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EEG in the classroom: Synchronised 
neural recordings during video 
presentation
Andreas Trier Poulsen1,*, Simon Kamronn1,*, Jacek Dmochowski2,3, Lucas C. Parra3 &  
Lars Kai Hansen1

We performed simultaneous recordings of electroencephalography (EEG) from multiple students in 
a classroom, and measured the inter-subject correlation (ISC) of activity evoked by a common video 
stimulus. The neural reliability, as quantified by ISC, has been linked to engagement and attentional 
modulation in earlier studies that used high-grade equipment in laboratory settings. Here we reproduce 
many of the results from these studies using portable low-cost equipment, focusing on the robustness 
of using ISC for subjects experiencing naturalistic stimuli. The present data shows that stimulus-
evoked neural responses, known to be modulated by attention, can be tracked for groups of students 
with synchronized EEG acquisition. This is a step towards real-time inference of engagement in the 
classroom.

Engagement and attention are important in situations of learning, but most methods for measuring of attention 
or engagement are intrusive and unrealistic in everyday situations1–3. Recently, inter-subject correlation (ISC) of 
electroencephalography (EEG) has been proposed as a marker of attentional engagement4–6 and we ask in this 
work whether it can be recorded robustly with commercial-grade wireless EEG devices in a classroom setting. 
Furthermore, we address two other issues related to the robustness of the signal: The potential neurophysiological 
origin of the measure and the robustness of the detection scheme to inter-subject variability in spatial alignment.

User engagement has been defined as ‘…​ the emotional, cognitive and behavioural connection that exists, 
at any point in time and possibly over time, between a user and a resource’7. Traditional approaches to measur-
ing engagement are based on capturing user behaviour via user interfaces, self-report, or manual annotation8. 
However, tools from cognitive neuroscience are increasingly being employed9. Recent efforts in neuroscience 
aim to elucidate perceptual and cognitive processes in a more realistic setting and using naturalistic stimuli4,10–14. 
From an educational perspective such quantitative measures may help identify mechanisms that make learning 
more efficient9, align services better with students needs7, or monitor critical task performance15. The poten-
tial uses of engagement detection in the classroom are numerous, e.g., real-time and summary feedback for the 
teacher, motivational strategies for increased student engagement, and screening for impact of teaching materials. 
Before the findings of tracking attentional responses with neural activity4–6 can be employed in a real-time class-
room scenario, several issues must be addressed first, including: (1) Is it possible to reproduce the ISCs to natural-
istic stimuli under the adverse conditions of a classroom? (2) Are the ISCs robust to inter-student variability of the 
spatial information processing networks? And (3) can ISCs be recorded with equipment that is both comfortable 
and affordable enough to make it a realistic technology for schools?

Here we investigate the feasibility of recording such neural responses from students who are viewing videos. 
We use an approach developed by Dmochowski et al.4 that uses inter-subject correlation (ISC) of EEG evoked 
responses. The basic premise is that subjects who are engaged with the content exhibit reliable neural responses 
that are correlated across subjects and repetitions within the same subject. In contrast, a lack of engagement  
manifests in generally unreliable neural responses6. ISC of neural activity while watching films have been shown 
to predict the popularity and viewership of TV-series and commercials5, and shows clinical promises as a measure  
of consciousness levels in non-responsive patients16 (fMRI study). We argue here that the neural reliability of 
students indeed may be quantified on a second-by-second basis in groups and in a classroom setting, and we seek 

1Technical University of Denmark, DTU Compute, Kgs. Lyngby, Denmark. 2Stanford University, Department of 
Psychology, Palo Alto, USA. 3City College of New York, Department of Biomedical Engineering, New York, USA. 
*These authors contributed equally to this work. Correspondence and requests for materials should be addressed to 
A.T.P. (email: atpo@dtu.dk)

received: 26 April 2016

accepted: 01 February 2017

Published: 07 March 2017

OPEN

mailto:atpo@dtu.dk


www.nature.com/scientificreports/

2Scientific Reports | 7:43916 | DOI: 10.1038/srep43916

to investigate the robustness of measuring it with electroencephalography (EEG) responses during exposure to 
media stimuli.

To enable correlations between multi-dimensional EEG, correlated component analysis (CorrCA) was intro-
duced4. CorrCA finds multiple spatial projections that are shared amongst subjects, such that their components 
are maximally correlated across time. Here we are interested in the reproducibility of using CorrCA as a measure 
of inter-subject correlation, and will focus predominantly on the first component, which captures most of the 
neural responses shared across students.

The main goal of the present work is to determine whether student neural reliability can be quantified in a 
real-time manner based on recordings of brain activity in a classroom setting using a low-cost, portable EEG sys-
tem – the Smartphone Brain Scanner17. With regard to the robustness of the detection scheme, we report on both 
theoretical and experimental investigations. First, we show that ISC evoked by rich naturalistic stimuli is robust 
enough to be reproduced with commercial-grade equipment, and to be recorded simultaneously from multiple 
subjects in a classroom setting. This opens up for the possibility of real-time estimation of student attentional 
engagement. Secondly, we show mathematically that the CorrCA algorithm is surprisingly robust to variations 
in the spatial patterns of brain activity across subjects. Finally, we demonstrate that the level of ISC is related to a 
very basic visual response that is modulated by narrative coherence of the video stimulus.

Results
To monitor neural reliability we used video stimuli as they provide a balance between realism and reproducibility11.  
We recorded EEG activity using the Smartphone Brain Scanner while subjects watched short video clips of 
approximately 6 minutes duration, either individually or in a group setting (Fig. 1). To measure reliability of EEG 
responses, we used correlated components analysis (CorrCA, see Methods) to extract maximally correlated time 
series with shared spatial projection across repeated views within the same subject (inter-viewing correlation, 
IVC), or between subjects (inter-subject correlation, ISC).

One of our main points of interest is to investigate the robustness of ISC from EEG recorded in a classroom 
through comparisons with results previously measured in a laboratory setting4. We therefore employed similar 
methods of analysis and calculated ISCs and IVCs in 5 second windows with 80% overlap to investigate their 
temporal development in a 1-second resolution. We chose to analyse the EEG with CorrCA in a broad frequency 
band (0.5 and 45 Hz), instead of investigating specific frequency bands, to keep the analysis methods comparable 
with the prior lab-based study. Moreover, CorrCA is a method used for robustly measuring ISC with low compu-
tational costs; hence making it a good candidate for long term real-time analyses on small devices in a classroom 
setting.

The subjects watched three video clips, which were presented twice in random order. The first video was a 
suspenseful excerpt from the short film, Bang! You’re Dead, directed by Alfred Hitchcock. It was selected because 
it is known to effectively synchronize brain responses across viewers4,18. The second video was an excerpt from 
Sophie’s Choice, directed by Alan J. Pakula (1982), and the third was an uneventful baseline video of people 
silently descending an escalator. For both the joint and individual recording scenarios, the time course of the 
ISC, based on the first CorrCA component from subjects watching the film, closely reproduces results obtained 
previously in a laboratory setting (Fig. 2a and Table 1).

An indication of the stability of the technique is provided by the spatial patterns of the neural activity that 
drives these reproducible responses. Similar to other component extraction techniques, such as independent 
component analysis or common spatial patterns19,20, CorrCA reduces the signal of multiple electrodes to a few 
components. The ISC is then computed for the first few components, which capture most of the correlation 
between recordings. The strongest three correlated components show a stable pattern of activity across the dif-
ferent groups and recording conditions (Fig. 2b), all three obtaining significant spatial correlations between 
groups (rcomp1 =​ 0.97, rcomp2 =​ 0.91, rcomp3 =​ 0.79, all with p <​ 0.002 for uncorrected permutation test), for Bang! 
You’re Dead. The robustness to recording conditions is also apparent for the second film clip from Sophie’s Choice 
(rcomp1 =​ 0.51, p <​ 0.002; rcomp2 =​ 0.48, p =​ 0.008; rcomp3 =​ 0.36, p =​ 0.033), albeit with a lower average correlation, 
which for the first two components may be due to noisy scalp maps for the Joint 1 group and Individual group, 

Figure 1.  Experimental setup for joint viewings. (Left) 9 subjects where placed on a line to induce a cinema-
like experiences. (Right) Subjects seen from the back, watching films projected onto a screen. Tablets recording 
EEG are resting on the tables behind the subjects. The signal is transmitted wirelessly from each subject.
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respectively (see Supplementary Fig. S1). For the baseline video, only the first component achieved significant 
average correlation between groups (rcomp1 =​ 0.46, p =​ 0.014). The lower stability in the scalp maps obtained for 
Sophie’s Choice and the baseline video could be explained by the lower ALD of these stimuli (see below), since 
these films obtain lower average IVC compared to Bang! You’re Dead for all groups (Fig. 3).

Previous research has indicated the potentials of ISC as a marker of engagement of conscious processing4,5,6,12,16.  
To further investigate this, we asked subjects post-experiment to describe the film segments (or “scenes”) that 
made the biggest impact on them. We quantified their answers by assigning each answer to one of eight general 
scene descriptions. Table 2 shows that the scenes most frequently mentioned are “Boy pointing gun at mother” 
or “Boy pointing gun at people”, and 29 out of 30 subjects mentioned one or both of the scenes as having had 
high impact on them. The most frequently mentioned scene occurs around 2:25, where a peak in the ISC can be 
seen (Fig. 2a). The high impact of this particular scene was confirmed by the suspense ratings presented in Naci  
et al.16. See Dmochowski et al.4 for additional descriptions and examples of scenes eliciting high ISC in Bang! 
You’re Dead.

To determine if the portable equipment, which uses only 14 channels, can detect varying levels of neural reli-
ability, a second group of subjects watched the same two film clips individually, but now with scenes scrambled 
in time. This intervention is a widely used tool to create a baseline with similar low-level stimuli, yet reduced 
engagement4,18,21,22. See Methods for more information on the definition and time scales of the scrambled scenes. 
Despite using consumer-grade EEG we find that IVC is significantly above chance for a large fraction of the 
original engaging clip, but drops dramatically when the scenes are scrambled in time (mean IVC, Fig. 3, p <​ 0.01, 
for Bang! You’re Dead). Also the baseline video, which subjects reported not to engage them at all, only obtained 
significant ISC (p <​ 0.01, uncorrected) in 2.3% of the 354 tested time windows, compared to the 54.1% significant 
windows obtained for Bang! You’re Dead.

For experiments conducted in less controlled, everyday settings as in this study, it is important to assess 
across-session reproducibility. To test this, we recorded a second group of subjects in a classroom setting who 
watched the material together (Joint 1 and 2). These two groups obtained mean IVCs comparable to the individ-
ual recordings (Fig. 3, Bang! You’re Dead: p >​ 0.49, Sophie’s Choice: p >​ 0.26), and also showed reproducibility 
between the groups of simultaneous recordings (Fig. 3, Bang! You’re Dead: p >​ 0.49, Sophie’s Choice: p >​ 0.08).

Figure 2.  ISC of neural responses to naturalistic stimuli are robust across different groups of subjects and 
reproducible in a classroom setting. (a) Comparison between the ISC obtained by Dmochowski et al.4 and the 
present study for the first CorrCA component and the first viewing of Bang! You’re Dead. The ISC is calculated 
with a 1-second resolution (5 s windows, 80% overlap). The grey area indicates chance levels for ISC (p >​ 0.01 
estimated with time-shuffled surrogate data, uncorrected for multiple comparisons). (b) The corresponding 
scalp projections of the first three components obtained from the correlated component analysis (CorrCA) 
of each of the four subject groups watching Bang! You’re Dead the first time. For each component, CorrCA 
finds one shared set of weights for all subjects in the group. Four distinct groups of subjects watched videos in 
different scenarios: individually on a tablet computer (Individual), individually with order of scenes scrambled 
in time (Scrambled), and jointly in a classroom as seen in Fig. 1 (Joint 1 and Joint 2). For each projection, the 
polarity was normalized so the value at the Cz electrode is positive.

ISC v1 ISC v2 IVC

Individual 0.64** 0.33** 0.49**

Joint group 1 0.51** 0.15** 0.44**

Joint group 2 0.61** 0.28** 0.54**

Table 1.   Correlation coefficients between the ISC time courses obtained in a laboratory setting4 and 
those obtained in the present study (groups Individual, Joint 1 and Joint 2). Inter-subject correlation (ISC) 
measures similarity of responses between subjects for the first and second viewings (v1, v2), and the inter-
viewing correlation (IVC) measures similarity within-subject between the two views. Coefficients are calculated 
for the first CorrCA component recorded while watching Bang! You’re dead. **p <​ 0.01.
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Robustness to inter-subject variations in the spatial brain structure is a basic question when applying CorrCA 
to classroom data. CorrCA is derived under the assumption that the spatial networks of subjects are identical. 
This assumption could be challenged by inter-individual differences, however, it turns out to be surprisingly 
robust to such variability23. To demonstrate this, we briefly analyse a ‘worst case’ scenario in which the true mix-
ing weights of two subjects form a pair of orthogonal vectors. The observations are assumed to consist of a single 
true signal, z, mixed into D dimensions with additive Gaussian noise; X1 =​ a1z⊤ +​ ε, X2 =​ a2z⊤ +​ ε. Given a large 
sample, the covariance matrices are given as  σ= ⋅ +PR a a I11 1 1

2 , = ⋅PR a a12 1 2
, where P is the variance of z 

and σ2 signifies the noise variance. For simplicity the weight vectors are assumed to be unit length. The two matri-
ces in Eq. (3) can then be written as








σ

+ =





















+






+ = ⋅

















−

−

P P
PR R a a

a

a
I R R a a

a

a
( ) 1 [ ] 2 ; [ ] ,

(1)
11 22

1
1 2

1

2

2
1

12 21 1 2
2

1

using block matrix notation. With =a a 01 2
 , = =a a 11

2
2

2  and the Woodbury identity, the product of the 
two matrices in Eq. (1) can be expressed as

 

σ
+ + =

+
+ .− P

P
R R R R a a a a( ) ( )

2
( )

(2)11 22
1

12 21 2 1 2 2 1

Figure 3.  Distribution and mean of IVC calculated from the first CorrCA component for subject groups 
and films. Violin plots show distributions of IVC estimated using a squared exponential (normal) kernel with 
bandwidth of 0.00541. Horizontal black bars denote distribution means. For visualisation purposes, the extreme 
2.5% values at either end of the distributions were left out of the violin plots (but were kept for estimating mean 
and p-values). A block permutation test (block size B =​ 25 s) was employed to estimate statistical significant 
differences in the mean IVC between viewing conditions (uncorrected for multiple comparisons). For both 
films there were significant differences in mean IVC between groups with normal narrative and the Scrambled 
group (Bang! You’re Dead: pIndividual =​ 0.006, pJoint1 =​ 0.033, pJoint2 =​ 0.004; Sophie’s Choice: pIndividual =​ 0.059, 
pJoint1 =​ 0.37, pJoint2 =​ 0.012). However, there were no significant differences between groups with the original, 
unscrambled narrative. Note that the Scrambled group did not watch the baseline video.

Scene Approx. times
No of times 

mentioned (%)

The boy shoots (or points gun at) mother 2:25 and 3:00 16 (53%)

The boy shoots (or points gun at) at people 2:10, 3:30 and 5:30 15 (50%)

The boy loads another bullet into gun 6:10 8 (27%)

The uncle discovers his gun is gone 4:35 4 (13%)

The boy finds and loads gun 0:25 and 1:40 4 (13%)

The boy points at mirror or shoot towards camera 0:40, 1:50 and 5:25 4 (13%)

When the father did not run after the boy 3:00 1 (3%)

The abrupt ending 6:14 1 (3%)

Table 2.   Scenes described by the subjects as having the strongest impression on them. Based on the 30 
subjects which saw Bang! You’re Dead with uninterrupted narrative. In a post-experiment questionnaire, 
subjects were asked to describe the scenes that made the strongest impression on them. Their answers were 
collected in the eight groups. The subjects each mentioned 1.77 scenes on average (0.77 std.). 29 subjects (97%) 
mentioned either scenes where the boy points the gun at his mother or at other people.
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An eigenvector of matrix (2) takes the form αa1 +​ βa2, with α =​ ±​β and ±
σ +

P
P2 2  as eigenvalues. By applying 

this eigenvector to observations, X1 and X2, we see that CorrCA still identifies the relevant time series, z.
For the first CorrCA component, the channels weighted most heavily are the ones positioned over the occip-

ital lobe (see Fig. 2b). To estimate how much of the ISC was driven by basic low-level visual processing, we 
analysed the relation between ISC and a measure of frame-to-frame luminance fluctuations (average luminance 
difference, ALD; see methods). Note that to avoid synchronised eye artefacts and to ensure that only signals of 
neural origin contributed to the measured correlations, we removed independent components related to eye 
artefacts from the EEG (see methods).

Figure 4 and Table 3 show that there is a significant correlation between the ISC and the ALD for both Bang! 
You’re Dead and Sophie’s Choice for the first CorrCA component. This suggests that this portion of the correlated 
activity may indeed be driven by low-level visual evoked responses. However, the degree of engagement, here 
represented by narrative coherence, appears to modulate the amplitude of the ISC time course, since even though 
the scrambled stimulus was driven by the visual stimulus, it was so to a lesser extent. Previous research has shown 
that visual evoked potentials (VEP) are modulated by spatial attention24 and that even feature-specific attention 
enhances steady-state VEPs25. We quantify the effect of scrambling the narrative by comparing the sensitivity 
(slope) of ISC to ALD in both the normal and scrambled conditions by fitting a simple linear model (Fig. 5). For 
both films we found significant reductions of the ISC/ALD slope in the scrambled version (p <​ 0.01; block per-
mutation test, with block size B =​ 25 s).

Discussion
We have demonstrated that student neural reliability to media stimuli may be quantified using EEG in a class-
room setting. For educational technology cost and robustness are key features, hence, we aimed at establishing 
a realistic scenario based on low-cost consumer grade equipment, the Smartphone Brain Scanner, focusing on 
several potential sources that could degrade robustness.

We have provided evidence that salient aspects of the neural reliability previously detected with laboratory 
grade equipment can be reproduced in a realistic setting. We recorded fully-synchronized EEG with nine subjects 
in a real classroom and found that the level of neural response reliability matched prior laboratory results. The 
robustness of CorrCA and ISC is granted by the reproducibility between recording conditions, both of the ISC 
time-courses throughout the film clips and of the spatial topographies of the first three CorrCA components. For 
the film clip from Bang! You’re Dead we saw that seven subjects were enough to obtain stable topographies for all 
three components, whereas for Sophie’s Choice and the baseline video the results were more noisy, suggesting that 
more subjects are needed to obtain stable results. Previous research shows that ten subjects provided for stable 
results in a case involving non-narrative baseline videos or films with lower ISC and IVC in a laboratory setting4.

Mathematically, we have shown that our detection scheme, CorrCA, is robust to inter-subject variability in 
spatial configurations of brain networks, or induced by cap misalignment. In the calculations, we assumed two 
subjects in a worst case scenario where the subjects’ spatial projections are orthogonal. This result conforms well 
with simulations that show that, even for multiple subjects with randomly drawn spatial projections, CorrCA 
was able to find the relevant times series23. The simulations also showed that increasing the number of subjects 

Figure 4.  The ISC of the first CorrCA component is temporally correlated with the average luminance 
differences (ALD) of the film stimulus. ALD is calculated as the frame-to-frame difference in pixel intensity, 
smoothed to match the 5 s window of ISC, and mainly reflects the frequency of changes in camera position. 
Data computed from the neural responses of subjects watching Bang You’re Dead.

ISC v1 ISC v2 IVC

Bang You’re Dead 0.71** 0.61** 0.56**

Sophie’s Choice 0.50** 0.24** 0.23**

Bang You’re Dead (Scr) 0.54** 0.45** 0.35**

Sophie’s Choice (Scr) 0.42** 0.01 −​0.22**

Table 3.   Correlation coefficients between the ALD and the ISC for the two viewings (v1, v2) as well as the 
IVC for the first correlated component. The correlation is presented for Bang You’re dead and Sophie’s Choice 
for the Individual and Scrambled (Scr) groups. **p <​ 0.01.



www.nature.com/scientificreports/

6Scientific Reports | 7:43916 | DOI: 10.1038/srep43916

decreased the signal-to-noise ratio, presumably due to the estimated common projection not being able to fit with 
the different projections of each subject.

We have presented results that further indicate a relationship between changes in ISC and viewer engagement. 
Through a basic analysis of questionnaires on scenes of high impact, we found that high ISC indeed is associated 
with high impact. We have also showed a relationship between neural responses to luminance fluctuations and 
coherence of stimulus narrative. For both the films presented, we saw a significant drop in the average IVC for 
subjects watching the film sequences in which the narrative had been temporally scrambled. At the same time no 
significant difference was found between the groups watching the film sequences that had not been scrambled, 
which further underlines the robustness of the measure.

It may appear surprising that there exists a significant correlation between the raw EEG signals of various 
students in the classroom. However, it is well-known that eye scan patterns in a film audience follow a specific 
pattern after a scene change, activating the dorsal pathway26. A valid assumption could therefore be that the 
correlation is due to synchronised artefacts from eye movements, but this has recently been shown not to affect 
attentional modulation of ISC6. Also, it is known that stimuli in the form of flashing images elicit VEPs, which are 
modulated in amplitude by the luminance27. When recorded with EEG, the spatial distribution of the early VEP 
at 100 ms (P100) is similar to the scalp maps of the first correlated component (C1 in Fig. 2b)24,28.

We investigated whether low-level visual processes could be a driving force behind the measured ISCs by 
correlating the ISC with changes in luminance in the video stimuli, as measured by the ALD. We found that lumi-
nance fluctuations drive a significant portion of the ISC.

In all four groups of subjects Sophie’s Choice obtained lower IVC compared to Bang! You’re Dead. This differ-
ence could be explained by the fact that the film clip also had a much lower ALD. Also, Fig. 4 indicates that the 
passage in Bang! You’re dead with the highest and most sustained ISC (around 1:20 to 1:50) coincides with the 
interval with the most scene changes. This relationship could, however, also be due to more complex processes, as 
fast-paced cutting is a known cinematographic tool used by Hitchcock to induce suspense and thereby increase 
the attention of the viewer29.

The strong link between ISC and luminance fluctuations due to scene cuts has also recently been presented in 
a fMRI study30. This is something that would be interesting to take into account for future studies investigating the 
applicability of ISC. Baseline videos could be created in ways to achieve similar ALD features as the target stimuli. 
The baseline video, created for this study, consisted of one continuous scene of people entering and exiting an 
escalator in a relaxed manner, which did not produce any significant correlation. Future studies might use a base-
line video containing scene cuts of faces and body parts, to also take the effect of editing into account.

To investigate the possibility of higher level processes also being at play, we analysed the linear relationship 
between ISC and luminance fluctuations at a given time in the video stimulus. The scrambling operation aimed to 
test for a change in attentional engagement while controlling for low level features. The premise was that subjects 
would be less attentive to the stimulus, i.e. less “engaged”, if they did not follow the narrative arch of the story. 
With that in mind, Figs 4 and 5 suggest that ISC is driven by stimulus-evoked responses that are modulated by 
attentional engagement with the stimulus.

We have demonstrated the feasibility of tracking inter-subject correlation in a classroom setting; a measure 
that has been related to attentional modulation6. We have shown that ISC is robust to recording equipment and 

Figure 5.  Relation between the ISC and the ALD for different conditions. Each point indicates a point in the 
ISC time course as seen in Fig. 2a (5 s windows, 80% overlap) and the corresponding ALD calculated from the 
visual stimulus. It is evident that time points with higher luminance fluctuations (hight ALD) result in higher 
correlation of brain activity across subjects (high ISC). The indicated “slope” is a least squares fit of the slope 
of lines passing through (0, 0). The slope indicates the strength of ISC for a given ALD value. For both films 
there is a significant drop in the slope (p <​ 0.01: block permutation test with block size B =​ 25 sec), thus the 
original narrative (blue) elicits higher ISC than the less engaging scrambled version of the films (red). Note that 
brightness of the scenes in Sophie’s Choice is much lower than in Bang! You’re dead, resulting in an ALD that is 
lower by almost a factor 10.
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conditions, and we have presented evidence that the amplification of ISC in films that have a strong and coher-
ent narrative is due to attentional modulation of visual evoked responses. Thus ISC may be used as an indirect 
electrophysiological measure of engagement through an attentional top-down modulation of low-level neural 
processes. Recent research has shown that attentional modulation of neural responses takes place in speech per-
ception31,32, which lends credibility to a similar process occurring in the visual system. The evidence that such a 
basic and well defined mechanism could be at play further adds to the robustness of the approach in real everyday 
scenarios.

Methods
Protocol.  Four groups of subjects watched the video stimuli in different scenarios. The first group (N =​ 12, 
Individual) watched videos individually in an office environment on a tablet computer (Google Nexus 7 tablet, 
with a 7″​ (17.8 cm) screen) with earphones. The second group (N =​ 12) saw the videos in the same manner, but 
the scenes of the film stimulus were scrambled in time resulting in the narrative being lost (Scrambled). The objec-
tive of this condition was to demonstrate that the similarity of responses across subjects is not simply the result of 
low-level stimulus features (which are identical in the Individual and Scrambled conditions), but instead, is mod-
ulated narrative coherence, which presumably engages viewers. Two additional groups (N =​ 9, N =​ 9) watched the 
original videos on a screen in a classroom (Fig. 1, Joint 1 and Joint 2), with sound projected through loudspeakers. 
An attempt was made to create viewing conditions for the subjects in the joint groups, that were similar to the 
viewing conditions for the individual group, i.e., lights were dampened and the projected image produced approx-
imately the same field-of-view (see Supplementary materials). The central question was whether the viewing 
condition (i.e., in a group versus individually) influences the level of ISC across subjects.

Stimuli.  The first video clip was a suspenseful excerpt from the short film Bang! You’re Dead (1961) directed 
by Alfred Hitchcock. It was selected because it is known to elicit highly reliable brain activity across subjects in 
fMRI11 as well as EEG4. Our second stimulus was a clip from Sophie’s Choice, directed by Alan J. Pakula (1982), 
which has been used earlier to study fMRI activity in the context of emotionally salient naturalistic stimuli33. A 
third non-narrative control video was recorded in a Danish metro station of several people who were being trans-
ported quietly on an escalator. Each video clip had a length of approximately six minutes and was shown twice 
to each subject. For each viewing the order of the clips was randomized, while the same random order was used 
the second time the clips were shown. A combined video was created for each of the six possible permutations 
of the order of the clips, starting with a 10 second 43 Hz tone for use in post processing synchronization, and 
20 seconds black screen between each film clip. The total length of the video amounted to 39 minutes. An addi-
tional control stimulus (Scrambled) was created by scrambling the order of the scenes in Bang! You’re Dead and 
Sophie’s Choice in accordance with previous research4,18. In these studies, scene segments were defined in varying 
temporal scales (36 s, 12 s, and 4 s) that consisted of multiple camera positions, “shots”. For this study we defined a 
scene as a single shot (i.e. the segment between two scene cuts) with the added rule that a scene must not exceed 
250 frames (~10 s) to reduce subjects’ ability to infer the narrative from long scenes. This procedure resulted in 73 
scenes lasting between 0.5 and 10 seconds and corresponded to the intermediate to short time-scales employed 
in previous studies18.

Subjects.  A total of 42 female subjects (mean age: 22.4 y, age range: 18–32 y), who gave written informed 
consent prior to the experiment, were recruited for this study. Non-invasive experiments on healthy subjects 
are exempt from ethical committee processing by Danish law34. Among the 42 recordings, nine were excluded 
due to unstable wireless communication that precluded proper synchronization of the data across subjects (five 
from the Individual group, one from the Scrambled group and three from the two Joint groups). The difference in 
the number of recordings in the different groups could give unfair advantages with respect to noise when using 
CorrCA or calculating ISC. We therefore decided to randomly choose four subjects from the Scrambled group 
and one from Joint 2 group and excluded these from the analyses. This was to ensure that each group had seven 
fully synchronized recordings.

Portable EEG – Smartphone Brain Scanner.  Research grade EEG equipment is costly, time-consuming 
to set up, and immobile. However, recently consumer grade EEG equipment that is more affordable and has 
increased comfort has appeared. Here we use the modified 14 channel system, ‘Emocap’, based on the EEG 
Emotiv EPOC headset. For details and validation, see refs 17 and 35. In this study it was implemented on Asus 
Nexus 7 tablets. An electrical trigger and associated sound was used to synchronize EEG and video signals in 
the individual viewing condition, while a split audio signal (simultaneously feeding into microphone and EEG 
amplifiers) was used to synchronize the nine subjects EEG recordings and the video in the joint viewing condi-
tion (see Supplementary materials for further information on synchronisation). The resulting timing uncertainty 
was measured to be less than 16 ms. The EEG was recorded at 128 Hz and subsequently bandpass filtered digi-
tally using a linear phase windowed sinc FIR filter between 0.5 and 45 Hz and shifted to adjust for group delay. 
Eye artefacts were reduced with a conservative pre-processing procedure using independent component analysis 
(ICA), removing up to 3 of the 14 available components (Corrmap plug-in for EEGLAB36,37).

Correlated component analysis to measure ISC and IVC.  CorrCA was presented in Dmochowski  
et al.4, as a constrained version of Canonical Correlation Analysis (CCA). CorrCA seeks to find sets of weights 
that maximises the correlation between the neural activity of subjects experiencing the same stimuli. For each 
neural component, CorrCA finds one shared set of weights for all subjects in the group.

Given two multivariate spatio-temporal time series (termed “view” in CorrCA), ∈ ×X X{ , } D N
1 2 , with  

D being the number of measured features (EEG channels) in the two views and N the number of time samples, 
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CCA estimates weights, {w1, w2}, which maximize the correlation between the components, =y X w1 1 1
  and 

=y X w2 2 2
 . The weights are calculated using two eigenvalue equations, with the constraint that the components 

belonging to each multivariate time series are uncorrelated38. CorrCA is relevant for the case where the views are 
homogeneous, e.g., using the same EEG channel positions, and imposes the additional constraint of shared 
weights w =​ w1 =​ w2. This assumption can potentially increase sensitivity involving fewer parameters. In CorrCA 
the weights are thus estimated through a single eigenvalue problem;

ρ+ + =−R R R R w w( ) ( ) , (3)11 22
1

12 21

where, =R X Xij N i j
1 , is the sample covariance matrix4. To illustrate the spatial distribution of the underlying 

physiological activity of the components, we use the estimated forward models (“patterns”) as discussed in refs 39 
and 40.

Average luminance difference (ALD).  Video clips were converted to grey scale (0–255) by averaging 
over the three colour channels. We then calculated the squared difference in pixel intensity from one frame to 
the next and took the average across pixels. These signals were non-linearly re-sampled at 1 Hz by selecting the 
maximum ALD for each 1 s interval to emphasise the large differences during changes in camera position (see 
Figure S2 in Supplementary materials for an comparison between frame-to-frame and smoothed difference). 
These values were then smoothed in time by convolving with a Gaussian kernel with a “variance” parameter of 
2.5 s2. This down sampling and smoothing was aimed at matching the temporal resolution of the ALD to that of 
the time-resolved ISC computation (5 s sliding window with 1 s intervals).

Statistical testing.  In order to evaluate the statistical relevance of the correlations, we employed a simple 
permutation test (P =​ 5000 permutations)4. To test the robustness of the obtained weights for the spatial pro-
jections, we calculated the average correlation of all possible pairings of the four conditions groups for a given 
component. Again, we employed a permutation test (P =​ 5000 permutations) to evaluate statistical relevance by 
randomly permuting the channel order for each group and recalculating the average correlation. When testing 
differences in average IVC between conditions, we used a block permutation test (block size B =​ 25 s, P =​ 5000 
permutations) to account for temporal dependencies.
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