344 research outputs found

    Enhanced visualization of the retinal vasculature using depth information in OCT

    Get PDF
    This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s11517-017-1660-8[Abstract]: Retinal vessel tree extraction is a crucial step for analyzing the microcirculation, a frequently needed process in the study of relevant diseases. To date, this has normally been done by using 2D image capture paradigms, offering a restricted visualization of the real layout of the retinal vasculature. In this work, we propose a new approach that automatically segments and reconstructs the 3D retinal vessel tree by combining near-infrared reflectance retinography information with Optical Coherence Tomography (OCT) sections. Our proposal identifies the vessels, estimates their calibers, and obtains the depth at all the positions of the entire vessel tree, thereby enabling the reconstruction of the 3D layout of the complete arteriovenous tree for subsequent analysis. The method was tested using 991 OCT images combined with their corresponding near-infrared reflectance retinography. The different stages of the methodology were validated using the opinion of an expert as a reference. The tests offered accurate results, showing coherent reconstructions of the 3D vasculature that can be analyzed in the diagnosis of relevant diseases affecting the retinal microcirculation, such as hypertension or diabetes, among others.This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the PI14/02161 and the DTS15/00153 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016-2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-04

    Towards Complete Ocular Disease Diagnosis in Color Fundus Image

    Get PDF
    Non-invasive assessment of retinal fundus image is well suited for early detection of ocular disease and is facilitated more by advancements in computed vision and machine learning. Most of the Deep learning based diagnosis system gives just a diagnosis(absence or presence) of a certain number of diseases without hinting the underlying pathological abnormalities. We attempt to extract such pathological markers, as an ophthalmologist would do, in this thesis and pave a way for explainable diagnosis/assistance task. Such abnormalities can be present in various regions of a fundus image including vasculature, Optic Nerve Disc/Cup, or even in non-vascular region. This thesis consist of series of novel techniques starting from robust retinal vessel segmentation, complete vascular topology extraction, and better ArteryVein classification. Finally, we compute two of the most important vascular anomalies-arteryvein ratio and vessel tortuosity. While most of the research focuses on vessel segmentation, and artery-vein classification, we have successfully advanced this line of research one step further. We believe it can be a very valuable framework for future researcher working on automated retinal disease diagnosis

    Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation

    Get PDF
    Purpose: Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries / veins classi cation are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. Methods: We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A non-local total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. Results: The proposed segmentation method yields competitive results on three pub- lic datasets (STARE, DRIVE, and IOSTAR), and it has superior performance when com- pared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to ve public databases 1 (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries / veins classi cation based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. Conclusions: The experimental results show that the proposed framework has e ectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology recon- struction. The vascular topology information signi cantly improves the accuracy on arteries / veins classi cation

    Automated Detection of Vessel Abnormalities on Fluorescein Angiogram in Malarial Retinopathy

    Get PDF
    The detection and assessment of intravascular filling defects is important, because they may represent a process central to cerebral malaria pathogenesis: neurovascular sequestration. We have developed and validated a framework that can automatically detect intravascular filling defects in fluorescein angiogram images. It first employs a state-of-the-art segmentation approach to extract the vessels from images and then divide them into individual segments by geometrical analysis. A feature vector based on the intensity and shape of saliency maps is generated to represent the level of abnormality of each vessel segment. An AdaBoost classifier with weighted cost coefficient is trained to classify the vessel segments into normal and abnormal categories. To demonstrate its effectiveness, we apply this framework to 6,358 vessel segments in images from 10 patients with malarial retinopathy. The test sensitivity, specificity, accuracy, and area under curve (AUC) are 74.7%, 73.5%, 74.1% and 74.2% respectively when compared to the reference standard of human expert manual annotations. This performance is comparable to the agreement that we find between human observers of intravascular filling defects. Our method will be a powerful new tool for studying malarial retinopathy

    Active contour method for ILM segmentation in ONH volume scans in retinal OCT

    Get PDF
    The optic nerve head (ONH) is affected by many neurodegenerative and autoimmune inflammatory conditions. Optical coherence tomography can acquire high-resolution 3D ONH scans. However, the ONH's complex anatomy and pathology make image segmentation challenging. This paper proposes a robust approach to segment the inner limiting membrane (ILM) in ONH volume scans based on an active contour method of Chan-Vese type, which can work in challenging topological structures. A local intensity fitting energy is added in order to handle very inhomogeneous image intensities. A suitable boundary potential is introduced to avoid structures belonging to outer retinal layers being detected as part of the segmentation. The average intensities in the inner and outer region are then resealed locally to account for different brightness values occurring among the ONH center. The appropriate values for the parameters used in the complex computational model are found using an optimization based on the differential evolution algorithm. The evaluation of results showed that the proposed framework significantly improved segmentation results compared to the commercial solution

    Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks

    Full text link
    [EN] Background and Objective: Optical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of great relevance to study possible toxic effect of drugs and other treatments before human trials. In this paper, two different approaches to detect the most significant retinal layers in a rat OCT image are presented. Methods: One approach is based on a combination of local horizontal intensity profiles along with a new proposed variant of watershed transformation and the other is built upon an encoder-decoder convolutional network architecture. Results: After a wide validation, an averaged absolute distance error of 3.77 +/- 2.59 and 1.90 +/- 0.91 mu m is achieved by both approaches, respectively, on a batch of the rat OCT database. After a second test of the deep-learning-based method using an unseen batch of the database, an averaged absolute distance error of 2.67 +/- 1.25 mu m is obtained. The rat OCT database used in this paper is made publicly available to facilitate further comparisons. Conclusions: Based on the obtained results, it was demonstrated the competitiveness of the first approach since outperforms the commercial Insight image segmentation software (Phoenix Research Labs) as well as its utility to generate labelled images for validation purposes speeding significantly up the ground truth generation process. Regarding the second approach, the deep-learning-based method improves the results achieved by the more conventional method and also by other state-of-the-art techniques. In addition, it was verified that the results of the proposed network can be generalized to new rat OCT images.Animal experiment permission was granted by the Danish Animal Experimentation Council (license number: 2017-15-020101213). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. This work has received funding from Horizon 2020, the European Union's Framework Programme for Research and Innovation, under grant agreement No. 732613 (GALAHAD Project), the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869 and GVA through project PROMETEO/2019/109.Morales, S.; Colomer, A.; Mossi García, JM.; Del Amor, R.; Woldbye, D.; Klemp, K.; Larsen, M.... (2021). Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks. Computer Methods and Programs in Biomedicine. 198:1-14. https://doi.org/10.1016/j.cmpb.2020.105788S11419

    Maximization of Regional probabilities using Optimal Surface Graphs: Application to Carotid Artery Segmentation in MRI

    Get PDF
    __Purpose__ We present a segmentation method that maximizes regional probabilities enclosed by coupled surfaces using an Optimal Surface Graph (OSG) cut approach. This OSG cut determines the globally optimal solution given a graph constructed around an initial surface. While most methods for vessel wall segmentation only use edge information, we show that maximizing regional probabilities using an OSG improves the segmentation results. We applied this to automatically segment the vessel wall of the carotid artery in magnetic resonance images. __Methods__ First, voxel-wise regional probability maps were obtained using a Support Vector Machine classifier trained on local image features. Then the OSG segments the regions which maximizes the regional probabilities considering smoothness and topological constraints. __Results__ The method was evaluated on 49 carotid arteries from 30 subjects. The proposed method shows good accuracy with a Dice wall overlap of 74:1%+-4:3%, and significantly outperforms a published method based on an OSG using only surface information, the obtained segmentations using voxel-wise classification alone, and another published artery wall segmentation method based on a deformable surface model. Intra-class correlations (ICC) with manually measured lumen and wall volumes were similar to those obtained between observers. Finally, we show a good reproducibility of the method with ICC = 0:86 between the volumes measured in scans repeated within a short time interval. __Conclusions__ In this work a new segmentation method that uses both an OSG and regional probabilities is presented. The method shows good segmentations of the carotid artery in MRI and outperformed another segmentation method that uses OSG and edge information and the voxel-wise segmentation using the probability maps
    corecore