12 research outputs found

    Activity of microRNAs and transcription factors in Gene Regulatory Networks

    Get PDF
    In biological research, diverse high-throughput techniques enable the investigation of whole systems at the molecular level. The development of new methods and algorithms is necessary to analyze and interpret measurements of gene and protein expression and of interactions between genes and proteins. One of the challenges is the integrated analysis of gene expression and the associated regulation mechanisms. The two most important types of regulators, transcription factors (TFs) and microRNAs (miRNAs), often cooperate in complex networks at the transcriptional and post-transcriptional level and, thus, enable a combinatorial and highly complex regulation of cellular processes. For instance, TFs activate and inhibit the expression of other genes including other TFs whereas miRNAs can post-transcriptionally induce the degradation of transcribed RNA and impair the translation of mRNA into proteins. The identification of gene regulatory networks (GRNs) is mandatory in order to understand the underlying control mechanisms. The expression of regulators is itself regulated, i.e. activating or inhibiting regulators in varying conditions and perturbations. Thus, measurements of gene expression following targeted perturbations (knockouts or overexpressions) of these regulators are of particular importance. The prediction of the activity states of the regulators and the prediction of the target genes are first important steps towards the construction of GRNs. This thesis deals with these first bioinformatics steps to construct GRNs. Targets of TFs and miRNAs are determined as comprehensively and accurately as possible. The activity state of regulators is predicted for specific high-throughput data and specific contexts using appropriate statistical approaches. Moreover, (parts of) GRNs are inferred, which lead to explanations of given measurements. The thesis describes new approaches for these tasks together with accompanying evaluations and validations. This immediately defines the three main goals of the current thesis: 1. The development of a comprehensive database of regulator-target relation. Regulators and targets are retrieved from public repositories, extracted from the literature via text mining and collected into the miRSel database. In addition, relations can be predicted using various published methods. In order to determine the activity states of regulators (see 2.) and to infer GRNs (3.) comprehensive and accurate regulator-target relations are required. It could be shown that text mining enables the reliable extraction of miRNA, gene, and protein names as well as their relations from scientific free texts. Overall, the miRSel contains about three times more relations for the model organisms human, mouse, and rat as compared to state-of-the-art databases (e.g. TarBase, one of the currently most used resources for miRNA-target relations). 2. The prediction of activity states of regulators based on improved target sets. In order to investigate mechanisms of gene regulation, the experimental contexts have to be determined in which the respective regulators become active. A regulator is predicted as active based on appropriate statistical tests applied to the expression values of its set of target genes. For this task various gene set enrichment (GSE) methods have been proposed. Unfortunately, before an actual experiment it is unknown which genes are affected. The missing standard-of-truth so far has prevented the systematic assessment and evaluation of GSE tests. In contrast, the trigger of gene expression changes is of course known for experiments where a particular regulator has been directly perturbed (i.e. by knockout, transfection, or overexpression). Based on such datasets, we have systematically evaluated 12 current GSE tests. In our analysis ANOVA and the Wilcoxon test performed best. 3. The prediction of regulation cascades. Using gene expression measurements and given regulator-target relations (e.g. from the miRSel database) GRNs are derived. GSE tests are applied to determine TFs and miRNAs that change their activity as cellular response to an overexpressed miRNA. Gene regulatory networks can constructed iteratively. Our models show how miRNAs trigger gene expression changes: either directly or indirectly via cascades of miRNA-TF, miRNA-kinase-TF as well as TF-TF relations. In this thesis we focus on measurements which have been obtained after overexpression of miRNAs. Surprisingly, a number of cancer relevant miRNAs influence a common core of TFs which are involved in processes such as proliferation and apoptosis

    BD-Func: a streamlined algorithm for predicting activation and inhibition of pathways

    Get PDF
    BD-Func (BiDirectional FUNCtional enrichment) is an algorithm that calculates functional enrichment by comparing lists of pre-defined genes that are known to be activated versus inhibited in a pathway or by a regulatory molecule. This paper shows that BD-Func can correctly predict cell line alternations and patient characteristics with accuracy comparable to popular algorithms, with a significantly faster run-time. BD-Func can compare scores for individual samples across multiple groups as well as provide predictive statistics and receiver operating characteristic (ROC) plots to quantify the accuracy of the signature associated with a binary phenotypic variable. BD-Func facilitates collaboration and reproducibility by encouraging users to share novel molecular signatures in the BD-Func discussion group, which is where the novel progesterone receptor and LBH589 signatures from this paper can be found. The novel LBH589 signature presented in this paper also serves as a case study showing how a custom signature using cell line data can accurately predict activity in vivo. This software is available to download at https://sourceforge.net/projects/bdfunc/

    Epigenome-450K-wide methylation signatures of active cigarette smoking : The Young Finns Study

    Get PDF
    Smoking as a major risk factor for morbidity affects numerous regulatory systems of the human body including DNA methylation. Most of the previous studies with genome-wide methylation data are based on conventional association analysis and earliest threshold-based gene set analysis that lacks sensitivity to be able to reveal all the relevant effects of smoking. The aim of the present study was to investigate the impact of active smoking on DNA methylation at three biological levels: 5'-C-phosphate-G-3' (CpG) sites, genes and functionally related genes (gene sets). Gene set analysis was done with mGSZ, a modern threshold-free method previously developed by us that utilizes all the genes in the experiment and their differential methylation scores. Application of such method in DNA methylation study is novel. Epigenome-wide methylation levels were profiled from Young Finns Study (YFS) participants' whole blood from 2011 follow-up using Illumina Infinium Hu-manMethylation450 BeadChips. We identified three novel smoking related CpG sites and replicated 57 of the previously identified ones. We found that smoking is associated with hypomethylation in shore (genomic regions 0-2 kilobases from CpG island). We identified smoking related methylation changes in 13 gene sets with false discovery rate (FDR)Peer reviewe

    Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods

    Get PDF
    Gene set analysis (GSA) is used to elucidate genome-wide data, in particular transcriptome data. A multitude of methods have been proposed for this step of the analysis, and many of them have been compared and evaluated. Unfortunately, there is no consolidated opinion regarding what methods should be preferred, and the variety of available GSA software and implementations pose a difficulty for the end-user who wants to try out different methods. To address this, we have developed the R package Piano that collects a range of GSA methods into the same system, for the benefit of the end-user. Further on we refine the GSA workflow by using modifications of the gene-level statistics. This enables us to divide the resulting gene set P-values into three classes, describing different aspects of gene expression directionality at gene set level. We use our fully implemented workflow to investigate the impact of the individual components of GSA by using microarray and RNA-seq data. The results show that the evaluated methods are globally similar and the major separation correlates well with our defined directionality classes. As a consequence of this, we suggest to use a consensus scoring approach, based on multiple GSA runs. In combination with the directionality classes, this constitutes a more thorough basis for an enriched biological interpretation

    Epigenome-450K-wide methylation signatures of active cigarette smoking: The Young Finns Study

    Get PDF
    Smoking as a major risk factor for morbidity affects numerous regulatory systems of the human body including DNA methylation. Most of the previous studies with genome-wide methylation data are based on conventional association analysis and earliest threshold-based gene set analysis that lacks sensitivity to be able to reveal all the relevant effects of smoking. The aim of the present study was to investigate the impact of active smoking on DNA methylation at three biological levels: 5'-C-phosphate-G-3' (CpG) sites, genes and functionally related genes (gene sets). Gene set analysis was done with mGSZ, a modern threshold-free method previously developed by us that utilizes all the genes in the experiment and their differential methylation scores. Application of such method in DNA methylation study is novel. Epigenome-wide methylation levels were profiled from Young Finns Study (YFS) participants' whole blood from 2011 follow-up using Illumina Infinium HumanMethylation450 BeadChips. We identified three novel smoking related CpG sites and replicated 57 of the previously identified ones. We found that smoking is associated with hypomethylation in shore (genomic regions 0-2 kilobases from CpG island). We identified smoking related methylation changes in 13 gene sets with false discovery rate (FDR) <= 0.05, among which is olfactory receptor activity, the flagship novel finding of the present study. Overall, we extended the current knowledge by identifying: (i) three novel smoking related CpG sites, (ii) similar effects as aging on average methylation in shore, and (iii) a novel finding that olfactory receptor activity pathway responds to tobacco smoke and toxin exposure through epigenetic mechanisms

    Efficient gene set analysis of high-throughput data : From omics to pathway architecture of health and disease

    Get PDF
    Background: A wide range of diseases, normal variations in physiology and development of different species are caused by alterations in gene regulation. The study of gene expression is thus crucial for understanding both normal physiology and disease mechanisms. High-throughput mea- surement technologies allow the profiling of tens of thousands of genes simultaneously. However, the high volume of data thus generated poses methodological challenges in inferring biological consequences from gene expression changes. Traditional gene wise analysis of high dimensional data is overwhelming, prone to noise and unintuitive. The analysis of sets of genes (gene set analysis, GSA), solves the problem by boosting statistical power and biological interpretability. Despite more than a decade of research on gene set analysis, there are still serious limitations in the existing methods. Aims of the study: The objectives of this study were: (1) development of an efficient p-value estimation method for GSA; (2) development of an advanced permutation method for GSA of multi-group gene expression data with fewer replicates; and (3) implementation of the developed methods for the identification of novel smoking induced epigenetic signatures at biological pathway level. Materials and methods: The first study involved the assessment of four different statistical null models for modeling the distribution of gene set scores calculated with the Gene Set Z-score (GSZ) function from permuted gene expression data. A new GSA method - modified GSZ (mGSZ) - based on GSZ and the most optimal distribution model was developed. mGSZ was evaluated by comparing its results with seven other popular GSA methods using four different publicly available gene expression datasets. The second study involved the evaluation of six different permutation schemes for GSA of multi-group (more than two groups) datasets based on the identification of reference gene sets generated using a novel data splitting approach. A new GSA method based on a modification of mGSZ (mGSZm) was developed by implementing the best permutation method for the analysis of multi-group data with fewer than six replicates per group. mGSZm was evaluated by contrasting its performance with seven other state-of-the-art GSA methods suitable for multi-group data. The evaluation was based on three different publicly available multi-group datasets. The third study involved an implementation of mGSZ for GSA of genome-wide DNA methylation data from the Cardiovascular Risk in Young Finns study (YFS) cohort with gene sets downloaded from the Molecular Signature Database (MSigDB). Methylation measurements were done on a subset of 192 individuals from whole-blood samples from the 2011 follow-up study using Illumina Infinium HumanMethylation450 BeadChips. Results: Overall, efficient and robust GSA methods were developed (studies I-II) and implemented (study III). In study I, the results demonstrated a clear advantage of asymptotic p-value estimation over empirical methods. mGSZ, a GSA method based on asymptotic p-values, requires fewer permutations which speeds up the analysis process. mGSZ outperformed state-of-the-art methods based on three different evaluations with three different datasets. In study II, results from a novel evaluation approach with two different datasets suggested that the proposed advanced permutation method outperformed the naive permutation method in GSA of multi-group data with fewer than six replicates. Evaluation of mGSZm, a GSA method equipped with the advanced permutation method and asymptoticn/

    Detection of network motifs using three-way ANOVA

    Get PDF
    Motivation Gene regulatory networks (GRN) can be determined via various experimental techniques, and also by computational methods, which infer networks from gene expression data. However, these techniques treat interactions separately such that interdependencies of interactions forming meaningful subnetworks are typically not considered. Methods For the investigation of network properties and for the classification of different (sub-) networks based on gene expression data, we consider biological network motifs consisting of three genes and up to three interactions, e.g. the cascade chain (CSC), feed-forward loop (FFL), and dense-overlapping regulon (DOR). We examine several conventional methods for the inference of network motifs, which typically consider each interaction individually. In addition, we propose a new method based on three-way ANOVA (ANalysis Of VAriance) (3WA) that analyzes entire subnetworks at once. To demonstrate the advantages of such a more holistic perspective, we compare the ability of 3WA and other methods to detect and categorize network motifs on large real and artificial datasets. Results We find that conventional methods perform much better on artificial data (AUC up to 80%), than on real E. coli expression datasets (AUC 50% corresponding to random guessing). To explain this observation, we examine several important properties that differ between datasets and analyze predicted motifs in detail. We find that in case of real networks our new 3WA method outperforms (AUC 70% in E. coli) previous methods by exploiting the interdependencies in the full motif structure. Because of important differences between current artificial datasets and real measurements, the construction and testing of motif detection methods should focus on real data

    Network-based analysis of gene expression data

    Get PDF
    The methods of molecular biology for the quantitative measurement of gene expression have undergone a rapid development in the past two decades. High-throughput assays with the microarray and RNA-seq technology now enable whole-genome studies in which several thousands of genes can be measured at a time. However, this has also imposed serious challenges on data storage and analysis, which are subject of the young, but rapidly developing field of computational biology. To explain observations made on such a large scale requires suitable and accordingly scaled models of gene regulation. Detailed models, as available for single genes, need to be extended and assembled in larger networks of regulatory interactions between genes and gene products. Incorporation of such networks into methods for data analysis is crucial to identify molecular mechanisms that are drivers of the observed expression. As methods for this purpose emerge in parallel to each other and without knowing the standard of truth, results need to be critically checked in a competitive setup and in the context of the available rich literature corpus. This work is centered on and contributes to the following subjects, each of which represents important and distinct research topics in the field of computational biology: (i) construction of realistic gene regulatory network models; (ii) detection of subnetworks that are significantly altered in the data under investigation; and (iii) systematic biological interpretation of detected subnetworks. For the construction of regulatory networks, I review existing methods with a focus on curation and inference approaches. I first describe how literature curation can be used to construct a regulatory network for a specific process, using the well-studied diauxic shift in yeast as an example. In particular, I address the question how a detailed understanding, as available for the regulation of single genes, can be scaled-up to the level of larger systems. I subsequently inspect methods for large-scale network inference showing that they are significantly skewed towards master regulators. A recalibration strategy is introduced and applied, yielding an improved genome-wide regulatory network for yeast. To detect significantly altered subnetworks, I introduce GGEA as a method for network-based enrichment analysis. The key idea is to score regulatory interactions within functional gene sets for consistency with the observed expression. Compared to other recently published methods, GGEA yields results that consistently and coherently align expression changes with known regulation types and that are thus easier to explain. I also suggest and discuss several significant enhancements to the original method that are improving its applicability, outcome and runtime. For the systematic detection and interpretation of subnetworks, I have developed the EnrichmentBrowser software package. It implements several state-of-the-art methods besides GGEA, and allows to combine and explore results across methods. As part of the Bioconductor repository, the package provides a unified access to the different methods and, thus, greatly simplifies the usage for biologists. Extensions to this framework, that support automating of biological interpretation routines, are also presented. In conclusion, this work contributes substantially to the research field of network-based analysis of gene expression data with respect to regulatory network construction, subnetwork detection, and their biological interpretation. This also includes recent developments as well as areas of ongoing research, which are discussed in the context of current and future questions arising from the new generation of genomic data

    Statistical approaches of gene set analysis with quantitative trait loci for high-throughput genomic studies.

    Get PDF
    Recently, gene set analysis has become the first choice for gaining insights into the underlying complex biology of diseases through high-throughput genomic studies, such as Microarrays, bulk RNA-Sequencing, single cell RNA-Sequencing, etc. It also reduces the complexity of statistical analysis and enhances the explanatory power of the obtained results. Further, the statistical structure and steps common to these approaches have not yet been comprehensively discussed, which limits their utility. Hence, a comprehensive overview of the available gene set analysis approaches used for different high-throughput genomic studies is provided. The analysis of gene sets is usually carried out based on gene ontology terms, known biological pathways, etc., which may not establish any formal relation between genotype and trait specific phenotype. Further, in plant biology and breeding, gene set analysis with trait specific Quantitative Trait Loci data are considered to be a great source for biological knowledge discovery. Therefore, innovative statistical approaches are developed for analyzing, and interpreting gene expression data from Microarrays, RNA-sequencing studies in the context of gene sets with trait specific Quantitative Trait Loci. The utility of the developed approaches is studied on multiple real gene expression datasets obtained from various Microarrays and RNA-sequencing studies. The selection of gene sets through differential expression analysis is the primary step of gene set analysis, and which can be achieved through using gene selection methods. The existing methods for such analysis in high-throughput studies, such as Microarrays, RNA-sequencing studies, suffer from serious limitations. For instance, in Microarrays, most of the available methods are either based on relevancy or redundancy measures. Through these methods, the ranking of genes is done on single Microarray expression data, which leads to the selection of spuriously associated, and redundant gene sets. Therefore, newer, and innovative differential expression analytical methods have been developed for Microarrays, and single-cell RNA-sequencing studies for identification of gene sets to successfully carry out the gene set and other downstream analyses. Furthermore, several methods specifically designed for single-cell data have been developed in the literature for the differential expression analysis. To provide guidance on choosing an appropriate tool or developing a new one, it is necessary to review the performance of the existing methods. Hence, a comprehensive overview, classification, and comparative study of the available single-cell methods is hereby undertaken to study their unique features, underlying statistical models and their shortcomings on real applications. Moreover, to address one of the shortcomings (i.e., higher dropout events due to lower cell capture rates), an improved statistical method for downstream analysis of single-cell data has been developed. From the users’ point of view, the different developed statistical methods are implemented in various software tools and made publicly available. These methods and tools will help the experimental biologists and genome researchers to analyze their experimental data more objectively and efficiently. Moreover, the limitations and shortcomings of the available methods are reported in this study, and these need to be addressed by statisticians and biologists collectively to develop efficient approaches. These new approaches will be able to analyze high-throughput genomic data more efficiently to better understand the biological systems and increase the specificity, sensitivity, utility, and relevance of high-throughput genomic studies
    corecore