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Abstract

A complex network of interplaying signaling pathways governs cell behavior
and phenotype. Wnt signaling pathways are part of this network and play
an important role in embryonic development as well as in carcinogenesis. In
particular, non-canonical Wnt signaling is considered critical for breast cancer
cell proliferation and migration. However, specific outcomes of distinct Wnt
signaling pathways are still poorly understood.

To better characterize these processes, gene expression responses of aberrant
Wnt signaling can be quantified by expression profiling, and further analyzed
using various bioinformatic approaches. In particular, pathway enrichment
and network integration are effective strategies to obtain a comprehensive
interpretation of the results of differential expression analysis.

Enrichment analysis is a widely used tool to detect pathways significantly
altered between two experimental conditions. Before applying this approach in
the Wnt signaling context, enrichment methods were evaluated in an extensive
comparative study to assess the contribution of pathway structure integration
into the enrichment analysis. Standard gene-set methods were compared
against pathway topology-based methods in multiple simulation scenarios
and on benchmark data. These results as well as a critical consideration of
methodological principles suggest that simple gene-set enrichment methods are
favorable.

In order to elucidate the role of Wnt signaling in aggressive breast cancer,
changes in the expression profiles of breast cancer cells after over-expression of
the non-canonical Wnt receptor Ror2 were analyzed. Over-expression resulted in
increased cell invasion and over 2000 differential target genes of this perturbation
were identified. These targets were further placed into the context of known
signaling pathways and molecular networks.

To this end, the public Wnt pathway knowledge was assembled into signaling
network models representing distinct Wnt pathways. Subsequently, the Wnt
networks were analyzed with regard to their structural properties, and also
utilized for the analysis of targets. Results of the enrichment analysis suggest
that the Ror2 over-expression activates non-canonical Wnt signaling, whereas
canonical Wnt signaling appears not to be affected. Furthermore, integration of
targets with the non-canonical Wnt network revealed a differentially regulated
module of the non-canonical Wnt signaling and its topologically essential
elements were identified. Moreover, target hubs were determined by integration
with protein-protein interaction network.

To validate whether the identified Wnt module genes and hub genes are
indeed associated with the observed phenotype of increased cell invasion, the
results were translated into a clinical context of metastatic breast cancer
patients. These two gene lists were utilized as signatures to test prognosis of



metastasis-free survival. Both signatures as well as multiple individual genes
were shown to be significantly associated with breast cancer outcome; including
several genes that have been previously reported to be potential therapeutic
targets or biomarkers.

In conclusion, gene set enrichment analysis as well as bioinformatic ap-
proaches derived from network theory were demonstrated to be powerful tools
for analyzing the complex gene expression patterns of breast cancer cells. These
strategies were shown to provide valuable insights into signaling processes
underlying breast cancer phenotypes, particularly highlighting the importance
of the non-canonical Wnt pathway in aggressive breast cancer.
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Introduction

Basic functions of cells are governed by a complex network of interconnected

signaling pathways, representing a cellular communication system. A signal is

mediated via a ligand binding cell-surface receptor, which subsequently triggers

cascades of interactions and biochemical reactions towards transcription factors.

The transcription factors in the nucleus then regulate expression of their target

genes. The target messenger RNA (mRNA) is further processed and translated,

resulting in a finely controlled synthesis of new proteins. Profiles of expressed

genes and proteins in the cells determine their phenotype and responses to the

environment, such as cell division, differentiation, and apoptosis.

Thus, the behavior of cells is coordinated by signaling networks that translate

external signals via gene expression changes into appropriate responses. In

case of aberrant signal transduction, the inappropriate pathway regulation can

result in diseases, such as cancer or immune disorders.

Within this thesis I focus on the module of this cellular network, which

represents Wnt signaling pathways. Deregulation of these pathways has been

implicated in a number of cancers including breast tumors. I aim to create

network models of distinct Wnt pathways and to elucidate their roles in different

breast cancer types using various bioinformatic approaches. Furthermore, I

am interested in evaluating a set of bioinformatic methods that are based on

different pathway representation strategies. To that end, I first provide the

reader with the general background on Wnt signaling and breast cancer, as

well as with a comprehensive overview of bioinformatic approaches for gene

expression, pathway and network analyses. In the 1.7 Aims and organization

of the thesis section of the Introduction chapter I summarize the aims of this

thesis in more detail and describe the organization structure of the thesis.



2 Introduction

1.1 Wnt signaling pathways

Wnt proteins are secreted ligands activating a complex mechanism of signal

transduction via multiple pathways: the canonical β-catenin-dependent path-

way and several non-canonical β-catenin-independent pathways. These Wnt

cascades play an important role in embryonic development processes as well as

in carcinogenesis (Kahn, 2014).

Activity of the canonical Wnt pathway is defined by the translocation of

β-catenin into the nucleus, where it acts as a co-activator of transcription. In

the off-state no Wnt ligand is present and β-catenin is targeted and degraded

by a destruction complex which includes Axin-1, APC, and GSK3B, among

others. In the on-state a Wnt ligand binds to a Frizzled (Fz) receptor and its

co-receptors LRP5/6 activating intracellular Dishevelled (Dvl). This in turn

leads to inactivation of the β-catenin destruction complex, which cause that

β-catenin is stabilized and relocated into the nucleus. There it functions as

a co-activator of TCF/LEF transcription factors, triggering the expression of

specific target genes (Yost et al., 1996; Miller et al., 1999). This transcriptional

activity determines cell fate decisions, survival, and proliferation.

Moreover, several alternative non-canonical Wnt signaling routes exist,

which operate independently from the β-catenin-mediated transcription. These

β-catenin-independent cascades can be separated into the Wnt/Planar cell

polarity (PCP), Wnt/Ca2+ and Wnt/Ror signaling branches. However, these

three signaling branches exhibit a considerable degree of overlap (De, 2011).

Non-canonical Wnt proteins can also bind to Fz receptors and downstream Dvl is

then able to transduce the signal into multiple routes: Via small GTPases, such

as RhoA, Rac and CDC42, the cell polarity is regulated. Alternatively, calcium

flux is induced activating CaMKII and JNK kinases resulting in transcriptional

activity of NFAT and AP-1. Moreover, also non-frizzled, tyrosine kinase-like

orphan receptors Ror1 and Ror2 can mediate Wnt signals. Coupling of Wnt5a

to Ror2 activates the Ca2+/JNK pathway as well as traffics the signal towards

PCP. The outcome of non-canonical Wnt signaling in general is associated

with differentiation, changes in cell motility, cytoskeletal rearrangement, and

invasiveness (Oishi et al., 2003; Moon et al., 2004; De, 2011; Anastas and Moon,

2013).
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In summary, Wnt signaling pathways and sub-pathways should not be

seen as straightforward linear cascades, but rather be considered as complex

overlapping signaling networks, in which combinatorial activation of components

results in context-specific expression responses (Amerongen and Nusse, 2009).

1.2 Breast cancer

Cancer often arises due to defects in important signaling pathways. The changes

in gene expression and protein function subsequently alter the phenotype of

the cells. Breast cancer is a heterogeneous disease with diverse outcomes in

terms of progression, recurrence, metastases formation and overall survival.

Based on the status of hormone estrogen receptor (ER), progesterone

receptor (PR) and epidermal growth factor receptor (HER2), three clinically

prognostic groups have been established: hormone receptor (ER or PR) positive,

HER2 positive and triple negative breast tumors. Whereas the ER or PR

positive group has better prognosis and the lower relapse rate, the triple

negative group has very unfavorable prognosis with increased risk of local

relapse as well as of development of distant metastases (Sørlie et al., 2001;

Rakha et al., 2007; Onitilo et al., 2009).

With advent of large-scale gene expression profiling technologies multiple

gene signatures have been established for further breast cancer classification.

Using 534 intrinsic genes and latter suggested pam50 gene signature, five

molecular subtypes associated with different prognosis have been defined:

basal-like (basal), HER2-enriched (Her2), luminal A (lumA), luminal B (lumB),

and normal-breast-like (normal) subtype. Relating them to the clinical groups,

lumA and lumB subtypes correspond to ER positive tumors, whereas the

basal subtype correlates with triple negative breast cancers (Perou et al., 2000;

Sørlie et al., 2003; Parker et al., 2009). Other successful signatures have been

developed with a different scope, for instance, to predict metastases development

from primary tumor expression profiles (van’t Veer et al., 2002; Wang et al.,

2005).

These signatures suggest that there are different underlying molecular

mechanisms in distinct breast cancer subgroups. However, when comparing the

signatures established for the same prognostic purpose, they exhibit very little
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overlap. This lack of agreement raises the question of whether the signature

genes represent primary drivers of the disease or rather secondary downstream

factors (Ein-Dor et al., 2005, 2006).

1.2.1 Wnt signaling in breast cancer

Aberrant regulation of Wnt signaling in general is critical for breast cancer

initiation as well as progression (Howe and Brown, 2004). Smid et al. (2008)

further demonstrated that molecular subtypes of breast cancer exhibit different

levels of Wnt pathway activity. A number of important Wnt pathway players

showed enrichment in the basal subtype and in all breast cancers, which later

developed metastases.

The particular roles of distinct Wnt pathways in breast cancer context are

still poorly understood. Altered expression of several non-canonical Wnt path-

way members was associated with aggressive breast cancer subtypes. Higher

expression of Ror2 and Ror1 receptors has been linked to breast cancer metas-

tases (Klemm et al., 2011) as well as to shorter overall survival of breast

cancer patients (Zhang et al., 2012; Henry et al., 2014). Furthermore, Wnt5a

and Wnt5b were found to be upregulated in the basal-like MDA-MB-231

cells (Klemm et al., 2011). However, other studies reported contradicting

evidence, with Wnt5a either enhancing or suppressing invasiveness of different

breast cancer cell types (McDonald and Silver, 2009). Moreover, also canonical

Wnt signaling via β-catenin has been implicated in the basal breast cancer

subtype (Khramtsov et al., 2010; Yang et al., 2011).

Therefore, the currently available data offer rather ambiguous evidence on

the activation of Wnt cascades and their key players in breast cancer. However,

it is of high clinical interest to determine which particular Wnt pathways,

including their domains and targets, are deregulated in poor prognosis breast

cancer.

1.3 Gene expression analysis

The abundance of mRNA in a cell can now be quantified easily and reproducibly

by gene expression profiling technologies such as microarray and the more recent
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alternative: deep sequencing of RNA (RNA-Seq). These high-throughput

measurements of RNA transcripts allow to determine the functions of the genes

or their association to particular phenotype.

The most popular microarray chips such as Affymetrix or Agilent measure

a single sample on one slide. These chips consist of thousands of short oligonu-

cleotide probes spotted on solid substrate. The probes represent genomic DNA

complementary to the specific transcript whose presence is to be investigated.

First, RNA is extracted from the biological sample and labeled with biotin or

a fluorescent tag. The labeled RNA is then hybridized to a microarray and

washed off. Subsequently, the slide is scanned with laser light to quantify the

fluorescent intensities. In contrast to microarrays, whose measurement range is

limited to the spotted probes, RNA-seq allows for the complete annotation and

quantification of all genes as well as their isoforms. With this approach the

transcripts in the sample are directly sequenced and sequence reads are then

aligned to a reference genome or transcriptome.To assess the gene expression

levels the mapped reads are counted (Wang et al., 2009).

Within the framework of gene expression profiles, two main goals of analysis

can be defined broadly: The first is to relate expression patterns with a certain

phenotype (e.g. survival or disease relapse-free survival annotation) and the

second is to identify differential genes between two conditions (Tarca et al.,

2006). Depending on the desired goal, the experimental design and the choice

of algorithms need to be adjusted.

The first category typically requires a bigger cohort of patients for which

survival or other annotation data was collected along with expression profiles.

The goal of this analysis is to discover new patient subgroups based on potential

prognostic features. A popular application within this category is the use of

hierarchical cluster analysis, which aims to discover patient subsets that share

common expression patterns (Butte, 2002). Agglomerative clustering organizes

expression profiles of the patients in an iterative manner, merging the two

closest patients into a new composite object until all patients have been merged.

As a measure of similarity correlation distance or euclidean distance can be

utilized (Gibbons and Roth, 2002). The resulting hierarchical cluster tree is

called a dendrogram and its branches correspond to individual patients. A

next common step is to cut the dendrogram into clusters representing distinct
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groups of patients, which can be further compared for differences in survival or

disease progression.

In the second category two experimental groups are compared, such as

control versus perturbation condition, or healthy versus disease state. The

comparisons result in long lists of differentially expressed genes (DEGs) which

are often challenging to interpret. Further analyses are usually performed to

extract comprehensive information about the system under study. Hence, the

results of differential analysis are placed into the context of existing literature

sources. This can be achieved in an automatized fashion by integration with

prior pathway and/or network knowledge.

1.4 Representation of pathway knowledge

Due to the complexity of transcriptomic data the results of a differential analysis

are challenging to interpret. Prior biological knowledge can be used to link

these results back to known molecular processes like signaling pathways. To

this end, the pathway data needs to be represented in a computable format,

such as a gene set or a graph model (Kitano et al., 2005).

The simplest graph representation, which captures pathway structure, de-

picts molecules as nodes and interactions as unweighted undirected edges.

However, based on the character of signaling pathways a more natural rep-

resentation is a directed graph (Schaefer, 2004). Within directed graphs the

edges can be equally weighted (w = {1}) or the edge weights can distinguish

inhibition and activation processes (w = {−1, 1}) between two nodes. Further

edge annotation can include additional molecular events such as modifications,

phosphorylation, translocation or transcription/expression. Moreover, in the

concept of hypergraphs the edges are able to connect more then two nodes,

capturing thus multiple functional and causal dependencies (Ritz et al., 2014).

On the node level straightforward annotation depicts one node as one molecule,

for instance a gene, a protein or a small molecule. More advanced models do

not restrict nodes to one-to-one relationships but can include compound nodes

with nested structure (Fukuda and Takagi, 2001) or metanodes to represent,

for instance, protein complexes (Hu et al., 2007).
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On the one hand, with the simpler representation some biological information

is lost. But on the other hand, with more sophisticated models their inherent

complexity can be problematic in terms of applicability and interpretability.

Nevertheless, various models of a pathway can be used for integration with

experimental data, provided they are in a computer-readable form.

1.5 Enrichment analysis

To annotate lists of DEGs enrichment analysis is a frequently used bioin-

formatic approach. There are many tests, which aim to detect pathways

significantly altered between of two experimental conditions based on expres-

sion profiles (Khatri et al., 2012; Maciejewski, 2013). These tests have been

implemented into a plethora of tools. The enrichment tools differ in many

aspects ranging from the null hypothesis that is tested, through the statistical

formulation, pathway data encoding and database support, up to the software

implementation and utility.

Within the scope of the thesis two categories of enrichment methods are of

interest, defined by the way in which pathway information is incorporated into

the analysis. In the traditional enrichment approach a pathway is considered

as a simple gene list omitting any knowledge of the gene and protein relations.

Methods belonging to this category are referred to as gene-set (GS) analysis

methods. Another way of integrating a pathway into enrichment analysis takes

into account its topological structure. These methods are referred to as pathway

topology-based (PT-based).

The particular methods of focus in this thesis are described in detail in

the 2.2.1 Gene-set enrichment methods and 2.2.2 Pathway topology-based meth-

ods sections. Here I provide the reader with a general overview of the method-

ological principles within these two enrichment analysis approaches.

1.5.1 Gene-set enrichment approach

Initial tools for enrichment analysis fall into category of GS methods and

most of the classification strategies and criteria are defined within this ap-

proach. Notably, the earlier GS methods, such as Onto-Express, GoMiner or
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GoStat (Khatri et al., 2002; Zeeberg et al., 2003; Beißbarth and Speed, 2004),

did not consider a gene set as a curated pathway gene list but as a Gene

Ontology term (Ashburner et al., 2000).

In regard to the null hypothesis of the statistical tests they employ, the

enrichment methods can be categorized into two groups: competitive and

self-contained (Goeman and Bühlmann, 2007). Competitive methods compare

genes in a pathway to its complement usually represented by the rest of the

genes measured in the experiment. This approach is naturally linked with gene

sampling for p-value calculation. Self-contained methods consider only genes

within a pathway and test their association with the phenotype by subject

sampling for significance assessment. Therefore, the competitive methods

indicate whether there is a difference between the gene set and random gene

sets of the same size in terms of association with phenotype, whereas the self-

contained methods state how strong the association is, while not considering

other gene sets at all. Both approaches have their limitations. On the one

hand, competitive methods coupled with a gene sampling assume independence

of genes, which is simply not true in the most cases. On the other hand, self-

contained methods have been criticized for being too powerful and yielding too

many significant gene sets. Furthermore, the number of experimental replicates

is often too low for the purpose of subject sampling (Goeman and Bühlmann,

2007).

Another classification of enrichment methods separates them into over-

representation analysis (ORA) and functional class scoring (FCS) groups (Kha-

tri et al., 2012). ORA is the earliest strategy for enrichment analysis and is

referring to 2× 2 table methods such as Fisher’s exact test, hypergeometric test

and chi-squared test. It represents exclusively the competitive approach. The

main drawback of ORA is that it requires a strict cut-off in the list of DEGs

and that the enrichment results are strongly dependent on this chosen threshold.

Therefore the FCS approach was suggested to overcome this difficulty. The

FCS methods usually work in three steps: First genes are scored, then gene

level scores are transformed into a pathway level score and finally the signifi-

cance of the observed pathway level score is assessed. The FCS group includes

both competitive and self-contained methods, depending on the pathway-level

transformation and significance assessment of the pathway level score.
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1.5.2 Pathway topology-based approach

One of the first PT-based methods was impact analysis introduced by Draghici

et al. (2007). Since then this approach has become very popular, resulting in

a number of various PT-based algorithms that have been published (Mitrea

et al., 2013).

In contrast to traditional GS methods, the methodological concepts de-

scribed in previous section have not been defined for the new PT-based group

in such explicit terms. In many cases the concepts can be easily extended. For

instance, if a PT-based method applies a strict threshold in the gene list it falls

into ORA category. If in addition to topological information only expression

data of the pathway genes are used to infer pathway significance, thereby

omitting expression information of the genes outside the pathway, the approach

reflects the self-contained concept. However, due to the inherent complexity of

PT-based algorithms, in some cases it might be difficult to draw a strict line.

Considering the PT-based methods, an additional important categorization

is based on how the topological information is exploited and incorporated into

calculations. In regard to the extent of topological information, some methods

consider the position of a gene in the entire pathway structure, e.g. by impact

factor or betweenness measure, but some account only for close interaction

partners termed neighbors (see 1.6.2 Network analysis and 2.2.2 Pathway

topology-based methods sections for an explanation of the topological measures).

Next, the topological information itself can be incorporated into an algorithm

in various ways. The most straightforward approach is weighted GS analysis,

where weights are assigned based on the topological measures (Gu et al., 2012).

Further methods combine information from the standard ORA/FCS with a

specific topology-based scoring system (Tarca et al., 2009; Dutta et al., 2012)

or estimate pathway significance by using multivariate scoring models (Massa

et al., 2010). For a detailed survey of PT-based methods with different pathway

scoring systems the review of Mitrea et al. (2013) is recommended.

Within this thesis the term enrichment analysis is used as the most general

label comprising methods of all categories. Usage of the term pathway analysis

can be ambiguous: Sometimes it is used in the most general sense (Khatri et al.,

2012), but sometimes it implies that the method accounts for the pathway graph
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structure. Therefore, the latter is here referred to as PT-based enrichment

analysis to avoid confusion.

1.6 Molecular networks

Molecular processes are typically regulated by coordinated effects of multiple

interacting molecules. For instance, a defect in a particular gene does not affect

only itself but also the activity of other genes and their products. Therefore,

to determine underlying molecular processes of phenotypic or gene expression

changes, it is helpful to study them in the view of molecular networks (Barabási

et al., 2011). From the bioinformatic point of view, molecular networks are a

representation of how genes and proteins cooperate in a given biological system.

There are multiple types of molecular networks originating from different data

types and focusing on different processes (see 1.6.1 Types of networks). On

the one hand, it is possible to study a network on its own and the network

architecture itself can reveal important functional principles and topological

properties (see 1.6.2 Network analysis). On the other hand, a network can be

integrated with experimental data in order to identify the part of the network

that is affected in the experiment (see 1.6.3 Network integration).

1.6.1 Types of networks

Based on the type of interaction, several network types can be distinguished,

which fall into two major categories – physical and functional interactions (Mitra

et al., 2013).

The physical interaction group comprises protein-protein interaction (PPI),

metabolic, regulatory, and signaling networks. A PPI network generally repre-

sents undirected interactions between pairs of binding proteins, usually detected

by high-throughput yeast two-hybrid screens. Metabolic networks have varying

representations: Nodes are associated with reactants and edges with reactions;

however, the latter can also represent enzymes catalyzing these reactions. A

regulatory network describes protein-DNA binding, which represents transla-

tional regulation. In these, two types of nodes are typically connected with

directed edges – reflecting transcription factors that regulate target gene ex-
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pression. Signaling or signal-transduction networks are usually defined less

explicitly. They can be described as interconnected chains of post-translational

modifications and other biochemical reactions, PPIs and/or changes in gene

expression (Albert, 2005; Choudhary and Mann, 2010). Therefore, a signaling

network can be seen as an hybrid involving several physical interaction types.

For a comprehensive overview of these and other physical interaction network

types which are not discussed in this thesis (e.g.: RNA-RNA, drug-target

interactions) see reviews of Albert (2005), Barabási et al. (2011) and Vidal

et al. (2011).

The second category of networks involves functional interactions, such as

gene-gene or gene-drug interactions. Genetic or so-called epistatic interaction

reports on interaction between two mutations when the combination of muta-

tions results in a different phenotype than expected from the phenotypes of

each mutation individually. Moreover, also co-expression networks depicting

correlated expression between genes fall into the group of functional gene-gene

interactions. The second functional interaction type, the gene-drug interaction,

can be seen as an equivalent of genetic interaction in a sense that a gene

perturbed in the presence of a drug results in a combined effect more or less

severe than expected (Ryan et al., 2013).

Within this thesis the major focus is on signaling networks. However, all

these networks represent a complementary, although, rather simplified view

on the complex cellular system. Nevertheless, this simplification enables us to

investigate inherent properties of the networks and integrate the networks with

different molecular profiles.

1.6.2 Network analysis

Within the network analysis graph theory concepts are utilized to describe

the structure of a given network. To elucidate the topological structure,

properties such as size of the network, node features and network communities

are characterized.

One of the basic characteristics of a node in a network is its degree, k,

representing the number of interaction partners. In a directed network in-

and out-degree can be distinguished by summing up the numbers of incoming
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and outgoing edges, respectively. Furthermore, the degree distribution for the

entire network can be defined as the probability that a given node has exactly

k edges. Many molecular networks are considered to be scale-free meaning

their degree distribution follows a power law (Barabási and Albert, 1999). It

implies that there is only a relatively small number of nodes that are highly

connected, whereas the most of the nodes have a low degree. The nodes with

many interaction partners are often called hubs and their roles have been

intensively studied in model organisms as well as humans. Hypotheses have

been formulated that the hubs are encoded by essential genes that hold the

network together, whereas nonessential, disease-related genes are typically not

represented by hubs (Goh et al., 2007).

Another node characteristic is termed betweenness centrality. It is defined

as the fraction of the shortest paths in a directed graph passing through a

given node out of the shortest paths between all node pairs. High betweenness

nodes are also called bottlenecks and have the tendency to correlate with

essentiality (Yu et al., 2007). A corresponding measure can also be defined

on edges as the fraction of shortest paths between all pairs of nodes that pass

through the given edges out of all shortest paths.

Further network concept defines the nodes closely surrounding a certain

node as its neighborhood. The first order neighborhood around a given node

includes its directly connected interaction partners – neighbors. Second order

neighborhood comprises neighbors that are not farther away from the node

then two steps, and so forth.

Another network analysis approach aims to find modules that represent

highly interconnected local regions in network topology. Such clusters or so-

called communities have dense connections between the cluster nodes and

spare connections between nodes of different clusters. Several algorithms

utilizing different quantifying measures were proposed. In their seminal work

Girvan and Newman (2002) proposed a divisive algorithm based on progressive

edge removal. The edge to be removed is chosen based on the highest edge

betweenness score, which is recalculated after each removal. The idea is that

by removing “between-communities” edges, the network splits into its natural

communities. Later on Newman and Girvan (2004) suggested a modularity

as property of network which can be used as cluster criterion for the network



1.6 Molecular networks 13

division into communities. The modularity is defined as difference of the

number of within-community edges and the expected number in an equivalent

network with edges distributed at random. In order to find optimal network

modularity an optimization algorithm is employed (Clauset et al., 2004). The

algorithm starts with each node as its own community and repeatedly merges

pairs of communities whose merge results in the greatest modularity increase,

until the point when further merging only reduces modularity. By maximizing

modularity the best division of the network is found.

Community as well as neighborhood are topological modules, which do

not account for any function of the gene nodes. Nevertheless, studies have

suggested that components within a topological module can have similar or

related functions (Barabási et al., 2011). Further types of modules which go

beyond the topology information can be identified by network integration with

different data types.

1.6.3 Network integration

Generally, network integration comprises two distinct approaches: The inte-

gration of two or more types of networks and the integration of a network

with experimental data. Here, the focus is on network integration with ex-

perimental data, specifically with transcriptomic profiles. On the one hand,

the integration facilitates the analysis and interpretation of comprehensive

gene expression profiles. On the other hand, it aims towards extraction of

differentially expressed subnetworks (or so-called active or responsive functional

modules) from networks. These context dependent subnetworks then help to

elucidate underlying molecular changes in a biological system responding to a

perturbation or a stimulus (Wu et al., 2009; Mitra et al., 2013).

To extract such a subnetwork from a large scale network usually three

steps are required: The first step is scoring the network nodes based on some

measure representing differential expression. The second is aggregating the

scores over all nodes in each subnetwork, and the third is finding the “best”

score subnetwork. One of the first methods within this field was work of

Ideker et al. (2002) applying a simulated annealing algorithm to search a

high score subnetwork. Later on also exact solutions were suggested, for

instance by Dittrich et al. (2008). They transformed the problem of finding
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the maximum score subnetwork into the prize-collecting Steiner tree problem

and used integer-linear programming to find the solution. In more simple

scenarios with unweighted network nodes the classical Steiner tree problem

can be employed to identify a minimal size subnetwork containing all nodes of

interest (Sadeghi and Fröhlich, 2013).

An add-on to these integration approaches goes one step further and uses

identified subnetworks as discriminative or prognostic markers to predict patient

outcome. For instance, Chuang et al. (2007) showed that subnetwork markers

achieved higher accuracy in the classification of breast tumors than individual

genes without network information. However, other studies reported that equal

or even better classification can be achieved using randomized networks (Lavi

et al., 2012; Staiger et al., 2012).

Nevertheless, the integration of expression profiles with networks provides

great potential for identifying phenotype associated genes as well as markers

for disease prognosis.

1.7 Aims and organization of the thesis

Two principal questions define the focus of this thesis and the particular aims

are derived from these questions:

� What are benefits and costs of integrating pathway-topology information

into enrichment analysis?

� Which module of the Wnt signaling network is active in aggressive breast

cancer?

These questions share ideas and methodological overlap in terms of pro-

cessing signaling pathway knowledge, applying graph theory concepts, and

integrating topology information with experimental data.

Within the enrichment analysis framework, several studies have already

compared various GS analysis methods (Abatangelo et al., 2009; Evangelou

et al., 2012; Tarca et al., 2013). However, only little effort has been dedicated

to the comparison of PT-based methods and evaluation was limited to a small

number of real datasets (Jaakkola and Elo, 2015). Therefore, the first aim

related to the first question is to:
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1. Comparatively evaluate different enrichment analysis approaches: tradi-

tional gene-set methods versus pathway topology-based methods.

I aim to compare three GS and four PT-based methods using simulated gene

expression data as well as a collection of 24 benchmark datasets. Comparison

of these approaches involves two major challenges. First, simulation of suitable

expression data for the PT-based method evaluation is a rather comprehensive

problem, as the structure of deregulated pathways has to be reflected in

the synthetic data. Therefore, a complex simulation scheme is described

in the separate 2.3 Simulations section within the 2 Materials and Methods

chapter. Second, the pathway models differ between the methods – not only

the obvious gene sets versus pathway graphs – but particularly different graph

representations used within distinct PT-based methods. In order to perform a

fair comparison unified pathway input is needed. Thus, I aim to integrate the

same pathway data customized for each evaluated enrichment method. The

processing of pathway information is presented in the 2.2.3 Parsing pathway

knowledge from databases section. The resulted parsed pathways are described

in the 3.1 Parsed pathways section, whereas the results of the comparative

evaluation of the methods are presented in the 3.2 Comparison of enrichment

methods section.

In regard to the second question, Figure 1.1 delineates a simplified conceptual

workflow of multiple steps leading to the answer.

Within the Wnt signaling field the separation of canonical and non-canonical

Wnt pathways proved useful for a better understanding of these processes. How-

ever, this separation is often not well distinguished in pathway databases. Reli-

able models of the Wnt pathways, which are suitable for further bioinformatic

analysis, are needed. Hence, the next aim can be formulated as follows:

2. To assemble public Wnt pathway knowledge into signaling network models

representing distinct Wnt pathways.

This is a four-fold task as the pathway information has to be collected,

parsed, curated, and finally merged to create network models (Figure 1.1A-

B). Notably, the data parsing step largely overlaps with the generation of
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pathway input for the enrichment methods, therefore it is presented together in

the 2.2.3 Parsing pathway knowledge from databases section. The final models

represented as signaling networks and their graph properties are described in

the 3.3 Wnt networks section.

Such Wnt models allow further investigation of the underlying biological

processes when integrated with experimental data. In particular, I am interested

in elucidating the role of canonical and non-canonical Wnt signaling in breast

cancer. To study pathway activation in this context, the estrogen receptor

positive MCF-7 breast cancer cell line is utilized as a model system. The

phenotype of the MCF-7 cell line without any intervention experiment is

considered to correspond to lumA breast cancer subtype with favorable clinical

prognosis. The literature is rather ambiguous on the role of Wnt signaling

in breast cancer. Based on the results of my collaborators (Klemm et al.,

2011) the working hypothesis within this thesis is that activation of the non-

canonical Wnt pathway stimulates cell proliferation and migration. Following

this hypothesis, cell invasiveness of MCF-7 can be enhanced by perturbations of

the non-canonical Wnt pathway members the (Figure 1.1C) and subsequently

the targets of the perturbations can be identified by gene expression profiling

(Figure 1.1D). I aim to integrate such expression data with the newly constructed

Wnt networks in order to identify specific Wnt activation modules (Figure 1.1E).

Therefore, the next major objective of this thesis can be summarized as:

3. To identify an expression-responsive module within the Wnt networks

relevant for invasiveness of breast cancer cells.

Since generation and expression profiling of the cell lines are carried out by

collaborators(1), I only briefly summarize these experiments in the Materials

section 2.1.2 Newly generated RNA-Seq data. The results of differential and

enrichment analyses as well as signaling network integration are described in

detail in the Results sections 3.4 Sequenced cell line and perturbation targets

and 3.5.1 Non-canonical Wnt module. Furthermore, perturbations of the cells

are expected to have impact also on the genes outside the Wnt signaling. Thus,

I aim to further explore the expression data by utilizing a PPI network. The

corresponding results are described in the 3.5.2 PPI network and hubs section.

(1)Specific contributions of collaborators are stated at appropriate places in the text.



1.7 Aims and organization of the thesis 17

Finally, I seek to validate the results of the network integration in the

clinical context of breast cancer patients. I aim to evaluate the relevance of

gene signatures originating from the results of signaling and PPI networks

integration in respect to metastasis-free survival (MFS) prognosis (Figure 1.1F-

G). Moreover, I am interested in detecting individual genes with prognostic

potential in this context. Hence, the last aim is defined as:

4. To evaluate the prognostic power of the gene signatures in terms of MFS

and to identify potential prognostic markers.

The results of this analyses are reported in the 3.6 Breast cancer metastasis-

free survival study section.

In the 4 Discussion chapter I first discuss challenges which arose within

the parsing of signaling pathway data and their representation for further

analyses (section 4.1 Parsing and representing pathway knowledge). Then I

critically evaluate enrichment methods and further elaborate on issues dealing

with general concepts within the enrichment analysis framework (section 4.2

Enrichment methods). In the 4.3 Wnt networks section I discuss reliability

as well as limitations of the newly constructed Wnt models. The differential

targets of experimental perturbations and their integration with networks

are discussed in the 4.4 Targets and network integration section. The final

Discussion section 4.5 Breast cancer metastasis and prognostic genes discusses

the results of the patient cohort study and potential prognostic impact of the

new gene signatures.
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Figure 1.1. Conceptual workflow: Signaling network (A-B) and gene expression data (C-D)
integration results in an active module identification (E). The results are further used towards
translation into metastasis-free survival study of breast cancer patient cohort (F-G).



Materials and Methods

This chapter is structured into three sections. 2.1 Materials section summarizes

gene expression, pathway and network data utilized and generated within the

scope of this thesis. 2.2 Methods provides the reader with a comprehensive

insight into employed approaches and algorithms. To evaluate different enrich-

ment methods, also synthetic expression data were generated using multiple

simulation scenarios with a number of parameters being explored. Therefore,

the complex simulation settings are described in an individual section – 2.3

Simulations.

2.1 Materials

The section provides brief overview of the public experimental datasets (2.1.1)

which were used for the analyses. In case of newly sequenced expression data

(2.1.2), I summarize how the cell lines were treated and the libraries prepared.

Finally, last subsection (2.1.3) describes databases and repositories from which

prior information on pathways and networks was retrieved.

2.1.1 Public microarray data

Two large compendium datasets of expression profiles were analyzed within

this work: breast cancer patient data and benchmark data comprising multiple

diseases.

2.1.1.1 Patient datasets

The breast cancer patient data is a collection of ten microarray datasets hy-

bridized on Affymetrix Human Genome HG-U133 Plus 2.0 and HG-U133A
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arrays. The datasets were retrieved from the Gene Expression Omnibus

(GEO) (Barrett and Edgar, 2006) data repository under the accession numbers

GSE25066, GSE20685, GSE19615, GSE17907, GSE16446, GSE17705, GSE2603,

GSE11121, GSE7390, and GSE6532. Each dataset was processed using RMA al-

gorithm (Irizarry et al., 2003) and only samples with full metastasis free survival

annotation (meaning annotated with both the metastasis/distant-relapse event

and the follow-up time information) were selected. The datasets were combined

on the bases of HG-U133A array probe IDs into a single expression matrix and

quantile normalized. Metastasis free survival annotation was compiled into the

same time unit (years) for all samples. Within further processing steps of the

data, the breast cancer molecular subtypes were predicted. A single sample

predictor was fitted for each patient using pam50 intrinsic genes list (Parker

et al., 2009) as implemented in genefu R-package (Haibe-Kains et al., 2012,

2011). Particular molecular subtype was assigned to a patient when prediction

strength > 0.5.

2.1.1.2 Benchmark datasets

For the purpose of enrichment methods comparison, 24 datasets from the

KEGGdzPathwaysGEO R-package (Tarca et al., 2012) were used as benchmark

data(Table 2.1). Disease datasets comprise 880 samples representing 12 distinct

diseases and corresponding controls. Each of the 24 datasets was matched with

the corresponding KEGG pathway according to its name, e.g. a dataset of

colon cancer patients was associated with the colorectal cancer pathway. Such

a pathway was then called a target pathway and its p-value and rank in the

database were further evaluated (Tarca et al., 2012; Evangelou et al., 2012).

2.1.2 Newly generated RNA-Seq data

The human breast cancer cell line MCF-7 was obtained from the American Type

Culture Collection (ATCC, Rockville, USA) and was cultured in RPMI-1640

media (PAA, Cölbe, Germany) supplemented with 10% fetal bovine serum (FCS;

Sigma, Munich, Germany). For Ror2 over-expression, the plasmids pcDNA

3.1/Zeo(+) (Invitrogen, Paisley, UK) and pcDNAhsROR2 were introduced

into MCF-7 cells using the Nanofectin transfection reagent (PAA, Cölbe,
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Germany). Stable expression was achieved by selecting for zeomycin (100µg/ml)

resistance. For stimulation experiments the cells were treated for 24h with

Wnt5a (100 ng/ml, R&D systems) prior to cell lysis. RNA was isolated using

Trizol reagent, including a DNase I (Roche, Mannheim, Germany) digestion

step. All cell line cultures and intervention experiments were carried out in

the Binder/Pukrop lab(1) by Dr. med. Florian Klemm, Dr. med. Annalen

Bleckmann and Dr. Kerstin Menck.

The cell lines were further sequenced at TAL (Transkriptomanalyselabor) by

Dr. Gabriela Salinas-Riester(2). Library preparation for RNA-Seq was performed

using the TruSeq Stranded Total RNA Sample Preparation Kit (Illumina, RS-

122–2201) starting from 1000 ng of total RNA. Accurate quantitation of cDNA

libraries was performed using the QuantiFluor TM dsDNA System (Promega).

The size range of final cDNA libraries was determined applying the SS-NGS-

Fragment 1-6000 bp Kit on the Fragment Analyzer from Advanced Analytical

(320 bp). cDNA libraries were amplified and sequenced by using the cBot and

the HiSeq2000 from Illumina. Sequence images were transformed with Illumina

software BaseCaller to bcl files, which were demultiplexed to FastQC files with

CASAVA v1.8.2. RNA-Seq data were uploaded to the GEO repository under

the accession number GSE74383.

The invasive capacity of the MCF-7 cells was measured in a modified

Boyden chamber as previously published by Hagemann et al. (2004). Cells

were seeded in triplicates onto an ECM-coated (R&D systems) polycarbonate

membrane (pore diameter: 10 µm, Nucleopore), optionally stimulated with

Wnt5a (400 ng/ml, R&D systems) and incubated for 96 h at 37°C. The number

of invasive cells in the lower wells was counted and related to the unstimulated

control. All invasion assays were carried out in three biologically independent

experiments by Dr. Kerstin Menck and Dr. Matthias Schulz(3).

(1)Department of Hematology and Medical Oncology, University Medical Center Göttingen.
(2)DNA Microarray and Deep-Sequencing Facility Göttingen, Department of Developmental

Biochemistry, University of Göttingen
(3)Department of Hematology and Medical Oncology, University Medical Center Göttingen.
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2.1.3 Pathway and network databases

A number of public databases systematically collect and curate signaling

pathway information. My main focus was on the pathway databases that store

their data in the Biological Pathways Exchange (BioPAX) format. BioPAX is

a standard Web Ontology Language (OWL)-based model encoding the pathway

knowledge at the molecular level. Pathway databases with BioPAX export

utilized in this work include BioCarta (Nishimura, 2001), Kyoto Encyclopedia

of Genes and Genomes (KEGG) (Kanehisa et al., 2004), Reactome (Croft

et al., 2011), Pathway Interaction Database (PID) (Schaefer et al., 2009) and a

meta-database Pathway Commons (Cerami et al., 2011).

For enrichment methods evaluation the pathways from KEGG were down-

loaded in BioPAX level 3 export on March 2013 and only non-metabolic

pathways were selected. Five pathway databases (Table 2.2) were scanned in

order to collect publicly available Wnt signaling data. The database exports

of BioPAX level 3 files were downloaded in March 2014. Pathways of interest

were selected according to the presence of important Wnt signaling compo-

nents. Further pathways processing and stratification are described in the 2.2.3

Parsing pathway knowledge from databases section.

For protein-protein interaction (PPI) network integration the BioGRID (Stark

et al., 2006) database was utilized. The BioGRID interactome was downloaded

at September 2014 (3.2.116) as Tab 2.0 Delimited Text file for Homo sapiens.

Only protein-protein interactions were selected, omitting genetic interactions.
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GEO accession Disease/Target pathway Samples

GSE781 Renal cell carcinoma 17
GSE1297 Alzheimer’s disease 16
GSE3467 Thyroid cancer 18
GSE3585 Dilated cardiomyopathy 12
GSE3678 Thyroid cancer 14
GSE4107 Colorectal cancer 22
GSE5281 EC Alzheimer’s disease 21
GSE5281 HIP Alzheimer’s disease 23
GSE5281 VCX Alzheimer’s disease 31
GSE6956AA Prostate cancer 10
GSE6956C Prostate cancer 16
GSE8671 Colorectal cancer 64
GSE8762 Huntington’s disease 22
GSE9348 Colorectal cancer 82
GSE9476 Acute myeloid leukemia 63
GSE14762 Renal cell carcinoma 21
GSE15471 Pancreatic cancer 70
GSE16515 Pancreatic cancer 30
GSE18842 Non-small cell lung cancer 88
GSE19188 Non-small cell lung cancer 153
GSE19728 Glioma 21
GSE20153 Parkinson’s disease 16
GSE20291 Parkinson’s disease 33
GSE21354 Glioma 17

Total: 880

Table 2.1. Summary of 24 benchmark datasets from the KEGGdzPathwaysGEO R-package.
The columns represent the accession number from GEO database, the name of target pathway
and the number of samples for each dataset.

Database N

BioCarta 4
KEGG 3
Pathway Commons 2
PID 7
Reactome 9

Table 2.2. Databases from which Wnt signaling data was retrieved with the number of
pathways (N) used for network construction.
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2.2 Methods

Three gene-set (GS) and four pathway topology-based (PT-based) enrichment

methods, which were comparatively evaluated in this study, are described in

detail in 2.2.1 and 2.2.2 sections and summarized in the Table 2.3. Further,

in 2.2.3 section the workflow of parsing and editing pathway data from public

databases is defined. Finally, within the last three parts I briefly summarize

differential analysis of expression data (see 2.2.4), network analysis and network

integration approaches (see 2.2.5), and survival analysis (see 2.2.6).

Within this thesis the majority of bioinformatic as well as statistical analyses

were performed in the environment for statistical computing R (Team, 2012).

Method name Approach ORA/FCS R-function/package Null hypothesis

Wilcoxon rank sum GS FCS wilcox.test Competitive
Kolmogorov-Smirnov GS FCS ks.test Competitive
Fisher’s exact GS ORA fisher.test Competitive
SPIA PT-based ORA-like SPIA 2.12.0. Competitive
CePa ORA PT-based ORA-like CePa 0.5. Competitive
CePa GSA PT-based FCS-like CePa 0.5. Self-contained
PathNet PT-based unclass. PathNet 1.3.0. Competitive

Table 2.3. Summary of the gene set (GS) enrichment and the pathway topology-based
(PT-based) methods evaluated in this study. The seven methods were stratified into over-
representation analysis (ORA) and functional class scoring (FCS). However, for PT-based
methods this classification is not always explicit, therefore ’-like’ suffix is used and ’unclass.’
for an unclassified method. Next, the utilized R-functions for GS methods and R-packages
of PT-based methods are stated. According to the null hypothesis most of the methods are
competitive, only the GSA variant of the CePa method is self-contained.

2.2.1 Gene-set enrichment methods

Basic statistical tests were chosen to represent the GS analysis approach:

Wilcoxon rank sum (WRS), Kolmogorov-Smirnov (KS) and Fisher’s exact (FE)

tests. These tests were implemented in various flavors and extensions in multiple

tools and software packages (Khatri et al., 2002; Mootha et al., 2003; Beißbarth

and Speed, 2004; Barry et al., 2008). The R-functions wilcox.test, ks.test and

fisher.test were utilized to perform WRS, KS and FE analysis, respectively. All

three tests are competitive gene sets approaches, which require a list of p-values

for differential expression (Beissbarth, 2006). WRS and KS are functional class
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scoring (FCS) methods transforming the list of p-values into ranks. WRS tests

whether the distribution of ranks of the genes in a set is shifted to the left from

a distribution of ranks of the genes in corresponding complement to the gene set.

KS test compares the ranks of genes in a set to the uniform distribution. The

FE test is based on over-representation analysis (ORA). Therefore, a cut-off in

the list of differentially expressed genes (DEGs) needs to be defined: Here,

false discovery rate (FDR) below 0.05 (FDR < 0.05) was considered as the

threshold. FE is testing independence of rows and columns in 2×2 contingency

table (while the margins are fixed) and p-values are directly obtained using

hypergeometric distribution.

2.2.2 Pathway topology-based methods

The evaluated PT-based algorithms come from three R-packages: SPIA, CePa

and Pathnet. Two variants of the CePa method were implemented in the CePa

R-package, the so-called CePa ORA and CePa GSA, which I further consider

as two distinct methods.

SPIA (signaling pathway impact analysis) is an enrichment method which

combines two types of evidence represented by two p-values (Tarca et al., 2009).

The first p-value originates from a simple ORA, assuming that the number

of DEGs in a given pathway follows hypergeometric distribution. The second,

so-called perturbation p-value is computed in several steps and incorporates

information on pathway topology. In order to obtain the perturbation p-value,

first, for each gene gi in a pathway a perturbation factor is computed:

PF (gi) = ∆E(gi) +
n∑

j=1

βij
PF (gj)

Nds(gj)

where first term ∆E(gi) captures the logarithm of the fold-change of a gene

gi and the second term describes the sum of perturbation factors of the direct

upstream genes of a gene gi normalized by the number of all downstream

genes Nds(gj). Each term of the sum is weighed by βij quantifying the type

of interaction between the two genes: 1 and -1 for activation and inhibition,

respectively. This results in an upstream gene influencing perturbation factors

of many downstream genes. In the second step the perturbation accumulation
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Acc(gi) at the level of each pathway gene is calculated. It is defined as the

difference between the gene perturbation factor and its observed logFC:

Acc(gi) = PF (gi)−∆E(gi)

Finally, the total pathway accumulated perturbation tA is computed as a sum

of the accumulated perturbations of pathway’s genes:

tA =
∑
i

Acc(gi)

Significance is assessed in a bootstrap procedure, resulting in a perturbation

p-value. The two p-values are then combined into a global p-value for each

pathway using Fisher’s product test.

CePa (Gu et al., 2012) is a weighed gene set analysis approach in which

weights are assessed by network centralities. The CePa ORA, first CePa method

variant, weighs the nodes of DEGs according to one of five centrality measures

and then sums them up to the pathway level score:

s =
n∑

i=1

widi

where di stands for binary variable identifying whether pathway node is differ-

entially affected and wi is the centrality of the node. To obtain a p-value the

null distribution of the pathway score is generated by permuting the DEGs on a

given pathway topology. There are five options to assess the node centrality: in-

and out-degree, betweenness and in- and out-largest reach. Degree centrality

measures the number of incoming or outgoing edges of the given node. Between-

ness reflects the number of information streams passing through a given node.

Largest reach quantifies how far a node can send or receive information. Along

five centrality options CePa also calculates an equal weight model where all

weights are set up to 1. Therefore, for each pathway six p-values are calculated

and the authors of method recommend to try every centrality option in the

search for significant pathways. Hence, for the purpose of method evaluation

(see section 3.2) the smallest out of 6 p-values was selected to represent pathway

significance. Furthermore, the CePa method proposed a node-based instead of

a gene-based ID mapping approach. That means, if any member of a complex
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or a group of genes residing in one node is differentially expressed then the

node is considered as differentially expressed. Also nodes representing non-gene

components of a pathway such as microRNA and small molecules are retained in

the pathway topology. However, these last two features of the CePa algorithm

were suppressed by using customized pathway input data (see section 2.2.3).

The second method variant, so-called CePa GSA performs self-contained

univariate gene-set analysis. Firstly, the node level statistic vector d is weighted

by centrality measures w and then they are transformed into pathway level

statistics using transformation function f :

s = f(w · d)

resulting in pathway score s. CePa GSA implements several alternatives

for both, the node level statistic and transformation function. The utilized

default option for node level scores was the absolute value of t-statistic and

for computing pathway level statistics the mean was used as transformation

function. Then the significance of each pathway is assessed by permuting

sample class labels.

PathNet (Dutta et al., 2012) is an enrichment method also combining two

types of evidences, similarly to SPIA method. However, in contrast to SPIA,

which combines two p-values on pathway-level, PathNet operates with gene-

level p-values. The method considers so-called direct and indirect evidence.

Direct evidence coming from expression data is represented by nominal p-values

(pD) of the DEGs. Indirect evidence of a gene is calculated from direct evidence

p-values of all its neighbors in a pooled pathway. The pooled pathway is a

big network created by merging all pathways presented in a given database.

To calculate indirect evidence, first, indirect evidence score SI of a gene i is

defined as

SIi =
∑

j∈G,i 6=j

Aij · (−log10(pDj ))

where G represents all genes in the pooled pathway and A denotes the adjacency

matrix corresponding to the pooled pathway network. Secondly, the null

distribution of the SI score is reconstructed by randomizing direct evidence

p-values on the pooled pathway with a fixed topology and the corresponding

indirect evidence p-value is estimated. Finally, a p-value for each gene is
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obtained by aggregating direct and indirect evidence p-values using Fisher’s

method. The final pathway significance is assessed via a hypergeometric test.

2.2.3 Parsing pathway knowledge from databases

Signaling pathway data can be incorporated into bioinformatic analyses in a

form of gene sets or signaling graphs, and the latter is certainly more challenging

task. In order to integrate topological information as prior knowledge, the

data have to be retrieved and handled in an appropriate way depending on the

particular analysis approach. In this work I collected and processed pathway

data for two main purposes: (1) To provide suitable pathway input for the

enrichment methods and (2) to assemble multiple Wnt signaling pathways into

Wnt networks. For both tasks multiple common steps were taken (Figure 2.1

A-B), but eventually also unique steps were performed for shaping input

for enrichment analysis (Figure 2.1 C1) and to create Wnt network models

(Figure 2.1 C2).

First, exports of BioPAX models were downloaded from the pathway

databases (for the database list see section 2.1.3). The pathways in the BioPAX

files were parsed into R using the rBiopaxParser R-package (Kramer et al.,

2013) and represented as interaction graphs (Figure 2.1 A), in which directed

edges denote activation or inhibition processes between the nodes. The path-

way databases use different identifications to annotate pathway molecules.

Different annotations were converted into HUGO Gene Nomenclature Com-

mittee (HGNC) gene symbols. After HGNC IDs on the graph nodes several

editing steps had to be taken (Figure 2.1 B). First, in case that several nodes

were annotated with the same gene symbol, these nodes were merged into a

node, which shared all incoming and outgoing edges of the original nodes. Next,

gene families or protein complexes often occupied a single node, which resulted

in multiple symbol IDs embedded in the node. Such a node was split into

multiple nodes and each one was assigned with a single gene symbol. Finally,

non-gene pathway entities, such as small molecules, DNA, RNA, or nested

pathways, were filtered out, while connectivity of the graphs was preserved

by introducing new edges connecting the genes that were indirectly connected.

Further processing steps differed between (1) creating input for enrichment

methods and (2) assembling Wnt networks.
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(1) Suitable pathway input for each enrichment method had to be provided

implying graphs transformations (Figure 2.1 C1). For GS methods the

pathway graphs were simply converted into lists of genes. However,

PT-based methods required specific pathway topology inputs. To create

SPIA pathway input, a graph of each pathway was transformed into

a list of 2 adjacency matrices for activation and inhibition processes.

Accordingly, a vector of weights β was set to β = {1,−1} to reflect

activation and inhibition, respectively. For CePa a pathway catalog was

constructed comprising a list of pathways with the interaction IDs, and

a table with the interaction IDs and corresponding input and output

interaction components, and a mapping table. Input for PathNet consisted

of an adjacency matrix of a pooled pathway, which was created by merging

all pathways from KEGG database (see section 2.1.3), an interaction

table with pathway IDs, and a mapping table.

All pathway data inputs were regenerated for the second simulation study

(see Simulations section 2.3). In study 2 the pathway graph nodes were

relabeled with new synthetic IDs to construct non-overlapping pathways

with unique components, whereas the topology of the pathway remained

intact.

(2) To create Wnt network models the parsed pathways were curated based

on the literature and expert knowledge(4) into four groups represent-

ing: canonical Wnt signaling, non-canonical Wnt signaling, inhibition

of canonical Wnt signaling, and regulation of Wnt signaling. Pathways

which were considered to be too unspecific or general to be classified

were discarded. In order to merge these pathways into signaling networks

(Figure 2.1 C2), each pathway graph was transformed into the simple

interaction format. Nodes without any interactions were excluded and

the interaction tables were concatenated according to the assigned groups.

Duplicated interactions were removed and the four interaction tables were

finally transformed back into graph objects.

(4)Consulting with Dr. med. Florian Klemm and Dr. med. Annalen Bleckmann, Depart-
ment of Hematology and Medical Oncology, University Medical Center Göttingen.
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Figure 2.1. (A) Database pathways in BioPAX format were parsed into R and represented
as directed interaction graphs. (B) The graphs were edited in order to affiliate a single graph
node with a single gene symbol ID. (C1) The adjusted graphs were either transformed into
an appropriate input format for a particular enrichment method, (C2) or were merged into
signaling networks to built Wnt models. When merging two pathways, the resulting graph
contains all nodes and edges from both original graphs.

2.2.4 Differential analysis

Differential expression analysis of microarray data was performed by fitting

linear models using the empirical Bayes method as implemented in the limma

R-package (Smyth, 2005). Within preprocessing steps prior the differential

analysis, multiple probes per Entrez Gene ID were removed by retaining the
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probe with the highest average expression. For the purpose of consequent

enrichment analysis, the genes that could not be mapped onto any pathway

were filtered out.

RNA-Seq data were first quality checked via FastQC (Babraham Bioinfor-

matics) and then aligned to the transcriptome using STAR tool (Dobin et al.,

2013). Gene-level abundances were estimated by RSEM algorithm (Li and

Dewey, 2011). Further preprocessing steps were done using edgeR (Robinson

et al., 2010) R package: Low expressed genes were filtered out by keeping the

genes with at least one count-per-million read in at least three samples and read

counts were normalized to the library size. Finally, differential genes between

distinct conditions were identified by fitting negative binomial generalized linear

models (Robinson and Smyth, 2008).

The p-values coming from the analyses of both microarray and RNA-seq

platforms were adjusted for multiple testing using the method of Benjamini and

Hochberg (1995) resulting in FDR and genes with FDR < 0.05 were considered

significantly differentially expressed.

2.2.5 Network-based analyses

To explore network properties the central nodes were identified using two net-

work centrality measures: Betweenness centrality implemented in the between-

ness R-function and degree centrality implemented in the degree R-function

from the igraph R-package (Csardi and Nepusz, 2006). The overlap nodes

between the nodes scored best by both measures are referred to as key nodes in

the signaling network (overlap of top 15) and as hub nodes in the PPI network

(overlap of top 50).

To determine community structure in a graph, dense subgraphs were sought

using the fast greedy modularity optimization algorithm implemented in the

fastgreedy.community R-function (Clauset et al., 2004).

In the integration analysis of the network with expression data the differen-

tially regulated targets were mapped onto the network nodes. Induced nodes

were used as terminal nodes for the Steiner tree analysis based on shortest

path approximation as implemented in the SteinerNet R-package (Sadeghi
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and Fröhlich, 2013). A minimal spanning tree which contains all terminal

nodes was searched in the undirected version of the network. In this analysis

so-called Steiner nodes are introduced to ensure the connectivity of the tree.

Resulting tree nodes were used to extract a differential subnetwork containing

all original directed edges. For visualization purposes Fruchterman-Reingold

layout (Fruchterman and Reingold, 1991) was utilized and the range for color

coding of nodes was limited to ±2 fold-change.

2.2.6 Clustering and survival analysis

For the purpose of breast cancer patient data analysis the complete-linkage

hierarchical clustering was performed based on Pearson correlation as the

distance measure. When multiple probes corresponded to a single gene, a probe

with highest average expression level for the gene was kept for the clustering

analysis. To identify clusters representing different sample groups within the

dendrogram the dynamic hybrid cut algorithm was utilized implemented in

R-function cutreeDynamic from the dynamicTreeCut R-package (Langfelder

et al., 2008). The algorithm detects the clusters in a bottom-up manner

based on the dendrogram shape information and the correlation dissimilarity

information among the patients. The minimum cluster size parameter was

set as 12.5% of the patients when the whole dataset was clustered and 25%

of the patients when only patients of a particular breast cancer subtype were

clustered. Resulting clusters were subjected to a Kaplan-Meier (KM) analysis

of metastasis-free survival (MFS) and KM curves were compared using a log-

rank test implemented in survival R-package. When plotting the KM curves

the first 15 years were visualized. The Cox proportional hazard regression

models were applied for MFS analysis on the expression levels of individual

genes (Harrington and Fleming, 1982; Therneau and Grambsch, 2000). The

genes with hazard ration (HR) above 1 are considered as risk genes and genes

with HR< 1 are defined as protective genes.

For the multiple testing problem Bonferroni method was used when patient

data were subsetted resulting in q-values and FDR method was applied when

correcting gene significance in a tested gene list.
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2.3 Simulations

Synthetic expression data were generated for two extensive simulation studies.

Each study comprised five simulation types (Table 2.4), which differed in the

topology designs for pathway deregulation (see section 2.3.3) and in a choice

of the parameter whose ranges were investigated (see section 2.3.2). The two

distinct simulation studies differed in their gene ID annotation. Whereas in

the first study real gene HGNC symbols were used, in the second study these

symbols were replaced by unique synthetic IDs for all nodes of all pathways in

order to prevent overlapping of the pathways.

Expression data were drawn from a multivariate normal distributionN(µ,Σ),

where µ is p-dimensional mean vector and Σ is (p× p)-dimensional covariance

matrix. Balanced sample size was always generated consisting of 10 control

and 10 treatment samples. As treatment samples I refer to the group in which

changes in the mean vector were introduced. By this, expression levels of the

genes, which reflect fold-changes between the two groups, were controlled. The

genes that had an increased expression above 0 are called affected. In the

covariance matrix a correlation of 0.8 between genes in the same pathway was

introduced and 0.05 otherwise. Variance in the matrix was set to 2. For the

generation of both treatment and control samples, the same covariance matrix

was used.

2.3.1 Studies with different pathway input

The differences between simulation study 1 and 2 originate from their different

pathway data inputs.

Within the study 1, original pathways with overlapping genes were used.

When generating expression data for the study 1, the dimension of mean vector

was set to p = 3173. This number represents the total number of unique gene

symbols in parsed KEGG pathway graphs. As the genes in this study can

belong to multiple pathways the covariance matrix was not positive-definite

and its close positive-definite approximation was computed using the sfsmisc

R-package.
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In the study 2 non-overlapping pathways with unique gene IDs were gen-

erated; however, with the same pathway topology as the original pathways.

To simulate expression data in the second study the mean vector dimension

was p = 7697. This number represents the total number of nodes in the

KEGG pathway graphs. The covariance matrix of was constructed in a similar

manner as in the first study, but as pathways do not overlap the matrix was

positive-definite by default.

2.3.2 Variable parameters

In each study five simulation types were performed. Within a single simulation

type one of the four variable parameters was explored: mean vector (mean),

pathway size (size), number of pathway (N) and detection call (DC). Several

levels of a variable parameter were investigated, while the remaining three

parameters were fixed at a certain level. This resulted in 17 distinct configura-

tions of parameters (Table 2.4). Each parameter configuration was examined

in 1000 simulation runs, meaning that 1000 expression matrices were generated

for the given configuration.

Conf. Type Topology design Variable parameter
Levels of the parameters
mean size N DC

1
1

Community

mean
±1

all 12 50%2 ±2
3 ±6
4

2 size ±2
small

12 50%5 median
6 big
7

3 N ±2 all
12

50%8 23
9 70
10

4 Betweenness

DC

±2 all 12

10%
11 30%
12 50%
13 70%
14

5 Neighbourhood ±2 all 12

10%
15 30%
16 50%
17 70%

Table 2.4. Five simulation types with 17 different parameter configurations, compris-
ing different combinations of a topology design and a variable parameter. Table adapted
from Bayerlová et al. (2015a).
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Mean vector

To investigate the influences of mean vector changes I choose three levels

mean = {±1,±2,±6}. These expression changes were introduced for affected

genes into the mean vector of the treatment group. The mean vector of the

control group always remained 0. After the differential analysis, the different

magnitude of mean change is reflected in logarithm of fold-change (logFC) of

a gene in between two conditions. The direction of expression change in the

mean was positive (+) for one half and negative (−) for the second half of the

affected genes. When ranges of other parameters were investigated, the default

of expression change was set to mean = ±2.

Pathway size

The second parameter was size of the deregulated pathways and its three levels

comprised size = {small, medium, big}. All pathways in the parsed KEGG

pathway data input were stratified according to their number of genes into

three size groups. Small pathways contain from 5 to 26 genes (minimum to 25%

quantile), medium pathways where considered when having from 27 to 85 genes

and big pathways consist of 86 up to 380 genes (75% quantile to maximum).

Pathways of all sizes were taken into account, when size parameter was set as

fixed.

Number of pathways

Next, I was interested in studying the effect of different proportions of the whole

pathway database being deregulated. The number of deregulated pathways

N = {12, 23, 70} represent approximately 10%, 20% and 60% of all pathways

in the KEGG database, respectively. Ten percent of all pathways (N = 12)

were assigned as deregulated when another parameter was variable.

Detection call

The so-called detection call (DC) (Tripathi and Emmert-Streib, 2012) defines

the percentage of affected genes in a deregulated pathway. Four levels of

DC were investigated DC = {10%, 30%, 50%, 70%} to explore how many
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genes in a pathway have to be assigned as affected in order to detect this

pathway as significant. Half of the genes in a deregulated pathway were affected

(DC = 50%) when this parameter was not variable in a given simulation type.

2.3.3 Topology designs for pathway deregulation

To deregulate a pathway within a stimulation, some of its genes needed to be

affected – to have altered expression in treatment samples compared to controls.

I examined thee approaches how to reflect pathway topology to allocate affected

gene in a deregulated pathway: community, betweenness and neighbourhood

approach (Figure 2.2, for general definitions of these measures see Introduction

section 1.6.2 Network analysis).

The communities were detected by maximizing modularity measure of the

pathway graph and for each pathway I searched for a community which repre-

sented from 45% to 55% DC. However, for some pathways several communities

had to be joined or a too big community had to be cut to achieve the appropriate

DC. To select affected genes in the betweenness deregulation design I considered

the top highest scored betweenness nodes. The required number of the top

scored nodes for the given DC was assigned as affected. In the neighborhood

deregulation approach one node of a pathway was chosen and all nodes within

certain distance created the neighborhood. In the search for the neighborhoods

representing different ranges of DC parameter, the neighborhoods of several

orders for each pathway node were calculated and the one best fitting the

required DC level (±5%) was chosen.

2.3.4 Single simulation run

Within a given parameter configuration for a run, a certain number of pathways

(depending on the N parameter – when fixed N = 12 pathways) were randomly

chosen to be deregulated by assigning affected genes. Then new expression data

for this particular run were drawn from the multivariate normal distribution.

The expression matrix was directly supplied to the CePa ORA and CePa GSA

algorithms. For the rest of the methods linear models were fitted first, in order

to identify DEGs. Those were further supplied to the enrichment methods

including logFC, p-values or FDRs, according to the specific requirements of
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Community

Betweenness

Neighborhood

Figure 2.2. Example of a pathway with 30 genes. In order to deregulate this pathway
on detection call level DC = 50% (±5%) I needed to assign 14-16 affected gene to this
pathway and allocate them on the pathway graph according to three topology designs for
pathway deregulation: In the community design two gene communities were selected, together
comprising 14 affected nodes (depicted in red). Using betweenness approach, 16 top scored
nodes were affected. Neighborhood of order 2 of the blue node was selected resulting in 16
affected nodes. The pathway edges represent activation (green) and inhibition (red). Figure
adapted from Bayerlová et al. (2015a).

each method. In each simulation run all 7 methods were evaluated on the basis

of the same expression data and pathway data inputs.

2.3.5 Evaluation

The simulations were evaluated in the terms of sensitivity, specificity and

accuracy (see Table 2.5). The sensitivity describes the proportion of true-

positive pathways detected out of all pathways assigned as deregulated. The

specificity describes the proportion of true-negative pathways out of all pathways

that were not deregulated (i.e. without assigned affected genes). The accuracy
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is given as the proposition of true-positive and true-negative pathways detected

by a method out of all tested pathways.

Reality - Is pathway affected?
Yes No

Yes TP FPTest - Is pathway enriched?
FDR < 0.05 No FN TN

Sensitivity
TP

TP+FN

Specificity
TN

FP+TN

Accuracy
TP+TN

TP+FP+FN+TN

Table 2.5. Measures for performance evaluation: definition of sensitivity, specificity and
accuracy.



Results

This chapter presents first the parsed prior knowledge on signaling pathways

suitable for further integration into bioinformatic analysis. Subsequently, I

compare performance of different enrichment analysis approaches, describe

the features of newly constructed Wnt signaling networks, present results of

network integration with newly sequenced breast cancer cell line data, and

bring these results into the clinically relevant context of metastatic breast

cancer expression profiles.

3.1 Parsed pathways

Prior pathway knowledge was required for creating Wnt signaling models as

well as comparing enrichment methods. All pathway information utilized in

this work was parsed from Biological Pathways Exchange (BioPAX) exports of

public pathway databases. Resulting interaction graphs of the pathways had

to be further edited (see 2.2.3 Parsing pathway knowledge from databases) in

order to associate a single graph node to a single gene ID as well as to preserve

signal propagation continuity. The final directed graphs modeled the pathways

as cascades of activating and inhibiting processes between the genes.

In order to assemble comprehensive list of Wnt signaling and Wnt-related

pathway five databases were scanned yielding a collection of 26 interaction

graphs (Appendix Table 1). These were further merged into signaling networks

described in the 3.3 Wnt networks section.

For enrichment methods comparison 116 signaling as well as disease path-

ways from the KEGG database were selected omitting metabolic pathways.

Final interaction graphs contained 7697 nodes in total, comprising 3173 unique

genes. This reflects the extent of pathway overlap as one gene was present on
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average in 2.4 pathways. The individual pathways comprised from 5 up to 380

genes with a median pathway size of 55.5 genes (Figure 3.1). Despite the effort

to ensure connectivity of a graph when non-gene molecules were filtered out, a

single pathway did not always consist of a single connected component. The

median number of connected components in an interaction graph was 2. The

KEGG interaction graphs were further customized into appropriate pathway

input for the individual enrichment analysis methods.
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Figure 3.1. Parsed KEGG database consist of 116 pathways, with the smallest pathway of
5 genes and the biggest of 380 genes. Red lines depict 25% and 75% quantiles which served
as ranges for pathway size parameter in the simulation studies.

3.2 Comparison of enrichment methods

Seven enrichment methods (Table 2.3) representing gene-set (GS) as well as

pathway topology-based (PT-based) analysis approach were compared in several

simulation scenarios on synthetic expression data generated under different



3.2 Comparison of enrichment methods 41

parameter settings. To ensure comparability of the results the same KEGG

database export was used for all methods to compile gene sets and various

pathway graph representations. Further, the algorithms were applied and

evaluated on real microarray data comprising 24 disease datasets.

3.2.1 Simulation studies

In the simulation studies the methods were evaluated in term of sensitivity and

specificity. Within each study 17 parameter configurations (Table 2.4) were

considered and for each configuration the median sensitivity and specificity of

1000 simulation runs were computed. The parameters and their settings are

described in detail in 2.3 Simulations section.

3.2.1.1 Study 1: with original pathways

Figure 3.2 depicts the results of simulation study with the original overlapping

KEGG pathways.

With weak changes of the mean vector (mean = ±1) sensitivity of GS

methods based on ranking was the best: 0.67 for Wilcoxon rank sum (WRS)

and 0.58 for Kolmogorov-Smirnov (KS), followed by PathNet with a sensitivity

of 0.5. All methods based on over-representation analysis (ORA) (both GS

and PT-based) had 0 sensitivity; however, that was reflected in a specificity

of 1. With a higher mean change, i.e. mean = {±2,±6}, all methods were

comparably sensitive (between 0.92 and 1), whereas the best specificity scores

(0.51 and 0.49) were reached by WRS. In the case of small pathways being

deregulated, most of the methods were less sensitive than in detecting the

bigger pathways. However, CePa GSA (self-contained) and WRS performed

best with a sensitivity of 0.92 and 0.83, respectively. Specificity decreased for

the medium and big pathways. Especially CePa GSA was very unspecific on

the big pathways (0.22) in comparison to the other methods, whose specificity

ranged from 0.46 to 0.56. When more than half of the database pathways were

deregulated (N = 70) both sensitivity and specificity decreased compared to

N = {12, 23}. For N = 70 CePa GSA specificity was only 0.087 whereas the

others ranged between 0.3 and 0.5. At low level of detection call (DC = 10%)
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coupled with betweenness topology design the PT-based methods and Fisher’s

exact (FE) test were more sensitive (0.58 − 0.92) than ranking GS methods

(0.33−0.58). However, on 30% and higher detection call (DC) levels all methods

performed comparably well in the term of sensitivity (0.83− 1). At the same

low level of detection call (DC = 10%) coupled with neighborhood topology

design PathNet had the highest sensitivity of 0.58, followed by other PT-based

methods and FE (0.42− 0.5). In comparison to the corresponding simulation

type with betweenness design, in this setting only CePa ORA and CePa GSE

reached a sensitivity over 0.8 for DC = 30%.

The sensitivity was fairly high across the configurations and rather com-

parable for both GS and PT-based methods. However, the specificity over all

parameter configurations was very low for all methods. Thus, I performed the

same five simulation types on the non-overlapping pathways in the Study 2.

3.2.1.2 Study 2: with non-overlapping pathways

Figure 3.3 depicts the results of simulation study with the non-overlapping

KEGG pathways, whose topology was preserved but the nodes were assigned

with unique synthetic IDs. This resulted in markedly better specificity, whereas

the sensitivity results tell rather similar story as in the Study 1.

On the low level of mean parameter (mean = ±1) again the GS methods

based on ranking were the most sensitive (0.5). In detecting small pathways the

best sensitivity (0.75) was reached by WRS and PathNet. Whereas for the big

pathways sensitivity of WRS was 1 and of PathNet 0.92. The sensitivity of all

methods except CePa GSA decreased when many pathways were deregulated

(N = 70), even to a bigger extent than in Study 1. Interestingly, FE and KS

specificity was only 0.17 for N = 70, while most of the other methods reached

a specificity of 1. When pathways did not overlap the DC level of 50% in the

betweenness design was needed to achieve sensitivity over 0.8, whereas for the

original pathway study all methods reached 0.8 sensitivity at a DC = 30%

level. For the low DC (DC = 10%) PathNet’s sensitivity was the best (0.58).

Simulation type of DC coupled with neighborhood topology design had a similar

behavior pattern as the betweenness setting; only for the both CePa methods

sensitivity on DC = 10% level decreased to 0.
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Figure 3.2. Simulation study 1 using original pathways with overlapping genes: Sensitivity
and specificity scores of seven methods under 17 parameter configurations. Each cell summa-
rizes a median value of 1000 runs. The same color code key applies for all simulation types.
Figure adapted from Bayerlová et al. (2015a).
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Figure 3.3. Simulation study 2 using non-overlapping pathways with unique gene IDs:
Sensitivity and specificity scores of seven methods under 17 parameter configurations. Each
cell summarizes a median value of 1000 runs. Figure adapted from Bayerlová et al. (2015a).
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3.2.1.3 Overall performance in simulations

Average sensitivity, specificity, and accuracy were calculated across 17 configura-

tions for each method in both studies (Figure 3.4). In the first simulation study

with overlapping pathways the average specificity was very low for all methods,

achieving maximum of 0.55 for WRS and SPIA. This was also reflected in the

best accuracy of these two methods: 0.6 for WRS and 0.59 for SPIA. The rest

of the methods achieved comparable accuracy, with levels between 0.53 and

0.57, with the exception of CePa GSA, which showed an average accuracy score

of 0.46. In the second simulation study with non-overlapping pathways, both

overall specificity and accuracy increased. For PT-based methods the average

specificity was 1, whereas there were prominent differences within GS methods;

average specificity for both WRS and FE was 0.89, for KS it was only 0.65.

The sensitivity in Study 2 varied moderately among the methods from 0.63

up to 0.77. The best overall accuracy in the non-overlapping pathways setting

was achieved by the four PT-based methods (0.95− 0.96), followed by FE with

0.88 and WRS with 0.86 scores.

Figure 3.4. Overall sensitivity, specificity and accuracy in the two simulation studies: Mean
of three measures for each method over 17 configurations.

3.2.2 Performance in benchmark data

Besides simulated expression data, 24 microarray datasets were used as a

benchmark to compare performance of seven enrichment methods. Each disease



46 Results

dataset had its defined target pathway from the KEGG database (Table 2.1).

As the target pathway is only one of several potential true positive pathways

for a given disease, I evaluated neither sensitivity nor accuracy. Instead, the

p-values of the target pathways in 24 datasets and their ranks in the whole

KEGG database were inspected, expecting the target pathways to be ranked

close to the top. The lowest p-values of the target pathways were detected

by CePa GSA, followed by WRS (Figure 3.5A). In the ranking of the target

pathways the PathNet method performed best (Figure 3.5B). Figure 3.5C shows

the proportion of the significant to non-significant pathways detected within

the 24 datasets. The CePa GSA identified on average 68% of all database

pathways as significantly enriched, whereas for the rest of the methods it was

between 1.7% and 7.4% of the significant pathways.
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Figure 3.5. Comparison of 7 methods on the benchmark data: Distributions of p-values
and ranks of the target pathways in 24 datasets. Methods are ordered according to the median
p-value (A) and rank (B) from the best to the worst – lower values better performance. (C)
Average percentage of the 116 pathways detected as significant and not significant by each
method.

3.3 Wnt networks

To answer the second major question within my thesis – Which module of the

Wnt signaling network is active in aggressive breast cancer? – first, the network

representation of Wnt signaling was needed.
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Pathway databases provide information on Wnt signaling cascades to differ-

ing extents. Scanning the databases for the pathways linked to Wnt signaling

resulted in 26 parsed pathways. These were sorted into four conceptual groups

(Appendix Table 1) reflecting different Wnt signaling pathway. The first two

groups were defined straightforwardly as (1) canonical and (2) non-canonical

Wnt signaling. However, several pathways did not fall into this classification.

After inspecting these pathways more closely(1), two additional groups were

created: For the pathways which act upstream of the Wnt cascade (3) the

regulation of Wnt signaling was defined. And for the pathways which reflect the

off-state of the Wnt signaling, when β-catenin is targeted by the destruction

complex, (4) the inhibition of canonical Wnt signaling group was established.

The ensemble models were created by merging the interaction graphs within

each group (see Figure 2.1C2). This merging yielded four signaling networks:

canonical Wnt signaling, non-canonical Wnt signaling, inhibition of canonical

Wnt signaling, and regulation of Wnt signaling (Figure 3.6).

The networks were inspected for their general features (see 3.3.1 Network

properties) and for the structural relationships of well-established Wnt pathway

players (see 3.3.2 Clustered Wnt subnetwork).

3.3.1 Network properties

The first step to describe the networks was to assess their size. Surprisingly,

although the focus of scientific publications seems to be imbalanced in favor

of canonical Wnt signaling, the size of the non-canonical network (489 nodes,

7869 edges) exceeded that of the canonical network (304 nodes, 2686 edges).

The regulation of Wnt signaling network comprised 173 nodes with 589 edges,

whereas the inhibition of canonical signaling network had just 83 nodes but

were richly interconnected by 675 edges. Due to the considerable size of the

networks, systematic visual exploration was not suitable. To further investigate

the features of the four networks I identified their key nodes – the most central

genes defined by degree and betweenness measures (see the nodes depicted in

black in Figure 3.6).

(1)Consulting with Dr. med. Florian Klemm and Dr. med. Annalen Bleckmann, Depart-
ment of Hematology and Medical Oncology, University Medical Center Göttingen.
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Figure 3.6. Four Wnt networks representing different Wnt signaling pathways. The size
of each network is defined by the numbers of nodes and edges. A maximum number of five
top key nodes are visualized in black for each network. Figure adapted from Bayerlová et al.
(2015b).

3.3.2 Clustered Wnt subnetwork

To ascertain the biological relevance of the newly constructed networks, I

narrowed the focus from the large-scale networks into well-known Wnt pathway

genes preset therein. I collected a list of 121 established Wnt pathway players

reviewed in the literature (Moon et al., 2004; Katoh and Katoh, 2007; Ameron-

gen and Nusse, 2009; Holland et al., 2013) and overlaid them onto nodes of the

networks. The subnetwork was extracted comprising 112 mapped genes inter-

connected by 931 edges from all four networks. Subsequently, the subnetwork of

reviewed Wnt genes was subjected to structural analysis. Partitioning the sub-
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network by increasing the modularity revealed five well connected topological

components, so-called communities (Figure 3.7).

The first community (in purple) comprised mostly Wnt and secreted frizzled-

related proteins representing a cluster of ligands. Two side communities

constituted β-catenin-independent signaling: Wherein the smaller (yellow)

community consists of players from the Planar cell polarity (PCP) pathway, the

second (green) cluster included WNT5A and WNT11 and further downstream

components of the Wnt/Ca2+ pathway. The central (blue) community was

more heterogeneous, as it contained both canonical (e.g. WNT3A, LRP5, LRP6,

AXIN1, APC, CTNNB1 ) and non-canonical (e.g. VANGL1, RHOA, DAAM1 )

components. The central position of Dishevelled (Dvl) isoforms nodes in this

community is consistent with their roles in transducing both canonical and

non-canonical Wnt signals. Finally, the bottom red community grouped the

transcriptional effectors and target genes.
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Figure 3.7. Subnetwork of reviewed Wnt genes: The five communities marked in different
colors were detected by optimizing the modularity measure. The directed edges represent
activating (gray) and inhibiting (orange) interactions. Figure adapted from Bayerlová et al.
(2015b).
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3.4 Sequenced cell line and perturbation targets

RNA-Seq data were generated in order to explore the downstream effects of

different interventions in the estrogen receptor (ER) positive MCF-7 breast

cancer cell line. The phenotype of the MCF-7 cells without any intervention

experiments is considered to correspond to luminal A breast cancer subtype

with favorable clinical prognosis. The working hypothesis within this context is

that activation of non-canonical Wnt pathway stimulates cell proliferation and

migration. Wnt5a ligand and Ror2 receptor were chosen as non-canonical Wnt

pathway members for the perturbation experiments in order to enhance inva-

siveness of MCF-7 cell line and subsequently to identify expression-responsive

target genes. Four conditions of MCF-7 cell line were generated:

1. positive control (ctl) with empty pcDNA vector

2. control stimulated with Wnt5a (ctl + Wnt5a)

3. stable over-expression of Ror2 receptor (Ror2)

4. combination of both perturbations (Ror2 + Wnt5a)

The MCF-7 cells stimulated with Wnt5a showed enhanced cell invasiveness

compared to the control. The Ror2 over-expression also resulted in an increase

of tumor cell invasion and this could be further stimulated by treatment with

Wnt5a in parallel (Figure 3.8).

  

Figure 3.8. In-vitro microinvasion assay of MCF-7 cells in four conditions: The number of
invasive cells is related to the control empty vector condition (pcDNA). Statistical significance
p < 0.001 is indicated as ***. This figure was provided by Dr. med. Annalen Bleckmann and
Dr. Kerstin Menck.



3.4 Sequenced cell line and perturbation targets 51

To quantify changes in gene expression underlying this phenotypic transfor-

mation each MCF-7 condition was deep sequenced in three replicates. Based on

RNA-Seq data the gene-level abundance were estimated and the total library

size of sequenced samples ranged from 35 to 55 million (Table 3.1). In the

differential analysis transcriptomic profiles of the perturbed cell lines were

compared to the control samples or other perturbed conditions of interest.

Table 3.2 summarizes the genes differentially expressed between the com-

pared conditions. The two comparisons testing for the effect of Wnt5a stimula-

tion – with and without presence of the over-expressed Ror2 – yielded rather

low numbers of significantly differentially expressed genes (DEGs) (Figure 3.9,

Appendix Table 2). The only significant differential gene detected in the both

comparison was MUC5AC, which indicated that Wnt5a stimulation had only

moderate effect on the transcriptomic level changes of the MCF-7 cell line.

Out of five performed comparisons, the three comparisons that tested for Ror2

over-expression impact (ctl vs. Ror2, ctl vs. Ror2 + Wnt5a, ctl + Wnt5a

vs. Ror2 + Wnt5a) demonstrated stronger effects resulting in 2860, 3729 and

3022 DEGs, respectively. To identify stable targets of Ror2 over-expression I

determined the overlap of these three gene lists in a venn analysis that resulted

in 2068 common targets (Figure 3.10).

Condition Rep. Library (mio)

ctl 1 50
ctl 2 53
ctl 3 47
ctl + Wnt5a 1 35
ctl + Wnt5a 2 55
ctl + Wnt5a 3 49
Ror2 1 48
Ror2 2 36
Ror2 3 53
Ror2 + Wnt5a 1 49
Ror2 + Wnt5a 2 51
Ror2 + Wnt5a 3 35

Table 3.1. Deep sequenced sample replicates of perturbation experiments on MCF-7 with
the total number of the mapped reads in million (mio).
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Comparison of conditions N. of DEGs

ctl vs. ctl + Wnt5a 7

ctl vs. Ror2 2860

ctl vs. Ror2 + Wnt5a 3729

Ror2 vs. Ror2 + Wnt5a 11

ctl + Wnt5a vs. Ror2 + Wnt5a 3022

Table 3.2. By comparing transcritomic profiles of the MCF-7 cell lines with different per-
turbation, significantly differentially expressed genes were identified between the corresponding
conditions (Number of DEGs).
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Figure 3.9. Targets of Wnt5a stimulation in the MCF-7 cells with and without Ror2 receptor
over-expression.
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Figure 3.10. Common Ror2 targets: Venn diagram depicting overlap of three lists of
differential genes responsive to Ror2 over-expression in MCF-7.
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3.4.1 Enrichment of Ror2 targets in Wnt gene sets

The enrichment analysis was performed to determine which Wnt signaling

cascades were activated within the Ror2 over-expressing system. The list

of 2068 common targets represents the threshold setting, therefore the ORA

approach was utilized. The four constructed Wnt models were used as prior Wnt

pathway knowledge in the form of gene sets. To further explore the contribution

of the up-regulated and down-regulated genes to the enrichment, the targets

were split based on positive and negative fold-changes into three lists: all, up

and down. These sets of targets were used to determine the enrichment patterns

of the Wnt pathway gene sets (Table 3.3). Two Wnt pathways were detected as

over-represented in the list of all targets: Non-canonical and regulation of Wnt

signaling. Whereas the non-canonical Wnt gene set was significant for all as

well as for up-regulated targets, the canonical Wnt gene set was not significant

for any target list.

2068 targets
Wnt model as a gene set

All Up Down

Canonical Wnt signaling 0.35 0.3 0.54

Non-canonical Wnt signaling 0.02 0.002 0.65

Inhibition of canonical Wnt signaling 0.98 0.91 0.97

Regulation of Wnt signaling 0.01 0.09 0.04

Table 3.3. Over-representation analysis of the common targets: FE test was performed to
test for over-representation of 2068 targets and their up-regulated and down-regulated subsets
in the distinct Wnt gene sets. Significant p-values (p < 0.05) are depicted in bold.



54 Results

3.5 Integration of targets with networks

The list of 2068 targets was further used to integrate the results of RNA-

Seq experiments into the framework of networks. Within the Wnt knowledge

context the enrichment analysis results indicated activation of the non-canonical

Wnt model in the gene expression data. Therefore, the non-canonical Wnt

network was chosen for the subsequent network integration analysis to identify

a module activated by the Ror2 over-expression targets (see 3.5.1 Non-canonical

Wnt module). Moreover, to explore the 2068 targets besides the Wnt signaling

context, I integrated them with public protein-protein interaction (PPI) network

from the BioGRID database (see 3.5.2 PPI network and hubs).

3.5.1 Non-canonical Wnt module

As the non-canonical Wnt model exhibited significant enrichment of the common

targets when utilized as the gene set, I further exploited its network structure to

identify the expression-responsive module. First, 2068 genes were mapped onto

the nodes of non-canonical network, which resulted in 66 network nodes induced

by the targets. To link these 66 nodes within the network structure, the Steiner

tree algorithm was employed, which introduced 18 connecting nodes that do

not embody differential targets (Appendix Table 3). Subsequently, the induced

subnetwork of 84 nodes was extracted including all original edges (Figure 3.11,

Appendix Table 4). This subnetwork represents the module of non-canonical

Wnt pathway regulated by over-expressed Ror2 receptor (hereinafter referred

to as Wnt module). The module revealed several important Wnt pathway

members: FZD5 and WNT11 as up-regulated and FZD4 and DVL1 as down-

regulated in response to Ror2 over-expression, and WNT5A, DVL2 and CD36

as Steiner nodes interconnecting the differential targets.
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Figure 3.11. Non-canonical Wnt subnetwork representing differentially regulated module
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represents down-regulation and brown up-regulation of the genes in Ror2 over-expressing cells
compared to the control MCF-7 cells. The smaller black nodes were introduced by the Steiner
tree analysis. The directed edges represent controlling interactions.

3.5.2 PPI network and hubs

To investigate which of the targets have important functional relationships

within cellular network of proteins, I integrated them into the interactome repre-

sented as undirected network of PPIs. From 2068 genes 1710 were mapped onto

the PPI network and only edges connecting induced nodes were preserved. The

induced graph contained one major connected component, 13 small components
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of three or less nodes, and 767 genes were interaction orphans. I focused on the

biggest component comprising 920 targets interconnected by 2199 edges. To

explore relevant players within this PPI graph component, I used two centrality

measures to identify hub genes (described in 2.2.5 Network-based analyses). 41

hubs were detected that represented nodes with central topological position

– meaning they had many interaction partners from the target genes as well

as they facilitated the transfer between the targets (Figure 3.12). Table 3.4

summarizes the 41 hubs which include, for instance estrogen and androgen

receptors (ESR1, AR), (proto-)oncogenes (MYC, BMI1, FYN ), as well as four

genes overlapping with Wnt module members: UBE2D1, FLNA, RAC1, and

FHL2.
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Figure 3.12. Hub targets in PPI network: Connected component of 920 targets with 2199
PPIs with central hub nodes highlighted in orange.
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Hub gene Description

1 FN1 fibronectin 1

2 ESR1 estrogen receptor 1

3 COPS5 COP9 signalosome subunit 5

4 HDAC1 histone deacetylase 1

5 MYC v-myc avian myelocytomatosis viral oncogene homolog

6 BMI1 BMI1 proto-oncogene, polycomb ring finger

7 SUMO3 small ubiquitin-like modifier 3

8 RPA2 replication protein A2, 32kDa

9 YWHAG tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma

10 EZH2 enhancer of zeste homolog 2 (Drosophila)

11 PAN2 PAN2 poly(A) specific ribonuclease subunit homolog (S. cerevisiae)

12 UBE2I ubiquitin-conjugating enzyme E2I

13 SH3KBP1 SH3-domain kinase binding protein 1

14 SOX2 SRY (sex determining region Y)-box 2

15 BARD1 BRCA1 associated RING domain 1

16 HDAC5 histone deacetylase 5

17 ATXN1 ataxin 1

18 SRRM2 serine/arginine repetitive matrix 2

19 ARRB1 arrestin, beta 1

20 KDM1A lysine (K)-specific demethylase 1A

21 LGR4 leucine-rich repeat containing G protein-coupled receptor 4

22 SFPQ splicing factor proline/glutamine-rich

23 CD81 CD81 molecule

24 AR androgen receptor

25 PRKDC protein kinase, DNA-activated, catalytic polypeptide

26 UBE2D1 ubiquitin-conjugating enzyme E2D 1

27 POLR2A polymerase (RNA) II (DNA directed) polypeptide A, 220kDa

28 FYN FYN proto-oncogene, Src family tyrosine kinase

29 FBXO25 F-box protein 25

30 YBX1 Y box binding protein 1

31 FLNA filamin A, alpha

32 UBQLN4 ubiquilin 4

33 THRAP3 thyroid hormone receptor associated protein 3

34 RAC1 ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)

35 FHL2 four and a half LIM domains 2

36 EPS15 epidermal growth factor receptor pathway substrate 15

37 E2F1 E2F transcription factor 1

38 LRPPRC leucine-rich pentatricopeptide repeat containing

39 PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (alpha)

40 AHCYL1 adenosylhomocysteinase-like 1

41 PLK1 polo-like kinase 1

Table 3.4. List of hub targets with the gene name and description, ordered by centrality
relevance.
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3.6 Breast cancer metastasis-free survival study

Gene signatures for predicting a breast cancer outcome are often used to stratify

patients into prognostic groups. The members of the Wnt module as well as PPI

hubs are considered to be candidate genes that confer an aggressive phenotype

to breast cancer cells. Therefore, I was further interested in evaluating their

prognostic power in the patient context of metastatic breast cancer. To that

end, I first collected publicly available patient data.

3.6.1 Patient cohort and subtype prediction

Ten gene expression datasets of breast cancer patient samples were assembled

into a compendium dataset. Annotations of metastasis events with available

time to distant metastasis information were compiled together for 2075 patient

samples. Within this cohort the molecular breast cancer subtypes were predicted

using PAM50 signature, resulting in 1724 patients assigned with one of the

following subtypes: basal-like (basal), HER2-enriched (Her2), luminal A (lumA)

and luminal B (lumB) (Table 3.5, Figure 3.13A). As no sample was predicted

as normal-breast-like subtype above the prediction strength threshold, this

subtype was not considered in further analyses.

In the final dataset the 5-year metastasis-free survival (MFS) rate was

highest for the lumA (0.92), whereas basal and Her2 subtypes had the lowest

rate – 0.74 and 0.61, respectively. Furthermore, the predicted subtypes showed

prognostic significance (p = 2.37e− 12) for the MFS (Figure 3.13B).

Subtype
N. of

patients
N. of
events

% of
events

5-year
MFS

Basal 289 74 26% 0.74
Her2 47 18 38% 0.61
LumA 716 116 16% 0.92
LumB 672 186 28% 0.76

Total: 1724 394 23% 0.82

Table 3.5. Breast cancer patients with predicted subtypes: Table summarizes for the whole
dataset as well as for each subtype separately the number (N.) of patients, the number of
metastasis events, the percentage of the metastasis events within a group, and the 5-year
metastasis-free survival (MFS) rate.
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Figure 3.13. Predicted breast cancer subtypes: (A) Pie chart depicts the proportion of
subtypes for the 1724 patients. The outer ring represents the proportion of metastasis events
in each subtype. (B) Kaplan-Meier curves showing MFS according to the four subtypes.

3.6.2 Wnt module genes as prognostic signature

The members of the Wnt module were used as a pathway-based gene signature

to test prognosis of metastasis development in breast cancer. First, expression

levels of the 76 signature genes, which could be mapped to the expression data,

were utilized for the correlation distance-based clustering analysis. Whereas

the gene dendrogram revealed two major clusters, the patient dendrogram had

a more complex structure (Figure 3.14).

The dynamic hybrid algorithm was used to automatically detect substruc-

tures within the patient dendrogram identifying four distinct clusters. These

four clusters were significantly associated with different MFS (Figure 3.15).

When exploring the composition of the subtypes across the dendrogram the

cluster with the worst prognosis (pink cluster 3) showed a majority of basal but

also smaller proportions of all three other subtypes. Interestingly, all clusters

contained mixture of at least two or more subtypes.

Further, I inspected the positions of genes encoding the non-canonical Wnt

ligands and receptors within the gene dendrogram. I found WNT11, FZD5
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and FZD4 within single gene cluster indicating similar co-expression patterns,

whereas WNT5A and ROR2 were separated from these within the second gene

cluster (Figure 3.14).
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Figure 3.14. The Wnt module gene signature in the whole patient cohort: Clustering
analysis revealed the heatmap of expression levels (depicted as row z-scores) and the subsequent
dendrogram shape-based analysis yielded four patient clusters. The pie charts at the bottom
display subtype distribution within each cluster. The position of Wnt ligands and receptors
on the gene dendrogram is depicted by the arrows.
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Figure 3.15. The Wnt module gene signature in the whole patients cohort: Kaplan-Meier
curves showing MFS according to the four clusters.

Based on the mixed distribution of subtypes across the four patient clusters

I hypothesized that there are different non-canonical Wnt pathway activation

levels within the individual subtypes which can be associated with metastasis

development. I focused on the lumA and basal subtypes and performed analog-

ical signature-based clustering and Kaplan-Meier (KM) analyses as previously

done for the whole cohort, but now in the subtype-specific context (Figure 3.16).

Clustering and cluster-detection analyses revealed two subgroups in the

lumA subtype (Figure 3.16A), which further showed differences for MFS when

tested in the KM survival analysis (p = 0.0377). The yellow cluster comprising

312 patients had better prognosis than the deep-sea-blue cluster of 404 samples.

However, when considering Bonferroni multiple testing correction the difference

was not significant (q = 0.0754). This can be explained by the proximity of

the two KM curves for first 7-8 years, which only diverged from each other

afterwards.

In the basal subtype-specific analysis two clusters were found based on the

gene signature clustering (Figure 3.16B). They exhibited a significant difference

for MFS (p = 0.0145, q = 0.029) with the KM curve of smaller (violet) cluster

showing worse metastasis prognosis than the bigger (pea-green) cluster curve,

especially within the first 5 years.
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Figure 3.16. Wnt module gene signature in (A) luminal A and (B) basal-like subtypes of
breast cancer patients: The figure displays the heatmaps of expression levels with dendrograms
from hierarchical clustering analyses at the top and the KM curves of the patient clusters
from MFS analyses at the bottom.

I was further interested in the discriminative potential of individual genes

from the signature within the lumA and basal groups. Therefore, Cox regression

models were fitted on the expression levels for each gene. The resulting values

of hazard ration (HR) were used to define the risk genes (HR > 1) and the

protective genes (HR < 1). The higher expression levels of risk and protective

genes were associated with shorter and longer MFS, respectively. In the lumA

group 12 genes were identified being associated with metastasis outcome at

the p-value significance level p < 0.05: four risk genes and eight protective.

Only one risk gene – CSK, c-Src tyrosine kinase – was detected at FDR < 0.05



3.6 Breast cancer metastasis-free survival study 63

level as significantly correlated with shorter MFS for lumA subtype patients.

Within the basal patients nine and seven genes were found as potential risk and

protective genes (p < 0.05), respectively. From there two passed FDR < 0.05

level: FZD4, frizzled receptor 4, as a risk gene and PLCB1, phospholipase C

beta 1, as a protective gene. To visualized these results I mapped them back

on the Wnt module topology (Figure 3.17) – although the topology itself was

not exploited in the survival analysis.
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Figure 3.17. The Wnt module with subtype-specific metastasis-free survival (MFS) associated
genes. The size of nodes depicts the significance level. The color codes whether the gene was
identified for basal patients (red), lumA patients (blue) or for both groups (green). The shape
of nodes reflect a role of the genes: the risk genes associated with shorter survival (square),
the protective genes with longer survival (circle) and genes with a contradicting role between
the two subtypes (star). Small black nodes represent genes that were not associated with
metastasis prognosis.
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3.6.3 PPI hub genes as prognostic signature

The gene signature comprising 41 hubs was applied to patient data in a similar

fashion as the previous signature. Hierarchical clustering analysis was performed

using 37 hub genes, which had representative gene probes in the expression

data. Three clusters were detected in the patient dendrogram (Figure 3.18A).

The clusters were subsequently subjected to MFS analysis, which revealed

significant differences in prognosis between the cluster groups (Figure 3.18B).

When investigating the subtype composition across the clusters I found all basal

and Her2 patients grouped in the cluster 3 (pink) with the worst prognosis,

whereas remaining two clusters contained mixture of lumA and lumB subtypes.

To assess a prognostic ability of individual hub genes within the whole patient

cohort (not subtype-specific), I again utilized Cox regression models fitted on

the expression levels of each hub. The analysis identified three protective and

two risk genes that were significantly correlated with metastasis outcome on

the FDR < 0.05 significance level (Appendix Table 5). The protective genes

whose higher expression correlated with longer MFS were EPS15, SFPQ and

RPA2. In contrast, the risk genes whose higher expression was associated with

shorter MFS were RAC1 and PLK1.
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Figure 3.18. The PPI hub genes as a prognostic signature in the whole cohort: (A)
Clustering and subsequent dendrogram shape-based analyses yielded three patient clusters. (B)
KM curves showed MFS according to the three detected clusters. The pie charts display the
subtype distribution within each cluster.
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Discussion

4.1 Parsing and representing pathway knowledge

Existing pathway knowledge can greatly facilitate the interpretation of high-

throughput data analysis results. Within this thesis I utilized pathway data

for two main purposes: 1) to integrate them into enrichment methods for the

comparative study and 2) to construct signaling networks of Wnt pathways.

A number of public databases offer signaling pathway data. In these

databases pathway processes, like protein binding or signal transduction, are

coded using different approaches (D’Eustachio, 2013). One of the current stan-

dards to encode pathway information is the BioPAX format. While the BioPAX

definition itself is fixed (Demir et al., 2010), the specific syntax used and the

level of detail vary between databases. I utilized the generic BioPAX parser

rBiopaxParser developed by Kramer et al. (2013) to access pathway data

and parse them into the R environment. In R the pathways are modeled as

interaction graphs with the nodes representing molecules and the directed edges

representing controlling processes such as activation and inhibition. Hence,

knowledge on binding mechanisms or conversions of physical entities is not

represented within these graphs.

I further transformed the graphs by removing non-protein-coding nodes in

order to associate each node with a single gene symbol, and to preserve at the

same time interaction continuity, which is important for signal propagation.

Nevertheless, with only activation and inhibition processes being modeled, a

lot of biological context is lost, which might be liable for multiple connected

components being present in a single pathway graph (median of 2 components

per KEGG pathway). Whereas this is not reflected heavily in the topology of

Wnt networks as they were created by merging multiple pathways, it might
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play a role in the subsequent performance of the PT-based enrichment methods

(discussed further in the next section).

An alternative to rBiopaxParser is graphite R-package (Sales et al., 2012)

offering pathways in a different representation – as graphs containing a mixture

of directed and undirected edges. The directed edges represent positive or

negative control mechanisms, whereas indirected edges stand for physical

binding. Such a concept certainly models more details on pathway processes

and the user can eventually select only the desired edges. However, the

rBiopaxParser as a generic parser provides more flexibility in terms of generating

and modifying pathway models.

Within the framework of the comparative study, I provided the same

parsed pathway data for all methods to perform a fair comparison. Although

all evaluated PT-based methods require some form of a directed graph as a

pathway input, the specific representations of a pathway differ between the

methods. For instance, the CePa methods operate on graphs whose nodes can

comprise multiple molecules that represent a protein complex or a gene family.

Therefore, the CePa functionality based on this feature was suppressed when I

supplied the method with the customized pathway data, in which complexes

were split into individual nodes.

In summary, the representation of pathway knowledge can range from

simplistic gene sets, through directed graphs, up to sophisticated models

with multiple types of nodes and edges. However, the choice of the optimal

representation depends on the integration purpose, the experimental context

and the analytical approach. Subsequently, this choice affects the final results

of end-point analysis; however, it is often hard to quantify this effect.

4.2 Enrichment methods

Enrichment analysis is a widely used strategy to place the results of a differential

analysis into the context of known groups of molecules related in the same

biological functions and processes, such as signaling pathways. In this thesis I

comparatively evaluated three GS methods against four enrichment methods

that account for pathway topology structure.
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So far, there has been very little work devoted to understand the contribution

of pathway topology to the enrichment analysis results. Recently, Jaakkola

and Elo (2015) evaluated a similar set of methods in an empirical study of 10

datasets, concluding that PT-based methods found more significant pathways

than methods not using pathway topology. The authors highlighted two

PT-based methods – SPIA and CePa – in terms of consistency of results across

different data sets and the number of results. Although it might be challenging

to assess ground truth information in real datasets, more results should not be

straightforwardly considered to be better results.

In contrast to their work I evaluated the methods in two extensive simulation

studies, accounting for different parameter configurations, as well as using a

benchmark of 24 real datasets (Bayerlová et al., 2015a).

Within the simulations, several challenges arose. To capture a pathway

deregulation in a graph representation and subsequently reflect this alteration

in the synthetic expression data is a non-trivial task. I utilized three designs to

allocate affected genes to the topological structure of a deregulated pathway:

community, betweenness and neighborhood. Notably, in a certain setting a

particular method might be favored due to the inherent algorithm properties,

for instance, the CePa methods by the betweenness design and PathNet by

the neighborhood design. Furthermore, biological signal is mediated through a

pathway via complex mechanisms and it could be questioned how well these

graph concepts reflect a real perturbation.

In the first simulation study, in which pathway input was represented by the

original KEGG pathways, none of the PT-based methods showed outstanding

performance – neither for any parameter configuration nor for the overall

accuracy measure.

The original KEGG pathways exhibited considerable gene overlap among

each other – a single gene was present in 2.4 pathways on average. When

a pathway was called deregulated on a certain detection call (DC) level, it

obtained corresponding number of genes assigned as affected. This resulted in a

number of pathways that contained affected genes although they were not called

deregulated. Consequently, these pathways were detected as false positives and

led to very low specificity of all methods in Study 1. It can be assumed that

these accidentally affected genes were allocated randomly in a pathway not
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called deregulated, whereas in a pathway called deregulated they were placed

in a topological design context. Therefore, the PT-based methods could be

expected to deal with the problem of these false positives. For instance, the

PathNet method claims to account for the pathway overlaps by constructing a

pooled pathway. However, according to the results of this study the PT-based

methods do not appear to solve this problem.

The problem of pathway overlaps has already been pointed out by several

authors. To overcome this problem, Jiang and Gentleman (2007) suggested to

test the subtracted gene sets or the intersects of gene sets. Later on, Tarca

et al. (2012) introduced a method that down-weights overlapping genes in the

enrichment analysis. However, these strategies were applied only to the GS

methods.

Upon closer inspection of the results of Study 1, the CePa GSA method

showed markedly different behavior than that exhibited by the other methods.

On the one hand, its overall sensitivity was the highest, but on the other hand,

its specificity was extremely low in the configurations, in which with a lot

of genes were affected (size = {big}, N = 70 and DC = 70%). Moreover,

the CePa GSA was the best in identifying target pathways in the diseased

benchmark datasets but it also identified more than half of all KEGG pathways

as significant. This clearly distinct performance was expected from the single

self-contained method included in this work. The self-contained methods

already been proposed to be too powerful (Goeman and Bühlmann, 2007) and

therefore lacking specificity. My results further indicate that the centrality-

based gene weighting approach of the CePa GSA method does not improve

this drawback.

The ranking-based functional class scoring (FCS) methods have already

been reported to detect modest deregulation changes better then the ORA

approach (Abatangelo et al., 2009). Results of the simulation Study 1 further

suggest that the ranking tests (WRS and KS) are more sensitive than any of

the PT-based methods when gene expression changes are weak (configuration

with mean = ±1).

Simulation Study 2 was performed to compare the methods in a setting

unbiased by false-positives originating from the pathway overlap. The real

topology structures were preserved in the non-overlapping pathway input,
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but unique synthetic IDs were generated for the graph nodes to prevent the

overlap. The overall specificity increased in Study 2, especially, for the PT-based

methods. In addition to the demonstrated high specificity, the four PT-based

methods showed the highest overall accuracy.

Interestingly, KS reached the lowest overall specificity among all methods

in Study 2, and specificity was always worse when more genes were affected

(e.g. for configuration size = {big}, N = 70 and DC = 70%). This might be

explained by its null hypothesis, which actually tests whether a gene set or its

complement is significantly enriched (Maciejewski, 2013). In the simulation

configurations when the complement is enriched, false positive pathways are

detected.

Although, the simulated data may not completely capture complex biology

of gene expression, they provide controllable settings with defined results. In

contrast to the simulations, the benchmark datasets represent real life settings.

However, it is not possible to assess specificity and accuracy as the evaluated

target pathway for each dataset is only one out of multiple potential true

positive pathways. Nevertheless, in terms of identifying and prioritizing the

target pathways the WRS and PathNet methods appeared to be reasonably

successful. In conclusion, the overall results suggest that the GS approach

might be satisfactory enough to detect significantly deregulated pathways.

In the enrichment analysis framework two additional aspects warrant further

discussion: the pathway data – particularly their topological representation –

and the experimental data that are used to test for pathway enrichment.

Pathway data stored in the databases are constantly curated and updated.

It is easier to process and handle gene sets than to generate and integrate a

topological pathway input of a new database version. Therefore, PT-based

methods are less flexible in this respect and their utility is usually limited to

their internal support of the processed pathway data. Furthermore, the true

topology of a pathway is context-dependent and differs between organisms, cell

types, and tissues (Khatri et al., 2012). Whereas the structure of a pathway in

a database is usually given by a certain condition or state, the experimental

data tested in the enrichment analysis comes from various biological systems.

Another issue concerning the enrichment analysis of pathways originates

from gene expression levels being used as experimental data. Biological path-
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ways are complex multi-layer systems consisting of membrane receptors, in-

tracellular proteins, small molecules, transcription factors, and target genes.

Although the transcriptome correlates with the proteome to 63% when consid-

ering relative abundances (Vogel and Marcotte, 2012), it has become common

practice to use mRNA expression levels as proxies for abundances of corre-

sponding proteins. Based on this approximation, differential expression of

genes is utilized to detect altered pathways, even though signaling pathways

are collections of mostly proteins. For gene sets this approximation assumes

that if the mRNA levels are differential also corresponding proteins should

have differential abundances. However, for the PT-based approach it implies

further assumptions that might be incorrect, such as modeling activation and

inhibition between proteins and assuming their specific place and role within a

pathway structure based on the mRNA levels.

Therefore, this discrepancy between gene expression measurements and

signaling pathway representations can result in a limited interpretability of the

obtained results. Taken together, if a pathway gene set does not appropriately

reflect the experimental data, it cannot be expected that adding topological

information would improve the method’s performance.

A simple solution to address this discrepancy would be to replace tran-

scriptomic data by proteomic measurements for testing enrichment of signaling

pathways. Technological advances in mass spectrometry and SILAC now allow

to measure protein abundances on a large scale. Therefore, these data offer a

reasonable alternative to mRNA levels as they reflect the protein character of

the pathways much more closely.

Another straightforward solution was proposed by Naeem et al. (2012): To

test sets of target genes which share a specific transcription factor. Within the

analysis of gene expression data, testing such sets might be more appropriate

than testing pathways. But again, this solution is applicable only within the

GS approach.

In summary, whereas it is rather straightforward to supply a simple gene

set of a pathway for GS methods, to represent the true topology of a pathway

is more challenging. Moreover, testing the topological structure of a pathway

using gene expression data implies assumptions which are not reflected in the

biology of cellular signaling and gene expression responses. In general, more
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comprehensive studies and further benchmark data are needed to systematically

evaluate these methods in the context of various high-throughput technologies.

4.3 Wnt networks

In contrast to the arguable usage of pathway topology for testing an enrichment,

describing a signaling pathway as a network structure using graph theory

approaches represents a more promising concept. Wnt signaling pathways are

of great interest due to their clinical importance as well as their ambiguous

roles in breast cancer initiation and progression. I constructed four signaling

networks, which were assembled from directed graphs of Wnt pathways from

multiple databases, and reflect distinct Wnt signaling cascades: 1. canonical

Wnt signaling, 2. non-canonical Wnt signaling, 3. inhibition of canonical Wnt

signaling, and 4. regulation of Wnt signaling (Bayerlová et al., 2015b). These

newly constructed Wnt networks represent a significant subset of the totality

of machine-readable knowledge on Wnt signaling.

Network analysis approaches have proven to be powerful for elucidating

important topological as well as functional elements of networks (Aittokallio

and Schwikowski, 2006; Vidal et al., 2011). I utilized two approaches – centrality

and network clustering – to explore the architecture of the Wnt networks.

First, I located central nodes reflecting essential topological elements. For

each Wnt network I identified up to five top key nodes. These key nodes

represent at the same time highly interconnected nodes (high degree hubs) as

well as nodes with frequent signal flow (high betweenness) when considering

directed signaling networks. The top key nodes in the canonical network were

CTNNB1, DVL1, DVL2, DVL3, and AXIN1. While CTNNB1 encoding β-

catenin is the core member of the canonical Wnt signaling cascade, the others

are also recognized for their essential role in mediating β-catenin-dependent

Wnt signals (Moon et al., 2004). The key nodes of the non-canonical network

comprised WNT5A and CAMK2A – well-known important components of

β-catenin-independent signaling (Kühl et al., 2000) – and TLN1 and CALM3.

Identification of TLN1 as a key node was particularly surprising, as this gene

has not received a large amount of attention in the literature in the context

of Wnt signaling. It encodes Talin-1, which is a major cytoskeletal protein
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associated with integrin signaling and focal adhesion (Critchley and Gingras,

2008). the fact, that these processes are linked to cytoskeletal rearrangement,

interestingly complements the role of the non-canonical Wnt pathway in cell

migration. Within the “inhibition of canonical Wnt signaling” network, the

key nodes included genes involved in the β-catenin destruction complex –

APC, AXIN1 and CTNNB1 – as well as GSK3B and CSNK1A1, which are

main negative modulators of canonical signaling (Katoh and Katoh, 2006). In

the “regulation of Wnt signaling” network, the top key nodes were upstream

regulators of Wnt signaling: Hedgehog pathway members GLI1, GLI2, and

GLI3 which suppress Wnt signals (He et al., 2006) and the MYC gene encoding

the c-myc protein known for activating canonical Wnt signaling (Cowling et al.,

2007).

The second utilized network approach – network clustering – focused on the

selected subset of frequently reviewed Wnt pathway members (Moon et al., 2004;

Katoh and Katoh, 2007; Amerongen and Nusse, 2009; Holland et al., 2013). The

identified subnetwork of well-established genes in Wnt signaling was subjected

to community detection analysis. Five topological modules were revealed as

densely interconnected communities (see Figure 3.7) and could be denoted as

the ligand layer (purple), the PCP (yellow) and Wnt/Ca2+ (green) branches,

the signal transdution core (blue) and the effector layer (red). Biological

pathways in general were reported to be not modular and rather to represent

individual closely connected graphs (Kirouac et al., 2012). Nevertheless, the

Wnt subnetwork could be partitioned into biologically meaningful modules

representing either alternative Wnt cascades or different segments of signaling

layers.

In summary, the identified key nodes fall in line with the hallmarks of Wnt

signaling reported in literature. Besides underlining the importance of known

essential Wnt signal mediators, the key nodes also revealed TLN1, a gene

less known for its role in Wnt context creating thus opportunities for further

experimental investigation. Furthermore, the topological modules identified in

the community detection analysis reliably reflect different functional blocks of

Wnt signal transduction.
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Nevertheless, there are several limitations concerning the features and the

usage of the networks, three rather general and two specific ones for the new

Wnt networks:

1. Despite the growing amount of data in pathway databases, the currently

available pathway data are still incomplete and can contain biases. Given

the dependency of the Wnt networks on database knowledge, it is likely

that they inherited these limitations.

2. Pathways in the databases were derived under varying conditions. There-

fore, the constructed Wnt networks represent a set of possible interactions

that might occur between the molecules ignoring a specific context.

3. Generally speaking, networks as models capturing cellular pathway struc-

ture can be conceptually useful. However, it might be challenging to

quantify to what extent they actually resemble physical reality, which

may be to a rather small extent (Ideker and Krogan, 2012).

4. The network construction step concerning the stratification of collected

pathways into the four conceptual groups was based on literature and

expert knowledge, and humans are known to lack objectivity.

5. As already pointed out previously in section 4.1 Parsing and representing

pathway knowledge, the edges of activation and inhibition controlling pro-

cesses represent only a part of signaling mechanisms. Further interaction

types are not included in the Wnt networks.

Therefore, future improvements of the Wnt networks could be achieved by

integration of PPI information to gain a more comprehensive picture of signaling

networks. However, it is worth noting that increased complexity also demands

more cautious analysis and interpretation.

From the point of functional reduction of network complexity, gene ex-

pression data can be integrated with networks in order to extract relevant

information and to ease interpretation of biological phenomena underlying

experimental data.
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4.4 Targets and network integration

Pathway interventions at multiple levels can reveal particular signaling mech-

anisms and their consequences. Activation states of distinct Wnt signaling

pathways in breast cancer cells, in particular the canonical and the non-canonical

Wnt cascades, have so far eluded detection. Based on the work of Klemm

et al. (2011) I hypothesized that the non-canonical WNT pathway is critical for

cancer cell proliferation and migration. Following this hypothesis the MCF-7

cells were perturbed by the non-canonical receptor Ror2 and ligand Wnt5a: In

particular, the cells were transfected with Ror2 over-expression construct and/or

stimulated with recombinant Wnt5a. The phenotype of the estrogen receptor

positive MCF-7 cell line is considered to be weakly invasive corresponding to

lumA breast cancer subtype. The major consequence of the individual as well

as combined perturbations at the phenotypic level was increased cell invasion.

The RNA of the cells was deep-sequenced to explore the consequences at

gene expression regulation level by identifying differential targets. Although the

Wnt5a stimulated cells showed enhanced invasiveness, the numbers of targets

were moderate (seven for ctl vs. ctl + Wnt5a and eleven for Ror2 vs. Ror2 +

Wnt5a comparisons). Certainly, the most interesting differentially expressed

target of Wnt5a stimulation is the ROR2 gene which was upregulated in the

ctl + Wnt5a samples compared to control samples. This positive-feedback

loop supports the theory that Ror2 acts as a receptor for Wnt5a ligand (Oishi

et al., 2003). The only common differential gene in both comparisons testing

for Wnt5a stimulation effect in MCF-7 was MUC5AC, mucin 5AC. It has

been studied in the context of colorectal (Walsh et al., 2013) and pancreatic

cancer (Hoshi et al., 2011), and in the latter cancer type its expression was

associated with tumor growth. However, to my best knowledge, so far it was

not linked with invasive breast cancer neither reported as a potential target of

Wnt5a signaling.

In contrast to a few target genes affected by Wnt5a stimulation, the three

comparisons testing for the Ror2 over-expression effect revealed 2068 com-

mon DEGs representing stable targets of this perturbation. These common

targets of Ror2 over-expression are considered to be candidate genes that confer

the invasive phenotype to MCF-7 breast cancer cells. To gain further insight
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into the biology underlying this fairly long list of expression-responsive targets

I took three bioinformatic approaches: 1. enrichment analysis of gene sets

originating from the Wnt networks (results of 3.4.1 section), 2. non-canonical

Wnt network integration with the targets (results of 3.5.1 section), and 3.

identification of hub targets in PPI network (results of 3.5.2 section).

1. For enrichment testing the over-representation analysis (ORA) utilizing

the 2× 2 table-based Fisher’s exact test was chosen because of the given cut-off

setting. PT-based methods were not considered because of the issues discussed

in 4.2 Enrichment methods section. Despite the obvious mRNA versus protein

approximation (also discussed in 4.2), the ORA detected the gene set of the

non-canonical Wnt signaling pathway as significant in the target list as well

as in the sublist of only up-regulated targets. It suggests that activation of

non-canonical Wnt signaling was induced by the Ror2 over-expression and this

activation state can be linked with the increased invasiveness. Besides the

non-canonical Wnt gene set, the “regulation of Wnt signaling” gene set was

significantly over-represented in the target list, which indicates that pathways

acting upstream Wnt were also activated by Ror2 over-expression.

2. Further, the non-canonical Wnt network was used for target integration

as it proved to be significant when utilized as a gene set. This network is

a signaling network of 489 nodes representing intermediate size compared to

large-scale interactomes. Therefore, I have not considered elaborated methods

designed for an active-module-search in large networks – e.g. methods of Ideker

et al. (2002); Dittrich et al. (2008), and Ma et al. (2011). Instead, I have

chosen rather straightforward approach of a direct projection of the targets

onto the Wnt network nodes combined with Steiner tree analysis. In this

way I identified the differentially regulated module of the non-canonical Wnt

pathway responsive to Ror2 over-expression. Into this module Steiner nodes

were introduced. Although the genes of Steiner nodes themselves were not

detected as differentially expressed, they represent important connectors of the

targets.

By means of differential expression analysis, key cancer drivers, such as

Her2, p53, and KRAS, are typically not detected; however, they play a cen-

tral role in networks by interconnecting those genes, which are expression-

responsive (Chuang et al., 2007). Therefore, I have focused on the identified
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Steiner node genes. Several of these genes have already been investigated in

the context of aggressive breast cancer, for instance: CD36, PPARGC1A, and

CSNK1D, as well as well-known WNT5A and DVL2. Signaling activated by

Wnt5a and mediated via Dvl2 was previously shown to promote migration

of breast cancer cells (Zhu et al., 2012), although the evidence on the role of

Wnt5a signaling in breast cancer progression remains ambiguous (McDonald

and Silver, 2009). The expression of CD36 was reported to be very low in

highly aggressive MDA-MB-231 breast cancer cells compared to relatively non-

proliferative cell lines (Uray et al., 2004). This is corresponding to its (although

non-significant) down-regulation in the Ror2 over-expression conditions with

the increased cell invasiveness. The PPARGC1A gene encodes a transcriptional

regulator of multiple metabolic pathways and its increased expression was

associated with the ability of breast cancer cells to metastasize (Chen et al.,

2007; Bhalla et al., 2011). Similarly, the expression of CSNK1D was associated

with lymph-node-positive breast carcinomas (Abba et al., 2007).

In summary, the Steiner nodes in the context-specific non-canonical Wnt

module are highlighted as topologically-essential elements as well as genes with

functional relevance for breast cancer progression. Nevertheless, it should be

noted that this integration approach by definition is unable to identify any new

interactions leading to network re-wiring.

3. By identification of hub targets in the PPI network, I aimed to explore

functionally interconnected targets that operate outside the Wnt signaling

pathway. As breast cancer progression is a complex mechanism linked with

changes in multiple processes, the hub targets can point towards key players

within these processes. Network hubs in general were reported not only as

central interactive nodes but also as having an essential biological role within

the networks (Barabási et al., 2011).

The identified hubs have to be considered as context specific, meaning that

there might be more central nodes within the whole PPI network; however, the

identified hubs reflect central nodes only within PPIs of the targets. When

interpreting the hubs the research and database biases should be taken into

account. In the case of proteins, which have been the subject of particular focus

in research, there are more relevant results and database entries. Therefore, the

target hubs should not only be seen as biologically important but also could be
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simply intensively-studied . This is illustrated on the examples of ESR1, AR

and MYC hubs, which are extensively discussed in literature in breast cancer

context (Yager and Davidson, 2006; Fioretti et al., 2014; Watson et al., 1991).

The target hubs overlapping with the differentially regulated Wnt module

genes return the attention back to Wnt signaling. The overlap points out less

renowned Wnt network members such as UBE2D1, FLNA, and FHL2 but also

the well-recognized RAC1 gene.

In summary, the results of these three analysis approaches highlight the

importance of non-canonical Wnt signaling, as well as reveal further key genes

in aggressive breast cancer. Nevertheless, to establish a more comprehensive

picture of the role of target hubs and non-canonical Wnt module genes in breast

cancer, I further translated these results into clinical context of metastatic

breast cancer patients.

4.5 Breast cancer metastasis and prognostic genes

The Ror2 over-expression targets are considered to be genes implicated in the

increased invasion of MCF-7 breast cancer cells. From these 2068 targets I

selected two moderately short, context-specific subsets: 84 non-canonical Wnt

module genes and 41 hub genes, using network integration approaches. To

validate their role in breast cancer progression, I utilized these two subsets as

prognostic signatures for the metastasis-free survival (MFS) analysis of breast

cancer patient cohort.

To this end, the expression profiles of patients were collected across ten

public datasets. Within this cohort the breast cancer molecular subtypes were

predicted using pam50 signature. Recently, Patil et al. (2015) showed that

a prediction of particular sample class based on a gene signature can change

depending on the background represented by the rest of samples in the dataset.

Therefore, the predicted classification based on the signature should be treated

with caution.

To check the quality of the predicted subtypes stratification at a basic

biological level, I investigated them in the MFS analysis. The results are

consistent with the relapse-free survival observed in the study of Parker et al.

(2009), which confirms the association of breast cancer subtypes with different
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metastatic potentials. Similarly, according to 5-year MFS the lumA subtype

showed the best prognosis, as expected (Millar et al., 2009), whereas the Her2

subtype was found to show the worst prognosis, followed by the basal subtype.

The genes of the non-canonical Wnt module used as a signature for clustering

analysis of this cohort revealed patient subgroups with different prognosis. The

four subgroups appear to have two main expression pattern suggesting two

modes of non-canonical Wnt pathway activation. The two modes are represented

in the gene dendrogram by two clusters: Whereas one cluster includes WNT5A

and ROR2, the second contains WNT11, FZD5 and FZD4 as closely correlated

genes. These similar co-expression patterns of the genes can be interpreted as

an indication of similar functions or involvement in the same processes (Allocco

et al., 2004). The ligand-receptor role of Wnt5a-Ror2 in breast cancer has

been previously reported (Oishi et al., 2003) and was also indicated by the

changes in Ror2 expression levels after Wnt5a stimulation in the RNA-Seq

data. Moreover, Wnt11 and Fzd4 were suggested as a ligand-receptor couple

in the context of cardiomyocyte differentiation (Abdul-Ghani et al., 2011) and

kidney development (Ye et al., 2011); however, this link has not been discussed

so far in the context of breast cancer.

The patient cluster with the poorest prognosis was found to contain a large

proportion of the basal subtype patients, which is consistent with an increased

likelihood of metastasis development in the triple-negative breast cancer (Dent

et al., 2007). However, each subtype was distributed across two or more clusters.

This indicates that the clusters do not fully reflect the biology underlying breast

cancer subtypes and that there are differences in the expression of non-canonical

Wnt module genes also within the particular subtypes.

Therefore, I speculate that the differences in metastasis development may

be associated with varying levels of non-canonical Wnt pathway activation

within the individual subtypes. I focused on the lumA and basal groups as

representatives of generally good and bad prognosis, respectively. Her2 subtype

was not considered due to the small sample size.

Although lumA tumors have been repeatedly observed to have the most

favorable prognosis in terms of MFS (Sørlie et al., 2003; Millar et al., 2009;

Voduc et al., 2010), there are lumA cases that relapse and metastasize. It is of

high clinical interest to identify low-risk lumA patients who might be spared



4.5 Breast cancer metastasis and prognostic genes 81

breast radiotherapy. The signature of non-canonical Wnt module genes applied

to lumA patients revealed two subgroups; however, the difference between the

subgroups in the MFS was not significant after the Bonferroni correction. In

contrast to the aggressive subtypes, which tend to relapse early within the first 5

years, the luminal groups are characterized by continued relapses between 5 and

15 years (Kennecke et al., 2010). Therefore, the lack of statistical significance

could originate from the proximity of the two KM curves within the initial

years.

Within the basal subtype, further subgroups were previously identified

and linked to prominent biological and transcriptional differences (Lehmann

et al., 2011; Neve et al., 2006). I demonstrated that two clear basal subgroups

with distinct prognosis of metastasis development can be defined based on

the expression of non-canonical Wnt module genes. In summary, these results

indicate a substantial role of non-canonical Wnt signaling mediated via the

Ror2 receptor in the development of metastasis from both basal and lumA

primary tumors.

Further, I attempted to identify single gene markers from the Wnt module

that correlate with metastasis outcome in the two subtypes. In the lumA

subtype, higher expression levels of Steiner node gene CSK, c-Src tyrosine

kinase, were associated with shorter metastasis-free survival. This result is

in line with previous reports that the activation of c-Src is critical for the

progression and metastases of ER-positive breast cancer (Planas-Silva et al.,

2006). For the basal patients, increased expression of FZD4 was revealed as

a strong risk factor for metastasis development. Conversely, higher levels of

PLCB1 were found to predict longer metastasis-free survival for this breast

cancer subtype. However, neither FZD4 nor PLCB1 could be found previously

discussed in the literature in the context of subtype-specific breast cancer

progression.

Several additional genes were detected on a lower significance level (p < 0.05)

as prognostic for each subtype. Of these genes, it is noteworthy that WNT5A

was identified as a risk gene for the basal subtype, which contributes a new

piece of evidence to its otherwise poorly understood role in breast cancer.

Interestingly, when the prognostic genes are mapped back on the module

topology, most of the the basal-associated prognostic genes tend to cluster
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within the central core of the module, whereas lumA-associated genes appear

to be distributed across the whole module structure. This pattern, combined

with the little overlap exhibited between lumA and basal prognostic genes,

highlight the diversity of these two subtypes. Moreover, it points towards

different metastatic mechanisms being used by each subtype even within the

context of a single signaling pathway.

To assess the clinical importance of the hub targets similar analysis ap-

proaches were applied. Based on the expression profiles of the target hub

genes, three breast cancer patient groups can be defined. The group with the

poorest prognosis clusters all basal and Her2 patients, which is not unexpected

considering the presence of ESR1, estrogen receptor 1, in the hub signature.

The hub targets that were identified as protective genes, whose higher

expression was linked to favorable prognosis, comprise EPS15, SFPQ and

RPA2. The detection of EPS15 as a protective gene is in line with the results

of a study by Dai et al. (2015). Dai and colleagues conducted analysis of

six expression datasets and reported that the over-expression of EPS15 was

a favorable prognostic factor for overall survival, especially in tumors with

positive ER status. In this study I extend this finding to prognosis in terms

of metastases, although I have not further explored the patient cohort for the

EPS15 prognostic power within the particular subtypes.

Surprisingly, the estrogen receptor ESR1 had only moderately decreased

hazard ratio (HR = 0.929), and its expression was not identified as significantly

associated with favorable prognosis. This could be caused by the selection

of a single microarray probe to represent a gene expression and it raises the

question of whether the probe with the highest average expression level for the

gene is the most representative. Miller et al. (2011) identified the probe with

the highest average expression as best choice for between-study consistency.

Nevertheless, further studies would be desirable to evaluate optimal strategies

for aggregating multiple gene probes within compendium datasets.

The risk prognostic factors detected within the hub targets includes RAC1

and PLK1. Both genes are considered to be promising therapeutic targets

whose inhibition can block breast tumor growth (Cardama et al., 2014; Castillo-

Pichardo et al., 2014; Hu et al., 2012; Yao et al., 2012; Bhola et al., 2015).
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Although network hubs are generally regarded as biologically essential, Yang

et al. (2014) reported that prognostic genes in different cancer types – including

breast cancer – tend not to be hub genes. However, this conclusion was drawn

based on co-expression network evaluation.

A more general criticism of using gene expression signatures was raised

by Venet et al. (2011), who showed that random gene signatures are also

associated with breast cancer outcome. They explain this by the fact that

several members of such random signatures are likely to be associated with

proliferation, and that proliferation genes define breast cancer transcriptome

into large extent.

However, within this study, the application of gene signatures is not primarily

intended for establishing new clinical subgroups of patients. Rather, the aim

pf the study is to validate the implication of the Wnt module and the target

hubs – two context-specific subsets of Ror2 over-expression targets – in cancer

progression. Nevertheless, several individual genes from both signatures could

be significantly associated with breast cancer outcome, suggesting them as

powerful indicators of breast cancer prognosis.
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Analyzing complex data such as gene expression profiles is challenging, therefore

integration of prior biological knowledge is crucial for a successful interpretation

of the results. Signaling pathways and molecular networks represent such a

source of external information, which allows for the embedding of results

of differential analysis within a biological context. Various methods within

pathway enrichment and network analysis approaches have been designed for

this integration purpose.

The integration of existing knowledge underlies both major questions (see 1.7

Aims and organization of the thesis), which defined the scope of this thesis to

a large extent. In order to answer the first question:

� What are benefits and costs of integrating pathway-topology information

into enrichment analysis?

I comparatively evaluated three gene-set (GS) methods against four pathway

topology-based (PT-based) methods. These methods were compared on the

same pathway data in two extensive simulation studies accounting for different

parameter configurations and on a benchmark of 24 real datasets. In the

benchmark data analysis, both types of methods showed a comparable ability to

detect enriched pathways. The PT-based methods showed better performance

in the simulation scenarios with non-overlapping pathways; however, they were

not conclusively better in the simulation scenarios with realistic pathways

exhibiting overlaps. When considering the effort involved in processing and

integrating the customized pathway data, the GS methods are favorable. In

summary, the simple GS enrichment approach appears satisfactory to detect

significantly altered pathways.

Furthermore, I pointed out the discrepancy between gene expression mea-

surements and the topological representation of a signaling pathway used for
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enrichment testing. For a meaningful interpretation of pathway enrichment

using its structure, it is necessary to accommodate experimental data and prior

knowledge into the same conceptual cellular layer. Moreover, dealing with

overlapping pathways appears challenging for both types of methods. Therefore,

methodological improvements are needed in order to deal with the problem of

pathway overlap. Also, further effort should be dedicated to understand the

contribution of pathway topology in enrichment analysis.

Nevertheless, this is one of the first comprehensive comparative studies

conducted on evaluation of PT-based enrichment methods. These results, as

well as the discussion of strengths and limitations of the methods, may stimulate

further scientific research in this field.

The second principal question within this thesis was stated as:

� Which module of the Wnt signaling network is active in aggressive breast

cancer?

To answer this question, first, signaling networks that represent the distinct

Wnt pathways were constructed. To elucidate important topological elements of

these networks, I identified their key node genes, which were consistent with the

hallmarks of Wnt signaling reported in literature. Furthermore, the subnetwork

of well-established selected members of Wnt signaling was extracted from these

networks. Its structure revealed five densely interconnected communities, which

reliably reflect different functional blocks of Wnt signal transduction. This

indicates that topological modules also have the potential to harbor functionally

related genes. Nevertheless, the newly constructed Wnt networks have also

some limitations. These limitations are inherited from the pathway database

data as well as given by the level of modeled details and could be improved in

the future by integration with further types of interactions.

These Wnt networks allowed further investigation of the role of Wnt sig-

naling pathway in breast cancer cells. The initial hypothesis stated that

non-canonical Wnt signaling pathway is critical for cancer cell proliferation

and migration. Over-expression of the non-canonical Wnt receptor Ror2 in

weakly invasive breast cancer cells resulted in increased cell invasion. Differ-

entially expressed targets of this perturbation were enriched in the gene set

of the non-canonical Wnt network; however, not in the canonical Wnt gene
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set, underlining the importance of non-canonical Wnt signaling in aggressive

breast cancer. Subsequently, in the network integration analysis, I identified a

differentially regulated module of the non-canonical Wnt pathway, and high-

lighted its topologically-essential elements as well as genes functionally relevant

for breast cancer progression, such as WNT5A, DVL2, CD36, PPARGC1A,

and CSNK1D. To further scrutinize the genes within differential targets out-

side of Wnt signaling I utilized a protein-protein interaction (PPI) network.

The identified PPI hubs represent highly interactive nodes, which highlight

operationally important and/or intensively-studied targets.

Thus, I demonstrated that the complexity of molecular networks and of

expression data can be reduced by mutual integration in order to extract

functional information and to understand underlying biological phenomena.

As the Ror2 over-expression targets have been implicated in the invasiveness

of breast cancer cells, I further validated the role of the non-canonical Wnt

module genes and the target hubs in the gene expression data of metastatic

breast cancer patients. These two subsets of targets were applied as gene

signatures to cluster the patient cohort and demonstrated prognostic potential

in terms of metastasis-free survival (MFS). The co-expression patterns of

Wnt5a-Ror2 and Wnt11-Fzd4 across patient profiles indicate their ligand-

receptor relation in breast cancer which was supported by literature in a similar

context.

Furthermore, MFS analysis results indicated a substantial role of the non-

canonical Wnt module genes in the development of metastasis within luminal

A (lumA) and basal-like (basal) molecular breast cancer subtypes. Moreover,

from the individual genes CSK was linked with favorable prognosis in the lumA

patients, whereas FZD4 and PLCB1 were found to be risk and protective

genes, respectively, in the basal subtype. Also, multiple hub targets could be

associated with breast cancer outcome, including genes which were already

reported as potential therapeutic targets, such as RAC1 and PLK1.

Although signaling and its consequences mediated by particular Wnt ligand-

receptor coupling remain incompletely characterized, the deregulation of the

non-canonical Wnt pathway by Ror2 over-expression was shown to contribute

to the clinical outcome in breast cancer. Therefore, these results pave the
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way towards targeted therapies aimed at interfering with non-canonical Wnt

signaling.

In conclusion, bioinformatic approaches derived from graph theory concepts

as well as enrichment analysis were demonstrated to be powerful tools for

deciphering complex gene expression patterns. Appropriate integration of

breast cancer expression profiles with pathway and network data provides

valuable insights into biological processes underlying breast cancer phenotypes.
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Table 2. Differential targets of Wnt5a stimulation in the two comparisons.

Control versus Wnt5a stimulation
Symbol Gene type logFC FDR
ROR2 protein coding 3.51 5.1E-014
RP11-504P24.6 3prime overlapping ncrna -9.67 5.9E-012
RP11-504P24.4 lincRNA 2.78 8.31E-07
RP11-3P17.5 lincRNA 1.42 0.014
SEMA3B processed transcript 0.44 0.014
MUC5AC protein coding 0.55 0.043
RP13-996F3.3 pseudogene 0.89 0.043

Ror2 versus Ror2 + Wnt5a stimulation
Symbol Gene type logFC FDR
AQP3 protein coding 0.54 0.0008
S100A14 protein coding 0.39 0.0008
PGR protein coding -0.56 0.009
MUC5AC protein coding 0.75 0.009
AGR3 protein coding -0.51 0.015
TIMP3 protein coding 0.46 0.019
DUSP4 protein coding 0.41 0.019
KRT7 protein coding 0.55 0.022
VIL1 protein coding 0.47 0.027
SNORD3A lincRNA -1.8 0.030
GCOM1 protein coding 0.85 0.033
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Table 3. List of the nodes of non-canonical Wnt module: measured in RNA-Seq data of cell
lines with average fold-changes (logFC) from the three differential comparisons and in patient
luminal A and basal-like subtypes with hazard ration (HR), p-value (p-val), and false-discovery
rate (FDR). “NA” is introduced when the gene was not measured in the RNA-Seq or in
patient microarrays.

Node
Cell lines LumA patients Basal patients

logFC HR p-val FDR HR p-val FDR

PRKCZ -0.25 0.404 0.125 0.419 1.642 0.503 0.759

FLNA 0.502 0.341 0.011 0.174 0.89 0.761 0.912

PSME1 0.204 0.466 0.098 0.419 0.661 0.455 0.743

PSME4 0.269 0.517 0.21 0.572 0.976 0.964 0.964

CSK -0.065 10.111 0.001 0.04 0.391 0.233 0.524

RAB11A -0.195 0.943 0.899 0.971 1.693 0.269 0.583

RAB11FIP2 0.366 0.26 0.044 0.313 6.077 0.045 0.226

FURIN 0.775 1.016 0.986 0.99 3.883 0.15 0.423

ATP6AP2 0.279 0.395 0.011 0.174 2.704 0.092 0.318

CTSZ 1.482 1.226 0.41 0.662 0.886 0.783 0.912

MME 1.001 2.346 0.06 0.35 0.234 0.007 0.085

TRPC1 0.571 1.608 0.501 0.705 3.18 0.278 0.587

TBL1X 0.282 1.004 0.99 0.99 0.595 0.222 0.524

UBE2E1 0.248 0.416 0.035 0.313 1.251 0.67 0.874

UBE2C -0.252 1.089 0.831 0.943 2.102 0.089 0.318

UBE2D1 0.411 1.103 0.881 0.971 1.578 0.53 0.759

CDK8 0.306 2.215 0.123 0.419 2.682 0.09 0.318

MED30 -0.382 NA NA NA NA NA NA

NR3C1 0.573 1.377 0.38 0.643 1.029 0.958 0.964

PRKACA 0.047 1.208 0.793 0.914 0.135 0.046 0.226

PLCB1 -0.281 0.752 0.374 0.643 0.08 0 0.001

RASGRP1 1.449 0.797 0.349 0.643 2.886 0.004 0.081

RAPGEF3 -0.526 0.201 0.091 0.419 1.511 0.716 0.892

CSNK1D -0.169 0.782 0.616 0.768 1.877 0.347 0.642

SIPA1 0.408 0.817 0.794 0.914 1.103 0.931 0.956

ADCY3 0.247 0.296 0.136 0.419 0.889 0.881 0.92

ADCY7 0.919 0.681 0.528 0.716 0.633 0.525 0.759

Continued on next page
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Table 3 – Continued from previous page

Node
Cell lines LumA patients Basal patients

logFC HR p-val FDR HR p-val FDR

ADCY1 -0.659 1.013 0.936 0.973 1.165 0.856 0.92

ADCY5 0.87 NA NA NA NA NA NA

PRKCD 0.384 0.484 0.047 0.313 1.458 0.607 0.824

GNAI1 0.909 3.091 0.123 0.419 1.143 0.833 0.92

TEAD3 -0.275 1.323 0.673 0.825 2.367 0.44 0.743

CTSD -0.293 1.359 0.138 0.419 0.307 0.026 0.163

PLCB4 -0.615 1.53 0.28 0.643 0.784 0.568 0.799

WNT5A NA 1.19 0.46 0.686 3.649 0.004 0.081

WNT11 1.055 0.667 0.475 0.694 0.404 0.234 0.524

RAC1 -0.194 2.353 0.049 0.313 4.175 0.018 0.157

DVL2 -0.097 5.498 0.038 0.313 0.646 0.702 0.889

CSNK1A1 -0.285 1.863 0.137 0.419 1.293 0.637 0.849

MAPK10 0.044 0.736 0.584 0.765 0.819 0.792 0.912

DVL1 -0.273 1.072 0.907 0.971 5.908 0.052 0.235

ROR2 11.765 1.623 0.49 0.703 0.036 0.021 0.157

FZD5 0.323 4.242 0.208 0.572 0.148 0.306 0.609

PRICKLE1 -0.185 NA NA NA NA NA NA

VAMP2 -0.382 0.781 0.719 0.868 0.753 0.804 0.912

ITGB5 0.561 0.701 0.341 0.643 0.912 0.866 0.92

PPP3CA 0.277 1.306 0.259 0.643 1.99 0.081 0.318

MYL6 0.275 0.68 0.46 0.686 2.399 0.15 0.423

TPM2 0.792 1.031 0.932 0.973 1.263 0.468 0.743

ACTG2 2.015 0.858 0.555 0.74 1.163 0.321 0.609

STX1A 0.538 3.406 0.073 0.397 0.036 0.014 0.151

GNB1 -0.279 2.627 0.098 0.419 1.197 0.779 0.912

GNG13 -0.727 2.307 0.37 0.643 44.671 0.048 0.226

FZD4 -0.668 0.59 0.389 0.643 34.826 0.001 0.02

MAPK13 0.473 0.889 0.79 0.914 1.218 0.679 0.874

MAPKAPK2 0.3 2.666 0.015 0.196 2.708 0.172 0.452

MAPKAPK3 0.291 0.139 0.003 0.105 7.857 0.019 0.157

Continued on next page
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Table 3 – Continued from previous page

Node
Cell lines LumA patients Basal patients

logFC HR p-val FDR HR p-val FDR

CREB1 0.068 1.824 0.285 0.643 0.49 0.361 0.653

BCAR1 0.325 NA NA NA NA NA NA

PER2 -0.005 0.645 0.273 0.643 2.156 0.21 0.515

AQP2 NA 0.389 0.284 0.643 3.322 0.393 0.678

F7 NA 1.526 0.211 0.572 13.421 0.11 0.363

AGT NA 0.444 0.01 0.174 0.841 0.598 0.824

BCL10 -0.295 0.593 0.328 0.643 0.112 0.006 0.085

PPARGC1B 0.364 NA NA NA NA NA NA

NFYC -0.349 1.044 0.948 0.973 2.391 0.083 0.318

ABCA1 0.517 1.095 0.845 0.944 4.82 0.043 0.226

CD36 -0.207 0.854 0.369 0.643 0.629 0.145 0.423

CTGF 0.442 1.205 0.374 0.643 1.306 0.312 0.609

CYP1A1 2.101 1.758 0.606 0.767 5.751 0.207 0.515

FADS1 0.396 NA NA NA NA NA NA

FHL2 0.998 0.881 0.516 0.713 0.898 0.758 0.912

GRHL1 -0.234 NA NA NA NA NA NA

NPAS2 -0.033 0.641 0.389 0.643 0.506 0.309 0.609

PLIN2 0.543 0.776 0.445 0.686 2.22 0.023 0.158

PPARGC1A NA 0.175 0.125 0.419 1.809 0.517 0.759

HIST1H2BJ -0.475 0.297 0.352 0.643 3.958 0.369 0.653

H3F3B -0.263 NA NA NA NA NA NA

SOS1 0.31 0.259 0.114 0.419 1.586 0.469 0.743

RPS6KA1 -0.286 1.417 0.604 0.767 3.08 0.164 0.446

RPS6KA2 0.525 0.288 0.026 0.288 0.882 0.883 0.92

MAPK1 0.071 0.66 0.427 0.676 1.456 0.506 0.759

CRY2 -0.438 2.042 0.353 0.643 1.274 0.844 0.92

CEBPB -0.007 1.299 0.378 0.643 0.546 0.15 0.423
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Table 4. Simple interaction format of the
non-canonical Wnt module depicting directed
edges.

Edge From To

1 PRKCZ MAPK10

2 FLNA MAPK10

3 PSME1 PRICKLE1

4 PSME4 PRICKLE1

5 CSK ITGB5

6 CSK PPP3CA

7 CSK MYL6

8 CSK TPM2

9 CSK ACTG2

10 CSK MAPK13

11 CSK MAPKAPK2

12 CSK MAPKAPK3

13 RAB11A AQP2

14 RAB11FIP2 AQP2

15 FURIN F7

16 ATP6AP2 AGT

17 CTSZ AGT

18 MME AGT

19 TRPC1 ITGB5

20 TRPC1 PPP3CA

21 TRPC1 MYL6

22 TRPC1 TPM2

23 TRPC1 ACTG2

24 TBL1X AGT

25 TBL1X PPARGC1B

26 TBL1X NFYC

27 TBL1X ABCA1

28 TBL1X CD36

Continued. . .

Edge From To

29 TBL1X CTGF

30 TBL1X CYP1A1

31 TBL1X FADS1

32 TBL1X FHL2

33 TBL1X GRHL1

34 TBL1X NPAS2

35 TBL1X PLIN2

36 UBE2E1 HIST1H2BJ

37 UBE2E1 H3F3B

38 UBE2C HIST1H2BJ

39 UBE2C H3F3B

40 UBE2D1 HIST1H2BJ

41 UBE2D1 H3F3B

42 CDK8 CD36

43 MED30 CD36

44 NR3C1 PER2

45 PRKACA ITGB5

46 PRKACA PPP3CA

47 PRKACA MYL6

48 PRKACA TPM2

49 PRKACA ACTG2

50 PRKACA CREB1

51 PRKACA AQP2

52 PLCB1 ITGB5

53 PLCB1 PPP3CA

54 PLCB1 MYL6

55 PLCB1 TPM2

56 PLCB1 ACTG2

57 PLCB1 BCAR1

58 RASGRP1 WNT5A

Continued. . .
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Edge From To

59 RASGRP1 WNT11

60 RASGRP1 FZD5

61 RASGRP1 VAMP2

62 RASGRP1 ITGB5

63 RASGRP1 PPP3CA

64 RASGRP1 MYL6

65 RASGRP1 TPM2

66 RASGRP1 ACTG2

67 RASGRP1 STX1A

68 RASGRP1 GNB1

69 RASGRP1 GNG13

70 RASGRP1 FZD4

71 RASGRP1 BCAR1

72 RAPGEF3 WNT5A

73 RAPGEF3 WNT11

74 RAPGEF3 FZD5

75 RAPGEF3 VAMP2

76 RAPGEF3 ITGB5

77 RAPGEF3 PPP3CA

78 RAPGEF3 MYL6

79 RAPGEF3 TPM2

80 RAPGEF3 ACTG2

81 RAPGEF3 STX1A

82 RAPGEF3 GNB1

83 RAPGEF3 GNG13

84 RAPGEF3 FZD4

85 RAPGEF3 BCAR1

86 CSNK1D PER2

87 CSNK1D CRY2

88 SIPA1 ITGB5

Continued. . .

Edge From To

89 SIPA1 PPP3CA

90 SIPA1 MYL6

91 SIPA1 TPM2

92 SIPA1 ACTG2

93 SIPA1 BCAR1

94 ADCY3 ITGB5

95 ADCY3 PPP3CA

96 ADCY3 MYL6

97 ADCY3 TPM2

98 ADCY3 ACTG2

99 ADCY7 ITGB5

100 ADCY7 PPP3CA

101 ADCY7 MYL6

102 ADCY7 TPM2

103 ADCY7 ACTG2

104 ADCY1 ITGB5

105 ADCY1 PPP3CA

106 ADCY1 MYL6

107 ADCY1 TPM2

108 ADCY1 ACTG2

109 ADCY5 ITGB5

110 ADCY5 PPP3CA

111 ADCY5 MYL6

112 ADCY5 TPM2

113 ADCY5 ACTG2

114 PRKCD ITGB5

115 PRKCD PPP3CA

116 PRKCD MYL6

117 PRKCD TPM2

118 PRKCD ACTG2

Continued. . .
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Edge From To

119 GNAI1 VAMP2

120 GNAI1 ITGB5

121 GNAI1 PPP3CA

122 GNAI1 MYL6

123 GNAI1 TPM2

124 GNAI1 ACTG2

125 GNAI1 STX1A

126 TEAD3 CTGF

127 CTSD AGT

128 PLCB4 PPP3CA

129 WNT5A RAC1

130 WNT5A DVL2

131 WNT5A CSNK1A1

132 WNT5A MAPK10

133 WNT5A DVL1

134 WNT5A FZD5

135 WNT5A VAMP2

136 WNT5A ITGB5

137 WNT5A PPP3CA

138 WNT5A MYL6

139 WNT5A TPM2

140 WNT5A ACTG2

141 WNT5A STX1A

142 WNT5A GNB1

143 WNT5A GNG13

144 WNT5A FZD4

145 WNT11 FZD5

146 WNT11 VAMP2

147 WNT11 ITGB5

148 WNT11 PPP3CA

Continued. . .

Edge From To

149 WNT11 MYL6

150 WNT11 TPM2

151 WNT11 ACTG2

152 WNT11 STX1A

153 WNT11 GNB1

154 WNT11 GNG13

155 WNT11 FZD4

156 DVL2 RAC1

157 DVL2 CSNK1A1

158 DVL2 PRICKLE1

159 DVL1 RAC1

160 DVL1 CSNK1A1

161 ROR2 RAC1

162 ROR2 DVL2

163 ROR2 CSNK1A1

164 ROR2 MAPK10

165 ROR2 DVL1

166 FZD5 WNT5A

167 FZD5 WNT11

168 FZD5 DVL2

169 FZD5 DVL1

170 FZD5 VAMP2

171 FZD5 ITGB5

172 FZD5 PPP3CA

173 FZD5 MYL6

174 FZD5 TPM2

175 FZD5 ACTG2

176 FZD5 STX1A

177 FZD5 GNB1

178 FZD5 GNG13

Continued. . .
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Edge From To

179 VAMP2 ITGB5

180 VAMP2 PPP3CA

181 VAMP2 MYL6

182 VAMP2 TPM2

183 VAMP2 ACTG2

184 VAMP2 STX1A

185 PPP3CA MYL6

186 MYL6 ITGB5

187 MYL6 MYL6

188 MYL6 TPM2

189 MYL6 ACTG2

190 STX1A VAMP2

191 STX1A ITGB5

192 STX1A PPP3CA

193 STX1A MYL6

194 STX1A TPM2

195 STX1A ACTG2

196 GNB1 WNT5A

197 GNB1 WNT11

198 GNB1 FZD5

199 GNB1 VAMP2

200 GNB1 ITGB5

201 GNB1 PPP3CA

202 GNB1 MYL6

203 GNB1 TPM2

204 GNB1 ACTG2

205 GNB1 STX1A

206 GNB1 GNG13

207 GNB1 FZD4

208 GNB1 BCAR1

Continued. . .

Edge From To

209 GNG13 WNT5A

210 GNG13 WNT11

211 GNG13 FZD5

212 GNG13 VAMP2

213 GNG13 ITGB5

214 GNG13 PPP3CA

215 GNG13 MYL6

216 GNG13 TPM2

217 GNG13 ACTG2

218 GNG13 STX1A

219 GNG13 GNB1

220 GNG13 FZD4

221 GNG13 BCAR1

222 FZD4 WNT5A

223 FZD4 WNT11

224 FZD4 DVL2

225 FZD4 VAMP2

226 FZD4 ITGB5

227 FZD4 PPP3CA

228 FZD4 MYL6

229 FZD4 TPM2

230 FZD4 ACTG2

231 FZD4 STX1A

232 FZD4 GNB1

233 FZD4 GNG13

234 CREB1 PPARGC1A

235 BCL10 ITGB5

236 BCL10 PPP3CA

237 BCL10 MYL6

238 BCL10 TPM2

Continued. . .
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Edge From To

239 BCL10 ACTG2

240 NPAS2 PER2

241 NPAS2 F7

242 PPARGC1A CD36

243 PPARGC1A NPAS2

244 HIST1H2BJ H3F3B

245 H3F3B HIST1H2BJ

246 SOS1 WNT5A

247 SOS1 WNT11

248 SOS1 FZD5

249 SOS1 VAMP2

250 SOS1 ITGB5

251 SOS1 PPP3CA

252 SOS1 MYL6

253 SOS1 TPM2

254 SOS1 ACTG2

255 SOS1 STX1A

256 SOS1 GNB1

257 SOS1 GNG13

258 SOS1 FZD4

259 RPS6KA1 CREB1

260 RPS6KA1 CEBPB

261 RPS6KA2 CREB1

262 RPS6KA2 CEBPB

263 MAPK1 ITGB5

264 MAPK1 PPP3CA

265 MAPK1 MYL6

266 MAPK1 TPM2

267 MAPK1 ACTG2

268 MAPK1 SOS1

Continued. . .

Edge From To

269 MAPK1 RPS6KA1

270 MAPK1 RPS6KA2

271 CEBPB HIST1H2BJ

272 CEBPB H3F3B
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Table 5. Hub targets measured in cell lines (average logarithm of fold-change) and in patient
cohort (hazard ration, p-value, false-discovery rate).

Hub
Cell lines Patients

logFC HR P-val FDR
FN1 0.66 1.15 0.089 0.319
ESR1 -0.288 0.929 0.142 0.403
COPS5 -0.205 1.294 0.075 0.307
HDAC1 -0.3 1.095 0.576 0.743
MYC 0.543 0.965 0.686 0.764
BMI1 0.446 NA NA NA
SUMO3 -0.253 1.203 0.184 0.455
RPA2 -0.296 0.497 0.003 0.032
YWHAG 0.25 NA NA NA
EZH2 -0.337 1.107 0.569 0.743
PAN2 -0.282 0.81 0.388 0.743
UBE2I -0.217 0.901 0.559 0.743
SH3KBP1 0.752 NA NA NA
SOX2 -0.976 1.338 0.498 0.743
BARD1 -0.3 0.756 0.095 0.319
HDAC5 -0.456 0.774 0.359 0.738
ATXN1 -0.34 1.473 0.014 0.074
SRRM2 -0.287 1.052 0.585 0.743
ARRB1 0.65 0.892 0.544 0.743
KDM1A -0.248 1.145 0.585 0.743
LGR4 0.588 1.4 0.013 0.074
SFPQ -0.214 0.532 0.002 0.032
CD81 0.326 0.929 0.643 0.743
AR 0.528 0.903 0.347 0.738
PRKDC -0.214 0.916 0.547 0.743
UBE2D1 0.411 1.109 0.628 0.743
POLR2A -0.292 1.09 0.702 0.764
FYN 1.332 0.957 0.781 0.803
FBXO25 0.264 NA NA NA
YBX1 -0.252 1.088 0.563 0.743
FLNA 0.502 0.838 0.181 0.455
UBQLN4 0.193 0.882 0.585 0.743
THRAP3 -0.268 1.032 0.922 0.922
RAC1 -0.194 1.651 0.005 0.038
FHL2 0.998 0.913 0.253 0.584
EPS15 -0.252 0.463 0.001 0.031
E2F1 -0.325 1.944 0.029 0.136
LRPPRC 0.273 1.316 0.105 0.322
PIK3R1 -0.545 0.97 0.742 0.784
AHCYL1 0.228 1.068 0.642 0.743
PLK1 -0.296 2.149 0.005 0.038
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