
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

1-1-2007 

An adaptive, self-organizing, neural wireless sensor network. An adaptive, self-organizing, neural wireless sensor network. 

Matthew Ball 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Ball, Matthew, "An adaptive, self-organizing, neural wireless sensor network." (2007). Electronic Theses 
and Dissertations. 7049. 
https://scholar.uwindsor.ca/etd/7049 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7049&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7049?utm_source=scholar.uwindsor.ca%2Fetd%2F7049&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


AN ADAPTIVE, SELF-ORGANIZING, NEURAL WIRELESS SENSOR NETWORK

by

Matthew Ball

A Thesis
Submitted to the Faculty of Graduate Studies 

through Electrical Engineering 
in Partial Fulfillment of the Requirements for 

the Degree of Master of Applied Science at the 
University of Windsor

Windsor, Ontario, Canada 

2007

© 2007 Matthew Ball

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and 
Archives Canada

Bibliotheque et 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 978-0-494-35180-2 
Our file Notre reference 
ISBN: 978-0-494-35180-2

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



© Matthew Ball

All rights reserved. No part of this document may 
be reproduced, stored or otherwise retained in a 
retrieval system or transmitted in any form, on any 
medium by any means without prior written 
permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Networking and processing software intended for wireless sensor networks must 

achieve energy-efficient, fault-tolerant processing while simultaneously tolerating node 

mobility, enduring frequent node failures, and providing sufficient flexibility to allow for 

deployment in a wide variety of applications.

A new architecture is proposed that simultaneously achieves network self

organization and neural processing through a unified approach. The recurrent self

organizing map forms the basis of the architecture’s neural behavior, providing the 

necessary temporal sensitivity that allows the network to analyze a wide range of real- 

world, time-varying signals. The proposed architecture is designed with consideration 

for common phenomena related to wireless sensor networks, such as random deployment, 

node mobility, and resource scarcity.

Simulations demonstrate the architecture’s tolerance of node mobility, resilience 

against noise, and self-organizing behavior.
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Chapter 1 

Introduction

1.1 Wireless Sensor Networks

A wireless sensor network (WSN) is a wireless network consisting of low cost, low 

power, multifunctional devices known as sensor nodes. Nodes are spatially distributed 

within a region of interest, though their precise locations need not be engineered or 

predetermined [1]. Node hardware typically includes a sensor, simple processing 

elements, and a wireless transceiver that facilitates communication within a limited 

radius. While the processing capability of each node is limited, the network benefits 

from the high degree of aggregate parallel processing resulting from the collaborative 

effort of many sensor nodes. WSNs have been identified as one of the most important 

upcoming technologies that will change the world [3]. Potential and current applications 

include inventory tracking [4], the monitoring of disaster areas [4, 5, 6], traffic control 

[2], medical monitoring [7], space and planetary exploration [7] and military surveillance 

[2, 4, 6],

Research leading to advances in wireless sensor network technology represents an 

amalgam of research efforts in the fields of sensors, communications, and computing [2]. 

While isolated advancements in any of these fields subsequently leads to impetus in the 

area of WSNs, as early as the late 1970s, research dedicated to the specific advancement 

of wireless sensor networks became recognized as an autonomous discipline and was

1
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supported through funding. A principal benefactor of WSN research at this time was the 

Defense Advanced Research Projects Agency (DARPA) through its Distributed Sensor 

Networks (DSN) program [2].

1.1.1 Overview

Military applications have served as motivation for the research of many technologies, 

including wireless sensor networks. WSN projects conducted mostly in the United Sates, 

and specifically those by DARPA, shaped the early development of WSN research, 

essentially establishing a de facto definition of a wireless sensor network as, “... a large- 

scale ad hoc, multi-hop, unpartitioned network o f largely homogeneous, tiny, resource- 

constrained, mostly immobile sensor nodes that would be randomly deployed in the area 

o f interest. ” [8: pg. 1]. This characterization was based on the common goals of those 

projects as well as the limitations of the technology of the period. However, as research 

progressed and WSN technology evolved, this description became increasingly 

inadequate [8], In 2004, the European Science Foundation (ESF) funded a workshop in 

which experts gathered to discuss important WSN topics and to coordinate related 

research activities in Europe. This workshop produced a more sophisticated scheme of 

characterizing different types of wireless sensor networks based on several criteria; 

deployment, mobility, form factor, heterogeneity, communication modality, network 

topology, coverage, connectivity, network size, and other quality of service (QoS) 

requirements [8].

2
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1.1.2 Deployment

The way in which sensor nodes are deployed will vary with application. The placement 

of nodes may be random, or they may be deliberately placed in particular locations.

Nodes may also be imbedded within the target environment -  for example, being mixed 

into concrete or dropped into deep crevices, in which case they will subsequently be 

inaccessible for maintenance or recovery (possibly bringing about environmental 

concerns). Deployment may take the form of a one-time activity or may be an ongoing 

process in which additional nodes are distributed to increase sensor density in interesting 

regions or to take the place of old nodes that have become damaged, destroyed, or 

otherwise ineffective [8]. Methods of deployment can be classified as: random vs. 

manual; imbedded vs. accessible; one-time vs. iterative, and so on [see: 8].

1.1.3 Mobility

Following initial deployment, nodes may not remain in their original positions 

indefinitely. Some network applications rely on the movement of nodes as an essential 

phase of the sensing process. Sensing objectives that require the collection of data over a 

very large region, such as an entire planetary surface, cannot be realistically achieved 

with stationary nodes. A more practical solution is for each node to be mobile, so that 

they can move to the next area of interest after the examination of their previous locations 

have been completed. In this case, the mobility of nodes is a desirable feature of the 

network. For other applications, the movement itself may be the matter under 

investigation, such as when tracking objects in which nodes have been embedded.

3
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Mobility can be achieved passively (the node is propelled by an autonomous entity), or 

actively (under its own power and control).

1.1.4 Form factor

The physical configuration of a sensor node can take several forms, influenced by cost, 

resource and size constraints. During the mid-1980s, the mobile nodes used in DARPA’s 

DSN test bed had to be mounted to trucks due to their massive size and weight [2]. Since 

that time, technological advancements have allowed the gradual miniaturization of sensor 

nodes. Modem day research projects illustrate the reduction in scale that has become 

achievable through Micro Electromechanical Systems (MEMS) fabrication techniques. 

Researchers at University of California, Berkeley pursued a Smart Dust [9] project, 

whose sensor nodes are no larger than a few cubic millimeters.

The untethered nature of sensor nodes precludes any connection to established 

power grids. Nodes must therefore be entirely self-reliant on meeting their power 

demands, either by scavenging energy from their environment (i.e. solar cells) or by 

depleting an energy storage device such as a battery or fuel cell. Nodes that lack a 

renewable energy supply have a maximum operational lifetime that scales with the 

quantity of fuel at its disposal. In the case of battery-powered sensor nodes, lifetime is 

therefore limited by the size of the battery, which may represent nearly the entire volume 

of the node.

4
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1.1.5 Heterogeneity

There are two design paradigms regarding the level of conformity between sensor nodes 

within a network. Homogeneous networks consist of nodes that are indistinguishable 

from one another; both the hardware and software of these nodes are identical. 

Homogeneous networks tend to be less expensive to manufacture due to the greater 

degree of mass production of its nodes, and also more manageable to deploy since no 

special attention is given to differing node species during placement. Conversely, 

heterogeneous networks include more than one class of node, and attempt to optimize 

available resources through the targeted deployment of specialized nodes to where they 

are most useful. For example, a heterogeneous network may incorporate nodes 

containing temperature and pressure sensors deployed to where both measurements are 

necessary, and nodes with only pressure sensors deployed to regions where temperature 

is unimportant. In contrast, a homogeneous network would be putting valuable 

temperature sensing hardware to waste in the latter area. Heterogeneous networks may 

require more sophisticated software than their homogeneous counterparts in order to 

properly utilize the unique talents of each node.

1.1.6 Communication modality

Sensor nodes can exploit several modes of wireless communication, some being more 

suited to particular environments than others. Ambient interference, line-of-sight 

requirement, power usage, as well as the cost and complexity of the corresponding 

transceiver hardware are the dominant considerations regarding the selection of a 

communication method. For example, the Smart Dust project described in [9] exploits

5
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the small size and low power of laser beam communication technology, despite its 

reliance on there being line-of-sight between nodes. Possible methods of communication 

include radio, light, sound, etc.

1.1.7 Network topology

The network topology of a WSN is a mapping of the wireless connections between 

nodes. The simplest form of network topology (referred to as single-hop) arises when 

every node is capable of direct communication with all others without the participation of 

intermediaries. As circumstances that limit a node’s ability to establish wireless 

connections arise, more complex topological patterns emerge. Topology is heavily 

influenced by the mode of communication employed (which defines the maximum range 

of connections as well as line-of-sight requirements), and also by infrastructure (which 

may necessitate the channeling of messages through base stations). As the combinational 

complexity of the mapping increases, the topology is typically characterized as a 

combination of more basic topologies, each of which is determined by the configuration 

of communicable nodes.

1.1.8 Coverage

The degree of coverage provided by a WSN is equivalent to how extensively an area is 

monitored by sensors [8, 10]. Since each sensor has a limited range, a relationship exists 

between the abundance of nodes employed and the level of coverage achieved. Coverage 

can vary from sparse, where some coordinates lack monitoring, to dense, where every 

coordinate is monitored by one sensor, to redundant, where several sensors monitor the

6
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same coordinate. In some cases, the level of coverage provided is neither spatially nor 

temporally constant. A higher density of nodes may be deployed to the more interesting 

regions of the monitored environment, and the movement of mobile nodes can alter the 

degree of coverage over a period of time.

1.1.9 Connectivity

Connectivity characterizes a network’s resilience against fragmentation into two or more 

isolated segments. The topology of a connected network is such that a path exists 

between any arbitrary pair of nodes, even if intermediate nodes are necessary for the path 

to be established.

In Figure 1.1, three nodes form a connected network; starting at any node, a path 

can be found that links it to the other two. Note that the directionality of the connections 

is irrelevant when determining if the network is connected.

A network’s connectivity is a quantitative attribute, equal to the minimum number 

of nodes that must be removed in order to create a partition in the network, thereby 

causing it to be disconnected. When the removal of just one node causes a partition, the 

network is referred to as being 1-connected. Networks can be described as 1-connected, 

2-connected, n-connected, and so on. The topology shown in Figure 1.1 illustrates a 1-

o
A

O
c

Figure 1.1: An example topology of a connected network

7
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connected network, since the removal of a single node (node B) creates a partition 

between nodes A and C, which lack an alternate communicable path.

Connectivity reflects the robustness of communication within the network. A 

high level of connectivity may also bolster communication throughput by eliminating 

bottlenecks [12]. Connectivity, like coverage, may need to be excessive at the time of 

deployment, so that as nodes gradually die, connectivity will remain at a sufficient level.

The mobility of nodes in combination with a dynamic environment may cause 

temporary disconnects. When these disconnects are occasional, the connectivity is said 

to be intermittent [8]. However, as breaches in the network become more severe, and 

partitions result in the isolation of nodes for most of the time, connectivity is referred to 

as sporadic.

1.1.10 Energy management / lifetime

The maximization of sensor node lifetime goes hand-in-hand with the development of 

energy management techniques. Recall that nodes tend to be energy-constrained devices, 

therefore the lifetime of nodes cannot exceed that duration which the energy storage 

mechanism can supply power. Whereas applications may require nodes to survive for 

many years, special attention must be given to the issue of a node’s energy efficiency, 

even when state-of-the-art batteries are being used.

1.1.10.1 Sleep scheduling

A common method to reduce the energy consumed by a network is to employ 

synchronized hibernation of sensor nodes, according to a set of predetermined scheduling

8
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rules. During the hibernating, sleep or idle periods, the node’s power usage is 

significantly reduced, while simultaneously providing little or no services to the network. 

To avoid interruption in the network’s operation, any load bom by a sleeping node must 

be displaced to other active nodes. In general, nodes are expected to sleep when there is 

little for them to do (such as when waiting for an incoming message), and the number of 

nodes sleeping at any time reflects the quiescence of the environment. In sleep mode, a 

node may turn off its radio [13], reduce power supply voltages [14], and so on.

1.1.11 Collaborative/distributed processing

Collaborative processing is an excellent feature for many distributed sensing 

assignments. In many cases, the data collected by the sensing network is used as a basis 

to form some control decision (i.e. the timing of traffic signals, the release of drugs into a 

patient’s body, or alerting a human operator of an imminent tsunami). Though each node 

has limited processing hardware, the dense placement of many nodes can produce enough 

aggregate computational power to accomplish either the processing, or pre-processing of 

their sensed data locally, before sending the results to a primary control center or 

command station. The processing tasks can include pattern recognition, data 

compression, and so on. Distributed processing sensor networks offer several advantages 

over their sensing-only counterparts. A primary advantage is that local processing of data 

has an effect of reducing the number of bytes that need to be transmitted to a control 

station, thereby reducing communication power requirements. These energy savings are 

particularly significant when the transmission distance is large. Also, the network’s

9
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processing power will scale with network size; therefore the number of nodes can be 

adjusted to achieve an appropriate computational capability.

1.1.12 Other QoS requirements

The very wide range of applications seen by wireless sensor networks results in many 

unique QoS design requirements. Military applications may require nodes to be 

camouflaged, or entirely invisible (too small to be seen by the naked eye). Tamper- 

resistance and eavesdropping-resistance, as well as physical robustness are other 

considerations when designing individual nodes, as well as networking protocols.

1.2 Artificial Neural Networks

An artificial neural network (ANN) is a network of interconnected artificial neurons, 

modeled after biological neural networks. Neurons perform simple processes on their 

inputs, and forward their output along directional connections to other neurons. Since 

many simple interactions between neurons leads to complex global behavior, most ANNs 

systems give rise to emergent processes. Most ANNs are adaptive systems whose 

structure changes during the learning phase, in order to achieve a processing objective.

1.2.1 Supervised learning neural networks

The structural parameters of a supervised-leaming neural network are updated during the 

learning phase by being exposed to several input/output training pairs. The learning 

algorithm uses the input/output pairs to infer an accurate mapping function between

10
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them, within some small margin of error. To produce a training data set, a priori 

information about the inputs must generally be known by an external supervisor.

1.2.2 Unsupervised learning neural networks

Unlike their supervised-leaming counterparts, unsupervised-leaming neural networks 

have no a priori output, and no training data sets are used. Therefore, the only 

information available to the network during learning is the inputs themselves. As a 

result, unsupervised-leaming neural networks “evolve to extract features or regularities 

in presented patterns, without being told what outputs or classes associated with the 

input patterns are desired. ” [33: pg. 301]. Examples of unsupervised-leaming neural 

networks include the Self-Organizing Map (SOM), Adaptive Resonance Theory (ART) 

Network, and Hopfield Net.

1.2.2.1 The self-organizing map (SOM)

The self-organizing map (SOM) is a popular unsupervised-leaming neural network first 

developed by Teuvo Kohonen in 1984, and is sometimes referred to as Kohonen’s self

organizing map. An SOM is a dual-layer feed-forward neural network consisting of one 

input layer and one output layer. Every neuron in the output layer is linked to the multi

dimensional input by a weight vector of equal dimensionality (see Figure 1.2).

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Neurons —

Weights

[XI, X2, X 3,.... Xn] 
n-Dtmensional Input Vector

Figure 1.2: Self-organizing map structure

As shown in Figure 1.2, an n-dimensional input vector is connected to the output 

layer of neurons. Each neuron is connected to the input layer by an n-dimensional weight 

vector. Initially, each weight vector is set to small, random values. As inputs are 

presented to the network, the weight vectors are modified to minimize a particular error 

function. This has the effect of learning commonly encountered inputs. The SOM 

weight-update formula is spatially dependent, so that similar inputs will be associated 

with neurons in a small neighborhood, whereas very dissimilar inputs will be associated 

with distant neurons in the map. An SOM is therefore also referred to as a topology- 

preserving feature map.

1.3 Objectives

The objective of the research described in this thesis is to develop a simple, adaptive 

architecture for wireless sensor networks that takes full advantage of the hardware’s 

massive parallelism and redundancy. Simplicity is important to facilitate implementation 

on limited sensor node hardware, and adaptation eliminates the lengthy and costly

12
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process of tailoring a network to a particular task. A related objective is the seamless 

integration of a neural processing foundation with a wireless sensor network in order to 

achieve the desired parallelism in the signal processing of sensed data.

13
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Chapter 2 

Review of the State-of-the-Art

2.1 Themes in State-of-the-Art WSN Design

Issues related to the supply and consumption of power tend to dominate state-of-the-art 

WSN research, due to the inaccessible and energy-constrained nature of sensor nodes. 

While the development of superior batteries will certainly offer some relief to sensor 

node designers, increasing the energy efficiency of nodes will be a continuing endeavor. 

Wireless transceivers are the most exhausting components of sensor nodes, and most of 

the energy wasted by the node is associated with wireless communication. Some 

examples of energy waste in wireless communication include: re-transmission of lost or 

corrupted data packets; transmitting data that is of no interest to the receiver; generating 

communication signals that are stronger than is necessary to deliver data to its 

destination; generating communication signals that flood an area much larger than what is 

necessary to be received at the destination. The development of robust, multi-hop, self

organizing routing protocols is the objective of most WSN researchers as a mechanism to 

reduce energy wasted in these ways.

2.1.1 Multi-hop communication

Multi-hop topologies rely on the forwarding of data from its source to its destination by 

intermediate nodes. Multi-hop communication strategies are used to decrease the energy
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overhead associated with generating wireless signals. The energy invested in the 

generation of an omni-directional signal scales with the square of the distance that the 

signal must travel. Multi-hop communication is implemented by having several 

intermediate nodes forward data, where each forwarding signal covers a fraction of the 

total difference. Figure 2.1 and Figure 2.2 illustrate single-hop and multi-hop 

communication strategies, respectively.

As shown in Figure 2.2, three signals are generated, each of which only needs to

Energy on order o f -
2

o

r

Figure 2.1: Single-hop communication

Energy on order o f r for each signal 
9

%

Figure 2.2: Multi-hop communication

travel one-third of the distance compared to the single-hop strategy shown in Figure 2.1.
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Due to the exponential nature of omni-directional signal propagation, a collection of 

several short-range signals represent a much smaller investment of energy than one long- 

range signal. In the example shown in Figure 2.1 and Figure 2.2, the multi-hop strategy 

requires only one-third the energy of the single-hop strategy to send a signal a total 

distance of r.

2.1.2 Clustering

In many sensor network applications, sensor nodes are located close to each other, but far 

from base stations. In terms of energy, local communication between nodes is almost 

always less expensive than the long-distance communication between the nodes and the 

base station. A very effective and commonly implemented method to achieve significant 

energy savings is called clustering. Clustering is a category of network organization and 

routing that reduces the amount of data transmitted long-range by aggregating, filtering, 

and pre-processing data locally. Nodes must collaborate to decide which data warrants 

the costly transmission to the base station; nodes must also collaboratively decide which 

of them will generate the resultant transmission. Typically, the node aggregating the data 

also sends the long-distance transmission and is responsible for coordinating cluster 

activities. This node is referred to as the cluster-head, and the remaining cluster nodes 

are referred to as member nodes. Typically, all member nodes are within a single-hop of 

their cluster head, and are prohibited by the routing scheme from communicating with 

member nodes of other clusters. In addition to communicating with base stations, it is 

typical for cluster-heads to have the ability to communicate with each other. Cluster 

overlap occurs when a member node is within single-hop range of more than one cluster-
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head. A network that suffers from a large amount of cluster overlap tends to have a 

higher number of total clusters, each of which has a low population. Many, low 

population clusters tend to be less energy efficient when compared to having fewer large 

population clusters.

2.2 Literature Review

University of California, Berkeley professors Kris Pister and Joe Kahn are the leaders of 

the DARPA-supported Smart Dust project detailed in [9]. Smart Dust nodes (also 

referred to as motes) were designed to have a volume no greater than one cubic 

millimeter (“dust”-sized), while being equipped with hardware allowing for sensing, bi

directional communication, processing, and energy generation (see Figure 2.3). The 

equipped solar panel was sufficient to allow for continuous power usage in the microwatt 

range, so the remaining hardware was designed to meet this power requirement.
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Receiver with Photodetector

Analog I/O, DSP, ControlS ensors

Pow er C apacitor

Thick-Film Battery

Figure 2.3: A Smart Dust mote, with equipped hardware (taken from [9])

Pister and his team decided that their power targets could be realized if nodes 

were spared the burden of generating their own communication signals. An innovative 

infrastructure-based communications strategy was adopted, whereby a base station would 

query nodes, and simultaneously supply the optical power needed by the nodes to 

respond. A Comer Cube Retro-reflector (CCR) was incorporated into every node in 

order to modulate and reflect a querying optical beam back to its originating base station 

while requiring almost no investment of energy by the node. Unfortunately, this requires 

a line-of-sight path between nodes and base stations, which need significantly more 

available energy than nodes. Nodes are queried not by reference to a particular node 

ID#, but rather spatially, since a given optical beam trajectory from the base station will 

only intersect a particular node.
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Shen et al. developed the Sensor Information Networking Architecture (SINA)

[17], which provides adaptive organization of sensor information, and facilitates query, 

event monitoring and tasking capability. SINA utilizes attribute-based addressing, 

whereby nodes are queried by the current states of several of their attributes, such as 

general location and the value of their sensed data. In other words, instead of the 

following address-based query, “Node #127, report your data”, the attribute-based query 

may take the form, “To all nodes in the northwest region: reply if you are sensing a 

temperature greater than 100 degrees Celsius”. SINA also provides clustering 

components to facilitate organized scalability for very large networks. A cluster is 

formed by collecting neighboring nodes, one of which (the cluster head) will take on 

added responsibilities of coordinating the activities of the other nodes in the collective. 

When appropriate, clusters themselves may be aggregated to form a cluster hierarchy.

In [4], Estrin et al. discuss the use of directed diffusion -  a set of localized 

algorithms, to accomplish networking goals, rather than using a centralized approach.

The authors describe localized algorithms as, “a distributed computation in which sensor 

nodes only communicate with sensors within some neighborhood, yet the overall 

computation achieves a desired global objective” [4: pg. 3]. It is proposed that compared 

to a localized approach, a centralized one is a bad choice due to inadequate scalability, 

energy inefficiency, and greater fragility. Their directed diffusion model is not based on 

a sequence of queries and replies as in other strategies, but rather each node classifies its 

particular attributes, and other nodes express some level of interest in those attributes. A 

gradient of interest is formed in a neighborhood of nodes, which directs the diffusion of
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data from node to node. A node’s attributes may include its location, the type of data 

being sensed (i.e. temperature, pressure, etc.), remaining energy supply, etc.

Shah and Rabaey also endorsed the idea that nodes’ power supplies should be 

exhausted in a more uniform manner, and proposed an Energy Aware routing scheme in

[18]. The authors criticize energy-optimizing protocols that continually rely on an 

optimal multi-hop path, since the available energy of the nodes in that path will be 

rapidly depleted, “leaving the network with a wide disparity in the energy levels o f the 

nodes, and eventually disconnected subnets” [18: pg. 1]. Instead, the energy-aware 

protocols proposed by the authors are designed to maximize network survivability, as 

they define it, by maintaining networking connectivity for as long as possible. In 

accordance with their stated objective, Shah and Rabaey’s protocol alternates between a 

set of good paths, rather than the continual reliance on an optimal path. It was shown by 

the authors that their energy-aware protocols could extend network lifetime by up to 40% 

over the directed diffusion scheme.

Low-Energy Adaptive Clustering Hierarchy (LEACH), described by Heinzelman 

et al. in [19], is another localized, automated clustering architecture. The authors 

recognized that the cluster-heads exhaust energy much more quickly than other nodes.

To more evenly distribute this energy burden, the cluster-head duties are often reassigned 

to other nodes. The result is a more even depletion of energy supplies of all the nodes 

across the network, leading to a more sudden, system-wide failure, rather than a gradual 

crippling of the network due to an accumulation of individual node deaths over the 

network’s entire lifetime. The former scenario is more desirable than the latter, since the 

network retains a high level of sensing quality until it goes offline. Also, as cluster-heads
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are reassigned in LEACH, the other nodes may also be reassigned to other clusters, since 

the head of a different cluster may now be closer than the newly assigned cluster-head of 

the old cluster. The authors used simulations to compare LEACH with static clustering 

algorithms, and found that it took 8 times longer for the first node to die in LEACH as it 

does with static clustering protocols, and 3 times longer for the last LEACH node to die 

than the last node with static clustering protocols.

The Hybrid Energy-Efficiency Distributed Clustering (HEED) protocol described 

by Younis & Fahmy in [20] is a clustering protocol designed to maximize the interval 

between the network going online and the first node failure. The HEED protocol selects 

cluster-heads randomly, where nodes with more residual energy are more likely to 

become cluster-heads; cluster-head duties are re-assigned to other nodes at regular 

intervals. When two potential cluster heads have equal residual energy, the one that is 

associated with a lesser inter-cluster communication cost is selected. The authors 

reported simulation results showing minor improvements in network lifetime over the 

LEACH protocol.

Xu, Heidemann and Estrin described a Geographical Adaptive Fidelity (GAF) 

algorithm in [21]. The term, “geographically adaptive” refers to GAF’s plotting of multi

hop paths between communicating nodes based on precise knowledge of their relative 

positions, obtained through GPS or some equivalent system. Precise geographical 

information can be used to ensure that the employed multi-hop path results in the least 

amount of wasted energy compared to alternative paths. Nodes that are not participating 

in the multi-hop path are powered down according to a sleep-scheduling algorithm. A 

load balancing strategy is also included in the GAF protocol so that nodes located in high
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traffic areas do not become depleted as rapidly. The authors report that their GAF 

algorithm consumes 40% to 60% less energy compared to DSR (Dynamic Source 

Routing) [23, 22] and AODV (Ad Hoc On-Demand Distance Vector) [24, 22]. DSR and 

AODV are similar protocols that were developed in the 1990s for ad hoc networking of 

computers that are not subject to significant energy constraints (such as laptop 

computers).

GS3 is a hexagonal close-packing (HCP) clustering algorithm presented by Zhang 

and Arora in [25]. GS3 forms hexagonally shaped clusters starting a “big node” and 

spreading outwardly until the entire network is covered. Big nodes are responsible for 

initiating the clustering process and are the only nodes capable of communicating with 

external systems including base stations or other computer networks such as the Internet. 

In order to efficiently form hexagonal clusters with minimal overlap (overlap occurs 

when the boundaries of adjacent clusters intersect), GS3 requires precise geographical 

information about each node, and every node in the network must lie on the same two- 

dimensional plane. GS3 produces excellent cluster uniformity and less cluster overlap 

than competing clustering algorithms.

ACE (Algorithm for Cluster Establishment) is a clustering protocol reported by 

Chan and Perrig in [26] that is designed to minimize cluster overlap (overlap occurs when 

cluster boundaries intersect) while providing full cluster coverage. ACE is an emergent 

algorithm that requires no centralized authority; execution of the ACE protocol only 

requires nodes to communicate with neighbors within a single-hop range. ACE achieves

7
excellent population uniformity in clusters with very little overlap. Unlike GS , the ACE 

protocol does not require geographical information about nodes. The simulations
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reported in the literature show that in certain circumstances, the amount of overlap 

generated by ACE could approach what is achievable with Hexagonal Close-Packing 

algorithms such as GS3. Recall that GS3 is a honeycomb-packing algorithm that requires 

precise geographic information of each node.

Chou et al. proposed a sophisticated distributed data compression strategy to 

reduce communication energy in [27]. The authors suggest that there exists an inherent 

correlation between the sensor data acquired by densely deployed sensor nodes. The 

underlying correlation is the basis of consequent redundancy in the network’s collective 

sensor data. In other words, the underlying premise of the authors’ work is that if 

variable Y is known, and a correlation between X  and Y is known, then X  must only be 

partially known in order to extract the full value o fX  as a result o fX ’s known 

dependency on Y. In essence, the strategy requests that nodes transmit data that is 

incomplete to varying degrees. A special “data-gathering” node can fill in the missing 

pieces of data by analyzing all of the incomplete fragments that it has received, assuming 

it knows how all of the fragments are correlated. Initially, no correlation is known, and 

the data-gathering node requires sensor nodes to transmit their whole readings. 

Correlation tracking algorithms are used by the data-gatherer to construct a correlation 

table between nodes. As the correlation table becomes more complete, the data-gathering 

node will instruct sensing nodes to transmit a smaller fraction of their data, and the 

correlations will be used to extract the missing pieces. This heterogeneous scheme 

allocates all of the intensive correlation-based computations to the data-gathering nodes. 

The compression algorithm used by each sensor node is rudimentary, and consists of only 

a single multiplication and modulo operation. The simulation results in [27] show that
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the proposed strategy is robust against errors, and tolerant of noise, while achieving 

significant energy savings. The authors indicate that their proposed strategy can reduce 

the communication energy expended by each sensor node by up to 65%.

Oldewurtle and Mahonen proposed the use of a two-level, hierarchical neural 

network algorithm to achieve fault-tolerance, data compression and parallel processing in 

[28]. In [28], each sensor node would run a software-based Hopfield Net as a way to pre- 

process their locally collected sensor readings (the authors assumed two or more sensors 

would be present in each node). It must be stressed that each sensor node does not 

represent a neuron in a large Hopfield Net, but rather a virtual Hopfield Net consisting of 

multiple neurons is fully implemented through software at each sensor node. For 

example, if a sensor network consists of one hundred sensor nodes, each which has three 

different sensors, then there would be one hundred Hopfield Nets; each Hopfield Net is 

associated with a particular sensor node, and is used strictly to process the three- 

dimensional sensor data df the sensor node on which it is being simulated. These local 

Hopfield Nets form the first level of the neural network hierarchy in the literature. The 

second level is implemented by sensor node cluster-heads. Each sensor node transmits 

the output of its Hopfield Net to the cluster-head, which aggregates the data using a self

organizing map (SOM). The cluster-head uses a virtual SOM with 5x4 neurons to 

perform an X-to-2 dimensionality reduction on the combined output of a cluster 

containing X  sensor nodes.

The work of Kulakov et al. in [29] is similar to Oldewurtle and Mahonen [28]. A 

two-level hierarchy of neural networks is implemented on a WSN. Both levels of the 

hierarchy consist of an Adaptive Resonance Theory (ART) -  style ANN. At the lower
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level, each sensor node simulates a Fuzzy ART neural network to classify only its own 

sensor readings. The authors used real Smart-It sensor nodes to collect data. The Smart- 

It node includes six different sensors, and the virtual FuzzyART running in the node’s 

software classifies patterns that occur in the simultaneous readings of those six sensors. 

The output of the FuzzyART at each node is transmitted and collected by a cluster-head. 

The cluster-head runs the second-level of the hierarchy, which is a binary ART network 

whose inputs are the FuzzyART outputs from each other node in the cluster. The 

architecture self-organized well and showed robustness to sensor errors.

Caterall et al. investigated the use of sensor nodes to represent individual neurons 

in a self-organizing map (SOM) in [30]. The physical hardware used in the author’s 

experiment consisted of five Smart-It nodes, which each contain six different sensors. In 

an effort to reduce communication overhead, the authors made a slight change to the 

original SOM model. Recall that in a classic SOM (see Figure 1.2) a single input vector 

is presented to each neuron. Consequently, the inpih vector seen by each neuron is 

identical. If Caterall et al. adhered to the original SOM model, the input to each neuron 

would be a thirty-dimensional vector (five nodes x six sensors each). However, each 

node has only local access to its own six sensor readings, therefore the remaining twenty- 

four inputs would need to be transmitted wirelessly. In other words, whenever a node 

took sensor readings, it would need to wirelessly transmit that data to every other node. 

The authors opted to modify the original SOM and arrived at the model illustrated in 

Figure 2.4.
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SOM Neuron

Weight Vector

Figure 2.4: SOM model used in [30]

As shown in Figure 2.4, in the modified SOM model used by Caterall et al., each 

of the five neurons acts on a unique six-dimensional input vector, which corresponds to 

the six sensor readings that have been acquired locally by its six sensors. The assumption 

made by the authors is that the sensor readings will only vary slightly from node to node. 

As a result, each node’s six-dimensional input vector will not be exactly the same, but 

will be very similar. Due to the SOM redesign employed, for every set of inputs, each 

node must only transmit one small data packet to the rest of the network. The packet 

includes an identification number belonging to the transmitting node, a timestamp, and 

Euclidean error between the node’s weight and input vectors. Experimental results 

showed that after training, the SOM neurons organized to classify sensor patterns.

Zindel developed a thesis [31] in which a supervised-leaming neural network 

implementation of a WSN was used to track the shadows cast by clouds as they moved 

across a field. Zindel’s implementation used recursive subtrees of feed-forward, back- 

propagation neural networks. After training, the network achieved a high success rate of 

identifying cloud cover. The network’s accuracy varied from about ninety percent to
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about ninety-five percent depending on how many input/output pairs were used during 

the training phase.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 

The WSN Problem

3.1 Problem Statement

WSN networking and processing software must achieve energy-efficient, fault-tolerant 

processing while simultaneously coping with node mobility and frequent node failures, 

and provide sufficient flexibility to allow for deployment in a wide variety of 

applications. For quick and easy deployment, detailed a priori knowledge of the target 

environment should be unnecessary. In other words, WSNs should adapt to their 

surroundings with minimal application-specific preprogramming and administrator 

oversight. To accommodate arbitrary numbers of nodes, architectures should be fully 

scaleable -  the network should benefit from every additional node, and suffer equally 

from each node disconnect. The parallel processing capability of WSNs should be robust 

and versatile, suitable for deployment in a wide range of diverse applications. Since 

many sensed phenomena are represented by time-domain signals (such as voice audio, 

weather patterns, vibrations in machinery and so on), the WSN’s processing algorithms 

should be sensitive to temporal patterns as well as spatial ones. With no a priori 

knowledge of the target environment, and therefore little knowledge of the input vectors 

that will be encountered, the WSNs must have the capability to recognize patterns and 

generate outputs based on input patterns of arbitrary length. For example, a military 

surveillance network may be designed to recognize human speech, though each word in
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the target language is of different lengths, and therefore produce sequences with varying 

numbers of terms.

3.2 Analysis of State-of-the-Art Solutions

When evaluating the state-of-the-art of WSN protocols, it helps to have a historical 

context. While DARPA’s DSN program was underway in the early 1980s, Dr. Robert 

Kahn was the director of the organization’s Information Processing Techniques Office 

(IPTO). Dr. Kahn, a co-inventor of the TCP/IP protocol and a key figure in the 

development of the Internet [2, 32], was interested in applying the same approach of 

networking to sensor networks [2]. While this may have been a worthwhile endeavor 

two and half decades ago, the quantum leap that has meanwhile occurred in computer 

hardware technology allows for WSN networks whose performance requirements easily 

overwhelm traditional packet-switching protocols. Researchers have directed attention 

towards developing incremental changes to these protocols in the attempt to make them 

better suited to WSN applications, and perhaps through this evolutionary process, 

hereditary weaknesses are still evident in much of the current state-of-the-art.

Clustering algorithms in state-of-the-art architectures are intended to reorganize 

the network into multiple subgroups, each of which is of a more manageable size. There 

are, however, some drawbacks associated with the clustering algorithms employed by 

state-of-the-art WSN architectures. The organization of the network into clusters is an 

arduous task. For increased efficiency, clusters should be uniform in size and closely 

packed with minimal overlap. Meeting these targets requires either an iterative 

configuration process, or the making of unrealistic assumptions such as that every node
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lies on a common two-dimensional plane (as in [25]), or that precise GPS information for 

every node is available (as in [21 & 25]). Once formed, clusters are fragile entities that 

are disintegrated by the death of the cluster-head, or as a result of their mobile 

constituents wandering too far apart. Due to their delicate nature, re-clustering is an 

ongoing process, with each repetition wasting time and energy. Therefore, clustering 

algorithms are not particularly resilient to node failures, are unable to effectively cope 

with node mobility, and require repeated energy expenditures in the form of overhead.

The most intrinsic quality of WSNs is their massive parallelism, which leads to a 

natural synergy with a parallel approach of processing their collected data. Since 

clustering itself does not lead to any inherent parallel processing capability, a second, 

application-layer protocol is needed to exploit the network’s parallel hardware. Several 

state-of-the-art architectures apply artificial neural network (ANN) algorithms to achieve 

fault-tolerant parallel processing in sensor networks (for example, [28 -  31]). Neural 

networks share many inherent and desired characteristics with wireless sensor networks, 

such as relying on many simple local interactions to give rise to complex global behavior. 

Neural network implementations of WSNs are gaining popularity and attention among 

researchers [31], though several deficiencies are present in state-of-the-art neural WSN 

architectures. Supervised-leaming ANNs (used in [31], for example) require a priori 

knowledge of the target environment, in the form of many input/output training pattern 

pairs. These input/output pairs must be crafted ahead of time by a human administrator 

(even if the pairs were generated by a separate computer system, that computer would 

also require a priori information, again necessitating some form of human involvement).
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None of the state-of-the-art ANN-WSN architectures [38 -  31] are temporally 

sensitive. In other words, they can only perform a computational analysis based on the 

spatial distribution of input values and are indifferent to the time at which the inputs are 

occurring. As previously stated, these state-of-the-art protocols are incapable of 

recognizing patterns of events that are occurring in the time-domain.
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Chapter 4 

RSOM-WSN Architecture

4.1 Introduction

The architecture proposed in this thesis is referred to by the rather unimaginative name 

RSOM-WSN. RSOM-WSN is a neural-based architecture that is self-organizing, tolerant 

to both data errors and communication faults, and requires no a priori information about 

its environment. RSOM-WSN is also designed to recognize geographic and temporal 

signals. In other words, data patterns can be recognized regardless of their spacio- 

temporal locality. The underlying neural framework used is the Recurrent Self- 

Organizing Map (RSOM), which has never before been implemented in a sensor network 

setting. In RSOM-WSN, each sensor node acts as a neuron in an RSOM neural network, 

and therefore hardware sensor nodes act as complete analogues to RSOM neurons.

4.2 The Recurrent Self-Organizing Map (RSOM)

4.2.1 Overview

The recurrent self-organizing map is a powerful variant of Kohonen’s original self

organizing map. First proposed by Varsta et al. in [34], the RSOM is a recurrent network 

that generates outputs based on a sequence of input vectors, rather than on a single input 

vector like the ordinary SOM.
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4.2.2 RSOM algorithm in detail

4.2.2.1 RSOM input space

The RSOM is a dual-layer recurrent neural network, in which there is one input layer and

one output layer. Input vectors originate at the input layer and are connected to each

neuron in the output layer by a weight vector whose dimensionality is equal to that of the

input vector. Each input vector sequence may be arbitrary in length, having N  terms.

For example, suppose that a two-dimensional input sequence is as follows.

Dimension #1 —>(0.0, 0.5, 1.0, 1.5, 2.0, 2.5)
Dimension #2 —>(1.2,4.5, 6.1, 7.9, 8.1, 9.5)
N  = 6 terms

In this example, the input sequence consists of six terms, where each term is a 

two-dimensional input vector,

Input vector sequence —> [0.0, 1.2], [0.5, 4.5], [1.0, 6.1], [1.5, 7.9], [2.0, 8.1], [2.5, 9.5]

4.2.2.2 RSOM neuron output function

Each neuron in an RSOM neural network generates its own output, determined by a 

recursive, iterative function that is re-evaluated as each input vector in the sequence is 

encountered. The output function is as follows.
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y ( n ) = ( l - a ) y ( « -  1) + a  (jc (/i) -  w)

y(0)=o
Where,
y (n) is the neuron' s cumulative output after the nth term of the input vector sequence, 
x (n) is the nlh term of the input vector sequence, 
w is the neuron' s weight vector,
0 < a  < 1 is a learning constant
y, x, and w vectors with the same dimensionality

Equation 1. RSOM recursive output function

The output function can be considered as a decay of the previous level of output, y 

(n), with a simultaneous re-enforcement of output caused by the most recent input term, x  

(n). Equation 1 can be re-written to explicitly show the contribution that each input term 

has on the cumulative output.

F ora  sequence with N  terms, let RSOM (x, w ,a) = y (N  — 1), where

y ( N - \ )  = a  x  ( N -  1) -  w  +(1 ( N - 2 ) -  w)+(l  - a ) 2( * ( A f - 3 ) - w )  + . . .+(l  - a ) N ( 0 ) - w )

Equation 2. RSOM output function (expanded)

Equation 2 explicitly shows the contribution each input term has on the neuron’s 

cumulative output, and the function RSOM(x, w, a) is defined as the cumulative output 

after all N  terms of the input sequence have been presented. Essentially, the RSOM 

output function computes an exponentially weighted sum o f biased inputs. As shown in 

Equation 2, each input vector term, x(n) is biased by w, which is a neuron-specific 

modifiable parameter. Each biased input is then weighted such that the terms located 

towards the end of the sequence are given more weight than terms located early in the 

sequence.
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4.2.2.3 RSOM neuron competition and the BMU

After every term in an input sequence has been presented to the network, each neuron 

computes an absolute output, lyl, which has a value equal to the magnitude of its output 

vector, y. Neurons “compete” by comparing their absolute outputs with that of the rest of 

the network. The neuron with the smallest absolute output wins the competition and is 

referred to as the best matching unit, or BMU. The BMU represents the neuron whose 

weights were most well trained with respect to the input sequence, that is, the neuron 

whose weights resulted in the least amount of output.

4.2.2.4 RSOM neuron weight vector and learning rule

Each RSOM neuron is associated with its own modifiable parameter known as a weight 

vector. The naming of this vector as a ‘weight’ by RSOM’s inventors is to maintain 

some level of consistent terminology with other types of neural networks, and in this case 

is somewhat misleading. The weight vector in an RSOM neuron is not participatory in 

any multiplicative weighting, but rather serves as a bias or offset. Subsequently in this 

thesis, the weight vector may be referred to as an offset, or biasing term.

Initially, the weight vectors of every neuron are random. This represents a fully 

untrained state of the network, since no input sequences have yet been encountered. As 

input sequences are encountered, the weight vectors of neurons are modified according to 

a learning rule that is represented by the following weight update formula.
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wi( r + l ) = w i(0 + Aa (0 y,(t)

Where,
w (t) is the old weight vector, 
hib is a neighborhoodfunction, 
and y/j is the neuron' s output vector

Equation 3. RSOM Weight-update formula

The neighborhood function in Equation 3 is a function related to the distance 

between neuron i and the BMU. In typical learning schemes, 0<=h <= 1, and h 

produces its maximum value at the BMU, and decreasing values for every neuron at an 

increasing distance from the BMU’s location. In other words, neurons near the BMU 

(including the BMU itself) will modify their weights by greater amounts than neurons 

that are farther away. The neighborhood function plays a key role in establishing the 

RSOM’s topology-preserving characteristic.

A neuron’s weight vector is modified according to the update formula in such a 

manner that if the same input sequence is encountered in the future, the corresponding 

output, y, will decrease. In this sense, a neuron’s output, y, can be thought of as an error 

or cost function that the weight-update formula is attempting to minimize. Therefore, a 

neuron that has been fully trained to recognize a particular input sequence will produce 

an output of y -  0 whenever that input sequence is encountered. The ideal value of w 

such that RSOM(x, w, a) = 0, can be calculated analytically as follows.
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N -  1
N - l - K

W = * = 0
N -  1

£ ( i  -  “)
k= 0

where N  is the number o f terms in sequence x  

Equation 4. Analytical computation of ideal weight for sequence x

4.2.3 Interpretation

The RSOM function computes an exponentially weighted sum of biased inputs. Neurons 

are trained to recognize common input sequences by finding a weight, w, which results in 

the RSOM function producing a zero output. For illustrative purposes, consider the 

following steps in computing an RSOM output (for the sake of simplicity, in the 

following example the input sequence is assumed to be one-dimensional). Also recall 

that the following computations are conducted by each neuron separately.

The first step of the RSOM neural algorithm is to offset the input sequence by the 

neuron’s weight vector, w.

w = -2

4

3

2

1

0

1

-2

-3

-4
180 200140 16060 80 100 1200 20 40

Figure 4.1: RSOM function step #1
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The second step is to multiply the biased input by an exponential curve whose 

shape is determined by the parameter, a.

Input with Offset Applied
6
4

2
0
2
-4
-6

20 80 100 120 140 160 180 20040 60

Weighting vs. Term in Sequence (alpha =0.01)

0.005

q _________i__________i_________ i_________ i__________i_________ t_________ i_________ i_________ i________
0 20 40 60 80 100 120 140 160 180 200

Figure 4.2: RSOM function step #2

The third step is to sum the value of each term. Graphically, this equivalent to 

finding the area under the curve produced at the end of step 2.
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Figure 4.3: RSOM function step #3

In Figure 4.3, it is shown how terms near the end of the sequence have been 

amplified as a result of the exponential weighting performed in step 2. The RSOM 

algorithm results in a high degree of data compression, since a multi-dimensional 

sequence consisting ofynany terms is reduced to a single value, y.

RSOM-WSN sensor nodes are directly analogous to RSOM neurons. Therefore, the 

number of neurons in the WSN-RSOM output layer is equal to the number of sensor 

nodes in the WSN-RSOM network. Additionally, since sensors are providing the neural 

inputs, and each node contains a sensor, every sensor in the network represents an 

element in the RSOM’s input layer. Therefore, the dimensionality of the RSOM-WSN 

input vector (as well as all weight vectors, w, and output vectors, y) is also equal to the 

number of sensor nodes in the network (assuming each sensor node contains exactly one

4.3 RSOM-WSN Model
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sensor). Therefore, an RSOM-WSN network with fifty sensor nodes acts on a fifty

dimensional input vector, and contains fifty neurons in its output layer. The RSOM- 

WSN model is shown in Figure 4.4.

sensor nodes

input layer |

Figure 4.4: RSOM-WSN model with four sensor nodes

Typically, RSOM neural networks act on different input sequences that all have the 

same number of terms. The number of terms is known before hand, and is either by 

design or based on a priori knowledge of the input set. Wireless sensor networks, on the 

other hand, which act on input vectors that can be largely unknown at the time of 

deployment and also need the flexibility to operate in numerous applications, must have 

the capability to recognize patterns and generate outputs based on input patterns of 

arbitrary length. For example, a military surveillance network may be designed to 

recognize human speech, though each word in the target language is of different lengths, 

and therefore produce sequences with varying numbers of terms.
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4.4 RSOM-WSN Protocols

The RSOM-WSN protocols proposed in this thesis serve as both networking and 

processing protocols. Whereas most wireless sensor networks implement networking and 

processing as separate layers (such as in TCP/IP), RSOM-WSN accomplishes both tasks 

simultaneously with dual-function packets.

An innovation of RSOM-WSN is in its data transmission strategy. Rather than 

using a query-reply strategy as seen in most state-of-the-art literature, RSOM-WSN 

employs what this thesis refers to as a broadcast-react strategy. Unlike query-reply, in 

which messages are directed to a specific destination, RSOM-WSN nodes merely 

broadcast messages, without any specific recipient in mind and without intending to 

respond to a query, or provoke a reply. The broadcasted messages flood the network, and 

will elicit neural reactions in any node that receives the signal. Sensor nodes employing 

the RSOM-WSN protocol are uncoordinated, largely unsynchronized, and completely 

autonomous. RSOM-WSN nodes are reactionary because their behavior arises in 

response to unscheduled stimuli. The protocol is a collection of event-driven processes 

that maintain node autonomy while also achieving global, intelligent, fault-tolerant 

pattern recognition. The wireless data packets that are broadcast from nodes are 

classified as one of three types, reflecting the purpose of the transmission. They are, 

organizational, maintenance, and neural. Organizational packets ensure that each sensor 

node possesses a unique node ID number, or address. Maintenance packets recalibrate 

neural weight vectors when node movement distorts them, and neural packets include all 

data necessary for input dissemination, weight updating, and ultimately pattern 

recognition.
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4.4.1 Neural packets

There are three kinds of neural packets, input, competition, and update, numbered as 

packets 0 through 2, respectively. The broadcasting of any of these three packets from a 

node requires a triggering event, and broadcasted packets trigger a reaction in all nodes 

that receive them.

4.4.1.1 Input packets

Each node in RSOM-WSN performs a neural computation on a multi-dimensional input 

vector. The dimensionality of this vector is equal to the number of nodes in the network, 

and the value at each dimension corresponds to a sensor reading of a particular sensor 

node. Therefore, every sensor node must share its sensor data with every other node in 

the network. This data is transmitted in the input packet. Sensor nodes take regular 

sensor samples at a sampling frequency, Fs. After a node takes a sample, it broadcasts an 

input packet of the following form.

Packet Name 

Packet ID

Originating Address 

Data

Figure 4.5: Input packet model
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Every node will transmit an Input Packet every Ts seconds, where Ts = 1/Fs is the 

sampling period. Therefore, any given node will receive a packet from every other node 

in the network during each Ts interval, and all of the packets received during this time are 

assembled to form a single input vector.

When a node receives an input packet, it checks to see if it has a weight 

associated with the Node ID that was included in the incoming packet. If it does not, 

then it creates a new weight, associates it with the Node ID contained in the packet, and 

initializes the new weight to a small random number. Subsequently, the node updates its 

own output with respect to the source of the packet. This characterizes the receiving 

node’s reaction to the detection of the input packet. Pseudo-code for the reaction is 

shown below.

lnput_Reaction {

If weight(Packet_NodelD) does not exist {

weight(Packet_NodelD) = small_random_number, 

y(Packet_NodelD) = 0;

}

y(Packet_NodelD) = (1 -  a) * y(Packet_NodelD) + a * [NodelD_SensorReading 

-  weight(Packet_NodelD) ];

}

Notice that the node’s output, y  with respect to the broadcasting node is updated 

on an iterative basis, and is derived from Equation 1 used in the RSOM algorithm.
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4.4.1.2 Competition packets

Recall that each input sequence consists of N  input vectors. Therefore, after N  input 

vectors have been received and assembled by a node, it will begin competing with other 

nodes to determine which is the winner for the completed sequence. RSOM competition 

is based on the magnitude of the node’s output vector y, so the node will compute l>i, and 

broadcast a competition packet structured as follows.

Packet Name 

Packet ID

Originating Address 

Data

Figure 4.6: Competition packet model

When receiving a competition packet, nodes react by comparing the lyl contained 

in the packet with their own lyl that was computed locally. The winner of the competition 

is the node with the smallest output magnitude. In the case of two nodes having identical 

magnitudes of output, node ID number is used to break the tie. Pseudo-code for the 

reaction is shown below.

Competition

1

Node ID

|y|
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Competition_Reaction {

If Packet_y < y {

BMU = false;

}

if Packet_y == y {

if Packet_NodelD < NodelD {

BMU = false;

}

}

}

In the above pseudo-code, BMU is a flag that is initially set as true as a default. 

When competition packets have been received from every node in the network, there will 

be one node whose internal BMU flag remains as true; this node is the winner, or BMU, 

for the sequence.

4.4.1.3 Update packets

After a node has established itself as a winner, it will broadcast an update message to 

neighboring nodes. This update packet is not transmitted at full strength, but rather at a 

lesser power level so that only nearby nodes will detect it. In effect, varying the power 

level of the update packet represents an implementation of the neighborhood function, h 

that is included in the RSOM algorithm’s weight-update formula in Equation 3. Since all 

of the information in represented in the power of the signal, the packet only needs to 

include its identification as shown below.
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Packet Name 

Packet ID 

Figure 4.7: Update packet model

All nodes that receive an update packet, as well as the node that broadcasted it 

react by modify their weights according to the weight-update formula of Equation 3. 

When executing this formula, nodes calculate a value of h according to their distance 

from the winning node, which is inferred from the measured strength of the signal 

carrying the update packet.

4.4.2 Organizational packets

There is very little organizational overhead associated with activating an RSOM-WSN 

due to the geographically unaware, autonomous nature of its sensor nodes. All that must 

be established is the address, or node ID number of each sensor node. The node ID is 

unrelated to node location, capabilities, attributes, or any other software or hardware 

property. The only condition that must be satisfied is that each node has a unique 

identifier, so that the rest of the network can properly assign weighted connections to 

them. Essentially, unique identification numbers prevent logical or neural collisions from 

occurring in the sense that no two nodes will be sharing the same “virtual synapse”. The 

assigning of node identification numbers in ROM-WSN is a straightforward process.

When nodes initialize during power-on, they each choose a random node ID for 

themselves. The range of possible numbers from which to randomly choose will depend 

on memory requirements and the number of nodes expected to be deployed in the
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network. A reasonable estimate for a large-scale network is that the node ID number will 

be a two-byte value, allowing for 65,536 different node IDs to be simultaneously in use. 

During RSOM-WSN operation, each node broadcasts an input packet every Ts seconds. 

Therefore, if during a single Ts period, a node receives two or more input packets with 

the same encoded node ID number, this indicates that two or more nodes have randomly 

chosen the same identifiers, and neural collisions (or alternately, ID collisions) will be 

taking place. Once the receiving node has detected this neural collision, it broadcasts an 

organizational packet, which contains the node ID that has been overused.

Packet Name

Packet ID 

Correction 

Figure 4.8: Organizational packet model

When a node receives an organizational packet, it compares its own node ID with 

that contained within the packet. If the same, it will recognize that another node has 

identified a neural collision, and the node will choose a new random identification 

number. It is possible that the fresh ID is also shared by another node, in which case a 

new organizational packet will inevitably be issued. After enough iterations, however, 

every node will possess a unique identifier. The number of iterations required will depend 

on number of nodes in the network compared to the number of unique IDs available 

(dictated by memory requirements). When the number of nodes is large compared to the 

number of available addresses, the required number of organizational packets can be 

unreasonably large. This is referred to as an organizational stall, since the network is
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essentially stuck in the organizational phase, unable to progress to its functional 

operation. An organizational stall may be severe enough that it is more desirable to 

simply deactivate a number of nodes, thereby reducing the number of IDs that need to be 

allocated. Further, over a period of time, a large number of mobile nodes may migrate to 

a small area whose node density becomes such that there are more devices than available 

addresses to allocate to them. This can be thought of as two initially separate networks 

merging as a result of movement, and not enough IDs to service the aggregate network. 

This situation is referred to as an organizationally unstable state, since no number of 

iterations will be able to resolve the resulting neural collisions. To avoid this unstable 

state, as well as to eliminate severe organizational stalls, node deactivation is a possible 

reaction to the receipt of organizational packets. This organizational deactivation takes 

place when a node is involved in more neural collisions than some predetermined 

threshold. Deactivated nodes will occasionally reactivate, and attempt to rejoin the 

network by eavesdropping on network packets, and repeatedly selecting a node ID 

number until it finds one that is seemingly unused by other nodes. When a new ID 

number has been found, the node will be fully active and begin participating in network 

operations. In the case of a full or nearly full network (regarding the number of nodes vs. 

number of available addresses), deactivated nodes will inevitably take the place of nodes 

that have died as a result of damage or energy depletion.

4.4.3 Maintenance packets

Due to the presence of a geographically based neighborhood function, h, the weights of 

trained neurons are dependent on their relative locations. That is to say, neurons that are
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located in a small neighborhood have similar weight vectors, and neurons that are far 

apart have a higher level of dissimilarity between their weight vectors. Therefore, weight 

vectors are partially a function of node location, and as node location changes as a result 

of mobility, their weight vectors must be subject to regular maintenance. The word 

‘maintenance’ is being applied to this operation in order to clearly distinguish it from the 

‘updating’ that occurs as a result of regular RSOM neural learning. The purpose of 

weight maintenance is to provide an estimated correction to the weight vectors of mobile 

nodes, so that the topology of the map does not become extremely distorted as a result of 

geographical reconfiguration. Every node broadcasts maintenance packets at regular 

intervals whose duration is related to sensor node density, and the expected speed of node 

movement. Nodes are intended to estimate the change in their physical location relative 

to other nodes by analyzing signal characteristics of the maintenance packets, such as 

measuring a change in signal strength over time (indicating a change in distance from the 

signal source), or through another mechanism such as the Doppler effect. A maintenance7 

packet has the following form.

Packet Name 

Packet ID

Originating Address 

Data

Figure 4.9: Maintenance packet model
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When a node has received maintenance packets from the rest of the network, it 

calculates a correction for its own weight vector based on the weight vectors of other 

nodes, and its new position. The topology-preserving characteristic of self-organizing 

maps, including RSOM, leads to the formation of smooth gradients of weight vectors 

throughout the map.

The correction triggered by maintenance packets is intended to make the moving 

node’s weight vector more similar to those of the nodes that it is approaching, to avoid 

topological spikes. Weight estimations can be calculated various ways, depending on 

required accuracy and support of computational complexity, though for the purposes of 

this thesis, weights are modified in the following way. By a receiving a maintenance 

packet, the node calculates the change in distance between itself and the packet’s source. 

Based on the newly computed distance and the previous distance computed during the 

last round of maintenance, the node calculates a new weight for itself based on linear 

interpolation. For example, if a node finds itself moving 10% closer to a particular node, 

it computes an interpolated weight that is 10% more similar to the node that it is 

approaching.

source o f packet

new position

old position

Figure 4.10: Movement of a sensor node
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The scene in Figure 4.10 shows a mobile sensor node that has moved one unit 

closer to a stationary node. By analyzing the packet signal, the mobile node computes its 

new distance from the packet source, and recalls its old distance from that same source. 

The node then calculates the following adjustment.

w eiSh tad]USI =  -  J I T  {wei8h tpacke, -  w ig h t )
old

where,
Dnew is the mobile node' s new distance to the packet source 
Doid is the mobile node ' s old distance to the packet source 
weight packet is the weight vector included in the inbound packet 

weight is the node' s own weight vector

Equation 5. Weight maintenance adjustment

The mobile node computes this linear interpolation for every broadcasting node 

within a certain neighborhood, and then adds the average interpolation to its own weight 

vector.
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Chapter 5 

RSOM-WSN Analysis

The RSOM neural model must be investigated analytically in evaluating its potential as a 

pattern recognizer in real-world sensor network environments. The extension of the 

feed-forward self-organizing map to a recurrent version clearly facilitates a degree of 

temporal-sensitivity to input sequences, though the sequences addressed in prior RSOM 

literature were usually small, consisting of just a few terms. The selection of parameter 

values such as a and h can be done by inspection for these small sequences, or 

alternatively by trial and error until an acceptable result is achieved. On the other hand, 

prediction of an RSOM’s behavior when presented with very large sequences (containing 

say, ten thousand terms) is not as easy to inspect or test through trial and error. A 

comprehensive mathematical analysis is therefore needed to develop an understanding of 

how RSOM will react to real-world input sequences, such as would exist in a sensor 

network application

5.1 Time-Domain Analysis

An important characteristic of the RSOM function is exposed when its input is a 

sequence of constant terms, as follows.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RSOM (x , w,a) = a x — w +(1 — a)' (x — w) +(1 — a  y  (x — w) + .. . +(1 — a )N 1 (x — w) 

where x  (0) = x (1) = ... = x (N) = x is a constant •

Equation 6. RSOM with constant input

Recall that the weight vector is also constant in each term of a single sequence, 

and is only modified by the learning rule between successive sequences. Therefore, 

Equation 6 can be rewritten as the following geometric series.

N - I
kRSOM (x , w,a) = a  • x ' ^  r‘

k =  0

where x '  -  (x — w) is a constant biased input, 
and r — (1 — a)

Equation 7. RSOM geometric series

As shown in Equation 7, the RSOM function is equivalent to a geometric series 

when the input terms are constant. Therefore, where the number of terms in the 

sequence, N, is very large, the final value RSOM output resulting from constant inputs is 

computed as follows.

For sufficiently large N,

RSOM (x, w, a) = a x ' x a  , ,
=  a  .—   r  =  —  x  = x1 -  (1 -  a) a\ - r

where x '  = (x — w)is a constant biased input, 
andr= (l — a)

Equation 8. RSOM infinite geometric series

Equation 8 shows that when input terms are constant, the RSOM output will 

converge to the value of the biased input terms, x' = (x-w), regardless of the value of a.
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This parameter, will, however, affect the rate of convergence. The step response of the 

RSOM function is shown below for different values of a.

Neuron Output vs. Term, when Input Constant

1

alpha =0.2 
alpha =0.4 
alpha =0.6

0.8

% 0.6
O

04

0.2
alpha =0.8

0
2 4 6 8 10 12

Term#

Figure 5.1: RSOM step response vs. a

The rise-time of the RSOM step response can be analytically derived as the 

following function of a,

As shown in Equation 6, neural output decays exponentially by being multiplied 

by increasing powers of (1-a), but is never totally eliminated. Therefore, RSOM neural 

activity acts as an infinite-impulse response (HR) digital filter, meaning that in reaction to 

an impulse input, the output will rise and never decay all the way to zero. Every input 

results in a lingering output that is always present thereafter. The time-domain impulse 

response of neural output is shown in Figure 5.2.

Where,
Ts is the sampling period, 
and I" 1 is the ceiling operator

Equation 9. RSOM step-response rise time
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Impulse Response
0.35

0.25

0 2

0.05

Figure 5.2: RSOM impulse response (Ts = 1.0, a  = 0.3)

5.2 Frequency-Domain Analysis

RSOM neural output is a discrete-time LTI (linear, time-invariant) function, and 

therefore can be represented by a corresponding z-domain transfer function.

=  a  
KZ) X(z)  l + ( a - l ) z - l

Equation 10. RSOM transfer function, z-domain

x(n)
^ 0 — * 0 -

y(n)

t
-w (n)

1 -a
-i

Figure 5.3: Schematic picture of an RSOM filter (image taken from [35])
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Bode Diagram
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Figure 5.4: RSOM frequency response (TS = l , a  = 0.3)

The frequency response of the system in Equation 10 is shown in Figure 5.4. The 

frequency response illustrates RSOM’s behavior as a low-pass filter, with increasing 

attenuation occurring at all frequencies above a particular threshold. This cut-off 

frequency, a>c, above which signals are attenuated, can be calculated analytically.

Equation 11. RSOM cut-off frequency
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Cutoff Frequency vs. alpha
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Figure 5.5: Cutoff frequency vs. a

A plot of cut-off frequency against a and sampling frequency Fs is shown in Figure 

5.5. The RSOM low-pass filter allows higher frequencies to pass through without 

attenuation as a increases. Increasing sampling frequency, Fs = 1/Ts, also increase coc.

5.3 Configurable Parameter - Alpha

The parameter, a, plays multiple roles during RSOM neural operation. It can be referred 

to as an activation parameter, a decay parameter, or a memory parameter. A constant, it 

must be tuned to the target application prior to network deployment, though to achieve 

neural stability, the value of a  is always between zero and one.

0 < a  < 1 
Equation 12. Range of a

Due to the exponential decay of neural activation, terms towards the end of an 

input sequence always provide a greater relative contribution to total neural activation 

than terms located early in the sequence. The relative weighting by which each input 

term contributes to the total neural output can be calculated as a function of a, the
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position of the term in the sequence, and the total number of terms in the sequence, as in 

Equation 13. A plot of term weightings vs. a  for a sequence with ten terms is shown in 

Figure 5.6.

The relative weight o f the nth term o f a sequence with N  terms, 

weighting = — ----- -----------

k =  0

Equation 13. Relative term weighting 

Weighting of Terms Against Total Output

alpha =0.1 
alpha =0.3 
alpha =0.5 
alpha =0.7

0.8

0.6CL

0.4
CD

0.2

Term#

Figure 5.6: Term weightings vs. a for N=I0

The weightings calculated in Equation 13 are expressed as a fraction of total neural 

activation, such that the sum of the weightings of all terms is equal to 1, as is the area 

under each of the curves in Figure 5.6. Small values of a  result in a slow decay of old 

input terms, therefore the weighting of terms is more uniform, as shown in Figure 5.6 

(a=0.1). Networks whose activations decay slowly are said to have long-term memory, 

because their output behavior is significantly influenced by old input terms. On the other 

hand, large values of a (such as a=0.7 in Figure 5.6) result in a rapid decay of neural 

activation, therefore when the end of a sequence is reached, little activation caused by the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



first few terms remains. Networks of this type are said to have short-term memory, since 

only the most recent terms have any meaningful affect on neural output. At one extreme, 

a=l, the neural output is based entirely on the most recently presented input term, and the 

RSOM acts exactly like Kohonen’s original self-organizing map.
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5.4 RSOM Identities

For a better understanding of RSOM behavior, several identities can be derived from the 

first principle of neural activation in Equation 2. In the following identities, sequences x 

and y both are composed of an equal number of terms, and the omitted value of a  is 

constant.

RSOM (x + y,w) = RSOM (x, w) + RSOM (y, o) = RSOM (x, w) + RSOM (y + w, w)

Equation 14. RSOM identity #1

RSOM (x, Wj) + RSOM (y, w2) = RSOM (x + y, w, + w2)

Equation 15. RSOM identity #2

i f  RSOM (x, wx) = 0 & RSOM (y, w v) = 0, 
then,
RSOM (x + y,w x + w^j = 0

Equation 16. RSOM identity #3

i f  RSOM (x, wx) = 0 & RSOM (y, w v) = 0, 
then,

|RSOM(x, w y)| = |RSOM(y, wx)\ = |RSOM(x, 0)-R S O M  (y, o)|

Equation 17. RSOM identity #4
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Chapter 6 

Simulations

Simulations of RSOM neural algorithms have been conducted by a number of 

researchers, leading to observations appearing in several publications (such as [34, 35 & 

36]). These simulations have illustrated RSOM’s ability to adapt to arbitrary input 

patterns, recognize epileptic activity present in electroencephalogram (EEG) signals, and 

so on. The fundamental RSOM neural algorithms for activation levels (Equation 1) and 

the learning rule (Equation 3) remain unchanged in the WSN architecture proposed in 

this thesis. Therefore instead of “re-simulating the wheel” as one might say, more 

important simulations involve behaviors that arise specifically from fusion of the RSOM 

neiiral network with wireless sensor network hardware. This includes all WSN-specific 

phenomena such as packet loss, mobility, sensor node hardware limitations, etc. The 

simulation engine used for RSOM-WSN investigations was purpose-built as a part of this 

thesis. Coded in C++, the object-oriented software simulated a virtual network of sensor 

nodes, not simply neural units. In other words, the simulations included the lack of 

functionality that results from each sensor node being an autonomous entity. The 

simulator records all communication between nodes, and nodes can only communicate by 

generating an intentional packet. The C++ simulator maintains detailed log files, which 

are exported to MATLAB for analysis.
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6.1 Learning Simulation

The first simulations conducted were those involving input sequences far longer than 

anything encountered in previous RSOM literature. In this experiment, a simple RSOM- 

WSN network of two neurons were exposed to two different input sequences, referred to 

as “signal A”, and “signal B”, as shown in the following figures.

Signal A
5 1-------------------------------------------------■--------------------------------------

. 5 1-------------------------------------------------,-------------------------------------------------,-------------------------------------------------
0 5000 10000 15000

Sample

Figure 6.1: Signal A

Signal B

15000
Sample

Figure 6.2: Signal B
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During training, signal A was exposed to the network one hundred times,

followed by an equal number of signal B’s. The levels of activation for each of the two

neurons can be seen in Figure 6.3 and Figure 6.4, along with their weight vectors.
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Figure 6.3: Neuron #1 activation (first 14 epochs)
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Neuron #1 Activation vs. Input Sample
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Neuron #2 Activation vs. Input Sample
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Figure 6.4: Neuron #2 activation (first 14 epochs)

As shown in Figure 6.3 and Figure 6.4, neuron #2 was the BMU (best matching 

unit) for signal A, and therefore its weights were adjusted much more than that of neuron 

#1. However, after signal B had been presented to the network, neuron #1 quickly 

became the BMU and hence associated with that signal. After the initial 200 rounds of 

training, the neurons were able to recall their respective signals even when a great deal of 

noise was added. The simulation was conducted many times with different values of a, 

and also with varying amounts of noise in the input signals. Figure 6.5 and Figure 6.6 

show the total output of each neuron when presented with noisy versions of signal B.

The signal B had been corrupted with additive white Gaussian noise, whose severity is 

measured by signal-to-noise ratio (SNR). Since neuron #1 had been associated with
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signal B through learning, it should ideally be capable of recognizing the noisy signal as 

well, and therefore have less activation than its rival, neuron #2.

x io  4 Neuron Outputs wI Noisy Inputs

 Neuron 1 (should be lesser)
 Neuron 2 (should be greater)

2
CL

1

0
5 15 2010

Signal to Noise Ratio (dBW)

Figure 6.5: Neural response to noisy signal B (a = le-6)
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Figure 6.6: Neural response to noisy signal B (a = le-6)

As seen in the figures above, the neuron was able to recall its learned signal despite 

significant noise corruption. Also noteworthy is that the effect of the noise tends to 

decrease with the value of a.
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6.2 Organization

The only network initialization needed in RSOM-WSN is the selection of a unique 

identification number by each node. This initialization phase involves an iterative 

process of repeated re-selection of random identifiers. When two nodes share the same 

ID number, a neural collision is said to occur, and those nodes participate in the next 

iteration of random selection of new identifiers. Simulations were conducted to 

investigate the number of iterations necessary to eliminate all neural collisions, and show 

the decrease in collisions achieved through each iteration. In each simulation, node ID 

numbers were associated with a one-byte memory; 256 unique identifiers were available.

Iterations vs. Number of Participating Nodes

10000

8000

4000
60 80 90

80 100 120 140 160
Participating Nodes

Figure 6.7: Total number of iterations vs. node population (inc. subplot magnification)

Figure 6.7 shows the total number of iterations that were required to eliminate all 

neural collisions is a newly established RSOM-WSN network, when organizational

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



deactivation was not employed. When the number of participating nodes is small 

compared to the number of available identifiers, the number of required iterations is 

small, and increases linearly with the number of nodes. When the number of nodes 

increased to about seventy percent of the number of available identifiers, there occurred 

an exponential increase in the number of required iterations. For example, when 160 

nodes were sharing the 256 available node ID numbers, 10,000 iterations were required 

to allocate unique IDs to each node. Figure 6.8 shows the number of neural collisions 

that took place, per iteration, with 150 nodes in the network.

Neural Collisions vs. Iteration
80

c  60
CO

40

20

0
0 too 150 20050

Iterations

Figure 6.8: Number of neural collisions vs. iteration (150 nodes; incl. raw & smoothed)

As is the trend with the organizational protocol of RSOM-WSN, there tends to be 

a rapid decrease in the number of collisions during the first few iterations, and then an 

oscillation in which collision rates increase and decrease for many further iterations. As 

shown in the figure, approximately 175 iterations were necessary to reduce the number of 

neural collisions to zero. Figure 6.9 shows a similar graph, when 160 nodes were present 

in the network.
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Neural Collisions vs. Iteration
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Figure 6.9: Neural collisions vs. iteration (160 nodes)

As shown in Figure 6.9, approximately 11,000 iterations were necessary to fully 

organize the network identifiers, when organizational deactivation was not employed. 

When organizational deactivation was implemented in the same scenario, a drastic 

decrease in the number of required iterations was observed.

Neural Collisions vs. Iteration
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Figure 6.10: (top) Neural collisions vs. iteration w/ deactivation (160 nodes) 

(bottom) Number of remaining active nodes vs. iteration
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Figure 6.10 shows the number of neural collisions per iteration when organizational 

deactivation is employed. In this simulation, each node was programmed to deactivate 

whenever it become involved with more than 500 neural collisions during its lifetime. 

This lead to an 80% reduction in the number of organizational iterations, and only 

necessitated the deactivation of 15 nodes, or 9.4% of the total node population.

6.3 Mobility / Weight Maintenance

The weight vectors of mobile nodes must be continually modified in an incremental 

manner to maintain the topology-preserving characteristic of the RSOM neurons. The 

following simulation was designed to test the efficiency of the weight-adjustment 

algorithm described in Equation 5 and more generally in section 4.3.3. The simulation 

was based on a fully trained RSOM neural network as presented in [34]. This network 

had been trained to recognize the following input pairs: (1,1), (1,3), (1,5), (3,1), (3,3), 

(3,5), (5,1), (5,3), (5,5). If the pairs are labeled 1 though 9, such that (1,1) = 1; (1,3) = 2;

... (5,5) = 9, then there exists 81 patterns XY  in which X  and Y each represent an input 

pair, and can be referred to by their corresponding symbol. For example, the pattern XY 

= 12 = (1,1), (1,3). The fully trained RSOM in [34] has learned to recognize each of the 

81 patterns, and self-organized as shown in Figure 6.11.
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Figure 6.11: A trained RSOM (taken from [34])

In Figure 6.11, 81 neurons are shown according to their geographic location, each 

of which has become associated with a particular input pattern. Given a value of a  and 

Equation 4, the two-dimensional weight vector for each neuron was calculated, and the 

topological mapping of weight vectors is shown in Figure 6.12.
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Di mension 1 Di mension 2

0 0 0 0 
Figure 6.12: Two-dimensional weight-vector gradient vs. topology 

(left) Dimension 1; (right) Dimension 2

To test the weight-update algorithm, simulations were conducted in which a node 

from coordinate (2, 1.5) traveled along a path and finally arrived at coordinate (3.5, 4.5). 

Firstly, the node made the journey without updating its weights. The resulting topology 

of weights is shown below.
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5 Dimension 1 Dimension 2

Figure 6.13: Weight topology after node movement (no adjustment)

In Figure 6.13, the new weight topology is shown after a node has moved along a 

path (marked with a line) to a new position without adjusting its weight vector. Notice 

that the first dimension of the weight vector is not distorted, because the original weight 

vector of the mobile node was identical to the ideal value at its destination. However, 

had the node stopped its journey any earlier, a distortion would have resulted as can be 

seen from the path marked in red. In the second dimension, however, a very large 

distortion in the weight topology has occurred. If the network would continue operating 

in this state, the spike in the 2nd dimension would eventually become smaller and smaller 

through the normal weight-updating process in Equation 3, but the accuracy of network 

outputs will be severely reduced until the smoothing occurs (possible taking several
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hundred or thousand learning epochs). A simulation of the same mobile node along the 

same path was conducted again, but with the weight-maintenance adjustment 

implemented as described in section 4.3.3.

Dimension 1 Dimension 2

Figure 6.14: Weight topology after node movement (with adjustment)

Figure 6.14 shows the improvement made by the weight-maintenance adjustments. 

The blue path shows the value of the weight vector of the mobile node as it moves along 

its path. In the 2nd dimension of the weight gradient, the spike occurring at the 

destination coordinate is far less severe than in the unadjusted case shown in Figure 6.13 

Also, in the first dimension, the figure shows how the weight vector of the mobile node 

tends to adjust itself well as it moves along its path, as indicated by the blue line
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‘following’ the trends in weight vectors of nearby nodes. The result is that the network 

will smooth itself out in much less time than in the unadjusted case, therefore providing 

accurate outputs over a greater length of time.
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Chapter 7 

Summary and Conclusions

7.1 Summary

The work detailed in this thesis describes a new architecture for wireless sensor networks 

called RSOM-WSN. The proposed architecture is parallel, adaptive, self-organizing, 

unsupervised, and resilient against noise and other faults. The design of RSOM-WSN 

was inspired by the intelligent behavior of artificial neural networks, whose inherent and 

desired characteristics closely resembled those of wireless sensor networks.

7.2 WSN Problem Statement

Analysis of wireless sensor network literature revealed that state-of-the-art WSN 

architectures lacked synergy with their corresponding sensor node hardware. Existing 

architectures often required sizeable overhead during configuration, and were not 

equipped to deal with phenomena such as frequent node death, node mobility, and so on. 

State-of-the-art architectures also seemed to view the configuration and maintenance of 

the network to be separate tasks from the parallel processing of input data. This thesis 

contends that networking and processing are best achieved using multi-purpose recursive 

algorithms. These algorithms must be flexible to succeed in a multitude of applications, 

require little configuration overhead, be resilient against sensor node death and input 

noise, and support node mobility.
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7.3 Theory and Simulation

The RSOM-WSN architecture proposed in this thesis is based on the recurrent self

organizing map, which is an uncommon neural network designed to process and 

recognize multi-dimensional temporal sequences. Mathematical analysis of the RSOM 

neural algorithm was necessary to establish a solid framework for comparison to state-of- 

the-art algorithms as well as to understand the applications and environments in which 

the proposed architecture would succeed. Due to the massively parallel nature of 

wireless sensor networks, simulations were also necessary to investigate emergent 

behaviors that were too complex to address analytically. To conduct the simulations in 

question, this author developed a purpose-built, object-oriented simulator that was highly 

configurable and designed to investigate several types of network behavior. Simulations 

investigated network configuration, node mobility, neural activations and resilience 

against signal corruption caused by noise.

7.4 Results

Simulation results revealed the network’s ability to quickly self-organize an arbitrary 

number of participating sensor nodes. The organization required very little overhead, and 

was cooperatively achieved by nodes without the command and control of an external 

system or internal cluster-head. Once deployed, neural learning took place as expected, 

and the learning of several large temporal sequences was simulated. The effect of noise 

on the network’s accuracy depends on the specific sequences that have been learned, and 

the type of noise encountered, though in simulations conducted as part of this thesis, 

accurate pattern recognition commonly took place with signal-to-noise ratios of less than
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lOdBW. Weight vector maintenance adjustments significantly decreased the topological 

disturbances resulting from node movement. Movement -  especially that which is fast 

compared to the network’s sampling rate -  invariably results in some degree of weight 

vector gradient distortion, though this represents, at worst, a temporary loss of accuracy 

rather than a permanent one, since distortions are eventually eliminated through the 

network’s normal weight-updating rule included in neural learning.

7.5 Contributions

The specific contributions of the work in this thesis are the RSOM-WSN architecture, 

and a more detailed mathematical analysis of RSOM neural behavior than has been 

presented in any discovered literature. The RSOM-WSN architecture is novel compared 

to state-of-the-art solutions in several ways. In RSOM-WSN, each sensor node imitates 

an RSOM neuron, that is to say, RSOM-WSN sensor nodes and RSOM neural units are 

complete analogues. Also, RSOM-WSN approaches networking and parallel processing 

as a combined task, accomplished with combined algorithms, rather than as separate 

objectives implemented using several layers of different algorithms as seen in other state- 

of-the-art research.

7.6 Recommendations for Future Work

The RSOM-WSN architecture, while sufficiently capable of meeting the design 

objectives described in this thesis, is still limited in comparison to the extensive range of 

applications for which the deployment of sensor networks has caught the interest of 

researchers. The most significant limitation of RSOM-WSN is its geographical range.
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The proposed architecture requires every node to be within communication range, 

therefore as the distance between the furthest-separated nodes increase, an exponential 

increase in communication power is required to form the network. In the future, the 

neural algorithms of RSOM-WSN should be modified to address this issue. The 

theoretical solution would differ functionally from the proposed RSOM-WSM in the 

following way. Whereas in the proposed RSOM-WSN, nodes A, B & C  must all be in 

range of each other, the future architecture is designed such that A and B can both be in 

range of C, while not within range of each other. Therefore, in this simple three-neuron 

example, essentially three sub-networks are formed, each centered about a particular 

neuron. They can be referred to as sub-nets, since the set of nodes participating in each 

are not identical. Such architecture would allow the geographical area covered by the 

network to increase without increasing the power requirements of nodes.

7.7 Conclusions

A new wireless sensor network architecture has been developed. A recursive neural 

architecture, RSOM-WSN offers several advantages over other state-of-the-art solutions. 

The architecture is self-organizing, tolerant of faults, and is synergistic with its hardware 

counterparts. Simple local interactions between nodes lead to complex global behavior, 

in which network configuration and parallel processing are achieved through a unified 

algorithm. In doing so, the proposed architecture is better tailored to specific inherent 

and desired characteristics of wireless sensor networks than other state-of-the-art 

architectures, which tend to treat wireless sensor networks as typical large-scale ad-hoc
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networks. In developing RSOM-WSN, the work in this thesis has advanced the state-of- 

the-art in wireless sensor network architecture design.
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