1,009 research outputs found

    Robust H∞ control with missing measurements and time delays

    Get PDF
    Copyright [2007] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the robust control problem is investigated for a class of stochastic uncertain discrete time-delay systems with missing measurements. The parameter uncertainties enter into the state matrices, and the missing measurements are described by a binary switching sequence satisfying a conditional probability distribution. The purpose of the problem is to design a full-order dynamic feedback controller such that, for all possible missing observations and admissible parameter uncertainties, the closed-loop system is asymptotically mean-square stable and satisfies the prescribed performance constraint. Delay-dependent conditions are derived under which the desired solution exists, and the controller parameters are designed by solving a linear matrix inequality (LMI). A numerical example is provided to illustrate the usefulness of the proposed design method

    Robust H∞ control for networked systems with random packet losses

    Get PDF
    Copyright [2007] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the robust Hinfin control problem Is considered for a class of networked systems with random communication packet losses. Because of the limited bandwidth of the channels, such random packet losses could occur, simultaneously, in the communication channels from the sensor to the controller and from the controller to the actuator. The random packet loss is assumed to obey the Bernoulli random binary distribution, and the parameter uncertainties are norm-bounded and enter into both the system and output matrices. In the presence of random packet losses, an observer-based feedback controller is designed to robustly exponentially stabilize the networked system in the sense of mean square and also achieve the prescribed Hinfin disturbance-rejection-attenuation level. Both the stability-analysis and controller-synthesis problems are thoroughly investigated. It is shown that the controller-design problem under consideration is solvable if certain linear matrix inequalities (LMIs) are feasible. A simulation example is exploited to demonstrate the effectiveness of the proposed LMI approach

    SMC design for robust H∞ control of uncertain stochastic delay systems

    Get PDF
    Recently, sliding mode control method has been extended to accommodate stochastic systems. However, the existing results employ an assumption that may be too restrictive for many stochastic systems. This paper aims to remove this assumption and present in terms of LMIs a sliding mode control design method for stochastic systems with state delay. In some cases, the proposed method provides a control scheme for finite-time stabilization of stochastic delay systems

    Robust H∞ control of networked control systems with access constraints and packet dropouts

    No full text
    We consider a class of networked control systems (NCSs) where the plant has time-varying norm-bounded parameter uncertainties, the network only provides a limited number of simultaneous accesses for the sensors and actuators, and the packet dropouts occur randomly in the network. For this class of NCSs with uncertainties and access constraints as well as packet dropouts, we derive sufficient conditions in the form of linear matrix inequalities that guarantee robust stochastic stabilisation and synthesis of H∞ controller. An example is provided to illustrate our proposed method

    Robust H∞ control for a class of nonlinear stochastic systems with mixed time delay

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2007 Wiley-Blackwell LtdThis paper is concerned with the problem of robust H∞ control for a class of uncertain nonlinear Itô-type stochastic systems with mixed time delays. The parameter uncertainties are assumed to be norm bounded, the mixed time delays comprise both the discrete and distributed delays, and the sector nonlinearities appear in both the system states and delayed states. The problem addressed is the design of a linear state feedback controller such that, in the simultaneous presence of parameter uncertainties, system nonlinearities and mixed time delays, the resulting closed-loop system is asymptotically stable in the mean square and also achieves a prescribed H∞ disturbance rejection attenuation level. By using the Lyapunov stability theory and the Itô differential rule, some new techniques are developed to derive the sufficient conditions guaranteeing the existence of the desired feedback controllers. A unified linear matrix inequality is proposed to deal with the problem under consideration and a numerical example is exploited to show the usefulness of the results obtained.This work was funded by the Engineering and Physical Sciences Research Council Grant Number: GR/S27658/01, Nuffield Foundation. Grant Number: NAL/00630/G, Alexander von Humboldt Foundation, National Natural Science Foundation of Jiangsu Education Committee of China Grant Number: 06KJD110206, National Natural Science Foundation Grant Numbers: 10471119, 10671172, Scientific Innovation Fund of Yangzhou University of China. Grant Number: 2006CXJ002

    Robust H∞ control of time-varying systems with stochastic non-linearities: the finite-horizon case

    Get PDF
    The official published version can be obtained from the link below.This paper is concerned with the robust H∞ control problem for the class of uncertain non-linear discrete time-varying stochastic systems with a covariance constraint. All the system parameters are time-varying and the uncertainties enter into the state matrix. The non-linearities under consideration are described by statistical means and they cover several classes of well-studied non-linearities. The purpose of the addressed problem is to design a dynamic output-feedback controller such that, the H∞ disturbance rejection attenuation level is achieved in the finite-horizon case while the state covariance is not more than an individual upper bound at each time point. An algorithm is developed to deal with the addressed problem by means of recursive linear matrix inequalities (RLMIs). It is shown that the robust H∞ control problem is solvable if the series of RLMIs is feasible. An illustrative simulation example is given to show the applicability and effectiveness of the proposed algorithm.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Robust H∞ control for a class of nonlinear discrete time-delay stochastic systems with missing measurements

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the problem of robust H∞ output feedback control for a class of uncertain discrete-time delayed nonlinear stochastic systems with missing measurements. The parameter uncertainties enter into all the system matrices, the time-varying delay is unknown with given low and upper bounds, the nonlinearities satisfy the sector conditions, and the missing measurements are described by a binary switching sequence that obeys a conditional probability distribution. The problem addressed is the design of an output feedback controller such that, for all admissible uncertainties, the resulting closed-loop system is exponentially stable in the mean square for the zero disturbance input and also achieves a prescribed H∞ performance level. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are first derived to guarantee the existence of the desired controllers, and then the controller parameters are characterized in terms of linear matrix inequalities (LMIs). A numerical example is exploited to show the usefulness of the results obtained.This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Dragan Nešic under the direction of Editor Hassan K. Khalil. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the City University of Hong Kong under Grant 7001992, the Royal Society of the U.K. under an International Joint Project, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany

    Robust H∞ Control for Linear Switched Systems with Time Delay

    Get PDF

    Robust H∞ Control of Takagi–Sugeno Systems with Actuator Saturation

    Get PDF
    Producción CientíficaThe robust static output feedback control for continuous-time Takagi–Sugeno systems subject to actuator saturation is solved here, including H∞ performance guarantees. Based on a polytopic model of the saturation, sufficient conditions are proposed for designing these controllers in terms of Linear Matrix Inequalities. With the aid of some special derivations, bilinear matrix inequalities are converted into a set of linear matrix inequalities which can be solved easily without requiring iterative algorithms or equality constraints, moreover, the output matrix of the considered system does not require to be full row rank. Finally, some examples are presented to show the validity of the proposed methodology
    corecore