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Abstract: In response to the analysis of the functional status of forearm blood vessels, this paper
fully considers the orientation of the vascular skeleton and the geometric characteristics of blood
vessels and proposes a blood vessel width calculation algorithm based on the radius estimation of the
tangent circle (RETC) in forearm near-infrared images. First, the initial infrared image obtained by the
infrared camera is preprocessed by image cropping, contrast stretching, denoising, enhancement, and
initial segmentation. Second, the Zhang–Suen refinement algorithm is used to extract the vascular
skeleton. Third, the Canny edge detection method is used to perform vascular edge detection. Finally,
a RETC algorithm is developed to calculate the vessel width. This paper evaluates the accuracy of
the proposed RETC algorithm, and experimental results show that the mean absolute error between
the vessel width obtained by our algorithm and the reference vessel width is as low as 0.36, with
a variance of only 0.10, which can be significantly reduced compared to traditional calculation
measurements.

Keywords: near-infrared image; vascular width; image enhancement; skeleton extraction; edge detection;
geometric characteristics; APSLSE image segmentation; radius estimation of tangent circle (RETC)

1. Introduction

At present, relevant research results show that chronic kidney disease (CKD) affects
15% to 20% of adults worldwide and increases the risk of cardiovascular disease outcomes,
which is one of the most common diseases worldwide [1,2]. CKD is estimated to become
the fifth leading cause of death globally by 2040 [3]. The gradual decline of the kidney leads
to the accumulation of uremic solutes, with a negative effect on organs, and particularly
on the cardiovascular system [4]. The progression of CKD to the end stage requires renal
replacement therapy, with hemodialysis accounting for approximately 298.4 people per
million people worldwide [5], making it the main method of renal replacement therapy [6].
The establishment and maintenance of a well-functioning permanent vascular pathway is
a necessary condition to ensure long-term dialysis for patients, which will directly affect
their prognosis [7–9]. Hemodialysis requires the establishment of vascular access, and the
dialysis vascular access, known as the “lifeline”, often faces related complications such as
stenosis, thrombosis, pseudoaneurysm, swollen hands [10,11], etc. Therefore, monitoring
the functional status of blood vessels has become crucial.

Ultrasound and near-infrared images have been widely used in medical settings
in recent years. Ultrasound imaging has emerged as a promising non-invasive, real-
time, valid, and reliable tool [12]. Ultrasound imaging has proven to be highly versatile,
swiftly scanning soft tissues, and excelling in soft tissue imaging [13]. However, the
vascular images collected by ultrasound have the problem of insufficient clarity, and
the cost of ultrasound equipment is also high, making it inconvenient to use. Unlike
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ultrasound imaging, near-infrared images have the characteristics of light invariance and
detail preservation [14,15], making near-infrared images clearer. In addition, near-infrared
devices have low cost and are easy to operate. As shown in Figure 1, the near-infrared
images of forearm venous vessels from different subjects are presented. Considering
the advantages of near-infrared imaging in vascular structure imaging, we chose near-
infrared vascular imaging as the research object. By observing and analyzing near-infrared
vascular images, we hope to more accurately evaluate vascular function and disease status,
providing a more reliable reference for clinical diagnosis and treatment.
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This paper proposes a blood vessel width calculation algorithm for forearm near-
infrared venous vessel images based on the radius estimation of the tangent circle (RETC).
This method first preprocesses the initial image through the steps of cropping, denoising,
two-stage image enhancement, and image segmentation [16,17]. Then, the Zhang–Suen
refinement algorithm [18] is used to extract the vascular skeleton. The Zhang–Suen refine-
ment algorithm mainly achieves skeleton extraction through two-stage iteration. Next, the
Canny edge detection algorithm [19] is used to extract the edges of blood vessels. Finally,
combining geometric knowledge, we develop a RETC algorithm to calculate the vessel
width, fit the vessel width with the diameter of the tangent circle, and output the vessel
width value. Our work makes the following contributions to the field: (1) we propose a
RETC algorithm, which effectively calculates the vessel width in near-infrared images of
the forearm, providing a new method for vascular width measurement. (2) We combine
several image-processing techniques, including image preprocessing, Zhang–Suen skele-
ton extraction, Canny edge detection, and our RETC approach. This integration forms a
comprehensive and efficient system for calculating blood vessel width in near-infrared
images, enhancing the accuracy and reliability of measurements. (3) The development
of this algorithm and system provides more reliable and effective tools and methods for
vascular health monitoring and disease management and has important clinical application
potential.

In the following sections, the proposed computational flow chart is presented in
Section 3, the developed calculation algorithm is illustrated in Section 4, and some experi-
ments and discussions are shown in Section 5. A conclusion is made in Section 6.

2. Related Works
2.1. Image Enhancement

In the field of medical image analysis, common image enhancement methods include
histogram equalization [20], the nonlinear unsharp mask algorithm [21], the frequency
domain transformation method [22], the directional filtering method [23], etc. The authors
in Ref. [24] combined histogram equalization with wavelet transform to achieve image
denoising. In Ref. [25], an adaptive anti-sharpening mask algorithm was proposed based
on region segmentation, which had a good processing effect on edge enhancement. The
authors of Ref. [26] applied wavelet transform to vascular images, mainly studying the
enhancement processing methods for their low-frequency parts. The above three image
enhancement methods, although theoretically effective, are likely to result in the loss of
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some vascular information in practical applications due to the lack of consideration for
the directionality of blood vessels. In Ref. [27], a vascular image enhancement method
using a directional adjustable filter was proposed. This method used directional adjustable
filters to extract venous vessels in various directions, employed wavelet transform for
image fusion, and finally utilized an improved nonlinear anti-sharpening mask algorithm
to obtain contrasting and prominent vascular images. In Ref. [28], a histogram and blur
algorithms were combined to enhance images. Based on Gabor filtering and Retinex theory,
Ref. [29] incorporated a fuzzy algorithm to effectively enhance finger vein images. In
Ref. [30], directional filter banks and Hessian filters were used to achieve better results in
vascular imaging processing. However, the objects processed by the above two methods
are high-quality vascular images with high contrast and low noise. In the actual venous
imaging process, the quality of infrared venous vascular images is often poor due to various
environmental factors. Therefore, it is difficult to provide reliable and accurate venous
information in practical applications.

The current image enhancement methods have good results in processing high-quality
and high-contrast images, but in practical applications, due to insufficient consideration
of vascular directionality, environmental noise, and contrast issues, it is often difficult to
provide reliable and accurate vascular information. This paper uses a two-stage image
enhancement method to enhance images from both local and global perspectives, which
can better handle the details of vascular images.

2.2. Calculation of Vascular Width

Common methods for calculating vascular width include model-based methods [31],
clustering algorithm-based methods [32], mathematical fitting-based methods, and graph
theory-based methods [33]. Based on graph theories, Ref. [34] first transformed the dual
boundary segmentation problem of retinal blood vessels into an issue of two 3D surfaces,
and then calculated the thickness of blood vessels by transforming it into a problem of
calculating the minimum closed set in a node-weighted graph. In Ref. [35], the authors
used the Sobel operator to detect the edges of retinal blood vessels and performed cubic
spline fitting. In Ref. [36], a method for measuring the diameter of blood vessels in fundus
images based on prior knowledge was proposed, which utilized the spatial position and
directional information of the vascular skeleton and an improved directional local contrast
method to detect the boundaries of blood vessels from smooth images. Unlike the approach
of calculating vessel thickness by detecting vessel width mentioned above, Ref. [37] fitted a
parameter model of retinal vessel image intensity distribution to obtain an estimated value
of vessel thickness. For the venous vessels on the back of the hand, Ref. [38] used a Gaussian
model of venous vessels to measure the thickness of venous vessels on the back of the hand.
In Ref. [39], the authors extracted the centerline and skeleton of coronary arteries based on
the Hessian matrix and realized the measurement of coronary artery diameters in digital
subtraction angiography (DSA) images. In Ref. [40], a blood vessel diameter measurement
method based on the clustering algorithm was proposed, and Ref. [41] focused on the
width estimation of coronary arteries.

Although many methods for calculating blood vessel width have been proposed,
there are still problems in practical applications. One of the issues is that the width of
blood vessels in vascular images may vary with changes in position, and traditional width
calculation methods cannot fully consider local vascular changes, resulting in inaccurate
calculation results. Therefore, the calculation method of blood vessel width in forearm
near-infrared images still needs further research.

3. Proposed Computational Method

This paper focuses on the issues of blurred near-infrared forearm blood vessel seg-
mentation and width estimation. The traditional method may be affected by factors such
as irregular, blurred, or interrupted blood vessel edges; our method utilizes the geometric
features and morphological information to accurately detect and extract blood vessel edges.
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In Figure 2, the proposed computation steps are as follows. First, image preprocessing is
performed. Due to the fact that the processed image is captured by an infrared camera, there
may be issues with blurred blood vessel boundaries, excessive noise, and uneven bright-
ness in the initial image. Therefore, cropping, filtering, enhancement, and segmentation
are performed. The enhancement first performed is residual convolutional auto-encoder
(RCAE) enhancement [42], followed by contrast-limited adaptive histogram equalization
(CLAHE) [43]. Second, we obtain the pixel point coordinates of the blood vessel skele-
ton. This step uses the Zhang–Suen refinement algorithm to extract the skeleton [44]: the
first stage removes endpoint pixels from the image, and the second stage removes fork
pixels from the image. These stages are iteratively applied until no pixels can be deleted.
Third, the Canny edge extraction method is used to obtain vascular boundaries. Canny
edge detection includes Gaussian smoothing, gradient amplitude and direction calculation,
non-maximum suppression, and dual-threshold edge tracking. Finally, considering the
direction and edge features of the vascular skeleton, we develop a RETC algorithm to
calculate the blood vessel width. The average diameter of the tangent circle obtained at the
skeleton point is considered as the width value of the blood vessel.
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Figure 2. Algorithm flowchart of near-infrared blood vessel width computation. The processes of the
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4. Proposed Vascular Width Calculation Method
4.1. Image Preprocessing

The near-infrared images of superficial blood vessels in the forearm are easily affected
by near-infrared acquisition equipment and various experimental factors, which often
have characteristics such as blurriness, high noise, and low contrast between the vascular
area and the surrounding tissue area [45,46]. In order to obtain clearer vascular structure
images, the preprocessing performed in this paper includes image cropping and back-
ground removal, contrast stretching and noise removal, image enhancement, and image
segmentation. The preprocessing process is shown in Figure 3. First, the image is cropped
and the background is removed to eliminate interference from non-arm regions. Due to the
influence of ambient light and near-infrared camera aperture, the grayscale of the target
area after removing the background is relatively concentrated. Contrast stretching can ef-
fectively increase the gap between vascular areas and other tissue areas such as skin, bones,
and muscles, making subsequent segmentation easier. Noise removal can effectively reduce
the noise introduced during image acquisition, and using median filtering for denoising
can solve the problem of blurred image details.

Regarding the image enhancement, this paper uses a two-stage image enhancement
method, which first performs RCAE image enhancement and then CLAHE image enhance-
ment. RCAE enhancement can preserve the local details of the image, while CLAHE
enhancement can improve the overall contrast. The two-stage image enhancement method
combines the advantages of convolutional neural networks and traditional image enhance-
ment methods, which can effectively strengthen vascular structures and suppress other
interference. RCAE is constructed based on an unsupervised learning convolutional auto-
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encoder (CAE), which extracts effective features from input data by using convolution and
deconvolution operations [47,48]. RCAE processes images by recursively applying convolu-
tional kernels multiple times, gradually enhancing the contrast and clarity of images. Each
recursive convolution operation takes into account the local neighborhood information
of pixels in the image to adapt to the characteristics of the image. The CLAHE algorithm
evolved from the histogram equalization (HE) algorithm, which improves image quality
by adjusting contrast limits [49]. It divides the image into many small blocks, equalizes the
histogram of each block, and introduces contrast constraints during equalization to avoid
excessive noise enhancement. Then, interpolation is used to eliminate boundary artifacts,
making the enhanced image smoother.
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Image segmentation uses a type of adaptive prior shape level set evolution (APSLSE)
method [50]. The APSLSE model utilizes rough segmentation results as initial contour
iterations, effectively reducing the impact of initial contours on segmentation performance.
APSLSE uses the length of the zero-level curve or surface of level and function ϕ to obtain
the zero-level set contour. The length of the zero-level curve or surface of level set function
ϕ is represented by Formula (1).

Lg(ϕ) ≜
∫

Ω
g∗δ(ϕ)|∇ϕ|dx (1)

where Lg(ϕ) is the length term of the energy function, Ω is the entire image domain, g* is
the edge indicator function, δ is the Dirac function, and ∇ is the gradient operator.

In practical applications, the Dirac function δ is approximated by the smoothing
function (2) for Lg(ϕ).

δ2,ε(x) =

{
1
2ε [1 + cos (πx

ε )], |x|≤ ε

0, |x|> ε
(2)

where ε is a parameter and ε = 2 in this paper; the definition of edge indicator function g* is
shown in (3).

g∗ ≜
1

1 + |∇Gσ ∗ I|2
(3)

where Gσ is a Gaussian kernel with a standard deviation of σ; I is the image to be processed.
Clearly, APSLSE segmentation introduces flexible prior shapes to make the active contour
more adaptable to the shape and boundary changes of the target, thereby improving the
accuracy of segmentation.

4.2. Extraction of the Vascular Skeleton

In this paper, extracting the vascular skeleton is to obtain the centerline of blood
vessels, which facilitates the subsequent acquisition of vascular width information. The
main requirements for extracting vascular skeletons are to ensure the connectivity of blood
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vessels and preserve the original vascular trends and other detailed features. The skeleton
should be a single pixel and the computational speed should be fast to match the extraction
targets.

This paper uses the Zhang–Suen refinement algorithm to extract vascular skeletons.
The pseudocode of Zhang-Suen refinement algorithm is given in Appendix A. The refine-
ment algorithm can meet the above requirements very well. It can extract the main structure
and morphological features of blood vessels in an image, remove redundant information,
and help analyze and understand the shape and structure of blood vessels. Compared to
other refinement algorithms, the Zhang–Suen refinement algorithm has simpler calcula-
tions and better refinement effects; it can refine the object boundaries in binary images into
a pixel-wide skeleton to preserve the structural features of the object. Assuming the image
is a binary image with a black background and a value of 0, the foreground blood vessels
to be refined are white with a value of 1. As shown in Figure 4a, a 3 × 3 area in an image is
labeled with names P1, P2, P3, . . ., and P9 for each point, where P1 is located at the center
of the image and P1 = 1 is a white pixel. The main steps of the Zhang–Suen refinement
algorithm are as follows:

1. The first round of iteration: for each pixel P1, the algorithm checks the surrounding
eight pixels. The pixel P1 that simultaneously meets the following four conditions
will be marked as pending deletion.

(1) The number of white pixels in adjacent pixels around P1 ranges from two to six.
(2) The number of changes in adjacent pixels P2, P3, P4, P5, P6, P7, P8, and P9

around P1 shall not exceed one.
(3) The number of white pixels in adjacent pixels P2, P4, and P6 around P1 should

not be less than one.
(4) The number of white pixels in adjacent pixels P4, P6, and P8 around P1 should

not be less than one.

2. For each foreground pixel P1, the algorithm checks the surrounding eight pixels again.
The pixel P1 that simultaneously meets the following four conditions are marked
for deletion.

(1) The number of white pixels in adjacent pixels around P1 ranges from two to six.
(2) The number of changes in adjacent pixels P2, P3, P4, P5, P6, P7, P8, and P9

around P1 shall not exceed one.
(3) The number of white pixels in adjacent pixels P2, P4, and P8 around P1 should

not be less than one.
(4) The number of white pixels in adjacent pixels P2, P6, and P8 around P1 should

not be less than one.

3. After the first and second iterations, the algorithm removes all foreground pixels
marked as pending deletion from the image.

4. The algorithm checks whether the image has changed after the deletion operation. If
the image has not changed, it indicates that the refinement has been completed and
the algorithm can be terminated; otherwise, the algorithm returns to the first iteration
and proceeds to the next iteration.

Taking Figure 4b as an example, in the first iteration process, if the second condition is
not met, the adjacent pixels P2, P3, P4, P5, P6, P7, P8, and P9 around P1 change three times,
exceeding once. Due to the fact that only pixels that meet all four conditions can be marked
as pending deletion, in the example in Figure 4b, P1 cannot be marked as pending deletion.
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4.3. Vascular Edge Detection

The purpose of edge detection is to significantly reduce the data size of an image
while preserving its original image attributes. Edge detection of vascular images can
provide edge feature information for subsequent acquisition of vascular width. The main
requirements for vascular edge extraction in this paper are strong noise resistance, accurate
edges, sufficiently fine edge images, and fast running speed. After comparisons, the
gradient-based edge extraction method determines the edge position by calculating the
gradient amplitude and direction of pixels, which is usually effective and can meet the
above requirements. Common gradient algorithms include the Canny operator, Sobel
operator [51], Prewitt operator [52], Roberts operator [53], etc. The numerical calculation
methods of Sobel, Prewitt and Roberts operators are given in Appendix B. In this paper,
the Canny edge detection algorithm is utilized. The Canny operator not only effectively
suppresses noise but also has high detection accuracy [54]. The brief steps of the Canny
algorithm for edge detection are as follows:

1. Denoising: to reduce the impact of noise, Gaussian filtering is first applied to the
image. The Gaussian filtering can blur images, making noise more evenly distributed
in the image. The formula for a Gaussian filter is shown in Formula (4), where G(x, y)
is the output of the Gaussian filter, x and y are the spatial coordinates of the filter, and
η is the standard deviation of the Gaussian kernel.

G(x, y) =
1

2πη2 e−(x2+y2)/2η2
(4)

2. Gradient estimation: Canny uses Sobel and other operators to calculate gradient
amplitude and direction on the smoothed image. The gradient direction can help
determine the direction of edges. The calculation formulas for gradient amplitude GM
and gradient direction GD are shown in Formulas (5) and (6), respectively, where Gx
is the gradient of the image in the x direction and Gy is the gradient in the y direction.

GM =
√

Gx
2 + Gy

2 (5)

GD = arctan (
Gy

Gx
) (6)

3. Non-maximum suppression: a type of suppression is applied to the gradient map,
filtering out non-edge pixels and making blurry boundaries clearer. This process
preserves the local maximum values in the gradient direction of each pixel and filters
out other values.
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4. Dual threshold detection: both a high threshold and a low threshold are considered
in Canny. If the gradient amplitude of a pixel is greater than the high threshold, it is
marked as a strong edge. On the other hand, if the gradient amplitude is between the
low and high thresholds, it is marked as a weak edge. Otherwise, it will be marked as
a non-edge.

5. Edge tracking: based on the connectivity of strong edges, the weak edges connected
to them are marked as edges, while other weak edges are deleted.

4.4. The RETC Algorithm

Vascular width is an important indicator in the medical diagnosis process. Abnormal
or drastic changes in vascular width can be characterized as symptoms [55]. In this paper,
the basic principle of the RETC algorithm is as follows. After extracting the blood vessel
skeleton and edges from a near-infrared image, a circle is drawn with each pixel on the
blood vessel skeleton as a center, and the radius of the circle is gradually increased until the
first intersection point is formed between the circle and the blood vessel boundary. At this
point, the radius growth of the circle is stopped. The diameter of the circle is the pixel value
of the blood vessel diameter at the skeleton point. Finally, we take the average pixel value of
the blood vessel diameter obtained at each vascular skeleton point as the final width value of
venous vessel segmentation. The pseudocode of the RETC algorithm is given in Appendix C.

Figure 5 is a schematic diagram of a venous vessel, where the venous skeleton has
only one unit pixel width and a total length of n pixels. Taking the i skeleton point as an
example, we can regard the i skeleton point as the center of the circle and create a gradually
increasing radius circle until it intersects with the blood vessel boundary. At this point, the
number of pixels occupied by the diameter of the circle is equal to the vein thickness di at
the i skeleton point.
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If the radius of the circle at the i skeleton point is denoted as ri, then the vein width di
at the i skeleton point can be calculated using Formula (7).

di = 2ri − 1 (7)

From this, the average width D of the venous vessel segmentation can be obtained, and
this can be used as an estimation of the width of sub-vein segmentation. The calculation
formula for the width D of the venous vessel in this segmentation is shown in Formula (8).

D =
1
n

n

∑
i=1

di (8)

At the algorithm implementation level, the RETC algorithm mainly uses a cyclic
structure to traverse the vascular skeleton points. In the outer loop, we create a circle with
a gradually increasing radius centered on each vascular skeleton point. In the inner loop,
the distance between the vascular skeleton point and each edge point is calculated, and
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a conditional judgment statement is used to determine whether it is less than or equal to
the current radius. If any edge points intersect with the circle of the current radius, it is
considered that the corresponding blood vessel edge has been found. If we find the edge
point that intersects with the circle, we record the radius of the current circle and jump out
of the loop. This is because only one intersection point needs to be found to determine the
edge of the blood vessel. Finally, we record all radii found at intersection points and store
them in a list, which can be used to calculate the diameter or other features of blood vessels.

5. Experiments and Discussion
5.1. Experiment System and Data

This paper establishes a near-infrared image acquisition system for collecting a dataset
of near-infrared images of superficial blood vessels in the forearm. A near-infrared image
acquisition system is designed based on the principle that hemoglobin in the blood has a
significantly different ability to absorb and reflect near-infrared light compared to other
tissues around blood vessels. This system uses two bar-shaped near-infrared light sources
to illuminate the surface of the forearm, while using a near-infrared camera for photog-
raphy. At this point, hemoglobin in the blood absorbs more near-infrared light, resulting
in a darker color, while other physiological tissues such as skin and muscles absorb less
near-infrared light, resulting in a lighter color. In addition, in order to reduce the impact of
uneven lighting during image acquisition, two strip light sources are placed parallel and
fixed at a height of about 8–10 cm from the surface of the forearm. Through experimental
comparison, it can be found that among near-infrared light sources with wavelengths of
660 nm, 850 nm, and 940 nm, near-infrared light with a wavelength of 850 nm has the
best effect in obtaining images of superficial blood vessels in the forearm. Meanwhile,
in order to avoid interference from other wavelengths of light, a narrow-band filter of
850 nm ± 10 nm is installed at the lens. A basic near-infrared image dataset of superficial
blood vessels in the forearm can then be established using the near-infrared image acquisi-
tion system for further research. Finally, our dataset consists of two batches of 742 images,
mainly from young students aged 18 to 28, with a male-to-female ratio of approximately
3:1. During the training and testing stages, the data are processed into a grayscale image of
100 × 100 pixels and simulated using Python 3.7 programming on a PC (i5-1035G1 CPU1.00
GHz, 16 GB RAM, and NVIDIA GeForce MX 350). The near-infrared forearm vascular
image acquisition device and the collected partial data are shown in Figure 6.
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5.2. Evaluation of Image Enhancement Algorithm

In order to evaluate the effectiveness of the image enhancement algorithm, this section
compares four algorithms, including RCAE and CLAHE two-stage enhancement algo-
rithms, the HE algorithm, the adaptive histogram equalization (AHE) [56] algorithm, and
the single-scale Retinex (SSR) [57] algorithm. The four algorithms are applied to the same
pre-cropped and median-filtered vascular image, and the experimental results are shown
in Figure 7.
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The HE algorithm expands the dynamic range of an image by reallocating the grayscale
of its pixels and makes the histogram of the image more uniform. This can enhance the
contrast of the image, making the details in the image clearer and more visible. The HE
algorithm is a global enhancement method that strips the grayscale distribution of the
entire image to improve the overall contrast, but it can lead to problems such as excessive
enhancement or contrast disturbance. As shown in Figure 7a, the HE algorithm has
a significant enhancement effect on the vascular area, but the distinction between the
background area and the vascular area is not clear enough.

AHE enhances the contrast of an image by applying histogram equalization to local
regions of the image. Unlike global histogram equalization, AHE divides the image into
many small regions and performs histogram equalization within each small region. This
can better handle local contrast changes in the image and preserve the image details.
However, it can lead to inconsistent local contrast, making the image appear less smooth or
natural. As shown in Figure 7b, the AHE algorithm’s enhanced detailing of the vascular
structure cannot be clearly displayed, resulting in poor performance.

The SSR algorithm is based on Retinex theory, which reduces local contrast changes
in the image while maintaining global contrast. Its principle is based on the separation of
illumination and reflection, achieved by decomposing and reconstructing images in the
logarithmic domain. It can effectively balance the global and local contrast of an image,
making it appear more natural and smoother. However, when processing images with
complex textures, the SSR algorithm cushions them from noise amplification, which can
easily lead to a decrease in image quality. As shown in Figure 7c, the SSR algorithm is also
unable to clearly display the details of the vascular structure, and the contrast between the
vascular area and the background area is not high enough.

Finally, the corresponding results show that the two-stage image enhancement method
of RCAE and CLAHE can effectively handle contrast distortion and noise amplification
while maintaining image details, with lower computational complexity, achieving the best
enhancement effects among all the enhancement algorithms in this section.

5.3. Evaluation of Vascular Skeleton Extraction Algorithm

In order to compare the performance of different vascular skeleton extraction algo-
rithms, the Zhang–Suen refinement algorithm, a morphological refinement algorithm based
on Hit and Miss [58], a skeleton extraction algorithm based on judgment templates [59], and
the Hilditch refinement algorithm [60] are used on the same forearm near-infrared vascular
image for performance evaluation. In addition, this paper manually marks the vascular
skeleton on the preprocessed vascular image, providing a ground truth, and overlays it
with the vascular skeletons obtained by different algorithms for clearer comparison to
determine the accuracy of the algorithm. The results are shown in Figure 8.

The morphological refinement algorithm based on Hit and Miss uses structural el-
ements and calculates the matching situation between image elements and structural
elements during the iteration process. Then, based on the matching situation, a corrosion
operation is performed, and the iteration is carried out until there are no further changes.
From Figure 8b, it can be seen that the algorithm obtains many inflection points from the
vascular skeleton, which are not smooth enough. This is because the algorithm adopts
a simple corrosion operation, so it cannot handle the overlapping between structural el-
ements, which leads to some inaccurate refinement effects. In addition, it can be seen
from Figure 8b that there is a particularly large number of spiky structures on the vascular
skeleton obtained by the algorithm. The shape of blood vessels in vascular images is usually
very irregular, and the Hit and Miss algorithm is prone to generating unnecessary details
and spikes in the skeleton extraction process when processing these irregular shapes.
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The skeleton extraction algorithm based on judgment templates updates the central
pixel according to the situation of surrounding pixels to achieve the effect of refinement. The
performance of this algorithm highly depends on well-designed judgment templates, and
designing suitable templates may require some experience and domain knowledge. This
paper uses a 16 × 16 binary judgment template to adapt to the shape and characteristics of
the vascular skeleton. From Figure 8c, it can be seen that there is a significant deviation
between the position of the vascular skeleton obtained by this algorithm and the manually



Bioengineering 2024, 11, 801 13 of 27

marked position of the vascular skeleton in Figure 8a. The vascular skeleton obtained by
this algorithm has significant inflection points in some areas, and the refinement results
generated by this algorithm are not smooth enough, with jagged edges that affect the
clarity of the vascular structure. For small and complex structures, the refinement effect
of a judgment template-based algorithm is not as good as the Zhang–Suen refinement
algorithm, which is prone to losing important detail information.

The basic idea of the Hilditch refinement algorithm is to iteratively use a set of re-
finement templates to remove edge points from the image until there are no more points
that can be refined. The Hilditch refinement algorithm is simple to implement, easy to
understand, and can maintain the topological structure of objects. However, in the process-
ing of some complex structures, the refinement results of this algorithm are not as stable
as the Zhang–Suen algorithm, and there may be discontinuous or incomplete situations.
As shown in Figure 8d, using the manually labeled vascular skeleton as a reference, the
algorithm obtains an imprecise vascular skeleton. The extracted vascular skeleton has a
large inflection point on the left side, which leads to insufficient smoothness and excessive
refinement, and the effect is not as good as the Zhang–Suen refinement algorithm.

After comparison, it can be found that the Zhang–Suen refinement algorithm can gen-
erate smooth and accurate vascular skeletons, effectively preserving the overall structure
and morphology of blood vessels, and it can match well with the ground truth. Refining
the result to a single-pixel-width skeleton is beneficial for subsequent image analysis and
processing. When dealing with complex vascular images, the Zhang–Suen refinement
algorithm exhibits strong robustness and can maintain the coherence and completeness of
the refinement results.

5.4. Evaluation of Vascular Edge Detection Algorithm

In order to compare the performance of blood vessel edge detection algorithms, four
operators, namely the Canny operator, the Roberts operator, the Sobel operator, and the
Prewitt operator, are applied to the same near-infrared forearm vein vessel image to
evaluate their processing effectiveness. The results are shown in Figure 9.

The Roberts operator is based on a pair of small convolution kernels, each correspond-
ing to edge detection in the horizontal and vertical directions. These two convolution
kernels calculate the difference in grayscale values between pixels to detect edges in the
image. In this way, the Roberts operator can find edges in the image and identify their
directions. This operator performs well on images with steep edges and low noises, espe-
cially those with more positive and negative 45-degree edges, but its positioning accuracy
is poor. As shown in Figure 9a, the results obtained by this algorithm lose some edges and
do not have the ability to suppress noise.

The Sobel operator applies two convolution kernels, i.e., horizontal and vertical, to
the image to calculate the gradient amplitude of each pixel in the horizontal and vertical
directions. Then, it determines the position of the edge based on the gradient amplitude.
The calculation process of the Sobel operator is relatively simple and the calculation speed
is fast. Meanwhile, due to the use of local averaging by the Sobel operator, it can effectively
avoid the influence of noise. However, as shown in Figure 9b, the Sobel operator performs
edge extraction on the binarized image of forearm veins, resulting in thicker edges and
multi-pixel widths.

Prewitt utilizes the difference generated by pixel grayscale values within a specific
area to achieve edge detection. Due to the Prewitt operator using a 3 × 3 template to
calculate pixel values within a region, while the Robert operator has a 2 × 2 template, the
edge detection results of the Prewitt operator are more pronounced in both horizontal and
vertical directions than the Robert operator. The Prewitt operator has a certain inhibitory
effect on noise, but it does not consider the impact of distance between adjacent points on
the current pixel. As shown in Figure 9c, the edge localization accuracy obtained by this
algorithm is relatively low, and there is also the problem of multi-pixel width.
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From the experimental results, it can be seen that the edge detection extracted by
Canny is clear, smooth, and has a single pixel width, resulting in the best effect. The
Canny operator can perform non-maximum suppression and dual-threshold detection
during edge extraction, effectively suppressing noise and improving edge connectivity and
accuracy, making it excellent and more reliable for extracting edges from vascular images.

5.5. Evaluation of RETC Algorithm

This section evaluates the computational effectiveness of the RETC algorithm. We
compare the circular structure-based method [61], graph theory-based method [34], cubic
spline fitting-based method [35], decision tree-based method [37], multi-scale matching
filtering-based method [62], Block Matching and 3D Filtering (BM3D) and multi-scale
line detection method [63], and Width Attention-based convolutional neural Network
(WA-Net) method [64] with the geometric prior model-based method proposed in this
paper. According to classical statistical theory [65,66], the minimum number of statistically
significant experiments for evaluation should be larger than 25. The above six methods are
applied to 40 near-infrared forearm vein vessel images and evaluate the estimated vessel
width values.

This paper evaluates different methods using the mean and variance of the absolute
value ei of the difference between the estimated blood vessel width wi of the i image and
the reference blood vessel width w. The relationship between the difference ei between wi
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and w is shown in Formula (9). Formulas (10) and (11), respectively, provide the calculation
formulas for mean µe and variance δe, where n represents the use of n images in the
experiment. In this experiment, n = 40.

ei =|wi − w| (9)

µe =
1
n

n

∑
i=1

ei (10)

δe =
1
n

n

∑
i=1

(ei − µe)
2 (11)

The measurement method for reference vessel width is as follows: in the near-infrared
image of forearm venous vessels, we measure the width of vessels manually. We arbitrarily
select a position of the blood vessel, place the ruler horizontally on top of the blood vessel,
and read the number of blood vessel pixels displayed by a ruler tool, denoted as N. Then,
with a step size of 20◦, we rotate the ruler and record one N value for each rotation until
the angle between the ruler and the image is 160◦. A total of nine values of N are recorded.
Then, we select the smallest of these nine values as the width of the blood vessel. The
measurement process is shown in Figure 10: from left to right, and from top to bottom, the
ruler is measured from 0◦ to 160◦, with N values of 23.0, 13.9, 10.6, 9.4, 10.2, 12.2, 18.4, 26.5,
and 31.9, respectively. Therefore, the minimum value is taken, and the width of the blood
vessel is 9.4 pixels.
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Table 1 presents the comparison results between our method and several existing
methods for calculating blood vessel width.
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Table 1. Comparisons of the effectiveness of different blood vessel width calculation methods.

Methods µe δe

Circular structure [61] 0.49 0.16
Graph theory [34] 1.12 0.30

Cubic spline fitting [35] 1.31 0.28
Decision Tree [37] 2.14 0.42

Multi-scale matched filtering [62] 1.05 0.57
BM3D and multi-scale line detection [63] 0.83 0.24

WA-Net [64] 0.41 0.22
Method of this paper 0.36 0.10

The circular structure-based method firstly segments the blood vessels and then
measures them on each sub-segment. On the basis of obtaining the center point of the blood
vessel, this method calculates the width of the sub-segment arteries and veins through
the radius and angle of the circle, and then estimates the width of the entire blood vessel
by averaging the sub-segment vessel width. As shown in Table 1, although the circular
structure-based method has good performance, the µe and δe obtained are larger than those
of the methods proposed in this paper. Therefore, the accuracy of the circular structure-
based method for calculating the vessel width is not as good as that of the method proposed
in this paper.

The graph theory-based method for calculating vascular width uses the image’s
vascular skeleton to create a graphical structure. It analyzes paths and connections within
this structure to determine vascular width. Initially, the method extracts the vascular
skeleton from the image using morphological operations. Then, it employs a path analysis
algorithm from graph theory to calculate path length and connections, indirectly inferring
blood vessel width. The effectiveness of this method highly depends on the quality of
vascular skeleton extraction. If the extraction of the vascular skeleton is inaccurate or
incomplete, it will lead to inaccuracies in the final calculation of vascular width. As
shown in Table 1, the µe and δe obtained by this method are both high, indicating that the
calculation effect of blood vessel width is average.

The method of calculating blood vessel width based on cubic spline fitting uses cubic
spline curves to fit the edges of blood vessels, and then calculates the width of blood vessels
by analyzing the characteristics of spline curves. On the basis of obtaining the edges of
blood vessels, this method uses cubic spline curves to fit the edge points of blood vessels,
in order to obtain a smooth blood vessel boundary curve. Then, this method selects an
appropriate position on the fitted vascular boundary curve and measures the width of the
curve. The parameter selection during the spline fitting process has a significant impact
on the final result, requiring repeated adjustment and optimization, which increases the
complexity and time consumption of this algorithm. As shown in Table 1, the µe obtained
by this method is very high, indicating that the accuracy of the algorithm is relatively low.

The blood vessel width calculation method based on a decision tree utilizes a decision
tree algorithm to classify pixels in blood vessel images and obtain the width of blood
vessels. For each vascular pixel, it first extracts some features as input to the decision tree,
and then uses the labeled vascular image dataset to construct a classifier using the decision
tree learning algorithm. During the training process, the decision tree classifies vascular
pixels based on feature values to distinguish between vascular and non-vascular pixels.
Finally, it infers the width of blood vessels based on the classification results. Decision
trees are prone to overfitting the training data during the training process, especially when
the data volume is small or the feature dimension is high, which can lead to insufficient
generalization ability in this model. As shown in Table 1, the µe of this method is very high,
indicating low accuracy and poor performance.

The multi-scale matching filtering-based method utilizes multi-scale matching filters
to filter vascular images and enhance their edge and texture features. Then, it detects the
edge contours of blood vessels and uses the filter responses of different scales to estimate



Bioengineering 2024, 11, 801 17 of 27

the width of blood vessels. Finally, based on the filter response and the distribution of edge
contours, the width of blood vessels is calculated. This method involves the selection of
multiple parameters, such as the scale and shape of filters, and the selection of parameters
has a significant impact on the results. Moreover, this method is sensitive to noises in the
image, which can affect the response of filters and the results of edge detection, thereby
affecting the accuracy of calculating blood vessel width. As shown in Table 1, the µe and δe
obtained by this method are relatively high, indicating insufficient accuracy and stability.

BM3D is an advanced image-denoising technology. This technology first identifies
and groups similar 2D image blocks into a 3D array, then shrinks the transformation
domain of the 3D array to effectively remove noise while preserving image details. Finally,
the filtered 3D blocks are transformed back to their original positions and aggregated
to form the denoised image. Multi-scale line detection is used to identify and analyze
vascular structures at different scales. This method applies algorithms designed specifically
for enhancing tubular structures, such as Frangi filters, which have a strong response
to linear structures, thus achieving effective blood vessel detection. The width of blood
vessels is measured by analyzing the response of line detection filters at different scales.
However, BM3D requires a large amount of computation, which is not suitable for real-time
applications due to block matching and 3D collaborative filtering steps. Additionally, line
detection methods may lead to blurred blood vessel edges, affecting the accuracy of width
estimation. As shown in Table 1, the µe of this method is relatively high.

WA-Net is a deep learning model that combines width and attention mechanisms. First,
this method standardizes the input vascular images and increases the diversity of training
data through data augmentation techniques. Then, multiple convolutional layers are used
to extract low-level features from the vascular image, including edge, texture, and shape
information. Finally, the extracted features are input into the regression layer to directly
predict the width of blood vessels. Due to the use of multi-layer convolutional networks
and attention mechanisms, WA-Net requires a large amount of computational resources for
both training and inference processes, making it unsuitable for real-time applications. The
performance of deep learning models heavily relies on large-scale, high-quality annotated
data. For vascular width estimation, a large number of manually annotated vascular image
datasets are required, which may be difficult to obtain in practical operations. As shown in
Table 1, the δe of this method is relatively high.

According to the experimental results in Table 1, it can be seen that the µe and δe
obtained by our method are smaller than those of other methods, indicating that our RETC
vascular width calculation algorithm has the best accuracy and stability.

Figure 11 shows the inscribed circle image samples of different blood vessel images
processed using the method proposed in this paper. It can be seen that the inscribed circles
obtained by our method can fit well with the edges of the blood vessels. Therefore, the
blood vessel width value obtained from this inscribed circle is also relatively accurate.
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5.6. Discussion

Near-infrared imaging technology has broad application prospects in the field of medi-
cal imaging, and this paper aims to promote the development of near-infrared blood vessel
analysis technologies. Vascular width is an important indicator reflecting the health status
of blood vessels. Studying the calculation method of near-infrared vascular width can pro-
vide doctors with objective evaluation indicators of vascular health status and assist clinical
diagnosis and treatment decision-making. Due to the non-invasive and non-radioactive
characteristics of near-infrared vascular imaging technology, it can evaluate human blood
vessels without damaging the skin. Therefore, this paper contributes to the development
of a safe and non-invasive vascular assessment method, providing technical support for
early diagnosis and monitoring of diseases such as kidney disease. Meanwhile, applying
this paper to the puncture operation during hemodialysis can improve the accuracy and
success rate, reduce the incidence of complications, and thus improve the treatment effect
and quality of life of patients.

In order to analyze the functional status of forearm blood vessels, this paper proposes
the RETC algorithm. The RETC algorithm analyzes and processes images of near-infrared
forearm blood vessels, achieving measurement of blood vessel width without the need
for traumatic surgery or injection, avoiding additional harm to patients and meeting the
non-invasive needs of clinical and scientific research. This algorithm can quantitatively
analyze the width of blood vessels and provide specific blood vessel diameter data, rather
than just qualitatively describing the condition of blood vessels. This quantitative analysis
ability helps doctors and researchers to more accurately evaluate the severity of vascular
lesions and diseases, providing strong support for clinical diagnosis and scientific research.
Compared to manual measurement of vascular width, the RETC algorithm adopts an
automated image-processing algorithm, which can quickly analyze and measure a large
number of vascular images, improve work efficiency, save time and cost, and meet the high
efficiency needs of medical institutions and research teams.

In this paper, we combine the traditional CLAHE algorithm with the deep learn-
ing algorithm RCAE to achieve the best image enhancement effect. Regarding skeleton
extraction and edge detection, this paper chooses to use the traditional Zhang–Suen re-
finement algorithm and Canny edge detection technique, respectively. This is because
new machine learning algorithms typically require a large amount of annotated data for
training. However, in many medical image-processing tasks, collecting annotated data
is costly and time-consuming, especially when manual annotation by experts is required.
Meanwhile, machine learning algorithms, especially deep learning models, often require
high-performance computing resources and longer training times, which may not be prac-
tical for some resource-limited medical applications. The traditional algorithms used in
this paper have high accuracy and low computational complexity, and can run quickly
on ordinary computers, making them suitable for real-time or near-real-time application
scenarios. When calculating the width of blood vessels, this paper uses the newly proposed
RETC algorithm. The RETC algorithm can combine geometric knowledge to calculate the
diameter of blood vessels using tangent circle fitting.

In this paper, we also comprehensively consider the prospect of using the RETC algo-
rithm to calculate vessel width. First, the computational complexity of RETC is relatively
low. The low computational complexity makes it suitable for real-time applications and
integration into clinical workflows without imposing significant computational overhead.
Second, from the perspective of computational effectiveness, the RETC algorithm can
provide an accurate estimation of vessel width. Many experimental results show that
compared with traditional width estimation algorithms, RETC exhibits higher robustness
and accuracy in handling changes in vascular morphology. Regarding algorithm inno-
vation, the RETC algorithm achieves accurate measurement of blood vessel width by
introducing the concept of tangent circles, and it performs well in handling irregular and
complex-shaped blood vessels. In terms of future portability and inheritance, the RETC
algorithm has also shown good adaptability. In future, with the continuous advancement of
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computing technology, the RETC algorithm can be ported to more efficient hardware plat-
forms, significantly accelerating the computing process and meeting the needs of real-time
applications.

This paper also attempts other methods to obtain vascular width information. An
experimental cross-sectional gradient profile-based method [67], a linear discriminant
analysis (LDA)-based method [68], and a spline curve-based method [69] are analyzed. We
applied the above three methods to 15 vascular images and compared the results with the
manually measured baseline vascular width. As shown in Figure 12, it can be seen that the
results obtained by the above three methods differ significantly from the actual blood vessel
width values and have poor stability, making it difficult to accurately obtain the blood vessel
width of the forearm near-infrared venous vessel image. The main reason for this result is
that the method based on cross-sectional gradient contours estimates the width of blood
vessels by detecting the gradient contours of blood vessel cross-sections, which requires
high-quality blood vessel images. When there are situations such as unclear blood vessel
contours, blurred edges, or fractures in the image, the accuracy of width estimation by this
method will be significantly reduced. The LDA-based method utilizes linear discriminant
analysis to distinguish between vascular and non-vascular regions, and extracts features
from them to estimate vascular width. However, due to the possible overlap or small
changes in grayscale and the texture features of blood vessels and surrounding tissues in
near-infrared vascular images, LDA is unable to effectively distinguish between vascular
and non-vascular regions, thereby affecting the accurate estimation of width. The method
based on spline curves represents the contour of blood vessels by fitting spline curves,
extracting vascular width information from them. However, due to the irregular contour
and significant curve changes of blood vessels in near-infrared vascular images, there are
fitting errors in the spline curve fitting process, resulting in inaccurate extraction of width
information.
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This paper also conducted other supplementary experiments in order to evaluate
algorithm performance. We randomly selected 10 images from the collected near-infrared
forearm vascular image dataset, of which five were left forearm vascular images of a
20-year-old male and the other five were left forearm vascular images of a 20-year-old
female. Then, we used the RETC algorithm on these images separately to obtain the results
of blood vessel width. Table 2 provides specific information, vascular width calculation
results, and calculation accuracy for these 10 images. The average accuracy of male vascular
width calculation was 0.958, and the average accuracy of female vascular width calculation
was 0.954. It can be seen that the average calculation accuracy of male vascular width
obtained using the RETC algorithm is slightly higher than that for females. This is because
there is a difference in the diameter of blood vessels between males and females. Generally,
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the diameter of blood vessels in males is larger than that in females. Therefore, at the same
image resolution, the measurement error of blood vessel diameter in males may be smaller.

Table 2. Statistical table of image information and vascular width calculation results.

Features 1 2 3 4 5 6 7 8 9 10

Gender male male male male male female female female female female
Age 20 20 20 20 20 20 20 20 20 20

Height (cm) 182 163 175 165 180 156 160 160 162 172
Weight (kg) 62 62 56 60 75 44 52 65 60 56

Vascular width 10.57 8.46 8.09 9.2 9.12 7.82 8.72 9.02 9.29 8.73
Reference vascular width 11.2 8.7 8.5 9.6 9.4 8.1 9.2 9.5 9.9 9.1

accuracy 0.94 0.97 0.95 0.96 0.97 0.97 0.95 0.95 0.94 0.96

Our results indicate that the RETC algorithm provides precise and reliable measure-
ments, which are crucial for clinical and diagnostic purposes. The innovative aspect of the
RETC algorithm lies in its novel approach to vessel width estimation, which differs from
traditional methods that often rely on more complex and computationally intensive tech-
niques. Moreover, the RETC algorithm has demonstrated high adaptability and portability,
ensuring its future application in various clinical settings. Currently, the RETC algorithm
has not yet been implemented in practice. However, future plans involve integrating this
algorithm with a custom-developed near-infrared blood vessel image acquisition device.
We have established a collaboration with Peking University Third Hospital (PUTH) to
bring this technology into clinical use. We aim to capture near-infrared images of pa-
tients’ forearms at PUTH and apply the RETC algorithm to calculate and analyze blood
vessel widths. This practical application will not only validate the effectiveness of our
algorithm in a clinical setting but also contribute to improving patient care by providing
accurate measurements that can inform medical decisions, particularly in the monitoring
and maintenance of arteriovenous fistulas.

This paper has significant implications for the field of medical image processing. The
RETC algorithm utilizes mathematical models and image-processing techniques to quickly
and accurately calculate vascular width, making it suitable for rapid clinical screening
and monitoring. The RETC algorithm can provide quantitative analysis results of vascular
width, quantify vascular abnormalities and disease changes, evaluate the functional status
of blood vessels, and provide an objective reference for clinical diagnosis and treatment.
The RETC algorithm can be applied to various near-infrared vascular images and is suitable
for measuring vascular width in different populations and parts of the body. Clearly, our
method also has certain limitations. For instance, the instability of the quality of forearm
near-infrared vascular images can affect the accuracy of vascular boundary extraction,
which in turn affects the calculation results of vascular width. Meanwhile, the performance
of the RETC algorithm also depends on the quality of input images. Variations in image
quality, such as noise and low contrast, can impact the accuracy of the vascular width
calculations. Moreover, the current preprocessing steps might not adequately handle all
variations in image conditions, leading to inconsistencies in the results. The algorithm’s
computational efficiency also requires further optimization to be practical for real-time
applications in a clinical setting. Based on the limitations above, our future research can be
conducted from the following aspects: we can adopt more accurate and stable boundary
detection algorithms, combined with various image-processing technologies such as edge
detection and segmentation by machine learning, to improve the accuracy and stability of
blood vessel boundaries. Additionally, enhancing the preprocessing techniques to robustly
handle a wider range of image qualities and exploring advanced machine learning methods
for more reliable feature extraction and segmentation will be crucial. These improvements
will help in addressing the current limitations and advancing the applicability of the RETC
algorithm in diverse clinical scenarios.
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6. Conclusions

This paper combines geometric knowledge and proposes the RETC algorithm, which
completes the task of extracting vascular width information from near-infrared images of
the forearm. First, image enhancement and segmentation techniques are used to preprocess
the image, making key vascular locations clearer. Second, the Zhang–Suen refinement
algorithm is used to obtain the vascular skeleton. Third, the Canny edge detection algorithm
is used to extract the vascular edge coordinates. Finally, the RETC algorithm is used to
obtain vascular width information. This study is characterized by its integration of multiple
image-processing techniques to achieve high precision in vascular width extraction. The
combination of enhancement, refinement, and edge detection methods ensures robust
performance across varied image qualities. The proposed RETC algorithm, grounded in
geometric principles, offers a novel approach to accurately determining vascular widths,
setting a foundation for future advancements. In the future, further optimization and
improvement is needed in this paper to enhance the accuracy, stability, and efficiency of the
blood vessel width calculation algorithm, which can provide more reliable and effective
tools and methods for vascular health monitoring and disease management. Future research
will focus on refining these techniques to handle a wider range of imaging conditions and
patient variations, as well as exploring real-time applications in clinical settings.
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Appendix A. Pseudocode for the Zhang–Suen Refinement Algorithm

The Zhang–Suen thinning algorithm is a widely used algorithm for skeletonizing
binary images. This algorithm iteratively removes pixels from the boundaries of objects
while preserving the connectivity of the image, resulting in a skeleton that is one pixel
wide.

Pseudocode for the Zhang–Suen Thinning Algorithm:
function ZhangSuenThinning(image):

changing1 = changing2 = true
while changing1 or changing2:

changing1 = []
for each pixel (x, y) in the image:

if image(x, y) is black:
neighbors = count_neighbors(image, x, y)
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transitions = count_transitions(image, x, y)
if 2 <= neighbors <= 6 and transitions == 1:

if image(x, y + 1) * image(x − 1, y) * image(x, y − 1) == 0:
if image(x − 1, y) * image(x + 1, y) * image(x, y − 1) == 0:

changing1.append((x, y))
for each (x, y) in changing1:

image(x, y) = white
changing2 = []
for each pixel (x, y) in the image:

if image(x, y) is black:
neighbors = count_neighbors(image, x, y)
transitions = count_transitions(image, x, y)
if 2 <= neighbors <= 6 and transitions == 1:

if image(x, y + 1) * image(x − 1, y) * image(x, y − 1) == 0:
if image(x − 1, y) * image(x + 1, y) * image(x, y + 1) == 0:

changing2.append((x, y))
for each (x, y) in changing2:

image(x, y) = white
function count_neighbors(image, x, y):

return sum([image(x − 1, y), image(x − 1, y + 1), image(x, y + 1), image(x + 1, y + 1),
image(x + 1, y), image(x + 1, y − 1), image(x, y − 1), image(x − 1, y − 1)])

function count_transitions(image, x, y):
neighbors = [image(x − 1, y), image(x − 1, y + 1), image(x, y + 1), image(x + 1, y + 1),

image(x + 1, y), image(x + 1, y − 1), image(x, y − 1), image(x − 1, y − 1)]
transitions = 0
for i in range(8):

if neighbors[i] == white and neighbors[(i + 1) % 8] == black:
transitions += 1

return transitions
In the above pseudocode: function image(x, y) represents the pixel value at position

(x, y) in the binary image (black for object pixel and white for background pixel). Function
count_neighbors(image, x, y) returns the number of black neighbors for the pixel at (x, y).
Function count_transitions(image, x, y) returns the number of transitions from white to
black in the sequence of the eight neighbors around the pixel (x, y).

Appendix B. Numerical Calculation Methods for the Roberts, Sobel, and
Prewitt Operators

The Roberts operator is a simple and effective edge detection operator used to detect
edges in digital images. It uses two 2 × 2 convolution kernels to convolve with the image
to detect edges in the horizontal and vertical directions. It is mainly used to detect parts of
the image with large intensity changes and is typically used for grayscale images.

The Roberts operator uses two convolution kernels:

1. Gx =

[
+1 0
0 −1

]
2. Gy =

[
0 +1
−1 0

]
These kernels calculate the gradient in the horizontal and vertical directions, respectively.
Pseudocode for the Roberts operator:
for each pixel (x, y) in the image:

gx = image(x, y) − image(x + 1, y + 1)
gy = image(x + 1, y) − image(x, y + 1)
magnitude = sqrt(gxˆ2 + gyˆ2)
if magnitude > threshold:

output(x, y) = magnitude
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else:
output(x, y) = 0

In the above pseudocode: function image(x, y) represents the pixel value at position
(x, y) in the image. Symbols gx and gy are the gradients in the horizontal and vertical
directions, respectively. Symbol magnitude is the magnitude of the gradient, representing
the edge strength. Symbol threshold is a value used to control the sensitivity of edge
detection. Only when the gradient magnitude exceeds the threshold is the point marked as
an edge.

The Sobel operator is a commonly used edge detection operator that uses two 3 × 3
convolution kernels to improve the accuracy and stability of edge detection. The Sobel
operator calculates the magnitude of the image gradient to detect edges and is typically
used for grayscale images.

The Sobel operator uses two convolution kernels:

1. Gx =

−1 0 +1
−2 0 +2
−1 0 +1


2. Gy =

−1 −2 −1
0 0 0
+1 +2 +1


These kernels calculate the gradient in the horizontal and vertical directions, respec-

tively.
Pseudocode for the Sobel operator:
for each pixel (x, y) in the image:

gx = image(x − 1, y − 1)*(−1) + image(x − 1, y)*(0) + image(x − 1, y + 1)*(+1) +
image(x, y − 1)*(−2) + image(x, y)*(0) + image(x, y + 1)*(+2) +
image(x + 1, y − 1)*(−1) + image(x + 1, y)*(0) + image(x + 1, y + 1)*(+1)

gy = image(x − 1, y − 1)*(−1) + image(x, y − 1)*(−2) + image(x + 1, y − 1)*(−1) +
image(x − 1, y)*(0) + image(x, y)*(0) + image(x + 1, y)*(0) +
image(x − 1, y + 1)*(+1) + image(x, y + 1)*(+2) + image(x + 1, y + 1)*(+1)

magnitude = sqrt(gxˆ2 + gyˆ2)
if magnitude > threshold:

output(x, y) = magnitude
else:

output(x, y) = 0
In the above pseudocode: function image(x, y) represents the pixel value at position

(x, y) in the image. Symbols gx and gy are the gradients in the horizontal and vertical
directions, respectively. Symbol magnitude is the magnitude of the gradient, representing
the edge strength. Symbol threshold is a value used to control the sensitivity of edge
detection. Only when the gradient magnitude exceeds the threshold is the point marked as
an edge.

The Prewitt operator is an edge detection algorithm based on edge strength. This
algorithm first defines the kernels of horizontal and vertical edges. Then, it uses these
kernels to convolve with the input image to calculate the horizontal and vertical edge
strengths separately. Next, it calculates the total strength of the edges and applies a
threshold to determine the presence of the edges. Finally, it outputs the detected edge
image.

Prewiit_Edge_Detection(image : Matrix) : Matrix
kx := [−1 0 1

−2 0 2
−1 0 1]

ky := [−1 −2 −1
0 0 0
1 2 1]

edge_x := create_empty_matrix(image.width, image.height)
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edge_y := create_empty_matrix(image.width, image.height)
edge_magnitude := create_empty_matrix(image.width, image.height)
for each pixel in image {

edge_x[pixel] = convolve(image, kx, pixel)
edge_y[pixel] = convolve(image, ky, pixel)

}
for each pixel in image {

edge_magnitude[pixel] = sqrt(edge_x[pixel]ˆ2 + edge_y[pixel]ˆ2)
}
for each pixel in image {

if edge_magnitude[pixel] > threshold {
edge_magnitude[pixel] := white

} else {
edge_magnitude[pixel] := black

}
}
return edge_magnitude

end function

Appendix C. Pseudocode for RETC Algorithm

Initialize an empty list ‘radii’
For each skeleton point ‘center’, indexed by ‘i’:

For radius from 1 to 9 (range can be adjusted):
Initialize ‘intersected’ to False
For each edge point ‘edge_point’, indexed by ‘j’:

Calculate the distance ‘distance’ between the skeleton point and the edge point
If ‘distance’ is less than or equal to the current radius:

Set ‘intersected’ to True
Break out of the edge points loop

If an intersection is found (‘intersected’ is True):
Add the current radius to the ‘radii’ list
Print the skeleton point index ‘i’ and the radius
Break out of the radius loop

Calculate the vessel diameter list ‘diameters = [2 * radius − 1 for radius in radii]’
If the ‘diameters’ list is not empty:

Calculate and print the average diameter ‘average_diameter’
Else

Print “No intersection found”
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