322 research outputs found

    IEEHR: Improved Energy Efficient Honeycomb based Routing in MANET for Improving Network Performance and Longevity

    Get PDF
    In present scenario, efficient energy conservation has been the greatest focus in Mobile Adhoc Networks (MANETs). Typically, the energy consumption rate of dense networks is to be reduced by proper topological management. Honeycomb based model is an efficient parallel computing technique, which can manage the topological structures in a promising manner.  Moreover, discovering optimal routes in MANET is the most significant task, to be considered with energy efficiency. With that motive, this paper presents a model called Improved Energy Efficient Honeycomb based Routing (IEEHR) in MANET. The model combines the Honeycomb based area coverage with Location-Aided Routing (LAR), thereby reducing the broadcasting range during the process of path finding. In addition to optimal routing, energy has to be effectively utilized in MANET, since the mobile nodes have energy constraints. When the energy is effectively consumed in a network, the network performance and the network longevity will be increased in respective manner. Here, more amount of energy is preserved during the sleeping state of the mobile nodes, which are further consumed during the process of optimal routing. The designed model has been implemented and analyzed with NS-2 Network Simulator based on the performance factors such as Energy Efficiency, Transmission Delay, Packet Delivery Ratio and Network Lifetime

    Green Communication for Sixth-Generation Intent-Based Networks:An Architecture Based on Hybrid Computational Intelligence Algorithm

    Get PDF
    The sixth-generation (6G) is envisioned as a pivotal technology that will support the ubiquitous seamless connectivity of substantial networks. The main advantage of 6G technology is leveraging Artificial Intelligence (AI) techniques for handling its interoperable functions. The pairing of 6G networks and AI creates new needs for infrastructure, data preparation, and governance. Thus, Intent-Based Network (IBN) architecture is a key infrastructure for 6G technology. Usually, these networks are formed of several clusters for data gathering from various heterogeneities in devices. Therefore, an important problem is to find the minimum transmission power for each node in the network clusters. This paper presents hybridization between two Computational Intelligence (CI) algorithms called the Marine Predator Algorithm and the Generalized Normal Distribution Optimization (MPGND). The proposed algorithm is applied to save power consumption which is an important problem in sustainable green 6G-IBN. MPGND is compared with several recently proposed algorithms, including Augmented Grey Wolf Optimizer (AGWO), Sine Tree-Seed Algorithm (STSA), Archimedes Optimization Algorithm (AOA), and Student Psychology-Based Optimization (SPBO). The experimental results with the statistical analysis demonstrate the merits and highly competitive performance of the proposed algorithm

    A Review on Proposed Implementation of VGDRA and its Comparative Analysis.

    Get PDF
    Recently, a virtual Grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks is introduced. This paper presents the proposed implementation of VGDRA and its comparative analysis, in which we are discussing the approach of efficient data delivery using communication of distance priority i.e. avoiding straight line communication which was used in previous VGDRA scheme. While maintaining nearly optimal routes to mobile sinkā€™s latest location, our scheme aims to minimize the routes reconstruction cost of sensor nodes. In this approach energy model for reducing energy consumption of nodes is used, which will improves lifetime and also reduce cost consumption. DOI: 10.17762/ijritcc2321-8169.150614

    Enhanced VGDRA for Dynamic WSN

    Get PDF
    Sensor Nodes are fundamental blocks of Wireless Sensor Networks. The focus of researchers is still on reducing the energy dissipation by the sensor nodes over time. Sensor nodes once deployed have a fixed amount of energy available to them. In order to use the energy efficiently the sensor nodes are grouped together based on the tasks performed by them. These groups of sensor nodes are known as clusters. Each cluster is headed by a cluster head connecting the cluster with the base station. Energy consumption is directly proportional to the distance from the base station. The concept of network lifetime is closely related to the energy consumption and area coverage in wireless sensor network. The main aim of the proposed technique is to select cluster heads in such a way that they extend the network lifetime and increase throughput of the network. The efficiency of the proposed cluster head selection technique is that it covers energy consumption and routes selection for data delivery from sensor node to the base station. In this paper an Enhanced Virtual Grid-based Dynamic Routes Adjustment Scheme is proposed presenting a set of rules for the selection of cluster heads in such a way that the energy consumption by the cluster heads is balanced throughout the network and it does not get over exploited

    Determination of Itinerary Planning for Multiple Agents in Wireless Sensor Networks

    Get PDF
    The mobile agent is a new technology in wireless sensor networks that outperforms the traditional client/server architecture in terms of energy consumption, end to end delay and packet delivery ratio. Single mobile agent will not be efficient for large scale networks. Therefore, the use of multiple mobile agents will be an excellent solution to resolve the problem of the task duration especially for this kind of networks. The itinerary planning of mobile agents represents the main challenge to achieve the trade-off between energy consumption and end to end delay. In this article we present a new algorithm named Optimal Multi-Agents Itinerary Planning (OMIP). The source nodes are grouped into clusters and the sink sends a mobile agent to the cluster head of every cluster; which migrates between source nodes, collects and aggregates data before returning to the sink. The results of the simulations testify the efficiency of our algorithm against the existing algorithms of multi-agent itinerary planning. The performance gain is evident in terms of energy consumption, accumulated hop count and end to end delay of the tasks in the network

    On Energy Efficient Computing Platforms

    Get PDF
    In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.Siirretty Doriast

    Opportunistic data collection and routing in segmented wireless sensor networks

    Get PDF
    La surveillance reĢgulieĢ€re des opeĢrations dans les aires de manoeuvre (voies de circulation et pistes) et aires de stationnement d'un aeĢroport est une taĢ‚che cruciale pour son fonctionnement. Les strateĢgies utiliseĢes aĢ€ cette fin visent Ć  permettre la mesure des variables environnementales, l'identification des deĢbris (FOD) et l'enregistrement des statistiques d'utilisation de diverses sections de la surface. Selon un groupe de gestionnaires et controĢ‚leurs d'aeĢroport interrogeĢs, cette surveillance est un privileĢ€ge des grands aeĢroports en raison des couĢ‚ts eĢleveĢs d'acquisition, d'installation et de maintenance des technologies existantes. Les moyens et petits aeĢroports se limitent gĆ©nĆ©ralement aĢ€ la surveillance de quelques variables environnementales et des FOD effectueĢe visuellement par l'homme. Cette dernieĢ€re activiteĢ impose l'arreĢ‚t du fonctionnement des pistes pendant l'inspection. Dans cette theĢ€se, nous proposons une solution alternative baseĢe sur les reĢseaux de capteurs sans fil (WSN) qui, contrairement aux autres meĢthodes, combinent les proprieĢteĢs de faible couĢ‚t d'installation et maintenance, de dĆ©ploiement rapide, d'eĢvolutiviteĢ tout en permettant d'effectuer des mesures sans interfeĢrer avec le fonctionnement de l'aeĢroport. En raison de la superficie d'un aeĢroport et de la difficulteĢ de placer des capteurs sur des zones de transit, le WSN se composerait d'une collection de sous-reĢseaux isoleĢs les uns des autres et du puits. Pour gĆ©rer cette segmentation, notre proposition s'appuie sur l'utilisation opportuniste des vĆ©hicules circulants dans l'aĆ©roport considĆ©rĆ©s alors comme un type speĢcial de nœud appeleĢ Mobile Ubiquitous LAN Extension (MULE) chargĆ© de collecter les donneĢes des sous-reĢseaux le long de son trajet et de les transfeĢrer vers le puits. L'une des exigences pour le deĢploiement d'un nouveau systeĢ€me dans un aeĢroport est qu'il cause peu ou pas d'interruption des opeĢrations reĢgulieĢ€res. C'est pourquoi l'utilisation d'une approche opportuniste basĆ© sur des MULE est privileĢgieĢe dans cette theĢ€se. Par opportuniste, nous nous reĢfeĢrons au fait que le roĢ‚le de MULE est joueĢ par certains des veĢhicules deĢjaĢ€ existants dans un aeĢroport et effectuant leurs deĢplacements normaux. Et certains nœuds des sous- reĢseaux exploiteront tout moment de contact avec eux pour leur transmettre les donneĢes Ć  transfĆ©rer ensuite au puits. Une caracteĢristique des MULEs dans notre application est qu'elles ont des trajectoires structureĢes (suivant les voies de circulation dans l'aeĢroport), en ayant eĢventuellement un contact avec l'ensemble des nœuds situeĢs le long de leur trajet (appeleĢs sous-puits). Ceci implique la neĢcessiteĢ de dĆ©finir une strateĢgie de routage dans chaque sous-reĢseau, capable d'acheminer les donneĢes collecteĢes des nœuds vers les sous-puits et de reĢpartir les paquets de donneĢes entre eux afin que le temps en contact avec la MULE soit utiliseĢ le plus efficacement possible. Dans cette theĢ€se, nous proposons un protocole de routage remplissant ces fonctions. Le protocole proposeĢ est nommeĢ ACME (ACO-based routing protocol for MULE-assisted WSNs). Il est baseĢ sur la technique d'Optimisation par Colonies de Fourmis. ACME permet d'assigner des nœuds aĢ€ des sous-puits puis de dĆ©finir les chemins entre eux, en tenant compte de la minimisation de la somme des longueurs de ces chemins, de l'Ć©quilibrage de la quantitĆ© de paquets stockĆ©s par les sous-puits et du nombre total de retransmissions. Le probleĢ€me est deĢfini comme une taĢ‚che d'optimisation multi-objectif qui est reĢsolue de manieĢ€re distribueĢe sur la base des actions des nœuds dans un scheĢma collaboratif. Nous avons dĆ©veloppĆ© un environnement de simulation et effectueĢ des campagnes de calculs dans OMNeT++ qui montrent les avantages de notre protocole en termes de performances et sa capaciteĢ aĢ€ s'adapter aĢ€ une grande varieĢteĢ de topologies de reĢseaux.The regular monitoring of operations in both movement areas (taxiways and runways) and non-movement areas (aprons and aircraft parking spots) of an airport, is a critical task for its functioning. The set of strategies used for this purpose include the measurement of environmental variables, the identification of foreign object debris (FOD), and the record of statistics of usage for diverse sections of the surface. According to a group of airport managers and controllers interviewed by us, the wide monitoring of most of these variables is a privilege of big airports due to the high acquisition, installation and maintenance costs of most common technologies. Due to this limitation, smaller airports often limit themselves to the monitoring of environmental variables at some few spatial points and the tracking of FOD performed by humans. This last activity requires stopping the functioning of the runways while the inspection is conducted. In this thesis, we propose an alternative solution based on Wireless Sensor Network (WSN) which, unlike the other methods/technologies, combines the desirable properties of low installation and maintenance cost, scalability and ability to perform measurements without interfering with the regular functioning of the airport. Due to the large extension of an airport and the difficulty of placing sensors over transit areas, the WSN might result segmented into a collection of subnetworks isolated from each other and from the sink. To overcome this problem, our proposal relies on a special type of node called Mobile Ubiquitous LAN Extension (MULE), able to move over the airport surface, gather data from the subnetworks along its way and eventually transfer it to the sink. One of the main demands for the deployment of any new system in an airport is that it must have little or no interference with the regular operations. This is why the use of an opportunistic approach for the transfer of data from the subnetworks to the MULE is favored in this thesis. By opportunistic we mean that the role of MULE will be played by some of the typical vehicles already existing in an airport doing their normal displacements, and the subnetworks will exploit any moment of contact with them to forward data to the sink. A particular characteristic of the MULEs in our application is that they move along predefined structured trajectories (given by the layout of the airport), having eventual contact with the set of nodes located by the side of the road (so-called subsinks). This implies the need for a data routing strategy to be used within each subnetwork, able to lead the collected data from the sensor nodes to the subsinks and distribute the data packets among them so that the time in contact with the MULE is used as efficiently as possible. In this thesis, we propose a routing protocol which undertakes this task. Our proposed protocol is named ACME, standing for ACO-based routing protocol for MULE-assisted WSNs. It is founded on the well known Ant Colony Optimization (ACO) technique. The main advantage of ACO is its natural fit to the decentralized nature of WSN, which allows it to perform distributed optimizations (based on local interactions) leading to remarkable overall network performance. ACME is able to assign sensor nodes to subsinks and generate the corresponding multi-hop paths while accounting for the minimization of the total path length, the total subsink imbalance and the total number of retransmissions. The problem is defined as a multi-objective optimization task which is resolved in a distributed manner based on actions of the sensor nodes acting in a collaborative scheme. We conduct a set of computational experiments in the discrete event simulator OMNeT++ which shows the advantages of our protocol in terms of performance and its ability to adapt to a variety of network topologie

    On Mobility Management in Multi-Sink Sensor Networks for Geocasting of Queries

    Get PDF
    In order to efficiently deal with location dependent messages in multi-sink wireless sensor networks (WSNs), it is key that the network informs sinks what geographical area is covered by which sink. The sinks are then able to efficiently route messages which are only valid in particular regions of the deployment. In our previous work (see the 5th and 6th cited documents), we proposed a combined coverage area reporting and geographical routing protocol for location dependent messages, for example, queries that are injected by sinks. In this paper, we study the case where we have static sinks and mobile sensor nodes in the network. To provide up-to-date coverage areas to sinks, we focus on handling node mobility in the network. We discuss what is a better method for updating the routing structure (i.e., routing trees and coverage areas) to handle mobility efficiently: periodic global updates initiated from sinks or local updates triggered by mobile sensors. Simulation results show that local updating perform very well in terms of query delivery ratio. Local updating has a better scalability to increasing network size. It is also more energy efficient than ourpreviously proposed approach, where global updating in networks have medium mobility rate and speed

    An adaptive, self-organizing, neural wireless sensor network.

    Get PDF

    Lifetime improved WSN using enhanced-LEACH and angle sector-based energy-aware TDMA scheduling

    Get PDF
    This research article published by Cogent Engineering, 2020Network lifetime remains as a significant requirement in Wireless Sensor Network (WSN) exploited to prolong network processing. Deployment of low power sensor nodes in WSN is essential to utilize the energy efficiently. Clustering and sleep scheduling are the two major processes involved in improving network lifetime. However, abrupt and energy unaware selection of cluster head (CH) is nonoptimal in WSN which reflects in the drop of energy among sensor nodes. This paper addresses the twofold as utilization of sensor nodes to prolong the nodeā€™s energy and network lifetime by LEACH-based cluster formation and Time Division Multiple Access scheduling (TDMA). Clusters are constructed by the design of an EnhancedLow-Energy adaptive Clustering Hierarchy protocol (E-LEACH) that uses parallel operating optimization (Grey Wolf Optimization (GWO) and Discrete Particle Swarm Optimization (D-PSO)) for selecting an optimal CH and helper CH. The fitness values estimation from GWO and D-PSO is concatenated to prefer the best optimal CH. E-LEACH also manages the cluster size which is one of the conventional disadvantages in LEACH. CHs are responsible to perform energy-aware TDMA scheduling which segregates the coverage area into 24 sectors. Alternate sectors are assigne
    • ā€¦
    corecore