119 research outputs found

    Earth Observations and Integrative Models in Support of Food and Water Security

    Get PDF
    Global food production depends upon many factors that Earth observing satellites routinely measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-available satellite data products can improve efficiencies in resource management and provide earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-term record that can be used effectively to detect large-scale features over time, such as a developing drought. Accuracy and capabilities have increased along with the range of Earth observations and derived products that can support food security decisions with actionable information. This paper highlights major capabilities facilitated by satellite observations and physical models that have been developed and validated using remotely-sensed observations. Although we primarily focus on variables relevant to agriculture, we also include a brief description of the growing use of Earth observations in support of aquaculture and fisheries

    Microwave Indices from Active and Passive Sensors for Remote Sensing Applications

    Get PDF
    Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices

    Ground, Proximal, and Satellite Remote Sensing of Soil Moisture

    Get PDF
    Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security

    Detecting forest response to droughts with global observations of vegetation water content

    Get PDF
    Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure–volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions—which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts

    Monitoring crops water needs at high spatio-temporal resolution by synergy of optical/thermal and radar observations

    Get PDF
    L'optimisation de la gestion de l'eau en agriculture est essentielle dans les zones semi-arides afin de prĂ©server les ressources en eau qui sont dĂ©jĂ  faibles et erratiques dues Ă  des actions humaines et au changement climatique. Cette thĂšse vise Ă  utiliser la synergie des observations de tĂ©lĂ©dĂ©tection multispectrales (donnĂ©es radar, optiques et thermiques) pour un suivi Ă  haute rĂ©solution spatio-temporelle des besoins en eau des cultures. Dans ce contexte, diffĂ©rentes approches utilisant divers capteurs (Landsat-7/8, Sentinel-1 et MODIS) ont Ă©tĂ© developpĂ©es pour apporter une information sur l'humiditĂ© du sol (SM) et le stress hydrique des cultures Ă  une Ă©chelle spatio-temporelle pertinente pour la gestion de l'irrigation. Ce travail va parfaitement dans le sens des objectifs du projet REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) qui visent Ă  estimer l'humiditĂ© du sol dans la zone racinaire (RZSM) afin d'optimiser la gestion de l'eau d'irrigation. Des approches innovantes et prometteuses sont mises en place pour estimer l'Ă©vapotranspiration (ET), RZSM, la tempĂ©rature de surface du sol (LST) et le stress hydrique de la vĂ©gĂ©tation Ă  travers des indices de SM dĂ©rivĂ©s des observations multispectrales Ă  haute rĂ©solution spatio-temporelle. Les mĂ©thodologies proposĂ©es reposent sur des mĂ©thodes basĂ©es sur l'imagerie, la modĂ©lisation du transfert radiatif et la modĂ©lisation du bilan hydrique et d'Ă©nergie et sont appliquĂ©es dans une rĂ©gion Ă  climat semi-aride (centre du Maroc). Dans le cadre de ma thĂšse, trois axes ont Ă©tĂ© explorĂ©s. Dans le premier axe, un indice de RZSM dĂ©rivĂ© de LST-Landsat est utilisĂ© pour estimer l'ET sur des parcelles de blĂ© et des sols nus. L'estimation par modĂ©lisation de ET a Ă©tĂ© explorĂ©e en utilisant l'Ă©quation de Penman-monteith modifiĂ©e obtenue en introduisant une relation empirique simple entre la rĂ©sistance de surface (rc) et l'indice de RZSM. Ce dernier est estimĂ© Ă  partir de la tempĂ©rature de surface (LST) dĂ©rivĂ©e de Landsat, combinĂ©e avec les tempĂ©ratures extrĂȘmes (en conditions humides et sĂšches) simulĂ©e par un modĂšle de bilan d'Ă©nergie de surface pilotĂ© par le forçage mĂ©tĂ©orologique et la fraction de couverture vĂ©gĂ©tale dĂ©rivĂ©e de Landsat. La mĂ©thode utilisĂ©e est calibrĂ©e et validĂ©e sur deux parcelles de blĂ© situĂ©es dans la mĂȘme zone prĂšs de Marrakech au Maroc. Dans l'axe suivant, une mĂ©thode permettant de rĂ©cupĂ©rer la SM de la surface (0-5 cm) Ă  une rĂ©solution spatiale et temporelle Ă©levĂ©e est dĂ©veloppĂ©e Ă  partir d'une synergie entre donnĂ©es radar (Sentinel-1) et thermique (Landsat) et en utilisant un modĂšle de bilan d'Ă©nergie du sol. L'approche dĂ©veloppĂ©e a Ă©tĂ© validĂ©e sur des parcelles agricoles en sol nu et elle donne une estimation prĂ©cise de la SM avec une diffĂ©rence quadratique moyenne en comparant Ă  la SM in situ, Ă©gale Ă  0,03 m3 m-3. Dans le dernier axe, une nouvelle mĂ©thode est dĂ©veloppĂ©e pour dĂ©sagrĂ©ger la MODIS LST de 1 km Ă  100 m de rĂ©solution en intĂ©grant le SM proche de la surface dĂ©rivĂ©e des donnĂ©es radar Sentinel-1 et l'indice de vĂ©gĂ©tation optique dĂ©rivĂ© des observations Landsat. Le nouvel algorithme, qui inclut la rĂ©trodiffusion S-1 en tant qu'entrĂ©e dans la dĂ©sagrĂ©gation, produit des rĂ©sultats plus stables et robustes au cours de l'annĂ©e sĂ©lectionnĂ©e. Dont, 3,35 °C Ă©tait le RMSE le plus bas et 0,75 le coefficient de corrĂ©lation le plus Ă©levĂ© Ă©valuĂ©s en utilisant le nouvel algorithme.Optimizing water management in agriculture is essential over semi-arid areas in order to preserve water resources which are already low and erratic due to human actions and climate change. This thesis aims to use the synergy of multispectral remote sensing observations (radar, optical and thermal data) for high spatio-temporal resolution monitoring of crops water needs. In this context, different approaches using various sensors (Landsat-7/8, Sentinel-1 and MODIS) have been developed to provide information on the crop Soil Moisture (SM) and water stress at a spatio-temporal scale relevant to irrigation management. This work fits well the REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) project objectives, which aim to estimate the Root Zone Soil Moisture (RZSM) for optimizing the management of irrigation water. Innovative and promising approaches are set up to estimate evapotranspiration (ET), RZSM, land surface temperature (LST) and vegetation water stress through SM indices derived from multispectral observations with high spatio-temporal resolution. The proposed methodologies rely on image-based methods, radiative transfer modelling and water and energy balance modelling and are applied in a semi-arid climate region (central Morocco). In the frame of my PhD thesis, three axes have been investigated. In the first axis, a Landsat LST-derived RZSM index is used to estimate the ET over wheat parcels and bare soil. The ET modelling estimation is explored using a modified Penman-Monteith equation obtained by introducing a simple empirical relationship between surface resistance (rc) and a RZSM index. The later is estimated from Landsat-derived land surface temperature (LST) combined with the LST endmembers (in wet and dry conditions) simulated by a surface energy balance model driven by meteorological forcing and Landsat-derived fractional vegetation cover. The investigated method is calibrated and validated over two wheat parcels located in the same area near Marrakech City in Morocco. In the next axis, a method to retrieve near surface (0-5 cm) SM at high spatial and temporal resolution is developed from a synergy between radar (Sentinel-1) and thermal (Landsat) data and by using a soil energy balance model. The developed approach is validated over bare soil agricultural fields and gives an accurate estimates of near surface SM with a root mean square difference compared to in situ SM equal to 0.03 m3 m-3. In the final axis a new method is developed to disaggregate the 1 km resolution MODIS LST at 100 m resolution by integrating the near surface SM derived from Sentinel-1 radar data and the optical-vegetation index derived from Landsat observations. The new algorithm including the S-1 backscatter as input to the disaggregation, produces more stable and robust results during the selected year. Where, 3.35 °C and 0.75 were the lowest RMSE and the highest correlation coefficient assessed using the new algorithm

    Detecting forest response to droughts with global observations of vegetation water content

    Get PDF
    Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts

    Remote sensing based assessment of land cover and soil moisture in the Kilombero floodplain in Tanzania

    Get PDF
    Wetlands provide important ecological, biological, and social-economic services that are critical for human existence. The increasing demand for food, arable land shortage and changing climate conditions in East Africa have created a paradigm shift from upland cultivation to wetland use due to their year-round soil water availability. However, there is need to control and manage the activities within the wetlands to ensure sustainable use while negating any negative effects caused by these activities. This is implemented through the decisions made by the land managers within the wetlands. Providing the users of the wetlands with scientific knowledge acts as a support tool for policy-making geared towards the sustainable use of the wetlands. The overall research contains two main components: First, the need for timely land cover maps at a reasonable scale, and secondly, the assessment of soil moisture as a major contributor to agricultural production. The objectives of the study were to generate land cover maps from multi-sensor optical datasets and to assess the performance of single-polarized Sentinel-1 Gray Level Co-occurrence Matrix (GLCM) texture and Principal Component Analysis (PCA) features by applying multiple classification algorithms in a floodplain in the Kilombero catchment. Furthermore, soil moisture spatial-temporal patterns over three hydrological zones was assessed, estimation of soil moisture from radar data and generation of soil moisture products from global products was investigated. The correlation of the merged products to Normalized Difference Vegetation Index (NDVI) measures was also investigated. RapidEye, Sentinel-2 and Landsat images were used in determining the areal extents of four major land cover classes namely vegetated, bare, water and built up. The acquisition period of the images ranges from August 2013 to June 2015 for the RapidEye images, December 2015 to August 2016 for the Sentinel-2 images and 2013 to 2016 Landsat-8 images were included in the land cover time series dynamic study. However, the major challenge arising was cloud coverage and hence Sentinel-1 images were tested in the application of Synthetic Aperture Radar (SAR) in wetland mapping. Variograms were used in spatial-temporal assessment of soil moisture data collected from three hydrological zones, riparian, middle and fringe. A roughness parameter was derived from a semi-empirical model. Soil moisture was retrieved from TerraSAR-X and RadarSAT-2 with the retrieved roughness parameter as an input in a linear regression equation. Triple collocation was applied in error assessment of the global soil moisture products prior to development of a merged product. Cross-correlation was applied in relating NDVI to soil moisture. Optical data (RapidEye, Landsat-8, and Sentinel-2) generated land cover maps used in assessing the land cover dynamics over time. The land cover ratios were related to depth to groundwater. As the depth to groundwater reduced in June the bare land coverage was 45-57% while that of vegetation was 34-47%. In December when the depth to groundwater was highest, bare land coverage was 62-69% while that of the vegetated area was 27-25%. This indicates that depth of groundwater and vegetation coverage responds to seasonality. During the dry season, 68-81% of the total vegetation class is within the riparian zone. In the classification of the SAR images, the overall accuracies for the single polarized VV images ranged from 54-76%, 60-81% and 61-80% for Random Forest (RF), Neural Network (NN) and Support Vector Machine (SVM) respectively. GLCM features had overall accuracies of 64-86%, 65-88% and 65-86% for RF, NN, and SVM respectively. PCA derived images had similar overall accuracies of 68-92% for NN, RF, and SVM respectively. The PCA images had the highest overall accuracy for the entire time series indicating that reduction in the number of texture features to layers containing the maximum variance improves the accuracy. The standard deviation of soil moisture was noted to increase with increasing soil moisture. Soil texture plays a key role in soil moisture retention. The riparian fields had a high water content explained by the high clay and organic matter content. A roughness parameter was derived and utilized in the retrieval of soil moisture from SAR resulting to R2 of 0.88- 0.92 between observed and simulated soil moisture values from co-polarized RadarSAT-2 HH and TerraSAR-X HH and VV. Merged soil moisture product from FEWSNET Land Data Assimilation System_NOAH (FLDAS_NOAH), ECMWF Re-Analysis Interim (ERA-Interim) and Soil Moisture and Ocean Salinity (SMOS) and FLDAS_Variable Infiltration Capacity (VIC), ERA-Interim and SMOS had similar patterns attributed to FLDAS_NOAH and FLDAS_VIC forced by the same precipitation product (RFE). Cross-correlation of Moderate-resolution Imaging Spectrometer (MODIS) NDVI and the merged soil moisture products revealed a 2-month lag of NDVI. Hence, the relationship is useful in determining the Start of Season from soil moisture products. In conclusion, the successful land cover mapping of the study area demonstrated the use of satellite imagery for wetland characterization. The vast coverage and frequent acquisitions of optical and microwave remotely sensed data additionally make the approaches transferable to other locations and allow for mapping at larger scales. Soil moisture assessment from point data revealed varied soil moisture patterns whereas global remotely sensed and modeled products rather provide complementary information about growing conditions, and hence a situational assessment tool of potential of physical availability dimension of food security. This study forms a baseline upon which additional monitoring and assessment of the Kilombero wetland ecosystem can be performed with the current results marked as a reference. Moreover, the study serves as a demonstration case of remote sensing based approaches for land cover and soil moisture mapping, whose results are useful to stakeholders to aid in the implementation of adapted production techniques for yield optimization while minimizing the unsustainable use of the natural resources.Feuchtgebiete erbringen wichtige ökologische, biologische und sozial-ökonomische Dienstleistungen, welche entscheidend fĂŒr das menschliche Dasein sind. Der steigende Bedarf an Nahrung, der Mangel an landwirtschaftlichen NutzflĂ€chen und die VerĂ€nderung der klimatischen Bedingungen in Ostafrika haben zu einem Paradigmenwechsel vom Anbau im Hochland hin zur Nutzung von Feuchtgebieten gefĂŒhrt. Allerdings sind Kontrolle und Management der AktivitĂ€ten in Feuchtgebieten notwendig, um die nachhaltige Nutzung zu sichern und negative Effekte dieser AktivitĂ€ten zu vermeiden. Die Implementierung erfolgt durch die Landverwalter in den Feuchtgebieten. Den Nutzern von Feuchtgebieten wissenschaftliche Erkenntnisse bereitzustellen dient als Hilfsmittel zur politischen Entscheidungsfindung fĂŒr die nachhaltige Feuchtgebietsnutzung. Die Forschung im Rahmen der Dissertation beinhaltet zwei Hauptkomponenten: erstens den Bedarf an aktuellen Landbedeckungskarten auf einer angemessenen Skalenebene und zweitens die Erfassung der Bodenfeuchte als wichtiger Einflussfaktor auf die landwirtschaftliche Produktion. Das Ziel der Untersuchung war, Landbedeckungskarten auf Grundlage von multisensorischen optischen Daten zu erstellen und die Eignung der Textur der einfach polarisierten Sentinel-1 Grauwertmatrix (GLCM) sowie der einer Hauptkomponentenanalyse (PCA) bei Anwendung unterschiedlicher Klassifikationsalgorithmen zu beurteilen. Des Weiteren wurden raum-zeitliche Bodenfeuchtemuster ĂŒber drei hydrologische Zonen hinweg modelliert, die Bodenfeuchte aus Radardaten abgeleitet sowie die Erstellung von Bodenfeuchteprodukten auf Basis von globalen Produkten untersucht. Die Korrelation der Bodenfeuchteprodukte mit dem Normalisierten Differenzierten Vegetationsindex (NDVI) wurde ebenfalls analysiert. RapidEye, Sentinel-2 und Landsat Bilder wurden genutzt um die rĂ€umliche Ausdehnung der vier Hauptklassen (Vegetation, freiliegender Boden, Wasser und Bebauung) der Landbedeckung zu ermitteln. FĂŒr die Zeitreihenanalyse der der Landbedeckungsdynamik wurden RapidEye-Daten von August 2013 bis Juni 2015, Sentinel-2-Bilder von Dezember 2015 bis August 2016 und Landsat-8-Bilder von 2013 bis 2016 verwendet. Die grĂ¶ĂŸte Herausforderung war jedoch die Wolkenbedeckung, weshalb die Anwendung von Synthetic Aperture Radar (SAR) fĂŒr die Feuchtgebietskartierung getestet wurde. Die gemessene Bodenfeuchte wurde mittels Variogrammen fĂŒr die drei hydrologischen Zonen (Uferzone, Mitte und Randgebiete) raum-zeitlich interpoliert. Ein Rauhigkeitsparameter wurde aus einem semi-empirischen Modell hergeleitet. Die Bodenfeuchte wurde aus TerraSAR-X und RadarSAT-2- Bildern unter Verwendung des Rauhigkeitsparameters als EingangsgrĂ¶ĂŸe in einer linearen Regression abgeleitet. Vor der ZusammenfĂŒhrung der Produkte wurde das globale Bodenfeuchteprodukt mithilfe von dreifacher Kollokation auf Fehler ĂŒberprĂŒft. Die Kreuzkorrelation zwischen NDVI und Bodenfeuchte wurde berechnet. Optische Daten (RapidEye, Landsat-8 und Sentinel-2) wurden genutzt, um die zeitliche Dynamik der Landbedeckung zu bestimmen. Die LandbedeckungsverhĂ€ltnisse wurde mit der Höhe des Grundwasserspiegels korreliert. Ein hoher Grundwasserstand im Juni resultierte in 45-57% unbedecktem Boden, wĂ€hrend der Anteil der Vegetation 34-47% betrug. Im Dezember, als der Grundwasserspiegel seinen Tiefststand hatte, erhöhte sich der Anteil des freiliegenden Bodens auf 62-69% und der Anteil der Vegetation verringerte sich auf 27-25%. Das zeigt, dass Grundwasserspiegel und Vegetation saisonalen Schwankungen unterworfen sind. WĂ€hrend der Trockenzeit liegen 68-81% der gesamten als Vegetation klassifizierten FlĂ€che innerhalb der Uferzone. In der Klassifikation der SAR-Bilder liegt die Gesamtgenauigkeit der einfach polarisierten VV-Bilder im Rahmen von 54-76%, 60-81% und 61-80%, entsprechend fĂŒr Random Forest (RF), Neuronale Netze (NN) und Support Vector Machine (SVM). Die GLCM ergab eine Gesamtgenauigkeit von 64-86%, 65-88% und 65-86% fĂŒr RF, NN und SVM. Die ĂŒber eine PCA abgeleiteten Bilder erreichten eine Ă€hnliche Genauigkeit von 68-92% fĂŒr NN, RF und SVM. Die PCA-Bilder weisen die höchste Gesamtgenauigkeit der gesamten Zeitreihe auf, was darauf hinweist, dass eine Reduktion von Textureigenschaften auf Layer der maximalen Varianz enthalten, die Genauigkeit erhöht. Die Standardabweichung der Bodenfeuchte stieg mit zunehmender Bodenfeuchte. Die Bodentextur spielt dabei eine SchlĂŒsselrolle fĂŒr das Wasserhaltevermögen des Bodens. Die Uferzone wies einen hohen Wassergehalt auf, was durch den hohen Anteil von Ton und Humus zu erklĂ€ren ist. Die beobachteten und simulierten Bodenfeuchtewerte von co-polarisierten RadarSAT-2 HH, TerraSAR-X HH und VV Daten korrelieren mit einem R2 von 0.88 - 0.92. Die zusammengesetzten globalen Bodenfeuchteprodukte von FLDAS_NOAH, ERA-Interim sowie SMOS und FLDAS_VIC, ERA-Interim und SMOS zeigen Ă€hnliche Muster wie FLDAS_NOAH und FLDAS_VIC, was ĂŒber die Verwendung desselben Niederschlagsproduktes (RFE) zu erklĂ€ren ist. Die Kreuzkorrelation von MODIS NDVI und den zusammengefĂŒhrten Bodenfeuchteprodukten ergab eine zeitliche Verzögerung des NDVI von zwei Monaten. Dieser Zusammenhang kann daher bei der Bestimmung des Saisonbeginns aus Bodenfeuchtigkeitsprodukten nĂŒtzlich sein. Zusammengefasst hat die Studie gezeigt, wie Satellitenbilder zur Charakterisierung von Wetlands genutzt werden können. Die große Abdeckung und hĂ€ufige Aufnahme der optischen und Mikrowellen-Fernerkundungsdaten ermöglichen darĂŒber hinaus die Übertragung der AnsĂ€tze auf weitere Gebiete und Kartierung auf grĂ¶ĂŸeren Skalen. Die Punktmessungen zeigen kleinrĂ€umige Muster der Bodenfeuchte, wĂ€hrend globale Fernerkundungsprodukte und Modelle Informationen ĂŒber die Wachstumsbedingungen liefern und somit ein Bewertungsinstrument der ErnĂ€hrungssicherheit darstellen können. Weiterhin bildet die Studie eine Basis, auf der ein weitergehendes Monitoring und eine Bewertung des Feuchtgebietsökosystems durchgefĂŒhrt werden kann. Sie ist ein Beispiel fĂŒr fernerkundungsbasierte AnsĂ€tze zur Landbedeckungs- und Bodenfeuchtekartierung; ihre Ergebnisse sind nĂŒtzlich, um Akteuren bei der Implementierung von Produktionstechniken zu unterstĂŒtzen, welche die ErtrĂ€ge maximieren und gleichzeitig die nicht nachhaltige Nutzung der natĂŒrlichen Ressourcen minimieren

    Monitoring soil moisture dynamics and energy fluxes using geostationary satellite data

    Get PDF

    A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements

    Get PDF
    Soil moisture observations are of broad scientific interest and practical value for a wide range of applications. The scientific community has made significant progress in estimating soil moisture from satellite-based Earth observation data, particularly in operationalizing coarse-resolution (25-50 km) soil moisture products. This review summarizes existing applications of satellite-derived soil moisture products and identifies gaps between the characteristics of currently available soil moisture products and the application requirements from various disciplines. We discuss the efforts devoted to the generation of high-resolution soil moisture products from satellite Synthetic Aperture Radar (SAR) data such as Sentinel-1 C-band backscatter observations and/or through downscaling of existing coarse-resolution microwave soil moisture products. Open issues and future opportunities of satellite-derived soil moisture are discussed, providing guidance for further development of operational soil moisture products and bridging the gap between the soil moisture user and supplier communities
    • 

    corecore