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Technical Notes and Correspondence

Robust Control With Missing Measurements and
Time Delays

Fuwen Yang, Zidong Wang, Daniel W. C. Ho, and Mahbub Gani

Abstract—In this technical note, the robust H control problem is
investigated for a class of stochastic uncertain discrete time-delay systems
with missing measurements. The parameter uncertainties enter into the
state matrices, and the missing measurements are described by a binary
switching sequence satisfying a conditional probability distribution.
The purpose of the problem is to design a full-order dynamic feedback
controller such that, for all possible missing observations and admis-
sible parameter uncertainties, the closed-loop system is asymptotically
mean-square stable and satisfies the prescribed H performance con-
straint. Delay-dependent conditions are derived under which the desired
solution exists, and the controller parameters are designed by solving
a linear matrix inequality (LMI). A numerical example is provided to
illustrate the usefulness of the proposed design method.

Index Terms—H control, missing measurements, parameter uncer-
tainty, robust control, time-delay systems.

I. INTRODUCTION

Dynamical systems with time delays have received much attention in
the past few decades, since time delays exist in many practical systems,
such as hydraulic processes, chemical systems, temperature processes,
and are often a primary source of instability and performance degrada-
tion. A great number of research results have been reported for various
time-delay systems, mainly on control problems [13], [14], [20], fil-
tering problems [4], [5], [7], [22], and model reduction problems [21].
In almost all literature mentioned here, however, it is implicitly as-
sumed that the system measurement always contains the real signal
probably mixed with external disturbances. Unfortunately, this is not
true in many practical applications. For example, due to sensor tem-
poral failure or network transmission delay/loss, at certain time points,
the system measurement may contain noise only, indicating that the
real signal is missing with probability less than 1. Note that in network
signal transmissions, the missing measurement is also called dropout
or intermittence, see [6], [15].
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Typically, there have been two ways to model the probabilistic
missing measurements. One way is to describe the missing measure-
ment as a binary switching sequence that is specified by a conditional
probability distribution in the output equation. The binary switching
sequence is viewed as a Bernoulli distributed white sequence taking on
values of 0 and 1. Much work has been done on such a model. In [9],
the optimal recursive filter was obtained for the systems with missing
measurement whose structure is similar to the Kalman filter. Recently,
the variance-constrained filtering problem has been considered in [16],
[17] for discrete-time stochastic systems with probabilistic missing
measurements subject to norm-bounded parameter uncertainties. In
[15], the Kalman filtering problem with intermittent observations
has been studied, and the statistical convergence properties of the
estimation error covariance have been established. Another way is to
regard the systems with missing measurement as jump linear systems,
and an incompleteness matrix can be used to quantify the missing
data. In [10], [11], the robust filtering problem with missing data
and uncertain systems has been investigated by using a jump Riccati
equation approach.

On the other hand, the control problem for systems with missing
measurements has many engineering applications. For instance, in
target tracking control problems, it is always desired to make sure
that the tracking error is bounded in the mean square if some mea-
surements are missing. In network congestion control, when there are
signals missing during the transmission process, it is hoped that the
transmission process can still keep operating with acceptable accuracy.
So far, to the best of the authors’ knowledge, for discrete-time sto-
chastic systems in the simultaneous presence of time delays, missing
measurements and parameter uncertainties, the problem of robust H1
control has not received much research attention, and is still open.

In this technical note, we study the robust H1 control problem
for a class of stochastic uncertain discrete time-delay systems with
missing measurements. Similar to [15]–[17], the missing measure-
ments are characterized as a binary switching sequence satisfying a
conditional probability distribution. We aim at developing a linear
matrix inequality (LMI) approach for designing the full-order dynamic
feedback controller such that, for all possible missing observations
and admissible parameter uncertainties, the closed-loop system is
asymptotically mean-square stable and satisfies the prescribed H1

performance constraint. As a by-product, a subsequent optimization
problem is also formulated within the LMI framework so as to pursue
a suboptimal system performance. An example is provided to illustrate
the numerical efficiency of the proposed method.

Notation

The notation used here is fairly standard. n and n�m denote, re-
spectively, the n dimensional Euclidean space and the set of all n�m

real matrices. The notation X � Y (respectively, X > Y ) where X
and Y are symmetric matrices, means that X � Y is positive semidef-
inite (respectively, positive definite). The superscript “T ” denotes the
transpose. fxg stands for the expectation of x and fxjyg for the
expected value of x conditional on y. Probf�g means the occurrence
probability of the event “�”. diagfM1;M2; . . . ;Mng denotes a block
diagonal matrix whose diagonal blocks are given byM1;M2; . . . ;Mn.
l2[0;1) is the space of square integrable vectors. In symmetric block
matrices, “�” is used as an ellipsis for terms induced by symmetry.
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II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following class of uncertain linear discrete time-delay
systems

xk+1=(A +�A)xk + (Ad +�Ad)xk�d +Bwk +B2uk;

zk = Cxk + Cdxk�d +Dwk +B1uk

xk = �k; k = �d;�d+ 1; . . . ; 0
(1)

where xk 2 n is the state, zk 2 r is the controlled output, uk 2 m

is the control input, wk 2 q is the disturbance input belonging to
l2[0;1), A, Ad, B, B1, B2, C , Cd and D are known real constant
matrices with appropriate dimensions. �A and �Ad are unknown ma-
trices representing parameter uncertainties, d > 0 is a known time
delay, �k is a real-valued initial function on [�d; 0]. In this technical
note, the parameter uncertainties are assumed to be of the form

[ �A �Ad ] = HFk [E1 E2 ] (2)

where H , E1 and E2 are known real constant matrices of appropriate
dimensions, and Fk represents an unknown real-valued time-varying
matrix satisfying FkF T

k � I .
The measurements, which may contain missing data, are described

by

yk = kC2xk +D2wk (3)

where the stochastic variable k 2 is a Bernoulli distributed white
sequence taking the values of 0 and 1 with

Probfk = 1g = fkg := � (4)

Probfk = 0g =1� fkg := 1� � (5)

and � 2 is a known positive scalar. yk 2 p is a measured output
and wk is defined in (1), C2 and D2 are known real constant matrices
of appropriate dimensions.

Remark 1: The increasing use of digital computers in control
systems has led to considerable activity in the field of discrete-time
and digital control systems. The system (1) encompasses many state
space models of uncertain delay systems and can be used to represent
many important physical systems; for example, cold rolling mills,
wind tunnel and water resources systems, where modeling errors and
time delays become concerns for controller design [8]. Note that, for
the controlled output variable zk, we consider both the delay-free term
Cxk and delayed term Cdxk�d, where the constant matrices C and
Cd can be viewed as parameters. The reason for including the delayed
term is that, in many engineering systems such as temperature control
systems, the controlled output (temperature) is always a time delayed
signal, see [19]. Hence, the model presented in this technical note is
meaningful in practice.

Remark 2: The system measurement mode (3), which can be used to
represent missing measurements or uncertain observations, was first in-
troduced in [9], and has been subsequently studied in many papers, see
e.g., [15]–[17]. Note that when the real signal is missing (i.e., k = 0),
the system measurement contains noise only. Such a case does happen
in practice. For example, in target tracking, due to high maneuverability
of the tracked target, there may be a nonzero probability that any ob-
servation consists of noise alone if the target is absent, i.e., the mea-
surements are not consecutive but contain missing observations. On the
other hand, as discussed in the introduction, there are still other ways to
model the missing phenomenon, such as those using randomly delayed
sensor output and probabilistic jumps.

In this technical note, we consider the following full-order dynamic
controller for system (1)–(3):

x̂k+1 = Acx̂k +Bcyk

uk = Ccx̂k
(6)

where x̂k is the state estimate, and Ac, Bc and Cc are the parameters
to be determined.

Defining

�k =
xk

x̂k
(7)

we have the following closed-loop system by substituting (6) and (3)
into (1):

�k+1 = ~A�k + (k � �) ~A1�k + ~AdZ�k�d + ~Bwk

zk = ~C�k + CdZ�k�d +Dwk

(8)

where

~A =
A+�A B2Cc

�BcC2 Ac

=
A B2Cc

�BcC2 Ac

+
H

0
Fk [E1 0 ] := �A+ ~HFk ~E1 (9)

~Ad =
Ad +�Ad

0
=

Ad

0
+

H

0
FkE2

:= �Ad + ~HFk ~E2; ~A1 =
0 0

BcC2 0
(10)

~B :=
B

BcD2

; ~C := [C B1Cc ] ; Z :=[ I 0 ]: (11)

It should be noticed that the closed-loop system (8) is actually a sto-
chastic parameter system, since it contains the stochastic quantity k .
Therefore, in the sequel, we will use the notion of stochastic stability
in the mean-square sense.

Our objective in this technical note is to design a controller of the
type (6) for the system (1), such that for all possible missing measure-
ment in (3), the closed-loop system satisfies the following two require-
ments simultaneously:

Q1) The closed-loop system (8) is asymptotically mean-square
stable.
Q2) Under the zero-initial condition, the controlled output zk sat-
isfies

1

k=0

fkzkk
2g < 

2

1

k=0

fkwkk
2g (12)

for all nonzero wk , where  > 0 is a prescribed scalar.
It can be easily seen that the requirement Q1) ensures the robust

stability of the controlled system, while the requirement Q2) given in
(12) guarantees the desired robust performance constraints, in this case,
the disturbance rejection attenuation property.

III. ROBUST H1 CONTROLLER DESIGN

Lemma 1: (S-procedure) [18] Let M = MT < 0,H and E be real
matrices of appropriate dimensions, with F satisfying (2), then

M +HFE +E
T
F
T
H

T
< 0 (13)

if and only if there exists a positive scalar " > 0 such that

M +
1

"
HH

T + "E
T
E < 0 (14)

or equivalently

M H "ET

HT �"I 0

"E 0 �"I

< 0: (15)

The following theorem provides a delay-dependent sufficient condi-
tion for the closed-loop system (8) to be asymptotically mean-square
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stable and for the controlled output zk to satisfy the H1 disturbance
attenuation in (12).

Theorem 1: Given a scalar  > 0 and the controller parameters
Ac, Bc, and Cc. The closed-loop system (8) is asymptotically mean-
square stable and the controlled output zk satisfies (12) if there exist
positive–definite matrices P = P T > 0, Q = QT > 0 and W =
W T > 0 satisfying (16) as shown at the bottom of the page, where
�1 := [(1 � �)�]1=2 and d1 := d1=2.

Proof: Denote

�k = �k+1 � �k: (17)

Then, it follows from (8) that

�k+1=( ~A+ ~AdZ)�k + (k � �) ~A1�k � ~AdZ

k�1

i=k�d

�i+ ~Bwk (18)

and

�k=( ~A+ ~AdZ � I)�k+(k��) ~A1�k � ~AdZ

k�1

i=k�d

�i+ ~Bwk: (19)

Let �k = [�Tk ; �
T
k�1; . . . ; �

T
k�d]

T and define a Lyapunov functional
for the system (18) as

Vk(�k) = �
T
k P�k +

k�1

i=k�d

�
T
i Z

T
QZ�i

+

0

l=�d+1

k�1

i=k�1+l

�
T
i Z

T
WZ�i (20)

where P , Q and W are positive definite matrices, and Z is defined in
(11). The difference of the Lyapunov functional (20) along the trajec-
tory of (18) is obtained as follows:

�Vk := fVk+1(�k+1)j�kg � Vk(�k)

= �
T
k ( ~A+ ~AdZ)

T
P ( ~A+ ~AdZ)�k

+ f(k � �)2g�Tk ~AT
1 P ~A1�k

+ ~AdZ

k�1

i=k�d

�i

T

P ~AdZ

k�1

i=k�d

�i

� 2�Tk ( ~A+ ~AdZ)
T
P ~AdZ

k�1

i=k�d

�i

� 2 ~AdZ

k�1

i=k�d

�i

T

P ~Bwk+2�Tk( ~A+ ~AdZ)
T
P ~Bwk

+ w
T
k
~BT
P ~Bwk + �

T
k (Z

T
QZ � P )�k

� �
T
k�dZ

T
QZ�k�d + d f�Tk Z

T
WZ�kg

�

k�1

i=k�d

�
T
i Z

T
WZ�i: (21)

From (17) and (19), we obtain

k�1

i=k�d

�i = �k � �k�d (22)

and

�k = ( ~A� I)�k + (k � �) ~A1�k + ~AdZ�k�d + ~Bwk: (23)

By substituting (22) and (23) into (21), and considering Z ~A1 = 0
and the relation f(k � �)2g = (1� �)�, we have

�Vk � �
T
k ��k (24)

where

�k =

�k

Z�k�d

wk

; � :=

�11 �12 �13

�T
12 �22 �23

�T
13 �T

23 �33

(25)

�11 = ~AT
P ~A � P + Z

T
QZ + (1� �)� ~AT

1 P ~A1

+ d( ~A� I)TZT
WZ( ~A � I) (26)

�12 = ~AT
P ~Ad + d( ~A� I)TZT

WZ ~Ad (27)

�13 = ~AT
P ~B + d( ~A� I)TZT

WZ ~B (28)

�22 = ~AT
d P ~Ad + d ~AT

d Z
T
WZ ~Ad �Q (29)

�23 = ~AT
d P ~B + d ~AT

d Z
T
WZ ~B (30)

�33 = ~BT
P ~B + d ~BT

Z
T
WZ ~B: (31)

By Schur complement and tedious but straightforward manipulations,
we arrive at the conclusion that (16) implies � < 0. Therefore, for
all nonzero �k , we have �Vk < 0, and it then follows from the Lya-
punov–Krasovskii stability theory that the closed-loop system (8) is
asymptotically mean-square stable [1].

Next, for any nonzero wk , it follows from (8) and (24) that

fVk+1(�k+1)j�kg� fVk(�k)g+ f~zTk ~zkg � 
2 fwT

k wkg

� f�Tk ��k + ( ~C�k + CdZ�k�d +Dwk)
T

� ( ~C�k + CdZ�k�d +Dwk)� 
2
w
T
k wkg

= �
T
k ��

T
k (32)

where

� :=

�11 �12 �13

�T
12 �22 �23

�T
13 �T

23 �33

(33)

�11 =�11 + ~CT ~C; �12 = �12 + ~CT
Cd (34)

�13 =�13 + ~CT
D; �22 = �22 + C

T
d Cd (35)

�23 =�23 + C
T
d D; �33 = �33 +D

T
D � 

2
I: (36)

and �11, �12, �13, �21, �22, �23, and �33 are defined in (26)–(31).

�P 0 P ~A P ~Ad P ~B 0 0 0

0 �I ~C Cd D 0 0 0
~ATP ~CT �P 0 0 �1 ~A

T
1 P d1( ~A� I)TZT ZT

~AT
d P CT

d 0 �Q 0 0 d1 ~A
T
d Z

T 0
~BTP DT 0 0 �2I 0 d1 ~B

TZT 0

0 0 �1P ~A1 0 0 �P 0 0

0 0 d1Z( ~A� I) d1Z ~Ad d1Z ~B 0 �W�1 0

0 0 Z 0 0 0 0 �Q�1

< 0 (16)
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It follows from (16) and (32) that

fVk+1(�k+1)j�kg � fVk(�k)g

+ f~zTk ~zkg � 
2 fwT

k wkg < 0: (37)

Now, summing (37) from 0 to 1 with respect to k yields

1

k=0

fk~zkk
2g < 

2

1

k=0

fkwkk
2g+ fV0g � fV1g: (38)

Since the system (8) is asymptotically mean-square stable, it is not dif-
ficult to see that the following inequality

1

k=0

fk~zkk
2g < 

2

1

k=0

fkwkk
2g (39)

holds under the zero initial condition, which completes the proof.
Next, the controller design problem is solved in the following the-

orem, and the controller parameters are given in terms of the solution
to an LMI.

Theorem 2: Given a scalar  > 0. The system (8) is asymptotically
mean-square stable and the H1-norm constraint (12) is achieved for
all nonzero wk , if there exist positive definite matrices R = RT > 0,
S = ST > 0, Y = Y T > 0 and Q = QT > 0, real matrices Q1,
Q2 and Q3, and a real scalar " > 0 such that we have (40) (shown

at the bottom of the page) for some given constant matrix G > 0,
where �1 := [(1� �)�]1=2 and d1 := d1=2. Moreover, the controller
parameters are given by

Ac =X
�1

12 Q1(S �R)�1X12 �RB2Q3 (41)

Bc =X
�1

12 Q2 (42)

Cc =Q3(S �R)�1X12: (43)

where the matrix X12 comes from the factorization I � RS�1 =
X12Y

T
12 < 0.
Proof: We begin with rewriting (16) as

M +HFE +E
T
F
T
H

T
< 0 (44)

where M;H; and E are given in the unnumbered equation shown at
the bottom of the next page.

By applying Lemma 1 to (44), we know that (44) holds if and only
if there exists a positive scalar parameter " such that the LMI (45) that
is shown at the bottom of the next page holds.

Recall that our goal is to derive the expression of the controller pa-
rameters from (6). To do this, we partition P and P�1 as

P =
R X12

XT
12 X22

; P
�1 =

S Y12

Y T
12 Y22

(46)

�G�GT +GTSG �I 0 A+B2Q3 A Ad B

� �R 0 RA+ �Q2C2 +Q1 RA+ �Q2C2 RAd RB +Q2D2

� � �I C +B1Q3 C Cd D

� � � �S �S 0 0

� � � � �R 0 0

� � � � � �Q 0

� � � � � � �2I

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

0 0 0 0 H 0

0 0 0 0 RH 0

0 0 0 0 0 0

0 �1C
T
2 Q

T
2 d1(A� I)T + d1Q

T
3 B

T
2 Q 0 "ET

1

0 �1C
T
2 Q

T
2 d1(A� I)T Q 0 "ET

1

0 0 d1A
T
d 0 0 "ET

2

0 0 d1B
T 0 0 0

�S �S 0 0 0 0

� �R 0 0 0 0

� � �Y 0 d1H 0

� � � �Q 0 0

� � � � �"I 0

� � � � � �"I

< 0 (40)
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where the partitioning of P and P�1 is compatible with that of �A de-
fined in (9), i.e.,R 2 Rn�n,X12 2 R

n�n,X22 2 R
n�n,S 2 Rn�n,

Y12 2 Rn�n, Y22 2 Rn�n. Define

T1 =
S I

Y T
12 0

; T2 =
I R

0 XT
12

(47)

which imply that PT1 = T2 and T T1 PT1 = T T1 T2.
Now define the change of controller parameters as follows:

Q1=(RB2Cc +X12Ac)Y
T
12S; Q2=X12Bc; Q3=CcY

T
12S:

(48)
By applying the congruence transformations diagfT1; I; T1;

I; I; T1; I; I; I; Ig to (45), we obtain (49) shown at the bottom of the
next page.

Also, performing the congruence transformation diagfI; I; I; S;
I; I; I; S; I; I; Q; I; Ig to (49) and defining Y = W�1 lead to (50)
shown at the bottom of the next page.

On the other hand, we know from the fact of (S�1�G)TS(S�1�
G) � 0 that�S�1 � �G�GT +GTSG. Hence, if (40) is satisfied,
we obtain (50) and then conclude that the condition (16) holds. There-
fore, by Theorem 1, the desired result follows immediately.

Furthermore, if the LMI (40) is feasible, then we have
�S �S

�S �R
< 0, i.e.,

S�1 I

I R
> 0. It follows directly from

XX�1 = I that I � RS�1 = X12Y
T
12 < 0. Hence, one can always

find square and nonsingular X12 and Y12 [12]. Therefore, (41)–(43)
are obtained from (48), which completes the proof.

Remark 3: It is worth pointing out that an additional matrix G > 0
is introduced in the condition (40). WhenG > 0 is fixed, the addressed
robust H1 controller can be obtained by solving the LMI (40) in The-
orem 2. Note that the LMI (40) is a delay-dependent sufficient condi-
tion. Since the Schur complement and the S-procedure do not bring the
conservatism, the overall conservatism actually results from the intro-
duction of the matrix G and the use of the Lyapunov stability theory.

Although we have tried to construct proper Lyapunov functional to in-
crease the design flexibility, how to further reduce the conservatism is
one of our future research topics.

Up to now, the controller has been designed to satisfy the require-
ments Q1) and Q2). As a by-product, the results in Theorem 2 also
suggest the following optimization problem:

P1) The optimal H1 control problem for uncertain stochastic time-
delay systems with missing measurements is defined by

min
S>0; R>0; Y >0; Q>0; Q ; Q ; Q ; "



subject to (40) with given G: (51)

Remark 4: In many engineering applications, the performances con-
straints are often specified a priori. For example, in Theorem 2, the con-
troller is designed after H1 performance is prescribed. In fact, how-
ever, we can obtain an improved performance by optimization method.
The aim of problem P1) is to exploit the design freedom to meet the
optimal H1 performance.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we shall present an example to demonstrate the ef-
fectiveness and applicability of the proposed method. For this purpose,
we consider the system described by (1) with parameters as follows:

A =

�0:3 0 �0:3

0 0:6 0:2

0:5 0 0:7

; Ad =

�0:1 0 0

0 0:1 0

0 0 0:2

B =

0:5

0

0:2

; B2 =

0

1

2

; H =

0:5

0:5

1

E1 = [ 0:1 0 0 ] ; E2 = [ 0:1 0 0 ] ; C = [ 1 1 2 ]

Cd = [ 0:1 0 0 ] ; D = 0:1; B1 = 1:

M =

�P 0 P �A P �Ad P ~B 0 0 0

0 �I ~C Cd D 0 0 0
�ATP ~CT �P 0 0 �1 ~A

T
1 P d1( �A� I)

TZT ZT

�ATd P CT
d 0 �Q 0 0 d1 �A

T
d Z

T 0
~BTP DT 0 0 �2I 0 d1 ~B

TZT 0

0 0 �1P ~A1 0 0 �P 0 0

0 0 d1Z( �A � I) d1Z �Ad d1Z ~B 0 �W�1 0

0 0 Z 0 0 0 0 �Q�1

H = [P ~H 0 0 0 0 0 d1Z ~H 0 ]T

E = [ 0 0 ~E1
~E2 0 0 0 0 ] :

�P 0 P �A P �Ad P ~B 0 0 0 P ~H 0

0 �I ~C Cd D 0 0 0 0 0
�ATP ~CT �P 0 0 �1 ~A

T
1 P d1( �A� I)

TZT ZT 0 " ~ET
1

�ATd P CT
d 0 �Q 0 0 d1 �A

T
d Z

T 0 0 " ~ET
2

~BTP DT 0 0 �2I 0 d1 ~B
TZT 0 0 0

0 0 �1P ~A1 0 0 �P 0 0 0 0

0 0 d1Z( �A� I) d1Z �Ad d1Z ~B 0 �W�1 0 d1Z ~H 0

0 0 Z 0 0 0 0 �Q�1 0 0
~HTP 0 0 0 0 0 d1 ~H

TZT 0 �"I 0

0 0 " ~E1 " ~E2 0 0 0 0 0 �"I

< 0: (45)
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The output measurements with random missing measurements de-
scribed by (3) have the parameters as follows:

C2 = [ 0:1 0 0 ] ; D2 = 0:1

and � = 0:9.

Now, letting d = 3 and G = diagf0:05; 0:05; 0:05g, we solve
the problem (P1) in the previous section by using the LMI ToolBox to
minimize  > 0. As a result, the optimalH1 performance is calculated
as opt = 3:3339, and the corresponding controller parameters are

�S�1 �I 0 AS�1 +B2Q3S
�1 A Ad B

� �R 0 (RA+ �Q2C2 +Q1)S
�1 RA+ �Q2C2 RAd RB +Q2D2

� � �I (C +B1Q3)S
�1 C Cd D

� � � �S�1 �I 0 0

� � � � �R 0 0

� � � � � �Q 0

� � � � � � �2I

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

0 0 0 0 H 0

0 0 0 0 RH 0

0 0 0 0 0 0

0 �1S
�1CT

2 Q
T

2 d1S
�1(A� I)T + d1S

�1QT

3 B
T

2 S�1 0 "S�1ET

1

0 �1C
T

2 Q
T

2 d1(A� I)T I 0 "ET

1

0 0 d1A
T

d 0 0 "ET

2

0 0 d1B
T 0 0 0

�S�1 �I 0 0 0 0

� �R 0 0 0 0

� � �W�1 0 d1H 0

� � � �Q�1 0 0

� � � � �"I 0

� � � � � �"I

< 0: (49)

�S�1 �I 0 A+B2Q3 A Ad B

� �R 0 RA+ �Q2C2 +Q1 RA+ �Q2C2 RAd RB +Q2D2

� � �I C +B1Q3 C Cd D

� � � �S �S 0 0

� � � � �R 0 0

� � � � � �Q 0

� � � � � � �2I

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

0 0 0 0 H 0

0 0 0 0 RH 0

0 0 0 0 0 0

0 �1C
T

2 Q
T

2 d1(A� I)T + d1Q
T

3 B
T

2 Q 0 "ET

1

0 �1C
T

2 Q
T

2 d1(A� I)T Q 0 "ET

1

0 0 d1A
T

d 0 0 "ET

2

0 0 d1B
T 0 0 0

�S �S 0 0 0 0

� �R 0 0 0 0

� � �Y 0 d1H 0

� � � �Q 0 0

� � � � �"I 0

� � � � � �"I

< 0: (50)
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obtained as follows:

Ac =

8:5824 12:2458 19:7691

�6:6224 �7:7871 �12:6333

3:9109 5:3596 8:6677

Bc =

�20:2854

�1:4694

�0:1955

; Cc = [ 0:0115 0:0078 0:0216 ] :

V. CONCLUSIONS

The problem of robust H1 control has been considered in this tech-
nical note for stochastic uncertain discrete time-delay systems with
missing measurements. The robustH1 controller has been designed in
terms of a feasible LMI, which guarantees that the closed-loop system
is asymptotically mean-square stable, and the controlled output satis-
fies the H1 performance constraint, for all possible missing observa-
tions and all admissible parameter uncertainties.
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An Architecture for Design and Analysis of
High-Performance Robust Antiwindup

Compensators

Andrés Marcos, Matthew C. Turner, and Ian Postlethwaite

Abstract—In this note, a general framework for the design and analysis of
high-performance robust antiwindup (AW) compensators is presented. The
proposed framework combines the Weston–Postlethwaite AW scheme with
ideas from residual generation and from robust control architectures based
on high-performance nominal controllers. It is shown that the framework
is well connected to the Youla controller parameterization and to fault tol-
erant/detection schemes. Furthermore, the proposed framework provides
a transparent analysis of the interactions between the different design pa-
rameters which allows for a clearer design tradeoff between robust stability
and robust performance for the saturated and unsaturated closed loops.

Index Terms—Antiwindup (AW), high-performance systems, robust
control.

I. INTRODUCTION

Antiwindup (AW) compensation is a common approach used by
control engineers to cope with actuator saturation, with many methods
available to assist with its design (see, for example, [2], [8], [17],
and references therein). With few exceptions, most available methods
tackle the problems of stability and performance by (implicitly)
assuming that the AW design inherits the robustness properties of the
robust linear system [11], [18]. This makes some intuitive sense and if
the uncertainty present in the real system is sufficiently small, standard
AW techniques can be applied with some confidence. On the other
hand, in [16] it was argued that robust stability of the linear system
was only a necessary condition for robust stability of the saturated
closed-loop system. Indeed, in that reference an example was given
of a saturated closed-loop system which behaved well using a “good”
static AW design but was actually destabilized when uncertainty was
introduced.

Recently, several researchers [5], [6], [16] have approached the ro-
bust AW problem by trying to incorporate robustness directly into the
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