research

Robust H∞ control with missing measurements and time delays

Abstract

Copyright [2007] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the robust control problem is investigated for a class of stochastic uncertain discrete time-delay systems with missing measurements. The parameter uncertainties enter into the state matrices, and the missing measurements are described by a binary switching sequence satisfying a conditional probability distribution. The purpose of the problem is to design a full-order dynamic feedback controller such that, for all possible missing observations and admissible parameter uncertainties, the closed-loop system is asymptotically mean-square stable and satisfies the prescribed performance constraint. Delay-dependent conditions are derived under which the desired solution exists, and the controller parameters are designed by solving a linear matrix inequality (LMI). A numerical example is provided to illustrate the usefulness of the proposed design method

    Similar works