times, in a “batched” structure. The models we consider allow for systematic
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A: Calendar time effects shared across batches

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

Batch 1 β1 β2 β3 β4

Batch 2 β2 β3 β4 β5

Batch 3 β3 β4 β5 β6

B: Time-on-trial effects shared across batches

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

Batch 1 β1 β2 β3 β4

Batch 2 β1 β2 β3 β4

Batch 3 β1 β2 β3 β4

C: Separate time effects in each batch

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

Batch 1 β11 β12 β13 β14

Batch 2 β21 β22 β23 β24

Batch 3 β31 β32 β33 β34

FIGURE 2 Three different ways in which the effect of time can be parameterised in a design where clusters commence study
participation in three batches: the �s parameterise the time effects. For example, in the top panel, �1 parametrises the effect of
month 1 on outcomes. The top panel indicates how effects of time are shared across batches when the effects of calendar time
are assumed to be constant across batches; the middle panel indicates how the effects of time are shared across batches when
time-on-trial effects are assumed to be constant across batches; the bottom panel indicates that no time effects are shared across
batches when separate time effects are estimated in each batch.

differences between clusters that commence study participation at different time points, and for differences in the effects of
calendar and time-on-trial across these batches. This batched stepped wedge design is an alternative to the standard stepped
wedge design: the batched design shares some of the benefits of the stepped wedge but allows for randomization of clusters
to stepped wedge trial sequences in batches or blocks. Like the standard stepped wedge, the batched stepped wedge design
ensures that all clusters eventually receive the intervention; treatment switches are unidirectional (i.e. the intervention is never
removed once implemented); and the intervention is rolled out to each cluster in a randomized order. Examples when all batches
are identical are shown in Figure 3; examples when batches differ are shown in Figure 4. This batched stepped wedge design
can thus be conducted similarly to standard cluster randomized trials, where clusters may be randomised to the control or the
intervention condition in groups as clusters are recruited to the trial, rather than all at once.
Although guidance for researchers and statisticians in sample size and power calculations for batched stepped wedge and

related designs is lacking, researchers have already sought to implement designs similar to batched stepped wedge designs. For
example, in a study assessing the impact of a mobility program for patients aged 60+ years across 8 veterans affairs hospitals in
the USA on discharge destination of patients, Hastings et al.7 sought to implement a batched stepped wedge design, with two
batches of clusters. In reference to this batched structure, Hastings et al.7 stated, “The full implications of a blocked random-
ization from a statistical perspective require further study”. Similarly, the EAGLE study8, investigating the impact of a quality
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improvement intervention on the reduction of anastomotic leak following right colectomy, is randomizing hospitals in batches
to a series of dog-leg designs (the dog-leg can be considered as an incomplete three-sequence stepped wedge design)9.
The batched stepped wedge design may be appealing to researchers for three reasons: (1) depending on assumptions made

about the outcome regression model, the power of a batched stepped wedge design will be unaffected by delays to the com-
mencement of subsequent batches; (2) it can allow trials to get started sooner, by allowing clusters to come on-line in batches
(i.e. ethics approvals and data collection procedures can be rolled out across clusters after the study has commenced); and (3) it
does not require data to be collected by all clusters in all periods (i.e. this design can be thought of as an “incomplete” stepped
wedge design. Expanding on the first reason: in this paper we show that for linear mixed models, if separate period effects are
included for each batch of a batched stepped wedge (as in the bottom panel of Figure 2), then the power of the batched stepped
wedge design is equivalent to the power of a standard stepped wedge design with multiple clusters assigned to each sequence.
We also show that this will also hold when further assumptions about the effect of time are made when binary outcomes are
analysed using non-linear link functions and generalised estimating equations. That is, under these assumptions, the designs in
Figure 3 would have equivalent power to detect a difference as the design in Figure 1 with 3 clusters per sequence - although we
would encourage trialists to include more than 9 clusters in any stepped wedge trial10.
In this paper we provide researchers with guidance regarding the statistical aspects of batched stepped wedge designs, making

recommendations regarding the inclusion of batch and period effects in the outcome regression model. In Section 2 we describe
the batched stepped wedge design; in Section 3 we consider sample size calculations for the batched stepped wedge assuming
linear mixed models for outcomes; in Section 4 we consider binary outcomes modeled with generalized linear models fit via
generalized estimating equations. In Sections 3 and 4 we discuss what assumptions must be made in the specification of the
outcome regression model to ensure the robustness property of the batched stepped wedge (where study power is robust to delays
in the recruitment and/or commencement of the next batch) will hold. In Section 5 we discuss under what conditions standard
stepped wedge sample size software can be applied to batched stepped wedge designs and demonstrate this calculation via an
example. In Section 6 we present the results of a simulation study, and conclude with a discussion of our results in Section 7.

2 WHAT IS A BATCHED STEPPEDWEDGE DESIGN?

Simply put, a batched stepped wedge design is a series of stepped wedge cluster randomised trials. There may be some overlap
in time between the successive stepped wedge components of the batched stepped wedge design, i.e. some trial periods during
which data is being collected from more than one batch of the design. The component stepped wedge trials may be identical (as
in the batched stepped wedge designs in Figure 3), or they may differ (as in Figure 4). Different sets of clusters contribute data
in different batches of the study, and within each batch, clusters are randomised to the different sequences of the component
stepped wedge design. A batched stepped wedge design allows for the recruitment of clusters throughout the duration of a study:
once enough clusters for one of the component stepped wedges have been recruited, these clusters can be randomised to the
sequences of the next batch, and the next stepped wedge component can commence. The models that we propose account for
systematic differences between the clusters in different batches.
In a standard stepped wedge design, the implicit assumption is that all clusters commence participation in the trial at the

same time11 (or that there are assumptions made regarding the effect of time-on-trial as discussed in the Introduction). This is
in contrast to the way in which parallel, or standard, cluster randomised trials are conducted. When parallel cluster randomised
trials are conducted, clusters are often recruited throughout the duration of the trial. As is well known, in the (unstratified)
parallel cluster randomised trial, so long as equal numbers of clusters (with equal numbers of participants) are assigned to the
control and intervention arms at each randomisation point, this successive recruitment has no impact on the power of the study.
This also holds for cluster randomised crossover designs provided equal numbers of clusters with equal numbers of participants
implement the control and the intervention arm at each time point (again, this observation is limited to unstratified designs).
The reason for this is that for these parallel and cluster randomised trial designs, treatment condition and time are independent:
at each time point of the study, half of the clusters and participants will be in the control condition, and the other half will
be in the intervention. In the stepped wedge design, treatment and time are not independent: the proportion of clusters in the
intervention condition increases as time passes2. Depending on how time and randomisation batch are accounted for in the
outcome regression model used to inform sample size calculations, the batched randomisation could have an impact on study
power for batched stepped wedge designs, due to the confounding of time and treatment.
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It is now well-recognised that time/period effects need to be accounted for in sample size and power calculations for stepped
wedge designs3. Time/period effects must similarly be accounted for in sample size calculations for batched stepped wedge
designs; researchers must provide adequate justification if they do not account for period effects in this calculation. Further,
clusters that are included in different batches of the design may differ from each other, and thus it is recommended that batch
effects be included in the outcome regression model. When there is an overlap between batches (e.g. the middle and bottom
panels of Figure 3; the top panel of Figure 4), we also recommend that separate fixed period effects be included for each
batch (equivalent to fixed batch-by-period interaction terms being included in the model). There are three key reasons for this
recommendation: the first is that it requires making the fewest assumptions about the effects of time on outcomes and whether
these effects are shared across batches; the second is that under this assumption, the variance of the treatment effect estimator for
the batched stepped wedge is a combination of the variance for each component stepped wedge; the third (and most important)
is that under this assumption, in many situations, study power will be robust to delays in the commencement of batches
We now consider the variance of the treatment effect estimator for batched stepped wedge designs. We first consider linear

mixed models in Section 3, discussing batched stepped wedge designs with identical and non-identical components separately,
and then discuss generalized linear models fit via GEE in Section 4.

3 BATCHED STEPPEDWEDGE DESIGNS AND LINEAR MIXED MODELS

3.1 Batched stepped wedges with identical components
We first suppose that the batched stepped wedge design being considered is composed of B batches of identical T -period and
K-sequence designs (for the standard stepped wedge K = T − 1), and initially suppose that one cluster is assigned to each
sequence of each batch. We consider the following linear mixed model for the outcome Ybkti from participant i = 1,… , m in
period t = 1,… , T from cluster k = 1,… , K in batch b = 1,… , B:

Ybkti = �bt + �Xbkt + �bkt + �bkti, �bkti ∼ N(0, �2� ). (1)

In this model we have numbered the periods within each batch separately and thus period is identical to time-on-trial: Y11T i
represents the outcome for the ith participant in cluster 1 in the final period (period T ) of the first batch. If there is one period of
overlap between successive batches, period T of batch 1 would correspond to period 1 of batch 2. Our model set-up automatically
allows for separate period effects in each batch through the inclusion of the �bt period terms (i.e. the scenario in the bottom panel
of Figure 2): there are B × T period terms in total. These fixed period effects could alternatively be parameterised as period
effects (where the effect for each period is shared by all clusters contributing data in that period, no matter their batch), batch
effects, and terms for the period-by-batch interaction. This would require either constraining some of the �bt to be identical, or
re-numbering period from 1 to the total number of periods in the entire study (e.g. in Design 1 of Figure 3, the period subscript
would range from 1 to 12; in Design 2 of Figure 3, the period subscript would range from 1 to 10). Given that later in this paper
we recommend that separate period effects be included for each batch, throughout this paper we will number period within
each batch (conceiving of time as time-on-trial; although this distinction from calendar time is immaterial when including an
interaction with the batch term).
The treatment effect of interest is �, assumed to be constant across batches, and the treatment group of cluster k in batch b

at time period t is indicated by the binary variable Xbkt. The T -length vector of random effects �bk =
(

�bk1,… , �bkT
)T for

cluster k in batch b is assumed to have a multivariate normal distribution, centered around zero, with a variance matrix such
that var(�bkt) = �2� and cov(�bkt, �bks) = rts�2� , with 0 ≤ rts ≤ 1. If rts = r|t−s| for some 0 < r < 1, the discrete-time decay
model of12 is returned; if rts = r for some 0 < r ≤ 1, the nested exchangeable model is returned, with r = 1 corresponding to
the Hussey and Hughes model4.
It is mathematically convenient to collapse Model 1 to cluster-period means when investigating the statistical power of

designs13:

Ybkt =
1
m

m
∑

i=1
Ybkti = �bt + �Xbkt + �bkt + �bkt, �bkt ∼ N

(

0,
�2�
m

)

. (2)

In the following result we consider the variance of the treatment effect estimator for models of the form given in Equations 1
and 2.
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Result 1. Suppose that each batch of the batched stepped wedge design is identical, and models of the form in Equations 1
and 2 are considered, so that the cluster-period means from each cluster share a common variance matrix, denoted by V . V is
a T × T matrix, with the (t, s) element given by cov(Ybkt, Ybks). If Xbk is the T × 1 vector containing the treatment indicators of
cluster k in batch b for all T periods, then Xbk = Xb′k = Xk for all pairs of batches b and b′, and the variance of the treatment
effect estimator �̂ is given by:

var(�̂) = 1
B

[ K
∑

k=1
XT
k V

−1Xk −
1
K

( K
∑

k=1
XT
k V

−1
K
∑

k=1
Xk

)]−1

= 1
B
var0(�̂), (3)

where var0(�̂) is the variance of the treatment effect estimator for one of the components of the batched design with one cluster
per sequence. This result can be generalised to the situation where Cb clusters are assigned to each sequence of batch b. When
this is the case,

var(�̂) = 1
∑B
b=1 Cb

var0(�̂). (4)

Result 1 indicates that when batch-by-time interaction terms are included in the model for the outcome, the treatment effect
estimator is simply a weighted combination of treatment effect estimators obtained from each batch separately. Specifically, the
estimator from each batch is weighted by its variance.
Result 1 is a consequence of the more general result discussed in Section 3.2, with the proof provided in Section 1 of the

SupplementaryMaterial available online. Equation 3 indicates that the variance of the treatment effect estimator from the batched
stepped wedge design with B batches of identical T -period stepped wedge designs onK clusters is equivalent to the variance of
the treatment effect estimator for a single T -period stepped wedge design with B ×K clusters. When Cb clusters are assigned to
each sequence of batch b, the variance of the treatment effect estimator for the batched design is equivalent to that of the single
component design with

∑B
b=1 Cb clusters per sequence. When all batches are identical and a model such as that in Equation 1 is

assumed, sample size calculations for batched stepped wedge designs are thus straightforward.We demonstrate such calculations
in Section 5.
Model 1 can be extended to allow for closed or open cohort schemes (as described inKasza et al.14, for example), to incorporate

treatment effect heterogeneity (as described in Kasza et al.15, for example), and to allow for differing numbers of subjects in
each cluster in each period (as described in Kasza at al.16, for example). When treatment effect heterogeneity is included in the
model, the variance matrix V will not be identical across the clusters within a batch. However, the variance of the treatment
effect estimator for a batch (denoted by var0(�̂) in Equation 3) will be common across batches. Hence when treatment effect
heterogeneity is included in the model, the variance of the treatment effect estimator from the batched stepped wedge design
with B batches of identical component designs with Cb clusters per sequence in batch b is again equivalent to the variance of
the treatment effect estimator for a single component with

∑B
b=1 Cb clusters per sequence.

When different clusters have different numbers of participants in each cluster-period, theremay not be a common joint variance
matrix var0(�̂) across batches. When cluster sizes differ, but each cluster is expected to collect the same number of observations
in each of their data collection periods (i.e. cluster k collects mk observations in each period), researchers could calculate the
mean and coefficient of variation of cluster sizes and use the approximation presented in17 to obtain a common var0(�̂) for each
batch of the design.

3.2 Batched stepped wedges with non-identical components
We now consider batched stepped wedge designs with non-identical components (examples in Figure 4): we suppose that there
are B batches of stepped wedge designs, where batch b is a Tb-period stepped wedge design, with Kb clusters. Result 2 provides
the variance of the treatment effect estimator when batches are no longer identical.

Result 2. If Ybkti is the outcome for participant i = 1,… , mbkt in period t = 1,… , Tb in cluster k = 1,… , Kb in batch
b = 1,… , B, and Yb is theMb =

∑Kb
k=1

∑Tb
t=1 mbkt-length vector of outcomes from all clusters in batch b, we suppose that

Yb ∼ N(Zbb + �Xb,Σb)

where b is the Tb-length vector of period effects for batch b, Zb is the design matrix associated with these period effects for
cluster b (of dimensionMb × Tb), � is the treatment effect of interest (assumed to be shared across all batches), Xb is theMb-
length vector indicating if a participant is in a cluster-period in the control condition (Xbkti = 0) or the intervention condition
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(Xbkti = 1), and Σb is theMb ×Mb covariance matrix of the outcomes from all clusters in batch b. Then if �̂ is the generalised
least squares estimator of �,

var(�̂) =

( B
∑

b=1

1
varb(�̂)

)−1

, (5)

where varb(�̂) is the variance of the generalised least squares estimator of � obtained by considering batch b only. Further, if
varb(�̂) = var0(�̂) then var(�̂) =

1
B
var0(�̂).

The proof of Result 2 is provided in Section 1 of the Supplementary Material. This result assumes normally distributed
outcomes where only the treatment effect is shared across batches; no assumptions are made regarding the equality of within-
cluster correlation structures within or between batches. However, if varb(�̂) = var0(�̂) for some var0(�̂) for all b = 1,… , B
then Equation 5 collapses to the result given in Result 1, i.e. the situation where all batches are identical. Once again, the
treatment effect estimator is the weighted sum of the estimators obtained for each batch, with each batch’s estimator weighted
by its variance.

4 BINARY AND COUNT OUTCOMES AND BATCHED STEPPEDWEDGES

Several modelling options are available when researchers are interested in binary, rather than continuous outcomes. One option,
discussed in Hussey and Hughes4, and taken in Hemming et al.5, is to apply Equation 1 to binary outcomes, setting �2� equal
to p(1 − p), where p = P (Ybkti = 1). The generalized least squares estimator of � is then considered, and results in Section 3
apply. However, it has been pointed out that the variance of the treatment effect estimator may not be adequately approximated
when this approach is applied18. Zhou et al.18 developed an alternative approach, assuming a truncated normal distribution for
cluster random effects, to ensure that estimated probabilities lie between 0 and 1. When batch and period are parameterised as in
Equation 1 (i.e. separate period effects are included for each batch in the outcome regressionmodel), the variance of the treatment
effect estimator can be written as the sum of variances for each stepped wedge component as for the continuous outcome.
When binary or count outcomes are of interest, researchers are frequently interested in estimating a marginal treatment effect

instead of the conditional treatment effect. The use of generalized estimating equations (GEE) for the analysis of longitudinal
cluster randomized trials allows for estimation of such marginal effects, and implications of this analysis approach for sample
size calculations have previously been discussed6,19. When the GEE approach is used, a working correlation matrix structure
must be assumed. This working correlation structure describes the pattern of within-cluster correlations; an exchangeable
correlation structure would imply equal correlations between all observations in a cluster, for example. As discussed in Li et
al.6, when GEE is the intended analysis approach, power calculations can proceed via generalized least squares. We now state
the main result for this scenario.

Result 3. If Ybkti is the outcome for participant i = 1,… , mbkt in period t = 1,… , Tb in cluster k = 1,… , Kb in batch
b = 1,… , B, with �bkti = E[Ybkti], we assume

g(�bkti) = �bt + �Xbkt. (6)

where g is the link function, �bt is the fixed effect for period t in batch b, � is the treatment effect of interest, and Xbkt is the
indicator for whether cluster k in batch b and period t is in the intervention or control condition. Let �b be the vector of means
for batch b. If �b = (�b1,… , �bTb)

T is the set of time effects for batch b, �̂b is the generalised least squares estimator of �b, and �̂
is the generalised least squares estimator of � then

var(�̂) =
⎛

⎜

⎜

⎝

B
∑

b=1

)�b
)�̂

T

W −1
b
)�b
)�̂

−
)�b
)�̂

T

W −1
b
)�b
)�̂b

[

)�b
)�̂b

T

W −1
b
)�b
)�̂b

]−1
)�b
)�̂b

T

W −1
b
)�b
)�̂

⎞

⎟

⎟

⎠

−1

=

( B
∑

b=1

1
varb(�̂)

)−1

(7)

where varb(�̂) is the variance of the treatment effect estimator obtained via GEE when batch b is considered separately, andWb
is the covariance matrix of the observations from batch b.Wb has the form A1∕2b RbA

1∕2
b . Ab is a diagonal matrix with elements
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given by var(Ybkti) and Rb is the assumed correlation matrix of the observations from batch b. If a binomial distribution for
outcomes is assumed �bkti = P (Ybkti = 1) and diagonal elements of Ab will be given by var(Ybkti) = �bkti(1 − �bkti).

The proof of this result is shown in the Appendix. As was the case in the linear mixed model scenario, the treatment effect
estimator is again a weighted sum of each batch’s treatment effect estimator. However, in contrast to the linear model discussed
in Section 3, the variance of the treatment effect estimator depends on the assumed period effects through �bkti in the model in
Equation 6. For example, when calculating sample sizes for a batched stepped wedge trial where a marginal model will be used
to analyse binary outcomes, researchers must include predicted prevalences of the outcome in each period of the trial in sample
size calculations. For binary outcomes that will be analysed in this way, the variance of the batched stepped wedge design will
collapse to the simplified form given in Equation 4 only if no period effects are included in the model. This is a strict assumption,
requiring the prevalence of the outcome in the control arm to be the same for the entire trial duration and across batches (i.e.
there are no secular time effects and no batch effects).
Result 3 applies not only to binary outcomes analysed with a logit link function; the proof given in the Appendix does not rely

on the choice of link function or the outcome type. Thus, Result 3 holds for binary outcomes with a linear link function, or for
count outcomes with a log link function, to name just two alternatives.

5 DEMONSTRATION OF POWER CALCULATIONS FOR BATCHED STEPPEDWEDGE
DESIGNS

We demonstrate how to calculate power for a batched stepped wedge design with two identical batches. The example we consider
is from Unni et al.20: in that paper, various different stepped wedge-like designs were considered for the Patient-Centered Care
Transitions in Heart Failure Trial (PACT-HF), including a batched design with “early” and “late” blocks, shown in Figure 5.
Each of these blocks was a 5-sequence, 6-period stepped wedge design, with one cluster assigned to each sequence, with 54
patients in each cluster in each of these periods. The primary outcome considered was a binary outcome, that was a composite
of a number of clinical outcomes, with a prevalence of 28% under the control condition, and an intracluster correlation of 0.01.
We assume that this intracluster correlation was conditional on the inclusion of a “batch” term in the model (a point we return
to in the Discussion), but in practice we would recommend assessing the impact of varying this correlation on study power. The
aim was to detect a 25% reduction in the prevalence of the outcome: that is, a reduction from 28% to 21%. The effect on the logit
link scale is -0.38.
We consider two methods for calculating the power of this design: first, we assume a linear model for the binary outcome

(applying the results of Section 3.1); second, we assume that a generalised estimating equations approach will be taken to fitting
a model with a logit link (applying the results of Section 4).
To perform the power calculation for the first approach, one need only calculate the power of a standard 6-period stepped

wedge design with 2 clusters assigned to each sequence. The Shiny CRT calculator5 accommodates this by allowing users to
set the number of clusters assigned to each sequence; the Stata steppedwedge program21 accommodates this through the “k”
option. When the linear model is assumed, this study has a power of 77% to detect the difference. There are two additional ways
to use the Shiny CRT calculator to calculate the power of the batched design. The user could get the precision of each of the
component designs separately using the the “Precision" tab on the Shiny CRT calculator, and then combine these according
to Result 1. Alternatively, the user could upload the design matrix for the batched design (ensuring that there is no overlap
between successive batches) and obtain the power of the design directly. Were a design matrix uploaded with an overlap between
successive batches, the Shiny CRT calculator would assume that batches with overlapping periods share period effects (that is,
calendar time effects would be shared across batches as in the top panel of Figure 2).
For the second method we use the R swdpwr package22 to calculate the power of the batched stepped wedge design. Since

the GEE approach depends on the baseline prevalence of the outcome, we consider two different scenarios:

1. The prevalence of the outcome under the control condition remains at 28% for the entire duration of the trial.

2. The prevalence of the outcome under the control condition is initially 30%, but decreases to 28% by the final period of
the trial, in a linear fashion. That is, at the time that the second batch starts data collection, the prevalence of the outcome
under the control condition is 29%.

Since there is no change in the underlying prevalence of the condition over time in the first scenario, the power of the batched
stepped wedge using the GEE approach is equivalent to the power of the 6-period stepped wedge with 2 clusters assigned to
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each sequence. The power of this design can be obtained directly by using the swdpower command in the swdpwr package, and
is 98.8%. Power is high due to the omission of period effects in this calculation.
For the second scenario, the variance of the treatment effect estimator must be obtained for each of the two component designs

separately. We assume that the treatment effect is -0.38 on the logit link scale for both batches, with the aim to detect a reduction
from 29% to 21.75% for the first batch, and from 28% to 21% in the second batch. The swdpower command cannot provide
the power of the batched design directly. However, the variance of the treatment effect estimator can be obtained for each batch
separately from the power calculated by the command. These variances are then combined using Result 3. The power of the
batched design to detect a change from 28% to 21% is 80.8%. Commands to replicate this calculation are provided in Section 2
of the Supplementary Material.

6 SIMULATION STUDY

We conducted a simulation study to verify our theoretical results, inspired by the PACT-HF design discussed in Section 5. As
in the design schematic in Figure 5, we consider a design consisting of two batches, each a 6-period stepped wedge design.
However, we vary the number of overlapping periods between the two batches from 0 (indicating no overlap between the two
batches, as in Figure 5) to 5 (batches that overlap completely); the key aim of this simulation study is to assess whether inclusion
of separate period effects for each batch has an impact on empirical power. Does power decrease as the number of batch-by-
time terms in the model increases? In the simulation we increase the total number of clusters to 40 (4 clusters assigned to each
of the 10 sequences). We simulate both binary and continuous outcomes for a range of correlation parameter values. Code to
replicate this simulation study and the nested loop plots is available at https://github.com/jkasza/BatchSW.
Table 1 lists the parameters considered for the simulation study for the continuous outcomes. Along with varying the number

of periods of overlap between successive batches, the intracluster correlation and the cluster autocorrelation, datasets were
simulated with an effect size of 0 (to allow an examination of significance level) and 0.15. For each combination of parameters
in Table 1, 1000 datasets were simulated, with separate time effects in each batch (as in the bottom panel of Figure 2). The
period effects for each batch in each period were simulated from a normal distribution with mean 0 and variance 1. With
1000 simulated datasets, the Monte Carlo standard error associated with a power of 80% is expected to be around ±1.3%23.
Each simulated dataset was analysed using a linear mixed-effects model with random effects for cluster and cluster-period,
and separate categorical fixed period effects for each batch (i.e. period effects, batch effects, and period by batch interaction
terms). Our focus here is on the comparison of theoretical and simulated power, so for each set of parameters, we calculated
the percentage of hypothesis testsH0 ∶ � = 0 rejected at the two-sided 5% significance level.

TABLE 1 The continuous outcome simulation settings. 1000 datasets were simulated for each combination of parameters (108
combinations).

Parameter Meaning Values
T Number of periods in each stepped wedge design 6
B Number of batches 2
K Number of clusters assigned to each sequence 4
m Number of observations in each cluster in each sequence 10
NO Number of periods of overlap between successive batches 5, 4, 3, 2, 1, 0
� Intra-cluster correlation 0.01, 0.05, 0.1
r Cluster autocorrelation 1, 0.95, 0.75
� Effect size 0, 0.15

Figure 6 displays the empirical type I error rates and power for each set of parameters using nested loop plots24. This figure
indicates that the number of periods of overlap does not have an impact on empirical type I error rates and power: as the
number of periods of overlap changes, there is no pattern to the variation in empirical type I error rates or power. This provides
support for our theoretical result, which indicates that if period, batch, and batch by period interaction terms are included in the
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model, the degree of overlap has no impact on study power. As expected, Figure 6 does indicate that the intracluster correlation
and cluster autocorrelation do have an impact on empirical power levels. It is interesting to note that for some combinations
of the cluster autocorrelation and intracluster correlation (e.g. when the cluster autocorrelation is 0.75, and the intracluster
correlation is equal to 0.05 or 0.1), the empirical power is slightly inflated. However, this does not change as the overlap between
batches decreases. That is, empirical power does not decrease as the number of time effects included in the model increases.
Table 2 lists the parameters considered for the simulation study for the binary outcomes. As was the case for the simulation

study for continuous outcomes, 1000 datasets were simulated for each combination of parameters. Binary data was simulated
using the method of Qaqish25, as coded by Li et al19. The range of intracluster correlations permitted by the simulation method
of Qaqish is limited, so we only consider intracluster correlations of 0.01 and 0.05 for the binary outcomes. Each simulated
dataset was analysed via GEE with a logit link with an exchangeable working correlation structure, with separate coefficients
for period (treated as a continuous covariate) in each batch (this choice is to match the sample size calculation in the R swdpwr
package22). Again, our focus is on the comparison of theoretical and simulated power, so for each set of parameters and each
analysis choice, we calculated the percentage of hypothesis tests H0 ∶ � = 0 rejected at the two-sided 5% significance level.
Theoretical power for each combination of parameters was also calculated, using the swdpwr package. Figure 7 displays the
empirical type I error rates and power for each set of parameters for the binary outcomes analysed via GEEwith an exchangeable
working correlation. As for the simulation study for continuous outcomes, the simulated power and type I error rates do not
depend on the degree of overlap between successive batches, aligning with our theoretical results.

TABLE 2 The binary outcome simulation settings. 1000 datasets were simulated for each combination of parameters (24
combinations).

Parameter Meaning Values
T Number of periods in each stepped wedge design 6
B Number of batches 2
K Number of clusters assigned to each sequence 4
m Number of observations in each cluster in each sequence 10
P (Ybkt = 1|Xbkt = 0) Probability of the outcome in a non-treatment period 0.4 + t × 0.01
NO Number of periods of overlap between successive batches 5, 4, 3, 2, 1, 0
� Intra-cluster correlation 0.01, 0.05
r Cluster autocorrelation 1
P (Ybkt = 1|Xbkt = 1) Change in probability of the outcome caused by the intervention 0, 0.025
−P (Ykt = 1|Xkt = 0)

7 DISCUSSION

The batched stepped wedge design is a promising alternative to the standard stepped wedge design. By allowing clusters to come
on-line to the study in batches, the batched stepped wedge design has the potential to get started sooner than a standard stepped
wedge, which typically requires all clusters to commence at the same point in time. If separate period effects are included for
each batch (as in the bottom panel of Figure 2), the power of the batched stepped wedge design will, depending on the assumed
outcome regression model, be robust to delays in the commencement of batches. This holds when linear models for the outcome
are assumed, or when the prevalence of the outcome in the control condition is not expected to change over time. Hence, in these
settings, study power will be unaffected if there is an unanticipated delay before the next batch commences study involvement
when separate period effects are assumed for each batch. Under this assumed model, standard stepped wedge software can be
used to calculate the required sample size and study power for batched stepped wedge designs.
Our key result indicates that in certain situations a batched stepped wedge design consisting of B identical stepped wedge

designs provides the same power to detect an effect as one of the stepped wedge components with B clusters assigned to each
sequence. However, the choice of variance components will have an impact on sample size and power calculations for all batched
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stepped wedge designs. Inclusion of the batch term implies that variance components must now be treated as “within-batch”
variance components, and will likely be smaller than if a model without batch effects was considered. When batch effects are
included in the outcome regression model, variance components will be conditional on the inclusion of these batch effects in
the model. Hence, researchers must consider the impact of batches on variance components and intracluster correlations when
considering sample size and power.
Our key results have broad applicability. They generalise to batches of any other type of longitudinal cluster randomised

trial design. and do not rely on the design type. For example, our results apply to a “batched dog-leg” design. Provided that
separate period effects are included for each batch, the variance of such a design would have the form given in Sections 3 and 4:
summing over the variances of treatment effect obtained for each of the individual component designs. Further, our key results
do not depend on the precise form of the variance of the treatment effect estimator for each batch. The models considered in the
Results could be extended to allow for closed or open cohorts, treatment effect heterogeneity, etc. The key result only requires
that separate period effects are included in the outcome model for each batch: if this is the case, then the variances of the
treatment effect estimators for each batch can be combined according to Results 1, 2, or 3 as appropriate.
We recommend that separate period effects are included for each stepped wedge batch (i.e. the time parameterization as in

the bottom panel of Figure 2) to provide robustness to the sample size calculation in case of unexpected recruitment and set-up
delays. In addition to allowing for robustness to delays and making the fewest assumptions about the effect of time on outcomes,
assuming separate period effects across batches would be appropriate for trials where clusters in different batches are from
geographically distinct areas, or where clusters in different batches are otherwise distinct. Additionally, if batch effects are not
included in the outcome regression model and batches are assumed to have shared period effects for overlapping periods, then
study power will depend on the separation between successive batches. If unexpected delays between batches occur, the power
of the study will not be robust to this change, in that it will differ from that calculated a priori. Future work will investigate the
impact of increasing degrees of overlap between successive batches when period effects are shared across batches.
Adaptive variants of the batched stepped wedge design are a logical next step of this work. Such adaptations may include

sample size re-estimation, or more formal stopping rules for efficacy or futility of the intervention based on assessments at
suitable time points, for example after participants in each batch have completed their followup. While adaptive variants of the
stepped wedge design have been discussed in the literature, these do require that all clusters commence data collection at the
same time. These adaptive variants will be explored in future work.
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FIGURE 3 Four examples of batched stepped wedge designs with identical component designs (0 indicates control periods; 1
indicates intervention periods). Each of these designs has three batches of three-period stepped wedge designs, with differing
degrees of overlap between successive batches. Design 1 (top row): no overlap between successive batches; Design 2 (second
from top): overlap of one period between successive batches; Design 3 (second from bottom): overlap of two periods between
successive batches; Design 4 (bottom row): variable overlap between successive batches.
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FIGURE 4 Two examples of batched stepped wedge designs without identical component designs (0 indicates control periods;
1 indicates intervention periods).

0

0

0

0

0

1

0

0

0

0

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

1

1

1

1

1

0

0

0

0

0

1

0

0

0

0

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12
Period

S
eq

ue
nc

e

The PACT−HF design

FIGURE 5 The design schematic for the PACT-HF trial: two batches of a 5-sequence stepped wedge design.
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FIGURE 6 Empirical and theoretical type I error rates (left panel) and power (right panel) for the simulated continuous out-
comes. ICC=intracluster correlation; CAC = cluster autocorrelation. Within each panel, sub-panels correspond to a different
value of the CAC. The theoretical and empirical Type I error rate or power is displayed for each combination of number of
periods of overlap, ICC, and CAC, with the empirical result plus and minus 2 standard errors also displayed.
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FIGURE 7 Empirical and theoretical type I error rates (left panel) and power (right panel) for the simulated binary outcomes
analysed via GEE. ICC=intracluster correlation. The theoretical and empirical Type I error rate or power is displayed for each
combination of number of periods of overlap and ICC, with the empirical result plus and minus 2 standard errors also displayed.
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Jessica Kasza
Monash University
Melbourne, Australia

April 13, 2022

Professor N. Stallard
Editor, Statistics in Medicine

Dear Professor Stallard,

Thank you for the opportunity to revise our manuscript (SIM-21-0997, “The batched
stepped wedge design: a design robust to delays in cluster recruitment”) and resubmit
to Statistics in Medicine. We also thank the Reviewers for their useful suggestions, and
provide point-by-point responses to each comment below. Our main changes are as follows:

• Our Results (Result 1, 2 and 3), formerly only included in the Appendix, are now
directly included in the main paper (with the proofs remaining in the Appendix).

• We now emphasise the fact that our key result is not dependent on a specific model
for the outcomes. That is, provided that separate time effects are included for each
batch, the variance of the treatment effect estimator for the batched stepped wedge
is a weighted combination of the variances of the treatment effect estimators from
the component stepped wedges: this holds for models within the generalised linear
model family.

• The inclusion of a simulation study, for which we also provide R code, available at
https://github.com/jkasza/BatchSW.

Please note that we have also updated the code in Section 2 of the Appendix to align
with version 1.6 of the swdpwr R package. We have ensured that our manuscript satisfies
all style guidelines. Each comment is reproduced below with our responses beneath; text
added to our manuscript is written in italics. In addition to a clean revised version of the
manuscript, we have also uploaded a tracked-changes version to the submission system as
additional material for review. In that version of the manuscript, additions to the text are
italicized and deletions are struck through.

Kind regards,
Jessica Kasza
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Reviewer 1 Comments

This very well-written paper introduces a variant of the stepped wedge design, the batched
stepped wedge design, that increases flexibility in study design by allowing an investigator
to launch a stepped wedge study in stages (batches). Importantly, the authors provide
relatively straightforward adaptations to existing methods to determine power in such
trials. The paper is succinct and clear and hints at areas for future research, particularly
adaptive designs and interim analyses that might reasonably occur at the end of one of the
batches.

The authors mention that the batched SW can be thought of as a type of incomplete SW
design. It might be useful, if possible, to talk in the discussion how the principles laid
out in this paper for finding the treatment effect variance might generalize to other types
of incomplete stepped wedge designs with repeating units. For instance, could we do a
“batched dog-leg” design and add up the variances of the individual pieces?

• We thank the Reviewer for their comments and careful reading of our paper. In
response to the question about the applicability of our results to other types of designs,
we have added the following to the Discussion section:
“Our key results have broad applicability. They generalise to batches of any other type
of longitudinal cluster randomised trial design. and do not rely on the design type.
For example, our results apply to a “batched dog-leg” design. Provided that separate
period effects are included for each batch, the variance of such a design would have
the form given in Sections 3 and 4: summing over the variances of treatment effect
obtained for each of the individual component designs. Further, our key results do
not depend on the precise form of the variance of the treatment effect estimator for
each batch. The models considered in the Results could be extended to allow for closed
or open cohorts, treatment effect heterogeneity, etc. The key result only requires that
separate period effects are included in the outcome model for each batch: if this is
the case, then the variances of the treatment effect estimators for each batch can be
combined according to Results 1, 2, or 3 as appropriate.”

Minor Comments

1. In the legend for figure 2, explicitly say that the betas parameterize the time effect.

• The first two sentences in the legend for Figure 2 now read (additions in italics):
“Three different ways in which the effect of time can be parameterised in a
design where clusters commence study participation in three batches: the βs
parameterise the time effects. For example, in the top panel, β1 parametrises
the effect of month 1 on outcomes.”

2. Page 7, line 21 (and elsewhere) talks about the marginal variance of µbkti. But I think
you mean the marginal variance of Ybkti, since parameters dont have a variance.

• We have corrected this throughout Section 4 and the Appendix.

3. Page 7, line 39 uses the notation P (Ybkti = 1) but (in the context of binary outcomes)
that is equal to µbkti, correct? I wasnt sure why you changed notation in that one

2
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spot?

• This was intended to ensure clarity around the interpretation of µbkti. We have
now generalised these results; they now apply to any outcome type. Please see
the updated version of Section 4.

4. Page 8, line 11. I think this is the first time the Shiny CRT calculator is mentioned
... give a reference or link.

• We now provide a reference the Shiny CRT tutorial paper, and the paper de-
scribing the Stata steppedwedge program at this location in the manuscript.

5. Page 8, line 21. Perhaps say “the R swdpwr package” to give context.

• The suggested change has been made.

Reviewer 2 Comments

In this work, Kasza et al proposed the batched stepped wedge design and presented sample
size methods for this new type of design with both a continuous and binary outcome.
Specific considerations for time effects parameterization were developed, and an example
sample size calculation has been provided. Overall, I think this is a very innovative idea
and represents a useful addition to the current literature on stepped wedge designs. I have
a few comments below.

• We thank the Reviewer for their comments and suggestions. We respond to each in
turn below.

1. The innovation of this paper/idea comes from the theoretical results the author de-
rived, but unfortunately they are hidden in the appendix. I feel it would be better if
the authors can move Result 1 and Result 2 to the main paper (leaving the proof of
Result 1 in the appendix), and provide discussions around these interesting technical
results, and how they advance our current knowledge on sample size calculation for
stepped wedge designs.

• We have now moved our key results from the appendix to the main paper (leaving
the proofs in the Appendix). To facilitate this, we have split Result 1 into two
results (the first corresponding to the batched design with identical batches; the
second to the setting of non-identical batches). This has led to several additions
to Sections 3 and 4 of the paper, and given the extensive nature of these changes,
we do not replicate them here. In the tracked changes version of the manuscript
changes are indicated by italics.

2. The cluster-period mean parameterization (2) is useful when each batch of the batched
stepped wedge design is identical, as the author has indicated. But when each batch
of the batched stepped wedge design is not identical, why is this model not adequate?
Also, it is currently a bit hard to tell, from the dense writing style, whether this model
can be applied to all cases the authors have mentioned (e.g. open-cohort designs,
different types of covariance structures, unequal cluster-size). Some clarification on
when and when not to use this model for deriving sample size results is helpful.

• We had not intended to suggest that the cluster-period mean parameterisation is

3
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not adequate when the batches are not identical. Indeed, collapsing to cluster-
period means is appropriate whenever the the vector of cluster-period means
forms a sufficient statistic for θ. To clarify this we have changed the following
sentence from the first paragraph of Section 3.2 from:
“The model for outcomes can then be written as in Equation 1 and that for
cluster-period means can be written as in Equation 2, but different batches will
no longer have the same variance matrix for outcomes (that is, there will be no
shared var0(θ̂)).”
to
“The model for outcomes can then be written as in Equation 1 and that for
cluster-period means can be written as in Equation 2. However, when batches
are non-identical, different batches will no longer have the same variance matrix
for outcomes (that is, there will be no shared var0(θ̂)).”

• In the last two paragraphs of Section 3, we mention that Model 1 (the model
for the individual-level outcomes) can be extended to allow for closed or open
cohorts, treatment effect heterogeneity, and unequal cluster sizes. The proof of
our main results does not depend on the precise form of the variance matrix
for each batch of the design, so applies to all of these potential variations to
Model 1. We clarify the generalisability of our result through the addition of
the following paragraph to the Discussion (please note that this is as in our
response to Reviewer 1’s first point):
“Our key results have broad applicability. They generalise to batches of any other
type of longitudinal cluster randomised trial design. and do not rely on the design
type. For example, our results apply to a “batched dog-leg” design. Provided that
separate period effects are included for each batch, the variance of such a design
would have the form given in Sections 3 and 4: summing over the variances of
treatment effect obtained for each of the individual component designs. Further,
our key results do not depend on the precise form of the variance of the treat-
ment effect estimator for each batch. The models considered in the Results could
be extended to allow for closed or open cohorts, treatment effect heterogeneity,
etc. The key result only requires that separate period effects are included in the
outcome model for each batch: if this is the case, then the variances of the treat-
ment effect estimators for each batch can be combined according to Results 1, 2,
or 3 as appropriate.”

3. For binary outcomes, authors have considered GEE as basis for sample size calculation
(why not generalized linear mixed models?), but the working correlation structure
does not seem to be sufficiently explained? This has been explained under the linear
mixed model setup, but what are appropriate correlation models for stepped wedge
trials with a binary outcome? Do the current result 2 also apply to count outcome,
and other choices of the link function?

• In response to the question “why not generalized linear mixed models?”, we
note that generalized linear mixed models for binary outcomes are discussed in
the first paragraph of Section 4, where we note that the result from Section 3
will apply for GLMMs when separate period effects are included for each batch.
To further explain the working correlation structure in the GEE framework, we

4
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now include the following at the start of Section 4:
“When the GEE approach is used, a working correlation matrix structure must
be assumed. This working correlation structure describes the pattern of within-
cluster correlations; an exchangeable correlation structure would imply equal cor-
relations between all observations in a cluster, for example. As discussed in Li
et al. (2018), when GEE is the intended analysis approach, power calculations
can proceed via generalized least squares. We now state the main result for this
scenario.”

• A generalised version of what was previously referred to as Result 2 (now Result
3) does indeed apply for other outcome types and link functions: the Result
that appears in Section 4 is now generalised to apply to all outcome types and
link functions in the generalized linear model family. Essentially, when separate
period terms are included in the model for each batch, the estimates of the treat-
ment effects from each batch of the design are independent, and the estimator
weights the estimate from each batch by its variance. We have clarified this in
the paper through the inclusion of this more general result and the addition of
the following to the end of Section 4:
“Result 3 applies not only to binary outcomes analysed with a logit link function;
the proof given in the Appendix does not rely on the choice of link function
or the outcome type. Thus, Result 3 holds for binary outcomes with a linear
link function, or for count outcomes with a log link function, to name just two
alternatives.”

4. For equation (8), is it derived under the identity link function, or the logistic link
function? If it is the latter, then there seems to be an error in this equation. This
is because the variance involves differentiating the mean function with respect to the
parameters (e.g., D = dµ/dθ = µ(1 − µ) ×X for logistic link), and the form is slightly
different from (8). Please double check to see if the expression coincides what is in
Liang and Zeger (1986).

• We have now generalised this result to apply to any choice of link function, so
please see the updated version of the manuscript.

5. Does result 2 also hold for any other type of outcomes (count) and other choice of
link function (e.g log link)? If so, it should be stated more generally. If not, then the
authors should explain why.

• This result does indeed hold more generally: the result now quoted in the
manuscript is now a more general version.

6. The paper, as it currently writes, is a little thin without additional numerical/simulation
results to support the main arguments. For example, the batched stepped wedge de-
signs requires quite many time effects parameters (if either B or T is large), compared
to standard stepped wedge designs that commence at the same time. So the authors
should consider including a Section on Monte Carlo simulations to examine whether
the proposed approach to calculate sample size is precise with so many time effects
parameters in the model (of course when the analysis is also done this way). This may
also help inform when the approach may break down and alternative time effects pa-
rameterization is needed. Such results will inevitably make the paper’s results much

5
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more convincing, and at the same time helps verify the derivations are all correct.

• We now include a simulation study in Section 6 of the updated version of the
manuscript. In this simulation study we consider both binary and continuous
outcomes and compare simulated power and type I error rates to the theoretical
predictions. Simulated power and type I error rates align with the theoretical
values. The key takeaway from this simulation study is that for both continuous
and binary outcomes, the power and type I error rates in the simulations do not
depend on the degree of overlap between successive batches, as suggested by our
theoretical derivations. Code to replicate this simulation study is available at
https://github.com/jkasza/BatchSW.
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