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ABSTRACT

High Performance Local Oscillator Design for
Next Generation Wireless Communication

Tsung-Hao (Jeffrey) Chuang

Local Oscillator (LO) is an essential building block in modern wireless radios. In modern

wireless radios, LO often serves as a reference of the carrier signal to modulate or demod-

ulate the outgoing or incoming data. The LO signal should be a clean and stable source,

such that the frequency or timing information of the carrier reference can be well-defined.

However, as radio architecture evolves, the importance of LO path design has become much

more important than before. Of late, many radio architecture innovations have exploited

sophisticated LO generation schemes to meet the ever-increasing demands of wireless radio

performances.

The focus of this thesis is to address challenges in the LO path design for next-generation

high performance wireless radios. These challenges include (1) Congested spectrum at low

radio frequency (RF) below 5GHz (2) Continuing miniaturization of integrated wireless radio,

and (3) Fiber-fast (>10Gb/s) mm-wave wireless communication.

The thesis begins with a brief introduction of the aforementioned challenges followed by

a discussion of the opportunities projected to overcome these challenges.

To address the challenge of congested spectrum at frequency below 5GHz, novel ra-

dio architectures such as cognitive radio, software-defined radio, and full-duplex radio have

drawn significant research interest. Cognitive radio is a radio architecture that opportunisti-

cally utilize the unused spectrum in an environment to maximize spectrum usage efficiency.

Energy-efficient spectrum sensing is the key to implementing cognitive radio. To enable

energy-efficient spectrum sensing, a fast-hopping frequency synthesizer is an essential build-



ing block to swiftly sweep the carrier frequency of the radio across the available spectrum.

Chapter 2 of this thesis further highlights the challenges and trade-offs of the current LO gen-

eration scheme for possible use in sweeping LO-based spectrum analysis. It follows by intro-

duction of the proposed fast-hopping LO architecture, its implementation and measurement

results of the validated prototype. Chapter 3 proposes an embedded phase-shifting LO-path

design for wideband RF self-interference cancellation for full-duplex radio. It demonstrates a

synergistic design between the LO path and signal to perform self-interference cancellation.

To address the challenge of continuing miniaturization of integrated wireless radio, ring

oscillator-based frequency synthesizer is an attractive candidate due to its compactness.

Chapter 4 discussed the difficulty associated with implementing a Phase-Locked Loop (PLL)

with ultra-small form-factor. It further proposes the concept sub-sampling PLL with time-

based loop filter to address these challenges. A 65nm CMOS prototype and its measurement

result are presented for validation of the concept.

In shifting from RF to mm-wave frequencies, the performance of wireless communication

links is boosted by significant bandwidth and data-rate expansion. However, the demand

for data-rate improvement is out-pacing the innovation of radio architectures. A >10Gb/s

mm-wave wireless communication at 60GHz is required by emerging applications such as

virtual-reality (VR) headsets, inter-rack data transmission at data center, and Ultra-High-

Definition (UHD) TV home entertainment systems. Channel-bonding is considered to be a

promising technique for achieving >10Gb/s wireless communication at 60GHz. Chapter 5

discusses the fundamental radio implementation challenges associated with channel-bonding

for 60GHz wireless communication and the pros and cons of prior arts that attempted to

address these challenges. It is followed by a discussion of the proposed 60GHz channel-

bonding receiver, which utilizes only a single PLL and enables both contiguous and non-

contiguous channel-bonding schemes.

Finally, Chapter 6 presents the conclusion of this thesis.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The ever-increasing demands of mobile applications have driven radio design towards low-

cost, low-power, high-performance, high-levels of integration, and towards the usage of the

unexplored electromagnetic radio spectrum. As illustrated in Fig. 1.1, by 2020, the number

of connected devices such as mobile phones, tablets, and short-range and long-range Internet-

of-Things (IoT) devices will be over 25 billion [12]. Furthermore, the predicted traffic of data

usage, as shown in Fig. 1.2, has grown exponentially over the last five years and this growth

shows no sign of stopping.

Thanks to Moore’s Law, the Complementary metaloxidesemiconductor (CMOS)-based

integrated circuit has been favored over other technology over the last few decades. To

date, the opportunities and challenges of CMOS-based wireless radio design can be mainly

categorized into

• Better usage of idle and unexplored spectrum.

• Miniaturization of form-factor of wireless radios.

• Achieving fiber-fast wireless communication for emerging applications.

Local Oscillator (LO) is an essential building block in modern wireless radios. In modern

wireless radios, LO often serves as a reference of carrier signal to modulate or demodulate
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Figure 1.1: Survey and predicted number of connected devices from 2014 to 2022. (source:

Ericsson Mobility Report 2017)

the outgoing or incoming data. The LO signal should be a clean and stable source such that

the frequency or timing information of the carrier reference can be well-defined. However,

as radio architecture evolves, the importance of LO path design has become much more

important than before. Of late, many radio architecture innovations exploited sophisticated

LO generation schemes to meet the ever-increasing demand on wireless radio performances.

The goal of this thesis is to address the topic of LO path design in these novel integrated

wireless radio architectures. The following sections further highlight the opportunities and

challenges in recent wireless radio developments.

1.1 Challenge I: Extremely Congested Spectrum at Low-

RF Frequency

Fig. 1.3 shows spectrum allocation in the US as of January 2016. The available spectrum

is considered a limited natural resource, which is becoming extremely congested due to the

explosive growth of mobile devices. Between 300MHz and 3GHz specifically, almost all the

available spectrum has been assigned and any unused licensed band in this frequency range
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Figure 1.2: Survey of mobile data traffic over the past five years. (Source: Ericsson Mobility

Report 2017)

is extremely valuable due to its rarity.

1.1.1 Local Oscillator Generation Technique for Sweeping-LO-based

Spectrum-Sensing in Cognitive Radio Applications

Although the spectrum shown in Fig. 1.3 appears incredibly crowded at first glance, it

is not in use at all times. Fig. 1.4 provides an example of uneven spectrum usage over

a meaningful period of time. As can be seen, most of the spectrum are idle. Dynamic

spectrum access [13, 14] is a technique that allows unlicensed users (or so called ”secondary
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Figure 1.3: Spectrum allocation chart in the US [4].

users”) to opportunistically access bands that are temporarily unused by licensed primary

users. This is the underlying working principle of Cognitive Radio (CR) [15]. For physical

layer (PHY) design, CR involves many challenges such as high dynamic-range wideband

transceiver design, Fig. 1.5(a), energy-efficient spectrum sensing/analysis, and agile radio

reconfigurability among others [16–18].

Fig. 1.5(b) shows the block diagram of a conceptual radio that can be used for analyzing

the spectrum. The filtered and amplified incoming signal is downconverted by the LO and

mixed into baseband frequencies (assuming the high-frequency mixing product is low-pass

filtered). In such architecture, the LO signal must be swept across the entire spectrum of

interest periodically. In reality, the availability of ”white space” can change rapidly, and

therefore, it is imperative for the rate of LO sweeping to be commensurate with the rate of

change in the available spectrum. In addition, it is also desirable to perform the spectrum
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analysis in an energy-efficient manner, meaning that dynamic action such as LO-sweeping

must be as quick as possible, so that overall power consumption can be minimized.

Figure 1.4: Overall plot of 24-hour maximum spectrum usage measured over six days in

Brno, Czech Republic [5].

Figure 1.5: (a) General front-end architecture for CR (b) Synthesizer-based spectrum sensing

for CR front-end.

Chapter 2 further highlights the challenges and design trade-offs of an LO generation

scheme for LO-sweeping based spectrum analysis. It is followed by the introduction of the

proposed fast-hopping LO architecture, its implementation and the measurement result of

the validated prototype.
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1.2 Challenge II: Miniaturization of Form-factor of Wire-

less Radios

1.2.1 LO-Path Design for Wideband RF Self-Interference Cancel-

lation for full-duplex wireless communication

Modern radio design often incorporates numerous off-chip duplexers to support multi-band

frequency-division duplexing (FDD) operations. FDD allows multiple users to access the

spectrum with allocated channels such that their information will not interfere with the

information of other users. Off-chip tuned duplexers are bulky and costly. Recently, there

have been many research effort aiming at replacing the bulky tuned duplexers with tunable

solutions or even integrated solutions. Full-duplex (FD) radio is another topic that has

drawn a lot of research interests of late. Both FDD and FD radios, shown in Fig. 1.6,

require significant self-interference cancellation.

Chapter 3 proposes an embedded phase-shifting LO-Path design for wideband RF self-

interference cancellation. It demonstrates a synergistic design between the LO path and

signal in performing self-interference cancellation.

Figure 1.6: Separation of transmission and reception in (a) time (TDD) or (b) frequency

(FDD). (c) simultaneously transmit and receive at the same frequency (Full-duplex) [2].
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Figure 1.7: Cost per unit area and per transistor from 130nm to 10nm CMOS technology.

(source: 2014 Intel Developer Forum)

1.2.2 Ultra-low-form-factor, Low-Noise PLL Design

For radio frequency integrated circuit designers, passive components are crucial to design

building blocks, which include oscillators, PLLs, amplifiers, filters, or even just interconnec-

tions. As shown in Fig. 1.7, in advanced nodes, wafer cost increases while the cost-per-gate

decreases. This means that the usage of passives in RFIC design comes at the cost of

increasing the number of transistors or gates.

Phase-locked loop (PLL) is the predominant method for on-chip LO generation. The

technology used in modern PLLs is vastly different from what was used when the PLL was

first invented. The simplicity of the idea of a PLL, using a negative feedback loop to lock the

phase of a free-running oscillator, makes it a popular choice for LO generation over time. As

shown in Fig. 1.8, modern digital system-on-chip (SoC) and multi-band multi-mode radios

require multiple PLLs. As cost per unit area of advanced CMOS technology increases, there

is a need to miniaturize the area of PLLs without not sacrificing jitter and phase noise

performance.

Ring oscillators are a popular choice for on-chip oscillators since they are compact and can
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be easily tuned. Recently, in wireless radios, circuit techniques enabling ring oscillator-based

PLLs to generate clean LO signal that are compatible with various wireless standards have

attracted significant research interests [19–22]. As the ring oscillator-based PLL manifests

itself as an attractive and feasible candidate across domains of application, pathway to

further reduce area of ring oscillator-based PLLs have become a crucial topic.

Chapter 4 discusses the challenge associated with the implementation of PLLs with an

ultra small form-factor. It further proposes the concept of sub-sampling PLLs with a time-

based loop filter to address these challenges and presents a 65nm CMOS prototype and

measurement results for validation of this concept.

Figure 1.8: Modern SoC architectures for microprocessors [6] and wireless radios [7].
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Figure 1.9: Worldwide frequency allocation at 60GHz [8].

1.3 Challenge III: Fiber-fast (>10Gb/s) Wireless Com-

munication for Emerging Applications

It is predicted that utilizing mm-wave frequencies could be another or perhaps the most

promising solution to the aforementioned congested spectrum challenge below 5GHz. Based

on Shannon’s Theorem, channel capacity of a communication channel or data link is directly

proportional to the bandwidth of the channel and the signal-to-noise ratio (SNR) of the

link. By shifting to carriers at mm-wave frequencies, the available bandwidth for data

transmission increases naturally. In addition, the form-factor of most the passive components

is directly proportional to the wavelength of the signal traveling through them. Moving to

mm-wave frequencies will inherently lower form-factor of the radio, thereby lowering cost.

The scaling of CMOS technology has significantly increased the speed of the transistor such

that CMOS can as well be an suitable candidate for producing radios at mm-wave frequencies.

For this reason, a plethora of emerging and/or existing commercial applications such as

5G communication, wireless backhaul, short/mid-range point-to-point communication, and

vehicular radars have all targeted the deployment CMOS-technology-based products for mass
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production.

Among the mm-wave frequency bands of interest, the 60GHz band offers unprecedented

opportunities for short/mid-range wireless personal area networks such as those in home en-

tertainment systems. Recently, IEEE 802.11ad, Wireless Gigabit Alliance (WiGig), specifi-

cation has been included by the Wi-Fi Alliance as part of next-generation Wi-FI protocol[23].

The WiGig standard allocates four 2.16GHz wide channels centering at 58.32GHz, 60.48GHz,

62.64GHz, and 64.80GHz. For single-carrier (SC) operation, up to 16-QAM modulation can

be supported by the radio. For Orthogonal Frequency-Division Multiplexing (OFDM) oper-

ation, up to 64-QAM modulation can be supported. SC 16-QAM operation can achieve up

to 4.62 Gb/s while OFDM 64-QAM operation can achieve up to 6.76 Gb/s. Although this

may appear sufficient for current commercial applications such as streaming high-definition

TV (HDTV) or high-speed high-volume file transferring, emerging applications demand even

higher wireless communication data-rates.

Figure 1.10: Emerging applications for high data-rate wireless communications.

These emerging applications include, among others, un-compressed Ultra-High-Definition

(UHD) TV and, Wireless Virtual-Reality (VR), as shown in Fig. 1.10. The required data-

rates for these applications are beyond 10 Gb/s and exceed the peak data-rate that the

current IEEE 802.11ad (or WiGig) standard can support. For this reason, an upcoming

specification, IEEE 802.11ay, has been proposed as an enhancement to the current 802.11ad
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standard, targeting data-rate transmission of over 40 Gb/s over a 100-meter range. To

support these specifications, it is expected that advanced techniques such as channel-bonding,

multi-user multi-input-multi-output (MU-MIMO), and advanced modulation schemes such

as 256-QAM be applied.

Chapter 5 discusses the fundamental challenges associated with channel-bonding scheme

for 60GHz radio, and the prior-arts that attempted to address these issues. It also discusses

the proposed 60GHz channel-bonding receiver, which requires only a single PLL and enables

both contiguous and non-contiguous channel-bonding schemes.
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Chapter 2

RF Instantaneous-hop Frequency

Synthesizer for Energy-Efficient

Spectrum Sensing in Cognitive Radios

2.1 Overview

This chapter begins with a brief discussion of the conventional fast-settling/hopping LO

generation scheme with a focus on its advantages and disadvantages for sweeping-LO-based

spectrum analysis in CR applications. Following a brief discussion, a zero initial phase error

concept for PLL feedback loop settling is introduced. Subsequently, an instantaneous-hop

frequency synthesizer architecture featuring a zero-initial-phase-error divider is proposed.

An implementation of 65nm CMOS prototype and its validated measurement result are also

discussed. The chapter concludes with a discussion of possible future research directions.
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Figure 2.1: Conventional analog charge-pump PLL.

2.2 Conventional Fast-hopping LO Generation Tech-

nique

The conventional LO generation scheme can be briefly categorized into four architectures,

namely the analog integer-N PLL-based frequency synthesizer, all-digital PLL, single-sideband-

mixing-based LO generation, and direct-digital frequency synthesis (DDFS).

2.2.1 Analog Charge-pump PLL-based Frequency Synthesizer

The analog charge-pump PLL-based frequency synthesizer, shown in Fig. 2.1, has been the

predominant method of on-chip LO generation due to its simplicity [24–26]. A low-frequency

clean reference signal is introduced into the PLL to compare its phase with the frequency-

divided version of the high-frequency noisy on-chip oscillator. The negative-feedback nature

of the loop ensures that within the loop bandwidth of the PLL, phase errors or phase noise of

the high-frequency oscillator are corrected by the clean reference signal. Due to its simplicity,

analog PLL has been employed in a wide range of applications from clock synthesis for digital

circuitry, clock generation for data converters, and LO design for wireless radios.

Settling time is an important metric for evaluating PLL performance. It is airly straight-

forward to derive that the energy consumption for a CR to perform a sweeping-LO-based

spectrum analysis is directly proportional to the settling of the PLL. Therefore, it is essential

to shorten the settling time of the PLL from a loop design perspective.
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For an analog charge-pump PLL, the settling time of the loop is inversely proportional

to its loop bandwidth. Larger loop bandwidth results in shorter settling time and sharper

in-band voltage-controlled oscillator (VCO) phase noise rejection. However, larger loop

bandwidth also leads to weaker reference spurs and reference or other loop components’

phase noise attenuation at out-of-band frequencies. In addition, loop bandwidth cannot be

indefinitely widened due to the issues of stability. Typically, the loop bandwidth of a mixed-

signal PLL is limited to 1/10 or even 1/20 reference frequency such that the continuous-time

approximation for phase-domain stability analysis holds. For a given settling time, the

minimum loop bandwidth, fc, required can be expressed as [27]

fc =
1

tlockξ(φm)
ln
fstep
ferror

(2.1)

where tlock is the required settling time, ξ(φm) is the effective damping ratio for given

phase margin, fstep is the frequency difference of hop, and ferror is the tolerable frequency

error. For instance, for a loop with a phase margin of 50deg, which corresponds to a ξ(φm) of

five, settling error of 48kHz (20ppm at 2.4GHz), and frequency jump of 20MHz, the required

open loop bandwidth, fc, to achieve 100ns locking time is 12MHz. As previously mentioned,

for a PLL to achieve a bandwidth of 12MHz, the reference frequency must be 120MHz or

larger. For mobile applications, a crystal oscillator (XO) is typically employed to generate

the reference frequency. Finding a cost-effective XO at 120MHz can be challenging. Also, a

reference frequency of 120MHz mandates the need for adopting fraction-N PLL architecture

to generate a step frequency (e.g.:20MHz), typically governed by channel-spacing in radio

design, that is finer than the reference frequency itself.

The above example highlights the difficulty of designing a PLL with minimal settling

time while meeting other loop design requirements. Typically, phase noise or jitter are the

most critical performance metric for a PLL and the loop bandwidth is chosen to prioritize

optimal phase noise or jitter performances.
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2.2.2 All-Digital PLL

All-digital PLL or ADPLL, displayed in Fig. 2.2, is another promising candidate for fast-

settling/hopping LO generation in an advanced CMOS node for modern wireless applications

[28]. A typical ADPLL is comprised of a digitally-controlled oscillator (DCO), digital loop

filter, and a time-to-digital converter. The DCO’s frequency is controlled by a frequency

digital control word (DCW) instead of an analog controlled voltage seen in an analog PLL.

The frequency of the DCW is the ratio of the desired output frequency divided by the input

reference frequency. There are many types of architectures for ADPLL. The one shown in

Fig. 2.2 [29] resembles the conventional charge pump PLL, the DCO signal is divided by

a frequency divider and its output is compared with the reference signal by the time-to-

digital converter (TDC). A TDC can be thought of as the equivalent of phase-frequency

detector (PFD) and a charge-pump in an analog charge-pump PLL. The phase difference of

the divided signal and reference is in digital form and is fed into the digital loop filter to

generate the aforementioned frequency DCW.

Figure 2.2: Architecture for AD-PLL.

Fast-settling/hopping capability for ADPLL has been reported and demonstrated [30].

However, the operation and challenge of implementing an ADPLL lies in the resolution of

TDC. If the phase error is smaller than the time/phase resolution of the TDC, it essentially

act as a bang-bang phase detector. The bang-bang operation introduces quantization noise,

and the level of quantization noise introduced is a function of the resolution of the TDC. To



CHAPTER 2. RF INSTANTANEOUS-HOP FREQUENCY SYNTHESIZER FOR
ENERGY-EFFICIENT SPECTRUM SENSING IN COGNITIVE RADIOS 16

date, state-of-the-art ADPLLs are still plagued by this issue and this prevents them from

achieving comparable performance to state-of-the-art analog PLLs [31].

2.2.3 Single-sideband Mixing-based LO Generation

Due to the previously mentioned stringent settling requirements of a PLL, hybrid approaches

have been proposed to address this issue. Single-sideband (SSB) mixing-based technique,

shown in Fig. 2.3 uses separate fixed-frequency PLLs to cover different frequency bands of

interest and utilize an SSB mixer to generate mixing products between the fixed-frequency

PLLs to further extend the coverage of frequency. By using a multiplexer (MUX) at the

output to select the desired signal, this approach can eliminate the settling requirement of

the PLL, meaning that frequency-switching speed becomes limited only only limited by the

signal switching speed of the MUX.

Figure 2.3: Architecture for SSB LO generation.

Though this technique may appears attractive initially, it directly introduces a variety of

issues. First, quadrature phases are required from the fixed-frequency PLLs to drive the SSB

mixer. Second, the SSB mixer produces unwanted mixing spurs, meaning additional filtering

may be required after the SSB mixer. The mixer spurs can potentially also be alleviated by

linearizing the SSB mixer, however, this comes at the cost of power consumption and noise

penalty.

This approach was one of the popular candidates for Multi-band-OFDM Ultra Wideband

(UWB) standard [32][33]. The 9.5ns guard-interval to switch hop between channels mandates
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the usage of such an open-loop approach. However, in the context of sweeping-LO-based

spectrum sensing, it is not a suitable choice since it can still generate discrete number of

frequencies at the MUX output without reconfiguring the PLL.

2.2.4 Direct-digital Frequency Synthesis

Direct digital frequency synthesis, shown in Fig. 2.4, synthesizes a sinusoidal signal from an

input DCW containing the frequency information. A typically DDFS [34–36] is comprised of

a phase accumulator, a phase-to-sine map as a lookup table, and a digital-to-analog converter

(DAC). The DAC can sometimes be followed by a low-passed filter. The output of the phase

accumulator is a ramp with discrete levels. This ramping signal drives the preprogrammed

loop-up table to generate a sampled sine-wave-like signal with discrete levels. Its period

represents the corresponding frequency information of the input DCW. Finally, the DAC

converts this sampled signal into a continuous sine wave.

Figure 2.4: Schematic of DDFS system.

Thanks to its digital and open-loop nature, PLLs can achieve extremely fast settling time.

However, implementing a DDFS at GHz frequencies requires high-speed digital circuits and

DAC. While CMOS technology is achieving higher fT as technology scales, implementing

digital circuit and data-converter at GHz range remains to be challenging and most impor-

tantly, power consuming.

Fig. 2.5 briefly summarizes the conventional LO generation scheme and Fig. 2.6 shows

a survey of locking time vs. power consumption for recently published fast-hopping/locking

LO generation works.
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Figure 2.5: (a) Analog integer-N PLL (b) All-digital PLL (c) Single-sideband mixing LO

generation (d) Direct digital frequency synthesis (DDFS) technique.

2.3 Prior-Arts

Prior works has sought to expedite the locking process of the PLL. Works in [37–39] have

effectively varied bandwidth, mode, and type of PLL respectively between transient locking

and steady-state operation to mitigate bandwidth vs. settling time trade-off in type-II

integer-N PLLs. In [40], a pre-determined look-up table is utilized to preset the DCW of the

VCO in the PLL. This reduces the initial VCO frequency error, but the potentially harmful

initial phase error induced by the divider is not addressed.

2.4 Concept of Proposed Zero-Initial-Phase-Error [1]

In this work, a PLL is proposed where initial frequency and phase error at the hop instant are

eliminated through digitally intensive initial-condition control. This eliminates acquisition



CHAPTER 2. RF INSTANTANEOUS-HOP FREQUENCY SYNTHESIZER FOR
ENERGY-EFFICIENT SPECTRUM SENSING IN COGNITIVE RADIOS 19

Figure 2.6: Survey of locking time vs. power consumption for recently published fast-hopping

LO generation works.

and enables ’instantaneous hops” that fall within a frequency error limited only by the

DCW resolution. The conventional integer-N charge-pump PLL (shown in Fig. 2.7(a)) is a

nonlinear dynamic feedback system characterized by its state variables. Specifying the values

of all state variables completely defines the system’s state. For example, an LC-VCO based

charge-pump PLL is a mixed-mode system whose state variables include inductor current

and capacitor voltage in the VCO, the control voltage across the loop filter’s capacitor, and

the state of the digital divider (which is essentially a digital finite-state-machine (FSM)

counter). Initial conditions are critical in the transient response of such systems. This work

proposes the assignment of initial conditions to each state variable in the system at the hop

instant through extensive digital control and calibration to essentially hop to a locked state.

The digital divider is essentially a counter with a programmable terminal count. Fig.
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Figure 2.7: (a) PLL with a binary-sequence counter-based divider. (b) Mechanism of initial

phase error in the counter-based divider.

2.7(b) illustrates the transient behavior of a conventional binary-sequence counter-based

divider at the frequency hop instant. If the terminal count is set to either M = 80 or

N = 96 at the hop instant, the counter induces an initial phase error to the reference

signal if its original state (count 40 here) is maintained. Typical multi-modulus dividers

use pulse-swallow counters or cascaded divide-by-2/3 structures, which have their own state-

machine descriptions and so, initial-phase-error mechanisms. These initial phase errors can

be eliminated by reconfiguring the state of the FSM at the hop instant.

To implement a divider with initial-state control, two aspects must be addressed. First,

as seen in Fig. 2.8, assuming the divider chain has multi-modulus and fixed-ratio dividers,

one aspect is whether the multi-modulus divider should be at the input or at the output of

the divider chain. If zero initial phase error is achieved, this means that after reconfiguration

of the divider modulus at the hop instant, the divider output is unchanged and perfectly
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Figure 2.8: (a) Multi-modulus divider first: no initial state control is necessary in the fixed-

ratio divider that follows. (b) Fixed-ratio divider first: initial state control is required

throughout the chain.

aligned to the reference. Placing the multi-modulus divider at the front of the chain implies

no initial-state control is necessary in the fixed ratio dividers that follow (Fig. 2.8(a)), easing

the digital control exercised at the hop instant.

A second aspect is whether the front-side multi-modulus divider should be synchronous

or asynchronous. Asynchronous dividers are generally used for reduction in clock frequency

down the chain to reduce dynamic power consumption. In such chains the sub-dividers at

different clock frequencies are mutually skewed due to divider delays. This makes initial-state

control and even defining a state fundamentally problematic. Thus, to enable instantaneous

hops, the multi-modulus divider must be synchronous despite the slightly higher power

consumption. The following fixed-ratio divider can be asynchronous.

With these considerations, a zero-initial-phase-error divider is proposed, shown in Fig. 2.9
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Figure 2.9: Proposed zero-initial-phase-error divider structure.

with a synchronous divide-by-20/22/24 Johnson-counter divider followed by asynchronous

flip-flop-based divide-by-2 dividers. The multi-modulus nature of the Johnson-counter di-

viders derives from the 3-1 multiplexer (MUX), which controls feedback. As shown in Fig.

2.10, in the absence of state reconfiguration at the hop instant, the initial phase error ac-

cumulates throughout the period of the synchronous divider output and resets to zero at

each rising/falling edge. Thus, if the hop instant is synchronized with the rising edge of the

synchronous divider output, initial phase error is eliminated without extensive digital con-

trols. The delay induced by this synchronization will be less than one period of synchronous

divider output (∼ 4.7ns in this prototype).

2.5 Proposed 4.0-5.84 GHz Instantaneous-Hop PLL

A type-II third-order charge-pump PLL (Fig. 2.11) forms the core of the proposed syn-

thesizer. The PLL has an LC-VCO operating over 4.0-5.84 GHz which is tuned with an

accumulation-mode varactor and a high-resolution 9-bit DCW (Fig. 2.12), as well as the

programmable 80/88/96 divider chain described earlier (Fig. 2.9). A 53 MHz off-chip XO
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Figure 2.10: Potential initial phase error in the proposed divider structure for upward and

downward hops.

enables locking of the PLL to 4.24, 4.664 and 5.088 GHz with division ratios of 80, 88 and

96 respectively. A conventional tri-state phase-frequency detector (PFD) and passive loop

filter are integrated on chip. The loop parameters are designed for a bandwidth of 800 kHz

and phase margin of 45 degrees. Loop filter capacitors C1, C2 are 35 and 5 pF respectively,

and R1 is 6kΩ.

As described earlier, for zero initial phase error, the hop instant must be synchronized

with the rising edge of the synchronous divider output. In addition to state variables, the

charge pump current is also reprogrammed at the hop instant to maintain constant loop

bandwidth due to varying KV CO gain. Note that the charge pump current is not a PLL

state variable and does not contribute to initial condition errors. In this prototype, an on-

chip state register stores the DCW of 9-bit VCO, divider ratio control and charge pump
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Figure 2.11: 4.0-5.84 GHz instantaneous-hop PLL block diagram.

current control. A second on-chip memory with a serial interface (SPI) stores the settings

for the different frequencies between which the PLL hops (limited to two in this prototype).

The externally-applied hop signal clocks a flip-flop that registers the externally-applied 1-bit

band select signal. This flip-flop then selects the settings of one of the two possible output

frequencies for loading into the state register which is clocked by the synchronous divider

output to ensure hopping at its rising edge.

Other initial conditions include Vctrl, the inductor current and the capacitor voltage of

the VCO. The DCW of a 9-bit VCO ensures that the VCO can be programmed to lock with

Vctrl close to Vdd/2 for any output frequency. Choosing the appropriate initial DCW prior

to hop could eliminate the need for setting Vctrl. Controlling the initial inductor current

and capacitor voltage in the VCO is challenging as they are analog signals. However, as the
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Figure 2.12: 4.0-5.84 GHz 9-bit digitally-controlled LC-VCO with analog varactor tuning.

division ratios are large, the impact of not controlling them is small. The residual errors due

to finite DCW resolution, initial phase errors in the VCO due to the LC state variables, and

delays in the digital control path settle at a rate determined by the loop bandwidth and their

magnitude will determine the dynamic frequency error during settling. The prototype has

been designed to achieve an extremely low dynamic frequency error of 3.64 MHz on average

(dominated by DCW resolution), significantly lower than the varactor tuning-range. The

frequency drift of the VCO due to process, voltage, and temperature (PVT) variations can

be addressed by periodic calibration [41]. Increasing the resolution of the initial condition

digital control can lead to even lower dynamic frequency errors.

To demonstrate the benefit of this architecture, Verilog-AMS models were simulated for

the proposed divider and a conventional cascaded asynchronous divide-by-2/3 divider chain

(with realistic divider delays). A Verilog-AMS VCO model is built with a tuning curve fit

to the measurements. The PFD was modeled in Verilog-AMS while the charge-pump was at

the transistor-level. Fig. 2.13 shows the simulated settling behavior for a hop from 4.664 to
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Figure 2.13: Instantaneous frequency vs. time for different hop instants in (a) a conventional

PLL using divide-by-2/3 asynchronous dividers, and (b) a proposed instantaneous-hop PLL.

(c) Maximum dynamic frequency error vs. hop instant in both cases.

4.24 GHz. Frequency pre-setting is done in both cases while the external hop signal is varied

in time over one reference cycle. The proposed divider eliminates initial phase error, and

thus minimizes Vctrl overshoots and dynamic phase error by 1-2 orders of magnitude during

settling.

2.6 Measurement Result

A 65nm CMOS prototype was fabricated with 0.95 mm2 chip-area and further mounted on

a four layer FR-4 printed-circuit board for testing purpose, as shown in Fig. 4.9(a) and (b).

It draws 14 mA current in total from a 1.2V supply.
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Figure 2.14: (a) Photo of the board assembly for testing purposes (b) Chip micro-photograph.

2.6.1 VCO Measurement

The measured tuning-range of the VCO is 4.0-5.84 GHz. Fig. 2.15(a)-(d) depicts the

VCO’s frequency, KV CO, the frequency-difference between two successive DCW values at

mid-Vctrl(0.6V), and the single-band frequency tuning-range across all DCW. With these,

a DCW for any desired output frequency placing the required Vctrl near mid-VDD with a

residual initial frequency error of less than 3.64 MHz on an average can be found.

2.6.2 PLL Locked-spectrum and phase noise measurement

For PLL operation at 4.24GHz, the measured locked spectrum is shown in Fig. 2.16(a) and

the measured phase noise profile is shown in Fig. 2.16(b). For PLL operation at 5.08GHz,

the measured locked spectrum is shown in Fig. 2.17(a) and the measured phase noise profile

is shown in Fig. 2.17(b). The spot phase noise for PLL operating at 4.24, 4.664 and 5.088

GHz carrier frequencies at 1MHz-offset are measured to be -115.2, -114.4 and -112.1 dBc/Hz

respectively.
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Figure 2.15: Measured 4.0-5.84 GHz 9-bit LC-VCO performance at Vctrl = 0.6V vs. DCW:

(a) frequency (b) KV CO (c) frequency difference between two successive DCW (d) single-band

frequency coverage as Vctrl is varied from 0-1.2V.

2.6.3 PLL Hopping Measurement

Fig. 2.18 shows the measurement setup for the PLL hopping measurement. The signal from

DUT, namely the VCO output, is first power-split and then qudrature-downconverted by a

clean reference from a signal generator. The output at IF port of the mixer is monitored on an

oscilloscope to determine the DUT’s instantaneous frequency. The measured instantaneous

frequency of the DUT can be expressed as

ωInstantaneous,DUT = ωLO−TEST +
d

dt
[tan−1Qbb(t)

Ibb(t)
] (2.2)
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Figure 2.16: (a) Spectrum of the measured PLL at 4.24GHz (b) Phase noise profile of the

measured PLL at 4.24GHz.

Figure 2.17: (a) Spectrum of the measured PLL at 5.08GHz (b) Phase noise profile of the

measured PLL at 5.08GHz.
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Figure 2.18: Block diagram of proposed PLL transient hopping measurement setup.

To monitor hopping, the Vctrl node is also noted with a unity-gain buffer. Fig. 2.19(a)

shows Vctrl in a hop from 4.664 to 4.24 GHz as the divider ratio changes from 88 to 80. The

PLL settles within 4µs with minimum overshoot. Fig. 2.19 (b) shows the instantaneous

frequency during this period. The dynamic frequency error never exceeds 850 kHz. Fig.

2.19(c) shows Vctrl in a hop from 4.136 to 4.512 GHz with the divider ratio programmed

from 88 to 96. Fig. 2.19(d) shows Vctrl in a hop between 4.24 and 4.644 GHz. In all cases,

a very small dynamic frequency error is maintained.

2.6.4 Performance comparison

Table 2.1 compares state-of-the-art fast-locking/hopping PLLs.
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Table 2.1: Performance summary and comparison.

2.7 Conclusion and Future Work

In this chapter, a comparison between conventional fast-settling/hopping LO generation

schemes were outlined with a focus on targeting sweeping-LO-based spectrum analysis in

CR applications. Subsequently, a zero initial phase error concept for PLL feedback loop

settling was introduced. Following the introduction of the zero-initial-phase-error concept,

an instantaneous-hop frequency synthesizer architecture featuring a zero-initial-phase-error

divider was proposed. An implementation of a 65nm CMOS prototype and its validated

measurement result was discussed.

As was shown in Eq. 2.1, the hopping time of a conventional loop directly trades off

with its loop bandwidth and the frequency jump. These trade-offs limit the design de-
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grees of freedom for the loop and can potentially compromise overall performances. The

proposed instantaneous-hop frequency synthesizer was based on a zero-initial-phase-error

multi-modulus divider. It breaks the fundamental trade-off between hopping time, spectral

purity and frequency resolution.

There are a few avenues that can be pursued to extend the scope of the proposed ar-

chitecture. Modern PLLs for mobile radios often employ fractional-N instead of integer-N

architecture to relax the fundamental trade-off between reference frequency, channel reso-

lution/selectivity, and loop bandwidth. It would be interesting to explore the possibility of

incorporating the proposed technique into the schemes of fraction-N PLL. Another inter-

esting direction to explore is calibration. Since the proposed architecture exploits a digital-

intensive design, it may require a well-planned calibration scheme and algorithm such that

the performance can withstands PVT variation. A possible calibration scheme is shown in

Fig. 2.20.
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Figure 2.19: Measured (a) control voltage and (b) instantaneous output frequency for a

hop from 4.644 GHz to 4.24 GHz showing a maximum dynamic frequency error of 850 kHz.

Measured control voltage for upward and downward hops (maximum upward/downward

dynamic frequency error) between (c) 4.136 GHz and 4.512 GHz (1.65MHz, 900kHz) (d)

4.24 GHz and 4.644 GHz (1.5MHz, 850kHz). The 4.664 to 4.24 GHz downward hop is a

repeat of (a).
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Figure 2.20: Proposed calibration engine for the proposed instantaneous-hop PLL.
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Chapter 3

Embedded Phase-shifting LO-Path

Design for Wideband RF

Self-Interference Cancelling Receiver

3.1 Introduction

Phase shifters or phase rotators in silicon technology can be useful for numerous applications

such as digital synchronous data-link [42], beam-steering phased-array systems for high data-

rate wireless communication or radar applications [43, 44], and pulse generation for UWB

systems [45], among others. Resolution, linearity, maximum range of coverage, and system

bandwidth are critical design considerations for phase shifters or phase rotators.

Depending on the frequency of operation, available input, and required I/O signal type

(analog/digital), various types of phase shifters are used on different occasions. I/Q interpolator-

based phase shifters are one of the most widely-used choice among the phase shifter types.

These provide a full 360 degrees of coverage with both amplitude and phase reconfigurability

for calibration purposes. Due to its active nature, an I/Q interpolator-based shifter can po-

tentially provide voltage or power gains to the system at the cost of DC power consumption.

However, generating an in-phase and out-of-phase (I/Q) signal for the interpolator can be
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challenging for high-frequency or broadband input signals.

This work presents an alternate method of employing I/Q interpolator-based phase

shifters in modern radio design. The functionality of phase shifters is embedded in the

LO path design for the radio and the embedded phase shifting capability enables the radio

to perform self-interference cancellation with minimum complexity and design overhead.

The research of embedded phase-shifting LO-path design for wideband RF self-interference

cancelling receiver front-end that is presented in this work [2] was performed in collaboration

with Dr. Jin Zhou (now with UIUC) at Columbia CoSMIC Lab. Both the implementation

of the receiver front-end signal path and measurement of the overall system were performed

by Dr. Jin Zhou. The contribution of this work relates to the design and implementation

for the overall LO path of the system.

3.2 Challenges of Self-Interference Cancellation for FDD

and Full-Duplex Radio

Frequency-division multiple access (FDMA) is a critical channel access technique that is

widely adopted in modern wireless communication standards. It provides users allocation

of individual frequency bands or channels to transmit or receive data stream. Supporting

FDD operation at the radio front-end is indispensable to enabling FDMA. As shown in

Fig. 3.1, modern radio design often s numerous off-chip duplexers to support multi-band

FDD operation. While these front-end off-chip duplexers provide high-Q filtering such that

the transmitting and receiving path of the radio can operate at adjacent frequency bands

concurrently, they tend to be narrow-band and bulky. The combination of these two factors

limits the overall system form factor. For this reason, a tunable duplexer [46] to minimize

the number of duplexers that are required at the radio front-end has been an active research

problem, however, the incorporation of tunability exacerbates the insertion loss vs. TX/RX

isolation trade-off. To relax the TX/RX isolation vs. insertion loss trade-off for tunable

duplexer, self-interference cancellation (SIC) is required [47] [48] [49] as depicted in Fig. 3.1
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Figure 3.1: Highlight of allocated spectrum at mm-wave frequencies [2].

and Fig. 3.2(a).

Integrated radio for Full-duplex (FD) wireless communication has attracted significant

research interests [6][15]. By simultaneously transmitting and receiving the outgoing and

incoming information at the same frequency band (shown in Fig. 3.2), spectrum efficiency

can potentially be doubled [6], [15]. However, the biggest challenge associated with FD

wireless is the tremendous amount of SI in addition to the desired signal. As is required for

any radio, for full-duplex radios to receive the desired signal, its self-interference must be

suppressed below the RX noise floor through isolation and cancellation.

As analyzed in [2], given +15 dBm TX output power, 20 MHz RX signal bandwidth (BW)

and 5 dB RX noise figure, >111 dB SI suppression is required. While discrete-component-

based demonstrations have established the feasibility of FD wireless [50], [51], only recently

have there been demonstrations of fully integrated RFICs incorporating SIC for FD [52],

[2][53]. A fully integrated CMOS implementation imposes constraints that render the SIC

techniques proposed in prior discrete-component-based implementations. The benefit of SIC
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Figure 3.2: TX SIC in the RF domain for (a) a multiband FDD wireless system with a

tunable duplexer and (b) an FD wireless system [2].

in the RF domain, where a replica signal is tapped from the TX output and injected prior

to RX downconversion, is that the cancellation signal includes all the nonidealities from the

TX chain. Furthermore, the earlier the SIC, the more relaxed is the RX front-end linearity

requirement.

Wideband cancellation in the RF domain is a fundamental problem due to the highly

frequency-selective nature of antenna interfaces. Conventional RF feed-forward cancellation

technique emulates the magnitude and phase response of the antenna interface isolation at

one frequency. Time-domain equalization wideband SIC has been proposed and demon-
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strated with discrete components assembled on the printed circuit board. It resembles an

RF FIR filter topology where the signals are delayed, weighted, and summed through trans-

mission lines and attenuators. As reducing form-factors is the fundamental motivation, an

integrated solution is preferred and desired. For the RF canceller to commensurate with the

isolation profile of the antenna interfaces, generating nano-second scale delays is required.

Generating nano-second scale true time delay on silicon requires extremely lengthy transmis-

sion line and generating narrow-band approximation of large group delay requires extremely

high-Q passives, which are difficult due to their lossy substrate.

3.3 N-path-Filter-Based Wideband RF Self-Interference

Cancellation

To enhance the cancellation BW, second-order reconfigurable BPFs with amplitude and

phase control in each path are introduced in the RF canceller. The reconfigurable BPFs

can be modeled using a second-order RLC BPF. It can be shown that a second-order BPF

can be completely characterized by their center frequencies, amplitude, phase, and quality

factor. By placing a bank of second-order BPFs in parallel and independently reconfiguring

their design degrees of freedom (center frequency, amplitude, phase, Q), frequency domain

equalization of the isolation profile of the antenna interfaces can be achieved.

Recently, N-path filters have emerged as a promising solution for implementing integrated

widely tunable high-Q RF filters [54]. Advancement in modern scaled CMOS technology

has enabled transistors to switch efficiently at gigahertz frequencies, making N-path filters

a promising solution for the implementation of integrated widely-tunable high-Q RF filters

as shown in Fig. 3.3 (a) [54]. In this work, a two-port N-path Gm-C filter with embedded

variable attenuation and phase shifting is proposed for implementing the second-order high-Q

BPF.

As shown in Fig. 3.3 (b), the aforementioned four design degrees of freedom can be

independently reconfigured in the following ways.
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• Center frequency (fc) of the BPF: The center frequency of each N-path filter

can be reconfigured easily by changing the LO frequency of the mixer. However, this

method may require more than one PLL in the system. In this work, an alternative

was adopted. By reconfiguring the Gm value of the back-to-back baseband transcon-

ductance cell, the center frequency of BPF is shifted. The frequency shift, ∆ω can be

express as [54]

∆ω =
Gm

CB
(3.1)

where Gm is the baseband transconductance value and CB is the baseband capacitor

value.

• Amplitude response of the BPF: The amplitude response of the N-path filter-based

BPF can be easily reconfigured by varying the ratio between the source impedance Rs

and, the load impedance RL. This essentially change the attenuation factor of the

input signal. The magnitude response at the center frequency, (fc), can be expressed

as [2]

|H(jωs)| = Icanceller
Vin

≈ 8

π2
· (RL +Ron)ωsCcRo

RS +RL + 2Ron

(3.2)

• Phase response of the BPF: A constant phase shift can be introduced by phase

shifting the LO driving the mixer switches on the output side of the N-path filter. An

linear periodic time-variant (LPTV) analysis [55] can be carried out to show that phase

shifting the LOs driving the output side switches imparts constant phase shifts to the

two-port N-path filter frequency response with no other impact on close-in response.

• Quality factor: The quality factor of an N-path filter may be reconfigured via the

baseband capacitor CB, given fixed RS and RL. LPTV analysis yields [56]

Q = 4πfS[(RS +Ron)||(RL +Ron)]CB (3.3)
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Figure 3.3: Two-port Gm − C N-path filter implementation with embedded variable atten-

uation and phase shift. (a) Block diagram. (b) Illustration of variable quality-factor (group

delay), frequency shift, attenuation, and phase shift [2].

where Ron is the on-resistance of the N-path switches, fs is the switching frequency,

and the loading effect of CC is ignored.

3.4 Design Consideration for LO-Path Phase Shifter

Design

For a narrow-band system, the true time delay of an input signal can be approximated as

a phase shift at its center frequency. An analog method of implementing a phase shift is

vector-modulator-based phase shifter. A vector-modulator-based phase shifter, as shown in

Fig. 3.4 assigns a phase shift to an existing in-phase/out-of-phase input signal by weighting

the I/Q signals differently and summing these at the output to produce the desired phase

shift. For an LO signal, typically the I and Q pair can be generated by frequency divider, RC-

CR or poly-phase networks. Variable-gain amplifiers (VGAs) are often used to implement

the vector modulator cell. By toggling the biasing current or switching the load of the

VGA, the weighting on its input signal can be effectively applied. In comparison, digital
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phase rotators combine a multi-phase generator with a MUX at the output to select the

desired phase. To increases its resolution of phase shift, either the number of phase of the

multi-phase generator must be increased or the output signal of the MUX requires further

interpolation at the expense of system complexity. Due to the system complexity and phase

resolution requirement, a VGA-based vector modulator [57] was chosen for the proposed

design for the LO-path phase shifter implementation.

3.5 Proposed LO-Path Design for the N-path-Filter-

Based Self-Interference Canceller

The proposed LO path design for an N-path-filter-based self-interference canceller is shown

in Fig. 3.4. The differential LO input from the transmitter side is first divided by two to

generate differential I/Q signals. The aforementioned proposed N-path-filter-based canceller

requires two sets of 25% duty-cycle non-overlapping LO signals for its mixers. The output

signals of the divider split into two paths. The non phase-shifting path comprises a 25% duty-

cycle generator to generate the non phase-shifting version of the LO. The phase-shifting path

comprises a slew-rate control filter, two sets of vector-modulator-based phase shifters, and

another 25% duty-cycle generator. The purposes of inserting slew-rate-control RC filters is

to attenuate the harmonics at divider output to ensure the linearity of the subsequent vector

interpolators at the cost of potential (phase) noise degradation.

3.6 Simulation Result of the Proposed LO Path Design

Fig. 3.5(a) shows the simulation result of ideal phase shift vs. the simulated phase shift

from 0-45 degrees or the vector-modulator-based phase shifter. Fig. 3.5(b) plots the error

between the simulated phase shift and the ideal phase shift from Fig. 3.5(a). As can be

seen, the largest errors in phase shift (pre-layout and post layout) are both smaller than 2.5

degrees, satisfying the required specification for the N-path-filter-based canceller.
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Figure 3.4: Block diagram and schematic of the proposed embedded phase-shifting LO path

design.
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Fig. 3.7 depicts the simulated frequency response of the Gm cell of the vector modulator.

To enhance the linearity of vector modulation, the BW of the Gm cell is designed such

that response at harmonic frequency should be well attenuated and only the response at

fundamental input frequency should be preserved. The simulated BW of the Gm cell is

around 2GHz with 20dB/decade roll-off.

Fig. 3.6 (a) shows the post-layout simulation of duty-cycle vs. phase shift setting from

0-45 degrees for both the phase-shifting and non phase-shifting path. Fig. 3.6 (b) shows the

accuracy of non-overlapping generation between the differential I/Q signals at the output

of both the phase-shifting and non-phase-shifting path vs. phase shift settings from 0-45

degrees. As can be seen, the relative time difference between the edges is consistently smaller

than a 0.5% error from 0-45 degrees phase-shift setting.

Fig. 3.8 shows the simulation result of rise and fall time for the output signals of both

the phase-shifting path and non-phase-shifting path. The generated clock frequency is 1GHz

which translates to a 1ns period. For a 25% duty-cycle signal with 20ps rise/fall time, the

percentage of rise/fall times over the entire period is about 10%.

Fig. 3.9 shows the Monte-Carlo simulation of the phase shifter at a 45-degree phase shift

setting under the impact of device mismatch. The simulation result shows that, even with

device mismatch at presence, out of 50 simulation occurrences, the average phase shift is

45.1 degrees and the simulated standard deviation is 1.13 degrees.

Fig. 3.1 shows the breakdown of simulated power consumption for each block in the LO

path. The total simulated Pdc is 63.3mW.

Table 3.1: Breakdown of power consumption for the proposed embedded-phase-shifting LO

path.
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Figure 3.5: (a) Ideal phase shift vs. simulated phase shift (b) Error between simulated phase

shift and ideal phase shift from 0-45 degrees for the vector-modulator-based phase shifter.

3.7 65nm CMOS Radio Prototype and Highlighted System-

level Measurement Result [2]

A canceller bank of two reconfigurable second-order Gm-C N-path filters with a 0.81.4 GHz

reconfigurable current-mode RX was implemented in a 65 nm standard CMOS process.

The block diagram is shown in Fig. 3.10. The canceller filters have separate LO and TX

replica signal inputs, leading to flexibility in their use (e.g., cancellation of two separate TX

signals for MIMO applications). A noise-canceling common-gate (CG), common-source (CS)

low-noise transconductance amplifier (LNTA) is followed by 4-phase current-driven passive

mixers and baseband TIAs [58]. Programmable baseband recombination circuits combine

the RX outputs from the CG and CS paths for noise cancellation [58], [59].

The chip micro-photograph shown in Fig. 3.11 has an active area of 4.8mm2. The chip is

wire bonded and packaged in a QFN package, and mounted on a PCB for all measurements.

For FDD, the SI canceller enables the usage of a custom designed LTE-like duplexer

employing surface-mount-device based second-order LC filters with TX band isolation as

small as 30 dB, which is 25 dB relaxed compared to commercial SAW/FBAR duplexers.

The TX and RX 1 dB BWs are 762798 MHz and 872918 MHz, as shown in Fig. 3.12. The

highly selective duplexer has a peak isolation group delay of 11 ns and 7 dB magnitude
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Figure 3.6: (a) Post-layout simulation of duty-cycle vs. phase shift setting (b) Accuracy of

non-overlapping generation between the differential I/Q signal from 0-45 degrees.

variation across the TX band. The measured TX/RX isolation with SIC is shown in Fig.

3.13.

The SI canceller achieves a 20 dB cancellation BW of 17/24 MHz for one/two filters

enabled, while a conventional frequency-flat amplitude and- phase-based canceller has a 20

dB SIC BW of only 3 MHz. Note that in measurement, the two canceller filters share the

same LO, namely the TX LO frequency that is set at the center of the TX band. The Gm

cells are used to impart frequency shifts. The associated NF increase is only 0.5/0.6 dB due

to noise filtering, as the NF degradation is lower in the FDD region, i.e., in the vicinity of

the RX frequency rather than in the vicinity of the TX frequency.

3.8 Conclusion and Future Work

This chapter showcases an alternate method of employing an I/Q interpolator-based phase

shifter in modern radio design. The functionality of phase shifters are embedded in the LO

path design for the radio and the embedded phase-shifting capability enables the radio to

perform self-interference cancellation with minimum complexity and design overhead.

A two-port N-path Gm-C filter with embedded variable attenuation and phase shifting

was proposed for implementing the second-order high-Q BPF. Due to the system complexity
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Figure 3.7: Simulated frequency response of the vector-modulator Gm-cell.

and phase resolution requirements, a VGA-based vector modulator was chosen for our design

of the LO-path phase shifter implementation. The simulation result of the LO path design

as well as the measurement result of the overall self-interference cancelling receiver were

presented.

One potential future research direction is to incorporate digital phase rotator or digital-

to-phase converter [42] for the embedded phase-shiting LO path. Currently, the I/Q signals

for the vector modulator are generated by a preceding divide-by-2 circuitry. The output of

the digital divider is in the form of square-wave while the Gm-cell-based vector modulator

prefers sine-wave input to perform linear vector summation. The current solution incor-
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Figure 3.8: Simulated rise and fall time for the output signals of both phase-shifting path

and non-phase-shifting path.

porates a slew-rate controller to mitigate the non-linearity due to the square-wave input.

However, to drive the mixer at the output, buffering the output of the vector modulator

output is again required to convert the sine-wave back to square-wave. This process in-

evitably increases power consumption and induce phase noise penalty to the overall system.

Therefore, a digital-to-phase converter with sufficient resolution could be an ideal candidate

for our system.
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Figure 3.9: Monte-Carlo simulation of the phase shifter at 45-degree phase shift setting under

the impact of device mismatch.
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Figure 3.10: Block diagram and schematic of the implemented 0.81.4 GHz 65 nm CMOS RX

with FDE-based SIC in the RF domain featuring a bank of two filters [2].
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Figure 3.11: Chip microphotograph of the 65 nm CMOS 0.81.4 GHz SI-canceling RX.
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Figure 3.12: Custom-designed LTE-like 0.780/0.895 GHz duplexer employing surface-mount-

device-based second-order LC filters: (a) schematic; (b) duplexer photo; (c) measured du-

plexer insertion loss; and (d) measured duplexer TX/RX isolation magnitude and phase

response [2].
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Figure 3.13: Measured TX/RX isolation of the FDD LTE-like duplexer shown in Fig. 3.12

without SIC, and with the proposed SIC. The proposed SI canceller achieves a 20 dB can-

cellation BW of 17/24 MHz for one/two filters enabled, while a conventional frequency-flat

amplitude- and phase-based canceller has a theoretical 20 dB SIC BW of only 3 MHz [2].
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Chapter 4

Design of Ultra-low Form-factor and

Low-noise Ring Oscillator-based PLL

4.1 Introduction

High-performance phase-locked loops (PLLs) with low jitter/phase noise are essential for

numerous applications such as wireless radios, high-speed data converters, wireline commu-

nication links and digital systems-on-chip (SoCs). Given the increasing cost per unit area of

advanced CMOS nodes and the need for a multitude of PLLs in multi-band, multi-standard

radios and complex SoCs, low-area PLLs with excellent jitter and phase noise performance

are of critical interest.

Ring oscillators are extremely compact when compared with their LC counterparts, but

exhibit typically 15-20dB worse phase noise figure-of-merit (FoM) performance [19, 60, 61].

In digital SoCs, different building blocks such as microprocessors, memories, and I/O in-

terfaces require separate PLLs, and the ring-oscillator-based analog charge-pump PLL has

conventionally been deployed to generate the clocks for such systems [6, 62]. Ring-oscillator-

based PLLs (RO-PLLs) do not yet meet the challenging phase noise specifications of wireless

standards. Therefore, circuit techniques to improve or compensate for the phase noise per-

formance of RO-PLLs has been an active area of research [19–22]. As research to improve
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Figure 4.1: Conventional ring-oscillator-based PLL architecture comparison: (a) Analog

charge-pump PLL with passive loop filter. (b) Sub-sampling analog charge-pump PLL. (c)

All-digital PLL. (d) Analog PLL with active loop filter.
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the phase noise performance of RO-PLLs continues, pathways to further reduce the area of

RO-PLLs becomes a crucial topic.

The analog charge-pump PLL with a passive loop filter, shown in Fig. 4.1(a), has been the

dominant RO-PLL architecture. Although a low-noise design can be realized [63], it requires

large loop-filter capacitors to achieve a desirable frequency response, which dominate the

area .

The analog sub-sampling PLL [64, 65], shown in Fig. 4.1(b), removes the feedback di-

vider of the PLL so that the low-frequency reference directly samples the high-frequency

oscillator output to perform a phase comparison. In such a configuration, the phase noise

of the loop components preceding the high-frequency oscillator (except the reference signal

and its buffer) will not be multiplied by N2, where N is the division ratio. This dramatically

lowers the in-band phase noise of the PLL. However, to achieve comparable loop dynam-

ics with the conventional divider-based analog charge-pump PLL, it requires an even larger

loop-filter capacitor. This concern can be addressed by incorporating a gain control mech-

anism in the sub-sampling phase detector (SSPD) and charge-pump, such as duty-cycling

or pulsing. While lowering in-band phase noise, it does not fundamentally address the chip

area associated with the passive loop filter in an analog charge-pump PLL.

Thanks to technology scaling, all-digital PLLs [28, 31, 66], shown in Fig. 4.1(c), are

extremely compact and well-suited for SoC integration. In addition, the all-digital PLL

offers superior loop reconfigurability since the loop filter is implemented in the digital domain

and its design parameters can be easily reprogrammed. In order to achieve comparable

jitter performance to analog PLLs, high-resolution time-to-digital converters (TDCs) and

digitally-controlled oscillators (DCOs) are indispensable. While the resolution of the DCO

can be improved by techniques such as inserting a preceding delta-sigma modulator [67],

the resolution of the TDC is fundamentally related to the minimum resolvable delay in

the technology node. Novel TDC architectures incorporate techniques such as a Vernier

delay-line to address this challenge [68]. However, the jitter performance of state-of-art

all-digital-PLLs still lag behind their analog counterparts [31].



CHAPTER 4. DESIGN OF ULTRA-LOW FORM-FACTOR AND LOW-NOISE RING
OSCILLATOR-BASED PLL 57

Figure 4.2: FoMJ versus area for state-of-art ring-oscillator-based clock generation works.
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To overcome the limited bandwidth over which the ring oscillator’s phase noise is sup-

pressed in a traditional PLL, the jittery ring oscillator’s clock edge is periodically replaced

by a clean reference signal edge in a multiplying delay-locked loop (MDLL) [69]. However,

such operation requires precise logic for edge selection, and the jitter performance can de-

grade as the ring oscillator’s operating frequency increases. Injection-locked PLLs (IL-PLLs)

[70, 71], on the other hand, are not plagued by the stringent timing requirements of MDLLs.

However, the injection-locking bandwidth of the ring oscillator needs to be wide enough to

compensate for PVT variations in the oscillation frequency, necessitating strong injection.

A large injection strength of the reference signal can compromise reference spur performance

[72]. Moreover, typical IL-PLLs operate in type-I fashion which can limit the in-band noise

suppression of the ring oscillator [69].

Active loop-filter-based PLLs, shown in Fig. 4.1(d), can substantially lower the area

requirements, but they are associated with linearity and (phase) noise penalties arising from

the use of active transistors, which are further exacerbated as CMOS technology scales

[73, 74]. Fig. 4.2 highlights the jitter-FoM [75] and area performance of recent RO-PLLs

across these different architectures. The definition of FoMJ is:

FoMJ = 10 log[(
σ2
t

1s
)× (

Pdc,PLL
1mW

)] (4.1)

where σt is the integrated jitter of the PLL and Pdc,PLL is the DC power consumption of the

PLL. As can be seen, achieving excellent jitter-FoM and low area simultaneously remains

challenging.
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4.2 Pathway to low-noise and ultra-compact PLL Im-

plementation

4.2.1 Dual-path PLL Architecture

The proposed architecture centers around a ring oscillator to eliminate the area penalty of

the VCO inductor, as mentioned earlier. Type-II PLLs are a popular choice in PLL loop

design. To stabilize a type-II PLL, a left-half-plane zero is placed below the cut-off frequency

to achieve desired loop response. In a single-path PLL design, the zero is often implemented

by inserting a resistance Rz in series with the loop-filter capacitor C1 (Fig. 4.1(a)). In a

typical type-II charge-pump-baed PLL design, input/output frequencies (hence, the division

ratio) and the gain of the oscillator are often specified by the application, leaving only

Icp (charge-pump current) and loop filter resistor Rz and capacitor C1 as design degrees

of freedom (assuming gain of the phase/frequency detector is a unit-less constant). This

poses several design challenges [25]. (i) Charge-pump current and its noise directly trade off

with loop filter impedance value (capacitor size). If the charge-pump current is increased

to minimized its noise contribution, the loop filter impedance has to be inevitably reduced,

and its capacitor value will increase at the expense of chip area. (ii) The loop is sensitive

to VCO tuning-curve non-linearity. To maintain the same loop response across a range of

output frequencies, the gain variation of the VCO analog tuning-curve must be compensated

by programming charge-pump current and loop filter impedance. However, in a single-path

PLL design, such a method can be carried out with limited freedom and will affect the overall

noise performance.

On the other hand, a dual-path PLL architecture, shown in Fig. 4.3(a), offers many

design advantages over its single-path counterpart. First of all, it introduces a degree of

freedom in choosing the resistor value with a gain stage such that the location of the zero

can be optimized. In addition, it enables independent control of the integral and proportional

path to adjust the loop response across the nonlinear gain profile of the oscillator and PVT

variations [76–78].
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Figure 4.3: (a) Generic dual-path PLL architecture. (b) Dual-path PLL with active time-

based loop filter. (c) Proposed dual-path sub-sampling PLL with time-based loop filter.
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Figure 4.4: (a) Phase-domain small-signal (phase) noise model for proposed PLL. (b) Phase-

domain small-signal (phase) noise model for a dual-path PLL with active time-based loop

filter (without sub-sampling).
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4.2.2 Dual-path PLL with Time-based Active Loop Filter Archi-

tecture

As cost per unit area of advanced CMOS nodes increase, circuit topologies that further

remove the capacitor in the integral path become attractive. Moreover, dual-path loop filter

design typically involves a high-gain amplifier to implement the ideal integrator and to sum

the output of the two paths. In advanced CMOS nodes, a high-gain amplifier becomes

non-trivial to design given supply voltage scaling and reduction in device intrinsic gain.

To address the challenge of implementing ideal integrators in scaled CMOS technology

nodes, recently, a ring oscillator-based integrator [79] has been proposed to avoid using

voltage-mode amplifiers to form ideal integrators. Instead, a current/voltage-controlled os-

cillator can integrate its input current/voltage to output phase, and can therefore be viewed

as an ideal integrator with infinite DC gain even at low supply voltages and independent of

transistor non-idealities. Interestingly, such a ring-oscillator-based integrator has been used

to replace passive loop filter capacitor or an active op-amp/Gm-C filter in a conventional

analog charge-pump PLL to achieve an ultra-compact PLL [80] (Fig. 4.3(b)).

Though this use of a ring-oscillator-based integrator cleverly addresses the DC gain and

voltage-headroom issues in scaled CMOS by shifting the signal processing to the time domain,

it inevitably worsens the phase noise performance of the overall PLL. Particularly, it is shown

that the in-band phase noise of the PLL will now be dominated by the ring oscillator-based

integrator [80].

4.2.3 Proposed Sub-sampling Dual-path PLL with Time-based

Loop Filter Architecture [3]

We propose a sub-sampling dual-path PLL with the time-based loop filter architecture,

shown in Fig. 4.3(c). This architecture is based on the observation that the phase noise

of loop components will be not multiplied by N2 when referred to the PLL output in an

analog sub-sampling PLL [64]. As shown in Fig. 4.3(c), the proposed architecture comprises
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a sub-sampling loop with the loop filter implemented with an active time-based integra-

tor and charge-pump. The sub-sampling loop lowers the phase noise contribution of the

loop components (PFD, CP, and ring oscillator-based integrator) while the ring oscillator-

based integrator implemented in a dual-loop architecture achieves the proportional-integral

(PI) controlled filter with superior area efficiency. The proposed architecture simultaneously

addresses the active loop filter’s noise penalty and achieves an area-efficient loop filter imple-

mentation with minimal complexity overhead, thus resulting in an ultra-low-area PLL with

low phase noise performance.

4.3 Phase Noise Analysis of Proposed Architecture

To theoretically illustrate the benefit of the proposed architecture, a phase-domain noise

model is shown in Fig. 4.4(a), with output-referred noise of critical blocks annotated. For

comparison purposes, the noise model for a PLL with an active time-based loop filter but

without sub-sampling [80] is shown in Fig. 4.4(b). The overall phase noise of the proposed

PLL, φn,PLLout , can be written as:

φn,PLLout =φn,RO−int ×NTFRO−int

+ φn,Ref ×N ×
LG(s)

1 + LG(s)

+ φn,RO−rf ×
1

1 + LG(s)

(4.2)

where φn,RO−int, φn,Ref , and φn,RO−rf are the phase noise of the integrating oscillator, ref-

erence signal, and RF ring oscillator, respectively. The phase noise of sub-sampling phase

detector (SSPD), phase detector in the integral path, and charge-pumps in the integral and

proportional path are ignored for simplicity. This is to highlight the dominant noise con-

tribution of the integrating oscillator in the integral path. LG(s) and NTFRO−int are the

loop gain and the noise transfer function (NTF) of the integrating ring oscillator to the PLL

output, respectively. N is the (virtual) division ratio. NTFRO−int can be expressed as:
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NTFRO−intproposed =
KPD ×KCP−int−2 × KRO−rf

s

1 + LG(s) (4.3)

where KPD is the phase-detector gain and KCP−int−2 is the phase-to-current gain of the

second charge-pump in the integral path. KRO−rf is the gain of output RF ring oscillator.

LG(s) can be expressed as:

LG(s) = KSSPD × LF (s)× KRO−rf

s
(4.4)

where KSSPD is the sub-sampling phase detector gain and LF (s) is the equivalent loop filter

response of the proposed PLL. LF (s) can further be expressed as

LF (s) =Kcp−prop+

Kcp−int−1 ×
KRO−int

s
×KPD ×Kcp−int−2

(4.5)

where Kcp−prop is the gain of the charge-pump in the proportional path, Kcp−int−1 is the gain

of the first charge-pump, and KRO−int is the gain of the integrating ring oscillator. For a PLL

with an active time-based loop filter but without sub-sampling, shown in Fig. 4.4(b), all the

aforementioned equations hold, except that KSSPD must be replaced with KPFD, the phase-

frequency detector gain, LG(s) has an extra division by N , and the virtual multiplication of

the reference phase noise by N in (4.2) needs to be eliminated.

KSSPD is typically much larger than KPFD

N
. KPFD is 1

2π
if implemented as a resettable

D flip-flop, and N is typically much larger than one. On the other hand, for a sub-sampling

phase detector that samples a square-wave ring oscillator signal with finite rise/fall time, its

gain, KSSPD, can be characterized as

KSSPD =
δV

δφ
×DTREF =

DTREF
2πfosc

× SLosc (4.6)

where SLosc is the slew-rate of the RF oscillator, fosc is the oscillation frequency, and DTREF

is the duty-cycling factor of the reference signal. For a 2.4GHz oscillator with a rise/fall time
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of 25ps from 0 to 1.2V (a reasonable assumption in 65nm CMOS), KSSPD is ≈1.6 (duty-

cycling factor = 0.5). If we assume KPFD = 1
2π

and N = 12, KSSPD is ≈120× larger than the

product of KPFD × 1
N

. This will result in substantial suppression of the noise contribution

of the time-based loop filter.

For comparison purposes, overall phase noise and noise transfer functions of a conven-

tional type-II third-order PLL (as shown in Fig. 4.1(a)), a time-based loop-filter PLL (as

shown in Fig. 4.3(b)) and the proposed PLL (as shown in Fig. 4.3(a)), are simulated and

compared in MATLAB with the constraint of having the same loop bandwidth and loop

gain (Fig. 4.5(b)). The (phase) noise sources that are included in the simulation are the

measured reference phase noise of a Keysight E8257D Analog Signal Generator at 200MHz

reference frequency, simulated phase noise for the integrating current-controlled ring oscilla-

tor (I-CCRO) and RF CCRO (Fig. 4.5(a)), reference buffer noise and charge-pump noise.

Note that charge-pump noise contribution is included in the simulation but not presented

in (4.2) since the emphasized and dominant noise source is the phase noise of the integrat-

ing ring oscillators. Divider noise is ignored for the conventional PLL and the time-based

loop-filter PLL. It should be noted that these noise sources, and the associated power con-

sumptions of the various blocks, are scaled for each PLL based on the requirements dictated

by the loop design. A conventional type-II third-order PLL is also included in the simula-

tion for benchmarking purposes based on the noise formulations presented in [75]. Design

parameters used for each PLL can be found in table 4.1.

Fig. 4.5(c) shows a comparison of the NTF of the integrating ring oscillator to the PLL

output for the time-based loop filter PLL (without sub-sampling) and the proposed PLL. As

can be seen, the noise of the integrating oscillator has a bandpass response to the PLL output,

and the magnitude is about 17dB lower for the proposed PLL. Fig. 4.5(d) shows the overall

phase noise of each PLL for a designed loop bandwidth of 15MHz, along with integrated

RMS jitter and jitter FoM numbers. The conventional type-II 3rd-order PLL functions as

a benchmark, and it can be seen that the time-based loop filter PLL without sub-sampling

exhibits ≈10dB worse jitter FoM performance due to the additional noise contributed by the
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Figure 4.5: Simulated comparison of conventional analog type-II 3rd-order PLL, PLL with

active time-based loop filter (without sub-sampling), and the proposed PLL: (a) phase noise

of the Keysight E8257D Analog Signal Generator 200MHz reference signal, the RF and the

integrating ring oscillators, (c) closed-loop frequency response (b) noise transfer function of

Integrating CCRO to the PLL output, and (d) overall phase noise with the contribution of

highlighted noise sources.
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Table 4.1: Design parameters for the PLL comparison in Fig. 4.5.

Design

Parameter

Conventional

Type-II 3rd Order PLL

Time-based Loop-filter PLL

without sub-sampling

Proposed time-based

Loop-filter PLL

without sub-sampling

RF VCO/CCO

Parameters

FREF 200MHz 200MHz 200MHz

FV CO 2.4GHz 2.4GHz 2.4GHz

Tuning

Gain
KV CO= 500MHz/V KRO−RF= 1GHz/mA KRO−RF= 1GHz/mA

Pdc,RF−oscillator 2mW 2mW 2mW

Loop

Parameters

Icp= 1mA Kcp−int−1 = 0.18 mA/2π Kcp−int−1= 80 µA/2π

Rz= 2K Kcp−int−2 = 0.18 mA/2π Kcp−int−2= 40 µA/2π

C1= 50pF Kcp−prop = 1.7mA/2π Kcp−prop= 110 µA/2π

Thermal Noise Constant (γ)= 2 KRO−int= 2GHz/mA KRO−int= 2GHz/mA

gm/Id = 2.5 PRO−int= 1mW PRO−int = 1mW

PFD Deadzone = 200ps KPD = 1/2π KPD = 1/2π

KPFD = 1/2π KSSPD = 1.6

Overall

Performance
simulated jitter FoM -237.7dB -227dB -237.1dB

I-CCRO. The proposed PLL shows comparable jitter FoM performance to the conventional

PLL as the sub-sampling architecture significantly suppresses the phase noise contribution

of the I-CCRO.

4.4 A 65nm CMOS Implementation

4.4.1 Block Diagram of Proposed PLL

Fig. 4.6 shows the block diagram of the proposed PLL. It comprises a sub-sampling (SS)

path, a frequency-locked loop (FLL) path with dead zone, a time-based PI-controlled active

loop filter and a 9-stage differential RF CCRO. The sub-sampling phase detector (SSPD) is

comprised of transmission-gate MOS switches and differential sampling MIM capacitors. The

FLL re-purposes the PI-controlled loop filter, and comprises two charge-pumps (CPFLL−I ,

CPFLL−P ), one for the integral-path and the other providing proportional control by directly

pumping current into the RF CCRO.
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Figure 4.6: Block diagram of the proposed PLL.

Similar to [64], the FLL is designed to assist the locking of PLL. It is initially enabled

to ensure that the phase difference between the reference signal and the divider output is

smaller than the dead zone. Once inside the dead zone, the FLL is disabled, and the SS

path takes over to phase-lock the PLL. To accommodate the sharp rising/falling edges of

the ring VCO, the tri-state PFD in the FLL is implemented with a narrow dead-zone [65]

(+/-400ps) and is tunable from +/-200ps to +/-1ns.

The delay cell schematic of the 9-stage differential RF CCRO is shown in Fig. 4.7(a).

The I-CCRO shown in Fig. 4.6 in the time-based loop filter comprises 11 stages of a similar

but resized delay cell. The schematic of the sub-sampling phase detector (SSPD) is shown

in Fig. 4.7(b). To be compatible with sub-sampling operation, CPp−path and CPI−path1 are

implemented with V-to-I gm-cells (shown in Fig. 4.7(c)) while CPI−path2 is implemented

with a pulse-driven charge-pump cell (shown in Fig. 4.7(d)).
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Figure 4.7: Schematics of various components in the proposed PLL: (a) 2.4 GHz 9-stage

RF current-controlled ring oscillator (RF-CCRO), (b) sub-sampling phase detector, (c) V-

to-I converter (gm-cell) for the sub-sampling path, (d) and charge pump for the time-based

integrator path.
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Figure 4.8: Time-domain operation for the proposed PLL.

4.4.2 Time-domain Operation of Proposed PLL

The operation of the time-based PI-controlled loop filter is similar to [80] except that the

input information is now taken as the form of sampled small-signal voltage value instead

of duty-cycled pulse signal. The integral path comprises two CCROs, one to integrate the

charge-pump current to output phase (I-CCRO) while the second dummy oscillator enables

a differential phase comparison with the first. Note that in Fig. 4.3(c), reference signal

is conceptually used to compare the output phase of I-CCRO through a phase detector.

However, a dummy oscillator is implemented here to provide the flexibility to de-couple the

reference frequency from I-CCRO’s frequency.

The output of integral paths charge-pump is a pulse-width-modulated (PWM) signal

(PWMI−path) that is combined with the current from the proportional path to drive the RF

CCRO. Fig. 4.8 depicts the timing diagrams during operation. The differential RF CCRO

signal (OSCP and OSCN) is sampled and held by the reference signal (REF) in the SSPD

at OSCsamp−P and OSCsamp−N , which further drive the differential charge-pumps in the

integral path and proportional path of the time-based loop filter. In the integral path, a

difference between OSCsamp−P and OSCsamp−N will cause current to be injected into the

I-CCRO, modifying its phase compared to the dummy oscillator through an integration

process. Hence, the pulse width of PWMI−path is dependent on the integral of the difference

between OSCsamp−P and OSCsamp−N , establishing integral control.

When the PLL is locked, the output error current of the proportional path should be
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ideally zero since the type-II loop should lock without input phase offset. Meanwhile, the

integral path output generates an PWM output current whose average value plus the DC

current of the RF CCRO will tune the oscillator at the desired PLL output frequency.

Analogous to the conventional analog charge-pump LC-VCO PLL with passive loop filter,

the average value of the PWM output current can be thought as the small-signal Vctrl across

the loop filter capacitor to drive the varactor of the VCO. The DC current of the RF CCRO

can be thought as the digital control word (in analog form) of the switched-capacitor bank

of the LC-VCO. By toggling the DC current of the RF CCRO, the locked point of the PLL

will traverse through the ”tuning-curves” of the current-controlled oscillator. As is the case

in the LC-VCO PLL where the ideal locking point of the Vctrl across the loop filter capacitor

should be close to mid-VDD to minimize the gain sensitivity, once the proposed sub-sampling

PLL with time-based loop filter is locked, the duty-cycle of PWMI−path current should be

50%.

Namely,

FRF−CCRO =FRF−CCRO,nominal

+KRF−CCRO × ICP,time−based−loop−filter
(4.7)

where

ICP,time−based−loop−filter = ICP,I−path2 + ICP,p−path (4.8)

An interesting observation is that in the conventional PLL with PFD, phase error infor-

mation is first converted into time-domain to generate PWM waveform, which further drives

CP and Loop Filter to generate Vctrl to tune the varactor of VCO. In the proposed archi-

tecture, phase error information is first sampled as small-signal voltage and then converted

into time-domain by the time-based loop filter as the form of PWM signal.

As shown in Fig. 4.6 and Fig. 4.8, the operation of the time-based loop filter can be

seamlessly integrated within the sub-sampling loop with almost no extra design complexity

to the proposed PLL.
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Figure 4.9: Die micrograph.

4.5 Measurement Results

The prototype PLL is fabricated in a 65nm standard CMOS process (Fig. 4.9), occupies

an extremely compact active area of 45µm x 110µm (0.0049mm2), and is tested in a 40-pin

QFN package with the off-chip reference signal derived from a Keysight E8257D Analog

Signal Generator.

4.5.1 Oscillator Measurement

Fig. 4.10 shows the measurement result of RF current-controlled ring oscillator standalone.

It can be tuned continuously from 0.5 to 3.8GHz (shown in Fig. 4.10(a)) with a phase noise

of -95.8dBc/Hz at 1MHz offset at 2.3GHz (shown in Fig. 4.10(b)). Fig. 4.10(c) shows the
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Figure 4.10: Measured (a) tuning-range of RF-CCRO, (b) phase noise at 2.3GHz carrier

frequency, and (c) phase noise at 1MHz offset versus carrier frequency.

measured phase noise at 1MHz offset across the tuning range of the RF CCRO.

Fig. 4.11 shows the measurement result of Integrating-CCRO that is used in the sub-

sampling time-based integrator path. It can be tuned from 50MHz to 430MHz continuously

(shown in Fig. 4.11(a)) and it exhibits phase noise of -98.2 dBc/Hz at 1MHz offset at

200MHz carrier frequency.

4.5.2 PLL Measurement

The proposed PLL operates from 1.1GHz to 3.5GHz and the PLL core consumes 3.5 to

5.7mW. At 2.3GHz, the PLL core (excluding FLL and the output buffers incorporated for

measurement purposes) draws 3.7mA from a 1.2V supply, with 1.8mA for the RF CCRO and

1mA for the I-CCROs. The FLL consumes 0.9mW and its division ratio can programmed

to be at 12 or 48 through its divider. The FLL is disabled once the PLL is locked.

Fig. 4.12 shows the measured phase noise at 2.3GHz output using a Keysight E4448A

Spectrum Analyzers phase-noise-measurement personality with 200MHz reference input and

a multiplication factor (division ratio) of 12. The measured integrated jitter (10k-100MHz)

is 0.72psrms with 4.5mW DC power consumption (jitter FoM = -236.2dB), and the measured

reference spur is -37dBc. Fig. 4.13(a) and Fig. 4.13(b) show the measured jitter FoM and

reference spur level across different output carrier frequencies keeping the multiplication ratio
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between output frequency and the reference frequency constant at 12.

Fig. 4.14 shows the measured phase noise at 2.3GHz output with 50 MHz reference

input and a multiplication factor (division ratio) of 48 translating to the output. The The

measured integrated jitter (10k-100MHz) is 1.98psrms with jitter FoM of -228dB, and the

measured reference spur is -41dBc.

Table. 4.2 shows the performance summary and comparison with state-of-the-art ring-

oscillator-based PLLs. It can be seen that the proposed PLL achieves state-of-the-art jitter

FoM performance that compares well with high-performance PLLs that require significant

area while simultaneously occupying comparable (or smaller) core area to ultra-compact

PLLs. In other words, the prototype PLL shows the possibility of achieving high PLL FOM

with ultra-low silicon area and minimum design and system complexity overhead.
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Figure 4.11: Measured (a) tuning-range of the integrating-CCRO, and (b) phase noise at

200MHz carrier frequency.
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Figure 4.12: PLL measurement with multiplication factor of 12 at 2.3GHz: (a) locked spec-

trum, and (b) phase noise vs. offset frequency.
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Figure 4.13: PLL measurement of as a function of locked frequency (multiplication factor =

12): (a) jitter-FoM, and (b) reference spur level
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Figure 4.14: PLL measurement with multiplication factor of 48 at 2.3GHz: (a) locked spec-

trum, and (b) phase noise vs. offset frequency.
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Table 4.2: Performance summary and comparison.
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4.6 Conclusion and Future Work

This work proposed a PLL architecture that simultaneously address the active time-based

loop filter’s noise penalty and area-efficient loop filter implementation challenges with mini-

mal design and complexity overhead, thus resulting in an ultra-low-area PLL with low phase

noise performance. It also points to the opportunities afforded by sub-sampling, including

other active loop filter topologies that can potentially incorporate other interesting function-

alities. For instance, it would be interesting to combine the proposed PLL architecture with

other phase noise reduction/cancellation technique for ring oscillator-based PLL to further

improve the integrated jitter performance or out-of-band spot phase noise performances for

wireless application. It would be also interesting to investigate how the proposed architecture

can be re-purposed to operate in fractional-N mode [81].
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Chapter 5

Fully-Integrated 60GHz

Channel-Bonding Receiver with IF

Channelization Supporting Flexible

Bonding Scheme

5.1 Introduction

The research presented in this chapter, which addresses a fully-integrated 60GHz channel-

bonding receiver with IF channelization supporting flexible bonding scheme, was performed

in collaboration with Tolga Dinc and Linxiao Zhang at CosMIC Lab, at Columbia Univer-

sity. The contribution of this chapter includes proposal of radio architecture, proposal of

the IF channelizer architecture, an analysis of system-level performance requirements, LO

path frequency planning, and the implementation of the LO path (PLL + DLL + duty-cycle

generator). The implementation of the mm-wave signal path (LNA, amplifier, mixer, fre-

quency tripler) was performed by Tolga Dinc and the implementation of the IF channelizer

was performed by Linxiao Zhang.
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5.1.1 Fiber-fast mm-wave Wireless Communication

The ever increasing demands of wireless communication presents unprecedented challenges

for physical layer (PHY) design. Circuit designers have been driven to create novel device

technology, circuit-design technique, and radio architecture to meet stringent system-level

requirements. With the coming era of 5G, utilization of mm-wave frequencies for wireless

communication appears to be a panacea to the congested spectrum below 5GHz [82, 83].

According to the well-known Shannon Theorem, the maximum achievable data-rate for a

communication link, namely the channel capacity (C), is directly proportional to the available

BW and the SNR of the channel. Namely,

C = BW · log2(1 + SNR) (5.1)

Eq. 5.1 clearly motivates that more available BW leads to more data-rate. By shifting

to higher carrier frequencies, more BW is naturally available. Fig. 5.1 shows a highlight of

the FCC-allocated mm-wave frequency spectrum. Owing to the demand of next-generation

5G networks and technologies in the US, in 2016, the FCC further opened nearly 11 GHz of

high-frequency spectrum for flexible, mobile and fixed use wireless broadband as well as3.85

GHz of licensed spectrum and 7 GHz of unlicensed spectrum [84]. These newly adopted

rules create new upper microwave flexible use service in the 28 GHz (27.5-28.35GHz), 37

GHz (37-38.6 GHz), and 39 GHz (38.6-40 GHz) bands, and a new unlicensed band at 64-71

GHz.

A plethora of applications have been under development at mm-wave frequencies over the

past 10-15 years in silicon CMOS technology thanks to technology scaling. These applications

includes short-range and long-range vehicular radar at 24GHz [85, 86] and 77GHz [87, 88]

respectively. They also include satellite communication for commercial and military use at

45GHz[89–91], multi-Gb/s short/mid-range wireless data link at 60GHz [92, 93], and active

and passive imaging sensors at 94GHz [94–96]. The aforementioned newly opened spectrum

has further catalyzed the development of high-throughput, low-cost mm-wave communication

specifically at 28GHz, 39GHz, 70GHz and beyond[97, 98].
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Figure 5.1: Highlight of FCC-allocated spectrum at mm-wave frequencies [9].

5.1.2 60GHz Multi-Gb/s Wireless Communication

Figure 5.2: Frequency allocation for IEEE 802.11ad standard (WiGig).

Among these applications, the 60GHz band offers exciting opportunities for multi-Gb/s

wireless communication [82]. Contiguous spectrum up to 7GHz has been allocated for un-

licensed usage. The IEEE802.11ad, aka WiGig, specification, as shown in Fig. 5.2, allo-

cates four 2.16GHz wide channels centering around 60GHz (58.32GHz, 60.48GHz, 52.64GHz,

64.8GHz) and defines modifications, IEEE 802.11ad, to both the PHY and MAC layers to the

existing IEEE 802.11 standard for high throughput wireless communication at 60GHz.The

PHY layer specification includes single-carrier (SC) transmission with data rates up to 4.6

Gb/s or orthogonal frequency-division multiplexing (OFDM) transmission with data rates
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of up to 6.76 Gb/s.While all devices should support the SC transmission modes, OFDM

transmission modes are meant for high-performance communication links. Fig. 5.3 provides

a brief overview of the coding and modulation scheme vs. achievable data-rate for WiGig

PHY layer specification in both SC and OFDM transmission mode.

Figure 5.3: Modulation and coding scheme vs. data-rate for IEEE802.11ad standard.

Due to advances in technology, CMOS transistors with fmax of greater than 200GHz

[99, 100] have been reported. Meanwhile, fundamental device parameters that are critical

building blocks for design such as fT , NFmin, and Mason’s Unilateral Gain (U) have improved

as CMOS technology has advanced [101]. For this reason, high-performance, compact and

robust 60GHz CMOS integrated wireless radio design has attracted significant interest and

research efforts from both academia [11, 53, 93, 102–107] and industry [92, 108–115] in

recent years. While it has been demonstrated in these prior-arts that high-throughput, low-
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cost, robust, highly-integrated 60GHz CMOS radios are feasible and can be commercialized,

emerging applications in the market demand radio performance far beyond what commercial

products can offer.

5.1.3 Emerging IEEE 802.11ay Standard: Towards 100Gb/s

While fiber optics and wireline Ethernet cable provide tens of Gb/s wired communication in

today’s world, mobile applications are calling for 100Gb/s wireless communication with re-

spectful range. These applications include 8k Ultra-High-Definition (UHD) video streaming

(data-rate =28Gb/s), 4k-UHD video transfer for wireless augmented-reality/virtual-reality

headsets and wearables (>20Gb/s, uncompressed video, low latency), inter-rack connectiv-

ity for data center,video/mass-data distribution/video on-demand system, wireless backhaul,

and others.

Using uncompressed 8k UHD video transfer as an example, to quantify the significant

challenge associated with data-rate, the required data rate can be calculated as

Uncompressed, 8k − UHD = 7680× 4320(pixels) · 60(frames/s) · 24bit/pixel ≈ 48Gb/s

(5.2)

Though is widely accepted that chroma sub-sampling can be applied to uncompressed

video files with no artificial effects on human visual systems, with 4:2:2 chroma sub-sampling

applied (reducing about 1/3 of BW requirement), at least ≈ 28Gb/s data rate is required.

The above example highlights the challenge of wireless communication for these emerging

applications. Due to this, an upcoming amendment to current 802.11 specification, 802.11ay

standard, is currently under development and is expected to be released in 2017. The

upcoming 802.11ay standard targets >20Gb/s data-rate with at least a 10-meter indoor

range and 100-meter outdoor range (Line-of-Sight). As it is drafted now, it also provides

backward compatibility with the current 802.11 standard with fast-link setup and mobility

supports. To achieve such high data rates and distances of communication, it is expected that

system-level arrangements such as channel-bonding and MIMO not exploited in the current
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802.11ad specification will need to be incorporated in the upcoming 802.11ay standard. Fig.

5.5 highlights the features of the upcoming 802.11ay standard and its progression from the

802.11ad specification.

Figure 5.4: Futuristic applications for high data-rate wireless communication.

5.2 60GHz Channel-Bonding for 802.11ay: Opportu-

nities and Implementation Challenges

5.2.1 Opportunities for Channel-Bonding at 60GHz

To maximize the spectrum utilization and the network throughput, opportunistically bond-

ing available channels for high data rate transmissions can be a viable option. Channel-
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Figure 5.5: Highlighted features for the upcoming IEEE 802.11ay specification and its amend-

ment to the current IEEE 802.11ad standard.

bonding is currently used in existing standard such as 802.11ac and 802.11n, among others.

However, it has not been specified in the current 802.11ad standard at 60GHz. In the

channel-bonding scheme, assuming the spectrum efficiency is not affected by implementa-

tion of bonding and the model is the same for all channels, the achievable data rate is directly

proportional to the number of channels bonded.

As shown in Fig. 5.6, there are currently four channels available in the WiGig standard.

As previously mentioned, the maximum data rate per channel, 6.76Gb/s, is achieved with

an OFDM-64QAM modulation scheme. By bonding four channels together, ≈27Gb/s can

be achieved. If the channel environment permits a more sophisticated modulation scheme,

i.e. better SNR given bit-error-rate (BER), achieving an even higher data rate is entirely

possible.

Though channel-bonding brings straightforward benefit to the performance of the link

and has been successfully ried out at RF frequencies (2.4/5GHz), there are a few unique

challenges associated with the hardware implementation at mm-wave frequencies that it
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may introduce to the current scheme.

Figure 5.6: Channel-bonding scheme for IEEE 802.11ay standard.

5.2.2 Challenge I: High-speed Baseband ADC Design

By bonding up to four channels once, the required sampling speed for baseband analog-to-

digital converter (ADC) directly increases. Depending on the dynamic range requirement,

it is expected that a >20GS/s ADC is required for a channel-bonding scheme at 60GHz.

Fig. 5.7 shows a survey of commercially-available high-speed ADC from Texas Instrument

and Analog Devices. It can be seen that the cost of these ADC modules increases exponen-

tially as the sampling rate approaches G-sample/s range. For high-speed high-resolution

ADC modules, the price can easily exceed 1k USD per-module, barring it from being inte-

grated into the low-cost radio modules for mobile applications. As shown in Fig. 5.7, the

power consumption of ADC modules does not faithfully follow the well-known ADC FoM

trend (Eq. 5.3), the reason for this is that most of the power consumption in an ADC module

is dominated by its I/O interfaces, namely the buffers to load/drive signals to/from outside

world.

FoM =
Pdc

2ENOB · fs
(5.3)
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where

ENOB =
SNDR− 1.76

6.02
(5.4)

As shown in 5.8[10], implement integrated power-efficient >20GS/s ADC with a reason-

able resolution (ex: 6bit) in CMOS technology is still an active research problem to date.

For this reason, in mobile radio SoC platforms, it is also desirable to integrate ADC into

the same chip as the RF radio. The state-of-the-art architecture utilizes time-interleaving

architecture, as shown in Fig. 5.9(a), to overcome the speed challenge.

Figure 5.7: Survey of unit cost vs. sampling rate for commercial (Texas Instrument and

Analog Device) ADC module.

In time-interleaving architecture, identical sub-ADCs with preceding front-end sampler

can be interleaved in the time domain. To ensure the sampling process can be handed over

from one sub-ADC to another, clock phases generated a PLL or a DLL needs to be uniformly
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Figure 5.8: Survey of FOM vs. fsampling for selected ADC published in the past 20 years [10].

distributed across the its entire period, as shown in Fig. 5.9(b). The output of each sub-

ADC can be multiplexed or concatenated to reconstruct the sampled digital information. By

utilizing time-interleaving architecture, FoM performance improves or follows the theoretical

value more closely. The reason for this is that sampling speed of a single sub-ADC reaches its

limits, namely fT of the technology, the power-speed trade-off deviates significantly from the

trend of FoM and becomes largely nonlinear, demanding a disproportionately higher amount

of power for the desired increase in speed. For instance, Op-Amps and comparators will

eventually exhibit limited speed improvement by raising their power consumption. Therefore,

once each sub-ADC has been pushed towards its limit of power vs. speed trend, time-

interleaving should be used to alleviate the power consumption overhead.

However, in time-interleaving architecture, there is still finite power consumption over-
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head such as front-end sampler, output MUX, and LO generation circuitry. As the input

and clock speed increases, the power consumption associated with these auxiliary blocks also

increases.

Figure 5.9: (a) Schematic of time-interleaved ADC architecture (b) Timing diagram of clock

signal for time-interleaved ADC.

5.2.3 Challenge II: LO Tuning-range

Tuning-range vs. Q of LC-VCO has been an ongoing research problems for LO path design

at mm-wave frequencies. Many works, including [116–127], have tried to address it from

different perspective. CMOS frequency synthesis at mm-wave frequencies can be categorized

primarily into four types [128]:

• Fundamental PLL and VCOs: Fig. 5.10(a) shows the architecture of PLL with

fundamental VCO. The VCO oscillates at the desired carrier frequency and directly

drives the high-speed (frequency) divider to compare its phase with the reference signal

and close the feedback loop.
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The is one of the simplest architecture to generate the LO at carrier frequencies.

However, it came with several design challenges. First, tuning-range vs. phase noise

trade-off gets worse at mm-wave frequencies due to the low-Q nature of capacitor,

specifically varactor, at this frequency. Second, high-frequency divider design can still

be challenging at the frequency moves closer to fT . Finally, as the carrier frequency

goes higher, large division ratio incurs large multiplication ratio for phase noise of loop

components (reference, PFD, CP) to transfer to PLL output. This adversely worsen

the in-band hence overall phase noise performance of the PLL.

• Sub-harmonic PLL with frequency multiplier: Due to the challenging trade-off

of tuning-range vs. Q for the capacitor (varactor) at mm-wave frequencies [100], hybrid

approaches can be adopted. As shown in Fig. 5.10(b), using a sub-harmonic VCO in

conjunction with a frequency multiplier greatly ease the above trade-off.

The frequency multiplier can typically be implemented by exploiting non-linear ampli-

fication of a mm-wave amplifier with tuned load. Non-linear amplification will generate

harmonic signals at its output and the tuned-load can be designed such that only the

desired harmonics enjoys the gain while the undesired harmonics being filtered (atten-

uated).

While this approach is widely used for 60GHz LO generation, the biggest drawback

with the approach is excessive power consumption. Typically the output power of

the frequency multiplier is much weaker than output of the VCO (buffer), demanding

additional buffer stage after the frequency multiplication to drive the mixer stages. In

addition, leakage of fundamental tones can affect the mixer and system performance.

• Sub-harmonic PLL with VCO harmonic extraction: A sub-harmonic PLL with

VCO harmonic extraction, shown in Fig. 5.10(c), offers the flexibility of decoupling

the tuning-range vs. Q trade-off while not requiring an explicit frequency multipli-

cation stage following the VCO (PLL). The idea of N-push oscillators is to extract

the harmonic information available in a multi-phase oscillator. The desired harmonic
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signal can be extracted by a properly designed passive power combining network at the

oscillator output. Meanwhile the signal available at the fundamental frequency can be

used to drive the frequency divider so that the operating frequency of the divider and

carrier frequency can be decoupled.

This approach eliminates the need for explicit active frequency multiplication stage

after the PLL, however, active buffers may still be required since the power of extracted

harmonic signal may not be enough to drive the mixer. Also, the design complexity

largely lies in ensuring the phase relationship between the multi-phase VCO output.

• Sub-harmonic PLL with injection-locking oscillators: As shown in Fig. 5.10(d),

the sub-harmonic PLL with injection-locking oscillators exploits the injection-locking

mechanism to lock a fundamental oscillator at the output by a sub-harmonically locked

PLL. It is well known that a injection-locking oscillator bears a similar phase noise

transferring profile to type-I PLL. Meaning that the phase noise of the injecting signal

will be low-pass filtered while the phase noise of the oscillator-to-be-locked will be

high-pass-filtered when transferred to the system output. This mechanism is exploited

to again break the aforementioned tuning-range vs. Q (phase noise) trade-off.

While this approach provides superior phase noise performances, the narrow locking

range makes the design sensitive to process, voltage, and temperature (PVT) variation.

Many works have attempted to address this issue by incorporating sufficient tuning on

the oscillator. The other challenge associated with this approach is that the injecting

signal must be powerful enough to lock the oscillator, if its fails to lock and instead

injection pulls the oscillator, the mixer and system performances will be compromised.

To cover the whole 60GHz band, in an direct-conversion receiver architecture for example,

the LO must be able to be tuned from the centering frequency of band1 to band4, namely

58.32GHz to 64.8GHz. This 6GHz tuning-range occupies around 10% of its centering

frequency at 60GHz.

Quality factor for capacitor and varactor is extremely low at mm-wave frequencies [99][116],
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Figure 5.10: Highlight of mm-wave frequency generation techniques.

due to this reason, low phase-noise LC-VCO with wide-tuning range design is extremely chal-

lenging at mm-wave frequencies.

In the channel-bonding scheme, the LO will presumably needs to provide contiguous

and non-contiguous channel-bonding capability simultaneously. Also, the fact that 802.11ay

specification may require backward compatibility to the existing 802.11ad standard, the LO

tuning-range vs. Q challenge will remain in place if not exacerbated.

5.2.4 Challenge III: Calibration

As mentioned above, recent works have demonstrated the capability of implementing high-

performance and cost-effective 60GHz radio in CMOS technology. Robustness is another

important aspect for mass production and mobility of CMOS 60GHz radio. To meet the

stringent data-rate and link-budget requirement of 802.11ay standard, extensive calibration

is necessary to overcome a few key impairment in-built in the hardware system. These key
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impairment due to sensitive or unavoidable hardware implementation impairment, to list a

few, are:

• Gain flatness: Due to the wideband nature of the available spectrum around 60GHz,

gain can fluctuate across the frequencies. It is imperative for amplifier on both trans-

mitter and receiver side to be equipped with gain detection and gain adjustment ca-

pability to ensure that the performance can be equalized across the entire 7GHz con-

tiguous spectrum.

• I/Q imbalance: The impairment of In-phase/Out-of-Phase, I/Q, signal of the LO will

cause imbalance between the I/Q channel of the transceiver. If image-rejection is re-

quired, the LO I/Q imbalance will further limit image-rejection ratio (IRR) of the sys-

tem. These I/Q impairment can be originated from multiple sources such as mismatch

of I/Q generation circuitry, LO routing, off-tuned narrow-band I/Q generation...etc.

In an complexed modulation scheme such as 64-QAM or even 128-QAM, the overall

error-vector-magnitude (EVM) of the system can be limited by these I/Q impairment.

Therefore, it is imperative to incorporate I/Q calibration scheme to maximize the

overall performance of the system.

• : LO feed-through: Local oscillator feed-through (LOFT) can cause EVM degradation

or contamination of spectrum mask on receiver or transmitter. On the receiver side,

LO-RF feed-through can cause DC offset at baseband and potentially saturate the

following amplifier. On the transmitter side, LO-RF feed-through will cause the LO

signal sit at the middle of the mask and corrupt the transmitted signal. Due to the finite

parasitics of the devices and routing in the hardware implementation, this feed-through

can be mitigated but not entirely eliminated. Therefore, it is critical to calibrate this

unwanted feed-through through detection and cancellation mechanism to minimize its

impact on the overall system performances.
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5.3 Prior-Arts

Figure 5.11: Conventional channel-bonding architecture [11].

Radio architectures that aimed to perform channel-bonding at 60GHz band and support

IEEE802.11ay has been proposed, the simplified schematic is shown in Fig. 5.11. By creating

a two identical hardware copies (both signal path and LO path), the radio can be configured

to bond up to four contiguous channels concurrently. While this straightforward approach

appears to be attractive at the first sight due to its simplicity, it does not fundamentally

address the challenges mentioned in the previous section. Specifically,

(a) For the ADC challenge:

The aforementioned approach halved the speed requirement of ADC by halving the

baseband signal bandwidth hence the required ADC sampling rate. Though reducing the

sampling-rate requirement by half partially ease the design challenge on the ADC side, it

still requires the speed of ADC to be twice faster than what is currently being used in the
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radio compatible with 802.11ad standard. In addition, considering that it adversely doubles

the power consumption and area of the up-conversion/down-conversion and the LO path,

the benefit of this approach diminishes rapidly.

(b) For the LO tuning-range challenge:

According to FoM of VCO phase noise, two identical copies of VCO with all the corre-

sponding nets connected should exhibit 3dB better phase noise at the cost of doubling the

power consumption while attaining the same FoM.

In [11], two copies of LO are created to cover the entire 7GHz bandwidth for up to

bonding 4 channels. The oscillation frequency of the VCO in the LO path will be slightly

off-tuned to cover different bands around 60GHz. To the first order, the potential phase

noise benefit of the copied VCO is not exploited at all, thus worsening the effective FoM

of the LO path. However, considering the fact that tuning-range of each LO can be eased

by covering two bands individually, the phase noise of each LO can be designed with more

loosening phase noise vs. Q trade-off hence slightly better phase noise performances than

the single LO case.

(c) For the calibration challenge:

By creating two copies of hardware on both the signal path and LO path to cover the

whole range of spectrum, the complexity of calibration inevitably increases. The reason

being that all the mechanism of circuit/performance impairment or non-ideality mentioned

in the previous section will now double. This could leads to additional overhead of hardware

or software calibration tools implementation.

5.4 Proposed Single-PLL Fully-integrated 60GHz Channel-

bonding Receiver Architecture

Fig. 5.12 shows the proposed channel-bonding architecture. A single path RF down-

conversion path is used to first translate the incoming signal of all bands around 60GHz

(57-64 GHz) to baseband frequency with I/Q downconversion. The received signal at base-
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band frequency is subsequently followed by the proposed IF channelizer to process and slice

the received contiguous spectrum into four separate channels. At the output of the proposed

IF channelizer, the received information lying in four separate channels will come out in

parallel with separate pins.

Figure 5.12: Proposed 60GHz channel-bonding architecture.

5.4.1 Proposed Single-Element Fully-Integrated mm-wave Receiver

Front-End for 60GHz Channel-Bonding

Fig. 5.13 shows the proposed single-element fully-integrated mm-wave receiver front-end

for 60GHz channel-bonding. In the proposed receiver front-end, unlike [11], only single set

of mm-wave building blocks such as low-noise-amplifier (LNA), mixer, and PLL are used

to receive and translate all the information into baseband. The channelization of the four

channels is achieved by the proposed IF channelizer following the mm-wave front-end.

By utilizing just a single set of mm-wave building blocks, namely a single downconversion

path at mm-wave frequency, the hardware complexity, power consumption, and calibration

overhead can be minimized. As will be discussed in the following subsection, the proposed

architecture and frequency planning will not only perform channelization, but also address
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the aforementioned ADC sampling speed challenge associated with channel-bonding and the

notorious LO tuning-range issue.

Figure 5.13: Proposed fully-integrated 60GHz channel-bonding receiver.

5.4.2 Proposed Shared-LO IF Channelizer with Harmonic Channel-

Selectivity

Fig. 5.14 shows the proposed channelizer architecture. The proposed channelizer comprises

a 8-phase harmonic-rejection mixer (HRM) and baseband recombination circuitry. The

proposed channelizer enables channel selectivity at its output through harmonic rejection

and image rejection.

The Harmonic rejection or harmonic selectivity associated with the propsoed channelizer

is achieved through effective LO synthesis and reconfigurable baseband recombining gm-cells

by utilizing an 8-phase 12.5% duty-cycle non-overlapping LO. The effective LO synthesis
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Figure 5.14: Proposed IF channelizer architecture.

technique is a way to generate an LO frequency that are harmonically-related to the fun-

damental frequency of the multi-phase non-overlapping LO signal without using tuned filter

or resonator. Fig. 5.15 shows concept of the effective LO synthesis scheme for the proposed

IF channelizer. Essentially, a multi-phase non-overlapping LO signal can be thought of as a

over-sampled signal with the over-sampling ratio, N, equal to the number of non-overlapping

phases. Conceptually, by purposely weighting and summing the individual non-overlapping

phases of the signal, any harmonic of the LO fundamental frequency smaller than N can be

synthesized.

This way one can derive an LO frequency by using a lower frequency signal or reconfigure

the LO frequency by rearranging the coefficient associated with each phases. The downside

of this approach is that

• (a) Multiphase LO generator needs to be incorporated.

• (b) The synthesized LO signal is always weaker than the original LO signal and is
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attenuated more as the harmonic index increases.

• (c) The synthesized signal always comes with a byproduct at (N-M) harmonic frequency

where N is the total number of phases and M is the harmonic index of the synthesized

frequency.

Figure 5.15: Timing diagram of harmonic-rejection-based programmable LO generation tech-

nique.

5.4.3 Proposed Single LO Frequency Generation Scheme

Fig. 5.16 shows the single-PLL solution for the fully-integrated receiver. It comprises a

20GHz PLL, 20GHz frequency tripler, and a 1GHz DLL with multi-phase LO generator.
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The 20GHz PLL comprises a 20GHz VCO with 20% tuning-rage, a divide by 400 divider

nested in a conventional charge-pump PLL.

The frequency planning of the proposed LO path design is the following. The 20GHz

VCO will be locked in a PLL and its frequency will be multiplied by a frequency tripler at

the PLL output to generate the 60GHz LO signal. The differential 60GHz will further drive

a 90 degree hybrid to generate the required I/Q signal to drive the mixer in the RF path.

Figure 5.16: Proposed 20GHz LO path design for the proposed 60GHz receiver.

Within the PLL, the VCO signal will first be divided by an divide-by-20 high frequency

divider. The frequency of this divider output will be at around 1GHz, making it suitable

to be used for the harmonic-rejection mixer in the proposed IF channelizer. Therefore, this

1GHz divider output signal drive two blocks (1) Another divider in the PLL loop to close

the feedback loop (2) A 1GHz DLL for multi-phase LO generation.

The DLL output will further drive a 12.5% duty-cycle generator to produce the 12.5%

non-overlapping signal for the harmonic-rejection mixer of the proposed channelizer.
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5.5 System-level Specification Requirement Analysis

5.5.1 Analysis of Link Budget

Fig. 5.17 shows a block diagram for a link-budget analysis for the proposed 60GHz channel-

bonding receiver (with a fictitious transmitter for analysis purposes). To establish a >10Gb/s

wireless link with 10-meter range, it is expected that sophisticated modulation and coding

scheme such as 16-QAM or 64-QAM in conjunction with OFDM will be applied. To achieve

the required SNR, a high-power PA together with phased-array transceiver arrangement is

also unavoidable due to the higher free-space path loss at mm-wave frequencies. The physical

dimension such as the size of antenna and its spacing of the phased-array will also benefit

from the shorter wavelength at this frequency.

As shown in Fig. 5.17 and Eq. 5.5 5.6 5.7 5.8, for an 8-element transceiver with 8dBm

Paverage, 6dB antenna gain, 7dB receiver noise figure, and 3dB insertion loss due to the

front-end interconnection or assembly loss, 24dB SNR can be achieved. For a BER of 1e−3,

the SNR requirement for 16-QAM modulation of a transceiver is -24dB and it translates to

≈ 18Gb/s (4 · 4.6Gb/s) data-rate.

Paverage,single = P1dB − PAPR = 20dBm− 12dB = 8dBm (5.5)

Where PAPR is the peak-to-average-ratio of the transmitted signal. In an OFDM scheme,

it is assumed that a PAPR of 12dB is required.

PL(PropogationLoss) = −(
λ

4πR
)2 (5.6)

Where the propagation loss is assumed to be in free-space.

PRX,sig = Paverage,single + TXpower−combined + TXarray−factor +GANTTX

− PL+GANTRX
+RXarray−factor

= 8dBm+ 9dB + 9dB + 6dBi− 88dB + 6dBi+ 9dB

= −41dBm

(5.7)
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Figure 5.17: Link budget analysis for the proposed 60GHz receiver.

PRX,noise = −174dBm+ 10log(BW ) +NFRX + ILFront−end

= −174dBm+ 99dB + 7dB + 3dB = −65dBm
(5.8)

5.5.2 Image-Rejection-Ratio (IMRR) Requirement

The image-rejection-ratio (IMRR) of an I/Q demodulating system with given amplitude

imbalance γ (ε = γ - 1) and phase imbalance φ can be expressed as

IMRR =
γ2 + 1− 2γcos(φ)

γ2 + 1 + 2γcos(φ)

≈ ε2 + φ2

4

(5.9)

5.5.3 Harmonic-Rejection-Ratio (HRR) Requirement

Harmonic-rejection-ratio can be expressed as

HRR =
α

2 + α
(5.10)

where α is the error value between the normalized coefficient of the integer approximation

to
√

2. If α is <<2,

HRR ≈ α

2
(5.11)
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Figure 5.18: (a) Image-rejection radio vs. Amplitude and phase imbalance. (b) Harmonic-

rejection ratio (HRR) vs. the error-to-
√

2

5.6 Implementation of Local Oscillator Path for the

Proposed 60GHz Channel-Bonding Receiver

Fig. 5.19 shows the implementation of the proposed LO path and frequency planning. The

external 54MHz crystal oscillator will drive the PLL to generate a 20GHz differential LO

signal. This 20GHz differential LO signal will further drive a frequency tripler and a passive

I/Q generator (not shown in this figure) to generate the differential I/Q 60GHz LO signal

for the mm-wave frequency mixer.

The PLL is implemented with conventional charge-pump integer-N architecture. Fig.

x shows the schematic of the 20GHz LC-VCO. The 20 GHz LC-VCO can be tuned from

18-23GHz with 7-bit thermometer-coded digital tuning capability. The designed value for

the differential inductor is 200pH with a Q = 20 at 20GHz.

The LC-VCO output drives the high-frequency pre-scaler and digital divider to close the

feedback loop. The high frequency pre-scaler comprises current-mode-logic (CML)-based

divide-by-2 circuitry and a cascaded dual-modulus divider to further divide the signal to
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1GHz. The 1GHz divider output will drive the DLL to generate multi-phase LO signal for

the proposed IF channelizer.

The DLL comprises eight cascaded inverter cell to generate the required 8-phase signal

for the non-overlapping 12.5% duty-cycle generator. The output of the delay-cell chain

completing the delay of whole cycle will be fed back to be compared with the input of the

PLL to ensure the accurate phase relationship with respect to each cell, though the device

mismatch will eventually limit its accuracy.

Figure 5.19: Proposed 20GHz LO path design for the proposed 60GHz receiver.

5.7 Simulation Result

5.7.1 20GHz PLL and 1GHz DLL

Fig. 5.20 shows the simulation result of the tuning range of LC-VCO. Plotted in the figure

is the frequency vs. Vtune of the varactor being swept across the digital control word. The

VCO can be tuned from 18.4 GHz to 23.2GHz covering the desired frequency at 20.82GHz.

Note that the proposed channelizer and frequency greatly ease the tuning-range requirement
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for the VCO since it, conceptually, only needs to oscillate at one frequency and the proposed

channelizer will take care of the task of sliding channels apart.

Fig. 5.21 shows the designed loop response of the PLL and Fig. 5.21 (a) and (b) show

the transient simulation result of the PLL and DLL.

Figure 5.20: Simulated 20GHz VCO tuning-range

5.7.2 IF Channelizer and Harmonic Rejection Mixer

Fig. 5.22 shows the simulation result of proposed IF channelizer with ideal LOs. The gain

of the desired channel is about 10dB and the harmonic rejection ratio is about 40dB. Image-

rejection ratio is infinite in this simulation since I/Q signals from the LO are ideal and are

perfectly 90 degree out-of-phase.
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Figure 5.21: a) Proposed PLL transient locking simulation (b) Proposed DLL transient

simulation

5.8 45nm CMOS SOI Prototype

The chip photo is shown in Fig. 5.23
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Figure 5.22: Simulated channel response for proposed IF channelizer.
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Figure 5.23: Layout of proposed 60GHz channel-bonding receiver.
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5.9 Conclusion and Future Work

This chapter began with a discussion of the challenge of implementing 60GHz channel-

bonding radio for the upcoming IEEE 802.11ay standard. The upcoming IEEE 802.11ay

standard demands > 10Gb/s with respectable range of transmission and reception. To

overcome these challenges, radio architectures have been proposed to ease break the baseband

channel BW vs. the ADC sampling rate trade-off. However, existing architecture seeks to

address this problem by adding tremendous hardware overhead in its implementation and

does not fundamentally resolve the issue.

In this chapter, a fully-integrated 60GHz channel-bonding receiver with IF channelization

was proposed. This architecture requires only single mm-wave signal path and a single PLL

to process the entire signal band of interest around 60GHz. The channelization is performed

through the proposed IF channelizer in conjunction with the programmable LO synthesis

technique. By doing this, only one PLL is required for the entire receiver and the baseband

BW per channel does not increase in any channel-bonding scheme. The proposed architecture

also supports non-contiguous channel-bonding scheme with no design complexity overhead.

The system-level link budget and required image-rejection and harmonic rejection per-

formances have also been analyzed. The proposed prototype of a fully-integrated 8-element

60GHz receiver with a single PLL was demonstrated.

Future research direction includes the validation of the prototype and the possibility

of applying the proposed scheme on the transmitter side. Also, it would be interesting to

demonstrate the capability of wireless data transmission at a > 10Gb/s data-rate for the

proposed radio.
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Chapter 6

Conclusion

his thesis has addressed several challenges associated with LO path design in modern radio.

As mentioned in the introduction, modern radios technique often require high-performance

LO design assistance to achieve the desire goal.

In Chapter 2, a comparison between conventional fast-settling/hopping LO generation

schemes was outlined with a focus on targeting sweeping-LO-based spectrum analysis in

CR applications. Subsequently, a zero initial phase error concept for PLL feedback loop

settling was introduced. Following the introduction of the zero-initial-phase-error concept,

an instantaneous-hop frequency synthesizer architecture featuring a zero-initial-phase-error

divider was proposed. An implementation of a 65nm CMOS prototype and its validated

measurement result were discussed. There are a few directions that can be pursued to

extend the scope of the proposed architecture. Modern PLLs for mobile radios often employ

fractional-N instead of integer-N architecture to relax the fundamental trade-off between

reference frequency, channel resolution/selectivity, and loop BW. It would be interesting to

explore the possibility of incorporating the proposed technique into the schemes of fraction-N

PLL. Another interesting direction to explore is calibration. Since the proposed architecture

exploits a digital-intensive design, it may require a well-planned calibration scheme and

algorithm such that the performance can withstands PVT variation.

Chapter 3 showcased an alternate method of employing I/Q interpolator-based phase
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shifter in modern radio design. The functionality of phase shifter are embedded in the

LO path design for the radio and the embedded phase-shifting capability enables the radio

to perform self-interference cancellation with minimum complexity and design overhead.

One possible future research direction is to incorporate digital phase rotator or digital-to-

phase converters for the embedded-phase-shifting LO path. Currently, the I/Q signal for the

vector modulator is generated by a preceding divide-by-2 circuitry. The output of the digital

divider is in the form of square-wave while the Gm-cell-based vector modulator prefers to

take sine-wave input to perform linear vector summation. The current solution incorporate

a slew-rate controller to mitigate the non-linearity due to the square-wave input. However,

to drive the mixer at the output, buffering the output of the vector modulator is again

required to convert the sine-wave back to square-wave. This process inevitably increases the

power consumption and induces a phase noise penalty to the overall system. Therefore, a

digital-to-phase converter with sufficient resolution can be an ideal candidate for our system.

Chapter 4 proposed a PLL architecture that simultaneously address the active time-based

loop filter’s noise penalty and area-efficient loop filter implementation challenges with mini-

mal design and complexity overhead, thus resulting in an ultra-low-area PLL with low phase

noise performance. This also points to the opportunities afforded by sub-sampling, including

other active loop filter topologies that can potentially incorporate other interesting function-

alities. For instance, it would be interesting to combine the proposed PLL architecture with

other phase noise reduction/cancellation technique for ring oscillator-based PLL to further

improve the integrated jitter performance or out-of-band spot phase noise performances for

wireless application. It would be also of interest to investigate how the proposed architecture

can be re-purposed to operate in fractional-N mode.

Finally, in Chapter 5, a fully-integrated 60GHz channel-bonding receiver with IF chan-

nelization was proposed. This architecture only requires a single mm-wave signal path and

single PLL to process the entire signal band of interest around 60GHz. The channelization

is performed through the proposed IF channelizer in conjunction with the programmable

LO synthesis technique. In this way, only one PLL is required for the entire receiver and
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the baseband bandwidth per channel does not increase in any channel-bonding scheme. The

proposed architecture also supports non-contiguous channel-bonding scheme with no design

complexity overhead. The system-level link budget and required image-rejection and har-

monic rejection performances were also analyzed. The proposed prototype of fully-integrated

8-element 60GHz receiver with single PLL was demonstrated. Future research directions in-

clude the validation of the prototype and the possibility of applying the proposed scheme

in the transmitter side. Also, it could be relevant to demonstrate the capability of wireless

data transmission at a > 10Gb/s data-rate for the proposed radio.
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