438,100 research outputs found

    Robust correlated and individual component analysis

    Get PDF
    © 1979-2012 IEEE.Recovering correlated and individual components of two, possibly temporally misaligned, sets of data is a fundamental task in disciplines such as image, vision, and behavior computing, with application to problems such as multi-modal fusion (via correlated components), predictive analysis, and clustering (via the individual ones). Here, we study the extraction of correlated and individual components under real-world conditions, namely i) the presence of gross non-Gaussian noise and ii) temporally misaligned data. In this light, we propose a method for the Robust Correlated and Individual Component Analysis (RCICA) of two sets of data in the presence of gross, sparse errors. We furthermore extend RCICA in order to handle temporal incongruities arising in the data. To this end, two suitable optimization problems are solved. The generality of the proposed methods is demonstrated by applying them onto 4 applications, namely i) heterogeneous face recognition, ii) multi-modal feature fusion for human behavior analysis (i.e., audio-visual prediction of interest and conflict), iii) face clustering, and iv) thetemporal alignment of facial expressions. Experimental results on 2 synthetic and 7 real world datasets indicate the robustness and effectiveness of the proposed methodson these application domains, outperforming other state-of-the-art methods in the field

    Robust correlated and individual component analysis

    Get PDF
    Recovering correlated and individual components of two, possibly temporally misaligned, sets of data is a fundamental task in disciplines such as image, vision, and behavior computing, with application to problems such as multi-modal fusion (via correlated components), predictive analysis, and clustering (via the individual ones). Here, we study the extraction of correlated and individual components under real-world conditions, namely i) the presence of gross non-Gaussian noise and ii) temporally misaligned data. In this light, we propose a method for the Robust Correlated and Individual Component Analysis (RCICA) of two sets of data in the presence of gross, sparse errors. We furthermore extend RCICA in order to handle temporal incongruities arising in the data. To this end, two suitable optimization problems are solved. The generality of the proposed methods is demonstrated by applying them onto 4 applications, namely i) heterogeneous face recognition, ii) multi-modal feature fusion for human behavior analysis (i.e., audio-visual prediction of interest and conflict), iii) face clustering, and iv) the temporal alignment of facial expressions. Experimental results on 2 synthetic and 7 real world datasets indicate the robustness and effectiveness of the proposed methods on these application domains, outperforming other state-of-the-art methods in the field

    Robust Correlated and Individual Component Analysis

    Get PDF
    Recovering correlated and individual components of two, possibly temporally misaligned, sets of data is a fundamental task in disciplines such as image, vision, and behavior computing, with application to problems such as multi-modal fusion (via correlated components), predictive analysis, and clustering (via the individual ones). Here, we study the extraction of correlated and individual components under real-world conditions, namely i) the presence of gross non-Gaussian noise and ii) temporally misaligned data. In this light, we propose a method for the Robust Correlated and Individual Component Analysis (RCICA) of two sets of data in the presence of gross, sparse errors. We furthermore extend RCICA in order to handle temporal incongruities arising in the data. To this end, two suitable optimization problems are solved. The generality of the proposed methods is demonstrated by applying them onto 4 applications, namely i) heterogeneous face recognition, ii) multi-modal feature fusion for human behavior analysis (i.e., audio-visual prediction of interest and conflict), iii) face clustering, and iv) the temporal alignment of facial expressions. Experimental results on 2 synthetic and 7 real world datasets indicate the robustness and effectiveness of the proposed methods on these application domains, outperforming other state-of-the-art methods in the field

    EEG in the classroom: Synchronised neural recordings during video presentation

    Get PDF
    We performed simultaneous recordings of electroencephalography (EEG) from multiple students in a classroom, and measured the inter-subject correlation (ISC) of activity evoked by a common video stimulus. The neural reliability, as quantified by ISC, has been linked to engagement and attentional modulation in earlier studies that used high-grade equipment in laboratory settings. Here we reproduce many of the results from these studies using portable low-cost equipment, focusing on the robustness of using ISC for subjects experiencing naturalistic stimuli. The present data shows that stimulus-evoked neural responses, known to be modulated by attention, can be tracked in for groups of students with synchronized EEG acquisition. This is a step towards real-time inference of engagement in the classroom.Comment: 14 pages, 5 figures, 3 tables. Preprint version. Revision of original preprint. Supplementary materials added as ancillary fil

    Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models

    Get PDF
    This paper describes how to perform classification of complex, high-dimensional functional data using the functional mixed model (FMM) framework. The FMM relates a functional response to a set of predictors through functional fixed and random effects, which allows it to account for various factors and between-function correlations. Classification is performed through training the model treating class as one of the fixed effects, and then predicting on the test data using posterior predictive probabilities of class. Through a Bayesian scheme, we are able to adjust for factors affecting both the functions and the class designations. While the method we present can be applied to any FMM-based method, we provide details for two specific Bayesian approaches: the Gaussian, wavelet-based functional mixed model (G-WFMM) and the robust, wavelet-based functional mixed model (R-WFMM). Both methods perform modeling in the wavelet space, which yields parsimonious representations for the functions, and can naturally adapt to local features and complex nonstationarities in the functions. The R-WFMM allows potentially heavier tails for features of the functions indexed by particular wavelet coefficients, leading to a down weighting of outliers that makes the method robust to outlying functions or regions of functions. The models are applied to a pancreatic cancer mass spectroscopy data set and compared with some other recently developed functional classification methods

    Transformation of stimulus correlations by the retina

    Get PDF
    Redundancies and correlations in the responses of sensory neurons seem to waste neural resources but can carry cues about structured stimuli and may help the brain to correct for response errors. To assess how the retina negotiates this tradeoff, we measured simultaneous responses from populations of ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure. We found that pairwise correlations in the retinal output remained similar across stimuli with widely different spatio-temporal correlations including white noise and natural movies. Meanwhile, purely spatial correlations tended to increase correlations in the retinal response. Responding to more correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the similarity of pairwise correlations across stimuli where receptive field measurements were possible.Comment: author list corrected in metadat

    Leveraging Contact Network Information in Clustered Randomized Studies of Contagion Processes

    Get PDF
    In a randomized study, leveraging covariates related to the outcome (e.g. disease status) may produce less variable estimates of the effect of exposure. For contagion processes operating on a contact network, transmission can only occur through ties that connect affected and unaffected individuals; the outcome of such a process is known to depend intimately on the structure of the network. In this paper, we investigate the use of contact network features as efficiency covariates in exposure effect estimation. Using augmented generalized estimating equations (GEE), we estimate how gains in efficiency depend on the network structure and spread of the contagious agent or behavior. We apply this approach to simulated randomized trials using a stochastic compartmental contagion model on a collection of model-based contact networks and compare the bias, power, and variance of the estimated exposure effects using an assortment of network covariate adjustment strategies. We also demonstrate the use of network-augmented GEEs on a clustered randomized trial evaluating the effects of wastewater monitoring on COVID-19 cases in residential buildings at the the University of California San Diego.Comment: Substantial revisio

    Crater lake cichlids individually specialize along the benthic-limnetic axis

    Get PDF
    A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. This variable restricted niche use across individuals can provide the raw material for earliest stages of sympatric divergence. We investigated variation in morphology and diet as well as their correlations along the benthic-limnetic axis in an extremely young Midas cichlid species, Amphilophus tolteca, endemic to the Nicaraguan crater lake Asososca Managua. We found that A. tolteca varied continuously in ecologically relevant traits such as body shape and lower pharyngeal jaw morphology. The correlation of these phenotypes with niche suggested that individuals are specialized along the benthic-limnetic axis. No genetic differentiation within the crater lake was detected based on genotypes from 13 microsatellite loci. Overall, we found that individual specialization in this young crater lake species encompasses the limnetic- as well as the benthic macro-habitat. Yet there is no evidence for any diversification within the species, making this a candidate system for studying what might be the early stages preceding sympatric divergence

    Spillovers from Foreign Direct Investment in Central and Eastern Europe. An index for measuring a country’s potential to benefit from technology spillovers

    Get PDF
    In the paper, we construct a composite indicator to estimate the potential of four Central and Eastern European countries (the Czech Republic, Hungary, Poland and Slovakia) to benefit from productivity spillovers from foreign direct investment (FDI) in the manufacturing sector. Such transfers of technology are one of the main benefits of FDI for the host country, and should also be one of the main determinants of FDI incentives offered to investing multinationals by governments, but they are difficult to assess ex ante. For our composite index, we use six components to proxy the main channels and determinants of these spillovers. We have tried several weighting and aggregation methods, and we consider our results robust. According to the analysis of our results, between 2003 and 2007 all four countries were able to increase their potential to benefit from such spillovers, although there are large differences between them. The Czech Republic clearly has the most potential to benefit from productivity spillovers, while Poland has the least. The relative positions of Hungary and Slovakia depend to some extent on the exact weighting and aggregation method of the individual components of the index, but the differences are not large. These conclusions have important implication both the investment strategies of multinationals and government FDI policies
    corecore