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Smoking as a major risk factor for morbidity affects numerous regulatory systems
of the human body including DNA methylation. Most of the previous studies with
genome-wide methylation data are based on conventional association analysis and earliest
threshold-based gene set analysis that lacks sensitivity to be able to reveal all the relevant
effects of smoking. The aim of the present study was to investigate the impact of active
smoking on DNA methylation at three biological levels: 5′-C-phosphate-G-3′ (CpG) sites,
genes and functionally related genes (gene sets). Gene set analysis was done with mGSZ,
a modern threshold-free method previously developed by us that utilizes all the genes in
the experiment and their differential methylation scores. Application of such method in DNA
methylation study is novel. Epigenome-wide methylation levels were profiled from Young
Finns Study (YFS) participants’ whole blood from 2011 follow-up using Illumina Infinium Hu-
manMethylation450 BeadChips. We identified three novel smoking related CpG sites and
replicated 57 of the previously identified ones. We found that smoking is associated with
hypomethylation in shore (genomic regions 0–2 kilobases from CpG island). We identified
smoking related methylation changes in 13 gene sets with false discovery rate (FDR) ≤ 0.05,
among which is olfactory receptor activity, the flagship novel finding of the present study.
Overall, we extended the current knowledge by identifying: (i) three novel smoking related
CpG sites, (ii) similar effects as aging on average methylation in shore, and (iii) a novel find-
ing that olfactory receptor activity pathway responds to tobacco smoke and toxin exposure
through epigenetic mechanisms.

Background
Tobacco use has been estimated to cause approximately 7 million yearly deaths globally through general
morbidity, disability, non-communicable chronic diseases, and increased risk of communicable diseases
[1]. The chronic diseases caused by smoking are in nature multifactorial, mediated by both genetic and
environmental factors [2,3]. Despite the well-established link between smoking and associated diseases in
literature, there is a knowledge gap in the causative mechanisms of the diseases.

Previous studies have led to identification of several transcriptomic signatures and their role in diseases
related to smoking [4]. Epigenetic mechanisms have been understood to be modulated by environmental
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factors such as smoking and play a crucial role in disease development process by regulating gene expression
[5]. Several studies have reported smoking-related methylation changes at CpG site, gene as well as gene set level
[6–11]. Zeilinger et al. reported 972 CpG sites significantly associated with smoking from discovery data with
1793 participants and replicated 187 out of 972 CpG sites in independent cohort of 479 participants [6]. The three
most significant CpG sites and corresponding genes were cg05575921:AHRR, cg21566642: ALPP/ALPPL2, and
cg03636183:F2RL3. McCartney et al. [7] and Zeilinger et al. [6] suggested that smoking-induced DNA methylation
changes are reversible. Shenker et al. developed methylation index by combining four smoking related CpG sites (one
in AHRR, two intergenic in chromosome 2 and one intergenic in chromosome 6) that can predict former smoking
status [8]. The study by Joehanes et al., one of the largest study of smoking-related DNA methylation changes, identi-
fied 18760 active smoking-related CpG sites annotated to 7201 genes with FDR < 0.05 [9]. Prince et al. investigated
association of 2620 previously reported smoking-related CpG sites with different smoking behaviors (such as ever
smoking, current weekly smoking, ever weekly smoking, and blood cotinine levels) and reported smoking behavior
related methylation patterns in 11 CpG sites mapping to seven genes [10]. Several studies on impact of aging on DNA
methylation, as summarized by Ciccarone et al., have established age-induced DNA methylation changes as hallmark
of aging [12]. Recent studies such as by Yang et al. [13] and Lei et al. [14] have reported association between cigarette
smoking and age-induced DNA methylation changes. Joehanes et al. also performed Gene Ontology (GO) [15] based
gene set analysis of the list of statistically significant CpG sites and reported 99 gene sets that broadly included molec-
ular processes such as signal transduction, protein metabolic process, and transcription pathways [9]. Another study
performed gene set analysis of list of CpG sites with altered methylation levels due to exposure to maternal smok-
ing during pregnancy and reported cell cycle, cancer, white blood cell differentiation, genotoxicity as major findings
[16]. Bakulski et al. performed gene set analysis of lung-specific smoking related CpG sites and the most significant
pathways included mRNA catabolic processes, protein targeting, angiogenesis, and mRNA translation [17].

Traditional epigenome-wide association studies might fail to identify relevant CpG sites due to noise and lack of
statistical power. Further, long list of CpG sites discovered through such studies are harder to interpret in terms of
underlying biological theme. Gene set analysis, also referred to as pathway analysis, addresses the problems by shifting
the analysis from individual CpG sites to groups of related CpG sites. CpG sites are mapped to respective genes and
grouped together based on shared biological features. The grouping of corresponding genes can be based on reference
knowledge bases such as Reactome Pathway Database [18], BioCarta pathways [19], Kyoto Encyclopedia of Genes
and Genomes (KEGG) [20], and GO [15]. The grouping approach averages out errors at single CpG site level and
increases statistical power. Additionally, the outcome of gene set analysis is meaningful terms that provide insights
into biological theme underlying the list of CpG sites.

Studies that have reported smoking-related methylation changes at biological pathway level have done so mostly
with the earliest gene set analysis approach, over-representation analysis (ORA) [9,17,21]. ORA is a type of gene set
analysis that is based on statistical tests like hypergeometric and chi-square. The approach requires users to provide
a list of genes selected based on arbitrary threshold (for example, P-value<0.05). The arbitrariness of the threshold
leads to unstable results that are difficult to replicate and massive reduction in sensitivity. Furthermore, the approach
assumes independence between genes, which is violated in most cases resulting to false positive results [22].

Over a decade of development of gene set analysis approaches have provided several robust gene set analysis meth-
ods that are likely to provide improved insights into epigenetic consequences of smoking. A class of such methods
includes threshold-free competitive gene set analysis methods that test whether genes in a given gene set are more
differentially methylated than the other genes in the dataset. The approach can be used to test a large number of gene
sets, such as those provided by Molecular Signatures Database (MSigDB) [23,24] in order to profile smoking-related
epigenetic alterations at biological pathways or processes level. An example of one of such methods is mGSZ (mod-
ified Gene Set Z-score) that have been developed and improved over time by us [25–27] and have been shown to
be robust and efficient by us [20–22] as well as another independent study [28]. Unlike over-representation analysis
methods, mGSZ is threshold-free and thus analyzes all the genes in the data resulting into sensitive, comprehensive,
and reproducible results. The mGSZ is different from other methods in the class in that it is based on asymptotic
P-value estimation that is significantly more efficient than empirical P-value estimation [26,29].

The objective of the present study was to characterize DNA methylation differences between current smokers
and non-smokers at different biological levels such as: (1) CpG site level with differential methylation analysis; (2)
biological pathway level using a threshold-free gene set analysis method, mGSZ; and (3) average methylation level at
different genomic regions with Wilcoxon rank-sum test. We show that application of threshold-free gene set analysis
method for DNA methylation data has improved benefit over earliest threshold-based ORA methods used currently
by most studies as illustrated by our novel findings such as smoking-induced altered methylation in olfactory system.
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Table 1 Population characteristics of Young Finns Study participants; data are mean +− SD or proportions

Characteristics Active smokers Non-smokers

Number of subjects 21 104

Sex (%men) 57% 34%

Age, years 45 (+−3.95) 44.1 (+−3.1)

Body mass index, kg/m2 26.59 (+−4.38) 25.7 (+−4.36)

Even though olfactory ability is known to be adversely affected by active cigarette smoking [30], we for the first time
show the underlying epigenetic mechanism.

Materials and methods
Study population
Young Finns Study (YFS) is one of the largest existing follow-up studies into cardiovascular health from childhood to
adulthood, running in a longitudinal prospective setup with regular follow-ups from 1980 onwards [31]. The study
began in 1980 with 3596 children and adolescents aged 3 to 18 years randomly selected from the areas of five university
hospitals in Finland (Turku, Tampere, Helsinki, Kuopio, and Oulu). The participants have been followed up for over
40 years. The methylation measurements were performed on a subset of 192 individuals from whole-blood samples
from 2011 follow up. The smoking history of the subjects was self-reported and belonged to six categories based on
smoking frequency (1. active smoker or at least once a day, 2. once a week or more often, however not daily, 3. less often
than once a week, 4. attempts to quit, 5. has quit, 6. has never smoked). The present study is based on a subsample of
125 participants, 40–49 years of age who were either active smoker (n=21) or have never smoked (n=104) [Table 1].
Participants in the middle conditions such as those who smoked less frequently or has quit smoking were eliminated
in order to obtain maximum possible smoking-related biological signal in DNA methylation.

DNA methylation assessment
DNA was extracted from EDTA-blood samples using Wizard®Genomic DNA Purification Kit (Promega Corpo-
ration, Madison, WI, U.S.A.), according to the manufacturer’s instructions. Genome-wide quantification of DNA
methylation levels were done using Illumina Infinium HumanMethylation450 BeadChips [32] in the Core Facil-
ity at the Institute of Molecular Medicine Finland, University of Helsinki, following manufacturer’s protocols. The
HumanMethylation450 BeadChip measures DNA methylation at more than 485,000 CpG cites across the genome.
The arrays were imaged with a high-precision scanner (iScan system, Illumina Inc.), and the signal intensities were
extracted using a GenomeStudio software package (Illumina Inc.). The methylation data are available in Gene Ex-
pression Omnibus (GEO) under accession number GSE69270.

Data filtering and normalization
Data were obtained and processed from raw methylation image files using the minfi package in R/Bioconductor
[33]. All the analyzed samples have sum of detection P-values across all the probes less than 0.05. Logged (log2)
median of methylated and unmethylated intensities of the analyzed samples clustered within the default threshold
(10.5) of getQC function in minfi. Further, samples for which real sex did not match the predicted sex obtained with
getSex function in minfi were excluded. Background subtraction and dye-bias normalization were performed via
noob method [34] implemented in minfi. Stratified quantile normalization was performed using preprocessQuantile
function in minfi. Probes with detection P-value more than 0.01 in 99% of the samples were filtered out. CpG loci
on sex chromosomes were excluded from the analysis to avoid gender-based methylation bias. Also, cross-reactive
probes and probes with SNPs were excluded from the analysis. After quality control, the total number of autosomal
CpGs was 429,773 in 125 samples (21 active smokers and 104 non-smokers). Batch correction was done by adding
the first two principal components of control probes as covariates in multiple linear regression model.

Differential methylation analysis
All statistical analyses were performed using R statistical software (v.3.5.1) [35]. M-values, calculated as the log2 ra-
tio of the intensities of methylated probe versus unmethylated probe were used as measures of methylation level.
Differentially methylated CpG loci for smoking status were identified using CpGassoc package in R [36]. In order
to keep the present study exploratory in nature, analyses were based on two different models adjusted with varying
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number of covariates. Model 1 involved adjustment for age, sex, body mass index, cell type proportions, and tech-
nical covariates (chip and array). Cell type proportions consisted of proportions of CD8T, CD4T, natural killer cells,
B cells, monocytes, and granulocytes in white blood cells. Selection of covariates for model 1 was motivated from
study by [9]. Model 2 involved adjustment with two additional covariates, alcohol usage and socioeconomic status,
in addition to those in model 1. The addition of the two covariates in model 2 is based on previous reports suggest-
ing effects of alcohol usage [37] and socioeconomic status [38] on DNA methylation. There was reduction in sample
size for model 2 because 16 out of 125 participants did not have information on alcohol usage and socioeconomic
status. The number of active smokers in the analysis was reduced from 21 to 16 because of missing information on
socioeconomic status. Alcohol consumption was measured by asking participants to report their alcohol consump-
tion during the previous week. One unit is equivalent to 14 g of alcohol [39]. Socioeconomic status was based on
occupation and was categorized as manual, lower non-manual, and upper non-manual. Potential batch affects were
addressed by including the first two principal components of array control probes into the regression models. The
cell type proportions of white blood cells were estimated through the reference-based Houseman method [40] using
the estimateCellCounts function in the minfi Bioconductor package in R. CpG sites were mapped to genes by using
annotation database provided by Illumina [41]. Differentially methylated genes were identified by utilizing as a proxy
the CpG site with maximum absolute t-score from any location in the genomic region of the gene, since the mecha-
nism how the methylation influences gene expression is not completely understood. Statistical significance level was
set to false discovery rate (FDR) of 0.05 in the CpG site and gene level analysis.

Gene set analysis
Biological relevance of the differentially methylated genes based on both model 1 and 2 was investigated using mGSZ
method implemented in mGSZ R package [26]. mGSZ is a gene set analysis method based on robust gene set scor-
ing function and efficient P-value estimation method. Unlike over-representation-based pathway analysis methods
[42,43], this approach is threshold free and thus includes all the genes in the analysis irrespective of their effect size or
significance level. This is particularly important in the present study as our goal is to identify set of genes contributing
to a biological pathway that have milder but coherent smoking-related changes in methylation level. Analyzed gene
sets were downloaded from MSigDB version 7.0. The database contained 22569 gene sets (as of September 21, 2019)
divided into eight major collections: Hallmark gene sets, positional gene sets, curated gene sets, motif gene sets, com-
putational gene sets, gene ontology (GO) gene sets, oncogenic signatures, and immunogenic signatures. Hallmark
gene sets are generated computationally and represent well-defined biological processes [44]. Positional gene sets
are generated based on genomic locations of genes. Curated gene sets are generated from knowledge sources such
as pathway databases, biomedical literature, and domain experts. The gene sets are divided into two sub-categories:
(i) canonical pathways curated from online databases [18–20] and (ii) chemical and genetic perturbations (CGP).
CGP-based gene sets represent expression signatures of chemical and genetic perturbations mostly curated from
biomedical literature [45]. Motif gene sets represent target genes for transcription factors or micro RNAs. Compu-
tational gene sets are generated from cancer related microarray gene expression data with data mining techniques.
GO gene sets are derived from GO annotations and have three sub-categories—biological process (BP), molecular
function (MF), and cellular component (CC).

Average methylation level at different genomic regions
We analyzed effect of smoking on the average methylation level at different genomic regions in relation to both gene
region (TSS200, 0–200 bases upstream of the transcriptional start site; TSS1500, 200–1500 bases upstream of the TSS;
5′UTR, within the 5′ untranslated region, between the TSS and the ATG start site; Body, between the ATG and stop
codon irrespective of the presence of introns, exons, TSS, or promoters; 3′UTR, between the stop codon and poly
A signal) and CpG islands (Shores, 0–2 kb from CpG island; Shelves, 2–4 kb from CpG island). The information
about the different genomic regions of CpG sites on HumanMethylation450K array was obtained from Illumina Inc.
Mean of methylation β-values of all CpGs belonging to the genomic regions for each of the study participants was
calculated. Smoking-related statistical difference in average methylation specific to each of the regions was tested with
Wilcoxon rank-sum test.

Results
Study participants’ characteristics
Characteristics of the YFS cohort participants in the present study is summarized in Table 1.
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Figure 1. Manhattan plot and quantile-quantile (Q-Q) plot of epigenome-wide association analysis of smoking habit

(A) Manhattan plot showing the P-values of genome-wide CpG sites. X-axis represents position of the CpG sites on each chro-

mosome. Y-axis represents negative log10 of the P-values for the association. The dotted line indicates false discovery rate

(FDR)-corrected significance threshold and the solid horizontal line represents Bonferroni-corrected significance threshold (ex-

periment-wide significance). The annotations for the three novel CpG sites and corresponding genes (if annotation is known) are

shown. (B) Quantile-quantile plot showing genomic inflation factor (lambda = 1.11) of the epigenome-wide association study. The

genomic inflation factor (ratio of the median of the empirically observed distribution of the test statistic to the expected median)

represents the extent of inflation and false positive rate in the results.

Differential methylation analysis
We identified 60 differentially methylated CpG sites with respect to smoking habit with FDR < 0.05 from statistical
model 1 [Table 2]. There were 26602 nominally significant (P-value < 0.05) CpG sites (Figure 1). The results iden-
tify three novel smoking-associated CpG sites: cg26038589 (CCDC55, Coiled-Coil Domain-Containing Protein 55),
cg10385208 (CWC25, Spliceosome Associated Protein Homolog), and cg09355027 (no known gene) and replicate
the findings of the previous studies, indicating that our results are technically robust. In addition, a site found in only
one previous study, cg13898430 (RUNX3, Runt-related transcription factor 3) [46] was also replicated in the present
study. Model 2 identified only 18 differentially methylated CpG sites with respect to smoking habit with FDR < 0.05.
Seventeen of the CpG sites from model 2 that were also reported by model 1 are highlighted in Table 2 with bold font.
The three novel sites identified in model 1 were not recovered with model 2.

Gene set analysis
Using the gene sets from MSigDB and mGSZ, we identified smoking induced altered methylation in a total of 13 gene
sets with FDR ≤ 0.05. The results are presented in Table 3 and Figure 2. The figure serves the purpose of observing
overall methylation pattern and we do not expect significant statistical differences with such approach due to sample
size limitation. This is where our proposed state-of-the-art gene set analysis method, mGSZ, becomes useful as the
approach increases the statistical power and identifies biologically relevant results even with smaller sample size.

Among eight major gene set collections of MSigDB, significant results (FDR ≤ 0.05) were obtained for
three—Hallmark, Curated, and GO gene sets [Table 3]. The gene set, Genes down-regulated in response to ultra-
violet (UV) radiation (FDR = 0.05) identified from Hallmark collection suggests that smoking induces hyperme-
thylation of genes that are known to be down-regulated by ultraviolet radiation [Table 3 and Figure 2]. We identified
three canonical pathways with smoking related altered methylation (hypomethylation): two from reactome database
and one from BioCarta. Gene sets based on reactome pathways are aryl hydrocarbon receptor signaling (FDR =
0.003) and rora activates gene expression (FDR = 0.03). Similarly, BioCarta based results suggest that smoking alters

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

5

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/40/7/BSR
20200596/887717/bsr-2020-0596.pdf by H

elsinki U
niversity user on 05 N

ovem
ber 2020



Bioscience Reports (2020) 40 BSR20200596
https://doi.org/10.1042/BSR20200596

Table 2 List of differentially methylated CpG sites with respect to smoking habit with false discovery rate (FDR) < 0.05
identified with model 1, their corresponding effect size, standard error, P-values, FDR, and genomic regions in relation to
both gene region (TSS200, 0–200 bases upstream of the transcriptional start site; TSS1500, 200–1500 bases upstream of the
TSS; 5′UTR, within the 5′ untranslated region, between the TSS and the ATG start site; Body, between the ATG and stop
codon irrespective of the presence of introns, exons, TSS, or promoters; 3′UTR, between the stop codon and poly A signal)
and CpG islands (Shores, 0–2 kb from CpG island; Shelves, 2–4 kb from CpG island)

CpG Sites Effect size
Standard

error P-value FDR
Gene/Island

name

Gene re-
gion/Relation

to island Chromosome

1 cg20295214 0.03 0.005 9.53 × 10-9 1.84 × 10-4 AVPR1B Body 1

2 cg08709672 0.02 0.004 3.21 × 10-6 2.82 × 10-2 AVPR1B 5′ UTR 1stExon 1

3 cg09935388 0.06 0.009 9.87 × 10-10 2.65 × 10-5 GFI1 Body 1

4 cg18316974 0.03 0.006 7.64 × 10-7 8.87 × 10-3 GFI1 Body 1

5 cg18146737 0.05 0.01 5.55 × 10-6 4.18 × 10-2 GFI1 Body 1

6 cg25189904 0.03 0.006 3.85 × 10-6 3.18 × 10-2 GNG12 TSS1500 1

7 cg21408581 0.02 0.005 2.18 × 10-6 2.03 × 10-2 RAB3GAP2 Body 1

8 cg08869700 0.01 0.003 2.75 × 10-6 2.46 × 10-2 RFX5 Body 1

9 cg13898430 0.008 0.002 5.07 × 10-6 3.96 × 10-2 RUNX3 TSS1500 1

10 cg04885881 0.02 0.004 1.52 × 10-7 2.43 × 10-3 chr1:11119030
-11120634

Shelf 1

11 cg27537125 0.02 0.003 9.85 × 10-9 1.84 × 10-4 – OpenSea 1

12 cg12547807 0.01 0.002 6.36 × 10-7 7.84 × 10-3 – OpenSea 1

13 cg11555067 0.02 0.003 3.42 × 10-6 2.94 × 10-2 INPP4A 5′ UTR 2

14 cg21566642 0.03 0.002 1.02 × 10-23 2.19 × 10-18 chr2:233283397
-233285959

Island 2

15 cg01940273 0.05 0.004 2.46 × 10-21 3.53 × 10-16 chr2:233283397
-233285959

Island 2

16 cg05951221 0.05 0.004 8.74 × 10-19 7.51 × 10-14 chr2:233283397
-233285959

Island 2

17 cg03329539 0.02 0.003 2.71 × 10-9 6.86 × 10-5 chr2:233283397
-233285959

Shore 2

18 cg06644428 0.06 0.01 9.64 × 10-7 1.09 × 10-2 chr2:233283397
-233285959

Island 2

19 cg21949194 0.02 0.003 6.06 × 10-6 4.49 × 10-2 chr2:39351355
-39351733

Shelf 2

20 cg23079012 0.02 0.003 5.43 × 10-10 1.67 × 10-5 – OpenSea 2

21 cg09355027
(novel)

0.02 0.004 1.43 × 10-6 1.46 × 10-2 – OpenSea 2

22 cg19859270 0.03 0.004 9.59 × 10-12 3.75 × 10-7 GPR15 1st Exon 3

23 cg24719910 0.02 0.003 5.41 × 10-6 4.15 × 10-2 TGFBR2 Body 3

24 cg05575921 0.10 0.006 8.53 × 10-28 3.66 × 10-22 AHRR Body 5

25 cg21161138 0.04 0.004 1.09 × 10-19 1.17 × 10-14 AHRR Body 5

26 cg25648203 0.04 0.004 5.82 × 10-13 3.57 × 10-8 AHRR Body 5

27 cg14817490 0.05 0.005 2.01 × 10-12 9.60 × 10-8 AHRR Body 5

28 cg26703534 0.03 0.003 4.53 × 10-12 1.95 × 10-7 AHRR Body 5

29 cg24090911 0.03 0.005 1.38 × 10-10 4.56 × 10-6 AHRR Body 5

30 cg12806681 0.04 0.006 1.44 × 10-8 2.59 × 10-4 AHRR Body 5

31 cg03991871 0.05 0.009 1.12 × 10-7 1.85 × 10-3 AHRR Body 5

32 cg04551776 0.02 0.004 1.68 × 10-7 2.58 × 10-3 AHRR Body 5

33 cg23916896 0.05 0.009 3.73 × 10-7 5.17 × 10-3 AHRR Body 5

34 cg11554391 0.02 0.004 1.21 × 10-6 1.27 × 10-2 AHRR Body 5

35 cg01899089 0.02 0.003 4.16 × 10-6 3.31 × 10-2 AHRR Body 5

36 cg11902777 0.05 0.009 6.94 × 10-6 4.97 × 10-2 AHRR Body 5

37 cg06126421 0.06 0.007 1.04 × 10-12 5.61 × 10-8 – OpenSea 6

38 cg24859433 0.03 0.004 6.12 × 10-11 2.19 × 10-6 – OpenSea 6

39 cg14753356 0.02 0.003 3.15 × 10-9 7.52 × 10-5 – OpenSea 6

40 cg15342087 0.02 0.003 6.49 × 10-9 1.39 × 10-4 – OpenSea 6

Continued over
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Table 2 List of differentially methylated CpG sites with respect to smoking habit with false discovery rate (FDR) < 0.05
identified with model 1, their corresponding effect size, standard error, P-values, FDR, and genomic regions in relation to
both gene region (TSS200, 0–200 bases upstream of the transcriptional start site; TSS1500, 200–1500 bases upstream of the
TSS; 5′UTR, within the 5′ untranslated region, between the TSS and the ATG start site; Body, between the ATG and stop
codon irrespective of the presence of introns, exons, TSS, or promoters; 3′UTR, between the stop codon and poly A signal)
and CpG islands (Shores, 0–2 kb from CpG island; Shelves, 2–4 kb from CpG island) (Continued)

CpG Sites Effect size
Standard

error P-value FDR
Gene/Island

name

Gene re-
gion/Relation

to island Chromosome

41 cg12803068 -0.09 0.01 2.41 × 10-7 3.45 × 10-3 MYO1G Body 7

42 cg04180046 -0.03 0.005 6.39 × 10-7 7.84 × 10-3 MYO1G Body 7

43 cg22132788 -0.05 0.007 1.58 × 10-6 1.58 × 10-2 MYO1G Body 7

44 cg07826859 0.01 0.003 1.94 × 10-6 1.89 × 10-2 MYO1G TSS1500 7

45 cg21322436 0.01 0.003 4.06 × 10-6 3.29 × 10-2 CNTNAP2 TSS1500 7

46 cg03450842 0.01 0.003 4.42 × 10-7 5.93 × 10-3 ZMIZ1 5′ UTR 10

47 cg01901332 0.02 0.004 1.19 × 10-6 1.27 × 10-2 ARRB1 Body 11

48 cg21611682 0.02 0.003 7.56 × 10-10 2.17 × 10-5 LRP5 Body 11

49 cg14624207 0.01 0.003 6.91 × 10-6 4.97 × 10-2 LRP5 Body 11

50 cg07986378 0.02 0.005 2.49 × 10-6 2.28 × 10-2 ETV6 Body 12

51 cg22851561 0.02 0.003 3.90 × 10-8 6.71 × 10-4 C14orf43 5′ UTR 14

52 cg05284742 0.02 0.003 4.53 × 10-9 1.03 × 10-4 ITPK1 Body 14

53 cg07069636 0.01 0.002 4.82 × 10-7 6.28 × 10-3 chr16:30669107
-30671155

Shore 16

54 cg26038589
(novel)

0.03 0.006 1.17 × 10-6 1.27 × 10-2 CCDC55 Body 17

55 cg10385208
(novel)

0.01 0.003 3.81 × 10-6 3.18 × 10-2 CWC25 TSS1500 17

56 cg19572487 0.02 0.004 8.07 × 10-9 1.65 × 10-4 RARA 5′ UTR 17

57 cg03636183 0.05 0.004 1.00 × 10-17 7.17 × 10-13 F2RL3 Body 19

58 cg03707168 0.02 0.004 7.10 × 10-7 8.47 × 10-3 PPP1R15A Body 19

59 cg17566560 0.02 0.004 2.13 × 10-6 2.03 × 10-2 DLGAP4 Body, 5′UTR 20

60 cg23110422 0.03 0.006 1.85 × 10-7 2.74 × 10-3 ETS2 Body 21

Intergenic chromatin regions are called OpenSea. CpG sites retained in model 2 are highlighted with bold font. Statistical models: Model 1 involved
adjustment for age, sex, body mass index, cell type proportions, and technical covariates (chip and array). Model 2 involved adjustment with two
additional covariates, alcohol usage and socioeconomic status, in addition to those in model 1.

methylation in genomic region responsible for RARRXR pathway (FDR = 0.05), which is linked to cancer. CGP-based
gene set identified in the present study suggests altered methylation in genes that are up-regulated in glioma cell lines
after knockdown of SPARC gene by RNAi (FDR = 0.003). GO annotation-based gene sets were analyzed separately
for the three GO categories. We identified one BP and 7 MF related gene sets with FDR ≤ 0.05 [Table 3]. Olfactory
receptor activity, a novel finding of this study, belongs to GO MF molecular.

Gene set analysis of differentially methylated CpG sites identified with model 2 reported seven gene sets with FDR
< 0.25 [Supplementary Table S2]. The novel finding of the present study, smoking-induced altered methylation in
olfactory system, was retained with FDR of 0.14. Also, the well-established effect of smoking on aryl hydrocarbon
receptor signaling was retained with FDR of 0.004. Similarly, effect of smoking on UV sensitive genes as well as four
other gene sets with gene regulatory effect was retained.

Average methylation level analysis specific to different genomic regions
We found that active smoking is significantly (Wilcoxon rank-sum test, P-value < 0.05) associated with hypomethy-
lation in shore region among active smokers [Supplementary Table S1 and Figure 3]. Although the conventional
P-value threshold of 0.05 was not reached for other CpG regions, perhaps due to lack of power, smoking seems to be
associated with hypomethylation in most of the regions [Supplementary Table S1]. These results suggest that effect
of active smoking on average methylation in genomic regions such as shore resembles to that of aging [12].

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Table 3 Molecular Signature Database based gene sets identified with false discovery rate (FDR) ≤ 0.05 in the
present study

Significant gene sets

Size (number of
genes) of gene
sets GSZ-score P-value FDR

Gene Ontology (GO) based gene sets

1. Regulation of smoothened signaling
pathway involved in dorsal ventral neural
tube (biological process)

8 4.89 5.12 × 10-6 0.04

2. Thrombin-activated receptor activity
(molecular function)

5 4.27 2.3 × 10-5 0.03

3. Protein domain specific binding (molecular
function)

657 4.75 5.7 × 10-5 0.03

4. Olfactory receptor activity (molecular
function)

321 9.96 6.09 × 10-5 0.03

5. Semaphorin receptor activity (molecular
function)

9 4 6.85 × 10-5 0.03

6. AP-2 adaptor complex binding (molecular
function)

7 4.22 1.15 × 10-4 0.03

7. Nuclear receptor activity (molecular
function)

45 4.81 1.18 × 10-4 0.03

8. G-protein coupled receptor activity
(molecular function)

725 7.21 2.28 × 10-4 0.05

Curated gene sets

9. Aryl hydrocarbon receptor signaling
(canonical, reactome)

7 5.76 6.27 × 10-7 0.003

10. SHI SPARC targets up (chemical and
genetic perturbations)

22 5.86 1.22 × 10-6 0.003

11. RORA activates gene expression
(canonical, reactome)

17 4.99 1.68 × 10-5 0.03

12. RARRXR pathway (canonical, biocarta) 7 4.38 3.41 × 10-5 0.05

Hallmark gene sets

13. UV response down 138 4.50 0.001 0.05

Discussion
To the best of our knowledge, this is the first study that implements a modern threshold free gene set analysis
method to study smoking-induced alterations in methylation in genomic regions at biological pathway level. Stud-
ies of biological implications of CpG sites with altered methylation due to smoking have been limited to traditional
over-representation-based pathway analysis [9,17,21,47]. We performed differential methylation analysis to first iden-
tify CpG sites that are significantly associated with smoking habit. We then implemented our robust gene set analysis
method, mGSZ, on the whole methylation data at gene level to identify biological processes that might be affected
due to smoking-induced altered methylation. The present study extended the current knowledge by identifying three
novel smoking-associated CpG sites and altered methylation in genomic regions that play role in olfactory sensing
system, immune response, cardiovascular disease, and cancer development. Furthermore, the results suggest that the
global effect of smoking is similar to aging process that is known to be associated with hypomethylation in genomic
regions with high frequency of CpG sites such as shores [12]. Hypomethylation in the genomic regions of active
smokers is in line with findings at CpG site and gene set level. All except three CpG sites in the region of MYO1G
gene are hypomethylated among active smokers. Similarly six out of seven significant gene sets based on model 2 are
hypomethylated among active smokers.

Previously, unidentified site cg26038589 maps to gene CCDC55. The protein product of the gene plays role in in-
tegrated regulation of gene expression in various ways and contribute to the development of cancers, viral infections,
and neurological disorders [48]. CpG site cg10385208 is located in the genomic region of gene CWC25. This gene
has been annotated to be overexpressed in lung and peripheral blood mononuclear cells in GeneCards—the human
gene database [49]. The annotation is based on analysis of 69 proteomics datasets from Human Integrated Protein
Expression Database resided within GeneCards. The gene has also been shown to play role in cognitive impairment
[50]. Furthermore, the genes CCDC55 and CWC25 are linked to alternative splicing suggesting a role of DNA methy-
lation on alternative splicing. The genes, therefore, should be interesting targets to follow up in the laboratory. The

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 2. Box plots showing differences in average methylation of all CpG sites belonging to genes of the analyzed gene

sets in smokers and non-smokers

X-axis represents smoking habit (active smokers and non-smokers). Y-axis represents mean methylation β-values of CpG sites

belonging to genes of the analyzed gene sets.

third novel site, cg09355027 has not been annotated to any gene and its biological significance is unknown. How-
ever, the CpG site is one of the numerous sites whose methylation is modulated by methyl-CpG-binding domain
protein 2 (MBD2) [51]. MBD2 participates in gene silencing and has active role in shaping the cancer methylome.
Site cg13898430 identified in our study has been identified previously to be associated with smoking by only one
study [46]. The CpG site maps to gene RUNX3, a runt domain-containing transcription factor and a known tumor
suppressor, frequently deleted or transcriptionally silenced in cancer according to the NCBI Gene database [52]. The
gene is associated with numerous cancers, including lung cancer and several autoimmune diseases, including the in-
flammatory bowel disease. Overall, both the replicated and the discovered methylation sites map to genes that play
roles in biological processes and pathways plausibly connected to smoking-induced disease.

Olfactory receptor activity, one of the significant gene sets identified in the present study, is responsible for initi-
ating cell activity in response to smell detection. Surprisingly, despite the long-established knowledge that smoking
is associated with olfactory and gustatory dysfunction, relevant pathways have not been reported in previous studies.
Decline in the sense of smell has been proposed to originate from several mechanisms operating in parallel, including
the tobacco-induced sinonasal inflammation and squamous cell metaplasia in the airways [53]. The olfactory epithe-
lium is a highly dynamic structure going through constant renewal through the exfoliation of the aged cells and the
generation of new ones from the stem cells, thus constantly regenerating the sensory neurons [54]. The division and

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 3. Effect of smoking on average methylation level in different genomic regions in our genome

Box plots showing smoking-related differences in average methylation levels in different genomic regions. X-axis represents smok-

ing habit (active smokers and non-smokers). Y-axis represents average methylation β values of CpG sites belonging to different

genomic regions. Abbreviations and definitions for gene regions: TSS200, 0–200 bases upstream of the transcriptional start

site; TSS1500, 200–1500 bases upstream of the TSS; 5′UTR, within the 5′ untranslated region, between the TSS and the ATG start

site; Body, between the ATG and stop codon irrespective of the presence of introns, exons, TSS, or promoters; 3′UTR, between

the stop codon and poly A signal. Definitions for CpG islands: Shores, 0–2 kb from CpG island; Shelves, 2–4 kb from CpG island.

differentiation of the stem cells are regulated by conserved epigenetic mechanisms, including DNA methylation [55].
As the cycle is constantly repeated, it is conceivable that the tobacco smoke exposure effects would be seen widely. In
our study, these effects appear to be reflected indirectly in the epigenome measured from the blood. It is noteworthy
that the genes related to olfactory system did not reach statistical significance threshold in the gene level differential
methylation analysis, while their co-occurrence as a gene set (on pathway level) passes statistical significance thresh-
old. This could partially explain why the olfactory pathways have been missed by many previous studies utilizing only
the highest ranking genes in over-representation-based gene set analysis.

Consistent with the previous findings that tobacco exposure leads to neural tube defects, the present study iden-
tified altered methylation in genes that play role in regulation of smoothened signaling pathway involved in dorsal
ventral neural tube [56]. Gene sets representing semaphoring receptor activity and G-protein–coupled receptor
identified in our study have been annotated to the immune system. Altered methylation of these receptors due to

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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smoking might deteriorate regulation of immunity [57]. We also identified altered methylation in genes involved in
the thrombin signaling pathway that suggests that smoking plays role in mechanisms of coronary thrombosis [58].
Gene sets based on aryl hydrocarbon receptor signaling , RORA activates gene expression, and RARRXR pathway
identified in our study are related to gene regulation and consequently have a role in cancer. Similarly, we identified
a set of genes in glioma cells that are up-regulated after knockdown of SPARC (secreted protein acidic and cysteine
rich) by RNAi. Previous study has shown that nicotine is associated with stimulation of malignant behavior of glioma
cells [59]. To summarize, in addition to the novel findings such as smoking-induced alteration in methylation in ol-
factory system and ultraviolet radiation sensitivity genes, the previously identified biological processes and pathways
in cardiovascular disease, immune response, and cancer were prominent in our study.

The main weaknesses of the present study are the small sample size, self-reported smoking status and alcohol usage
information, and occupation-based SES assessment. However, nearly all of the significant hits replicated the previous
findings indicating the robustness of our novel bioinformatics approach. Furthermore, we were able to extend the
current knowledge by discovering novel sites (cg26038589, cg10385208, cg09355027) with plausible connections to
the diseases associated with smoking.

Another acknowledged issue is the missing gene annotations of measured CpG sites, which affects nearly every
study on the effects of smoking on the DNA methylation, the majority conducted using the Illumina HM450 methy-
lation array. In the present study, 16 significant CpG sites were not mapped to any gene, leaving the regulation poten-
tial and the participation in the biological pathways completely unknown. CpGs were mapped to gene sets via genes.
CpGs mapping to any genomic region of the corresponding genes (for example, coding or promoter regions) were
considered. As the pooling of CpGs sites from different regions of different genes was done, speculation on whether
the altered methylation activates or deactivates gene expression is inconclusive and thus outside the scope of this
work. However, it is important to note that function of DNA methylation varies with different genomic contexts [60].

The next logical step would be to include analysis based on the transcriptomics of the smoking- associated gene
sets, elucidating the regulatory potential of the DNA methylation with respect to gene expression.

Conclusions
The adverse health effects of smoking and the damage repair responses of the human body are presumably mediated
by the epigenetic mechanisms regulating the gene expression. Extending previous works, the present study replicates
57 methylation sites and presents three novel sites (cg26038589, cg10385208, cg09355027) that potentially have roles
in the cardiovascular disease, cancer, and immune response. As the most significant novel result, smoking alters
methylation in the gene sets related to olfactory sensing system, which undergoes intense regeneration under tobacco
smoke and toxin exposure. The other significant gene sets with smoking induced alteration in methylation related
to cardiovascular disease, cancer, and immune response replicate the findings of the previous studies indicating the
robustness of our novel bioinformatics analysis [26].
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22 Goeman, J.J. and Bühlmann, P. (2007) Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23, 980–987,
https://doi.org/10.1093/bioinformatics/btm051

23 Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A. et al. (2005) Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550,
https://doi.org/10.1073/pnas.0506580102
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44 Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P. and Tamayo, P. (2015) The molecular signatures database hallmark gene set

collection. Cell Syst. 1, 417–425, https://doi.org/10.1016/j.cels.2015.12.004
45 Shi, Q., Bao, S., Song, L., Wu, Q., Bigner, D.D., Hjelmeland, A.B. et al. (2007) Targeting SPARC expression decreases glioma cellular survival and

invasion associated with reduced activities of FAK and ILK kinases. Oncogene 26, 4084, https://doi.org/10.1038/sj.onc.1210181
46 Su, D., Wang, X., Campbell, M.R., Porter, D.K., Pittman, G.S., Bennett, B.D. et al. (2016) Distinct epigenetic effects of tobacco smoking in whole blood

and among leukocyte subtypes. PLoS ONE 11, e0166486, https://doi.org/10.1371/journal.pone.0166486
47 Ringh, M.V., Hagemann-Jensen, M., Needhamsen, M., Kular, L., Breeze, C.E., Sjöholm, L.K. et al. (2019) Tobacco smoking induces changes in true DNA
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