510 research outputs found

    Design of Inverter Based CMOS Amplifiers in Deep Nanoscale Technologies

    Get PDF
    In this work, it is proposed a fully differential ring amplifier topology with a deadzone voltage created by a CMOS resistor with a biasing circuit to increase the robustness over PVT variations. The study focuses on analyzing the performance of the ring amplifier over process, temperature, and supply voltage variations, in order to guarantee a viable industrial employment in a 7 nm FinFET CMOS technology node for being used as residue amplifier in ADCs. A ring amplifier is a small modular amplifier, derived from a ring oscillator. It is simple enough that it can quickly be designed using only a few inverters, capacitors, and switches. It can amplify with rail-to-rail output swing, competently charge large capacitive loads using slew-based charging, and scale well in performance according to process trends. In typical process corner, a gain of 72 dB is achieved with a settling time of 150 ps. Throughout the study, the proposed topology is compared with others presented in literature showing better results over corners and presenting a faster response. The proposed topology isn’t yet suitable for industry use, because it presents one corner significantly slower than the rest, namely process corner FF 125 °C, and process corner FS -40 °C with a small oscillation throughout the entire amplification period. Nevertheless, it proved itself to be a promising technique, showing a high gain and a fast settling without oscillation phase, with room for improvement.Neste trabalho, é proposta uma topologia de ring amplifier com a deadzone a ser criada através de uma resistência CMOS com um circuito de polarização para aumentar a robustez para as variações PVT. O estudo foca-se em analisar a performance do ring amplifier nas variações de processo, temperatura e tensão de alimentação, de forma a garantir um uso viável em indústria na tecnologia de 7 nm FinFET CMOS, para ser usado como amplificador de resíduo em ADCs. Um ring amplifier é um pequeno amplificador modular, derivado do ring oscillator. É simples o suficiente para ser facilmente projetado usando apenas poucos inversores, condensadores e interruptores. Consegue amplificar com rail-to-rail output swing, carregar grandes cargas capacitivas com carregamento slew-based e escalar bem em termos de performance de acordo com o processo. No typical process corner, foi obtido um ganho de 72 dB com um tempo de estabilização de 150 ps. Durante o estudo, a topologia proposta é comparada com outras presentes na literatura mostrando melhores resultados over corners e apresentando uma resposta mais rápida. A topologia proposta ainda não está preparada para uso industrial uma vez que apresenta um corner significativamente mais lento que os restantes, nomeadamente, process corner FF 125 °C, e outro process corner, FS -40 °C, com uma pequena oscilação durante todo o período de amplificação. Todavia, provou ser uma técnica promissora, apresentando um ganho elevado e uma rápida estabilização sem fase de oscilação, com espaço para melhoria

    Amplifier Design for a Pipeline ADC in 90nm Technology

    Get PDF
    This paper explains the choices taken for the design of two full differential operational amplifiers. These op amp have been designed for the third and the fifth stage of a pipelined A/D Converter. It shows also the solutions found to reach high gain, wide bandwidth and short settling time, without degrading too much the output swing. First the operational amplifier specification are extracted starting from the ADC architecture, then the issues related to the sub-micrometrical design are analysed; the different structures tested are then presented and the motivation of the final topology choice are shown. It presents then the op amp schematic implementation, the simulation results and the layout with the 90nm TSMC design ki

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Analysis and Design Methodologies for Switched-Capacitor Filter Circuits in Advanced CMOS Technologies

    Get PDF
    Analog filters are an extremely important block in several electronic systems, such as RF transceivers, data acquisition channels, or sigma-delta modulators. They allow the suppression of unwanted frequencies bands in a signal, improving the system’s performance. These blocks are typically implemented using active RC filters, gm-C filters, or switched-capacitor (SC) filters. In modern deep-submicron CMOS technologies, the transistors intrinsic gain is small and has a large variability, making the design of moderate and high-gain amplifiers, used in the implementation of filter blocks, extremely difficult. To avoid this difficulty, in the case of SC filters, the opamp can be replaced with a voltage buffer or a low-gain amplifier (< 2), simplifying the amplifier’s design and making it easier to achieve higher bandwidths, for the same power. However, due to the loss of the virtual ground node, the circuit becomes sensitive to the effects of parasitic capacitances, which effect needs to be compensated during the design process. This thesis addresses the task of optimizing SC filters (mainly focused on implementations using low-gain amplifiers), helping designers with the complex task of designing high performance SC filters in advanced CMOS technologies. An efficient optimization methodology is introduced, based on hybrid cost functions (equation-based/simulation-based) and using genetic algorithms. The optimization software starts by using equations in the cost function to estimate the filter’s frequency response reducing computation time, when compared with the electrical simulation of the circuit’s impulse response. Using equations, the frequency response can be quickly computed (< 1 s), allowing the use of larger populations in the genetic algorithm (GA) to cover the entire design space. Once the specifications are met, the population size is reduced and the equation-based design is fine-tuned using the more computationally intensive, but more accurate, simulation-based cost function, allowing to accurately compensate the parasitic capacitances, which are harder to estimate using equations. With this hybrid approach, it is possible to obtain the final optimized design within a reasonable amount of computation time. Two methods are described for the estimation of the filter’s frequency response. The first method is hierarchical in nature where, in the first step, the frequency response is optimized using the circuit’s ideal transfer function. The following steps are used to optimize circuits, at transistor level, to replace the ideal blocks (amplifier and switches) used in the first step, while compensating the effects of the circuit’s parasitic capacitances in the ideal design. The second method uses a novel efficient numerical methodology to obtain the frequency response of SC filters, based on the circuit’s first-order differential equations. The methodology uses a non-hierarchical approach, where the non-ideal effects of the transistors (in the amplifier and in the switches) are taken into consideration, allowing the accurate computation of the frequency response, even in the case of incomplete settling in the SC branches. Several design and optimization examples are given to demonstrate the performance of the proposed methods. The prototypes of a second order programmable bandpass SC filter and a 50 Hz notch SC filter have been designed in UMC 130 nm CMOS technology and optimized using the proposed optimization software with a supply voltage of 0.9 V. The bandpass SC filter has a total power consumption of 249 uW. The filter’s central frequency can be tuned between 3.9 kHz and 7.1 kHz, the gain between -6.4 dB and 12.6 dB, and the quality factor between 0.9 and 6.9. Depending on the bit configuration, the circuit’s THD is between -54.7 dB and -61.7 dB. The 50 Hz notch SC filter has a total power consumption of 273 uW. The transient simulation of the circuit’s extracted view (C+CC) shows an attenuation of 52.3 dB in the 50 Hz interference and that the desired 5 kHz signal has a THD of -92.3 dB

    Low-Power Wake-Up Receivers

    Get PDF
    The Internet of Things (IoT) is leading the world to the Internet of Everything (IoE), where things, people, intelligent machines, data and processes will be connected together. The key to enter the era of the IoE lies in enormous sensor nodes being deployed in the massively expanding wireless sensor networks (WSNs). By the year of 2025, more than 42 billion IoT devices will be connected to the Internet. While the future IoE will bring priceless advantages for the life of mankind, one challenge limiting the nowadays IoT from further development is the ongoing power demand with the dramatically growing number of the wireless sensor nodes. To address the power consumption issue, this dissertation is motivated to investigate low-power wake-up receivers (WuRXs) which will significantly enhance the sustainability of the WSNs and the environmental awareness of the IoT. Two proof-of-concept low-power WuRXs with focuses on two different application scenarios have been proposed. The first WuRX, implemented in a cost-effective 180-nm CMOS semiconductor technology, operates at 401−406-MHz band. It is a good candidate for application scenarios, where both a high sensitivity and an ultra-low power consumption are in demand. Concrete use cases are, for instance, medical implantable applications or long-range communications in rural areas. This WuRX does not rely on a further assisting semiconductor technology, such as MEMS which is widely used in state-of-the-art WuRXs operating at similar frequencies. Thus, this WuRX is a promising solution to low-power low-cost IoT. The second WuRX, implemented in a 45-nm RFSOI CMOS technology, was researched for short-range communication applications, where high-density conventional IoT devices should be installed. By investigation of the WuRX for operation at higher frequency band from 5.5 GHz to 7.5 GHz, the nowadays ever more over-traffic issues that arise at low frequency bands such as 2.4 GHz can be substantially addressed. A systematic, analytical research route has been carried out in realization of the proposed WuRXs. The thesis begins with a thorough study of state-of-the-art WuRX architectures. By examining pros and cons of these architectures, two novel architectures are proposed for the WuRXs in accordance with their specific use cases. Thereon, key WuRX parameters are systematically analyzed and optimized; the performance of relevant circuits is modeled and simulated extensively. The knowledge gained through these investigations builds up a solid theoretical basis for the ongoing WuRX designs. Thereafter, the two WuRXs have been analytically researched, developed and optimized to achieve their highest performance. Proof-of-concept circuits for both the WuRXs have been fabricated and comprehensively characterized under laboratory conditions. Finally, measurement results have verified the feasibility of the design concept and the feasibility of both the WuRXs

    Automated design synthesis of CMOS operational amplifers

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (p. 159-161).by Ognen J. Nastov.M.S

    Development of Robust Analog and Mixed-Signal Circuits in the Presence of Process- Voltage-Temperature Variations

    Get PDF
    Continued improvements of transceiver systems-on-a-chip play a key role in the advancement of mobile telecommunication products as well as wireless systems in biomedical and remote sensing applications. This dissertation addresses the problems of escalating CMOS process variability and system complexity that diminish the reliability and testability of integrated systems, especially relating to the analog and mixed-signal blocks. The proposed design techniques and circuit-level attributes are aligned with current built-in testing and self-calibration trends for integrated transceivers. In this work, the main focus is on enhancing the performances of analog and mixed-signal blocks with digitally adjustable elements as well as with automatic analog tuning circuits, which are experimentally applied to conventional blocks in the receiver path in order to demonstrate the concepts. The use of digitally controllable elements to compensate for variations is exemplified with two circuits. First, a distortion cancellation method for baseband operational transconductance amplifiers is proposed that enables a third-order intermodulation (IM3) improvement of up to 22dB. Fabricated in a 0.13µm CMOS process with 1.2V supply, a transconductance-capacitor lowpass filter with the linearized amplifiers has a measured IM3 below -70dB (with 0.2V peak-to-peak input signal) and 54.5dB dynamic range over its 195MHz bandwidth. The second circuit is a 3-bit two-step quantizer with adjustable reference levels, which was designed and fabricated in 0.18µm CMOS technology as part of a continuous-time SigmaDelta analog-to-digital converter system. With 5mV resolution at a 400MHz sampling frequency, the quantizer's static power dissipation is 24mW and its die area is 0.4mm^2. An alternative to electrical power detectors is introduced by outlining a strategy for built-in testing of analog circuits with on-chip temperature sensors. Comparisons of an amplifier's measurement results at 1GHz with the measured DC voltage output of an on-chip temperature sensor show that the amplifier's power dissipation can be monitored and its 1-dB compression point can be estimated with less than 1dB error. The sensor has a tunable sensitivity up to 200mV/mW, a power detection range measured up to 16mW, and it occupies a die area of 0.012mm^2 in standard 0.18µm CMOS technology. Finally, an analog calibration technique is discussed to lessen the mismatch between transistors in the differential high-frequency signal path of analog CMOS circuits. The proposed methodology involves auxiliary transistors that sense the existing mismatch as part of a feedback loop for error minimization. It was assessed by performing statistical Monte Carlo simulations of a differential amplifier and a double-balanced mixer designed in CMOS technologies

    High-speed Time-interleaved Digital-to-Analog Converter (TI-DAC) for Self-Interference Cancellation Applications

    Get PDF
    Nowadays, the need for higher data-rate is constantly growing to enhance the quality of the daily communication services. The full-duplex (FD) communication is exemplary method doubling the data-rate compared to half-duplex one. However, part of the strong output signal of the transmitter interferes to the receiver-side because they share the same antenna with limited attenuation and, as a result, the receiver’s performance is corrupted. Hence, it is critical to remove the leakage signal from the receiver’s path by designing another block called self-interference cancellation (SIC). The main goal of this dissertation is to develop the SIC block embedded in the current-mode FD receivers. To this end, the regenerated cancellation current signal is fed to the inputs of the base-band filter and after the mixer of a (direct-conversion) current-mode FD receiver. Since the pattern of the transmitter (the digital signal generated by DSP) is known, a high-speed digital-to-Analog converter (DAC) with medium-resolution can perfectly suppress main part of the leakage on the receiver path. A capacitive DAC (CDAC) is chosen among the available solutions because it is compatible with advanced CMOS technology for high-speed application and the medium-resolution designs. Although the main application of the design is to perform the cancellation, it can also be employed as a stand-alone DAC in the Analog (I/Q) transmitter. The SIC circuitry includes a trans-impedance amplifier (TIA), two DACs, high-speed digital circuits, and built-in-self-test section (BIST). According to the available specification for full-duplex communication system, the resolution and working frequency of the CDAC are calculated (designed) equal to 10-bit (3 binary+ 2 binary + 5 thermometric) and 1GHz, respectively. In order to relax the design of the TIA (settling time of the DAC), the CDAC implements using 2-way time-interleaved (TI) manner (the effective SIC frequency equals 2GHz) without using any calibration technique. The CDAC is also developed with the split-capacitor technique to lower the negative effects of the conventional binary-weighted DAC. By adding one extra capacitor on the left-side of the split-capacitor, LSB-side, the value of the split-capacitor can be chosen as an integer value of the unit capacitor. As a result, it largely enhances the linearity of the CADC and cancellation performance. If the block works as a stand-alone DAC with non-TI mode, the digital input code representing a Sinus waveform with an amplitude 1dB less than full-scale and output frequency around 10.74MHz, chosen by coherent sampling rule, then the ENOB, SINAD, SFDR, and output signal are 9.4-bit, 58.2 dB, 68.4dBc, and -9dBV. The simulated value of the |DNL| (static linearity) is also less than 0.7. The similar simulation was done in the SIC mode while the capacitive-array woks in the TI mode and cancellation current is set to the full-scale. Hence, the amount of cancelling the SI signal at the output of the TIA, SNDR, SFDR, SNDRequ. equals 51.3dB, 15.1 dB, 24dBc, 66.4 dB. The designed SIC cannot work as a closed-loop design. The layout was optimally drawn in order to minimize non-linearity, the power-consumption of the decoders, and reduce the complexity of the DAC. By distributing the thermometric cells across the array and using symmetrical switching scheme, the DAC is less subjected to the linear and gradient effect of the oxide. Based on the post-layout simulation results, the deviation of the design after drawing the layout is studied. To compare the results of the schematic and post-layout designs, the exact conditions of simulation above (schematic simulations) are used. When the block works as a stand-alone CDAC, the ENOB, SINAD, SFDR are 8.5-bit, 52.6 dB, 61.3 dBc. The simulated value of the |DNL| (static linearity) is also limited to 1.3. Likewise, the SI signal at the output of the TIA, SNDR, SFDR, SNDRequ. are equal to 44dB, 11.7 dB, 19 dBc, 55.7 dB
    • …
    corecore