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Abstract: Spectral-domain optical coherence tomography (SD-OCT) 
provides volumetric images of retinal structures with unprecedented detail. 
Accurate segmentation algorithms and feature quantification in these 

images, however, are needed to realize the full potential of SD-OCT. The 
fully automated segmentation algorithm, FloatingCanvas, serves this 
purpose and performs a volumetric segmentation of retinal tissue layers in 
three-dimensional image volume acquired around the optic nerve head 
without requiring any pre-processing. The reconstructed layers are analysed 
to extract features such as blood vessels and retinal nerve fibre layer 
thickness. Findings from images obtained with the RTVue-100 SD-OCT 
(Optovue, Fremont, CA, USA) indicate that FloatingCanvas is 

computationally efficient and is robust to the noise and low contrast in the 
images. The FloatingCanvas segmentation demonstrated good agreement 
with the human manual grading. The retinal nerve fibre layer thickness 
maps obtained with this method are clinically realistic and highly 
reproducible compared with time-domain StratusOCT

TM
. 
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1. Introduction 

Optical Coherence Tomography (OCT) has been widely used as a tool for evaluating the 
structure of the retina in cross-section [1, 2]. Time-domain OCT has been used in glaucoma 
diagnosis and follow-up by determining retinal nerve fibre layer thickness (RNFLT) since it 
was adopted in the clinical setting [3-7]. Because of its limited speed, time-domain OCT only 
provides RNFLT measurements in a line scan, generally a peripapillary circle but does not 
provide a three-dimensional (3D) RNFLT map.  

The newly developed and commercialized spectral-domain OCT (SD-OCT) [8, 9] 
provides much faster scans [10] with improved signal-to-noise ratio [11, 12] compared with 
time-domain OCT, for example, StratusOCT

TM
 (Carl Zeiss Meditec, CA, USA). With this 

benefit, this technique represents a powerful and ‘real-time’ tool that potentially can be used 
in the clinic to assist the diagnosis and management of glaucoma. The extremely high image-
acquisition speed allows a 3D image to be yielded. Each image is obtained by an in-depth 
axial scan (A-scan), a cross-sectional 2D scan (B-scan) consisting of a series of consecutive 
A-scans and the 3D image volume formed by consecutive B-scans. However, despite this high 

performance, such an imaging technique can only be useful clinically if there is a quantitative 
method to provide numerical information to the clinician. Moreover, the greater acquisition 
speed of SD-OCT means that a much greater amount of data is generated, which undoubtedly 
poses a technical challenge to the computer-assisted analysis. 

Algorithms for the segmentation of images have been extensively studied since the early 
days of computer vision and image processing. In the studies of OCT images, some 
segmentation algorithms were implemented by thresholding the OCT A-scan profile, which 
consists of a series of ‘peaks’ and ‘valleys’ that represent various high and low tissue 

reflectivity [13-15]. A tissue layer boundary was found when the pixel intensity reached a 
target threshold that was sometimes adaptively chosen. These methods are computationally 
efficient, but are susceptible to intensity inconstancy within the individual layers. This 

problem was partly resolved by an  efficient maximum  intensity  search  based  approach 

proposed by Fabritius et al [16]. In other studies, a gradient was used to form an automatic 

active contour to minimize the overall energy, which was defined by gradient, boundary 
smoothness and edge density [17]. This method is less affected by the intensity variations, but 
is sensitive to morphological features such as blood vessels. Koozekanani et al [18] utilized a 
Markov model to select and organize the edges to form a coherent boundary structure. A 
minimum-cost closed set approach was developed by Haeker et al [19] and Niemeijer et al [20] 
to identify retinal layers based on a linear combination of domain-specific cost functions. 
Mishra et al [21] used the image gradient to derive an external force through an adaptive 
kernel function and used dynamic programming to identify the continuous retinal layers 

within the OCT images. Garvin et al [22] attempted to find a closed set in a geometric 3-D 
graph that minimizes the associated costs and constraints by using an optimal graph search 
method (graph-cut). This method was then extended [23] such that the constraints and cost 



functions were learned from a training set, and by using a multiscale 3-D graph search [24, 
25]: the retinal surfaces were detected in a subvolume constrained by the retinal surface 
segmented in a down-sampled image volume. Chiu et al [26] also extended the graph-cut 
segmentation using dynamic programming and this helps to improve the computational 
efficiency when it was applied on individual B-scans. Moreover, segmentation using intrinsic 

tissue property such as depolarization, or polarization scrambling, on backscattered light has 
also been investigated using other types of OCT instruments [27].  

The majority of these studies [13-17, 23, 24, 26] filtered the images to remove distractive 
features such as the speckle noise. These filtering methods were controlled by subjectively 
selected parameters and had difficulties in ‘balancing’ the deduction of high speckle noise and 
preservation of structural edges, especially in images with low contrast. Haeker et al [19] and 
Garvin et al [22], on the other hand, proposed image averaging to create composite images 
from repeat scans. The composite images had higher signal-to-noise ratio, but multiple scans 

(six repeat scans in this case) were needed, which may exacerbate the detrimental effects of 
eye movement between the scans. 

A few studies performed real volumetric segmentation in 3D space [19, 20, 22-25], but 
most other segmentation was done on individual B-scans and with the 3D layer topography 
created by filtering across the B-scans. The segmentation of individual B-scan is 
computational efficient, but the filtering may reduce sensitivity to detect a structural 
abnormality and the change of an abnormality over time. A key benefit of combining the 
information from neighbouring B-scans is that it can reduce measurement variability, 

especially in volumetric scans with noise or low contrast in some B-scans. Computationally 
speaking, the core technique behind these real 3D segmentation methods is the 3D graph 
search algorithm [28] that has an efficient polynomial time complexity. 

The aim of this study was to develop a new segmentation algorithm, FloatingCanvas, that 
has a balance between the robustness and efficiency. FloatingCanvas was implemented to 
quantify the retinal structures in 3D image volumes around the optic nerve head (ONH) 
obtained with SD-OCT. It was used to process the whole image volume simultaneously and to 
reconstruct analytical surfaces for tissue layers or their boundaries. This method was designed 

to be robust to noise and artefact in image volumes and thus required no pre-processing such 
as filtering or image averaging. It made use of the first and higher order gradient as the natural 
boundary between tissue layers. In this case, the algorithm searches for the retinal pigment 
epithelium (RPE) and retinal nerve fibre layer (RNFL) boundaries which consequently form 
the RNFLT measurement. Although RNFL and RPE are in theory the two tissue layers with 
the strongest reflectivity in these OCT images, they and their boundaries become less 
identifiable in images with overall or local artefacts. FloatingCanvas was tested on images 
taken from both healthy and glaucomatous subjects, and was compared with manual 

segmentation by the human expert. It was demonstrated that the algorithm was robust enough 
to detect the tissue layer boundaries in images with low contrast. The RNFLT maps obtained 
with this method were also compared with those derived from time-domain StratusOCT

TM
 in 

healthy and glaucomatous subjects. 

2. Methods 

In this study, the SD-OCT images were acquired with the RTVue-100 (Optovue, Fremont, 
CA, USA) using the 4mm× 4mm 3D volume scan protocol around the ONH with a depth of 
2mm. This provides volumetric images with 101 B-scans comprised of 513 A-scans, each of 

768 pixels in depth. Therefore, the distance between two B-scans is about 5 times that of two 
neighbouring A-scans. 

The axis in the image is subsequently denoted as x for the direction of the B-scan, y in the 
direction across all B-scans and z for the direction of A-scan, and the location of a pixel in the 

image Im is described by a vector 
T

,  ,  x y z  or a two-tuples ( ),  zx , where x  is a column 

vector 
T

,  x y . The positive direction in an A-scan is defined to be from the top to the bottom 



of the image and will be described as ‘downward’ subsequently. Therefore, the value of the 

pixel in image Im is represented as ( ),  ,  Im x y z  or ( ),  Im zx . The pixel coordinates were all 

converted to a scale in microns. 

2.1 Analytical surface modelled by Gaussian Process 

FloatingCanvas searches for a tissue layer, or its boundaries, in the image by deforming a 3D 
analytical surface that is efficiently modelled by a Gaussian Process (GP) [29]. The analytical 

surface is spanned by a sample of ‘skeleton’ points ( ){ }
1

, 
N

i i
i

w
=

x , where T
,  

i i i
x y=< >x  is a 

column vector containing coordinates on the x- and y-axis for the ith ‘skeleton’ point, and 
i
w  

is the coordinate on the z-axis. The skeleton points were evenly placed along the x- and y-axis 

to form a regular grid in the x-y space. The interval of the ‘skeleton’ point grid to model the 
anterior and posterior RNFL boundaries was chosen to be 100µm on both x- and y-axis, and 
the interval for RPE was 300µm given that RPE is expected to be smoother than RNFL 
boundaries around ONH. The GP model acts on these ‘skeleton’ points to determine a 

function ( )f x  that provides a calculation of the surface coordinate z on z-axis for any vector 

coordinate x  on x- and y-axis.  
Similar to a Gaussian distribution, the GP is defined by a mean function and a covariance 

function: 
*( ) ~ ( ( ), ( , ))f m kx x x xGP , where the mean function ( ) ( ( ))m E f=x x  is the 

expectation of ( )f x , and the covariance function is defined as the expectation:
*( , )k =x x  

* *(( ( ) ( ))( ( ) ( )))E f m f m− −x x x x .  In this case, the GP defines the joint probability between 

the skeleton points and the values 
*( )f X  at arbitrary locations 

*
X  to be a Gaussian 

distribution: 
2

*

* * * *

( , ) ( , )
~ 0,  

( ) ( , ) ( , )

n

f

δ⎛ ⎞⎡ ⎤+⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

w K X X I K X X

X K X X K X X
N    (1) 

In Eq. (1), w  is a column vector containing all { }
1

N

i i
w

=
 and X  is a matrix with { }

1

N

i i=
x  in 

the columns, and a similar notation is used for 
*
X . 

*( , )K X X  is a matrix with element 

*( , )ij i jk=K x x , where 
i
x  and 

* j
x  are the ith and jth columns in X  and 

*
X  respectively; 

*( , )i jk x x  is defined to be an un-normalized Gaussian kernel function between data points 
i
x  

and 
* j
x : 

( ) ( )
2

1 1 2 2 2
* *

2

( )1

2

*( , )

i j i j

l

i jk e

⎛ ⎞− + −⎜ ⎟
− ⎜ ⎟

⎜ ⎟
⎝ ⎠=

x x x x

x x , where l  is the length-scale of the Gaussian and is 

the main parameter to control the smoothness of the analytical surface, 
1
x  and 

2
x  represent 

the coordinates of point x  on the x- and y-axis, respectively. A similar notation applies to 

( , )K X X , 
*( , )K X X  and 

* *( , )K X X . 
2

n
δ  is the prior Gaussian noise variance of w  and is 

fixed at 100µm in the algorithm. The parameter l  was set to be 150µm for the surfaces 

modelling the anterior and posterior RNFL boundaries, and was 450µm for the surface to 
detect RPE. 

Using the joint probability in Eq. (1), the conditional distribution 

* *( ( ) | , , )p f X X X w
* *~ ( ( ), cov( ( ))f fX XN  can be derived as [29]: 

2 1

* *( ) ( , )( ( , ) )nf δ
−

= +X K X X K X X I w    (2) 

2 1

* * * * *cov( ( )) ( , ) ( , )( ( , ) ) ( , )nf δ
−

= − +X K X X K X X K X X I K X X  (3) 

where I in Eq. (2) and (3) is an identity matrix with 1 on the diagonal and 0 off the diagonal. 



If 
*
X  contains the coordinates of all points on the x- and y-axis, 

*( )f X  returns the 

corresponding coordinates of the analytical surface on the z-axis. 
In contrast to the conventional usage of GP where w  are the fixed inputs for a regression 

problem, w  are treated as parameters of the model in this algorithm. Therefore, the task of 

the algorithm is to search for the parameters w  to form an analytical surface that is 

sufficiently close to a tissue layer or its boundaries (target surface). 

2.2 Analytical surface deformation 

In FloatingCanvas, an analytical surface is initialized to be at a regular location such as the 
top or bottom of the A-scan depending on the target surface. The analytical surface is 
deformed by updating the parameter w  according to the forces applied on the points in the 

surface. Without specifying a certain target surface, the deformation process is described as a 
differential equation with regard to an artificial time t defined on the parameters w : 

( ) ( ) ( ) ( )*

* * * * * * * *

( )
,  ( ) F ,  ( ) ,  ( ) F ,  ( )Img

df
f f f f

dt
= Θ +Θ

g

X
X X X X X X X X  (4) 

where F
g
 is a function related to a constant ‘gravity’ force T

0,  0,  g=< >g  that drives the 

points on the surface towards one direction along the z-axis; F
Img

 is a force driving the surface 

to be attached on the target surface; Θ  is a binary function consisting of one or several 

necessary conditions of 
*i
x  in 

*
X  being a point on the target surface, and Θ  is the negation 

of Θ . The notation ( )* *F ,  ( )f
g
X X  assembles the values calculated from all 

*i
x  in 

*
X  into a 

column vector, and the same notation also applies to F
Img

 and Θ . Moreover, for notational 

simplicity, the resulting column vectors calculated by these three functions are simplified by 

removing the common variables ‘ ( )* *,  ( )fX X ’. 

Eq. (4) describes a process, as indicated by the name of the algorithm, where the analytical 
surface acts as a ‘canvas’ floating in the 3D image and is driven by different forces: the 

analytical surface is initially ‘moved’ towards the target surface by a gravity force F
g
; when 

the analytical surface is close to the target surface (i.e. the corresponding Θ  function outputs 

1), the force F
Img

 takes over F
g
 and attaches the analytical surface on the target surface. The 

switch between F
g
 and F

Img
 is controlled by the function Θ . 

To form an equation about the parameter w , the left part of Eq. (4) is expanded by 

inserting Eq. (2) into Eq. (4) and applying the chain rule of derivative:  

2 1

*( , )( ( , ) ) F Fn Img

d

dt
δ

−
+ =Θ +Θ

g

w
K X X K X X I   (5) 

To form a concise notation, the matrix 2 1

*( , )( ( , ) )
n

δ
−

+K X X K X X I  is substituted by Λ . 

Multiplying ( )
1

T T
−

Λ Λ Λ on both side of Eq. (5) gives: 

( )†
F FImg

d

dt
= Λ Θ +Θ

g

w
    (6) 

where 
†

Λ  is the pseudo-inverse [30] of Λ  and is given by ( )
1

T T
−

Λ Λ Λ . 
†

Λ  acts as a 

projection matrix, which propagates the information from the pixels on the analytical surfaces 
to the skeleton points. 

Eq. (6) establishes the analytical surface deformation in FloatingCanvas: given the old 

parameter old
w , the new new

w  can be updated by: 



( )†
F F

new old old old old old

Img t= +Λ Θ +Θ Δ
g

w w    (7) 

according to the definition of the derivative in Eq. (6). The functions F
g
, F

Img
 and Θ  are 

labelled with ‘old’ because the input 
*( )f X  in these three functions is calculated using old

w , 

and tΔ  is a sufficiently small time increment which is set to 0.1 in the algorithm. 

The deformation in Eq. (7) is repeated, and in each iteration, the old
w  is substituted with 

new
w  in last iteration. The algorithm stops when the value of w converges, or pragmatically 

when the change of w  becomes sufficiently small ( 0.26µm< ( 0.1≈  pixel on z-axis) in the 

implementation). 

2.3 Searching for tissue layers or their boundaries 

In FloatingCanvas, different tissue layers or their boundaries can be found by configuring 

functions F
g
, F

Img
 and Θ  and the ‘gravity’ force g . To search for the anterior boundary of 

RNFL, the parameter w  is initialised to be 0 such that the analytical surface is at the top of 

the A-scan. The g  is set to be T
0,  0,  30=< >g  and the functions F

g
, F

Img
 and Θ  are: 

( ) ( )( ) ∞* * * * *F ,  ( ) ,  ( ) ( )i i i i if Im f f= ∇ + ∇
g
x x x x g xg    (8) 

( ) ( ) ∞* * * * *F ,  ( ) ,  ( ) ( )img i i i i if Im f f= −∇ ∇ ∇x x x x xg    (9) 

( )
( )* *

* *

1 ,  ( )
,  ( )

0

i i

i i

Im f
f

otherwise

⎧ ∇ ≥⎪
Θ = ⎨

⎪⎩

x x g
x x    (10) 

where ‘ g’ is the dot product; ‘∇ ’ is the gradient operator when it is applied to an image. For 

instance, ( )* *,  ( )i iIm f∇ x x  is the gradient of the image Im  at the location ( )* *,  ( )i ifx x . 

Consequently, ( )* *,  ( )i iIm f∇ ∇ x x  in Eq. (9) is the gradient of the magnitude of the image 

gradient ( )* *,  ( )i iIm f∇ x x . This value can easily be calculated using the second derivative of 

the image. ∇  is the surface normal operator when it is applied to a function. For example, 

*( )if∇ x  is the normal of the surface 
*( )if x  given by * *

1 2

* *

( ) ( )
,  ,  1i i

i i

f f∂ ∂
− −

∂ ∂

x x

x x

, which can 

be analytically calculated from Eq. (2). The hat ‘~’ above the gradient operator in ∞
*( )if∇ x  in 

Eq. (8) and (9) means that the normal has been normalised to have a length of 1.  
Eq. (8) acts as a ‘gravity’ pulling the analytical surface downwards from the top of the A-

scan. The Θ  function in Eq. (10) guaranties that this gravity function stops working when the 

analytical surface comes across a significant gradient that is larger than g . Eq. (9) ‘attaches’ 

the surface to the local maximum of the image gradient magnitude when the function Θ  

outputs 1. 
Similarly, the RPE layer is searched for by initialising the surface to be at the bottom of 

the A-scan, T
0,  0,  -10=< >g  and the functions F

g
, F

Img
 and Θ  are: 

( )* *F ,  ( )i if = −
g
x x g      (11) 

( ) ( ) ∞* * * * *F ,  ( ) ,  ( ) ( )img i i i i if Im f f= −∇ ∇x x x x xg    (12) 



( )
( ) ( )* * max *

* *

1 ,  ( )
,  ( )

0

i i i

i i

Im f Im
f

otherwise

⎧ ≤⎪
Θ = ⎨

⎪⎩

x x x
x x    (13) 

where ( )max *i
Im x  is the maximum intensity of the pixels within a 150µm window below the 

surface point ( )* *,  ( )i ifx x . 

The force in Eq. (11) pulls the surface upwards from the bottom of the A-scan when Θ  in 

Eq. (13) shows that the intensity on the surface is larger than the current local maximum 

intensity ( )max *i
Im x . Eq. (12) ‘attaches’ the surface to the locations with the maximum local 

intensity when the function Θ  outputs 1.  

To search for the posterior RNFL, the surface is initialized to be the detected RPE. Two 
necessary condition constraints are applied during the search of the posterior RNFL: the 
intensity on the posterior RNFL should be no less than 70% of the intensity of the RNFL 
anterior boundary, and the gradient of the RNFL posterior boundary should be ‘downward’ 

( ( )* *,  ( )z i iIm f∇ x x >0).  These two constraints are integrated into the function Θ : 

( )
( )* *

* *

1 ,  ( )  and both constraints are met
,  ( )

0

i i

i i

Im f
f

otherwise

⎧ ∇ ≥⎪
Θ = ⎨

⎪⎩

x x g
x x  (14) 

The g  is set to be T
0,  0,  -15=< >g , and the functions F

g
 and F

Img
 are the same with Eq. (8) 

and (9) if 
*i
x  is not in vessel region. Otherwise,  F

g
 and F

Img
 are set to 0. The vessel detection 

will be described in the subsequent section. The function Θ  in Eq. (14) including the two 

constrains only brings the analytical surface near to the RNFL posterior boundary, which is 

eventually decided by the gradients in function F
Img

. 

Benefiting from the segmentation in 3D space, the 4mm× 4mm RNFLT map can simply 
be calculated as the difference between the segmented anterior and posterior RNFL, without 
smoothing out or interpolating the individually segmented B-scans [13, 14, 17].  

The deformation procedure illustrated in Fig. 1 demonstrates the intermediate and the final 
forms of the analytical surface searching for the anterior RNFL boundary. The corresponding 
curve in the surface was superimposed on one of the B-scans. The B-scan has been cropped so 
that only the region containing the tissue layers was displayed. The analytical surface is 
initialized as a flat panel at the top of the image volume. Before the analytical surface contacts 
the target boundary, it is mostly driven by the gravity g  and the speckle noise in the image. 

Therefore, the surface becomes noisy and irregular [Fig. 1(a), Fig. 1(d)]. It is also possible 
that the speckle noise and some tissues above the anterior RNFL form strong gradients that set 
the function Θ  to be 1 before the analytical surface is close to the target boundary. An 

example of such an area is indicated by an arrow in Fig. 1(a). However, the deformation of the 

analytical surface is driven not only by the force at one point but also by the forces in the 
neighbouring regions. Therefore, these local exceptions that are not ‘supported’ by the 
neighbouring regions affect the deformation less and are overcome in the subsequent 

iterations [Fig. 1(b)]. In Fig. 1(b), Fig. 1(e), the force ( )* *F ,  ( )img i ifx x  from Eq. (9) ‘attaches’ 

the surface to the target boundary in the areas where the surface is sufficiently close to the 
target boundary. This procedure is repeated until all parts of the target boundary are found and 
the surface deformation stops [Fig. 1(c), Fig. 1(f)]. 



 

Fig. 1. Steps in the deformation procedure to search for the anterior RNFL boundary. (a-c) a B-
scan in an image volume superimposed with the corresponding curve in the analytical surface 
at the 30th, 45th and the last (96th) iterations of the deformation procedure. Plates (d-f) show 
an overview of the analytical surface at these 3 iterations. The arrow in (a) shows an area with 

strong gradient that sets the Θ  function to be 1 before the analytical surface is close to the 

target boundary. 

There are four main free-parameters in FloatingCanvas: the skeleton point interval, 

length-scale l  of the Gaussian kernel in Eq. (1), the time increment tΔ  in Eq. (7) and the 

gravity g . The choice of these parameters represents the trade-off between the computational 

efficiency and the robustness of the algorithm. The skeleton point grid interval and length-

scale l  are closely related and they quantify how much of the ‘neighbourhood’ information is 

taken into account for the segmentation of a particular point. The algorithm considers no 
information from the neighbouring area and becomes a segmentation of individual B-scans if 
these two parameters are very small. On the other hand, large values of these two parameters 
make the analytical surface too rigid to model the necessary morphology variety of the target 

surface. Moreover, small skeleton point interval also results in larger ( , )K X X  and 
†

Λ  

matrices in Eq. (2) and (6) and the algorithm is no longer affordable by normal computing 
platforms. The gravity g  and time increment tΔ  do not affect the flexibility of the analytical 



surface, and they mainly control the convergence performance of the algorithm. Large values 
of these two parameters causes quicker convergence of the analytical surface deformation, but 
this risks the deformation procedure ‘over-stepping’ the target surface and causing 
convergence on the wrong surface. 

2.4 Vessel detection 

There has been much recent discussion about how blood vessels influence current OCT 
segmentation algorithms causing bias in estimates of RNFLT [31, 32]. In fact, RNFLT tends 
to be significantly overestimated or underestimated within the area of blood vessels. It is 
therefore necessary to mark and delineate as far as possible the blood vessels before detecting 
the RNFL posterior boundary. 

 

Fig. 2. En-face image and pixel vesselness. (a) the en-face image calculated by averaging the 
50 pixels below and above the detected RPE. (b) the pixel vesselness in grayscale. 

FloatingCanvas identifies blood vessels by using the en-face image ( )EF x  obtained by 

averaging the 50 pixels below and above the analytical RPE [33, 34] [Fig. 2(a)]. This 
detection scheme computes the ‘vesselness’ for each pixel in the en-face image. ‘Vesselness’ 
is a definition based on the analysis of eigenvalues of the Hessian matrix of image intensity 
[35]: 
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where 
min

ν  and 
max

ν  are the smaller and larger eigenvalues of a Hessian matrix which 

consists of the second-order derivatives of the en-face image ( )EF x : 
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where, for example, 1 2 ( )
i i

i
∇
x x
EF x  is the second-order derivative of ( )

i
EF x  with respect to 

1

i
x  

and then 
2

i
x . As it is shown in Fig. 2(b), the ‘vesselness’ score 

vn
S  provides a clear distinction 

between the vessel and non-vessel pixels, and even a simple thresholding ( 0.2
vn
S > ) yields a 



satisfactory result. Eventually, the vessels are detected in the binary image as the area with 
more than 100 connected pixels. 

2.5 Optic nerve head approximation 

Physiologically, the RNFL near and within the ONH area changes direction and becomes the 
neural rim of the ONH. The idea of detecting the ONH area in this study is to exclude the 

ONH when displaying the RNFLT map. Therefore, the method described below was not 
designed to find an accurate contour line of the ONH, but to derive an approximated area of 
the ONH. The ONH is detected as the area bounded by the end-tips of the RPE. 

The RPE tip is detected using the anterior RNFL and en-face image used in vessel 
detection. The detected anterior RNFL surface by FloatingCanvas is approximated by the 
combination of a quadratic and a Gaussian surface, which is a similar to a method proposed 
by Swindale et al when modelling scanning laser ophthalmoscope topography [36]. The initial 
estimate of the ONH centre is set to be the centre of the fitted Gaussian component. The local 

intensity gradients at every pixel in the en-face image are then calculated in the x-y plane. The 
candidate pixels of RPE tips are required to meet three criteria. First, RPE tips should have a 
sufficiently large gradient (e.g. above the 75th percentile of the distribution of gradients). 
Second, considering the gradients of the intensity gradients at each pixel in the en-face image, 
the gradient of the intensity gradient of qualifying pixels is required to be near to 0. The 
gradient of the intensity gradient is near to 0 when the intensity gradient is at a local 
maximum. Third, there are two vectors of interest for each pixel in the en-face image: the 
local intensity gradient at the pixel (which is at right-angles to edges) and the vector 

connecting this pixel with the initial estimate of the ONH centre. It is required that the angle 
formed by these two vectors is smaller than 45° for the candidate RPE tip pixels. This 
criterion removes most pixels on vessel edges which also have strong gradient, because the 
angles between vectors for pixels on vessel edges are generally large (e.g. close to 90°). An 
ellipse is fit to the candidate RPE tip pixels using a Random Sample Consensus (RANSAC) 
parameter estimation (used by Li et al [37] for ellipse detection in noisy data). A cubic spine 
is then fitted to the pixels that are close to the fitted ellipse to form the approximated contour 
of the RPE tips. The ONH centre is finally calculated as the geometric mean of the contour. 

The ONH area is removed when the RNFLT map is displayed (Fig. 4). 
The algorithms in FloatingCanvas described above were implemented under Matlab 

(version 7.4.0 R2007a, The MathWorks, Inc., Natick, MA). 

2.6 Validation 

To validate the segmentation algorithm, 26 glaucomatous subjects (mean age of 52 (range 22 
to 91) years) and 14 healthy subjects (mean age of 50 (range 16 to 67) years) were recruited. 
The study was approved by an ethics committee and informed consent, according to the tenets 
of the Declaration of Helsinki, was obtained prior to examination from each subject. Each 

subject was imaged 3 times with the RTVue-100 system 4mm× 4mm 3D volume scan 
protocol. Images were acquired in both eyes of each subject during the same testing session 
by the same observer (PS) following the manufacturer instructions. Patient identifiers were 
removed from the data and the 3D volumes were transferred to a secure computer. 
FloatingCanvas was then applied to these 240 image volumes to extract the RNFLT 
measurement.  

The first validation compared the automated segmentation by FloatingCanvas with 
segmentation by human manual grading. One of the three repeat image volumes of a 

randomly chosen eye from each subject was randomly selected for manual segmentation. For 
each selected image volume, the 101 B-scans were evenly divided into 10 sections, each of 
which contains about 10 B-scans. One B-scan was then randomly chosen from each section 
for manual segmentation. With 40 subjects, 400 B-scans were manually delineated and the 
segmented surface positions were compared with those produced by FloatingCanvas. The 
mean and standard deviation (SD) of signed and absolute difference between the manual and 



FloatingCanvas segmentation were then evaluated for healthy and glaucomatous subjects 
respectively. 

The second validation hypothesis was that, if the method is reliable, the estimated RNFLT 
from the FloatingCanvas segmentation would be equivalent across different width annuli 
around the ONH. Therefore, overall mean and quadrant mean RNFLT were estimated using 

two different calculation annuli: wide (0.58mm wide from the inner margin radius of 
1.170mm) and narrow (0.29mm wide from the inner margin radius of 1.315mm) annuli (Fig. 
3). The two annuli were centred on the same circle with a radius of 1.460mm, with one 
annulus twice as the width of the other.  

 

Fig. 3. An illustration of the location and width of two different annuli used to calculate the 
mean and quadrant RNFLT. The wide (0.580mm wide from the inner margin radius of 
1.170mm) annulus was twice as wide as the narrow one (0.290mm wide from the inner margin 
radius of 1.315mm). Both annuli were centred on the same circle with a radius of 1.460mm. 

Moreover, one of the most important parameters for the quantitative analysis of imaging 
techniques is the reproducibility, which directly relates to the reliability of the techniques and 

their ability to separate physiological changes from measurement variability and also to detect 
progressive RNFL loss over time. The reproducibility of RNFLT measurements was 
evaluated by estimating test-retest variability based on the three repeated measurements and 
the coefficient of variation (CV) for mean and quadrant RNFLT. We defined test-retest 
variability of RNFLT, expressed in micrometers, as twice the SD of the three repeated 
measurements. The coefficient of variation was calculated as the SD of the three 
measurements divided by the mean. 

3. Results 

FloatingCanvas segmented the retinal structures in all 240 SD-OCT volume scans without 
clinically spurious results. On average, it took 5.6 1.2±  minutes to process a large image 

volume ( 513 101×  A-scans) on one core of a Intel Core 2 Duo 2.4GHz CPU and 8GB RAM 

with single thread. 
Fig. 4 shows RNFLT maps from a healthy subject and a glaucomatous patient. The 

RNFLT map was colour-coded in micrometers with the ‘hotter’ colour denoting thicker 
RNFL. It should be noted that the healthy retina [Fig. 4(a)] has a much thicker RNFL in the 
superior and inferior quadrants compared with the nasal and temporal quadrants. This is 
consistent with the known normal retinal anatomy. The reduced RNFLT, especially in the 
superior and inferior quadrants, in the glaucomatous eye [Fig. 4(b)] can be observed and is 

consistent with clinical knowledge. 



 

Fig. 4. The RNFLT map calculated from the segmented retinal structures of a healthy subject 
(a) and a glaucomatous patient (b). The RNFLT map was colour-coded in micrometers. Note 
the significantly thicker RNFLT, especially in the superior and inferior areas, in the healthy 
example (a) compared with that of the glaucomatous example (b). 

The mean and SD of the signed and absolute difference between the manual and 
FloatingCanvas segmentation for glaucomatous and healthy subjects are given in Table 1. For 
all manually segmented B-scans, the mean and SD of the absolute difference for all three 
boundaries are 4.3±2.0µm. Therefore, on average, the FloatingCanvas segmentation differs 
from that of the human expert by 4.3µm, which is equivalent to 1.7 pixels on z-axis. The mean 
absolute difference between the manual and algorithm segmentation is relatively higher for 
glaucomatous retina compared with that of healthy retina but the difference is not statistically 

significant. 

Table 1. Mean and SD of signed and absolute difference between the manual and 

FloatingCanvas segmentation for glaucomatous and healthy subjects. The 
difference values were summarized with all 3 surfaces and anterior, posterior 

RNFL and RPE respectively. 

 
Glaucoma 

(MEAN±SD, µm) 
Healthy 

 (MEAN±SD, µm) 

Surface Signed Absolute Signed Absolute 

All surfaces -0.8±2.1 4.8±2.7 -0.7±2.3 3.6±2.1 
Anterior RNFL 1.2±0.7 3.3±0.9 1.5±0.9 2.2±0.7 
Posterior RNFL -1.9±1.8 6.8±1.8 -1.7±2.5 4.7±1.4 
RPE −1.6±2.0 4.3±1.8 −1.8±1.6 3.5±1.9 

 
RNFLT profile in the healthy and glaucomatous eyes is summarized in Table 2.  

Table 2. Mean and SD of total and quadrant retinal nerve fiber layer thickness 

(RNFLT) of healthy and glaucomatous eyes. RNFLT was determined with two 

types of calculation annuli (0.58mm and 0.29mm wide, respectively). 

 
Glaucoma 

(MEAN±SD, µm) 
Healthy 

 (MEAN±SD, µm) 

Calculation circle 0.58mm 0.29mm 0.58mm 0.29mm 

Total RNFLT 86±16 85±18 110±6 111±7 
Temporal RNFLT 71±16 70±13 77±16 77±14 
Superior RNFLT 98±21 97±22 133±15 134±12 
Nasal RNFLT 76±16 75±16 96±14 97±13 
Inferior RNFLT 99±30 98±32 134±16 135±15 

 
There were no statistically significant differences between RNFLT measurements using 

the calculation annuli with different widths, which suggests that FloatingCanvas is robust and 



stable across the 3D volume. The quadrant RNFLT shows a difference between healthy and 
glaucomatous eyes. In general and on average, the healthy eyes, as expected, have a thicker 
RNFL, especially in the superior and inferior quadrants. 

The reproducibility of the segmented RNFLT using SD-OCT was compared with the 
typical reproducibility of StratusOCT as reported in the literature using the standard scan 

protocol [38] in Table 3 (healthy subjects) and Table 4 (glaucomatous subjects). From Table 3 
and Table 4, it can be seen that test-retest reproducibility in RNFLT measurements is better 
for both healthy and glaucomatous eyes with SD-OCT. RNFLT measurements were least 
reproducible in the nasal quadrant, with both SD-OCT and StratusOCT, while the segmented 
nasal measurement with SD-OCT showed markedly better reproducibility (~7µm vs 10.2µm 
in both normal and glaucomatous eyes). Moreover, RNFLT measurements in glaucomatous 
eyes were more variable than those of healthy eyes with both SD-OCT and StratusOCT, but 
SD-OCT showed much less variability and better reproducibility compared with StratusOCT, 

especially in the superior and inferior quadrants, which are the most important areas for 
glaucoma diagnosis. These results are consistent with the literatures about the reproducibility 
on another SD-OCT platform (Cirrus, Carl Zeiss Meditec, CA, USA) [39, 40]. 

Table 3. Coefficient of variation and test-retest variability of total and quadrant retinal nerve fiber 

layer thickness (RNFLT) of healthy retina measured by FloatingCanvas.  RNFLT was calculated at 

two widths of calculation annuli (0.58mm and 0.29mm). A typical reproducibility of StratusOCT is 

given for comparison. 

 0.58mm annulus 0.29mm annulus Stratus OCT [38] 
 

CV(%) 
Test-retest 
variability 

(µm) 
CV(%) 

Test-retest 
variability 

(µm) 
CV(%) 

Test-retest 
variability 

(µm) 

Total RNFLT 1.5 3.3 1.5 3.3 1.7 3.5 
Temporal RNFLT 3.8 5.8 3.9 6.0 5.1 7.5 
Superior RNFLT 2.6 7.5 3.0 8.2 3.8 9.6 
Nasal RNFLT 3.5 6.6 4.3 8.0 6.7 10.2 
Inferior RNFLT 1.5 4.4 1.6 4.6 3.7 9.7 

Table 4. Coefficient of variation and test-retest variability of total and quadrant retinal nerve fiber 

layer thickness (RNFLT) of glaucomatous subjects measured by FloatingCanvas. RNFLT was 

calculated at two widths of calculation annuli (0.58mm and 0.29mm). A typical reproducibility of 

StratusOCT is given for comparison. 

 0.58mm annulus 0.29mm annulus Stratus OCT [38] 
 

CV(%) 
Test-retest 
variability 

(µm) 
CV(%) 

Test-retest 
variability 

(µm) 
CV(%) 

Test-retest 
variability 

(µm) 

Total RNFLT 2.2 4.0 2.2 4.1 3.7 5.2 
Temporal RNFLT 4.5 5.2 5.0 5.6 5.3 5.6 
Superior RNFLT 3.8 7.8 4.2 8.6 6.4 10.7 
Nasal RNFLT 4.9 6.7 6.1 7.4 9.0 10.2 
Inferior RNFLT 2.1 4.7 1.9 4.3 6.6 10.6 

 

4. Discussion 

FloatingCanvas has been developed as an effective 3D segmentation method for SD-OCT 
volume scans centred on the ONH. It is important that automatic segmentation should be 

compared with the manual segmentation as the gold standard. FloatingCanvas segmentation 
demonstrated good agreement with the human manual grading. It also provides a repeatable 
estimation of the RNFLT in the image volume. As opposed to the sparse area covered by the 
circular scans used in StratusOCT, the RNFLT maps cover a larger and clinically more useful 
area allowing for a more reliable measure of the RNFLT. The method has been tested on 240 
3D volume scans acquired from both healthy and glaucomatous eyes of 40 subjects without 



spurious results under visual inspection. The results indicate that the RNFLT map gives a 
highly reproducible evaluation of a larger retina area compared with the last-generation time 
domain StratusOCT. 

 

Fig. 5. The benefit of segmentation in 3D space. (a) a B-scan with a segment of RNFL with an 
indistinct posterior boundary. The region with an indistinct posterior RNFL boundary is 
denoted by a white arrow in the image. (b, c) the RNFL boundary in the B-scans adjacent to the 
one in (a) is more distinct; the location of indistinct RNFL boundary in (a) is also marked. (d) 
the locations of B-scans (a, b, c) in the image volume. (e) the segmented RPE and anterior and 
posterior RNFL boundaries in image (a) by FloatingCanvas. 

The main novelty of FloatingCanvas, compared with previous algorithms, is that it 
processes the whole volume of data in its ‘raw’ format without pre-processing, such as 
filtering or image averaging. The algorithm needs no segmentation of individual B-scans so 
that it benefits from the fact that the covariance among neighbouring B-scans helps to make 
the analytical surface deformation robust to local noise or errors in individual B-scans. To 
illustrate the benefit of the volume segmentation, an individual B-scan with local low contrast 
is shown in Fig. 5(a). Although this image volume has good overall image quality (image 
quality score >60 in RTVue system), a part of the posterior RNFL boundary in this B-scan is 

not well defined due to the low contrast in the region marked by the white arrow in Fig. 5(a). 
Segmentation of the indistinct posterior RNFL boundary in this region would pose problems 
even for expert clinicians and B-scan-based segmentation algorithms would give spurious 
results in this case. However, this potential source of segmentation error can be resolved by 
taking into account of the neighbouring B-scans. Fig. 5(b), Fig. 5(c) show the B-scans 
adjacent to the one in Fig. 5(a). The locations of these three B-scans in the image volume are 
shown in Fig. 5(d). The adjacent B-scans have a more distinct posterior RNFL boundary in 
the region where it is indistinct in Fig. 5(a). The covariance among B-scans modelled by the 

GP model in FloatingCanvas can ‘borrow’ the information from the neighbouring B-scans to 



aid the segmentation in a local area. Therefore, the posterior RNFL boundary in Fig. 5(a) can 
be correctly identified by the algorithm [Fig. 5(e)] even if the information is incomplete in this 
individual B-scan. 

Furthermore, FloatingCanvas is computationally efficient as a segmentation algorithm in 
3D space. There are two computationally intensive components in the algorithm: 1) the matrix 

inversion involved in the calculation of the projection matrix 
†

Λ  in Eq. (7). The time 

complexity of matrix inversion scales as ( )3O n  given the number of skeleton points n . 

However, the projection matrix 
†

Λ  is not changed during the deformation of an analytical 
surface and thus only need to be computed once before the loop of the deformation. 

Practically, 
†

Λ  can be pre-computed before the algorithm and loaded into memory when it is 

needed because the 
†

Λ  matrix is decided only by the skeleton point interval and length-scale 

l  which are all fixed parameters in the algorithm. This costs nearly no time on a modern 

computing platform; 2) the matrix multiplication and addition in Eq. (7). The right part of Eq. 

(7) has to be evaluated at every iteration of the deformation. However, matrix multiplication 
and addition are all low cost computational operations and can thus be implemented 
efficiently. Therefore, FloatingCanvas has a lower order polynomial computational 
complexity that is as efficient as the 3D graph search approach [28]. Garvin et al [23] and 
Quellec et al [24] have demonstrated that by using improved implementation, the execution 
time of the 3D graph search algorithm was significantly reduced compared with their original 
implementation [22]. Similarly, the current Matlab implementation of FloatingCanvas is 
relatively slow due to the nature of this interpreted programming language and the lack of the 

implementation optimisations, but the computational efficiency would be significantly 
improved if it is implemented using C/C++ programming language, multi-threading 
techniques together with the optimisation using higher order gradient information during the 
search. 

FloatingCanvas was applied on the SD-OCT scan centred on the ONH which is designed 
for the assessment of the RNFLT and the optic disc; these are the standard and important 
examinations for the management of glaucoma. Therefore, the algorithm removed other intra-
retinal boundaries by applying the constraints in Eq. (14) to allow for the direct search of the 

posterior RNFL. The study of FloatingCanvas for segmentation of macula scans with more 
intra-retinal boundaries is part of our ongoing work. To search the intra-retina layers, the 
parameters in FloatingCanvas were altered such that the gravity force became dynamic and 
was decided by the gradient profile that analytical surfaces pass through during the search. 

Overall, FloatingCanvas provides a robust and efficient delineation and evaluation of 
RNFL and RPE structures around the ONH. It can be a useful tool for clinically interpreting 
SD-OCT volumes for glaucoma diagnosis. The reproducible results can potentially be used 
for monitoring RNFLT changes in longitudinal studies. The larger scan area also improves the 

chance of achieving a stronger relationship of RNFLT measurements with visual function. 
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