379 research outputs found

    Finite Impulse Response Filtering Algorithm with Adaptive Horizon Size Selection and Its Applications

    Get PDF
    It is known, that unlike the Kalman filter (KF) finite impulse response (FIR) filters allow to avoid the divergence and unsatisfactory object tracking connected with temporary perturbations and abrupt object changes. The main challenge is to provide the appropriate choice of a sliding window size for them. In this paper, the new finite impulse response (FIR) filtering algorithm with the adaptive horizon size selection is proposed. The algorithm uses the receding horizon optimal (RHOFIR) filter which receives estimates, an abrupt change detector and an adaptive recurrent mechanism for choosing the window size. Monotonicity and asymptotic properties of the estimation error covariance matrix and the RHOFIR filter gain are established. These results form a solid foundation for justifying the principal possibility to tune the filter gain using them and the developed adaptation mechanism. The proposed algorithm (the ARHOFIR filter) allows reducing the impact of disturbances by varying adaptively the sliding window size. The possibility of this follows from the fact that the window size affects the filter characteristics in different ways. The ARHOFIR filter chooses a large horizon size in the absence of abrupt disturbances and a little during the time intervals of their action. Due to this, it has better transient characteristics compared to the KF and RHOFIR filter at intervals where there is temporary uncertainty and may provide the same accuracy of estimates as the KF in their absence. By simulation, it is shown that the ARHOFIR filter is more robust than the KF and RHOFIR filter for the temporarily uncertain systems

    Strong approximation of fractional Brownian motion by moving averages of simple random walks

    Get PDF
    The fractional Brownian motion is a generalization of ordinary Brownian motion, used particularly when long-range dependence is required. Its explicit introduction is due to B.B. Mandelbrot and J.W. van Ness (1968) as a self-similar Gaussian process \WH (t) with stationary increments. Here self-similarity means that (a^{-H}\WH(at): t \ge 0) \stackrel{d}{=} (\WH(t): t \ge 0), where H(0,1)H\in (0, 1) is the Hurst parameter of fractional Brownian motion. F.B. Knight gave a construction of ordinary Brownian motion as a limit of simple random walks in 1961. Later his method was simplified by P. R\'ev\'esz (1990) and then by the present author (1996). This approach is quite natural and elementary, and as such, can be extended to more general situations. Based on this, here we use moving averages of a suitable nested sequence of simple random walks that almost surely uniformly converge to fractional Brownian motion on compacts when H \in (\quart , 1). The rate of convergence proved in this case is O(N^{-\min(H-\quart,\quart)}\log N), where NN is the number of steps used for the approximation. If the more accurate (but also more intricate) Koml\'os, Major, Tusn\'ady (1975, 1976) approximation is used instead to embed random walks into ordinary Brownian motion, then the same type of moving averages almost surely uniformly converge to fractional Brownian motion on compacts for any H(0,1)H \in (0, 1). Moreover, the convergence rate is conjectured to be the best possible O(NHlogN)O(N^{-H}\log N), though only O(N^{-\min(H,\half)}\log N) is proved here.Comment: 30 pages, 4 figure

    Approximate solutions of stochastic differential delay equations with Markovian switching

    Get PDF
    Our main aim is to develop the existence theory for the solutions to stochastic differential delay equations with Markovian switching (SDDEwMSs) and to establish the convergence theory for the Euler-Maruyama approximate solutions under the local Lipschitz condition. As an application, our results are used to discuss a stochastic delay population system with Markovian switching

    Convergence to L\'evy stable processes under some weak dependence conditions

    Get PDF
    For a strictly stationary sequence of random vectors in Rd\mathbb{R}^d we study convergence of partial sum processes to L\'evy stable process in the Skorohod space with J1J_1-topology. We identify necessary and sufficient conditions for such convergence and provide sufficient conditions when the stationary sequence is strongly mixing.Comment: Change of the title. Minor revision

    Robust H∞ control for a class of nonlinear stochastic systems with mixed time delay

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2007 Wiley-Blackwell LtdThis paper is concerned with the problem of robust H∞ control for a class of uncertain nonlinear Itô-type stochastic systems with mixed time delays. The parameter uncertainties are assumed to be norm bounded, the mixed time delays comprise both the discrete and distributed delays, and the sector nonlinearities appear in both the system states and delayed states. The problem addressed is the design of a linear state feedback controller such that, in the simultaneous presence of parameter uncertainties, system nonlinearities and mixed time delays, the resulting closed-loop system is asymptotically stable in the mean square and also achieves a prescribed H∞ disturbance rejection attenuation level. By using the Lyapunov stability theory and the Itô differential rule, some new techniques are developed to derive the sufficient conditions guaranteeing the existence of the desired feedback controllers. A unified linear matrix inequality is proposed to deal with the problem under consideration and a numerical example is exploited to show the usefulness of the results obtained.This work was funded by the Engineering and Physical Sciences Research Council Grant Number: GR/S27658/01, Nuffield Foundation. Grant Number: NAL/00630/G, Alexander von Humboldt Foundation, National Natural Science Foundation of Jiangsu Education Committee of China Grant Number: 06KJD110206, National Natural Science Foundation Grant Numbers: 10471119, 10671172, Scientific Innovation Fund of Yangzhou University of China. Grant Number: 2006CXJ002

    Stochastic population dynamics under regime switching II

    Get PDF
    This is a continuation of our paper [Q. Luo, X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl. 334 (2007) 69-84] on stochastic population dynamics under regime switching. In this paper we still take both white and color environmental noise into account. We show that a sufficient large white noise may make the underlying population extinct while for a relatively small noise we give both asymptotically upper and lower bound for the underlying population. In some special but important situations we precisely describe the limit of the average in time of the population

    Groups of hierarchomorphisms of trees and related Hilbert spaces

    Get PDF
    Consider an infinite tree. A hierarchomorphism (spheromorphism) is a homeomorphism of the absolute which can be extended to the tree except a finite subtree. Examples of groups of hierarchomorphisms: groups of locally analitic diffeomorphisms of pp-adic line; also Richard Thompson groups. The groups of hierarchomorphisms have some properties similar to the group of diffeomorphisms of the circle. We discuss actions of groups of ierarchomorphisms in some natural Hilbert spaces associated with trees.Comment: 22 pages, two picture

    Exponential stability of delayed recurrent neural networks with Markovian jumping parameters

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2006 Elsevier Ltd.In this Letter, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The purpose of the problem addressed is to derive some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay. By employing a new Lyapunov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions, and therefore the global exponential stability in the mean square for the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    Noise expresses exponential growth under regime switching

    Get PDF
    Consider a given system under regime switching whose solution grows at most polynomially, and suppose that the system is subject to environmental noise in some regimes. Can the regime switching and the environmental noise work together to make the system change signicantly? The answer is yes. In this paper, we will show that the regime switching and the environmental noise will make the original system whose solution grows at most polynomially become a new system whose solution will grow exponentially. In other words, we reveal that the regime switching and the environmental noise will exppress the exponential growth

    Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching

    Get PDF
    The main aim of this paper is to discuss the almost surely asymptotic stability of the neutral stochastic differential delay equations (NSDDEs) with Markovian switching. Linear NSDDEs with Markovian switching and nonlinear examples will be discussed to illustrate the theory
    corecore