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Summary 
 
 

In biological research, diverse high-throughput techniques enable the investigation of 
whole systems at the molecular level. The development of new methods and 
algorithms is necessary to analyze and interpret measurements of gene and protein 
expression and of interactions between genes and proteins. One of the challenges is 
the integrated analysis of gene expression and the associated regulation mechanisms. 

The two most important types of regulators, transcription factors (TFs) and 
microRNAs (miRNAs), often cooperate in complex networks at the transcriptional 
and post-transcriptional level and, thus, enable a combinatorial and highly complex 
regulation of cellular processes. For instance, TFs activate and inhibit the expression 
of other genes including other TFs whereas miRNAs can post-transcriptionally induce 
the degradation of transcribed RNA and impair the translation of mRNA into proteins. 

The identification of gene regulatory networks (GRNs) is mandatory in order to 
understand the underlying control mechanisms. The expression of regulators is itself 
regulated, i.e. activating or inhibiting regulators in varying conditions and 
perturbations. Thus, measurements of gene expression following targeted 
perturbations (knockouts or overexpressions) of these regulators are of particular 
importance. The prediction of the activity states of the regulators and the prediction of 
the target genes are first important steps towards the construction of GRNs. 

This thesis deals with these first bioinformatics steps to construct GRNs. Targets of 
TFs and miRNAs are determined as comprehensively and accurately as possible. The 
activity state of regulators is predicted for specific high-throughput data and specific 
contexts using appropriate statistical approaches. Moreover, (parts of) GRNs are 
inferred, which lead to explanations of given measurements. The thesis describes new 
approaches for these tasks together with accompanying evaluations and validations. 
This immediately defines the three main goals of the current thesis: 
  
1. The development of a comprehensive database of regulator-target relation. 

 
Regulators and targets are retrieved from public repositories, extracted from the 
literature via text mining and collected into the miRSel database. In addition, 
relations can be predicted using various published methods. In order to determine 
the activity states of regulators (see 2.) and to infer GRNs (3.) comprehensive and 
accurate regulator-target relations are required. 
It could be shown that text mining enables the reliable extraction of miRNA, gene, 
and protein names as well as their relations from scientific free texts. Overall, the 
miRSel contains about three times more relations for the model organisms human, 
mouse, and rat as compared to state-of-the-art databases (e.g. TarBase, one of the 
currently most used resources for miRNA-target relations). 
 

2. The prediction of activity states of regulators based on improved target sets. 
 



xii Summary

 

In order to investigate mechanisms of gene regulation, the experimental contexts 
have to be determined in which the respective regulators become active. A 
regulator is predicted as active based on appropriate statistical tests applied to the 
expression values of its set of target genes. For this task various gene set 
enrichment (GSE) methods have been proposed. Unfortunately, before an actual 
experiment it is unknown which genes are affected. The missing standard-of-truth 
so far has prevented the systematic assessment and evaluation of GSE tests. In 
contrast, the trigger of gene expression changes is of course known for 
experiments where a particular regulator has been directly perturbed (i.e. by 
knockout, transfection, or overexpression). Based on such datasets, we have 
systematically evaluated 12 current GSE tests. In our analysis ANOVA and the 
Wilcoxon test performed best. 
 

3. The prediction of regulation cascades.  
 
Using gene expression measurements and given regulator-target relations (e.g. 
from the miRSel database) GRNs are derived. GSE tests are applied to determine 
TFs and miRNAs that change their activity as cellular response to an 
overexpressed miRNA. Gene regulatory networks can constructed iteratively. Our 
models show how miRNAs trigger gene expression changes: either directly or 
indirectly via cascades of miRNA-TF, miRNA-kinase-TF as well as TF-TF 
relations.  

 
In this thesis we focus on measurements which have been obtained after 
overexpression of miRNAs. Surprisingly, a number of cancer relevant miRNAs 
influence a common core of TFs which are involved in processes such as 
proliferation and apoptosis. 

 
 
  
 



 

 

Zusammenfassung 
 
 

In der biologischen Forschung machen diverse Hochdurchsatztechniken die 
Untersuchung ganzer Systeme auf molekularer Ebene möglich. Um Messungen von 
Gen- und Proteinexpression sowie den Interaktionen zwischen Genen und Proteinen 
analysieren und interpretieren zu können, ist die Entwicklung neuer Rechenmethoden 
und Algorithmen erforderlich. Eine der Herausforderungen ist die integrierte Analyze 
der Genexpression und den zugehörigen Regulationsmechanismen.  

Die beiden wichtigsten bisher bekannten Typen von Regulatoren, 
Transkriptionsfaktoren (TFs) und microRNAs (miRNAs), wirken auf 
transkriptioneller und post-transkriptioneller Ebene häufig in komplexen Netzwerken 
zusammen zur kombinatorischen und hochkomplexen Steuerung der zellulären 
Prozesse. Z.B. können TFs die Expression anderer Gene und auch anderer TF 
aktivieren und inhibieren, miRNAs können post-transkriptionell den Abbau schon 
transkribierter mRNA fördern bzw. die Translation der mRNA in das zugehörige 
Protein behindern.  

Deshalb ist die Aufklärung der genregulatorischen Netzwerke (GRNs) unumgänglich,  
um die unterliegenden Steuerungsprozesse zu verstehen. Unter variierenden 
Bedingungen und Perturbationen kann die Expression der Regulatoren selbst reguliert 
sein, zudem können Regulatoren aber auch aktiviert und inaktiviert werden. Deshalb 
sind Messungen der Genexpression nach gezielten Störungen (Knockout oder 
Überexpression) dieser Regulatoren besonders interessant. Die Aufklärung der 
Aktivität der Regulatoren und die Aufklärung der regulierten Gene, der sogenannten 
Zielgene (targets) sind erste wichtige Schritte zur Konstruktion von 
Genregulationsnetzwerken (GRNs).  

Die vorliegende Arbeit befasst sich mit diesen ersten Schritten zur bioinformatischen 
Aufklärung von GRNs. Dazu werden Zielgene von TFs und miRNAs mit 
verschiedenen Methoden möglichst genau und umfassend bestimmt und daraus 
mittels geeigneter algorithmischer und statistischer Verfahren die Aktivität der 
Regulatoren in bestimmten Kontexten und für bestimmte Hochdurchsatzdaten 
vorhergesagt. Weitergehend wird dann versucht, (Teile der) GRNs zu inferieren, die 
die Messdaten von bestimmten Hochdurchsatzexperimenten erklären können.  Für 
diese Aufgaben werden neue algorithmische Verfahren entwickelt und eingehend 
evaluiert. Daraus ergeben sich die folgenden drei Hauptziele der Arbeit: 
 
1. Der Aufbau einer umfassenden Datenbank von Regulator-Zielgen Beziehungen.  

 
Regulatoren und Zielgene (targets) werden aus öffentlich verfügbaren 
Repositories entnommen, durch Textmining aus der Literatur extrahiert und in der 
Datenbank miRSel zusammengeführt. Zusätzlich können solche Beziehungen 
auch durch diverse veröffentlichte Programme vorhergesagt werden. Zur Analyze 
der Aktivität der Regulatoren (siehe 2.) und der genregulatorischen Netzwerke (3.) 
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werden möglichst vollständige und korrekte Regulator-Target Beziehungen 
benötigt.  
Es konnte gezeigt werden, dass Textmining die zuverlässige Extraktion von 
miRNA-, Gen-und Proteinnamen sowie deren Beziehungen aus Texten 
ermöglicht. Insgesamt konnte mit miRSel die Anzahl der miRNA-Gen 
Assoziationen in Mensch, Maus und Ratte um mindestens das dreifache im 
Vergleich zu state-of-the-art Datenbanken (z.B. TarBase, eine der aktuell 
meistverwendeten Ressourcen für miRNA-Gen Beziehungen) gesteigert werden. 
 

2. Die Vorhersage der Aktivität von Regulatoren auf Basis der verbesserten Target 
Mengen.  
 
Um die Mechanismen der Genregulation zu untersuchen, müssen die 
experimentellen Kontexte bestimmt werden, unter denen die jeweiligen 
Regulatoren aktiv werden. Ein Regulator wird als aktiv vorhergesagt, indem 
mittels statistischer Tests die Expressionswerte seiner Zielgene analysiert werden. 
Dafür wurden sogenannte "gene set enrichment" (GSE) Tests vorgeschlagen. 
Allerdings weiß man vor einem Experiment nicht, welche Gene betroffen sein 
werden. Das Fehlen eines zuverlässigen standard-of-truth hat bisher die 
systematische Auswahl und Bewertung der GSE Tests verhindert. Im Gegensatz 
dazu ist der betroffene Regulator natürlich bekannt, wenn er direkt (z.B. durch 
Knockout, Transfektion oder Überexpression) experimentell beeinflusst wurde. 
Für solche Datensätze wurde hier eine systematische vergleichende Bewertung 
von insgesamt 12 aktuellen GSE-Tests durchgeführt. In unserer Analyze zeigen 
ANOVA und der Wilcoxon-Test die besten Ergebnisse.   
 

3. Die Vorhersage von Regulationskaskaden.  
 
Aus Genexpressionsmessungen und gegebenen Regulator-Target Beziehungen 
(wie z.B. aus der miRSel Datenbank) sollen regulatorische Netzwerke abgeleitet 
werden. Dazu werden GSE Tests angewendet, um TFs und miRNAs zu 
bestimmen, die ihre Aktivität als zelluläre Antwort auf die überexprimierten 
miRNAs ändern. Iterativ können so Regulationsnetzwerke rekonstruiert werden. 
Diese Modelle zeigen, wie miRNAs die Genexpression beeinflussen können: 
entweder direkt oder indirekt über Kaskaden von miRNA-TF, miRNA-Kinase-TF 
sowie TF-TF Beziehungen.  
 
In dieser Arbeit konzentrieren wir uns auf Messungen, die nach Überexpression 
von Krebs-relevanten miRNAs durchgeführt wurden. Überraschenderweise stellt 
sich heraus, dass eine Reihe von verschiedenen Krebs-relevanten miRNAs einen 
gemeinsamen Kern von TFs beeinflussen, die an Prozessen wie Proliferation oder 
Apoptose beteiligt sind.  
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1.  Introduction 

Recent technological advances that led to ‘omics’ revolution have enabled large-scale 
data generation in different areas of biology. Thousands of high-throughput datasets 
are available that contain the expression levels of all genes of an organism under 
various experimental conditions. Expression of each gene is a complex process that 
requires coordination of many factors for maintaining the basic mechanisms of 
development and controlled by two important classes of regulators: microRNAs 
(miRNAs) and transcription factors (TFs) (Nestler et al., 2004; Hobert, 2008). TFs are 
regulatory proteins that bind to promoter regions of target genes to regulate their 
levels of expression (Chen et al., 2007). miRNAs are small (~22-nucleotide) non-
coding RNAs (ncRNAs) that post-transcriptionally regulate the levels of a potentially 
large number of proteins by base-pairing to messenger RNAs (mRNAs) (Brodersen et 

al., 2009). Perfect or near-perfect complementarity to the target RNA promotes 
cleavage and degradation of the RNA, while imperfect base-pairing impairs 
translation of the target mRNA (Orom et al., 2009). Functional studies implicate 
effects of miRNAs on a wide range of cellular and developmental processes such as 
cell cycle control, cell growth, apoptosis, embryo development, stress response, 
metabolism or morphogenesis and in various diseases including cancer (Li et al., 
2010). Several miRNAs were found differentially expressed during brain 
development, neuronal differentiation including neurological syndromes such as 
Schizophrenia, Huntington and Parkinson disease (Kuss and Chen, 2008). 

Since the discovery of the first miRNA, lin-4 in Caenorhabditis elegans (C. 

elegans) (Lee et al., 1993), thousands of miRNAs have been identified in vertebrates, 
flies, worms and plants and even in viruses (Griffiths-Jones et al., 2008). Tens of 
thousands of gene targets have been predicted mostly by the use of automatic 
prediction algorithms (Mazière and Enright, 2007; Kertesz et al., 2007; Wang et al., 
2008). So far, the targets of only a handful of these miRNAs have been 
experimentally validated (Ritchie et al., 2009; Papadopoulos et al., 2009). Recently 
developed databases provide resources of miRNA nomenclature, sequence data, 
genomic localization and functional annotation in human, mouse, rat and other 
organisms (Griffiths-Jones et al., 2008) similar to the established gene-specific 
databases (Maglott et al., 2011; Bruford et al., 2008; Bult et al., 2008). Several web-
based tools integrate predicted miRNA targets e.g. miRNAMap 2.0 (Hsu et al., 2008), 
miRGator (Nam et al., 2008), miRGen (Alexiou et al., 2009). The databases such as 
miR2Disease (Jiang et al., 2009), miRecords (Xiao et al., 2009) and TarBase 
(Papadopoulos et al., 2009) collect target genes of the miRNAs in different 
organisms.  

Several databases of predicted and/or experimentally validated TF regulatory 
interactions have been developed such as TRANSFAC (Wingender et al., 2000; 
Matys et al., 2006). RegulonDB (Gama-Castro et al., 2011) contains experimentally 
validated and manually curated TF-gene regulatory relationships in Escherichia coli 
(E. coli). MacIsaac et al. (2006) examine ChIP-chip data to determine the TF binding 
sites (TFBS) in Saccharomyces cerevisiae (S. cerevisiae). Liu et al. (2008) implement 
a phylogenetic footprinting approach to identify the TFBS in mammalian gene 
promoters. Several transcription profiling studies of miRNA and TF overexpression 
or deletion experiments have been performed to investigate the influence of regulators 
on transcript levels (Hu et al., 2007; Selbach et al., 2008; Baek et al., 2008). Some of 
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which have been incorporated into Many Microbe Microarrays Database (M3D) 
developed by Faith et al. (2008). The M3D database collects Affymetrix microarrays 
for E. coli and S. cerevisiae.  

The expression profiling studies show that regulators such as miRNAs exert a 
widespread impact on the regulation of their target genes and (potentially mediated 
via TFs) on non-target genes (Tu et al., 2009).  TFs have been found enriched among 
miRNA targets in plants (Rhoades et al., 2002) and insects (Enright et al., 2003), 
suggesting that these two classes of regulators could be linked in gene regulatory 
networks (Skipper, 2008). However, the determination of the conditions where given 
regulators become active is difficult as regulators themselves are frequently regulated 
on the protein level (e.g. by phosphorylation) that is not immediately detectable by 
transcriptional profiling. On the other hand, transcriptional effects of regulators are in 
general expected to be small and could easily be obscured by noise in the 
measurements. The detection of active regulators thus requires very sensitive 
approaches that rely on indirect evidence rather than the expression of the regulators 
themselves. 

The identification of miRNAs and TFs activity changes is important to understand 
the regulation of gene expression and dynamic cellular mechanisms (Tu et al., 2009; 
Hu, 2010).  It is challenging to measure the regulators activity (Boorsma et al., 2008). 
It may not be directly observed but can be determined by analyzing the activities of 
genes they regulate (Farh et al., 2005; Hu et al., 2007). Hence, the target genes of a 
given miRNA or TF are considered a gene set. If more genes than expected by chance 
for such a set exhibit significant fold changes, the miRNA/TF is assumed active. For 
the analysis of such gene set, several enrichment tests have been proposed. Sohler et 

al. (2005), Essaghir et al. (2010) and Liu et al. (2010) independently proposed the 
hypergeometric test to detect the active TFs. Analogously, statistical tests such as the 
hypergeometric test were applied to detect expression changes of miRNAs based on 
the expression of their target gene set (Sood et al., 2006;  Arora et al., 2008; Cheng et 

al., 2009; Volinia et al., 2010; Ott et al., 2011).  

1.1 Problem identification  

This thesis aims to improve the understanding of the gene expression regulation 
controlled by two important regulators: miRNAs and TFs. To analyze the regulatory 
mechanisms of gene expression, we need to determine the experimental conditions 
where these regulators become active. For this purpose, we have to choose the 
appropriate methods for the detection of activity of regulators based on indirect 
evidence such as the target gene set. In turn, this requires a collection of regulator 
target gene sets. This section gives a brief introduction to three crucial, mutually 
dependent problems.  

1.1.1 miRNA-target gene associations in databases 

The comprehensive collection of miRNA-gene associations is important for the 
development of miRNA target prediction tools and the analysis of regulatory 
networks. Most miRNA-target associations contained in databases are derived from 
the large scale experiments where a detailed experimental validation of individual 
pairs has not been performed. For instance, TarBase and miRecords report 1031 and 
776 miRNA-target pairs in human, respectively. Out of these, 769 and 447 have been 
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obtained from the supplementary material of just two publications (Lim et al., 2005; 
Selbach et al., 2008) and (Lim et al., 2005; Calin et al., 2008). miRecords additionally 
collects 158 rat miRNA-target gene pairs, 140 out of these pairs are extracted from a 
single publication (Jeyaseelan et al., 2008). A more detailed analysis has been 
performed by Ritchie et al., (2009). They found that only 48 miRNA-target pairs of 
miRecords are sufficiently validated by experiments and, as a consequence, they 
conclude that benchmarks for the evaluation of miRNA target prediction algorithms 
cannot be constructed from the available databases.  

1.1.2 Assessment of gene set enrichment scores   

The interpretation of gene expression studies reporting mRNA levels for a high 
number of genes or other expressed sequences is difficult. Instead of individual genes, 
it has been proposed to analyze gene sets corresponding to biological processes. The 
Gene Ontology (GO, Harris et al., 2004) is an example source for biological process 
definitions and process associated gene sets. The analysis of expression data in the 
context of such gene sets can be performed by many different enrichment or over-
representation tests (see section 2.2). These tests aim to detect gene sets exhibiting 
significant levels of differential expression. However, it is difficult to decide a priori 
which biological processes will be affected in a given gene expression experiment. 
This lack of a dependable standard of truth has prevented an objective selection and 
evaluation of enrichment tests on real data. None of the studies provide a 
comprehensive comparative analysis of the tests evaluated against real data. 

1.1.3 Analysis of miRNA regulated TFs 

Several expression datasets of miRNA overexpression experiments are available to 
analyze the regulatory mechanisms downstream of miRNA effects. The miRNA 
induced regulatory effects can be propagated via TFs. Sohler et al. (2005), Essaghir et 

al. (2010) and Liu et al. (2010) applied the hypergeometric test to determine the 
activity changes of TFs. According to our analysis, the hypergeometric test is not 
sensitive enough to pick up the small expression changes caused by miRNAs. To 
assemble regulatory cascades from experiments where cancer related miRNAs have 
been over-expressed, Tu et al. (2009) suggest linear models to detect miRNA 
regulated TFs. They extracted two layered networks where TFs mediate miRNA 
initiated regulatory effects. The time complexity of their approach substantially 
limited the set of detected TFs. On average, only two active TFs were identified per 
miRNA overexpression experiment. Thus to understand miRNA-mediated gene 
regulation, a more detailed gene regulatory network analysis is needed.  

1.2 Outline of the thesis 

In this thesis we focus on several problems to enhance our understanding of the 
regulation of gene expression as described above. We address these problems with 
new methods including new databases and appropriate evaluations.  

In the Background chapter, we present a brief description and discussion of 
previously developed methods. We focus on various approaches for predicting or 
experimentally validating the target genes of miRNAs and their performance reviews 
in the literature (section 2.1). We introduce gene set enrichment (GSE) tests originally 
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proposed for analyzing gene sets associated with biological processes (section 2.2). 
Furthermore, we provide an overview of biomedical named entity recognition (NER) 
discussing miRNA, gene and protein naming convention, approaches to identify 
biomedical named entities in texts, Aho-Corasick string matching algorithm (Aho and 
Corasick, 1975) and quality assessment tests (section 2.3).  

In the Databases chapter, we provide an introduction to state-of-the-art publically 
available databases related to the field. The databases include miRNAs (section 3.1), 
miRNA-target gene interactions (section 3.2), TF-target gene relations (section 3.3), 
gene/protein nomenclature (section 3.4), protein-protein interactions (section 3.5), 
taxonomy (section 3.6), predefined gene sets and pathways (section 3.7) including 
gene expression (section 3.8) and scientific literature repositories (section 3.9). 

In the Methods chapter, we describe the new methods together with new databases to 
address the challenge of improving the understanding of the gene regulation (section 
1.1). Consequently, the entire chapter is explained via three mutually dependent 
subsections. 

First, we explain and discuss the implementation of a new miRNA-target gene 
association database, namely, miRSel that combines the text mining results with 
existing databases and computational predictions (Naeem et al., 2010, section 4.1). 
We focus on a dictionary-based approach for biomedical NER with application to the 
detection of miRNA-gene associations including miRNA-target relations in texts.  

Second, we discuss the first comprehensive comparison and rigorous assessment of 
12 statistical enrichment tests for analyzing gene sets (Naeem et al., 2011, section 
4.2). We applied state-of-the-art statistical methods such as ANOVA, Wilcoxon, 
Kolmogorov-Smirnov as well as the hypergeometric test to decide whether or not to 
reject the null hypothesis, i.e. that expression changes in regulator target sets might be 
due to random fluctuations in the data. Before getting into the details of enrichment 
tests we will explain how the standard-of-truth is derived, and how the sign 
annotations are treated to assess the up and down regulation of gene sets and 
consistency of each test statistic.    

Finally, we discuss the method MIRTFnet to determine the experimental 
conditions where certain regulators like miRNAs become active and how they 
regulate the transcriptome via cascades of other miRNAs, TFs or kinases (Naeem et 

al., 2011, section 4.3).   

In the Results chapter, we provide the results for each developed method/database 
accordingly.  

Initially, we explain the results of our developed database miRSel. Comparison to 
previously developed state-of-the-art resources for miRNA-gene relationships e.g. 
TarBase, miRSel increased the number of miRNA-gene associations by at least three-
fold (section 5.1).  

Then, we discuss the results of 12 different tests to detect the activity changes of 
miRNAs and TFs based on our improved set of regulator target genes (section 5.2). 
We focused on comparing the performance and consistency of each statistical test 
across different species datasets including E. coli, S. cerevisiae and human. 
Subsequently, we discussed the ranking of enrichment tests based on our findings. 
Additionally, we elaborated that combining evaluated tests into a consensus is a 
particularly robust choice for the analysis of novel scenarios.  
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Finally, we describe the results of our developed method, MIRTFnet that explains 
the observed expression changes via models rooted at perturbed miRNAs. We 
discussed a range of different miRNAs that induce activity changes in a common core 
of TFs involved in cancer related processes (section 5.3). 

In the Conclusion and discussion chapter, we discuss the results, draw some 
conclusions and hint to future direction of this work. 
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2.  Background 

This section gives a brief introduction of the existing methods and techniques that are 
related to the field.  

1) We describe a number of different approaches to predict and validate the miRNA-
target gene interactions (section 2.1).  

2) We discuss a range of enrichment methods originally proposed to determine the 
differential expression of gene sets representing biological processes (section 2.2).  

3) We discuss the methods and approaches to named entity recognition (NER) with 
application to the detection of biomedical entities of interest (section 2.3). 

2.1 Computational methods for prediction of miRNA-target gene relations 

Since the detection of the first miRNA (Lee et al., 1993), many more miRNAs have 
been identified in animals, plants and even in viruses (Griffiths-Jones et al., 2008). 
These pre-miRNAs are known to be processed into mature miRNAs and integrated 
into the RNA-induced silencing complex (RISC) to regulate the expression of target 
messenger RNA (mRNA) genes (Bartel, 2009). Several studies hae been conducted to 
examine the miRNA targeting and biogenesis mechanisms (Bartel, 2009, Figure 1). 
The targeting mechanisms can be divided into several classes based on the level of 
complementarity to the target mRNA such as 5′-dominant canonical and 5′-dominant 
seed (2-8 nucleotides at the 5′ site of a miRNA) (Mazière and Enright, 2007). 

Stark et al., (2003) developed the first computational miRNA target prediction 
program focused on Drosophila melanogaster. Since then, several target prediction 
programs have been proposed such as miRanda (Enright et al., 2003), TargetScan 
(Lewis et al., 2003), RNAhybrid (Rehmsmeier et al., 2004), TargetScanS (Lewis et al., 
2005), PicTar (krek et al., 2005), TargetBoost (Saetrom et al. 2005), MicroTar 
(Thadani and Tammi, 2006), RNA22 (Miranda et al., 2006), NBmiRTar (Yousef et 

al., 2007) and PITA (Kertesz et al., 2007) and DIANA-microT (Maragkakis et al., 
2009). These methods predict the target genes of a miRNA based on important 
features of miRNA-mRNA duplexes such as seed region complementarity and 
conservation, and thermodynamic stability (binding free energy) using machine-
learning based approaches (Mazière and Enright, 2007; Bartel, 2009; Dai and Zhou, 
2010) (Table 1).  

2.1.1 Seed-complementarity-based methods  

The miRanda algorithm proposed by Enright et al. (2003) and improved by John et 

al. (2004), implements a dynamic programming method to identify the miRNA 
binding sites in the complementarity regions (3′ UTRs) of the target genes. 
TargetScan implements a strict criteria that requires a perfect base pairing between the 
seed region of a miRNA and the 3′-UTR of its target mRNA (Lewis et al., 2003). 
TargetScanS is a customized version of the TargetScan and reduces the false positive 
predictions by restricting the miRNA-mRNA pairing to a 6-nucleotide seed region 
plus an additional adenosine anchor match (Lewis et al., 2005; Mazière and Enright, 
2007). PicTar combines the features such as seed match, RNA duplex free energy and 
evolutionary conservation together with maximum likelihood fit approach to score 
each miRNA-target gene interaction (krek et al., 2005). Using PicTar, Grün et al. 
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(2005) and Lall et al. (2006) score and rank miRNA targets in several Drosophila and 
nematode species. Robins et al. (2005) and Miranda et al. (2006) integrate mRNA 
secondary structure features and pattern based approach to predict the target genes of 
a specific miRNA. HuMiTar combines the seed and outside-seed miRNA-mRNA 
pairing scores to predict the common targets of miRNAs (Ruan et al., 2008). 
 
 
 
 
 

 
 

Figure 1: miRNA biogenesis in animals. In the cell nucleus, miRNAs are usually 
transcribed by the RNA polymerase II (Pol II) as primary transcripts (called as pri-
miRNAs) with a cap and polyadenylated with multiple adenosines (a poly (A) tail). 
These pri-miRNAs are then processed into 70-nucleotide stem-loop structure (called 
as pre-miRNAs) via protein complex including nuclease Drosha and RNA binding 
protein Pasha. These pre-miRNA hairpins are then processed into mature miRNAs in 
the cytoplasm by interaction with the RNase III enzyme Dicer, which also 
commences the formation of RNA-induced silencing complex (RISC, also known as a 
miRNA ribonucleoprotein (miRNP) complex). These mature miRNAs together with 
miRNP complex responsible for the gene silencing activities. Figure taken from Dai 

and Zhou (2010). 
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2.1.2 Thermodynamic-based methods 

Kiriakidou et al. (2004) developed Diana-microT that uses computational and 
experimental approaches combine with dynamic programming to calculate the 
miRNA-mRNA binding free energy. Rehmsmeier et al. (2004) proposed RNAhybrid 
that extends the RNA secondary structure prediction algorithm (Zuker and Stiegler, 
1981) to two sequences. RNAhybrid can identify binding sites in the 3′-UTR of the 
target mRNA that can form thermodynamically stable duplexes with a miRNA 
(Mazière and Enright, 2007). A number of experimental studies suggest that target 
site accessibility is an important feature for repression (Robins et al., 2005; Zhao et 

al., 2005). Kertesz et al. (2007) developed PITA that uses the accessibility of the 
target sites.  

2.1.3 Machine learning-based methods 

Yousef et al. (2007) proposed NBmiRTar that uses a machine learning-based approach 
(naïve Bayes classifier) for predicting the miRNA targets. They combine multiple 
features extracted from the validated target gene sequences and miRNA-mRNA 
duplexes (Yousef et al., 2007). Saetrom et al. (2005) developed a machine-learning-
based algorithm TargetBoost that uses sequence information and binding site 
characteristics for the prediction of miRNA-target genes.  

2.1.4 Motif-mining and gene expression-based methods 

Several motif mining approaches have been proposed by searching the 
overrepresented mRNA sequence motifs in miRNA seed regions to predict the target 
genes (Mazière and Enright, 2007; Xie et al., 2005). Giraldez et al. (2006) analyze the 
motifs in the 3′-UTR of the differentially expressed genes and conclude that motifs of 
6-nucleotide bases could explain the majority of the validated targets.  

Chi et al. (2009) use Argonaute (Ago) HITS-CLIP (high-throughput sequencing of 
RNAs isolated by cross linking immunoprecipitation) to determine the Ago-miRNA-
mRNA interactions in the mouse. Zhang et al. (2007) identified over 3,000 mRNA 
genes by immunoprecipitation (IP) of the RISC components including AIN-1 and 
AIN-2 proteins in C. elegans. Hammell et al. (2008) developed miRWIP, a miRNA-
mRNA target prediction tool based on these AIN-IP dataset features in C. elegans.  

Huang et al. (2007) developed Bayesian learning analysis algorithm, GenMiR++ 
that uses the paired miRNA and mRNA expression profiles including sequence 
complementarity features to identify functional miRNA-mRNA pairs.  
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Method Type of method 

or criteria 

Web site References 

Stark et al. Complementarity http://www.russell.embl.de/miRNAs Stark et al., 2003 

miRanda Complementarity http://www.microrna.org Enright et al., 

2003, John et al., 

2004 
   

miRanda- 

miRBase 

Complementarity http://microrna.sanger.ac.uk/ Griffiths-Jones et 

al., 2006 

TargetScan Complementarity http://www.targetscan.org/ Lewis et al., 2003 

TargetScanS Complementarity http://www.targetscan.org/ Lewis et al., 2005 

DIANA microT Thermodynamics http://diana.pcbi.upenn.edu/ Kiriakidou et al., 

2004 

PicTar  HMM  http://pictar.bio.nyu.edu Grün et al., 2005 

RNAHybrid Thermodynamics http://bibiserv.techfak.uni-
bielefeld.de/rnahybrid/ 

Rehmsmeier et al., 

2004 

RNA22 Pattern discovery  http://cbcsrv.watson.ibm.com/rna22.html  

Micro 

Inspector 

 http://mirna.imbb.forth.gr/microinspector/ Rusinov et al., 2005 

Ref. 27  http://tavazoielab.princeton.edu/mirnas Chan et al., 2005 

HuMiTar Complementarity  Ruan et al., 2008 

MicroTar  Complementarity http://tiger.dbs.nus.edu.sg/microtar/ Thadani and 

Tammi, 2006 

Diana-microT Thermodynamics http://diana.cslab.ece.ntua.gr/microT/ Kiriakidou et al., 

2004 

RNAhybrid  Thermodynamics http://bibiserv.techfak.uni-
bielefeld.de/rnahybrid/ 

Rehmsmeier et al., 
2004 

PITA Target-site 
accessibility  

http://genie.weizmann.ac.il/pubs/mir07/ind
ex.html 

Kertesz et al., 2007 

NBmiRTar Machine learning  http://wotan.wistar.upenn.edu/NBmiRTar/ Yousef et al., 2007 

TargetBoost Machine learning https://demo1.interagon.com/demo Saetrom et al., 

2005 

Table 1: List of miRNA target prediction programs. Stark et al. (2003) developed 
the first miRNA target prediction program. Since then, several computational methods 
for the miRNA-target prediction have been developed. These methods predict the 
target genes of a miRNA based on important features of miRNA-mRNA duplexes 
such as seed region complementarity and conservation, target-site accessibility, and 
thermodynamic stability using machine-learning based approaches. 

2.1.5 Experimental validation of miRNA-target gene interactions 

The experimental methods such as luciferase reporter assays, qRT-PCR and western 
blots are used to confirm a miRNA-mRNA target interaction (Hsu et al., 2011). The 
Western blots and qRT-PCR methods can detect the miRNA downstream effect at the 
protein level and the mRNA level (Hsu et al., 2011; Kuhn et al., 2008). In contrast, 
large-scale microarray experiments including stable isotope labelling with amino 
acids in culture (SILAC) or pulsed SILAC (pSILAC) have been performed to study 
the genome-wide changes in the transcriptome or proteome given the perturbation 
(e.g., overexpression) of a miRNA (Lim et al., 2005; Baek et al., 2008; Selbach et al., 

2008; Hsu et al., 2011).  

Other high-throughput methods like degradome sequencing is also useful to 
examine the miRNA cleavage target sites (Addo-Quaye et al., 2008; German et al., 
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2008). Recent progress in next generation RNA-sequencing together with gene 
expression studies can be used to elucidate miRNA-target associations. For a detailed 
review see Thomson et al. (2011). 

2.1.6 Performance of prediction methods  

Over the past few years several computational programs have been developed for the 
prediction of miRNA-target genes. Rajewsky et al. (2006) and Ruan et al. (2008) 
investigate the performance of several prediction programs and conclude that methods 
such as PicTar and TargetScan show high accuracy and sensitivity in comparison to 
miRanda and RNAhybrid. Huang et al. (2007) rank the miRNA target prediction 
programs based on their performance to predict putative target genes. Selbach et al. 
(2008) show that methods based on evolutionary conservation of seed region achieves 
high precision levels. Alexiou et al. (2009) show that the prediction programs such as 
TargetScan and PicTar achieve precision of ~50% and sensitivities from 6 to 12% 
(Dai and Zhous, 2010; Min and Yoon, 2010). For a detailed review see Sethupathy et 

al. (2006), Mazière and Enright (2007), Ritchie et al. (2009) and Min and Yoon, 
(2010). 

2.2 Gene set enrichment analysis 

A microarray experiment typically results in a long list of differentially expressed 
genes (DEGs) that is the starting point to gain insights into biological mechanisms 
(Gatti et al., 2010). Several statistical methods for the analysis of sets of DEGs have 
been proposed (reviewed by Goeman et al., 2007, Rivals et al., 2007, Nam and kim, 
2008, Ackermann and Strimmer, 2009). Most methods test for the over-representation 
of predefined sets of genes (e.g., Gene ontology (GO), KEGG pathways) in the list of 
DEGs (Hosack et al., 2003; Zeeberg et al., 2003; Zhang et al., 2004; Martin et al., 
2004; Al-Shahrour et al., 2004, Beissbarth et al., 2004; Lee et al., 2005; Pehkonen et 

al., 2005; Khatri and Drăghici, 2005; Yi et al., 2006).  

Pavlidis et al. (2004) use geometric mean to calculate the significance of the genes 
in the gene set. Gene Set Enrichment (GSE) analysis, proposed by Mootha et al., 
(2003) and improved by Subramanian et al., (2005) uses an enrichment score based 
on a Kolmogorov-Smirnov test statistic. GSEA has been extended (Barry et al., 2005; 
Huang et al., 2009) to cover multiclass, continuous and phenotypes, and more test 
statistics such as Wilcoxon and hypergeometric.  

Levine et al. (2006), Efron and Tibshirani, (2006), Nam and Kim, (2008) as well as 
Ackermann and Strimmer, (2009) rigorously and thoroughly evaluated the 
performance of different tests on simulated data. Only limited supporting evidence on 
real data was provided as this required manually curated gold standard. Recently, 
GSE tests have been applied to gene sets representing miRNA or TF target genes.  

2.2.1 Identification of miRNA/TF activity changes  

Several authors suggest that the miRNA/TF activity changes can be inferred from the 
expression levels of downstream target genes. Farh et al. (2005) show that the 
miRNA activity in specific tissue can be detected by analyzing the mRNA expression 
measurements it regulates. They applied the Kolmogrov-Simirnov test to determine 
whether the miRNA target genes were expressed at lower levels than controls (Volinia 
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et al., 2010). Sood et al. (2006) found that the tissue-specific human miRNA has a 
widespread effect on the expression levels of mRNAs. They compared the expression 
changes between the miRNA predicted target gene set and background gene set in the 
same tissue applying the Wilcoxon test. 

Similar approaches to explore the association between miRNAs and their target 
gene set were also been employed by Arora et al. (2008), Cheng et al. (2008) and 
Volinia et al. (2010). They combined the miRNA target gene predictions with 
expression profiles to determine the miRNA activity. Ott et al. (2011) analyze the 
miR-29 family miRNA impact on the expression levels of the downstream genes in 
postnatal aortic development. They show that 20 out of 30 miRNAs found to be 
significant applying the Wilcoxon test were also found to be down-regulated 
experimentally (Ott et al., 2011) . Recently, Sohler et al., (2005), Liu et al., (2010) 
and Essaghir et al., (2010) identified the activity of TFs by analyzing whether the TF 
target gene sets are enriched among a list of DEGs using a hypergeometric test.  

2.2.2 Statistical hypothesis testing methods 

The following state-of-the-art statistical methods have been proposed for 
overrepresentation analysis of gene sets derived as regulator (miRNA and TF) target 
genes.  These tests are applied to calculate the significance of a given regulator as p-
value of the observed overrepresentation of its target set among the differentially 
expressed genes. 

Wilcoxon rank sum test 

The Wilcoxon nonparametric rank-sum (WR) method (Sood et al., 2006; Gsponer et 

al., 2008; Ott et al., 2011) is applied to test whether the regulator targets (x1, x2 …xm) 
exhibit significant rank differences in comparison to other (non-targets, y1, y2…yn) 
genes. For WR test, the ranks can be derived by sorting the genes based on either their 
absolute or signed log fold changes (Figure 6). If the rank distributions of targets and 
non-targets are significantly different the null hypothesis will be rejected. Then, 
targets of the tested regulator exhibit greater log fold changes than non-targets and the 
regulator is referred to as active according to the test. The results of WR test statistic 
are p-values as a measure of significance of the observed change in means (see Mann 

and Whitney, (1947) and Lehmann (1975) for an overview).  
 
The WR test statistics is calculated as:  

� Merge the data and rank all observations (smallest to largest) from 1 to m+n. 

� Calculate the test statistic (W), essentially the sum of ranks from samples m.  

� Assume that the populations (i.e., m and n) have the same continuous distribution, 

then statistic (� � ���
�   ~ N(0,1) - normal approximation) has a mean and standard 

deviation given by: 

 

µ = �	� 
 � 
 1 2⁄  
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σ =���	�������  

Kolmogorov-Smirnov test  

Whether or not the distributions of (miRNAs and TFs) target and non-target genes are 
shifted with respect to each other can also be tested by another non-parametric test, 
the Kolmogorov-Smirnov (KS) test. The two sample KS test determines whether the 
two data samples (i.e., regulator targets (x1, x2 …xm) and non-target (y1, y2…yn)) come 
from the same distribution. In this case, the KS statistic is calculated as: 
 
 ��,� � ����|��,�	� � ��,�	�| 
 
 
Where ��,� and ��,� are the empirical cumulative distribution functions (cdfs) of the 
non-targets and regulator-target sample, respectively and supx is the supremum of the 
set of distances (see Siegel, 1956, Boes, 1974, DeGroot et al., 1991 and Nikiforov, 
1994 for details). The null hypothesis is rejected at given threshold level α if 
 
 

� ��� 
���,�  !α 

  
 
Both WR and KS tests do not require the selection of thresholds. Both tests have not 
yet been applied to TF activity detection, only to predict transfecting miRNAs (Sood 

et al., 2006; Tu et al., 2009; Volinia et al., 2010; Ott et al., 2011). 

Analysis of variance (ANOVA) test 

The Analysis of variance (ANOVA) is applied to test the heterogeneity of means by 
analysis of set variances under the assumption that the two sampled sets (such as 
regulator-target and non-target genes) are normally distributed. The results for 
ANOVA test are p-values that are calculated using the F-statistic/distribution (see 
Hoang, 2006 and Miller, 1997 for details). For two samples ANOVA is equivalent to 
the t-test.   

Hypergeometric test 

For a given regulator the p-value is computed according to the hypergeometric (HG) 
formula: 
 
  

� � value � '�� (')��*�� (')*(  
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Where N is the number of DEGs in a given chip measurement, m is the number of 
DEGs filtered based on a given regulated gene threshold value, k is the number of 
given regulator-target genes and x is the number of regulator targets among the 
filtered DEGs (m). 

The cumulative distribution function (cdf) refers to a sum of probabilities 
associated to HG test. To compute a cdf we many need to add one or more 
probabilities: 
 

� � value 	less than or equal to � �2'�3 (')��*�3 (')*(
�

345
 

� � value 	greater than  � � 1 �2'�3 (')��*�3 (')*(
�

345
 

 

Bootstrap sampling 

The Bootstrap sampling is used to calculate the statistic for two samples (such as 
regulator-target and non-target genes) drawn in some way (randomly) from the 
original data. The results of Bootstrap test statistic are p-values as a measure of 
significance to the difference in means of the two samples using for instance, two-
sample ANOVA (see Efron and Tibshirani, 1993 for details). 
 
Average Fold Change 

 
The Average Fold change (FC-score) of a regulator activity is defined as the 
difference of the average mean expression levels between its targets (Tavg) and non-
targets (nTavg). A positive FC score indicates that the target genes of a regulator tend 
to be expressed at higher levels than non-targets genes. The higher the FC score, the 
stronger the activation effect of a regulator on its targets (see Cheng et al., 2009 for a 
similar approach). 
 FC �  9:;< - �9:;< 

 
 

Average gene rank  

 
The average gene rank (FCR-score) of a regulator activity is defined as the difference 
of the average rank between its targets (Travg) and non-targets (nTravg). The genes 
ranks were derived by sorting them based on their absolute or signed fold changes 
(Figure 6) (see Cheng et al., 2009 for a similar approach). 

 

FCR �  9?:;< - �9?:;<   � ∑ ABCBDEA  - ∑ AFFBDE�A  
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Where t and nt represent the number of a given regulator targets and non-targets. And 
ti and tj represent the ranks of a given regulator target (ti ) and non-target (ntj).   

2.3 Named entity recognition system 

Recent technological advances have contributed to the large volume of scientific 
literature discussing the role of genes and proteins and interactions between them. By 
automatically identifying the names of biomedical entities from texts and map these to 
database identifiers, it becomes possible to discover new associations among those 
entities of interest (Fundel et al., 2005). For a detailed review see Cohen and Hersh, 
2005.  

Named entity recognition (NER) refers to the task of detecting named entities (NE) 
in the literature (Ananiadou et al., 2006). The detection of biomedical entities such as 
gene, protein and miRNA names in the texts is not straightforward, despite the 
availability of miRNA, gene or protein nomenclature published in several databases 
such as miRBase, HUGO, Entrez Gene (see subsequent database section). These 
databases do not address underlying characteristic issues of the entities in NER such 
as ambiguities, aliases and variations of gene, protein and miRNA names (Seringhaus 

et al., 2008; Griffiths-Jones, 2008). However, the biomedical entity names show many 
common features such as brackets ([], {}, ()), upper case, dash, comma, hyphen, slash 
and digits in the scientific literature and databases as well (Ananiadou et al., 2006; 
Griffiths-Jones, 2008).  

This section gives a brief introduction into miRNA, gene and protein naming 
conventions. It then describes the approaches to NER system followed by a string 
matching algorithm that can be used to detect the biomedical names in the texts 
including performance evaluation measures. 

2.3.1 miRNA, gene and protein naming conventions 

The nomenclature of miRNAs and especially proteins as well as genes has evolved 
over time (Fundel et al., 2006; Griffiths-Jones, 2008) and various naming conventions 
have been and are used in databases and in the scientific literature. For genes and 
proteins but also miRNAs typically several synonyms are in use. Unfortunately, 
synonyms often overlap with other synonyms (of other objects) or with names and 
abbreviations for diseases, species, experimental techniques, and even general English 
words (Fundel et al., 2006). For instance, for the gene ADCY10 (Entrez Gene 
identifier 55811) more than 10 additional synonyms are known not taking into 
account orthographical variations, such as usage of hyphens and slashes (Fundel et 
al., 2006; Jensen et al., 2006; Erhardt et al., 2006; Ananiadou et al., 2006). In 
comparison, miRNAs naming conventions have been described early and appear to be 
quite simple as miRNA names are based on sequential numerical identifiers (e.g., 
miR-1, miR-2 ... miR-101, etc.) and a prefixed species identifier (e.g. hsa-miR-100) 
(Ambros et al., 2003; Griffiths-Jones, 2004; Griffiths-Jones et al., 2008).  
 
The following conventions for miRNA naming are used: 

 
(1) The predicted stem-loop portion of the primary transcript is named by a 3 or 4 

letter species prefix and a numerical suffix (e.g. hsa-mir-100 in Homo sapiens). 
Whereas, the name of the excised ~22 nucleotide sequence (mature miRNA) 
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contains the same mir, prefix and suffix as stem-loop but with capital miR (e.g. 
hsa-miR-100). 
 

(2) Orthologous miRNA sequences in different species are assigned the same names 
(e.g. mmu-miR-100 in Mus musculus, rno-miR-100 in Rattus norvegicus).  

(3) Mature miRNA sequences can be expressed from each arm of the hairpin precursor 
(Figure 1). They are distinguished by additional suffixes (e.g. hsa-miR-1224-5p 
(5′arm) and hsa-miR-1224-3p (3′arm)). Previously, they also have been named for 
instance miR-142-sense (s) (5′arm) and miR-142-anti-sense (as) (3′arm). In some 
cases, the asterisk has been used to denote the less predominant form (e.g. hsa-
miR-100*).   

(4) Distinct hairpin loci in a given organism that give rise to identical mature miRNA 
sequences are assigned names with additional numeric suffixes (e.g. hsa-mir-101-1 
and hsa-mir-101-2 indicating two genomic loci of the miRNA hsa-miR-101). 

(5) Related hairpin loci that give rise to related mature miRNA sequences with only 
one or two base changes are assigned letter suffixes of the form (e.g. hsa-mir-10a 
and hsa-mir-10b are similar sequences). 

 

Unfortunately, these conventions are not strictly followed in scientific publications. If 
complete names are used, e.g. hsa-miR-1224-5p, the author likely means the 5′arm 
predominant mature form of human miRNA-1224. On the other hand, an incomplete 
form e.g. miR-1224 could mean precursor or mature microRNAs, the 3′  
or the 5′ variant or an unspecified variant of microRNA 1224 in some species  
depending on the context. 

In addition, there are many naming problems: For some organisms fairly different 
naming conventions are used (Griffiths-Jones et al., 2004; Griffiths-Jones et al., 
2008). For instance, in plants, miRNA names are of the form MIR472 (in Arabidopsis 
thaliana) and only letter suffixes are used to represent distinct hairpin loci expressing 
related mature miRNA sequences (Griffiths-Jones et al., 2008). Viral miRNAs names 
are based on the gene locus from which the miRNAs derive (e.g. ebv-mir-BARTT8 is 
a miRNA from the BART locus of the Epstein-Barr virus (ebv)) (Griffiths-Jones et 

al., 2008). Capitalisation of names should not always be relied on to confer 
information, such as mir and miR distinguishing between precursor and mature forms 
(Griffiths-Jones et al., 2004). lin-4 and let-7 miRNAs are the apparent exceptions to 
the generic scheme (Griffiths-Jones et al., 2008).  

2.3.2 Approaches to named entity recognition 

Several approaches to NER have been proposed that can be classified into four main 
categories.  
 
(1) The dictionary-based approach matches database or dictionary names in the 

literature. The extraction performance depends on the comprehensiveness of the 
entries in the dictionary. Hanisch et al. (2003) construct the gene and protein 
names dictionary by merging the HUGO Gene Nomenclature Committee (HGNC) 
(Bruford et al., 2008) and OMIM (Amberger et al., 2010) databases. Tsuruoka 
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and Tsujii. (2004) curate the protein dictionary by expanding it with 
morphological variations of protein names.  
 

(2) The rule-based approach constructs rules either manually or automatically to 
match against entities of interest in the literature. Fukuda et al. (1998) identify the 
protein names from texts by utilizing manually curated rules and patterns.   
 

(3) The machine-learning based approach is mainly based on developing statistical 
models for the identification of biomedical entity names. Collier et al. (2000) 
implement the supervised learning method with hidden Markov Model (HMM) to 
extract biomedical domain terminologies from texts. Zhou et al. (2004) combine 
the HMM with various features such as morphological patterns, parts-of-speech, 
special verb trigger and name aliases to recognize biomedical entity names from 
the scientific literature.    

 
(4) The NER approaches can also be combined into a hybrid approach to deal with 

different aspects of NER and have their own advantages and disadvantages. 
Tanabe and Wilbur (2002) integrate the statistical and rule-based strategies to 
extract gene and protein names. Mika and Rost (2004) combine the dictionary and 
rule based approaches for the recognition of protein names in texts. 

 
For more detail and progress in gene and protein name detection using these 
approaches, refer to Ananiadou and Mcnaught (2005).    

2.3.3 String matching algorithm 

Aho-Corasick 

The Aho-Corasick is an extension of the Knuth-Morris-Pratt algorithm developed by 
Aho and Corasick, 1975. It is an exact string matching algorithm that locates the 
occurrences of any pattern of a set p1, p2…pk within an input text t1, t2…tm of size m. It 
uses the string-matching automaton called the Aho-Corasick automaton to build tree-
like deterministic finite automata (DFA) from the set of strings (e.g., dictionary 
keywords) and then scans the input texts ti for all occurrences of the all set of patterns 
pj (Navarro and Raffinot, 2002). This allows the algorithm to process the input text 
string in a single pass and perform multiple pattern searches across text as well 
(Navarro and Raffinot, 2002). As a result, the complexity of the algorithm is linearly 
proportional to the pattern plus searched text size. An important advantage of the 
Aho-Corasick algorithm is that once the DFA has been constructed it can be used to 
find occurrences of any of a finite number of keywords in an arbitrary text string 
without having to reconstruct it (Aho and Corasick, 1975). 

2.4 Performance assessment 

� Precision: In the field of biomedical NER system, precision is defined as the 
fraction of retrieved entities that are relevant.  

 

�GHIJ�JK� � L�L� 
 �� 
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� Recall: It is defined as proportion of the entities that are relevant to the system 
that are successfully retrieved.  
 

GHIMNN � L�L� 
 �� 

 
Where tp is the number of true positive named entities (NEs) that the NER system 
has identified correctly and fn is the number of false negative NEs which were not 
tagged as positive instances but should have been. The fp is the number of false 
positive NEs that the system has incorrectly identified.  

 
� F-measure: It is defined as a harmonic mean of the precision (or sensitivity) and 

recall (or specificity): 
 

O ��HM��GH � �GHIJ�JK� P GHIMNN�GHIJ�JK� 
 GHIMNN 
 
 
� Area under the receiver-operating characteristic: The area under the ROC 

curve (AUROC, also denoted as AUC) is a summary measure that summarizes the 
tradeoff between true positive and false positive rate (Prill et al., 2010). It is equal 
to the probability that a classifier will rank a positive example higher than a 
negative one (Fawcett, 2006). An AUC score of 1 represents an optimal classifier 
(i.e., perfect ranker) while AUC of 0.5 represents a random classifier (Fawcett, 
2006), respectively.  
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3.  Databases 

Several specialized databases have been developed in the past few years which aim to 
collect comprehensive information on microRNAs (miRNAs), transcription factors 
(TFs), genes or proteins, taxonomy, protein-protein interactions (PPIs), miRNA/TF-
gene interactions and gene expression repositories. In this section, we briefly explain 
these databases.  

3.1 miRNA gene database 

The miRBase serves as a centralized resource for the miRNA sequences and 
annotations (Kozomara and Griffiths-Jones, 2011). It contains over 16,000 mature 
miRNAs and 15,000 miRNA gene loci in different species. The main objective is to 
maintain a consistent naming scheme by which a unique name can be assigned to each 
miRNA (Kozomara and Griffiths-Jones, 2011; Ambros et al., 2003). A web interface 
has been provided to submit a newly discovered miRNA sequence for naming in over 
140 species. As a proof-of-concept for miRNA annotation the database has been 
integrated with RNA deep-sequencing results (Kozomara and Griffiths-Jones, 2011). 
miRBase is becoming an important tool for the miRNA information. From its 
inception, the number of miRNA sequences in the database has risen significantly 
(Figure 2).      
 

 

 

Figure 2: Growth of the miRBase miRNA sequences. The number of miRNA 
sequences (black) and the number of miRNA-related scientific articles in PubMed 
(grey). Figure taken from Kozomara and Griffiths-Jones (2011). 

3.2 miRNA-gene regulatory interactions  

In spite of the progress in miRNA target prediction programs, the need for a 
collection of experimentally validated miRNA-target gene pairs led to the 
development of many databases (Table 4).  

TarBase is the first resource to provide manually curated miRNA-target gene 
interactions in different animal and plant species (Sethupathy et al., 2006; 
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Papadopoulos et al., 2009). It documents over 1,300 miRNA-gene interactions 
extracted from over 200 scientific articles (Table 2). For each interaction, a brief 
description of validation experiment has been provided. The database is linked to 
other resources such as SwissProt (Wu et al., 2006), HUGO (Bruford et al., 2008), 
UCSC (Mangan et al., 2008) and Ensembl (Flicek et al., 2010) to extend miRNAs 
and their target gene information.  

 
Organism   Number  

of papers   

Number 

 of entries   

Microarray data  pSILAC data 

Homo sapiens  110 285 328 474 
Mus musculus  28 105 13 - 
D. melanogaster  23 77 - - 
C. elegans  18 14 - - 
Plants  21 30 - - 
Danio rerio  1 1 - - 
Rat  2 2 - - 
Total  203 514 341 474 

Table 2: List of all TarBase 5.0 entries. TarBase contains 1,333 entries describing 
regulatory interactions between miRNAs and their target RNA genes in different 
species extracted from over 200 scientific articles. Table taken from the study 
conducted by Papadopoulos et al. (2009).   

Xiao et al. (2009) developed miRecords database that contains manually curated 
miRNA target gene interactions in different animal species from the scientific 
literature. They collected over 1,100 miRNA-target pairs (Table 3) and documented a 
brief description of experimental conditions that are used to validate those 
interactions. Additionally, the database has been integrated with 11 target predicted 
programs to provide a comprehensive list of target genes for a miRNA. Jiang et al. 
(2009) developed miR2Disease database that contains several human disease related 
miRNA-target genes pairs derived manually by surveying the scientific literature. Hsu 

et al. (2011) developed miRTarBase, a miRNA-target gene relation database. They 
manually curated over 3,500 miRNA-gene pairs from the research articles relevant to 
the functional studies of miRNAs. Shahi et al. (2006) developed Argonaute database 
that contains miRNA-regulated targets and their origin information derived from the 
scientific literature and other published databases.  

 
Databases miRNAs Targets Pairs Low-throughput 

Experiments 

Human 

miRNAs 

Human 

Targets 

pairs 

TarBase 128 570 626 279 62 415 458 
miRecords 301 902 1135 639 125 651 778 

Table 3: Comparison between TarBase and miRecords. miRecords manually 
collects much more miRNA-target interactions than TarBase database. Table taken 
from the study conducted by Xiao et al. (2009). 

The databases such as miRGen (Megraw et al., 2007), miRGator (Nam et al., 
2008), miRDB (Wang et al., 2008), microRNA.org (Betel et al., 2008) and 
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miRNAMap (Hsu et al., 2008) provide miRNA target information by integrating 
target prediction programs (such as PicTar, PITA, TargetScan and miRanda). Nam et 

al. (2009) developed MMIA that combines the predicted miRNA-target genes with 
miRNA-mRNA expression studies. 
 

 

Databases Web links 

MD: miRBase http://microrna.sanger.ac.uk/ 
MD: TarBase http://diana.cslab.ece.ntua.gr/tarbase/ 
MD: miRecords http://mirecords.umn.edu/miRecords/ 
MD: miR2Disease http://www.mir2disease.org/ 
MD: miRTarBase http://miRTarBase.mbc.nctu.edu.tw/ 
PD: Argonaute http://www.ma.uni-heidelberg.de/apps/zmf/argonaute/ 
PD: miRGen http://www.diana.pcbi.upenn.edu/miRGen.html 
PD: miRGator http://genome.ewha.ac.kr/miRGator/miRGator.html 
PD: miRDB http://mirdb.org/miRDB/ 
PD: microRNA.org http://www.microrna.org/microrna/home.do 
PD: miRNAMap http://mirnamap.mbc.nctu.edu.tw/ 
PD: MMIA http://129.79.244.122/~MMIA/index.html 

Table 4: Databases for miRNAs and their target gene associations. To identify the 
target genes of miRNAs, several databases have been developed. Most databases 
collect miRNA-target gene association by manually surveying the published scientific 
articles (MD). Some databases provide the target genes of a miRNA by integrating 
state-of-the-art miRNA-target prediction programs (PD).  

3.3 TF-gene regulatory interactions  

The regulation of transcription initiation by TFs and cis-regulatory elements is a 
major regulatory step in the control of gene expression (Hochheimer and Tjian, 2003). 
A better understanding of the interaction between TF and cis-regulatory elements 
remains an open challenge (Xu et al., 2010). Several experiments have been 
performed to profile the TF-DNA interactions (Iyer et al., 2001; Johnson et al., 2007; 
Vogel et al., 2007). 

Several repositories have been established for organizing the TFs and their target 
gene information. For instance, TRANSFAC (Wingender et al., 2000, Matys et al., 
2006), JASPAR (Sandelin et al., 2004), TRED (Zhao et al., 2005), PAZZAR 
(Portales-Casamar et al., 2007), DBD (Wilson et al., 2008) and TrSDB (Hermoso et 

al., 2004) collect TF-target gene associations for different species. RegulonDB 
contains experimentally validated and manually curated TF-gene regulatory 
interactions in E. coli (Huerta et al., 1998, Gama-Castro et al., 2011).  

Abdulrehman et al. (2011) developed YEASTRACT that contains over 48,000 TF-
target associations in S. cerevisiae. MacIsaac et al. (2006) analyzed the ChIP-chip 
data to determine the TF binding sites in yeast. ProTF (Bai et al., 2010) and 
RegTransBase (Kazakov et al., 2007) collect regulatory interactions in prokaryotes. 
MacArthur et al. (2009) integrate over 21 TFs ChIP experiments that are performed 
using blastodermal cells. 
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The databases such as plantTFDB (Guo et al., 2008; Zhang et al., 2010), DPTF 
(Zhu et al., 2007), RARTF (Iida et al., 2005), PlanTAPDB (Richardt et al., 2007), 
GRASSIUS (Yilmaz et al., 2008) and PlnTFDB (Pérez-Rodríguez et al., 2009) 
provide resources of TFs nomenclature, sequence data, genomic localization and 
functional annotation in plant species.  

3.4 Gene and protein databases 

Recently several databases have organized organism-specific genes and proteins 
information. The HUGO Gene Nomenclature Committee (HGNC) provides unique 
symbols/names to human genes maintained by Seal et al. (2011). They collected over 
30,000 gene information including approved gene nomenclature, symbols and aliases. 
Several biomedical databases including Ensembl (Flicek et al., 2010), Entrez-Gene 
(Maglott et al., 2011), OMIM (Amberger et al., 2009), UCSC (Fujita et al., 2011) and 
UniProt (Boutet et al., 2007) have also integrated the HGNC gene symbols. The MGD 
(Mouse Genome Database) combines the genetic, genomic and biological information 
in mouse (Bult et al., 2008).  

The Entrez-Gene maintains the unique identifiers assigned to genes in different 
organisms (Maglott et al., 2011). The database has provided the detailed gene 
information including nomenclature, genomic location and their products (i.e., 
proteins). UniProtKB/Swiss-Prot provides the curated protein information for 
different species (Boeckmann et al., 2003; Boutet et al., 2007). Ensembl database 
maintained by Flicek et al., (2010) combines the genomic information for over 35 
species including human, mouse and rat.  

3.5 Protein-protein interaction databases 

Protein-protein interactions (PPIs) play an important role in understanding the 
functions of proteins and their activity in cellular processes. Several experimental 
approaches like the yeast two-hybrid (Y2H) system (Chien et al., 1991; Legrain and 

Selig, 2000), X-ray crystallography or tandem affinity purification (Rigaut et al., 
1999; Puig et al., 2001) have been performed to study the interaction between protein 
pairs. Several databases have collected these PPIs in different species (Table 5). 

Keshava et al. (2009) developed HPRD (Human Protein Reference Database) that 
contains PPIs derived either from the biomedical literature or high-throughput 
experiments. The STRING database provides PPIs of either physical or functional 
association in over 600 different species (von Mering et al., 2003; Jensen et al., 2009; 
Szklarczyk et al., 2011). Szklarczyk et al. (2011) collect the known or predicted PPIs 
from different sources including literature, high-throughput experiments and co-
expression profiling studies. Kerrien et al. (2007) developed IntAct that contains 
manually curated binary interactions derived from the literature. Xenarios et al. 

(2002) developed the DIP (Database of Interacting Proteins) that collects 
experimentally validated PPIs. 
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3.6 Taxonomy database 

The National Center for Biotechnology Information (NCBI) taxonomy database 
contains over 150,000 organism names/symbols and their aliases (Sayers et al., 2009).  
 
 
Databases Web link 

HPRD http://www.hprd.org/ 
STRING http://string-db.org/ 
IntAct http://www.ebi.ac.uk/intact/main.xhtml 
PINT http://earth.liv.ac.uk/pint/Help.htm 
DIP http://dip.doe-mbi.ucla.edu 
GO http://www.geneontology.org/ 
KEGG  http://www.genome.jp/kegg/pathway.html 
Pathguide http://pathguide.org 

Table 5: Gene and protein interaction databases. Several experimental approaches 
have been applied to study the gene and protein interactions. Shown are the databases 
that collect gene and protein-protein interaction information in different species.   

3.7 Predefined gene set databases 

Signal transduction pathways are often represented as cascades of proteins that 
regulate cellular processes like growth, survival and proliferation including gene 
expression (Glaab et al., 2010; Anjum and Blenis, 2008). In this context, several 
databases have been developed to provide information about genes and proteins 
corresponding to specific cellular pathways and processes such as Gene Ontology 
(GO) (Harris et al., 2004; Berardini  et al., 2010), Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (Kanehisa and Goto, 2000), BioCarta (Nishimura, 2001), 
Reactome (Joshi-Tope et al., 2005; D′Eustachio, 2011), The Molecular Signatures 
Database (MSigDB) (Subramanian et al., 2005) and Pathguide (Bader et al., 2006).  

GO established by the GO consortium members, aims to maintain a controlled 
vocabulary of terms (ontologies) for the representation of genes, proteins and their 
sequences across different model organisms (Ashburner et al., 2000; Berardini et al., 
2010). GO is clustered into three groups: biological processes contain information 
about processes to which a gene/protein contributes such as cellular growth or 
maintenance (Ashburner et al., 2000). Molecular function provides the information 
about protein functions such as biochemical activity. Cellular component provides the 
information where a protein shows an activity change such as nuclear membrane, 
plasma membrane or Golgi apparatus (Berardini et al., 2010).  

The KEGG database integrates the gene and protein interactions with molecular 
networks and cellular pathways derived from other biological databases such as 
GenBank, PATHWAY and GLYCAN (Kanehisa and Goto, 2000; Kanehisa et al., 
2004; Hashimoto et al., 2005). Bader et al. (2006) developed Pathguide that provides 
comprehensive information about biological (metabolic and signalling) pathways and 
gene regulatory interactions (Table 6).  
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Table 6: Pathguide database statistics. Pathguide, a meta-database that collects 
information on over 150 published cellular pathways and gene/protein interaction 
databases. Table taken from the study conducted by Bader et al. (2006).  

3.8 Gene expression databases 

With the advent of high-throughput technologies it becomes possible to determine the 
mRNA levels of all genes of an organism under various experimental conditions 
(Chua et al., 2006; Faith et al., 2008; Selbach et al., 2008; Brazma, 2009). Several 
databases have been established with the aim of collecting mRNA gene expression 
data from the published microarray studies (Table 7).  

The databases Gene Expression Omnibus (GEO, Barrett et al., 2007) and 
ArrayExpress (Parkinson et al., 2006) contain gene expression repositories in 
different organisms. Ringwald et al. (2001) developed GXD (Gene Expression 
Database) that provides expression profiles in mouse species. Miranda-Saavedra et 

al. (2009), Hackney et al. (2002) and Porter et al. (2007) collect expression profiles 
related to the mouse hematopoesis system, stromal and stem cell lines. Schulz et al. 
(2009) developed FunGenES that contains expression profiles in mouse embryonic 
stem cells.  

 
 

Databases Web Link 

GEO http://www.ncbi.nlm.nih.gov/geo/ 
ArrayExpress http://www.ebi.ac.uk/microarray-as/ae/ 
GXD http://www.informatics.jax.org/ 
BloodExpress  http://hscl.cimr.cam.ac.uk/bloodexpress/ 
SCDB http://stemcell.mssm.edu/v2/  

StemBase  http://www.stembase.ca/?path=/ 

StroCDB http://stromalcell.mssm.edu/ 

FunGenES  http://www.fungenes.org/index.html 

Table 7: Databases of microarray gene expression profiles. Shown are the 
databases developed aim at collecting gene expression measurements in different 
species.  

Category  Number of databases 

Protein-protein interactions  79 
Metabolic pathways  43 
Signalling pathways  41 
Pathway diagrams  22 
Transcription factors/gene regulatory networks  20 
Protein-compound interactions  14 
Genetic interaction networks  5 
Protein sequence focused  12 
Other  11 
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3.9 Scientific literature database 

The recent biomedical advancements have witnessed significant scientific progress 
and discoveries. However, the acquisition of scientific knowledge contains in the 
literature is challenging due to its large volume and rapid growth (Lu, 2011). As a 
result, NCBI established PubMed that incorporates MEDLINE to archive peer-
reviewed journals in the life sciences (Sayers et al., 2009). To date, PubMed contains 
more than 20 million research articles published in over 4,000 scientific journals 
(Figure 3). Additionally, to ease the access to the published articles, several web-
based tools have been developed such as RefMed (Yu et al., 2010), iPubMed (Wang et 

al., 2010), MedlineRanker (Fontaine et al., 2009), MiSearch (States et al., 2009), 
eTBLAST (Errami et al., 2007) and HubMed (Eaton, 2006).   

 

 

 

Figure 3: Growth of PubMed citations. The PubMed citations have increased 
significantly over the past few years. The PubMed database currently contains 20 
million abstracts/papers in over 4,000 scientific journals. Figure adapted from the 
study conducted by Lu (2011). 
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4. Methods 

 

 

  



 

 

To enhance the understanding of the regulation of gene expression, we address and 
solve three important, mutually dependent problems: 

 

(1) To enable the proper application and assessment of enrichment methods, we 

compiled the current regulator target repositories as well as prediction tools and 

complemented them by large scale text mining (called as miRSel, Naeem et al., 

2010). See section: 4.1 for methods and 5.1 for results. 

 

(2) To select the appropriate enrichment approach/method for detecting the active 

regulators, we conducted the first rigorous comparative assessment of 12 gene set 

enrichment tests (Naeem et al., 2011). See section: 4.2 for methods and 5.2 for 

results.  

 

(3) In order to investigate the mechanisms of gene regulation our approach MIRTFnet 

determines the experimental conditions where certain regulators become active 

and how they regulate the transcriptome via cascades of miRNAs, TFs or kinases 

(Naeem et al., 2011). See section: 4.3 for methods and 5.3 for results.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

4.  Methods 

4.1 miRSel: Automated extraction of associations between miRNAs and genes 

from the biomedical literature 

 The construction of a database of miRNA-gene co-occurrences via named entity 
recognition (NER) requires the compilation of miRNA, gene and protein name 
dictionaries as well as their association to database identifiers. The extraction 
performance depends on the completeness and uniqueness of the entries in the 
dictionaries. This section (based on the publication Naeem et al., 2010) describes the 
steps required for the implementation and population of the miRSel database (Figure 
4).  

4.1.1 miRNA, gene, protein and taxonomy name dictionaries 

The dictionaries for human, mouse and rat are compiled from several databases: 
HUGO Gene Nomenclature Committee (HGNC) (Bruford et al., 2008), Mouse 
Genome Database (MGD) (Bult et al., 2008), gene-centered information at NCBI 
(Entrez Gene) (Maglott et al., 2007), Swiss-Prot Protein Database (Swiss-Prot) 
(Boeckmann et al., 2003), miRGen (Alexiou et al., 2009), miRBase (Griffiths-Jones et 

al., 2008) and NCBI (Sayers et al., 2009). The names, aliases, symbols, official 
names, synonyms, abbreviations, and database identifiers of taxonomy, proteins, 
genes and miRNAs from these databases have been merged into synonym 
dictionaries. 
 
4.1.2 Extension and curation of the dictionaries  

 
The next steps are extension and curation of the dictionaries. For proteins, we first 
complement the synonym lists with spelling variants, acronyms, abbreviations and 
long forms (e.g. IL ↔ Interleukin). Secondly, inappropriate synonyms or expressions 
that would lead to ambiguous or wrong identifications are identified and removed. A 
detailed description of the curation and the involved processing steps is given in 
(Fundel et al., 2006). 
 
4.1.3 Detection of miRNA in texts 

 

In case of miRNAs we found that many miRNA names described in the literature are 
not yet contained in databases. Therefore, we detect miRNA names using a regular 
expression. This regular expression has been constructed to match all database 
contained synonyms and generic occurrences of miRNA names as described in the 
background method section on miRNA naming conventions (section 2.3.1) including 
species specific conventions (e.g. HUGO). The regular expression also covers 
frequent spelling variants mentioned in the texts (e.g. miR101b, miRNA-101b, 
microRNA-101b, microRNA101b, etc.) with and without species identifiers (e.g. hsa-
miR-195 and miR-195). If detected miRNA synonyms are contained in public 
databases we map them to their database identifiers and, if possible, distinguish 
matches as stem loop sequence, mature sequence and gene family matches in miRSel. 
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Figure 4: Workflow of the miRSel database. (a) The miRNA and gene/protein 
dictionaries/synonym lists for human, mouse and rat are extracted from several 
databases (e.g., HGNC, MGD, Entrez Gene, Swiss-Prot and miRBase) and 
extensively curated (see sections 4.1.1 and 4.1.2). (b) The miRNA, gene/protein, 
taxonomy and relation-term synonyms are then searched within PubMed abstracts by 
exact string matching tool syngrep (Csaba, 2008) (see sections 4.1.3, 4.1.4 and 4.1.5). 
(c) The occurrences of miRNA, gene/protein, taxonomy and relation-keyword 
synonyms are combined to infer miRNA-gene associations including miRNA-target 
relations and stored in the database. (d) Information on miRNA-gene pairs in the 
database can be retrieved via web interface (see section 5.1, 
http://services.bio.ifi.lmu.de/mirsel/). The web interface can be queried via different 
options, including miRNA, target, gene ontology and PubMed keyword queries. If 
multiple options are selected, the results are AND-combined. Several filters are 
provided to control recall vs. precision of the mining results (see section 5.1.2). To 
make sure the completeness of putative miRNA-gene associations the databases (e.g., 
TarBase, miRecords, and miR2Disease) have also been integrated into the miRSel 
database. 
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The database derived synonyms are summarized in Table 8. Only comparatively 
small number of distinct miRNA loci can actually be found in PubMed abstracts. In 
human, mouse and rat only 360 different miRNA loci were detected in miRNA-target 
pairs using the regular expression. Even fewer, only 280 different miRNA loci would 
have been detected based on database derived synonyms alone.  

 

 

Species  miRNA Proteins/genes 

 Mature 

(miR/miR*) 

Stem-

loop 

Synonyms Entities Synonyms 

Human 1026 162 43070 30120 473403 

Mouse 767 133 32448 42130 460921 

Rat 392 63 15662 39545 285483 

Table 8: miRNA and gene/protein dictionaries. The identifiers and synonyms are 
extracted from different biological databases (such as miRBase, miRGen, HUGO, 
MGI, Entrez-Gene, Swiss-Prot), including manually collected miRNA identifiers for 
human, mouse and rat from literature. All dictionaries were processed to add 
frequently used synonym variants and to remove unspecific and inappropriate 
synonyms.  

4.1.4 Detection of gene, protein and taxonomy names in texts 

Protein, gene and taxonomy names/synonyms are detected in texts by string matching 
tool (called as syngrep, Csaba, 2008). syngrep uses the Aho-Corasick algorithm (Aho 
and Corasick, 1975, section 2.3.3) for fast matching, tolerates small synonym 
variations, and uses context resolution techniques to avoid and resolve ambiguities.  

As mentioned above, miRNAs are matched using a regular expression. The scan of 
the organism specific miRNA, gene and protein synonym lists (more than 115K 
objects and 1.2M synonyms) against the entire PubMed (19M records, 66 Gb XML) 
requires about 30 minutes on a PC with 4 CPU-Cores. 

The identification of named entities allows to identify miRNA-gene pairs both co-
occurring in an abstract or in a single sentence. If not mentioned otherwise, we will 
focus on pairs extracted from single sentences as they are more reliable for extracting 
miRNA-gene associations. Information on relations or interactions between miRNA 
and genes is of interest for generating and analyzing network models of regulatory 
pathways. These pairs are extracted and stored in miRSel together with the PubMed 
abstracts and sentences where they have been found.  
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4.1.5 Detection of miRNA-gene target relations 

 
We further compiled a list of 70 terms that are used to describe relations of interest 
between miRNA-gene pairs (Table 9). These 70 terms are indicative of five different 
types of relations, namely physical target, repression, co-expression, induction and 
cleavage. miRSel contains miRNA-gene associations of these five types which have 
been identified as tri-occurrences of a miRNA, a relation-term, and a gene or protein 
in a single sentence of PubMed abstracts. miRSel users can also retrieve abstract 
instead of sentence co-occurrences if recall is more important than precision. 

 
Relation type Synonyms 

Physical targets Target, targets, targeting, targeted. 
Repression repress, repression, down regulate, down-regulation, decreased 

activity 
Co-expression Deregulate, de-regulate(s), regulated, correlate(s), correlated, 

down modulate(s), down-modulation, deregulated expression, 
decreased expression. 

Induction Induction, up regulate(s), up regulation, increase(s) activity, 
increased activity, activation, activate(s). 

Cleavage Cleavage, cleaves, cleaved, processing shift. 
 

Table 9: List of miRNA-gene target relations and their synonyms. Information on 
relation or interaction keywords between miRNAs and their target genes has been 
extracted by manually surveying the miRNA-related scientific literature and curated. 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

4.2 Rigorous assessment of gene set enrichment tests  

As mentioned before, several statistical tests are available to detect the enrichment of 
differential expression in gene sets associated with biological processes (section 2.2).  
However, it is difficult to decide a priori, which processes will be affected in given 
experiments. In contrast to processes, miRNAs and TFs are amenable to direct 
perturbations, e.g. regulator over-expression or deletion experiments. As of second 
step, based on such perturbations and subsequent measurements in E. coli, S. 

cerevisiae and human, we assessed the ability of 12 different gene set enrichment 
(GSE) tests to detect the activity changes of miRNAs and TFs (Naeem et al., 2011). 
We also analyzed the dependency of performance on the quality and 
comprehensiveness of the known regulator targets via an additional permutation 
approach. This section explains the GSE methods including datasets, testing scenarios 
and their pre-processing steps in the following subsections. 

4.2.1 Datasets 

Gene expression compendia: miRNA transfection studies 

Several microarray experiments with overexpression of miRNAs have been 
performed to measure the global changes in the transcriptome or proteome. We 
collected 43 gene expression profiles of 18 different miRNA transfection studies in 
different human cell lines. Selbach et al. (2008) measured gene expression data in 
HeLa cells at 8h and 32h after miRNA overexpression of miR-155, miR-16 and let-
7b. Expression profiles by He et al. (2007) include gene expression changes at 24h 
after miRNA overexpression of miR-34 family (i.e., miR-34a and miR-34b), in six 
different cell lines (e.g., HeLa, A549 H1-term and TOV21G H1-term). Georges et al. 
(2008) measured p53-inducible miRNAs, miR-192 and miR-215, at 10h and 24h after 
miRNA transfection in a human cell line (i.e., HCT116 Dicer -/- #2). Baek et al. 
(2006) measured the gene expression data in HeLa cells at 24h after miR-124, miR-1 
and miR-181a transfection. We also use the dataset by Grimson et al. (2007) that 
measured gene expression data in HeLa cells at 12h and 24h after miRNA 
overexpression of miR-7, miR-9, miR-122, miR-128, miR-132, miR-133, miR-142 
and miR-181a. All analyzes are based on comparing mRNA levels between 
transfection and control via log2 fold-changes. 

Gene expression compendia: TF deletion and overexpression studies 

In addition to the miRNA perturbation experiments, we also take large-scale TF 
perturbation (deletion (KO) or overexpression (OE)) experiments into account to 
investigate the influence of TFs on downstream target genes. A compendium of 907 
E. coli microarray samples was taken from the M3D Database (Faith et al., 2008). A 
compendium of 263 S. cerevisiae microarrays was obtained from the study by Hu et 

al., 2007. Hu et al. systematically deleted 263 TFs in yeast, and compared each 
deletion strain with the wild type for genome-wide expression. We have also used the 
dataset by Chua et al., (2006) that provides the microarray expression data resulting 
from the overexpression and/or deletion of 55 S. cerevisiae TFs. All analyzes are 
based on comparing gene expression levels between deletion/overexpression and 
control via log2 fold-changes. The microarray datasets contain basal gene levels that 
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can be quite different between experiments. To compensate for this, we transformed 
the absolute expression values into expression fold changes. Fold changes are 
computed by mapping each measured condition to one or more control conditions 
from the same experiment (Küffner et al., 2011).  

Gene regulatory networks: miRNA-target gene associations 

Several computational algorithms have been developed to predict miRNA-target 
genes (see background method section). We obtained the human miRNA-target pairs 
predicted by PITA (Kertesz et al., 2007), PICTAR (Krek et al., 2005) and TargetScan 
(Friedman et al., 2009). The PITA miRNA target predictions were compiled using a 
more stringent threshold (from -6 to -20) to reduce the number of false positive 
predictions. 

In addition, several databases collect target genes of the miRNAs in different 
organisms (section 3.2). From miRSel (section 4.1, Naeem et al., 2010) we obtained 
putative miRNA-gene associations and relations extracted from either biomedical 
abstracts by text mining (Table 12) or the curated databases (e.g., TarBase 
(Papadopoulos et al., 2009), miRecords (Xiao et al., 2009) and miR2Disease (Jiang 

et al., 2009)).  
 

 

Dataset TFs Targets KO/OE 

TFs 

Targets Chips References 

E. coli (M3D) 167 1377 17 949 907 Faith et al., 2008 
S. cerevisiae (Y1) 114 1934 102 1527 263 Hu et al., 2007 
S. cerevisiae (Y2) 114 1934 48 1094 270 Chua et al., 2006 

Table 10: E. coli and S. cerevisiae expression compendia used in this study. High 
confidence 3425 E. coli interactions between 167 TFs and 1377 target genes were 
obtained from RegulonDB (Gama-Castro et al., 2008). The Saccharomyces cerevisiae 
(S. cerevisiae) gold-standard network of 3940 interactions between 114 TFs and 1934 
target genes was obtained from the study by MacIsaac et al. (2006). A compendium 
of 907 E. coli microarray expression profiles of 4296 genes was taken from the M3D 
Database (Faith et al., 2008). In case of S. cerevisiae, two compendium of 263 (called 
as Y1) and 270 (called as Y2) microarray expression profiles of 5949 and 5473 genes 
were obtained from the study by Hu et al. (2007) and Chua et al. (2006). Hu et al. 
deleted (KO) 263 TFs in S. cerevisiae, and compared each deletion strain with the 
wild type for genome-wide expression, whereas Chua et al. provide microarray 
expression data resulting from the deletion (KO) and/or over-expression (OE) of 55 S. 

cerevisiae TFs. 102 out of 263 (Y1) and 48 out of 55 (Y2) S. cerevisiae TFs from the 
study by Chua et al. and Hu et al. were mapped to the used gold-standard regulatory 
interactions. 1527 out of 1934 and 1094 out of 1943 genes are targeted by Y1 and Y2 
TFs dataset, respectively. 
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Gene regulatory networks: TF-gene regulatory interactions 

E. coli TF-gene regulatory interactions (TF-GRIs) were obtained from RegulonDB 
(Huerta et al., 1998; Gama-Castro et al., 2011). RegulonDB contains experimentally 
validated and manually curated TF-GRIs. Recently DREAM5 uses the RegulonDB 
dataset to validate the predicted E. coli interactions (wiki.c2b2.columbia.edu/dream 
/index.php/D5c4). The Saccharomyces cerevisiae (S. cerevisiae) gold-standard TF-
GRIs were obtained from MacIsaac et al., 2006 who re-analyzed the Harbison et al., 

2004 ChIP-chip data to determine the binding locations of TFs. The E. coli gold-
standard is considered more reliable than S. cerevisiae as suggested by Narendra et 

al. (2010).  

4.2.2 Assessment of miRNA and TF activity 

TF activity is regulated at the posttranscriptional level through changes in sub-cellular 
localization, therefore, it is challenging to measure TF activity directly (Boorsma et 

al., 2008). To determine activity changes of miRNAs and TFs we apply several gene 
set enrichment approaches to test the null hypothesis (Ho) whether the expression 
levels of regulator downstream targets could be sampled from the background 
distribution of the remaining (i.e. non-target) genes (section 4.2.3). Our approach to 
assess gene set enrichment tests is depicted in Figure 6. Before introducing the 
applied enrichment approaches we describe in the following subsections how the 
standard of truth is derived and how sign annotations are used to treat the up- and 
down-regulation of target genes.  

4.2.3 Standard of truth 

In the proposed assessment scenario, we evaluate the ability of statistical tests to infer 
the identity of an experimentally perturbed (i.e. deleted or over-expressed) regulator 
from the expression of its target genes. Thus, the experimental annotation (identities 
of the perturbed regulators) represents the standard of truth. It is compiled into a label 
matrix that assigns a 1 or a 0 to a positive or a negative example, respectively. The 
number of examples and thus the size of the label matrix is |regulators|*|chips|. A 
positive example is given when the regulator r is perturbed (deleted or over-
expressed) in the given chip c. Other measurements are considered negative examples 
for this regulator (Figure 6).  

Since the inference of TF activities from their mRNA levels is not reliable, we 
exclude some TFs from the AUROC analysis based on mRNA levels. If for instance a 
perturbed TF does not exhibit a substantial fold-change it is unclear whether the 
perturbation was effective: it cannot be counted as positive in the label matrix without 
restrictions. The same holds for TFs that exhibit substantial fold-changes but have not 
been directly perturbed. Such a TF could be a direct or indirect target of a perturbed 
TF and cannot be regarded as true negative. If the fold-changes observed for non- 
perturbed (perturbed) TFs exceed (do not exceed) a predefined threshold, we will 
exclude it from the AUROC analysis. By varying this threshold, we can explore the 
performance dependency on the definition of positives and negatives. 
  



42 

 

4.2.4 Pre-processing of the data matrix

Before applying enrichment tests, the given gene expression measurements need to be 
pre-processed in one of two alternative ways. These are distinguished by whether or 
not we use sign annotations 
(+) or inhibits (-) a given target gene
 

 

Absolute-one-sided (Ho
abs

) 
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Enrichment tests are applied to absolute log fold changes, i.e. we evaluate the degree 
of differential expression in the target genes of regulators regardless of up
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sign
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This scenario can only be applied to 
annotations (‘+’ activation and ‘
that are inhibited by the given regulator. Thus, all target genes of a regulator should 
either exhibit enrichment of positive fold changes (in case of increased regulator 
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Figure 6: Overview of the miRNA/TF assessment test scenario. The data matrix 
consists of |chips| columns and |genes| rows where cells in the matrix represent 
mRNA expression levels. Chips are annotated by the experimental treatment, e.g. the 
perturbation (∆=deletion or ↑=over-expression) of expression regulators, here 
exemplified by TFs. This annotation is compiled (a) into a label matrix that assigns a 
1 (true positive) or a 0 (false positive) to a positive or a negative example, 
respectively (see section 4.2.3). A positive example is given when the regulator, for 
instance, TFx is perturbed (e.g., deleted) in the given chip ∆TFx. Other measurements 
(e.g., TFy and TFz) are considered negative examples for this regulator measurement. 
Perturbation of a regulator is expected to result in up- (red) or down-regulation (blue) 
of its target genes. (b) To test whether or not to use interaction signs or annotations, 
the data matrix is processed in one of two alternative ways (see section 4.2.4). Based 
on these settings, several gene set enrichment (GSE) tests are applied (c) to determine 
the activity of regulators based on the differential expression of their target gene set 
(see section 4.2.7). This results in a score matrix containing p-values or other test 
specific scores. For evaluation, the label matrix is compared to the score matrix to 
compute (d) an area under the receiver-operator characteristic (AUROC) curve (see 
section 4.2.5).  

4.2.5 Performance assessment  

Statistical tests as described in subsequent sections are applied to the processed data 
matrix (Figure 6). Test predictions are then evaluated against the standard of truth via 
the area under the receiver-operating characteristic (AUROC) (section 2.4). The 
AUROC compares continuous test scores (Figure 6: score matrix) against discrete 
regulator states (1=active, 0=inactive, compare Figure 6: label matrix). Thus, AUROC 
is a summary measure of the test’s ability to consistently assign higher scores to 
active regulators and lower scores to non-active regulators based on given chip 
measurements. An AUROC score of 1 represents a perfect test or AUROC of 0.5 
represents a random test, respectively. 
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4.2.6 Randomized testing 

 
In addition to applying the tests to the data matrix, we also progressively randomized 
the set of regulator target genes to evaluate how much the performance of statistical 
methods depends on the quality of gold standards. We generate new target sets that 
are randomized by x% (where x=25, 50, 75…), i.e. by randomly selecting x% of the 
interactions in the gold standard and exchanging the true target gene in such an 
interaction by a random non-target gene. Tests are applied and evaluated as described 
above. An average AUROC is determined by repeating this procedure 100 times for 
each selected x.  

4.2.7 Statistical hypothesis methods 

We applied 12 different methods (Table 11, section 2.2) to test if the null hypothesis 
as described above should be rejected. In this case, distributions of regulator (miRNA 
and TF) targets and non-targets are significantly different.  
 
 
Enrichment tests  

ANOVA  Two-sample ANOVA    
WR  Wilcoxon’s rank sum  
KS  Kolmogorov-Smirnov  
BT  Bootstrapping  
CON Consensus of all tests (see below for details) 
HG-0.5  Hypergeometric, cut=0.5  
HG-1.0  Hypergeometric, cut=1.0  
HG-1.5  Hypergeometric, cut=1.5  
FC Average fold change 
FCR Average gene rank 
MED  Median (see below for details) 
FCRW  Average fold change rank weight (see below for details)  

Table 11: List of statistical enrichment tests used in this study. Several statistical 
hypothesis testing methods have been applied to determine the activity of regulators 
based on their target gene sets as described in background method section. Since 
hypergeometric (HG) test requires a threshold parameter to select regulated genes, we 
applied the HG test to test the null hypothesis given regulated gene sets of different 
sizes compiled based on genes log fold values such as greater than 0.5, 1.0 or 1.5. 
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Average fold change rank weight 

 
The average fold change rank weight (FCRW-score) of a regulator activity is defined 
as the difference of the combined average rank and expression levels between its 
targets (T_rw) and non targets (NT_rw). The ranks of genes are derived by sorting 
them based on their absolute or signed fold changes (Figure 6).  
 

FCRW = T_rw - NT_rw = 
∑ �BABCBDE∑ �BCBDE  - 

∑ �F�AFCFDE∑ �FCFDE  

 
Where wi and wj represent the rank and ti and nti represent the fold changes of a target 
(i) and non-target (j) gene, respectively. 

 

Median 

The median (MED-score) of a regulator activity is defined as the difference of the 
median expression levels between its targets (T_med) and non-targets (NT_med).  

 
MED = T_med - NT_med 

 

Consensus prediction 

A number of tests have been applied to a TF in a given experiment to test for over-
representation of its targets among the DEGs. For each test, ranks of the regulators are 
determined by sorting them based on their scores. We define a consensus score 
(CON) to measure the regulator activity changes: the unweighted average of the ranks 
of a regulator determined by other statistical methods/tests as described above. This 
approach is called Borda count voting (Borda, 1781). For a given regulator j, the 
consensus score is calculated as: 
 

CON = 
∑ QFBCBDE�  

 
where n represents the number of tests applied to calculate the significance of a 
regulator j in a given experiment. Thus, Rji represents the rank of a regulator j for a 
given statistical test i.   
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4.3 MIRTFnet: Analysis of miRNA regulated transcription factors 

Patterns of gene silencing induced by miRNA are achieved by mRNA degradation or 
translational inhibition (section 1). Several miRNA transfection experiments have 
been performed to investigate the influence of miRNAs on their downstream target 
genes. We proposed the method MIRTFnet to identify miRNA controlled 
transcription factors (TFs) as active regulators. 

MIRTFnet enabled the determination of active TFs in a miRNA induced 
expression measurements. For this purpose, we applied the selected gene set 
enrichment (GSE) statistical tests (section 4.2) to determine the activity of TFs and 
miRNAs that can change their activity in response to the transfecting miRNA. Based 
on the identified TFs, database (miRSel, section 4.1), computational predictions and 
the literature we constructed the regulatory models downstream of miRNA actions. 
Transfecting miRNAs are connected to active regulators via a network of miRNA-TF, 
miRNA-kinase-TF as well as TF-TF relationships (Figures 7 and 17).  

This section (based on publication Naeem et al., 2011) describes the MIRTFnet 
method including model of miRNA action and datasets.   

4.3.1 Datasets 

miRNA transfection studies 

We obtained 43 gene expression profiles of 18 different miRNA (such as miR-155, 
miR-16, miR-34 and let-7b) transfection studies in different human cell lines such as 
HeLa, A549 H1-term and TOV21G H1-term (see section 4.2 for details).   

miRNA-target gene associations 

Human miRNA-gene associations were obtained from the databases and sequence 
prediction programs (Table 12, see section 4.2 for details). 
 

TF-target gene associations 

 
Human TF-gene regulatory relationships were predicted as described in (Liu et al., 
2008) using the position specific weight matrices (PWM) from the JASPAR database. 
We used relationships from the human genome browser at UCSC 
(http://genome.ucsc.edu/) (Tu et al., 2009). Additionally, we collected TF-target gene 
associations from TRANSFAC (Matys et al., 2003; Matys et al., 2006) (ver. 2005), 
see Table 12. We refer to these TF-gene relations as JASPAR, UCSC, and 
TRANSFAC, respectively. 
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Databases Regulators Kind Target 

genes 

Pairs 

DB: miRSel 486 miRNA 1969 7604 
DB: TarBase 110 miRNA 837 1023 
DB: miRecords 93 miRNA 614 772 
DB: miR2Disease 176 miRNA 364 596 
PR: PITA 640 miRNA 14065 307465 
PR: PICTAR 163 miRNA 5975 44403 
PR: TargetScan 249 miRNA 9446 110172 
DB: UCSC 106 TF 3997 16688 
DB: JASPAR 66 TF 12261 73878 
DB: TRANSFAC  219 TF 304 794 
DB: HPRD 462 Kinase 1800 4182 

Table 12: Associations between regulators and their targets. Human miRNA/TF-
gene regulatory interactions including kinase-TF associations were obtained from 
several databases (DB) and predictions (PR). 

Protein-protein interactions 

Human protein-protein interactions (PPIs) have been downloaded from the Human 
Protein Reference Database (http://www.hprd.org/) (Keshava et al., 2009). Using 
PPIs, miRNA-gene associations and TF-gene relations, we compile the miRNA-
kinase associations and kinase-TF including miRNA-kinase-TF physical interaction 
relationships, see Table 12. We compile all types of interactions into one gene 
network. 

4.3.2 Determining active miRNAs and TFs 

TFs might be activated or inhibited by modifications (e.g. phosphorylation) that 
cannot directly be detected by mRNA measurements. Activity changes of miRNAs 
and TFs can still be determined by analyzing their effects on target gene sets (section 
4.2). The probability of this null hypothesis (Ho

abs) (p-value) can be derived by a 
number of statistical tests as described in section 4.2.  

Here we have applied the selected GSE tests as described below. The resulting p-
values are multiple testing corrected using the Benjamini and Hochberg method 
(Benjamini and Yekutieli, 2001). For corrected p-values of less than 0.05 the null 
hypothesis is rejected for the respective miRNAs and TFs. We refer to such regulators 
as active regulators in the tested experiment. Both miRNAs and TFs can be tested 
given lists of experimentally validated or computationally predicted targets. 

TFs are also assumed to be active if they exhibit a fold change of at least two or less 
than 0.5 in a given expression experiment. Active miRNAs cannot be identified this 
way as they have not been measured on the arrays. 
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4.3.3 Statistical hypothesis methods 

We applied the selected GSE tests (Table 13, section 2.2) to determine the activation 
of regulators in miRNA transfection measurements.  
 
 
Enrichment tests  

WR  Wilcoxon’s rank sum  
KS  Kolmogorov-Smirnov  
HG-1.0  Hypergeometric, cut=1.0  

Table 13: List of enrichment tests used in MIRTFnet study. The Wilcoxon 
nonparametric rank-sum (WR) and Kolmogorov-Smirnov (KS) methods have been 
applied to test the null hypothesis (Ho

abs) as described in section 2.2. Nevertheless, 
both tests usually yield consistent results as found by e.g. Gsponer et al. (2008). 
MIRTFnet therefore reported TF activity changes only if they are identified by both 
tests. Additionally, we applied the hypergeometric (HG) test to detect active 
transcription factors as described in section 4.2. To enable the comparison to Essaghir 

et al. (2010) we follow their approach to regard genes as regulated if they exhibit a 
fold change of more than 2 or less than 0.5. Both WR and KS tests do not require such 
a threshold but exploits the ranks of all genes that have been measured. Note that the 
WR, KS and HG tests are applied to the same set of miRNA and TF target genes as 
obtained from databases and predictions (Table 12) and used the same procedure for 
multiple testing correction (Benjamini and Yekutieli, 2001). In contrast, Essaghir et al. 
(2010) augmented curated databases by their own manual literature searches. 

4.3.4 Model of miRNA actions 

Differentially expressed genes (DEGs) after miRNA perturbation (e.g., miRNA 
overexpression) suggest that miRNAs exert their regulatory effects on target as well 
as non-target genes (see background section). However, it is unclear which of the 
miRNA target genes serve as key regulators. Previous studies indicate that TFs 
predominate among miRNA targets (sections 1 and 2). 

To analyze the direct and indirect regulatory effects of miRNA, a network model 
in which TFs propagate miRNA-induced regulatory signals is needed. In this network 
model, genes directly regulated by miRNA are at the first level and target genes of 
miRNA-regulated (directly or via miRNA-Kinase association) TFs or TF-regulated 
TFs are at the second or third level of the regulatory cascades, subject to direct or 
indirect regulation triggered by miRNA on TFs. This multi-layer regulatory network 
model explains how targets as well as non-target genes can be regulated by miRNA. 

Given these observations, we construct network models of miRNA downstream 
actions. Here, we aim to connect the transfecting miRNA to TFs via miRNA-TF, TF-
TF and kinase-TF interactions derived from databases and computational predictions 
(Table 12). Thus, TFs are included if they were active according to WR and KS test as 
described in the last section and are reachable from the transfecting miRNA by a path 
of known or predicted interactions.  
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Figure 7: Modelling miRNA actions from expression measurements. Active 
regulators such as miRNAs and TFs are detected by their effect on the expression of 
downstream targets, here exemplified by the Wilcoxon test. In step 1 just the direct 
miRNA targets (kinases and significant TFs) are added to the model. Additional 
significant TFs are included if they can be connected to the model by interactions 
from Table 12, i.e. by repeating steps 2 and 3. The model of miR-155 transfection 
(8hr), for instance, includes 14 kinases and 24 out of 27 TFs detected as active by 
MIRTFnet. The remaining 3 TFs could not be connected by known interactions. 
Using these models we consider gene expression changes observed after miRNA 
transfection as explained if they satisfy two constrains: (1) such a gene must be 
targeted by an active TF, and (2) such a TF must be connectable to the transfecting 
miRNA by a path of known or predicted miRNA-TF, TF-TF and kinase-TF 
interactions. 
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Note that kinases are included as connectors between miRNAs and TFs in the 
models although the activity of kinases has not been determined in the examined 
studies.  

Thereby, we aim to give explanations for expression changes observed after 
miRNA transfection. Based on these models we evaluate to what extent expression 
changes could potentially be explained based on the current knowledge of causal 
interactions. 

Thus, we propose a cascade of TF activation steps (Figure 7) including the 
transfecting miRNA, kinases and TFs. Genes that are directly and exclusively affected 
by miRNAs will most likely be inhibited. This is not necessarily true for indirectly 
affected TFs or TF target genes (Figure 17). 
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5. Results 



 

  



 

5.  Results 

This section describes the results for each proposed method together with databases 
(section 4) accordingly.  First we discuss the results for miRSel database (section 5.1). 
Then we discuss the results for comparative analysis of 12 gene set enrichment (GSE) 
tests (section 5.2). Finally, we discuss the results for MIRTFnet (section 5.3).      

5.1 miRSel: Automated extraction of associations between microRNAs and genes 

from the biomedical literature  

As described above, the miRSel database has been developed to improve the coverage 
of miRNA-target gene associations including relations. miRSel is updated daily and 
can be queried using a web-based interface. This section discusses the results 
including the web interface, filter options and evaluation of miRSel database. 

5.1.1 Web interface 

miRSel provides a web interface to retrieve information on miRNA-gene pairs stored 
in the database (Figure 8). The interface allows to AND-combine different options to 
restrict query result sets. 
 
 

 

Figure 8: A web based graphical user interface for the miRSel database. miRSel 
can be queried via different options, including miRNA, target, gene ontology and 
PubMed keyword queries. If multiple options are selected, the results are AND-
combined. Several filters are provided to control recall vs. precision of the mining 
results.  

(1) Genes can be selected based on gene names, gene symbols, protein names or 
database identifiers. 

 
(2) miRNAs can be selected based on miRNA identifiers and miRNA gene families 

(Griffiths-Jones et al., 2008). 
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(3) A PubMed interface enables arbitrary PubMed keyword queries for searching 

miRSel, miRNA-gene pairs are reported only if found in PubMed abstracts 
matching the PubMed query. 

 
(4) The gene ontology (GO) option restricts the reported miRNA-gene pairs to genes 

associated with the selected GO-terms (Harris et al., 2004). 
 
 
Figure 8 shows the query mask and Figure 9 schematically depicts the query 
procedure. As a primary query result, an annotated table of miRNA-gene pairs is 
presented to the user. The table shows whether the pairs are contained in one of the 
manually curated databases (e.g. TarBase, miR2Disease) or if they have been 
predicted by miRNA-target prediction algorithms. Besides the table view, miRNA-
gene pairs can be analyzed graphically using the Graphviz software (Gansner et al., 
2000) (Figure 9). Both representations provide links to the primary database pages 
(e.g. miRBase, Entrez Gene) of the found entities and to the PubMed abstracts where 
the entity names have been found. 

5.1.2 Filters 

The miRSel user interface allows to query occurrences, pairs and associations of 
miRNAs and genes and to restrict the entries in the database using a number of filter 
criteria:  

(1) The strictness filter enforces a strict string matching of occurrences against the 
dictionary entries (i.e. occurrences with special characters not in the dictionary or 
wrong case are removed) (default selected). 

 
(2) The single-sentence filter reports only miRNA and gene pairs co-occurring in 

single sentences as opposed to pairs co-occurring in abstracts (default abstract). 
 
(3) The relation-type filter restricts matches to a particular type of miRNA-gene 

association (default none is selected).  
 
(4) The taxonomy filter aims to enforce organism specificity of the matches. Our 

organism specific taxonomy dictionary contains synonyms and MeSH 
vocabularies for all examined organisms as provided by the NCBI taxonomy 
database (Sayers et al., 2009). We define organism specific matches as tri-
occurrences of a gene name, a miRNA name and an entry of the taxonomy 
dictionary (default none is selected). 

 
(5) The gene synonym filter excludes protein or gene synonyms which are assigned to 

multiple genes or proteins (ambiguous synonyms) in databases (default none is 
selected). 

 
(6) The database filter shows the text mining pairs only if they also contained in other 

databases or computational predictions of miRNA gene targets (default none is 
selected).  
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The total number of associations with regard to these filters is shown in Figure 10 for 
human.  

 

 

 

 

Figure 9: A schematic workflow of a miRSel search by miRNA ID. After entering 
a complete or partial search key (e.g. a miRNA miR-124) (A) the user can select a 
subset of the matching miRNAs (B). Then, the corresponding miRNA-target co-
occurrences stored in the database are displayed in a tabular format (C). This table 
enables the navigation to miRNA or gene pages of primary databases (e.g. 
D=miRBase, E=Entrez Gene, PubMed abstracts that reference particular co-
occurrences (F), or to the database sources from which the pair has been integrated 
(G). Also, details related to each miRNA-target pair e.g. all possible names for a 
given miRNA or protein in the literature and comparison results of other databases 
and sequence prediction can be displayed from the table (H). Finally, a miRNA target 
interaction graph (I) can be displayed that also enables the navigation to miRNA and 
gene pages (nodes) or PubMed abstracts (edges). 
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Figure 10: Number of human miRNA and gene/protein pair matches in miRSel. 

No selection all miRNA-gene co-occurrences found in the publication titles and 
abstracts are displayed. Counts of miRNA-target pairs in the main text refer to this 
first column. The organism specificity can be increased by the taxonomy filter that 
requires confirmation of the selected organism. The text-mining results can also be 
restricted to miRNA gene pairs found within single sentences. The particlular type of 
association in miRNA-gene pairs can be restricted by the relation filter. Additional 
filters report pairs only if they are confirmed by target prediction algorithms (e.g. 
Pita) or manually curated databases (e.g. miRecords, mir2Disease, TarBase). 

5.1.3 Evaluation 

miRSel is based on finding occurrences of valid identifiers of genes, proteins and 
miRNAs in publication abstracts. Here we report on the performance of miRSel with 
respect to finding valid miRNA, gene and protein occurrences as well as valid 
miRNA-gene pairs and detailed miRNA-gene pair associations.  

We estimate the reliability of the detection of miRNAs in texts. The performance 
of gene and protein name detection has already been evaluated in the BioCreAtIvE 
competition (Fundel et al., 2005). 

For evaluation we selected PubMed abstracts that matched our regular expression 
for the detection of miRNAs or contained keywords such as ‘microRNA’, ‘miRNA’ 
‘mir’, ‘miR’ and ‘MIR’. Sentences containing a miRNA identifier or related 
keywords were additionally required to contain protein names from our synonym lists 
described in the implementation section. 50 PubMed abstracts were chosen randomly 
containing 89 sentences that met the above requirements. miRSel was compared 
against various manual analyzes (see below) in terms of recall (i.e. fraction of True 
Positive (tp) and all True occurrences), precision (i.e. fraction of tp and all 
predictions) and F-measure. 
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The evaluation of miRNA identifier occurrences is shown in Table 14 (a). Using 
regular expression based-matching, the detection of miRNA identifiers in texts is very 
reliable.  

For the detection of miRNA-gene associations we manually evaluated if a gene 
and a miRNA have been correctly detected by miRSel and if an association between 
miRNA and gene is implied. As shown in Table 14 (b), many of the pairs in miRSel 
represent valid associations. The detection of miRNA-gene associations have been 
further refined by automatically resolving ambiguities to gene identifiers by using 
additional tissue and cell-line dictionaries (Table 14 (c)).  

Besides the detection of generic miRNA-gene associations, miRSel annotates five 
different types of associations between miRNAs and genes (physical target, co-
expression, repression, induction, and cleavage; see section 4.1 for details). Out of the 
2724 single-sentence human miRNA-gene pairs in miRSel 1702 (62%) were 
classified into one of the five types.  

From the test set described above, a subset of the sentences that contain association 
keywords have also been evaluated manually. If association keywords are present in 
sentences with miRNA-gene pairs, the precision of association detection increases 
slightly (Table 14, compare b and d). If a true miRNA-gene association is detected, 
association keywords describe the type of association correctly in 89% of the cases 
(Table 14, compare d and e). 
 

 

 

 

 

Performance evaluation  abstracts sentences cases recall precision F-measure 

(a) miRNA occurrences 50 89 79 0.96 1.00 0.98 

(b) miRNA-gene associations 50 89 181 0.90 0.65 0.76 

(c) like b, after disambiguation 50 89 181 0.88 0.78 0.83 

(d) like b, with keywords 20 29 103 0.89 0.70 0.78 

(e) like b, association types 20 29 103 0.87 0.62 0.73 

Table 14: Evaluation of the detection of miRNAs and miRNA-gene associations 

from PubMed abstracts. 
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5.1.4 miRSel Query results 

Query Examples 

The TP53 gene (Entrez Gene: 7157) encodes protein p53, which is one of the most 
important tumor suppressor proteins. TarBase and miRecords do not report any 
miRNA targeting this gene. Xi et al. (2006) investigate the interaction between TP53 
and miRNAs in regulating gene expression using human colon cancer cell lines. They 
showed that TP53 and miRNAs interact in influencing posttranscriptional and 
translational events.  

We extracted 90 different human miRNAs that co-occur with this target gene from 
over 80 PubMed abstracts, and some of them (e.g. hsa-let-7, hsa-mir-372, hsa-mir-
181b, hsa-mir-200c, hsa-let-7g, and hsa-miR-30) are consistent with microarray-based 
results discussed by Xi et al. (2006). Therefore, miRSel together with gene expression 
profiling studies can be used to further explain the complex biology and miRNA 
functions.  

Similarly, hsa-miR-21 is the most frequent miRNA in miR2Disease database, with 
59 documented associations of this miRNA with diseases. miRSel contains 276 
different genes co-occurring with this miRNA extracted from over 123 PubMed 
abstracts. 150 pairs are retrieved if miRSel results are restricted to the more reliable 
single-sentence pairs. 

To analyze the tissue-specific gene regulation by human miRNAs based on their 
target genes, Zhu et al. (2011) integrate the miRNA-gene associations extracted from 
miRSel with tissue-specific including brain, heart, kidney liver, lung, skeletal muscle, 
pancreas, spleen and testis protein interaction networks. They found that miRNAs 
such as miR-155, miR-21 and miR-16 regulate more commonly expressed 
proteins/genes in all of the studied tissues whereas miR-15a and miR-1 regulate more 
tissue-specific proteins of pancreas and heart, suggesting an important role of 
miRNAs in the tissues. miRSel provides 288, 283, 278, 165 and 287 different target 
genes of miR-155, miR-21, miR-16, miR-15a and miR-1.   

To study disease-related rat miRNAs involve in the pathogenesis of myocardial 
infarction (MI), Zhu et al. (2011) combine the predicted and validated (imported from 
miRSel) target gene associated with MI-dysregulated miRNAs with cardiac-specific 
protein-protein interaction network. They showed that miR-1, miR-29b, and miR-98 
were key players in MI that causes significant morbidity and mortality. To date, 
miRSel contains 42, 14 and 2 putative target genes of these confirmed MI-related 
miRNAs. 

miRNAs play an important role in regulating ion channel genes expression at the 
posttranscriptional level (Liang et al., 2007). Zhou et al. (2011) integrate the miRNA-
target genes (extracted from miRSel and miRecords) with ion channel and gap 
junction protein/connexin interaction network to study the pathophysiological 
processes of MI in rat. They found that genes such as connexin 43 (GJA1) and 
CACNA1C were more intensive miRNA regulation in comparison to the other protein 
genes. miRSel provides 5 and 4 different miRNAs targeting these GJA1 and 
CACNA1C genes. 
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miRSel Query visualization 

miRSel query results can be visualized as a network of the extracted miRNA-gene 
pairs. Figure 11 shows an example of genes associated with two different terms from 
gene ontology (GO) and the respective miRNAs targeting those genes. Only small 
subsets of the text mining pairs have already been annotated in curated resources 
(bold edges). The two GO terms do not overlap with respect to the set of associated 
genes/proteins. Still, many miRNAs target genes from both GO terms implicating 
some functional relationship between the two terms.  
 
 
 
 

 
 

 

 

Figure 11: A network representation of miRNA-target pairs in the context of 
GO. Although the sets of genes from human, mouse and rat associated with the two 
Gene ontology (GO) terms do not overlap, they substantially overlap in the set of 
miRNAs. Only a fraction of the depicted relationships are available from databases 
such as TarBase, miR2Disease and miRecords (bold edges). Some miRNA-target 
relationships are annotated in miRSel with one of five association types (dashed 
edges). The networks for individual GO-terms can be retrieved via the web interface 
and combined subsequently.  
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5.2 Rigorous assessment of gene set enrichment tests 

As of second step, we focus on assessing the ability of state-of-the-art gene set 
enrichment (GSE) tests to predict regulators that were perturbed (overexpressed or 
deleted) in given expression experiments (Figure 6). Method performance was 
evaluated via the area under the receiver-operator characteristic (AUROC) curve. 
Different gene set definitions and genome-scale real microarray compendia in 
different organisms have been used to evaluate the performance of each statistical 
method in a variety of scenarios. This section explains the results related to each step 
of the assessment phase. 

5.2.1 Detection of TF activity without sign annotations 

We first evaluated the ability of the applied enrichment tests to predict TFs that have 
been deleted or over-expressed. At this point, sign annotations are ignored, i.e. we test 
H0

abs. Perturbations (e.g., TF overexpression or deletion) were only considered 
effective if the TFs exhibit a fold change of at least two or less than 0.5. Conversely, 
substantial fold-changes in non-perturbed (secondary) TFs could be due to a direct or 
indirect effect from the perturbed (primary TFs). Such cases are also excluded from 
the evaluation. In case of negative examples, we varied the fold-change cutoff to 
explore its influence on the performance of the enrichment tests (Figure 12). At a 
higher cutoff, more negative examples are included in the analysis. Although this 
leads to a slightly decreased performance, the selection of this parameter has only 
little influence on the ranking of enrichment tests. The ranking of statistical tests such 
as ANOVA, WR, KS and HG-0.5 test was quite consistent, whereas the ranking of 
CON and FC methods decreased. The HG-1.5 shows mixed results depending on the 
cutoff value. The methods such as MED and HG-1.0 test show more decreased 
performance in comparison to other tests. The resulting AUROC values at a cutoff of 
0.5 are shown in Table 15. 

In addition, we also combined all individual tests into a consensus. The scores in 
the individual score matrices (Figure 6) are transformed into ranks and averaged. 
Although some of the constituent tests hardly perform better than random, the 
consensus shows consistently good results across the applied scenarios. 

5.2.2 Detection of TF activity with sign annotations 

This section evaluates if test performance can be improved by exploiting the 
annotation provided by RegulonDB. This annotation distinguishes whether the TF 
activates or inhibits a given target gene. H0

abs as applied in the previous section tested 
only for differential expression. By using H0

sign instead, we additionally test whether 
the fold changes observed in TF targets are consistent with the given interaction sign 
annotations. Surprisingly, the tests performance did not improve by utilizing 
interaction signs (activate vs. inhibit). This might be due to incomplete sign 
annotations, e.g. with respect to toggle switches (Morel et al., 2000) where a TF can 
activate or inhibit a target gene depending on the molecular context. 

As shown in Table 15, neglecting the sign information improves the performance 
of enrichment tests without significantly changing their relative ranks. To evaluate 
why the interaction sign annotations did not improve the results, we compared the 
signs to the observed fold changes. Activating interactions conformed to our 
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expectation, i.e. up- (down-) regulation in a TF causes up- (down-) regulation, 
respectively, in their targets. In case of inhibiting effects we expected opposite fold 
changes in TFs and their target genes. This observed only rarely in the data (Figure 
13) and thus explained the reduction in the performance of the signed tests.   

5.2.3 Test performance on E. coli vs. S. cerevisiae 

In addition, we also applied the enrichment tests to expression compendia in S. 

cerevisiae. The overall ranking of tests is very consistent between prokaryotic and 
eukaryotic datasets. The performance for S. cerevisiae is somewhat lower than that for 
E. coli. These results are in line with previous studies (Narendra et al., 2010) that 
discussed the better quality of gene regulatory networks in E. coli as well as the 
simpler gene regulation in prokaryotes as possible reasons. 
 
 

 

Figure 12: Dependency of AUROC on the set of negatives (E. coli). TFs are only 
considered as negatives in the AUROC analysis if they exhibit fold-changes of less 
than a pre-defined cutoff. The x-axis shows the sizes of different negative sets (in 
brackets) compiled based on different fold-change cutoffs (|log2 (fold change)|). The 
size of the negative sets has only little influence on the AUROC (y-axis) or on the 
relative rank of the different enrichment tests. The order of curves (at 0.4) 
corresponds to the order of methods in the legend. 

5.2.4 Detection of miRNA activity 

In addition to TF-target relationships we also evaluated miRNA-target relationships. 
Here, miRNA transfection experiments in human cell lines were employed. A range 
of miRNA-target set definitions has been evaluated: databases only (ANOVA 
achieves an AUROC of 0.63), DBs+PICTAR+TargetScan (high precision prediction 
tools and ANOVA attains an AUROC of 0.83) and DBs+PITA (high recall prediction 
tool, ANOVA attains an AUROC of 0.84). Although the quality of computational 
miRNA target predictions has been discussed controversially (Ritchie et al. 2009), 
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they are required to complement the currently available manual repositories, which 
appear to be not sufficiently comprehensive for such an analysis. Although this setting 
deviates considerably from the previously discussed ones, the overall ranking of 
methods is again very consistent (Table 15 and Table 16). An exception is the 
hypergeometric test (using a differential expression threshold of 0.5) that showed the 
second best performance after ANOVA. 

Since the expression levels of miRNAs have not been measured, all miRNAs are 
used to determine the performance of tests. For AUROC analysis, the positive set 
includes all 43 single miRNA transfection experiments (which are 43 samples based 
on 18 unique miRNAs) and negative set contains (18-1)*43=731 examples. 

 

 

 

 

 

 

Figure 13: Consistency of sign annotations and fold changes (E. coli). In case of 
activation, fold changes of TFs and their target genes predominantly point into the 
same direction (red line, consistency>0.5). Consistency increases for TFs and target 
genes exhibiting higher fold changes. However, upregulated TFs rarely cause down-
regulation (or vice versa) of targets in case of inhibiting relationships (green line, 
consistency<0.5). Considering only deleted or overexpressed TFs (KO/OE: dots, left 
side) confirms this trend. 
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Statistical 

Methods 
E. coli  S. cerevisiae   

(Ho
abs

) (Ho
sig

) Y1 (Ho
abs

) Y2 (Ho
abs

) 

ANOVA 0.86 (± 0.03) 0.66 (± 0.05) 0.71 (± 0.04) 0.71 (± 0.03) 
WR 0.83 (± 0.05) 0.64 (± 0.05) 0.71 (± 0.03) 0.68 (± 0.03) 
CON 0.80 (± 0.05) 0.60 (± 0.05) 0.73 (± 0.03) 0.67 (± 0.03) 
HG-0.5 0.80 (± 0.04) 0.72 (± 0.06) 0.70 (± 0.03) 0.58 (± 0.02) 
KS 0.81 (± 0.06) 0.69 (± 0.04) 0.64 (± 0.04) 0.63 (± 0.04) 
HG-1.0 0.78 (± 0.04) 0.71 (± 0.04) 0.68 (± 0.04) 0.54 (± 0.06) 
HG-1.5 0.73 (± 0.04) 0.67 (± 0.05) 0.72 (± 0.03) 0.56 (± 0.05) 
FCR 0.74 (± 0.05) 0.53 (± 0.04) 0.71 (± 0.03) 0.68 (± 0.03) 
FC 0.72 (± 0.04) 0.51 (± 0.03) 0.75 (± 0.03) 0.68 (± 0.04) 
BT 0.72 (± 0.03) 0.51 (± 0.003) 0.72 (± 0.03) 0.67 (± 0.04) 
MED 0.67 (± 0.05) 0.50 (± 0.03) 0.69 (± 0.03) 0.66 (± 0.03) 
FCRW 0.56 (± 0.05) 0.50 (± 0.002) 0.56 (± 0.04) 0.71 (± 0.03) 

Table 15: AUROC (±standard deviations) for enrichment tests across E. coli and 
S. cerevisiae TF expression compendia. Several statistical methods are applied to 
test the null hypothesis (Ho

abs, Ho
sign) given TF-target gene set derived from databases 

(Table 10) following different test settings as described in method section. For 
AUROC analysis, the positive examples include TFs that show |log2 (fold change)| >= 
1 (which are 20 for E. coli, 54 for S. cerevisiae (Y1) and 64 for S. cerevisiae (Y2) and 
the negative examples include TFs that show |log2 (fold change)| <= 0.4 (which are 
3483 for E. coli, 9200 for S. cerevisiae (Y1), and 10167 for S. cerevisiae (Y2). 

Statistical 

Methods 

Human miRNAs 

(Ho
abs

) - 

Databases 

(P1) 

(Ho
abs

) - 

P1 + PICTAR+ 

TargetScan (P2) 

(Ho
abs

) 

P2+PITA 

(-20) (P3) 

ANOVA 0.63 0.83 0.84 (±0.03) 
HG-0.5 0.61 0.83 0.81 (± 0.03) 
CON 0.61 0.82 0.80 (± 0.01) 
WR 0.60 0.80 0.77 (± 0.03) 
KS 0.60 0.78 0.76 (± 0.03) 
FCR 0.61 0.82 0.75 (± 0.03) 
HG-1.0 0.61 0.77 0.72 (± 0.03) 
MED 0.61 0.73 0.68 (± 0.03) 
BT 0.62 0.62 0.66 (± 0.007) 
HG-1.5 0.59 0.57 0.50 (± 0.04) 
FC 0.51 0.51 0.51 (± 0.004) 

Table 16: AUROC (±standard deviations) for enrichment tests for human. 
Statistical methods are applied to test the null hypothesis (Ho

abs) given human 
miRNA-target gene set derived from miRSel (section 4.1) and computational 
prediction programs (PICTAR, TargetScan and PITA) following different test settings 
as described in the method section. In total 50 (P1), 260 (P2) and 649 (P3) miRNAs 
have been evaluated in all miRNA transfection experiments. For AUROC analysis, 
the positive set includes those miRNAs that are used for transfection in a given 
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experiment contain more than 20 targets (which are 26 and 43 in case of databases 
and computational prediction methods).  

5.2.5 Randomized testing 

To determine how the test performance depends on the quality of the available gene 
regulatory networks, we progressively randomized the regulator target sets. The 
results have shown that ANOVA, CON and WR tests were found consistently 
perform better than the other methods, whereas FCRW and HG-1.5 were found low 
performing tests. The tests KS, BT, HG-1.0 and HG-0.5 were found perform in the 
middle level. Interestingly, the HG-0.5 in human miRNA, FC in S. cerevisiae (Y1) 
and FCRW in S. cerevisiae (Y2) show a higher ranking relative to other datasets. 
Since the E. coli gold-standard is considered more reliable than S. cerevisiae as 
suggested by Narendra et al. (2010), we observed the performance of tests is better on 
E. coli than that of S. cerevisiae. However, the ability of the different tests to infer the 
activity of regulators is surprisingly stable even if, on average, about 50% of the gene 
regulatory network is randomized (Figure 14).    
 
 
 

 
 

 

 

 

 

 

 

  
 

Figure 14: Progressive randomization of gene regulatory networks. The given 
gene regulatory relationships have been randomized in steps of 25% where 100% 
represents fully randomized networks. At each step, the average AUROC from 100 
(partially) randomized networks is shown. The order of curves (at 0%) corresponds to 
the order of methods in the legend. 
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5.2.6 Consensus ranking of methods 

We computed average ranks for the examined enrichment tests based on their 
performance across different partially randomized expression compendia (E. coli, S. 

cerevisiae and human) and different scenarios (H0
abs vs. H0

sign). Thereby, we derive 
the following ordering of methods: ANOVA > CON > WR > HG-0.5 > FCR > KS > 
HG-1.0 > BT > HG-1.5 > FC > MED > FCRW. ANOVA, CON (consensus) and WR 
(Wilcoxons rank) perform consistently well across all scenarios. While HG-0.5 
(hypergeometric, with threshold 0.5), FCR (fold change rank) and KS (Kolmogorov-
Smirnov) also deliver usable results but fail in individual scenarios, the remaining 
tests (HG-1.0, BT, HG-1.5, FC, MED, FCRW) performed below average across 
several scenarios (Table 17). We note that predictions by several methods are quite 
similar so that it is not necessary to implement all methods for a good performance of 
the consensus (CON). For instance, a consensus of ANOVA, WR and HG-0.5 
improves the AUROC in E. coli from 0.80 to 0.84. 

 

 

 

Statistical 

Methods

  

Ranking based on 

≥≥≥≥10% permutation 

results Avg. of 4 test 

cases (E. coli Ho
abs

+ 

2xS. cerevisiae 

Ho
abs

+E. coli Ho
sign

) 

Ranking without 

permutation 

Avg. of 4 test cases 

(E. coli Ho
abs

+ 2xS. 

cerevisiae Ho
abs

+E. 

coli Ho
sign) 

Ranking without 

permutation Avg. 

of 3 test cases 

(human miRNAs: 

P1, P2, P3) 

Ranking based 

on 25% 

permutation 

(human 

miRNAs) 

ANOVA 2 1 1 1 
CON 1 3 3 2 
WR 3 2 4 3 
HG-0.5 8 4 2 4 
FCR 6 8 6 5 
KS 9 5 5 6 
HG-1.0 11 6 7 7 
MED 10 11 8 8 
BT 4 10 9 9 
HG-1.5 7 7 10 10 
FC 5 9 11 11 
FCRW 12 12 12 12 

Table 17: Ranking of statistical methods based on their performance for 

different test settings including permutation analysis. In total 12 different 
statistical methods are applied to test the null hypothesis (Ho

abs, Ho
sign)  given 

miRNA/TF-target gene set derived from databases (miRSel, RegulonDB, 
TRANSFAC, JASPER and UCSC) and computational prediction programs following 
different test settings as described in method section. The statistical methods are 
ranked based on their performance across different test scenarios including E. coli, S. 
cerevisiae and human miRNA gene expression compendia.  



 

5.3 MIRTFnet: Analysis of miRNA regulated transcription factors 

We applied the selected GSE tests to assemble regulatory network models from 
miRNA transfection measurements (see section 4.3 for details). This section explains 
the results including TFs and miRNAs activity analysis and model of miRNA action 
in the following subsections. 

5.3.1 Evaluation of the transfecting miRNAs 

We first evaluated how well the miRNAs used for transfection (called primary 
miRNAs) are detected by MIRTFnet. Only for these miRNAs we can be certain that 
they should be recognized as active. By using miRNA targets from predictions and 
databases, transfecting miRNAs were recognized in 42 out of 43 miRNA transfection 
experiments (Table 18). In most experiments, p-values for transfecting miRNAs were 
well below the alpha value of 0.05 (see Supplementary Material published in Naeem 

et al. (2011)). This suggests that active regulators can be detected reliably by 
MIRTFnet. Here we find that the Wilcoxon (WR) test identifies 98% of the 
transfecting miRNAs. Only 79% and 42% of the transfecting miRNA were identified 
by the Kolmogorov-Smirnov (KS) and Hypergeometric (HG) tests, respectively (see 
Table 18). The re-detection of the transfecting miRNA from differential expression of 
the miRNA targets has also been described in (Farh et al., 2005; Sood et al., 2006; 
Arora et al., 2008; Cheng et al., 2008; Tu et al., 2009; Volinia et al., 2010; Ott et al., 
2011), where similar recall rates have been reported.  
 
Datasets Transfect. / 

overexpressed 

miRNA 

Cell line Time point Primary miRNA detected 

WR test KS test HG test 

Selbach 

et al., 

2008 

miR-155 Hela 8 √ √ - 

miR-155 Hela 32 √ - √ 

miR-16 Hela 8 √ √ - 

miR-16 Hela 32 √ √ √ 

let-7b Hela 8 - - - 

let-7b Hela 32 √ √ - 

Georges 

et al., 

2008 

miR-192 HCT116  24 √ - √ 

miR-192 HCT116  10 √ - √ 

miR-215 HCT116  10 √ - - 

miR-215 HCT116  24 √ - √ 

Baek et 

al., 2008 

miR-124 Hela 24 √ √ - 

miR-1 Hela 24 √ √ - 

miR-181a Hela 24 √ √ - 

He et al., 

2005 

miR-34a A549 H-1 24 √ √ - 

miR-34b A549 H-1 24 √ √ - 

miR-34a HCT116 24 √ √ √ 

miR-34b HCT116 24 √ √ - 

miR-34a TOV21G 24 √ √ - 

miR-34b TOV21G 24 √ √ - 

miR-34a DLD  24 √ √ √ 

miR-34b DLD 24 √ √ - 
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miR-34a HeLa 24 √ √ √ 

miR-34b HeLa 24 √ √ - 

miR-34a A549 p53 24 √ √ - 

miR-34b A549 p53 24 √ √ - 

Grimson 

et al., 

2007 

miR-7 Hela 12 √ √ - 

miR-7 Hela 24 √ √ √ 

miR-9 Hela 12 √ √ √ 

miR-9 Hela 24 √ √ - 

miR-122 Hela 12 √ √ - 

miR-122 Hela 24 √ √ - 

miR-128 Hela 12 √ √ - 

miR-128 Hela 24 √ √ √ 

miR-132 Hela 12 √ √ √ 

miR-132 Hela 24 √ √ - 

miR-133a Hela 12 √ √ √ 

miR-133a Hela 24 √ √ √ 

miR-142-3p Hela 12 √ - √ 

miR-142-3p Hela 24 √ - √ 

miR-148b Hela 12 √ √ - 

miR-148b Hela 24 √ √ √ 

miR-181a Hela 12 √ √ - 

miR-181a Hela 24 √ √ - 

Table 18: Prediction of active miRNAs based on miRNA targets derived from 

databases and predictions. The transfecting miRNAs have been detected as active in 
42 out of 43 miRNA transfection experiments based on Wilcoxon (WR) test. 15 out 
of 17 transfecting miRNAs in 34 out of 43 miRNA transfection experiments have 
been identified as active applying the Kolmogorov-Smirnov (KS) test. 13 out of 17 
transfecting miRNAs in 18 out of 43 miRNA transfection experiments have been 
detected applying the hypergeometric (HG) test. 7 out of 17 transfecting miRNAs 
activity in 11 out of 43 miRNA transfecting experiments have been detected as active 
applying the WR, KS and HG tests. 4 out of 17 miRNAs detected as active in 6 out of 
43 miRNA transfections applying the WR and HG tests. Overall, the WR test 
performs better than the KS and HG tests.          
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5.3.2 Area under the ROC (AUROC) analysis 

In addition to recall, we also analyze the specificity of detection. Therefore, we 
evaluated how many other miRNAs (called secondary miRNAs) are statistically 
shown to be active in response to miRNA (called primary miRNA) transfection 
experiments. We assessed the performance of each method by the area under the 
receiver operating characteristic (AUROC) curve, a measure combining specificity 
and recall (section 2.4). Here, we considered primary miRNAs as positive examples 
and secondary miRNAs as negative examples. This assessment might underestimate 
the true performance, for instance if miRNA transfection causes activity changes in 
secondary miRNAs that we count as false positives. Overall, Wilcoxon test was found 
better than KS and HG tests.  

Using the databases (i.e., miRSel, TarBase and miRecords) miRNA-gene target 
associations, the WR test achieves an AUROC of 0.73, KS test achieves an AUROC 
of 0.68 and the HG test attains an AUROC of 0.62 (first 25 experiments). We 
improved the target gene set by adding the PICTAR and TargetScan miRNA-gene 
target predictions. In this case WR, KS and HG test achieve AUROC’s of 0.76, 0.75 
and 0.71, respectively. We also tested the performance by complementing the testing 
set with PITA predictions. In case of PITA predictions compiled at stringent threshold 
improves the WR test AUROC to 0.81, KS test AUROC to 0.79 and HG test AUROC 
to 0.62. In case of a less stringent PITA prediction threshold the performance of 
AUROC decreases. Overall, the WR test achieves higher AUROC than KS and HG 
test (see Table 19 and 20 for more details).  
 
 
miRNA-gene target source Tested 

secondary 

miRNAs 

AUROC 

WR test KS test HG test 

Databases (DB) 314 0.73 0.68 0.62 
DB+ PICTAR+TargetScan(P1)     404 0.76 0.75 0.71 
P1+PITA(threshold of -20) 775 0.81 0.79 0.62 
P1+PITA(threshold of -11) 780 0.67 0.65 0.57 
P1+PITA(threshold of -6) 780 0.67 0.66 0.57 

Table 19: AUROC performance of Wilcoxon, Kolmogorov-Smirnov and 
hypergeometric test using 25 miRNA transfections.  The performance of each 
method has been accessed by means of area under the ROC curve. The Wilcoxon 
(WR), Kolmogorov-Smirnov (KS) and Hypergeometric (HG) test has been applied to 
determine the significance of each miRNA (i.e., primary/transfecting and secondary 
miRNA) using the databases and prediction tools miRNA-gene target associations in 
all 25 miRNA transfections. For AUROC the primary or the transfecting miRNA in 
each transfecting experiment is considered as positive example (which are 25 in total) 
and the rest of the miRNAs are considered as negative examples. Using the databases 
miRNA-gene pairs the WR, KS and HG test achieve the AUROC of 0.73, 0.68 and 
0.62. Combining the databases and prediction tools (e.g., PICTAR and TargetScan) 
miRNA-gene target associations improves the AUROC scores. Overall, the WR test 
achieves the best AUROC in comparison to KS and HG test.   
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We also use the data of Georges et al., (2008) that measured the gene expression data 
in Hela cells at 12h and 24h after miRNA overexpression of miR-7, miR-9, miR-122, 
miR-128, miR-132, miR-133, miR-142 and miR-181a (18 transfections in total). We 
applied the WR, KS and HG test to measure the significance of all miRNAs (780 in 
total) in these experiments. We then measured the AUROC for combined (25+18 
transfections) 43 miRNA transfection experiments. In this case combining the 
databases and prediction tools (e.g., PICTAR, TargetScan and PITA (using the most 
stringent threshold of -20)) miRNA-gene targets improves the AUROC of WR test to 
0.88, KS to 0.86 and HG test to 0.65 in comparison to first 25 miRNA transfections 
results (Table 20).  The AUROC is further increased to 0.91 if only those primary 
miRNAs were considered that are found statistically active by both the WR and KS 
test.  
 
 
 
 
miRNA-gene target source Tested 

secondary 

miRNAs 

AUROC 

WR test KS test HG test 

Databases (DB) 314 0.63 0.59 0.58 
DB+ PICTAR+TargetScan(P1) 404 0.88 0.87 0.70 
P1+PITA(threshold of -20) 775 0.88 0.86 0.65 
P1+PITA(threshold of -11) 780 0.71 0.69 0.58 
P1+PITA(threshold of -6) 780 0.68 0.67 0.60 

Table 20: AUROC performance of Wilcoxon, Kolmogorov-Smirnov and 
hypergeometric test using 43 miRNA transfections. The performance of each 
method has been accessed by means of area under the ROC curve. The Wilcoxon 
(WR), Kolmogorov-Smirnov (KS) and hypergeometric (HG) test has been applied to 
determine the significance of each miRNA (i.e., primary/transfecting and secondary 
miRNA) using the databases and prediction tools miRNA-gene target associations in 
all 43 miRNA transfections. For AUROC the primary or the transfecting miRNA in 
each transfecting experiment is considered as positive example (which are 43 in total) 
and the rest of the miRNAs are considered as negative examples. Using the databases 
miRNA-gene pairs the WR, KS and HG test achieve the AUROC of 0.63, 0.59 and 
0.58. Combining the databases and prediction tools (e.g., PICTAR and TargetScan) 
miRNA-gene target associations improves the AUROC scores. In case of PITA 
predictions (filtered at a threshold of -11 and -6), the AUROC improves in 
comparison to databases but decreases in comparison to combine including PICTAR, 
TargetScan and databases miRNA-target gene pairs. Combining the PITA predictions 
(compile at stringent threshold) improve the AUROC of WR test more than the other 
methods including KS and HG test.   
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5.3.3 Detection of active transcription factors 

Wilcoxon test 

 
Active TFs (Table 21) were detected: 1) if they exhibit a fold change of at least two in 
a given miRNA transfection experiment or 2) via the differential expression of their 
direct downstream targets (obtained from JASPAR, UCSC and TRANSFAC) using 
statistical tests as described in method section. In the Selbach et al. (2008) miRNA-
transfection datasets for instance, we identified more than 20 active TFs (e.g., ELK4, 
CREB1, E2F1 and MAFB) and 10 TF based on fold change (e.g., TP53, ZEB1, 
ZNF423, FOSB and FOX03) applying the Wilcoxon’s test. We have also found five 
TFs (FOS, CREB1, ID1, ZNF423 and MYB) that are both statistically significant and 
differentially expressed in the miR-155 (32hr), let-7b (32hr), miR-34a and miR-34b 
(24hr) miRNA transfection experiments. Thus, a total of 88 TFs have been detected 
applying the Wilcoxon’s test.  

Kolmogorov-Smirnov test 

In addition to WR test we also applied the Kolmogorov-Smirnov (KS) test and the 
hypergeometric test. The KS test identified in total 73 active TFs (Table 21). 69 out of 
71 KS active TFs have also been identified by the Wilcoxon’s test. In most of the 
cases, the TFs identified by the KS test are a subset of those identified by WR test. 
 
Hypergeometric test 

 
As proposed by Sohler et al. (2005), Essaghir et al. (2010) and Liu et al. (2010), we 
also applied the hypergeometric (HG) test (equivalent to Fisher’s test). The HG test 
identified only very few active TFs (Table 21). The HG p-values were consistently 
higher (less significant) than the p-values derived from the WR and KS test.  
 

 

Dataset Transfec. 

/over 

expressed 

miRNA 

Cell line Time 

point 

Total Fold 

change 

(FC) 

FC+ 

sig. 

Statistically significant TFs 

WR KS 

test 

Shared 

KS+WR 

HG 

test 

Shared 

HG+WR 

Selbach 

et al., 

2008 

miR-155 HeLa 8 27 7 0 20 6 6 0 0 

miR-155 Hela 32 30 11 3 16 13 13 6 3 

miR-16 Hela 8 20 9 0 11 2 2 1 0 

miR-16 Hela 32 34 10 0 24 17 17 0 0 

let-7b Hela 8 27 5 1 21 9 9 5 3 

let-7b Hela 32 25 8 1 16 9 9 5 4 

Georges 

et al., 

2008 

miR-192 HCT116  24 19 2 0 17 12 12 1 0 

miR-192 HCT116  10 25 0 0 25 12 12 0 0 

miR-215 HCT116  10 20 0 0 20 10 10 0 0 

miR-215 HCT116  24 20 1 0 19 10 10 1 0 

Baek et 

al., 2008 

miR-124 Hela 24 33 4 0 29 31 28 0 0 

miR-1 Hela 24 40 2 0 38 34 34 0 0 

miR-181a Hela 24 22 5 0 17 24 17 0 0 

He et al., miR-34a A549 H-1 24 64 0 0 64 62 61 0 0 



74 5.3 MIRTFnet: Analysis of miRNA regulated transcription factors

 

2005 miR-34b A549 H-1 24 57 0 0 57 56 52 0 0 

miR-34a HCT116 24 65 4 1 60 58 55 0 0 

miR-34b HCT116 24 66 3 0 63 59 58 0 0 

miR-34a TOV21G H1 24 71 0 0 71 59 59 0 0 

miR-34b TOV21G H1 24 64 0 0 64 62 62 0 0 

miR-34a DLD  24 65 1 1 63 60 59 0 0 

miR-34b DLD 24 59 3 1 55 53 51 0 0 

miR-34a HeLa 24 64 0 0 64 62 60 0 0 

miR-34b HeLa 24 63 0 0 63 57 56 0 0 

miR-34a A549 p53 24 61 0 0 61 60 58 0 0 

miR-34b A549 p53 24 59 0 0 59 60 56 0 0 

Grimson 

et al., 

2007 

miR-7 Hela 12 9 0 0 9 4 4 0 0 

miR-7 Hela 24 0 0 0 0 0 0 0 0 

miR-9 Hela 12 31 2 0 29 15 15 0 0 

miR-9 Hela 24 9 0 0 9 0 0 0 0 

miR-122 Hela 12 5 3 0 2 1 1 2 1 

miR-122 Hela 24 29 4 1 24 18 17 2 2 

miR-128 Hela 12 4 0 0 4 6 4 0 0 

miR-128 Hela 24 12 1 0 11 8 7 0 0 

miR-132 Hela 12 0 0 0 0 0 0 0 0 

miR-132 Hela 24 0 0 0 0 0 0 0 0 

miR-133a Hela 12 27 5 1 21 14 13 4 2 

miR-133a Hela 24 31 12 2 17 16 16 9 6 

miR-142-3p Hela 12 3 0 0 3 2 2 0 0 

miR-142-3p Hela 24 2 0 0 2 0 0 0 0 

miR-148b Hela 12 8 1 0 7 6 5 0 0 

miR-148b Hela 24 19 1 0 18 11 11 1 0 

miR-181a Hela 12 0 0 0 0 0 0 0 0 

miR-181a Hela 24 9 0 0 9 5 5 0 0 

Total    120 52 7 88 73 71 21 12 

 

Table 21: Prediction of active TFs based on the expression of their target genes.  
Overall, 120 TFs have been identified by MIRTFnet (applying the Wilcoxon (WR) 
test) with the used datasets. 73 and 21 TFs have been detected applying the 
Kolmogorov-Smirnov (KS) and hypergeometric (HG) test in 37 and 11 out of 43 
miRNA transfection profiles. The WR, KS and HG test does not find any significant 
TF in 4, 6 and 32 out of 43 miRNA transfection profiles. In 15 out of 37 miRNA 
transfection profiles the detected significant TFs overlap between the WR and KS test 
is 100%. In all of these cases WR test has detected more active TFs than KS test. 
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5.3.4 Rank distribution of active TFs  

We detect regulators such as miRNAs and TFs as active via the expression of their 
putative target genes. If the mean expression of the target genes is significantly 
different to the mean expression of the remaining genes we identify the corresponding 
regulator as active according to the applied tests. As an example for an active 
transcription factor we depict ELK4 in the transfection experiment of has-miR-155 at 
32h (Figure 15). JASPAR predicts 1,826 putative targets of ELK4. Compared to the 
16,101 remaining genes, ELK4 targets exhibit larger fold changes and thus higher 
ranks than expected by chance. 
 
 
 
 

 

 

Figure 15: Rank distributions of putative ELK4 targets. The ranks are derived 
from the list of target genes sorted according to their fold changes (blue) in the miR-
155 transfection experiment at 32h. The distributions are normalized to show the 
relative overrepresentation of ELK4 targets (red) vs. the remaining genes (green) in 
histogram bins of |log2(fold change)| > 0.4 (corresponding to fold changes > 1.3, or < 
0.75) ELK4 targets are enriched by about 50% compared to |log2(fold change)| < 0.4. 
ELK4 is thus identified as an active regulator with a p-value of 2.87E-11 according to 
the Benjamini-Hochberg corrected Wilcoxon’s test. 
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Interestingly, the enrichment of differentially expressed ELK4 target genes is already 
noticeable at moderate fold-changes (> 1.3, or < 0.75). Note that Figure 15 serves 
only as visualization whereas active TFs are only determined by the statistical tests 
described in method section. To summarize the analysis of all TFs across all miRNA 
transfection profiles, we show the p-value distributions as derived from WR and KS 
tests in Figure 16. 
 
 
 
 
 

 

Figure 16: P-value distribution of TFs in miRNA transfection experiments. To 
detect active TFs, the statistical tests have been applied to 196 TFs across 43 
transfection profiles (Y-axis: 196*43=8428). If a test assigns a p-value of less than 
0.05 after multiple testing correction a given TF is identified as active for the given 
measurement. Depicted are the p-value distributions of the WR and KS tests, i.e. the 
number of TF that fall in a given p-value range according to the respective test. 
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5.3.5 Randomized Testing 

We also evaluate whether TF are detected as active by chance. Here, we randomize 
the association of gene names and expression levels in each experiment and apply the 
WR and KS test as described in the methods section. We shuffle gene labels and 
expression levels randomly 100 times. The test did not find a single regulator as 
active (neither miRNA nor TF) at a corrected p-value of less than 0.05 after applying 
multiple testing correction using the method of Benjamini and Hochberg (Benjamini 

and Yekutieli, 2001). This was true regardless of which sub-selections of miRNA-
target or TF-target data sources were used. For instance, in case of miRNA-targets we 
tested curated databases, databases plus low recall prediction tools (e.g., PICTAR and 
TargetScan) and databases plus high recall prediction tools (e.g., PICTAR, 
TargetScan and PITA). 
 

 

5.3.6 Global expression pattern explained by active TFs 

Based on protein-protein interactions, miRNA-targets and TF-targets, we constructed 
transfection experiment specific models that connect the transfecting miRNA via 
causal relationships to the TFs that were detected as active using the proposed 
statistical tests.  

In each transfection profile, 196 TFs were tested. On average, 23 TFs were 
detected as active by both the WR and KS tests. Here, 21 out of 23 TFs could be 
connected to the transfecting miRNA based on causal relationships (compare 
Supplementary File S4 published in Naeem et al. (2011)).   

We used miRNA-targets and TF-targets from curated databases as well as 
computational predictions (Figure 7).  

We analyzed to what extent regulators (e.g., miRNAs and TFs) and their 
known/predicted target genes can explain the overall expression changes observed on 
the microarrays. Table 22 shows the gene regulation that can be explained by 
MIRTFnet via miRNA-TF relations. The identified TFs and their target genes thus 
provide a potential explanation for the majority (on average 67%, Supplementary File 
S1 published in Naeem et al. (2011) shows the exact numbers for each measurement) 
of the observed differential expression in the examined miRNA transfection 
experiments (e.g., Figure 17).  
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Dataset miRNA, Time 

point 

Cell Line Diff. exp. 

genes 

(down/up) 

miRNA 

down 

reg. 

targets 

miRNA-

regulated 

TF: 

targets 

(Sig. TFs) 

TF-

regulat

ed TF: 

targets 

(Sign. 

TFs) 

Regulated 

genes 

(down/up) 

Percentage 

combined 

(down 

/up) 

regulated 

Selbach 

et al., 

2008 

miR-155(8hr) Hela 268(189/78) 57 97(6) 52(5) 148(109/39) 55(57/50) 

miR-155(32hr) Hela 534(385/148) 201 283(12) 110(7) 382(303/79) 71(78/53) 

miR-16(8hr) Hela 360(250/110) 130 108(5) 57(5) 211(168/43) 58(67/39) 

miR-16(32hr) Hela 516(269/247) 174 277(15) 215(10) 380(235/145) 73(87/58) 

let-7b(8hr) Hela 236(168/67) 56 102(6) 92(7) 150(112/38) 63(66/56) 
let-7b(32hr) Hela 259(138/120) 63 117(9) 66(3) 154(99/55) 59(71/45) 

Georges 

et al., 

2008 

miR-192(24hr) HCT116 71(40/31) 33 27(6) 36(6) 55(38/17) 77(95/54) 

miR-192(10hr) HCT116 9(5/4) 5 3(3) 3(2) 6(5/1) 66(100/25) 

miR-215(10hr) HCT116 9(5/4) 5 3(2) 6(3) 7(5/2) 77(100/50) 

miR-215(24hr) HCT116 105(49/56) 45 30(5) 38(4) 70(47/23) 66(95/41) 
Baek et 

al., 2008 
miR-124(24hr) Hela 324(171/153) 65 164(18) 120(10) 203(120/83) 62(70/54) 

miR-1(24hr) Hela 143(26/117) 8 62(15) 68(13) 82(17/65) 57(65/55) 

miR-181a(24hr) Hela 399(205/194) 44 121(9) 158(8) 200(107/93) 50(52/47) 
He et al., 

2005 
miR-34a(24hr) A549 48(19/29) 12 24(28) 25(24) 33(15/18) 68(78/62) 

miR-34b(24hr) A549 27(8/19) 3 8(15) 10(22) 12(4/8) 44(50/42) 

miR-34a(24hr) HCT116 150(98/52) 75 93(27) 82(24) 127(92/35) 84(93/67) 

miR-34b(24hr) HCT116 131(71/60) 30 77(24) 83(34) 96(56/40) 73(78/66) 

miR-34a(24hr) TOV21G 11(7/4) 5 5(11) 5(10) 9(6/3) 81(85/75) 

miR-34b(24hr) TOV21G 7(6/1) 3 1(1) 1(0) 4(4/0) 57(66/0) 

miR-34a(24hr) DLD 126(97/29) 72 84(30) 69(25) 108(88/20) 85(90/68) 

miR-34b(24hr) DLD 202(123/79) 46 111(19) 120(30) 145(94/51) 71(76/64) 

miR-34a(24hr) HeLa 57(39/18) 29 23(29) 24(24) 40(31/9) 70(79/50) 

miR-34b(24hr) HeLa 67(39/28) 19 32(22) 37(32) 42(30/12) 62(76/42) 

miR-34a(24hr) A549 59(27/32) 19 37(30) 35(23) 45(24/21) 76(88/65) 

miR-34b(24hr) A549 40(18/22) 4 15(19) 23(27) 26(10/16) 65(55/72) 
Grimson 

et a., 

2007 
miR-7(12hr) Hela 68(39/29) 27 5(1) 14(1) 37(32/5) 54(82/17) 

miR-7(24hr) Hela 34(28/6) 19 0(0) 0(0) 19(19/0) 55(67/0) 

miR-9(12hr) Hela 110(45/65) 28 42(9) 23(6) 63(35/28) 57(77/43) 

miR-9(24hr) Hela 14(13/1) 6 0(0) 0(0) 6(6/0) 42(46/0) 

miR-122(12hr) Hela 337(181/156) 56 0(0) 0(0) 56(54/2) 16(29/1) 

miR-122(24hr) Hela 654(360/294) 165 295(8) 174(7) 404(255/149) 61(70/50) 

miR-128(12hr) Hela 51(44/7) 19 4(2) 2(1) 23(22/1) 45(50/14) 

miR-128(24hr) Hela 88(56/32) 44 27(5) 9(1) 52(47/5) 59(83/15) 

miR-132(12hr) Hela 104(78/26) 51 0(0) 0(0) 51(51/0) 49(65/0) 

miR-132(24hr) Hela 52(28/24) 12 0(0) 0(0) 12(12/0) 23(42/0) 

miR-133a(12hr) Hela 77(31/46) 29 29(9) 29(6) 54(28/26) 70(90/56) 

miR-133a(24hr) Hela 267(107/160) 82 120(10) 128(12) 186(94/92) 69(87/57) 

 

Table 22: Percentage of differentially expressed genes explained by MIRTFnet 
(37 miRNA transfection experiments). In case of the miR-155 transfection at 8hr, 
148/268=55% of the differentially expressed genes can be explained by the union of  
the 67 direct target genes of miR-155, the 97 targets of the 6 TFs directly targeted by 
miR-155 and the 52 targets of the 5 TFs indirectly affected by miR-155. Indirectly 
affected TFs are connected to miR-155 by miRNA-(kinase-)(TF-…-)TF chains 
(Figure 17). The 6+5 TFs were identified as active TFs by MIRTFnet (applying the 
Wilcoxon (WR) and Kolmogorov-Smirnov (KS) tests). We regard genes as 
differentially expressed if they exhibit a fold change of at least 2 or less than 0.5.  
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Figure 17: Model of the regulatory network induced by miR-155 (8-hr) 
transfection. The red box shows the transfected human (hsa) miR-155; orange box 
nodes indicate the miRNA-regulated kinases; blue circle nodes represent TFs that are 
regulated either directly by the transfected miR-155 or by miRNA-regulated kinases; 
the green circle nodes represent TFs that are regulated by miRNA-targeted TFs, 
subject to indirect regulation of miR-155 on TFs. All TFs were identified as active 
TFs by MIRTFnet (applying the Wilcoxon (WR) and Kolmogorov-Smirnov (KS) 
tests) (section 4.3). The active TFs were connected to the transfected miRNA by 
interactions extracted from databases or computational predictions (Table 12). 
Additionally, kinases were connected via miRNA-kinase-TF causal relationships i.e. 
they usually do not receive direct support from the expression profile. 55% of the 
differential expression pattern can be explained by the extracted miR-155-TF 
regulatory network model. Here, genes are regarded as differentially expression if 
they exhibit a fold change of at least 2 or less than 0.5 (Table 22).   
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5.3.7 miRNA-target TF associations in databases and prediction programs 

Whether a connection between the transfecting miRNA and active TFs can be 
established depends on the current databases and sequence based prediction programs 
of miRNA target genes (Figures 7 and 17).  

Based on these associations we aim to construct models of miRNA actions (see 
methods section 4.3). However, these would be very small if only databases as well as 
PICTAR and TargetScan are used for model construction (Figure 18). Here, only four 
TFs on average would be connected to the transfecting miRNA. To improve this 
recall, PITA miRNA-gene associations are used as well. The combined miRNA-gene 
associations suggest connections to about 16 active TFs for all of the examined 
miRNA transfection experiments.  

 

 

 

 

Figure 18: Significant TFs predicted by databases and/or sequence prediction 
programs of miRNA-target genes. TFs are detected as active by analyzing the 
expression levels of their downstream targets (Wilcoxon’s test). Active TFs can be 
predicted from databases in 18 out of 25 miRNA transfection experiments (on average 
3 TFs per miRNA transfection experiment). PICTAR and TargetScan prediction 
programs can predict on average 3 and 4 active TFs in 19 and 16 out of 25 miRNA 
transfection experiments, respectively. PITA can predict TFs in all 25 miRNA 
transfection experiments (on average 15 active TFs per transfection profiles). To 
improve recall, the miRNA-gene associations of databases and prediction programs 
are combined (on average 16 active TFs per transfection).  
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5.3.8 Detected TFs and their reported roles in cancer – literature mining 

miRNAs play potential roles in the pathogenesis of different diseases including cancer 
(Lu et al., 2005; Li et al., 2010). Some miRNAs may be directly involved in cancer 
development by controlling cell differentiation and apoptosis or by targeting cancer 
oncogenes and/or tumor suppressors (Jovanovic and Hengartner, 2006; Sassen et al., 
2008; Subramanian et al., 2010). All of the transfection experiments analyzed in this 
thesis have been described in the literature as cancer relevant.  

The miR-192, miR-215 and miR-34 experiments were analyzed because these 
miRNAs are reportedly regulated by p53 and are thus potentially involved in cancer 
related processes (He et al., 2007; Georges et al., 2008). We also analyzed the miR-
155, let-7 and miR-16 transfection experiments (Selbach et al., 2008) for which 
interactions with p53 have been reported as well (Suzuki et al., 2009; Gironella et al., 
2007). We thus expect to predominantly identify cancer related TFs which we will 
evaluate below as a proof of concept of MIRTFnet. The cancer specific involvement 
of many of the TFs MIRTFnet determined as active is indeed discussed in the 
literature.  

In case of the miR-155 transfection, we detected oncogenic TFs (e.g., SPI1, 
MYCN, MAFB, FOS and REL) and the tumor suppressor TP53, which may suggest a 
tumor-induction effect. Previous reports have experimentally confirmed that SPI1 
(Pu.1) reduces the transcriptional activity of the p53 tumor suppressor family (Tschan 

et al., 2008). The deregulation of MYCN leads to cell cycle exit and terminal 
differentiation (Bell et al., 2007; Otto et al., 2009). 

In the miR-16 transfection, we found target genes of oncogenic TFs (e.g., MAFB, 
MYB) including Cyclin D1/CCND1 and CDK6 to be differentially expressed as well. 
Both CCND1 and CDK6 are experimentally validated targets of miR-16 that induce 
cell cycle arrest (Cimmino et al., 2005; Liu et al., 2008). 

In case of let-7b transfection, tumor suppressor TP53 and oncogenes such as E2F1, 
FOS and FOSB have been found active, which might hint to tumor-suppressing 
effects of let-7b. Recently, the let-7 family miRNAs were found to inhibit E2F family 
oncogenes (Tu et al., 2009). The TFs (e.g., TP53, FOS and FOSB) are predicted 
targets of let-7b (Kertesz et al., 2007). The let-7 family is described to be in many 
human cancers (Boyerinas et al., 2010; Barh et al., 2010). 

Recent studies confirm that TP53 regulates apoptosis by targeting miRNAs, such 
as miR-34, miR-192 and miR-215 (Subramanian et al., 2010; Hermeking et al., 2010; 
Chang et al., 2007; Braun at al., 2008). The miR-34, miR-192 and miR-215 halt cell 
cycle progression by co-ordinately targeting transcripts that play critical roles in 
mediating cell cycle control (Corney et al., 2007; Welch et al., 2007; Georges et al., 
2008). Our results showed that miR-34 alters the activity of the MYCN, MYB, 
MAFB and E2FI oncogenes, all being involved in apoptosis and cell proliferation 
(Wei et al., 2008; Grönroos et al., 2004). The predicted target of miR-34, YY1 has 
been shown to down-regulate TP53 (Grönroos et al., 2004). miR-192 and miR-215 
were found to inhibit HOXA10 and several oncogenes (e.g., MYCN and MAFB). 
Furthermore, miR-192 and miR-215 were found to down-regulate CDC7, which 
might provide an additional explanation for the involvement on miRNAs in the p53 
pathway to mediate cell cycle and apoptosis (Kim et al., 2002).  
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Also in case of miR-9 transfection, tumor suppressor p53 and oncogene 
transcription factors such as Runx1, E2F1, MYCN and MYB have been found active. 
Both MYC and MYCN oncoproteins act on the mir-9-3 locus and cause activation of 
miR-9 expression in tumor cells (Ma et al., 2010). Runx1 is an experimentally 
validated target of miR-9 and has been reported to act as tumor suppressor, dominant 
oncogene or mediator of metastasis (Wotton et al., 2004; Ben-Ami et al., 2009). In 
case of miR-122, TFs such as MAFB and SRF have been found active. SRF is an 
experimentally validated target of miR-122 and it regulates cell proliferation, 
differentiation, and cytoskeletal reorganization (Bai et al., 2009). 

5.3.9 miRNA-TF regulatory model upstream and downstream of TP53 

The literature discussed in the previous section implies the involvement of the 
examined miRNAs and the identified TFs in cancer related processes. For a proof of 
concept of MIRTFnet, we analyze whether this common background is also reflected 
by a common set of TFs active across several of these experiments. Therefore, we 
compiled individual regulatory models (Figure 7) from all examined miRNA 
transfection experiments. The detailed models characterize the miRNA downstream 
actions in terms of kinases as well as active TFs that are mutually connected by 
interactions from databases or computational predictions (see Figure 17 as well as 
Supplementary Material on the website at http://www.bio.ifi.lmu.de/en/forschung 
/expression-analysis/mirtfnet). Interestingly, these models show substantial overlaps. 
In the following, we discuss the two intersection models constructed from the TFs 
and/or kinases contained in the regulatory networks (1) upstream and (2) downstream 
of TP53 that are contained in at least 7 of 19 individual models. By analyzing 
transfection experiments of sets of functionally related miRNAs we found that each 
set addresses a common core of transcription factors specific for that set. 

The upstream miRNAs such as miR-155, miR-16 and let-7b are found to regulate 
TP53 (Gironella et al., 2007; Suzuki et al., 2009). The miRNAs such as miR-34, miR-
192 and miR-215 are found to be regulated by the p53 transcription factor (He et al., 
2007; Georges et al., 2008; Subramanian et al., 2010). The upstream intersection 
model including miR-155, miR-16 and let-7b miRNA transfection, shows that these 
miRNAs regulate tumor suppressor TP53 and oncogeneic TFs (e.g., FOS, E2F1) 
(Figure 19). In comparion to the upstream model, in the downstream intersection 
model miR-34a/b, miR-192 miRNA transfection were found to regulate oncogeneic 
TFs (e.g., MAFB, ELK4, GATA3) (Figure 20). A minority of TFs is part of the 
upstream and downstream miRNA-TF models. These TFs regulate common oncogene 
TFs (e.g.,  CREB1, SPI1, etc). Thus, although the detected active TFs are all involved 
in cancer (further substantiated in the following section), the two regulatory models 
are quite distinct demonstrating that specific results are obtained from analyzing 
different sets of miRNAs. 
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Figure 19: Upstream of TP53: intersection of miR-155, miR-16 and let-7b 
models. Individual regulatory models of the miR-155, miR-16 and let-7b transfection 
experiments are compiled by MIRTFnet and intersected (based on common set of 
active TFs). These models show substantial overlaps, regulating directly or indirectly 
oncogene TFs (such as TP53, FOS, CREB1). The interaction of these miRNAs with 
p53 have also been reported in the literature (Gironella et al., 2007; Suzuki et al., 
2009).  
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Figure 20: Downstream of TP53: intersection of miR-34a, miR-34b and miR-192 
models. As in Figure 19, individual models of miR-192 and miR-34 microRNAs have 
been intersected. The shown microRNAs are reportedly regulated by TP53 and are 
thus potentially involved in cancer related processes (Chang et al., 2007; Hermeking 
et al., 2010).  

5.3.10 Pathway and Gene Ontology analyses of the regulatory model 

Here, we disregarded 6 examined datasets to avoid a bias towards miR-34. The 
intersection model contains 21 TFs and 34 kinases. We first analyzed the contained 
kinases. Kinases were included because of miRNA-kinase-active TF links, i.e. they 
usually do not receive direct support from the expression measurements. According to 
a pathway analysis using DAVID (Huang et al., 2009), these kinases are associated 
with several KEGG signalling pathways including the MAPK, cancer, cell cycle and 
apoptosis pathways. 17 out of 34 kinases are part of the KEGG MAPK signalling 
pathway (e.g. MAPK9, MAPK8, CHUK, NLK and MAPK14). The MAPK signalling 
pathway is immediately connected to the p53 signalling pathway. 12 kinases are also 
part of the KEGG cancer signalling pathway (e.g. PTK2, MAPK3 and SKP2).  

Notably, most of the active TFs detected by our approach are well known for their 
involvement in cancer. According to the DAVID analyzes in pathway databases such 
as KEGG or BioCarta, only cancer related pathways were detected with statistical 
significance. These included the KEGG pathways ‘prostate cancer’, ‘pancreatic 
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cancer’, ‘apoptosis’ and ‘pathways in cancer’, which  account for 10 of the TFs 
identified as active (i.e., ELK4, NFKB1, TP53, FOS, SPI1, CREB1, RELA, REL, 
E2F1 and ARNT). According to enrichment analysis of GO terms (DAVID), the TFs 
in the intersection model are associated with over 100 categories including cell 
differentiation.  

For instance, CREB1 as well as the NFκB TF complex (NFKB1, RELA, REL) 
trigger cell survival and cell proliferation processes. Four additional TFs are 
oncogenes (REL, ELK4, MYB and MAFB). Another two TFs (PAX5 and SP1) are 
involved in cell differentiation, which also is a cancer associated process. For the 
remaining TF YY1 associations with cancer through p53 regulation have been 
reported in the literature (Grönroos et al., 2004). The relationships between 19 of the 
21 TFs as derived from the STRING database (Jensen et al., 2009) are depicted in the 
Figure 21. 

The details on the examined miRNAs, kinases and TFs as well as their interactions 
are available as supplementary tables published in Naeem et al. (2011). In addition to 
the above definition of a core model, the supplementary material thus enables 
analyzes on arbitrary combinations of the individual models (see Supplementary 
Material at http://www.bio.ifi.lmu.de/en/forschung/expression-analysis/mirtfnet). 

 

 

 

 
 

Figure 21: TF mediators of miRNA-triggered regulation active in at least 7 out of 

19 miRNA-transfection experiments. The edges show association between TFs 
derived from the STRING database (http://string-db.org/) at a significance threshold 
of 0.9. The activity of TFs were determined applying MIRTFnet in miRNA 
transfection measurements (section 4.3). 

 



86 5.3 MIRTFnet: Analysis of miRNA regulated transcription factors

 

  



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion and discussion  



 

  



 

6.  Conclusion and discussion 

This thesis aims to enhance the understanding of gene regulation controlled by 
microRNAs (miRNAs) and transcription factors (TFs). In order to examine the 
mechanisms of gene regulation we evaluated the experimental conditions where 
regulators (miRNAs and TFs) become active. For this purpose, we assessed the 
predictive ability of the enrichment tests to determine the activity of regulators based 
on their set of differentially expressed target genes. In turn, we collected regulators 
target gene sets comprehensively.  

6.1 Contributions of this thesis 

Our first contribution, miRSel database, increased the number of miRNA-gene 
associations by at least three-fold as compared to e.g. TarBase, a state-of-the-art 
resource for miRNA-gene relationships (Naeem et al., 2010). Our second 
contribution, rigours assessment of 12 gene set enrichment (GSE) 
approaches/methods provide a guide for the selection of existing tests as well as a 
basis for the development and assessment of novel tests (Naeem et al., 2011). Based 
on miRSel, our final contribution MIRTFnet detects active regulators (TFs) very 
reliably and explains a large part of the observed expression changes via models 
rooted at perturbed miRNAs (Naeem et al., 2011). We discovered that a range of 
different miRNAs eventually induce activity changes in a common core of TFs 
involved in cancer related processes such as proliferation or apoptosis. 

6.1.1 miRSel: Automated extraction of associations between microRNAs and 

genes from the biomedical literature  

For the first step, we improved the coverage of miRNA and TF target gene sets 
through integrated analysis of several resources. Although, only few experimentally 
confirmed miRNA targets are available in databases. Many of the miRNA targets 
stored in databases were derived from large scale experiments that are considered not 
very reliable. The TarBase, a resource for miRNA-target relationships, for instance, 
contains only 1,134 (in human 1,031, mouse 101 and rat 2) such pairs (TarBase 
version 5). Moreover, only a fraction of the content in current databases has been 
derived by manual curation of experimentally validated targets. Instead, the major 
part of the content stems from the supplemental material of few research articles 
describing large scale experiments. Ritchie et al. (2009) proposed to exclude such 
studies for lack of a sufficient experimental validation. Only 262 out of 1,135 
miRNA-target pairs remain after excluding just two such studies from TarBase.  

In contrast to manual curation we proposed a simple, automated approach for 
biological name identification (named entity recognition, NER) that collects many 
potential targets for miRNAs not contained in current databases (published as miRSel, 
Naeem et al., 2010). We found that text mining of miRNA, gene or protein names 
results in good recall and precision for miRNA-gene associations detected in single 
sentences. We thereby extracted many pairs from human (2,724 pairs), mouse (1,183 
pairs) and rat (274 pairs) abstracts as well as 452 pairs from abstracts discussing other 
organisms. This represents an about 10-fold increase with respect to TarBase if 



90 6. Conclusion and discussion

 

miRNA target pairs derived from large scale experiments are excluded (a threefold 
increase as compared to the whole TarBase). miRSel also characterized many miRNA 
target pairs with one of the five different association types. Here, 1,702 in human 
(62% of single sentence pairs), 813 in mouse (69% of single sentence pairs), and 219 
(79% of single sentence pairs) in rat have been thus annotated in miRSel. Such an 
annotation is also available from public databases, but only for very few pairs, e.g. 
199 pairs in TarBase. miRSel can also provide 7,799 pairs that co-occur in abstracts 
for human, 3,644 for mouse and 505 for rat, which are expected to be less reliable 
compared to pairs derived from single sentences.  

To keep the miRSel database up-to-date, newly available PubMed abstracts are 
included daily. A full refresh of the synonym list generation and, subsequently, the 
scan of the entire PubMed is performed monthly to ensure the validity of all 
identifiers.  

We also provide a web interface for querying miRSel via miRNA names, gene or 
protein names and via restricting the results using gene ontology terms or PubMed 
queries. We provide additional filter options, for instance to ensure the taxonomy 
context of matches.   

6.1.2 Rigorous assessment of gene set enrichment tests 

As a second step, we detected the activity of regulators based on our improved sets of 
regulator target genes. For the analysis of such gene sets, several gene set enrichment 
(GSE) tests have been established. These GSE tests originally proposed to detect an 
overrepresentation of differentially expressed genes in pre-defined gene sets that 
correspond to biological processes. However, a dependable standard-of-truth is not 
available since it is difficult to decide a priori, which biological processes will be 
affected on the mRNA level. This has previously prevented the objective selection 
and evaluation of enrichment tests. Instead, we derived gene sets from the targets of 
gene expression regulators including TFs and miRNAs whose experimental 
perturbation (e.g., TF overexpression or deletion) directly offers the required 
standard-of-truth. In this setting, we evaluated the ability of 12 different statistical 
tests to distinguish regulator perturbations from random fluctuations in the data 
(Naeem et al., 2011). For method comparison, we focused on the most frequently 
used enrichment tests (Subramanian et al., 2005; Rivals et al., 2007; Huang et al., 
2008).  

The detection of regulator activities is difficult: simple tests based on the rank 
difference between regulator targets and non-targets are not appropriate. We observed 
that ANOVA and Wilcoxons (WR) test consistently outperform other frequently used 
tests such as the Kolmogorov-Smirnov (KS) test. The hypergeometric (HG) test yields 
mixed results depending on the threshold parameter and the respective setting (TF vs. 
miRNA). Although the performance of the used tests was quite diverse (AUC 
between 0.5 and 0.85 for E. coli data), an unweighted consensus integrating all of the 
examined approaches consistently showed very good results.  

Surprisingly, test performance did not improve by utilizing interaction signs 
(activation vs. inhibition). Here, we tested whether the fold changes observed in TF 
targets are consistent with the given interaction sign annotations. Fold changes and 
signs are clearly consistent in case of activation but not in case of inhibition. This 
might indicate either serious problems in the annotation of inhibiting relationships or 
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fundamentally different types of consequences from activation versus inhibition. 
While activator expression changes reliably cause target expression changes of the 
same sign, we did not find any similarly coherent relationship between the fold 
changes of repressors and their targets. According to Herrgård et al. (2003), this low 
correlation is due to the fact that either inhibitors or their targets exhibit low 
expression levels that cannot be profiled reliably.  

To ensure the broad applicability of our results, we employed a variety of settings. 
In terms of microarray data, we used TF perturbations in E. coli (one expression 
compendium) and S. cerevisiae (two compendia) to compare results between a 
prokaryote and a eukaryote model organism. We also analyzed a third setting, the 
transfection of human cell lines with miRNAs. Performance on S. cerevisiae and 
human is lower than that for E. coli, which might be due to the lower quality of the 
available gold standards of TF and miRNA target networks as well as the more 
complex regulation in eukaryotes (Hu et al., 2007; Michoel et al, 2009; Narendra et 

al., 2010). The performance ranking of the tests is very consistent between each of the 
examined scenarios, with methods such as ANOVA or WR test always performing 
substantially better than the other methods.  

Via an additional permutation approach, we analyzed how enrichment tests depend 
on the quality and comprehensiveness of the known regulator-target relationships. 
Most methods show only a moderate decrease in performance even after randomizing 
50% of the gene regulatory network. We therefore conclude that the gene set 
definitions derived from the known gene regulatory interactions are sufficient to 
enable the comparative assessment of enrichment tests as well as the detection of 
regulator activities in real mRNA expression compendia.   

6.1.3 MIRTFnet: Analysis of miRNA regulated transcription factors 

Finally, we applied the selected GSE tests to assemble regulators cascades from 
expression profiles where cancer related miRNA have been over-expressed (published 
as MIRTFnet, Naeem et al., 2011). In the examined experiments, we find that the WR 
test detected the transfecting miRNAs more reliably than the KS and HG tests (recall: 
WR=42/43=98%, KS=34/43=79%, HG=18/43=42% and AUC: WR=90%, KS=86%, 
HG=65%). The AUC improves to 91% if only those TFs are considered active that 
are detected by both WR and KS. Therefore, MIRTFnet reported TFs as active 
regulators if they are identified by both WR and KS tests.   

The miRNAs used in the overexpression examined in this thesis were 
predominantly selected by the authors of the corresponding studies because of their 
reported involvement in cancer. In case of the detection of active TFs, we thus 
expected MIRTFnet to predominantly propose cancer related TFs. We could clearly 
confirm this expectation, and thereby ensure the reliability of our active TF 
predictions, as the involvement in cancer is indeed known for almost all of our 
detected TFs.  

Starting from the over-expressing miRNA, we constructed putative models based 
on known or predicted regulator (i.e. miRNA, TF and kinase) target relationships. For 
each examined overexpression experiment, most of the detected TFs could be 
connected directly or indirectly to the transfecting miRNA. Indirect connections in 
our models included miRNA-kinase-TF and miRNA-TF-TF relationships. Our 
models provide potential explanations for the majority of the observed expression 
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changes as all known TFs were tested by MIRTFnet. These models also contained 
relationships to unregulated genes. This is not surprising as many genes might be 
regulated in a synergistic fashion, i.e. require different regulators being active at the 
same time. Relationships to unregulated genes might also be caused by incorrect 
target predictions.  

An additional unexpected result stems from intersecting the proposed regulatory 
models constructed for the individual miRNAs. We detected several active TFs across 
many different overexpression studies. This could potentially suggest common 
regulatory mechanisms downstream of cancer relevant miRNAs or of the respective 
TFs (i.e. p53). At the same time, the responses of TFs to different subsets of miRNAs 
can be quite distinct depending on whether these miRNA act either upstream or 
downstream of p53 (Figures 19 and 20). 

Our results further reinforce the growing awareness that these small non-coding 
RNAs have an intrinsic function in gene regulatory networks including TFs related to 
key cellular contexts such as cell proliferation and apoptosis.  

6.2 Perspectives for future research 

In this thesis we described novel methods together with new databases for 
determining the activity changes of regulators and interaction between different 
regulators using high-throughput data. These methods give rise to several areas for 
future research.  

To improve the coverage of current repositories, we proposed to use text mining of 
publication abstracts for extracting miRNA-gene associations including miRNA-
target relations (miRSel, sections 4.1 and 5.1) in human, mouse and rat. We provide a 
web interface for querying miRSel via miRNA names, gene or protein names and via 
restricting the results using gene ontology terms or PubMed queries. For future 
development the miRSel can be extended to include the other species and full free text 
to further improve the coverage of regulator target gene sets. The database can be 
integrated with different heterogeneous data resources (section 3) to provide a 
comprehensive data set to assess miRNA targeting features in different species that 
will be useful for the validation, development of computational target prediction 
programs and deciphering diverse biological functions of miRNAs and their 
regulation in various diseases. 

Secondly, to provide a guide for the selection of existing GSE tests and basis for the 
development and assessment of novel tests, we performed the rigorous comparative 
assessment of 12 GSE tests for analysing gene sets derived as miRNA and TF target 
genes in E.coli, S. cerevisiae and human. For future work, gene set definition can be 
extended to several other species and state-of-the-art other statistical methods as well 
as techniques for identifying the experimentally perturbed regulator activity can be 
investigated. Additionally, the presented work can be further analyzed together with 
other databases (e.g. RegulonDB and YEASTRACT) to improve the annotation of 
interaction signs (sections 4.2 and 5.2, activation vs. inhibition).    

Finally, we mined the miRNA and TF activation in miRNA-induced gene expression 
measurements applying MIRTFnet that sheds light on the scope of the extended 
regulatory effects downstream of miRNAs (sections 4.3 and 5.3). This study reveals 
the following areas for future work. 
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1) Computational identification of the activity of kinases is important to 
understanding the regulation of gene expression and dynamic cellular 
mechanisms. In MIRTFnet, we included the kinases as connectors between 
miRNAs and TFs in the network models although the activity of kinases has not 
been determined. The MIRTFnet can be extended to determine the activity of the 
kinases if their downstream targets including TFs and their target genes were 
differentially expressed. 

2) The extracted network models (section 5.3) can be used to further increase the 
reliability of miRNA-target predictions and to fully understand miRNA extended 
regulatory effects and functions as well.  
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