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Abstract Retinal vessel tree extraction is a crucial step for analyzing the 
microcirculation, a frequently needed process in the study of relevant diseases. 
To date this has normally been done by using 2D image capture paradigms,

offering a restricted visualization of the real layout of the retinal vasculature.

In this work, we propose a new approach that automatically segments and
reconstructs the 3D retinal vessel tree by combining near-infrared reflectance
retinography information with Optical Coherence Tomography (OCT) sec-
tions. Our proposal identifies the vessels, estimates their calibers and obtains
the depth at all the positions of the entire vessel tree, thereby enabling the re-
construction of the 3D layout of the complete arteriovenous tree for subsequent
analysis.

The method was tested using 991 OCT images combined with their cor-
responding near-infrared reflectance retinography. The different stages of the
methodology were validated using the opinion of an expert as a reference. The
tests offered accurate results, showing coherent reconstructions of the 3D vas-
culature that can be analyzed in the diagnosis of relevant diseases affecting
the retinal microcirculation, such as hypertension or diabetes, among others.
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1 Introduction

The analysis of the retina is frequently used in many relevant diagnostic proce-
dures as useful information can be obtained for diseases such as hypertension
or diabetes. Computer-aided diagnosis (CAD) systems can thus be of the ut-
most importance in assisting clinicians in the different diagnostic processes,
facilitating and simplifying their work.

The retinal vessel tree is one of the most widely examined structures as it
represents the most direct and least invasive way to observe the human circu-
latory system. Hence, analysis of the retinal vasculature has proved extremely
useful due to its relation with a number of pathologies. In this regard, some
works have stated that retinal vasculature calibers are a significant biomarker
for diabetes [16,23]. Smith et al. [29] also identified retinal vasculature caliber
as a relevant sign in the analysis of hypertension as small vessel changes can
anticipate the presence of severe hypertension. Other studies [26,7] have also
defined calculations on the microcirculation of the retina as possible indices
for cerebrovascular disease as well as for other cardiovascular illness events
related to retinal vasculature calibers [32,35]. The retinal vasculature has also
demonstrated its usefulness in other problems as is the case, for example, in
biometrics, where vessel intersections are used in a similar manner to finger-
prints [25].

The most widely-used image modalities in this respect are angiography
and retinography, which give a 2D representation of the real layout of the eye
fundus. Most of the proposals in the literature were made using these image
modalities, providing only a partial representation of the vessel tree. Some
surveys have described the various proposals that have been put forward in the
matter [12], and representative examples of the principal paradigms employed
will now be described.

Thresholding is one of the methodologies used in the problem, as in the
works of Zhang et al. [43] or Yong et al. [42] where adaptive thresholds were de-
signed in processes that aimed for the localization and segmentation of the ves-
sels. Xiaoyi and Mojon [38] designed a sophisticated framework that includes
adaptive local thresholding in an approach combining hypothetical thresholds
and a posterior verification step.

Tracking approaches have also been implemented, as in the work of Wink et
al. [34], who designed a semi-automatic method that starts from a set of user-
defined points in the image and retrieves the central axis of tubular structures.
For that purpose, a vectorial multiscale feature image was included for wave
front propagation, a process that adapts perfectly to the problem of multiscale
vessels. Mendonça and Campilho [21] presented a methodology that combines
the extraction of the centerline of the vasculature with the subsequent appli-
cation of region growing to construct the final vessel segmentation. Lazar and
Hajdu [18] implemented a region growing process that integrates a hysteresis
thresholding scheme including the response vector similarity of adjacent pixels.

Different edge detector approaches have also been used to deal with the is-
sue, including specific improvements since they normally present certain draw-
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backs in the detection of vessels in noisy scenes or blurred contours. Dhar et al.
[8] studied the robustness of the Canny and Laplacian of Gaussian detectors,
demonstrating that the Canny filter offers a more stable behavior in a variety
of image conditions. Xiaolin et al. [37] modified Canny with a bilateral filter
to remove noisy artifacts and facilitate vessel detection.

As in many other medical imaging procedures, Wavelet transform has
shown its potential in this particular application, as demonstrated in the pro-
posal by Fathi et al. [10], which provided satisfactory results integrating the
information over multiple classification scales. Nayak et al. [22] also employed
the Wavelet transform for the purpose of vessel identification in a context
of patients that presented diabetic retinopathy. Soares et al. [30] designed a
methodology that used a 2D Gabor Wavelet over multiple scales as the feature
for a classification process with a Bayesian classifier.

Chen et al. [4] used graph-cuts in an unsupervised approach to identify the
vessels, as did Xu et al. [40], where vessel width is derived in a segmentation
process using a graph-theoretic method.

Of all the strategies employed, Artificial Neural Networks (ANNs) is one
of the most widely referenced in many different medical imaging procedures,
as they usually provide correct results in largely complex problems. ANNs
appear frequently in the ophthalmological research field, as in the work by
Sinthanayothin et al. [28], where neural networks extract the main structures
of the eye fundus such as the optic disc, the fovea or the blood vessels. Li
et al. [19] approached the problem as a modality data transform, using a
neural network that discriminates vessel pixels in the image. In the work of
Alonso-Montes et al. [1], the proposed method included a Convolutional Neural
Network (CNN) with the aim of optimizing vascular tree extraction in order
to meet real-time requirements. Jiang et al. [15] used ANNs characterizing the
pixels with a 8-D vector composed of intensity descriptors and pixel strength
features and subsequently trained the network to achieve the segmentation.
Vega et al. [33] developed an elaborate network they refer to as a Lattice
Neural Network with Dendritic Processing (LNNDP) to extract the vessels
with successful results. Other classifiers were also considered, such as random
forest in the work by Cheng et al. [5], where the authors defined a large and
heterogeneous set of features combined with the above-mentioned classifier.

Approaches that exploit different kinds of pattern analysis have also ap-
peared in the literature. Staal et al. [31] searched for ridges to detect the lines
which match with vessel centerlines. The line elements are then partitioned in
patches to extract features and perform the final vessel detection using a K-NN
classifier. Kovacs and Hajdu [17] designed a process of template matching us-
ing generalized Gabor function-based templates to detect the centerlines and
subsequently applying a reconstruction step to obtain the final segmentation.
Chakraborti et al. [3] implemented a self-adaptive matched filter combining
vesselness filtering with a high degree of sensitivity for the detection of ves-
sels in retinographies. Yin et al. [41] constructed an orientation aware-detector
based on the principle that the vessels are locally oriented and have linearly
elongated structures. Imani et al. [14] used a morphological component analy-
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sis (MCA) algorithm in a method that overcomes the difficulties of the problem
in retinographies with lesions, facilitating the discrimination between vessels
and lesions.

More recently, Optical Coherence Tomography Angiography (OCTA) has
emerged as an image modality that uses the spectral domain for a non-invasive
visualization of the retinal and choroidal vasculature [6]. The use of OCTA is
not yet widespread in health services due to its recent appearance and the
high cost of acquiring this type of technology.

Optical Coherence Tomography (OCT) imaging is widely used in clinical
services. It offers additional depth information instead of the classical 2D lay-
outs provided by angiographies and retinographies. This information is crucial
for obtaining the real 3D layout of the retinal vessels and enabling clinicians to
perform an analysis that comes closer to reality. Only a small number of works
have appeared that use OCT images to deal with the issue of vasculature seg-
mentation. Moreover, these few proposals consist of limited methodologies that
still offer 2D representations of the retinal vasculature. In this regard, Niemei-
jer et al. [24] presented an approach that segments the retina in multiple layers
with the vessel projections and performs a classification stage in the projected
image to extract the vessels. Xu et al. [39] implemented a 3D boosting learn-
ing to detect the vessels, after which the method applies a post-processing
to remove false positive detections. In the work of Pilch et al. [27] statistical
shape models were considered with manually segmented vessels. This vessel
set was then used for a subsequent training stage. Once trained, the resulting
model is used to identify the final contours of the vessels in the axial direction.
Guimaraes et al. [13], in a study of abnormal retinal vascular patterns, identi-
fied the vessel depths at all the positions using the OCT images. In the work
of Wu et al. [36] Coherent Point Drift was included in an approach for the
segmentation of the vessel points. These points are established as landmarks
in a context of image registration.

In such a context, this work presents a complete methodology for 3D ex-
traction of the retinal vessel tree and its 3D reconstruction using OCT images.
Hence, a more complete vasculature representation permits a more reliable
analysis of the retinal microcirculation that is needed in many diagnostic pro-
cesses.

This paper is organized as follows. Section 2 presents the proposed method-
ology and the characteristics of all the stages. Section 3 presents some practical
results and the validation of key steps of the proposal, compared to the manual
annotations of a clinician. Finally, Sections 4 and 5 include the discussion and
conclusions of this proposal as well as possible future work.

2 Methods

The proposed method receives, as input, a set of OCT images. The images
correspond to consecutive OCT sections that represents the morphology of
the retinal layers. This technique provides tomographic images of the biologi-
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Fig. 1 Set of OCT sections in combination with the near-infrared reflectance retinography.

cal tissue with high resolution in progressive scans over the eye fundus of the
patient. These images are complemented with the corresponding near-infrared
reflectance retinography that is provided in combination with the OCT sec-
tions. Both sources of information, the consecutive OCT sections and the
corresponding near-infrared retinography, are directly provided by the cap-
ture machine. Figure 1 illustrates an OCT scan composed of the near-infrared
reflectance retinography and the consecutive OCT sections.

The method is organized in a set of progressive stages. Firstly, the arte-
riovenous tree is extracted in the near-infrared reflectance retinography, con-
structing the set of segments that represents the vessels and correcting all the
detected misrepresentations at the intersections. Subsequently, diameters over
the detected points are calculated. The vessel segments are then mapped in
the input OCT sections with the aim of identifying the depth, z, coordinates.
The 3D segmentation is finally constructed with the obtained coordinates.
For this purpose an interpolation using splines of the extracted vasculature is
calculated to provide a smooth representation. Figure 2 describes the general
scheme of the proposed methodology, each stage of which will be detailed in
the following subsections.

2.1 2D vessel extraction

The vessels are initially segmented in the near-infrared reflectance retinog-
raphy to obtain the first (x, y) coordinates, given its simplicity and well-
established techniques. We used an approach that involves different morpho-
logical operators [2] to obtain an initial representation of the vessels. The
segmentation process is performed in two main stages: vascular structure en-
hancement and extraction of the arteriovenous tree.

Firstly, a top-hat filter [9] is used to enhance the biggest and darkest struc-
tures in the image, corresponding to the vessels. Then, the noise and vascular
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Fig. 2 Scheme of the proposed methodology.

reflex is minimized with a median filter, thus facilitating the extraction of a
more precise segmentation.

Vessel enhancement is done using the eigenvalues, λ1 and λ2, of the Hessian
matrix [11], these being combined to enhance tubular structures of variable
size and therefore identify vessels at different scales. Thus, a function B(p) is
formulated as:

B(p) =

{
0 λ2 > 0

exp(
−R2

B

2β2 )(1− exp(− S2

2c2 )) otherwise
(1)

where RB = λ1/λ2, c is half of the max Hessian norm and S measures the
“second order structures”. Pixels that belong to vessels are normally repre-
sented by small λ1 values and higher positive λ2 values. This way, we reinforce
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(a) (b) (c)

Fig. 3 Segmentation process of the vessel tree. (a) Original image. (b) Result after pre-
processing, enhancement, hysteresis thresholding and cleaning of small structures. (c) Final
result after dilation step.

the robustness of the method by minimizing the influence of the input image
characteristics in the parameters of the system.

After this enhancement, vascular segmentation is achieved in two steps: an
initial segmentation and the subsequent removal of isolated structures. The
initial segmentation is done by means of a hysteresis-based thresholding. A
hard threshold (Th) obtains pixels with a high confidence of being vessels while
a weak threshold (Tw) keeps all the pixels of the tree, including the spurious
ones. The final vessel segmentation is formed by all the pixels included by
Tw that are connected to at least one pixel obtained by Th. The values for
Th and Tw are calculated from two image properties: the percentage of image
representing vessels and the percentage of image representing fundus. The gap
between both percentages will include all the non- classified pixels. The values
for the thresholds are easily derived after calculating the percentiles with:

Pk = Lk +
k(n/100)− Fk

fk
× c, k = 1, 2, ..., 99 (2)

where L−k is percentile lower limit k, n indicates the size of the set, Fk is
the accumulated frequency for k − 1, fk measures the frequency of percentile
k and c is the size of the percentile interval (1 in this case).

As the images can include noisy artifacts due to capture devices or patholo-
gies, a cleaning step is then applied. All isolated detections smaller than a given
size are removed from the results. Finally, as this strategy can produce discon-
tinuity inside the vessels, a final dilation process is applied with the result that
vessel borders grow towards the centre, filling the existing gaps. This dilation
process is done using a modified median filter. In order to avoid an erosion
when the filter is applied to the external border of the vessels, the resulting
value will only be set if it is a vessel pixel. To “fill” as many white gaps as pos-
sible the dilation process is applied iteratively, repeated N times to guarantee
the filling of the vessels. Figure 3 illustrates this vessel segmentation approach
with an example.

2D segmentation methodologies typically present cumulative errors as they
misrepresent the edges of the vessels. For that reason, their direct use for vas-
culature reconstruction is not recommended. Instead, proposals that identify
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the centerline of the vessels are desired to correct possible deviations in the
detections. Firstly, our proposal identifies the vessels as a set of segments that
identify the approximate centerlines. We used the strategy explained in [25]
where curvature level curves are used to identify the creases (crest and valley
lines) that identify the vessels. In particular, Level Set Extrinsic Curvature
(LSEC) was implemented in this work, Eq. 3, given its invariant properties.
The result of this method identifies the entire centerline of the vessels, a ker-
nel structure that is subsequently used in the 3D vessel reconstruction. Given
a function L : Rd → R, the level set for a constant l consists of the set of
points x|L(x) = l. For 2D images, L can be considered as a topographic relief
or landscape and the level sets as its level curves. Negative minima of the level
curve curvature k, level by level, form valley-like curves and positive maxima
ridge-like curves.

k = (2LxLyLxy − L2
yLxx − L2

xLyy)(L2
x + L2

y)−
3
2 (3)

where

Lα =
∂L

∂α
,Lαβ =

∂2L

∂α ∂β
, α, β ∈ x, y (4)

However, the usual discretization of LSEC is ill-defined in a number of
cases, giving rise to unexpected discontinuities at the centre of elongated ob-
jects. Due to this, the Multilocal Level Set Extrinsic Curvature with Structure
Tensor, MLSEC-ST operator, originally defined [20] for 3D landmark extrac-
tion of CT and MRI volumes, is used:

k = −div(w̄) = −
d∑
i=1

(
∂w̄i

∂xi
), d = 2; (5)

where w̄i is the component at the position i of w̄, the normalized vector
field of L : Rd → R. This last is defined by Eq. 6, where Od is the d-dimensional
zero vector.

w̄ =

{ w
‖w‖ , if ‖w‖ > 0

Od, if ‖w‖ = 0
(6)

Although the method finds the approximate centerline, it detects more
than 1-pixel width vessel segmentations as the vessels present different degrees
of creaseness over their structure. All the detected pixels are subsequently
assigned to a particular segment to guarantee that all of them only belong to
a single one. In this way we obtain a skeletonized vessel tree, organized by a set
of segments that are represented by two end points and a list of consecutive
pixels. Finally, small segments are filtered from the results considering that
these detections belongs to other noisy structures that can appear in the eye
fundus, as shown in Figures 4,(a),(b) and (c).
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(a) (b) (c)

(d) (e) (f)

Fig. 4 2D vessel tree extraction process. (a) Input retinography. (b) 2D Vessel tree segmen-
tation. (c) Skeletonized segments. (d) Detected end points. (e) Bifurcations to be corrected.
(f) Crossings to be corrected.

2.2 Intersections correction

The crease procedure presents a significant limitation due to the many prob-
lems it experiences in correctly identifying vessels at intersections. This occurs
because the method is unable to identify the crease directions in these areas, as
shown in (Figure 4, d). All these intersections are revised to correct any wrong
detection. The main objective consists of recovering, by joining segments, the
information lost in the crease extraction phase. Hence, all detected end points
are categorized as either belonging to a bifurcation, belonging to a crossing or
being correctly identified as an end.

– Bifurcations. For each end point the closest distance to any other segment
is calculated and those under a given threshold are marked for joining in
a bifurcation of a single vessel. The identified end point is connected to
this closest segment by interpolation using its own continuity. Figure 5
illustrates the situation with an example of a bifurcation and the correction
that was performed in the intersection.

– Crossings. Two end points that are significantly close to a crossing seg-
ment. When a pair of end points is within a given threshold, the continuity
between them is considered. In this case, the points are connected by in-
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Fig. 5 Example of a detected bifurcation and the corresponding correction made.

Fig. 6 Example of a detected crossing and the corresponding correction made.

terpolation and belong, as a result, to a single segment. Figure 6 presents
an example of crossing and the corresponding correction.

The end points that are neither marked as bifurcations nor crossings are
directly considered as correctly detected end points. Figures 4,(d),(e) and (f)
show an example of the process of analysis and correction of end points.

2.3 Caliber estimation

In addition to vessel coordinates, we also need to determine their calibers for
the 3D reconstruction. The orientation of a vessel at a coordinate, θ, is calcu-
lated as the angle between consecutive vessel points P1(x1, y1) and P2(x2, y2)
as:

θ = arctan

(
y2 − y1
x2 − x1

)
(7)

The caliber is then estimated in the perpendicular directions of θ, as Figure
7(a) illustrates. We analyze the initial vessel segmentation image was previ-
ously obtained by the crease method to find the width at each point. Hence,
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(a) (b)

Fig. 7 Diameter estimation. (a) Representation of the analyzed direction at each point of
a segment. (b) Example of a segment overlapping the vessel.

the method looks for the edges (limits of the vessel) in each perpendicular
direction, an easy process in a binary image. Finally, two distances, r1 and
r2, are calculated as the distance from the centerline to the edges. Their sum
indicates the final caliber at the point in question:

d = r1 + r2 (8)

Vessel caliber is searched in both directions as the detected centerlines are
not always exactly placed in the center of the vessels, as is the case of the
example shown in Figure 7(b). Therefore, the sum of both distances produces
a more accurate estimation of a vessel’s caliber.

2.4 Mapping in the OCT images

The depth position of the vessels, z, is calculated using the depth information
that is provided in the OCT sections.

In the OCT images, any structures that appear in the eye fundus, in our
case vessels, block the transmission of light and therefore leave a shadow pro-
portional to their size. Figure 8 includes an OCT image where the shadows of
several vessels are delimited.

Each OCT section corresponds to a band in the 2D retinography. The
positions of the vessels in the OCT sections are represented by the intersections
of the band and the vessel tree in the 2D retinography. These intersections
identify the columns of the band where the vessels are located, and are mapped
in their corresponding OCT sections. A search is made for intersections in the
retinography in all the bands that correspond to the OCT sections, making it
possible to identify all the columns of the OCT sections in which vessels are to
be be found. This process is repeated for all the bands in the 2D retinography
that correspond with the OCT sections. Then, a rectangle with the same size as
the calculated caliber is constructed, r1 +r2, that matches with the projection
zone, or in other words with the shadow produced by the vessel. This process
is illustrated in Figure 9.

This projection zone, delimited by the constructed rectangle, contains the
vessel location. By identifying its position we can derive the corresponding
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Fig. 8 Example of the shadow projection caused by a set of vessels.

Fig. 9 Mapping process of vessel coordinates in OCT. Identification of the projection zone.

depth z of the vessel coordinate. Figure 10 includes the location of a vessel
inside the projection zone of the OCT section.

2.5 Vessel depth estimation

The method calculates the depths, z, in 3 progressive stages:
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Fig. 10 Vessel location inside its projection zone in a OCT band.

Fig. 11 ILM and RPE layers inside the section of an OCT image.

Identification of the ILM and RPE layers. Inside the projection zone,
we can restrict the search region to the retinal layers that delimit the possible
vessel location. This search space is enclosed by the Inner Limiting Membrane
(ILM) and the Retinal Pigment Epithelium (RPE) retinal layers. Figure 11
identifies the ILM and RPE inside an OCT section of an OCT image.

Firstly, a Gaussian filtering is applied to smooth the image and remove
noise. As both ILM and RPE show the edges with the largest contrast of
all the layers, Canny edge detector is then applied to find these limits. A
horizontal gradient is used to obtain the strongest and clearest detections of
both layers. As a result, the upper and lower connected lines delimit both ILM
and RPE layers. Figure 12 includes the results of the detection of both layers.

Vessel location. The vessels appear in the OCT images as dark elliptic
areas. Therefore, we search for the darkest neighborhood between ILM and
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Fig. 12 Identification process of the ILM and RPE layers in a OCT section.

Fig. 13 Vessel detection in an OCT section inside the search region between ILM and RPE
layers.

RPE layers. The darkest point of the darkest neighborhood is marked as the
vessel center (Figure 13). To reinforce the detection, a mean filter of 3× 3 size
is previously used to remove possible noisy dark pixels and minimize the risk
of wrong detections.

Final depth estimation. Finally, the depth coordinate z is derived using
the RPE layer as baseline and calculating the distance from it to the detected
location of the vessel:

z = |Cv − Pi| (9)

where Cv measures the the vessel location in the OCT section and Pi the
baseline of the RPE layer.
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Fig. 14 Representation of a 3D tubular structure associated to a curve.

2.6 3D vasculature reconstruction

The vessels are represented by segments S, where each point Pi of a segment
S is represented by the 3D coordinates (x, y, z) and its diameter d, parame-
ters that were previously calculated. Interpolation by splines is used with the
entire set of points of S connecting them in a curve. This permits a smooth
representation to be visualized, minimizing abrupt transitions between ves-
sel coordinates of consecutive OCT sections in images with low OCT image
resolution.

The vasculature is reconstructed as tubular shapes (due to the tubular
structure of the vessels) centering on the centerline points Pi with a diameter
size equivalent to the calibers, d. Figure 14 illustrates this 3D representation
process over a curve.

3 Results

The proposed method was validated with an image dataset of 991 OCT sec-
tions from 21 patient scans. The local ethics committee approved the study
and the tenets of the Declaration of Helsinki were followed. These images were
captured with a Spectralis R© OCT confocal scanning laser ophtalmoscope from
Heidelberg Engineering. The image acquisition was done by selecting the dense
volume scan type over a scan angle of (20◦×20◦, roughly 6mm×6mm) consist-
ing of 49 B-mode scans acquired utilizing Automatic Real-Time (ART Mean)
= 16 (number of scans averaged). B-mode scans are separated by 120µm be-
tween each other and composed of 1024 A-mode scans, with a separation of
5.5µm. Each A-mode scan has 496 pixels with 3.8µm resolution. The system
acquires the images at a given frame-rate (8.8 frames/second) and with a given
bit depth (32-bits). The images, all centered on the macula, were taken from
both eyes. OCT scans centered on the macula are widely used since clinicians
employ this imaging modality to study this specific region of the eye fundus
in the context of different pathologies.
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Table 1 Results of the intersections correction process.

Correction Correction
of crossings of bifurcations

Sensitivity (%) 82.75 99.54
Specificity (%) 99.56 76.28
Accuracy (%) 94.98 92.47

MCC (%) 87.28 82.26

Given the complexity of the manual segmentation of the entire vessel tree,
we did not carry out a global analysis of the entire vasculature automatic
segmentation process. Instead, specific tests of key steps of the methodology
were performed to provide a more insightful idea of the robustness of the
defined stages.

Intersections represent one of the most difficult structures of the vascula-
ture. For that reason, we analyzed the performance of the intersections
correction process to determine the extent to which the method is capable
of correctly representing these complex vasculature regions. 87 crossings and
222 bifurcations were manually annotated by a specialist from within the im-
age dataset. Then, we analyzed whether the method identified them correctly
using the manual labeling as a reference. The metrics obtained are presented in
Table 1, including the accuracy, sensitivity, specificity and the Matthews cor-
relation coefficient (MCC). As we can see, satisfactory results were achieved.
Figure 15 includes different examples of intersections that were correctly han-
dled by the methodology. In particular, Figure 15 Row 1 includes four complex
crossings, with vessels that are significantly close to each other, including a
highly complicated case of a multiple crossing involving several vessels. Figure
15 Row 2 shows a heterogeneous set of bifurcations including a double chained
intersection and another bifurcation with a close crossing that could interfere
with the correct identification of this junction.

Another crucial stage is that of vessel caliber estimation. In order to
measure the performance of our method in this respect, we constructed a test
set with 220 random points from 24 segments , also randomly selected. Again,
a specialist annotated the diameters of the selected points to use as a reference
to test the performance of this automatic stage of the proposal. At each point,
the corresponding error is calculated as:

Error = de − dc (10)

whereas the relative error is:

Relative Error =
de − dc
de

(11)

where de is the annotated diameter and dc is the diameter resulting from
the method. Table 2 presents the errors obtained by the caliber estimation
process.
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Fig. 15 3D visualization of intersections correctly managed. Row 1: examples of crossings.
Row 2: examples of intersections.

Table 2 Errors obtained by the caliber estimation process.

Error Relative error

Global mean 0.1813 0.0438
Global standard deviation 0.3190 0.0754

Table 3 Results obtained for the vessel mapping and depth calculation stages of the
methodology.

Vessel Depth
mapping in OCT calculation

Correctly processed 1,168 1,433
Test set size 1,348 1,561

Success rate (%) 86.64 91.80

The next step is vessel mapping in the OCT sections. We conducted
another experiment to quantitatively validate the vessel mapping process. A
set of 1,348 mapped points randomly taken from the entire image dataset was
selected for validation. In this case, a success is considered to be where a point
is mapped by the method within the annotated projection zone. The results,
shown in Table 3, indicate an accuracy of over 86%. Figure 16 shows four
successful mapping examples including the corresponding projection zones in
the OCT sections.

A further test was designed to validate the robustness of the depth esti-
mation. An expert clinician segmented the vessels in the OCT images, con-
structing a set of 1,561 annotated vessel points that were randomly selected.
The gold standard establishes that a success is considered to be when the lo-
cation result falls inside the manual segmentation. As presented in Table 1,
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(a) (b)

Fig. 16 Vessel mapping in the OCT sections. (a) Near-infrared reflectance retinography
with the intersection of vessels at the band of an OCT section. (b) Identification of the
projection zone of a mapped vessel point.

a success rate of 91.80% was obtained, demonstrating the robustness of the
proposal. Figure 17 presents eight examples of correct vessel identifications
inside the projection zones.

Figure 18 includes three examples of final 3D reconstructions. They illus-
trate the potential of the 3D extraction and reconstruction of the arteriove-
nous tree with respect to classical 2D segmentations for further analysis and
diagnostic processes. In general terms, and in the opinion of the experts, the
method offers correct and promising results, providing an innovative 3D vas-
culature view that constitutes a better representation of the real layout of the
vessels than that given by classical 2D representations.
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Fig. 17 Examples of correct vessel depth identifications. Row 1: vessels to be located. Row
2: obtained detections.

4 Discussion

The identification of the vasculature in the near-infrared reflectance retinog-
raphy guarantees the use of a robust and proven methodology to identify the
locations of the vessels, even in the case of the identification of small ves-
sels, a typical situation in the macular region. This way, we only map the
vascular profiles in the OCT sections and calculate their depth, using the spa-
tial coordinates and their caliber. The support of the near-infrared reflectance
retinography, provided directly by the capture machine in combination with
the OCT sections, greatly facilitates this work, with only those areas in the
sections that belong to real vessels being analyzed.

This methodology takes OCT images focused on macula as its input. The
macular region includes the smallest and most tenuous vasculature of the
retina, and for this reason we consider that the tests were carried out in one
of the most complex scenarios available. In other areas the vessels are thicker
and more visible, presenting a higher contrast that facilitates their detection.

The method was tested under a set of images that were captured from
healthy individuals and patients presenting diabetic retinopathy or hyperten-
sion, proving the capability of the method to identify the vasculature under a
large variability of conditions. These conditions may produce changes mainly
in the vascular calibers (thickening, narrowing or appearance of small protu-
berances) or in the vascular structure (increased tortuosity or neovasculariza-
tion). These changes do not alter the vessel visualization in the retinography
as well as the shadow projection in the OCT sections. In addition, the three-
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Fig. 18 Final 3D reconstructions of the vessel tree. 1st column: original images. 2nd column:
final 3D reconstructions.

dimensional visualization of the real layout of the vasculature that this method
provides facilitates the analysis and identification of these changes.

As no other complete 3D methods have been published to date we are
unable to perform any kind of comparison with other proven approaches. In-
stead, we used the opinion of expert clinicians to identify the relevant stages
of the method and test its performance, validating its accuracy as compared
to manual annotations by the experts at key stages of the methodology.
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(a) (b) (c)

Fig. 19 Examples of intersections incorrectly managed. 1st row, bifurcation. 2nd row, cross-
ing. (a) Vessel detection before intersection correction. (b) Corrected vasculature. (c) Desired
result.

Most of the errors came from complex intersections more often than not
involving more than two segments. Examples of this can be found in Figure
19, where two intersections that were not correctly included are presented.
The columns represent the original vessel detection, the final results of the
method and the desired results, respectively. In the case of Figure 19 Row
1, as we can see from the desired result, the analyzed region belongs to a
junction of 3 different vessels. Two of them constitute an intersection but the
third belongs to the end of a vessel, with no real final connection. However,
given the proximity of this end point, the method interprets that another
intersection exists. Figure 19 Row 2 shows a particular case where the method
interprets two different bifurcations instead of a crossing.

Normally, methodologies for retinal vasculature identification omit tiny
vessels in the image. In the case of our method, we consider it important to
mention the high rate of detection of vessels appearing in the macular region, a
region of the eye fundus where vessels are smaller than in the rest of the retina.
The errors in caliber estimation are presented in Table 2. Given the complexity
of the images, with a significant noise level and blurred vessel contours, it is
often highly complicated to exactly detect the limits. For this reason, a relative
error rate in the estimation of vasculature calibers of about only 4% can be
considered to be more than acceptable.

Figure 20 includes two incorrect mapping examples. Most of the failures
tend to occur when the detected vessel is elongated in parallel to the band
of the OCT sections. In these cases, the method is not capable of correctly
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(a) (b)

Fig. 20 Examples of incorrect vessel mappings in the corresponding OCT sections. (a)
Near-infrared reflectance retinography with the intersection of vessels at the band of a OCT
section. (b) Identification of the projection zone of a mapped vessel point.

matching the exact point of the intersection. This situation could be minimized
through the use of higher resolutions, which could help to discriminate the
exact intersection points. Alternatively, OCT sections in the perpendicular
direction or radial directions, as provided by some capture machines, could
also help to minimize these errors.

We also present a number of incorrect detections in the vessel location
phase, as shown in Figure 21. In this case, although the method finds the
darkest spot between the ILM and RPE layers, it belongs to noisy artifacts
or overlapping vessels, not to the target vessel. Incorrect detections are on the
whole mainly due to: (1) noisy artifacts or vessels that are too close to and
appear in the same region of the OCT section as the target vessel position; (2)
alterations of a particular layer producing dark regions that can be confused
with a vessel; and (3) the impossibility of detecting the dark spot of a vessel.
In the latter case, this is because vessels are at times located in parallel to the
OCT section, and thus do not produce the typical dark spot that identifies a
vessel.

5 Conclusions

This work presents a new fully automatic methodology to obtain the 3D seg-
mentation and reconstruction of the retinal arteriovenous tree using OCT im-
ages. A 3D representation offers a more complete set of information for the
analysis of the retinal microcirculation, in contrast to the 2D visualizations of
classical retinographies, enabling more accurate analysis and diagnosis in dif-
ferent clinical procedures. Vessel tree analysis is crucial for the early diagnosis
of several relevant diseases such as nicking (AV nicking) or retinal vascular
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Fig. 21 Examples of wrong vessel depth identifications. 1st column, vessels to locate. 2nd

column, results: red circle, the obtained vessel location: green circle, real vessel location.

tortuosity. AV nicking is the situation where a small arteriole is swollen or di-
lated and crosses over a vein compressing it and is a highly relevant indicator
in prevalent conditions that alter the caliber of vessels. For its part, retinal
vascular tortuosity indicates the degree of elongation or bending of the retinal
vasculature. Both are signs of hypertension, arteriosclerosis or other vascular
conditions and a 3D representation of the vessels can lead to more accurate
identifications and measurements of both indicators.

The proposed method covers the entire automatic segmentation process:
initial 2D vasculature identification, caliber estimation and mapping in the
OCT images to calculate the depth coordinates. Finally, the method uses the
resulting (x, y, z) vasculature coordinate set combined with their calibers d
to reconstruct the entire vessel tree. The proposed approach was validated
with 21 patient scans summing an image dataset of 991 OCT sections with
their corresponding near-infrared reflectance retinographies. Key stages of the
methodology were tested, providing coherent and promising results.

In future works, we plan to analyze and improve the different stages to
achieve higher success rates. Automatic artery and vein classification is also
planned for inclusion, adding valuable information to retinal microcirculation
analysis in any diagnostic process. Images with perpendicular or radial sections
will also be tested with the aiming of reducing the limitation of the method
in its application in the same direction, in all cases. In addition, further vali-
dations will be made in the other areas of the retina, to confirm the accuracy
of the proposal with bigger and cleaner vessels. Despite the difficulties, we
will also inspect new methods to extract the vascular structure directly in
the OCT sections, using only these images for the whole 3D reconstruction
process and thereby avoiding the multimodality dependence of near-infrared
reflectance retinography. The identification of the three-dimensional structure
or the retinal vasculature could serve as input in posterior clinical studies that
may involve the calculation and analysis of different measurements, as tortuos-
ity or the arterio-venular-ratio. These measurements were typically calculated
in two dimensions, mainly in the analysis of classical retinographies. Extension
to three dimensions could be achieved using the real layout of the vasculature
that may lead to more precise analysis and diagnosis.
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