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Abstract The robust static output feedback (SOF) control for continuous-time Takagi-
Sugeno systems subject to actuator saturation is solved here, including H∞ perfor-
mance guarantees. Based on a polytopic model of the saturation, sufficient condi-
tions are proposed for designing these controllers in terms of Linear Matrix Inequali-
ties (LMIs). With the aid of some special derivations, bilinear matrix inequalities are
converted into a set of linear matrix inequalities which can be solved easily without
requiring iterative algorithms or equality constraints, moreover, the output matrix of
the considered system does not require to be full row rank. Finally, some examples
are presented to show the validity of the proposed methodology.

Keywords Takagi-Sugeno (T-S) fuzzy systems · Static Output Feedback (SOF) ·
Actuator saturation · Linear matrix inequalities (LMIs).

1 INTRODUCTION

In recent years, a large number of researchers are studying Takagi-Sugeno (T-S) sys-
tems because, although most physical and systems are nonlinear, they can be ade-
quately represented by this class of fuzzy systems. In fact, it has been demonstrated
[1] that T-S fuzzy models can represent exactly some non-linearities of systems, by
using fuzzy IF-THEN rules. Thus, these T-S fuzzy models provide a simple and ef-
fective method to complement other nonlinear control strategies (such as Mamdani
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fuzzy logic control [2]) by using mathematical nonlinear models. In fact, some sig-
nificant results have already been proposed using this formalism, most of them using
the linear matrix inequality (LMI) formalism. For example, the stability and stabi-
lization problems of nonlinear systems described by T-S fuzzy systems can be found
in [3–7], where results are mostly based on the quadratic Lyapunov function (LF)
approach. Since uncertainty often leads to instability, robust stability of uncertain
T-S fuzzy systems is regarded as an important issue. Robust control of T-S fuzzy
systems with uncertainties was studied in [9–12]. Sufficient LMI conditions guaran-
teeing the existence of H∞ controllers for T–S fuzzy dynamic systems was presented
in [8]. These results were found to be conservative, so effort concentrated on de-
riving less conservative results, for example, in [13–15]. It must be pointed out that
most of these references focused on state feedback. However, in most real-life ap-
plications, state variables are not always completely measurable. Hence, researchers
are now paying attention to output feedback. More precisely, as dynamic output feed-
back increases the complexity of the controller, efforts concentrate on static output
feedback (SOF): See [20] and references therein. SOF control of T-S fuzzy systems
is already attracting a lot of attention [16–19]. Design of SOF controllers is chal-
lenging, as it is linked with solving Bilinear Matrix Inequalities (BMI), which are
numerically complex. Many results concerning SOF design were developed. In [21]
and [22], the SOF controllers have been proposed by using two-step method, where
a state feedback controller design was obtained from the first step, whereas the sec-
ond one is the solution of the LMI problem. Thus, the design depends on the state
feedback controller gain obtained in the first step. For T-S fuzzy models, there are
some results for SOF design: based on a quadratic Lyapunov function and some ma-
trix transformations, a procedure to calculate SOF controller was given in [23]. In
[24], a cone complementary algorithm was studied. [25] proposed an iterative algo-
rithm based on the common quadratic Lyapunov function. In these last works, the
conditions are bi-linear in the decision variables, so iterative algorithms were used
to numerically solve the stabilization problem, which represents a weakness of the
approaches. In other studies [10,26–28] the BMI problem for SOF controls has been
solved by inserting an equality constraint condition for the Lyapunov matrix, which
makes the numerical solution more complex. To overcome this, a sufficient condition
which does not require equality constraints was proposed in [40] and [41], for ro-
bust static output feedback H∞ controller problem for linear systems with polytopic
uncertainties and uncertain fuzzy systems respectively.

None of the previous cited works deals with saturation in the control signal, which
is inherent to most real-life applications. If these saturations are not taken into ac-
count, stability tests and performance measures are not valid. Several methodologies
have been suggested for dealing with systems with actuator saturation. For instance,
stability of saturated linear systems was investigated in [29]. Saturated output feed-
back was considered in [30–32]. With time-varying delay, the problems of descriptor
systems and nonlinear systems have been investigated, in [34] and [35], respectively.
[36] has studied the stabilization of discrete-time systems with actuator saturation
based on multiple Lyapunov function and slack variable matrices. It is worth noting
that there are still few contributions addressing SOF H∞ control subject to actuator
saturation: one may refer to [30,37,33]. In particular, the singular value decompo-
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sition approach was proposed in [30,37] to design SOF H∞ controller with actuator
saturation in terms of eigenvalue problem for both, linear discrete-time and linear
continuous-time systems, respectively. In [31] the robust observer-based output feed-
back controller design of uncertain time delay systems subject to actuator saturation
was obtained, although based on an iterative LMI optimization.
Other results related to the current proposal are the following. In [47,50], a state feed-
back controller was designed to guarantee asymptotic stability of systems of neutral
type, but the H∞ norm performance is not considered. More recently, in [48] and
[49], a state feedback controller has been designed to stabilize the system and guar-
antee an H∞ norm disturbance attenuation performance. All this previous results for
saturated systems assumed the plant to be linear. For nonlinear systems that can be
described as T-S fuzzy systems, the adaptive sliding mode control was investigated in
[45] by using the singular value decomposition of system input matrix. [46] proposed
a descriptor formulation, which avoids the coupling terms between the feedback gains
and the Lyapunov matrices, in order to obtain more relaxed conditions. Note that both
[45] and [46] did not investigate the performance. To overcome this, in the present
contribution, guarantees of H∞ performance are explicitly considered in the design
of a robust SOF controller. It must be pointed out that although [33] investigated
the robust H∞ SOF of T-S fuzzy systems under actuator saturation, this was done by
inserting equality constraint conditions, and the output matrix of the considered sys-
tem is required to be of full row rank. With the later constraint, a particular class of
matrices is imposed. In this paper, with the aid of some special derivations, all com-
plex couplings between Lyapunov matrices and feedback gain matrices are avoided.
Hence, the proposed method leads to less conservative results than previous works in
the literature, but it can also be applied to a larger class of systems.
Thus, in this paper, we propose a new approach for the robust SOF H∞ control for
continuous-time T-S fuzzy systems subject to actuator saturation. Based on the use
of the concept of decay rate in the quadratic Lyapunov function, sufficient condi-
tion for this problem is formulated in the form of LMIs. More precisely, the design
of robust SOF H∞ control subject to actuator saturation is solved, where the value
of the decay-rate is imposed. In comparison with the above mentioned LMI design
methods, the proposed method requires neither equality constraints as in [33] nor
transformation matrices which are hard to be satisfied. Moreover, this method can
handle T-S fuzzy systems with multiple output matrices of subsystems and these ma-
trices are not explicitly required to be of full row rank as in most of existing works
[33,27], which overcomes the drawback induced by the previous approaches. Hence,
the proposed method not only guarantees the asymptotic stability of the closed-loop
system in presence of actuator saturation, but also can be applied to a larger class of
T-S fuzzy systems. This paper is organized as follows: All the preliminaries and nota-
tions used throughout this document are introduced in Section 2. The SOF H∞ design
methodology is described in Section 3, while in Section 4 the proposed methodology
is demonstrated by numerical and practical examples. Some conclusions are given in
Section 5.
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2 Problem formulations

Consider the following T-S fuzzy model that represents continuous-time systems with
actuator saturation and parametric uncertainties [33]:

Plant Rule i: IF ς1(t) is Mi1 AND . . . AND ςs(t) is Mis THEN
ẋ(t) = Āi(t)x(t)+ B̄2i(t)σ(t)+ B̄1i(t)ω(t)

z(t) = C̄1i(t)x(t)+ D̄2i(t)σ(t)+ D̄1i(t)ω(t)

y(t) = C̄2ix(t)
(1)

where i = 1,2, . . . ,r, and r represent the rule number, ς(t) = [ς1(t)ς2(t) . . .ςs(t)] are
known premise variables, Mi j are fuzzy sets, x(t)∈Rn denotes the state vector, σ(t)∈
Rm is the saturated control input, y(t) ∈ Rm2 is the measurement output, z(t) ∈ Rm3

is the controlled output, ω(t) ∈ Rm4 is the disturbance, that belongs to L2[0,∞) :=
{ω(t) : ||ω(t)||L2 :=

√∫
∞

0 ||ω(t)||2dt < ∞}. The uncertain matrices Āi(t), B̄2i(t),
B̄1i(t), C̄1i(t), D̄2i(t), D̄1i(t) and C̄2i are decomposed as follows:

Āi(t) = Ai +∆Ai(t), B̄1i(t) = B1i +∆B1i(t)

B̄2i(t) = B2i +∆B2i(t), C̄1i(t) =C1i +∆C1i(t)

D̄1i(t) = D1i +∆D1i(t), D̄2i(t) = D2i +∆D2i(t)

C̄2i =C2i

(2)

in order to avoid complexity in designing the output feedback control law, we assume
that there is no uncertainties on the measured output. where Ai, B1i, B2i, C1i, D1i, D2i
and C2i are constant matrices of compatible dimensions, ∆Ai(t), ∆B1i(t), ∆B2i(t),
∆C1i(t), ∆D1i(t), and ∆D2i(t) are time-varying parametric uncertainties described
by:

∆Ai(t) = MiΘi(t)NAi, ∆B1i(t) = MiΘi(t)NB1i,

∆B2i(t) = MiΘi(t)NB2i, ∆C1i(t) = MziΘi(t)NC1i,

∆D1i(t) = MziΘi(t)ND1i, ∆D2i(t) = MziΘi(t)ND2i,

(3)

where Mi, Mzi, NAi, NB1i, NB2i, NC1i, ND1i and ND2i, i = 1,2, ...r, are known real
constant matrices, and Θi(t) are unknown time-varying matrix functions satisfying:
Θi(t)TΘi(t)≤ I.

The defuzzification process of the T-S system (1) provides the equivalent repre-
sentation [33]:

ẋ(t) =
r

∑
i=1

ηi(ς(t))[Āi(t)x(t)+ B̄2i(t)σ(t)+ B̄1i(t)ω(t)]

z(t) =
r

∑
i=1

ηi(ς(t))[C̄1i(t)x(t)+ D̄2i(t)σ(t)+ D̄1i(t)ω(t)]

y(t) =
r

∑
i=1

ηi(ς(t))[C̄2ix(t)]

(4)
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in which

ηi(ς(t)) =
wi(ς(t))

∑
r
i=1 wi(ς(t))

, wi(ς(t)) =
s

∏
j=1

Mi j(ς j(t))

where Mi j(ς j(t)) is the grade of membership of ς j(t) in Mi j, and wi(ς(t)) represents
the weight of the ith rule. In this paper, we assume that wi(ς(t))≥ 0, for i= 1,2, . . . ,r,
and ∑

r
i=1 wi(ς(t))> 0 for all t. Therefore, we get ηi(ς(t))≥ 0, for i = 1,2, . . . ,r and

∑
r
i=1 ηi(ς(t)) = 1 for all t.

A difference from [17,18,25,27], is that this paper considers explicitly the effect
of actuators saturation, in addition to uncertainties and H∞ performance. The satura-
tion function sat[.] is defined as follows:

σ(t) = sat(u(t), ū)

= [sat(u1(t), ū1),sat(u2(t), ū2), . . . ,sat(um(t), ūm)]
T (5)

sat(ul(t), ūl) =


ūl i f ul(t)> ūl

ul(t) i f − ūl ≤ ul(t)≤ ūl

−ūl i f ul(t)< ūl

(6)

where ū ∈ Rm denotes the saturation level, u(t) ∈ Rm is the control input, ūm and
um denote the ith element of ū and u, respectively.

The SOF controller for the system (4) used here is based on the concept of paral-
lel distributed compensation (PDC) [27]. Thus, the controller is composed by r rules
of the following form:

Controller Rule i : IF ς1(t) is Mi1 AND . . . AND ςs(t) is Mis THEN

u(t) = Fiy(t) (7)

where i = 1,2 . . . ,r and Fi are the feedback gain matrices that will be calculated
to provide robust performance. The overall SOF controller is then inferred as follows:

u(t) =
r

∑
i=1

ηi(ς(t))Fiy(t) (8)

In order to facilitate the design of the controller, the saturations are modelled
using the equivalent polytopic representation in [38,42]. For this, the following defi-
nitions and lemmas are needed:

Let E be the set of m×m diagonal matrices whose diagonal elements are 1 or 0.
There are 2m elements in E and we denote its elements as Es, s = 1, ...2m, and denote
E−s = I−Es. It is easy to see that E−s ∈ E if Es ∈ E.

Lemma 1 [43] Let u,µ ∈Rm with u = [u1 u2, ...,um]
T and µ = [µ1 µ2, ...,µm]

T . Sup-
pose that |µi| ≤ ūi for i = 1,2, ...,m. If x ∈

⋂r
j=1I(H j) for x ∈ Rn, then:

I(H j) = {x ∈ Rn : |h j
i x| ≤ ūi} (9)
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sat(u, ū) ∈ co{Esu+E−s µ : s ∈ [1,2m]} (10)

where co denotes the convex hull.
where H j is m×n matrix and h j

i is the ith row of H j. I(H j) is a polyhedral set.
Consequently, sat(u, ū) can be rewritten as

sat(u, ū) =
2m

∑
s=1

ζs(Esu+E−s µ),

2m

∑
s=1

ζs = 1, 0≤ ζs ≤ 1

For x(t0) = x0 ∈ Rn, denote the state trajectory of system (4) as ψ(t,x0). The
domain of attraction of the origin is given as

S := {x0 ∈ Rn : lim
t→∞

ψ(t,x0) = 0} (11)

where S is an invariant set, which means that all the trajectories starting from within it
will remain in it forever. Furthermore, we are interested in getting an estimate Ξδ ⊂ S
of the domain of attraction, where

Ξδ = {x0 ∈ Rn : max |x0| ≤ δ}

where δ > 0 denote a scalar to be maximized.

Definition 1 [42] Let ε be a compact set, and let W (x(t)) be a positive scalar func-
tion, defined by:

ε(P,ρ) = {x ∈ Rn : x(t)T Px(t)≤ ρ}.
and

W (x(t)) = x(t)T Px(t)

where P ∈Rn×n denotes a symmetric positive definite matrix. The ellipsoid ε(P,ρ) is
said to be contractively invariant set if Ẇ (x(t)) < 0, ∀x ∈ ε(P,ρ)\{0}. Thus, if an
ellipsoid ε is contractively invariant for a system, it is inside its domain of attraction.

Lemma 2 [39,42,43] An ellipsoid ε(P,ρ) is inside
⋂r

j=1I(H j) if and only if

h j
i

(
P
ρ

)−1

(h j
i )

T ≤ ū2
i i = 1, . . . ,m (12)

where h j
i is the ith row of the matrix H j.

Lemma 3 [41] For matrices T , Q, V , and W and a non-zero scalar ξ , the inequality

T +W T QT +QW < 0, (13)

is fulfilled if the following condition holds:[
T ∗

ξ QT +VW −ξV −ξV T

]
< 0.
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Lemma 4 [10] Given constant matrices X, Y and an unknown constant matrix ∆

satisfying the constraint ∆ T ∆ < I, for any scalar ε > 0 the following inequality holds:

X∆Y +Y T
∆

T XT ≤ εXXT + ε
−1Y TY

Remark 1 The robust SOF H∞ stabilization of T-S fuzzy systems under actuator sat-
uration addressed in [33] was obtained by using µ = ∑

r
j=1 η jH jx(t) and the polyhe-

dral set defined by (9). However, in this paper we use

µ =
r

∑
j=1

η jH jy(t)

=
r

∑
j=1

r

∑
l=1

η jηlH j[C2lx(t)]

Iy(H j, ū) = {x ∈ Rn|h j
λ

y(t)| ≤ ūλ}

(14)

By some routine manipulations, ε(P,ρ) can be proven to be inside
⋂r

j=1Iy(H j, ū) if
and only if

h j
λ
C2l

(
P
ρ

)−1

CT
2l(h

j
λ
)T ≤ ū2

λ
λ = 1, . . . ,m, j, l = 1, ...,r (15)

so the proposed sets are really appropriate for controller design. Note that compared
with method based on (12) used in [33], the equation (15) involves more inequalities
which results in a greater number of LMIs. Moreover, our results will be expressed
directly in terms of LMIs, avoiding the equality constraints or the use of transfor-
mation matrices, unlike the SOF in [33]. This simplifies the design procedure, and
widens the set of systems that can be stabilized by SOF.

By applying Lemma 1 and Remark 1, if x ∈
⋂r

j=1I(H j, ū) then:

sat(u(t), ū) =
2m

∑
s=1

ζs

r

∑
j=1

η j(ς(t))
r

∑
l=1

ηl(ς(t))[EsFj +E−s H j]y(t) (16)

From (4) and (16), the closed-loop fuzzy system can equivalently be expressed as
follows: 

ẋ(t) =
2m

∑
s=1

ζs

r

∑
i=1

r

∑
j=1

r

∑
l=1

ηiη jηl [Āsi jlx(t)+ B̄1i(t)ω(t)]

z(t) =
2m

∑
s=1

ζs

r

∑
i=1

r

∑
j=1

r

∑
l=1

ηiη jηl [C̄si jlx(t)+ D̄1i(t)ω(t)]

(17)

where

Āsi jl = Āi(t)+ B̄2i(t)[EsFjC2l +E−s H jC2l ]

C̄si jl = C̄1i(t)+ D̄2i(t)[EsFjC2l +E−s H jC2l ]

ηi = ηi(ς(t)), η j = η j(ς(t)), ηl = ηl(ς(t)).
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The objective of the proposed controller design is then to find gains Fi, i = 1, . . . ,r
of the control law (8), such that the closed-loop system (17) satisfies the following
two conditions in the presence of actuators saturation:
(1) SOF stability: The T-S fuzzy system (17) is asymptotically stable when ω(t) = 0.
(2) H∞ Performance: Subject to zero initial conditions, the controlled output z(t)
satisfies, for square integrable disturbance input ω(t),∫

∞

0
zT (t)z(t)dt ≤ γ

2
∫

∞

0
ω

T (t)ω(t)dt. (18)

3 Main results

In this section, the objective is to design a SOF H∞ controller subject to actuator
saturation, that stabilizes the T-S fuzzy system (17), and yields a maximum size of
the estimated domain of attraction.

Theorem 1 The closed-loop system (17) is asymptotically stable with H∞ perfor-
mance γ , such that, ε(P,ρ) is inside

⋂r
j=1I(H j, ū), if, given a scalar ξ > 0, there

exist a symmetric positive definite matrix X, matrices Yi, Zi, V , and positive scalars
ε1, ε2 and β , for i, j = 1,2, . . . ,r and s= 1, . . . ,2m satisfying the following conditions:

Πλ j j ≤ 0

λ = 1,2, . . . ,m; j = 1,2, ...,r
(19)

Πλ jl +Πλ l j ≤ 0

λ = 1,2, . . . ,m; j = 1,2, ...,r−1; l = j+1, ...,r
(20)

φsiii < 0, i = 1,2, . . . ,r (21)

φsii j +φsi ji +φs jii < 0
1≤ i 6= j ≤ r

(22)

φsi jl +φsil j+φs jli +φs jil +φsli j +φsl ji < 0
1≤ i 6= j 6= l ≤ r

(23)

where

Πλ jl =

 −ū2
λ

∗ ∗
CT

2l(z
j
λ
)T −X ∗

ξ (z j
λ
)T C2lX−VC2l −ξV −ξV T

 (24)

z j
λ

is the λ th row of the matrices Z j.

φsi jl =

[
ϒsi jl ∗
Γsi jl −ξV −ξV T

]
(25)
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ϒsi jl =


Ψsi jl ∗ ∗ ∗ ∗
BT

1i −γ2I ∗ ∗ ∗
ϒ 31

si jl D1i −I + ε2MziMT
zi ∗ ∗

ϒ 41
si jl NB1i 0 −ε1I ∗

ϒ 51
si jl ND1i 0 0 −ε2I

 (26)

ϒ
31

si jl =C1iX +D2iEsYjC2l +D2iE−s Z jC2l

ϒ
41

si jl = NAiX +NB2iEsYjC2l +NB2iE−s Z jC2l

ϒ
51

si jl = NC1iX +ND2iEsYjC2l +ND2iE−s Z jC2l

Ψsi jl = XAT
i +AiX +B2i[EsYjC2l +E−s Z jC2l ]+ [CT

2lY
T
j Es +CT

2lZ
T
j E−T

s ]BT
2i

+βX + ε1MiMT
i

and
Γsi jl =

[
Γ 11

si jl 0 Γ 13
si j Γ 14

si j Γ 15
si j
]

(27)

Γ
11

si jl = ξ

(
Y T

j ET
s +ZT

j E−T
s

)
BT

2i +(C2lX−VC2l)

Γ
13

si j = ξ

(
Y T

j ET
s +ZT

j E−T
s

)
DT

2i

Γ
14

si j = ξ

(
Y T

j ET
s +ZT

j E−T
s

)
NT

B2i

Γ
15

si j = ξ

(
Y T

j ET
s +ZT

j E−T
s

)
NT

D2i

Moreover, the controller gains Fi, for the SOF controller (8) can be obtained from
Fi = YiV−1. Matrices Hi can be obtained from Hi = ZiV−1, i = 1, . . . ,r.

Proof Convex sum property and the SOF conditions (19) and (20) imply that

m

∑
λ=1

ηλ

[ r

∑
j=1

η
2
j Πλ j j +

r−1

∑
j=1

r

∑
l= j+1

η jηl(Πλ jl +Πλ l j)

]
=

m

∑
λ=1

ηλ

r

∑
j=1

r

∑
l=1

η jηlΠλ jl

and, from (19) and (20), one concludes that

Πλ jl =

 −ū2
λ

∗ ∗
CT

2l(z
j
λ
)T −X ∗

ξ (z j
λ
)T C2lX−VC2l −ξV −ξV T

< 0 (28)

If the LMI conditions in (28) hold, then the feasible solution of these conditions
satisfies −ξV −ξV T < 0, which implies that matrix V is non-singular.

Using Lemma 3 with

Tλ jl =

[
−ū2

λ
∗

CT
2l(z

j
λ
)T −X

]
, Qλ j =

[
z j

λ

0

]
, Wl =V−1 [0 C2lX−VC2l

]
, (29)
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the LMI constraint (28) is equivalent to

Tλ jl +W T
l QT

λ j +Qλ jWl < 0 (30)

defining Z j = H jV , the inequality (30) can be rewrite as

Tλ jl +

[
0 ∗

(XCT
2l−CT

2lV
T )(h j

λ
)T 0

]
≤ 0. (31)

Substituting Tλ jl in (29) into (31), we get[
−ū2

λ
∗

XCT
2l(h

j
λ
)T −X

]
≤ 0. (32)

Defining X = (P
ρ
)−1, constraint (32) can be written by Schur complement as the in-

equality (15).

Since (21)-(23) hold, we can write that

2m

∑
s=1

ζs

[ r

∑
i=1

η
3
i φsiii +

r

∑
i=1

r

∑
j=1,i 6= j

η
2
i η j

(
φsii j +φsi ji +φs jii

)
+

r−2

∑
i=1

r−1

∑
j=i+1

r

∑
l= j+1

ηiη jηl

(
φsi jl +φsil j +φs jil +φs jli +φsli j +φsl ji

)]
=

2m

∑
s=1

ζs

r

∑
i=1

r

∑
j=1

r

∑
l=1

ηiη jηlφsi jl < 0

which is satisfied if

φsi jl =

[
ϒsi jl ∗
Γsi jl −ξV −ξV T

]
< 0. (33)

where ϒsi jl and Γsi jl are defined in (26)
By Lemma 3 with

Qsi j =


B2i(EsYj +E−s Z j)

0
D2i(EsYj +E−s Z j)
NB2i(EsYj +E−s Z j)
ND2i(EsYj +E−s Z j)

 , Wl =V−1 [C2lX−VC2l 0 0 0 0
]
,

the inequality (33) implies that,

ϕsi jl =ϒsi jl +Qsi jWl +W T
l QT

si j < 0. (34)
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(34) can be rewritten as:

ϕsi jl =ϒsi jl +


φ̄ 11

si jl ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗

φ̄ 31
si jl 0 0 ∗ ∗

φ̄ 41
si jl 0 0 0 ∗

φ̄ 51
si jl 0 0 0 0

< 0, (35)

where

φ̄
11
si jl = B2i(EsYj +E−s Z j)V−1(C2lX−VC2l)+(XCT

2l−CT
2lV

T )V−T (Y T
j ET

s +ZT
j E−T

s )BT
2i

φ̄
31
si jl = D2i(EsYj +E−s Z j)V−1(C2lX−VC2l)

φ̄
41
si jl = NB2i(EsYj +E−s Z j)V−1(C2lX−VC2l)

φ̄
51
si jl = ND2i(EsYj +E−s Z j)V−1(C2lX−VC2l)

Using the change of variable Fj =YjV−1, H j = Z jV−1 and substituting (26) into (35)
we get:

ϕsi jl =


Ψsi jl ∗ ∗ ∗ ∗
BT

1i −γ2I ∗ ∗ ∗
ϕ31

si jl D1i −I + ε2MziMT
zi ∗ ∗

ϕ41
si jl NB1i 0 −ε1I ∗

ϕ51
si jl ND1i 0 0 −ε2I

< 0 (36)

where

Ψsi jl = XAT
i +AiX +B2i[EsFjC2lX +E−s H jC2lX ]+ [XCT

2lF
T
j Es +XCT

2lH
T
j E−T

s ]BT
2i +βX + ε1MiMT

i ,

ϕ
31
si jl =C1iX +D2iEsFjC2lX +D2iE−s H jC2lX ,

ϕ
41
si jl = NAiX +NB2iEsFjC2lX +NB2iE−s H jC2lX ,

ϕ
51
si jl = NC1iX +ND2iEsFjC2lX +ND2iE−s H jC2lX ,

Pre-and post-multiplying the inequality (36) by diag(X−1, I, I, I, I) gives

ϕ̄si jl =


Ψ̄si jl ∗ ∗ ∗ ∗
BT

1iP −γ2I ∗ ∗ ∗
ϕ̄31

si jl D1i −I + ε2MziMT
zi ∗ ∗

ϕ̄41
si jl NB1i 0 −ε1I ∗

ϕ̄51
si jl ND1i 0 0 −ε2I

< 0 (37)

where

Ψ̄si jl = AT
i P+PAi +PB2i[EsFjC2l +E−s H jC2l ]+ [CT

2lF
T
j Es +CT

2lH
T
j E−T

s ]BT
2iP+βP+ ε1PMiMT

i P

ϕ̄
31
si jl =C1i +D2iEsFjC2l +D2iE−s H jC2l

ϕ̄
41
si jl = NAi +NB2iEsFjC2l +NB2iE−s H jC2l

ϕ̄
51
si jl = NC1i +ND2iEsFjC2l +ND2iE−s H jC2l
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we can write,
ϕ̄si jl = ϕ̄0si jl +∆ϕ̄si jl
where

ϕ̄0si jl =

 ϕ̄11
0si jl

∗ ∗
BT

1iP −γ2I ∗
ϕ̄31

0si jl
D1i −I

 (38)

ϕ̄
11
0si jl

= P[Ai +B2i(EsFjC2l +E−1
s H jC2l)]+ [AT

i +(EsFjC2l +E−1
s H jC2l)

T BT
2i]P+βP

ϕ̄
31
0si jl

=C1i +D2i[EsFjC2l +E−1
s H jC2l ]

and

∆ϕ̄si jl = ε1

 PMi
0
0

 PMi
0
0

T

+ ε2

 0
0

Mzi

 0
0

Mzi

T

+ ε
−1
1

 (NAi +NB2i(EsFjC2l +E−1
s H jC2l))

T

NT
B1i
0

 (NAi +NB2i(EsFjC2l +E−1
s H jC2l))

T

NT
B1i
0

T

+ ε
−1
2

 (NC1i +ND2i(EsFjC2l +E−1
s H jC2l))

T

NT
D1i
0

 (NC1i +ND2i(EsFjC2l +E−1
s H jC2l))

T

NT
D1i
0

T

(39)

using Lemma 4, we obtain
∆ϕ̄si jl ≥ ∆ϕ̃si jl

∆ϕ̃si jl =

PMi
0
0

Θi(t)

 (NAi +NB2i(EsFjC2l +E−1
s H jC2l))

T

NT
B1i
0

T

+

 (NAi +NB2i(EsFjC2l +E−1
s H jC2l))

T

NT
B1i
0

Θ
T
i (t)

PMi
0
0

T

+

 0
0

Mzi

Θi(t)

 (NC1i +ND2i(EsFjC2l +E−1
s H jC2l))

T

NT
D1i
0

T

+

 (NC1i +ND2i(EsFjC2l +E−1
s H jC2l))

T

NT
D1i
0

Θ
T
i (t)

 0
0

Mzi

T

(40)

∆ϕ̃si jl =

 ∆ϕ̃11
si jl ∗ ∗

NT
B1iΘ

T
i (t)M

T
i P 0 ∗

∆ϕ̃31
si jl MziΘi(t)ND1i 0

 (41)

∆ϕ̃
11
si jl = PMiΘi(t)[NAi +NB2i(EsFjC2l +E−1

s H jC2l)]+ [NT
Ai +(EsFjC2l +E−1

s H jC2l)
T NT

B2i]Θ
T
i (t)M

T
i P

∆ϕ̃
31
si jl = MziΘi(t)[NC1i +ND2i(EsFjC2l +E−1

s H jC2l)]

So that
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ϕ̃si jl = ϕ̄0si jl +∆ϕ̃si jl ≤ ϕ̄si jl < 0.
Let

ϕ̃si jl =

 ϕ̃11
si jl ∗ ∗

B̄T
1i(t)P −γ2I ∗
ϕ̃31

si jl D̄1i(t) −I

< 0 (42)

ϕ̃
11
si jl = P[Āi(t)+ B̄2i(t)(EsFjC2l +E−1

s H jC2l)]+βP+[ĀT
i (t)+(EsFjC2l +E−1

s H jC2l)
T B̄T

2i(t)]P

ϕ̃
31
si jl = [C̄1i(t)+ D̄2i(t)(EsFjC2l +E−1

s H jC2l)]

using the system matrices in (17),

ϕ̃si jl =

 ĀT
si jlP+PĀsi jl +βP ∗ ∗

B̄T
1i(t)P −γ2I ∗
C̄si jl D̄1i(t) −I

< 0. (43)

Let us consider the Lyapunov function

V1(t) = xT (t)Px(t). (44)

For the decay rate control design, the condition is defined as follows

V̇1(t)<−βV1(t). (45)

Taking the time derivative of LF (44) we get

V̇1(t) = ẋ(t)T Px(t)+ x(t)T Pẋ(t). (46)

From (45) and (46) we have that

V̇ (t) = V̇1(t)+βV1(t)< 0. (47)

Thus if (43) holds, by Schur complement it can be easily verified that

V̇ (t)+ zT (t)z(t)− γ
2
ω

T (t)ω(t)< 0. (48)

Integrating both sides of the inequality (48) from 0 to ∞ yields∫
∞

0
V̇ dt +

∫
∞

0
(zT (t)z(t)− γ

2
ω

T (t)ω(t))dt

=V (x(∞))−V (x(0))+
∫

∞

0
(zT (t)z(t)− γ

2
ω

T (t)ω(t))dt < 0

For zero initial condition, we obtain∫
∞

0
(zT (t)z(t)dt < γ

2
∫

∞

0
ω

T (t)ω(t))dt

This completes the proof.
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Remark 2 The SOF control of discrete-time T-S fuzzy systems with time-delays was
investigated in [44], where the values of the disturbance attenuation and decay rate
β were imposed. However, decay rates are used here as parameters: this makes pos-
sible to figure out the best attenuation possible, by finding the minimum value of γ

that gives a feasible solution. Hence, the introduction of the scalar parameter β is not
necessary to derive our results, but the selection of β provides extra free dimensions
in the solution space for the design condition.

Remark 3 In [25] and [31], an iterative LMI approach has been developed to solve
numerically the stabilization problem. However, in [25], the SOF control of continuous-
time T-S fuzzy models is considered without the input saturation. In [31], the robust
output feedback controller design of uncertain time-delay systems subject to actuator
saturation was obtained. Moreover, the iterative LMI approach depends on the ini-
tial values. However, how to select the initial values is still an open problem. Thus,
to avoid such drawback, an LMI design method is provided in this work without the
need to any initial conditions, so our results are more suitable.

Remark 4 In the case where Lemma 3 is not used and the parameter β = 0, the
inequality (43) is reduced to the inequality (16) in [33]. This explains theoretically,
that our results are more general than that of [33] and can leads to less conservative
results than the results of [33], and it can also be applied to a larger class of systems.

We now study the estimation of the largest region inside ε(P,ρ)= {x∈Rn|x(t)T Px(t)≤
ρ}, with respect to the convex set XN .
For this, we define

αN(ε(P,ρ)) = sup{α > 0|(αXN)⊂ ε(P,ρ)}.

where α is a scalar. Clearly if αN(ε(P,ρ))≥ 1 then XN ⊂ (ε(P,ρ)).
The convex set XN has two main forms [42]:

In the first case, XN is an ellipsoid:

XN = {x ∈ Rn|x(t)T Nx(t)≤ 1}. (49)

where N is a positive definite matrix.
In the other case, XN is a polyhedron:

XN = co{x1
0,x

2
0, . . . ,x

l
0}. (50)

where x1
0,x

2
0, . . . ,x

l
0 are a priori given points in Rn.

If XN is given by (49), αN(ε(P,ρ)) is equivalent to ( N
α2 )−X−1 ≥ 0; then, by Schur

complement this last inequality can be written as:[
ηN I

I X

]
≥ 0 (51)

with η = α−2, (P
ρ
) = X−1.

If XN is given by (50), αN(ε(P,ρ)) is equivalent to α2(xi
0)

T (P
ρ
)xi

0 ≤ 1, ∀i = 1, . . . , l,
using Schur complement this last inequality can be equivalently written as:
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[
η (xi

0)
T

xi
0 X

]
≥ 0. (52)

If we aim to design a controller with H∞ performance such that the domain of at-
traction of the closed-loop system is as large as possible, we need to establish a com-
promise between the maximization of the estimated size of the domain of attraction
α and the minimization of the H∞ attenuation level γ . We unify this by minimizing
α−2+γ2.

Theorem 2 The closed-loop system (17) is asymptotically stable if for a given ξ > 0
there exist a symmetric positive definite matrix X, and matrices Yi, Zi and V , that
satisfy the following optimization:

min(α−2 + γ
2) s.t.



LMI (19)− (23), and[
ηN I

I X

]
≥ 0

or[
η (xi

0)
T

xi
0 X

]
≥ 0

i = 1, . . . , l

(53)

Moreover, the attenuation level is guaranteed to be less than γ and the domain of
attraction is maximized, with its size represented by α .

Remark 5 There exist several convex methods for designing SOF controllers in the
literature. For example, sufficient conditions with equality constraints were used in
[27] and [28] for T-S fuzzy systems. Moreover, some methods for robust SOF H∞

control that do not require constraints on system matrices have been proposed for
polytopic linear systems and discrete-time T-S fuzzy systems, respectively, in [40]
and [41]. Besides, based on a judicious use of Finsler’s lemma in a T-S fuzzy Lya-
punov control framework, SOF controllers subject to both control input and state
constraints for discrete T-S fuzzy systems have been proposed in [32]. In compari-
son with the above-mentioned LMI design methods, this study proposes the robust
SOF H∞ control for continuous-time T-S fuzzy systems subject to actuator saturation,
without any constraints on system matrices.

4 Computer simulations

In this section, we provide numerical and a practical examples in order to highlight
the effectiveness and the advantages of the proposed approach.
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Example 1 To show the merit of the proposed method we consider the following
nonlinear system, borrowed from [33] and [27].

ẋ1(t) = x1(t)+ x2(t)+ sinx3(t)−0.1x4(t)+(x2
1(t)+1)u(t)+ω(t)

ẋ2(t) = x1(t)−2x2(t)

ẋ3(t) = x1(t)+ x2
1x2(t)−0.3x3(t)

ẋ4(t) = sinx3(t)− x4(t)

z(t) = x1(t)+ sin(x3(t))+0.3u(t)+0.1ω(t)

y(t) = x1(t)+ sin(x3(t))

(54)

Assuming that x1(t) ∈ [-a a], x3(t) ∈ [-b b] with a > 0 and b > 0, the nonlinear
system (54) can be equivalently represented by the following T-S fuzzy system:

A1 =


1 1 1 −0.1
1 −2 0 0
1 a2 −0.3 0
0 0 1 −1

 , A2 =


1 1 sinb

b −0.1
1 −2 0 0
1 a2 −0.3 0
0 0 sinb

b −1

 , A3 =


1 1 1 −0.1
1 −2 0 0
1 0 −0.3 0
0 0 1 −1

 ,

A4 =


1 1 sinb

b −0.1
1 −2 0 0
1 0 −0.3 0
0 0 sinb

b −1

 , B21 =


1+a2

0
0
0

 , B23 =


1
0
0
0

 , B22 = B21, B24 = B23

B1i =


1
0
0
0

 , D1i = 0.1, D2i = 0.3, C11 =
[

1 0 1 0
]
, C12 =

[
1 0 sinb

b 0
]
,

C13 =C11, C14 =C12, C21 =
[

1 0 1 0
]
, C22 =

[
1 0 sinb

b 0
]
, C23 =C21, C24 =C22

where the premise membership functions are taken the same as those used in [27]:

M1
1(x1) =

x2
1

a2

M2
1(x1) = 1−M1

1(x1)

M1
2(x3) =

{
bsinx3−x3 sinb

x3(b−sinb) x3 6= 0
1 x3 = 0

M2
2(x3) = 1−M1

2(x1)


For comparison, we assume Mi ∈Rn×n and Mzi ∈Rnz×nz are identity matrices, NB1i =
ND1i = ND2i = 0 and

NAi =


0 0 0.1 0
0 0 0 0
0 0.1 0 0
0 0 0.1 0

 , NB2i =


0.1
0
0
0


T

, NC1i =


0

0.1
0
0


T
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Fig. 1 Trajectories of the the open-loop system of (54).

Table 1 H∞ attenuation bounds of Example (1), compared with [33]

Methods \ ū 1 2 3 4
[33], αmax Infeasible 0.72 1.0576 1.3397

[33], γ Infeasible 1.2965 0.8624 0.6517
Theorem 2, αmax 0.43 0.93 1.35 1.62

Theorem 2, γ 1.6131 0.8862 0.6599 0.4137

Fig. 1 shows the trajectories of the nonlinear system with u(t) = 0. The nonlinear
system is unstable.

For a= 1, b= 0.1, and XN = {[1 0 0 0]T}, the optimization problem of Theorem
2 will be solved for different saturation levels. The SOF H∞ controllers is designed
such that γ is minimized, and the domain of attraction is maximized. The obtained
minimum values of γ and the maximum values of α are shown in Table 1. From Ta-
ble 1, it is clear that increasing the value of saturation level decreases the level of
guaranteed performance γ and the stability region expands. We can also see that the
obtained attenuation level γmin is smaller than those in [33], providing better perfor-
mance. Moreover, in comparison with the results in [33], the SOF H∞ control design
is proposed without requiring equality constraints, which could make the numerical
optimization more involved.

Some simulations are now presented: the solution of Theorem 2, with the satura-
tion level ū = 2, and ξ = 10−3, gives αmax = 0.93, γmin = 0.8862 and the following
results:

F1 =−1.9301, F2 =−1.9309, F3 =−4.3995, F4 =−4.3745,
H1 =−1.7193, H2 =−1.7204, H3 =−4.3995, H4 =−4.3768.

Figures 2-5 show comparative evolution of the trajectories for the closed-loop
nonlinear system (54) which are compared with those corresponding to the SOF with
actuator saturation proposed in [33]. Initial conditions for the simulations are x(0) =
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[0.72 0 0 0]T and the external disturbance is ω(t) = 0. The saturated control signal
is displayed in Figure 6.
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Fig. 2 Response of x1(t) for the nonlinear system (54) with the designed controller.
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Fig. 3 Response of x2(t) for the nonlinear system (54) with the designed controller.

For a = 5 and b = 4, there is no feasible solution using [33], but Theorem 2
provides a feasible solution: with ū = 2, ξ = 10−3, we obtain αmax = 0.83, γmin =
1.1219 and the following gain matrices:

F1 =−1.8928, F2 =−2.8531, F3 =−4.3099, F4 =−8.3440,
H1 =−1.8913, H2 =−2.8385, H3 =−4.3102, H4 =−8.3432.
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Fig. 4 Response of x3(t) for the nonlinear system (54) with the designed controller.
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Fig. 5 Response of x4(t) for the nonlinear system (54) with the designed controller.

Some simulations are presented for the closed-loop system from the initial con-
dition x(0) = [0.5, −0.5, 0, 0.7]T and ω(t) = 0: the states evolution are shown in
Fig 7, whereas the saturated control inputs sat(u(t))) and the (unsaturated) control
inputs u(t) are shown in Fig.8. The plot of ratio is shown in Fig. 9 under the initial
condition x(0) = [0 0 0 0]T when ω(t) = 0.25cos(10t). It is clear that this ratio
tends to a constant value, which is less than the prescribed value of γ = 1.1219.
From these simulation results, we can see that the designed robust SOF H∞ presented
in this paper is effective.
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Fig. 6 The saturated input sat(u(t)) for the nonlinear system (54) with the designed controller.
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Fig. 7 Trajectories of the nonlinear system of (54).

Example 2 In this example, we consider the control of a Permanent Magnet Syn-
chronous Motor (PMSM) [33] with the following nonlinear model:

i̇d(t) =−
R
L

id(t)+npiq(t)W (t)+νd(t)

i̇q(t) =−
R
L

id(t)+npid(t)W (t)−Ψ

L
W (t)+νq(t)

Ẇ (t) =
Ψ

L
iq(t)−

τ

J
W (t)+2ω(t)

(55)

where iq(t) and id(t), vq(t) and vd(t) are the quadrature and direct input currents
and voltages, respectively, W (t) is the motor angular velocity, np is the number of
pole-pairs, Ψ is the permanent-magnet flux, L is the direct quadrature-axis stator
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Fig. 8 The system control inputs (unsaturated and saturated) inputs for the nonlinear system of (54).
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Fig. 9 The ratio γ(t) =
√

zT (t)z(t)
ωT (t)ω(t) for the nonlinear system (54).

inductance, R is the stator winding resistance, J is the moment of inertia and τ is the
viscous damping coefficient.

In the nominal case the controlled outputs are as follows:


z1(t) = 2(1+ρ)id(t)+4iq(t)+4W (t)

+ iq(t)W (t)−W (t)2 +0.1ω(t)

z2(t) =W (t)

with ρ an uncertain parameter, in this paper we assume ρ = 0
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Table 2 H∞ attenuation bounds of Example (2), compared with [33]

[33] Theorem 2
αmax 1.5 1.85

γ 0.5 0.2760

As the nonlinear terms satisfy the conditions W (t)∈ [θ1, θ2], a TS fuzzy model has
been proposed in [33] using a two-rule TS fuzzy model with the following parameters:

A1 =

 −R
L npθ1 0

−npθ1 −R
L −

Ψ

L
0 Ψ

L − τ

J

 , A2 =

 −R
L npθ2 0

−npθ2 −R
L −

Ψ

L
0 Ψ

L − τ

J

 , B21 = B22 =

1 0
0 1
0 0

 ,
B11 = B12 =

0
0
2

 , C11 =

[
2 3 5
0 0 1

]
, C12 =

[
2 5 3
0 0 1

]
, D11 = D12 =

[
0.1
0

]
,

D21 = D22 =

[
0 0
0 0

]
This result is obtained as Mzi is the identity matrix, Mi, NAi, NB1i, NB2i, ND1i and

ND2i are zero matrices and

NC11 =

[
0.2 0 0
0 0 0

]
The membership functions are the following:

η1(W (t)) =
θ2−W (t)

θ2−θ1
, η2(W (t)) = 1−η1(W (t)) (56)

x(t) = [iTd (t), iTq (t), W T (t)]T and u(t) = [νT
d (t), νT

q (t)]
T .

If iq(t) and W (t) are the measurable variables, and the measurable outputs are the
following:

y1(t) = iq(t)W (t), y2(t) =W (t)

then

C21 =

[
0 θ1 0
0 0 1

]
C22 =

[
0 θ2 0
0 0 1

]
The following parameters have been used in the design and simulations: np = 1,

Ψ = 0.031Nm/A, L = 0.01425H, R = 0.9Ω , J = 4.5×10−5kgm2, τ = 0.0162N/rad/s.
For comparison with previous results in [33], we choose the same data (θ1 = −1,
θ2 = 1, and N = I) and the ellipsoid case. Solving the optimization problem of Theo-
rem 2, Table 2 shows the results comparing with [33] when ξ = 0.01. From this Table
2, it can be seen that, by using the method in this paper, the values of γ and α can be
greatly improved, thus providing better attenuation of disturbances.
The gain matrices corresponding to these results are:
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F1 =

[
−5.3836 −11.5986
6.4850 −13.8292

]
, F2 =

[
−3.9980 −6.2608
−32.4893 −19.5988

]
,

H1 =

[
−0.0029 0.0133
−0.0066 0.0308

]
, H2 =

[
−0.2135 −0.0281
−0.4871 −0.0638

]
.

Some simulation results are shown in Figs. 10-12, from the initial state x(0) =
[1, −1, −0.5]T and ω(t) = 0. Fig.10 presents the state responses of the closed-loop
system (17) using the designed H∞ controller, with saturations defined by sat(vd(t))=
1, sat(vq(t)) = 2. Figs. 11-12 illustrate the evolution of the direct and quadrature
input voltages νd(t) and νq(t), respectively. According to the simulation results, the
proposed method stabilizes the permanent magnetic synchronous motor. This shows
that the proposed method is effective to control practical systems with guaranteed
attenuation levels.
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Fig. 10 Trajectories for the PMSM Example (55).

5 CONCLUSIONS

This paper has focused on designing Static Output Feedback controllers with guaran-
teed attenuation levels, for a class of nonlinear systems with input saturation. More
precisely, a new method has been established for SOF H∞ controller design where
the controller gains can be obtain from LMI terms, and the resulting closed-loop sys-
tem is asymptotically stable satisfying a prescribed level of H∞ performance. The
proposed approach is applicable for systems without disturbances in the measured
output. On the other hand, the output matrices are not required to be full row rank.
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Fig. 11 Trajectory of direct input voltage νd(t) of Example (55).
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Fig. 12 Trajectory of quadrature input voltage νq(t) of Example (55).

In particular, it has been proved that the new proposed conditions are more relaxed
than the existing ones with equality constraints between output matrix and Lyapunov
matrix. It should be pointed out that compared with [33], Theorem 1 increases the
number of LMI from (m+ r + 2m r2

2 (r + 1)) to ( r
2 (r + 1)m+ 2m r2

2 (r + 1)) while
increasing the size of each LMI. With the increases of IF−then rules the merit of
the paper will be more apparent. Some examples are presented to demonstrate the
validity and effectiveness of proposed approach. This result will be extended to fi-
nite frequency H∞ control for a class of fuzzy delayed systems with input saturation
systems in future research.
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