2,645 research outputs found

    Automated Federation Of Virtual Organization In Grid Using Select, Match, Negotiate And Expand (SMNE) Protocol [QA76.9.C58 C518 2008 f rb].

    Get PDF
    Sekelompok sumber perkomputeran yang teragih dan berlainan jenis dalam persekitaran grid akan membentuk organisasi maya dan berkongsi sumber komputer. A group of distributed and heterogeneous resources in a grid environment may form a Virtual Organization (VO) to enable resource sharing

    Autonomous Agents for Business Process Management

    No full text
    Traditional approaches to managing business processes are often inadequate for large-scale organisation-wide, dynamic settings. However, since Internet and Intranet technologies have become widespread, an increasing number of business processes exhibit these properties. Therefore, a new approach is needed. To this end, we describe the motivation, conceptualization, design, and implementation of a novel agent-based business process management system. The key advance of our system is that responsibility for enacting various components of the business process is delegated to a number of autonomous problem solving agents. To enact their role, these agents typically interact and negotiate with other agents in order to coordinate their actions and to buy in the services they require. This approach leads to a system that is significantly more agile and robust than its traditional counterparts. To help demonstrate these benefits, a companion paper describes the application of our system to a real-world problem faced by British Telecom

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Cloud provider capacity augmentation through automated resource bartering

    Get PDF
    © 2017 Elsevier B.V. Growing interest in Cloud Computing places a heavy workload on cloud providers which is becoming increasingly difficult for them to manage with their primary data centre infrastructures. Resource scarcity can make providers vulnerable to significant reputational damage and it often forces customers to select services from the larger, more established companies, sometimes at a higher price. Funding limitations, however, commonly prevent emerging and even established providers from making a continual investment in hardware speculatively assuming a certain level of growth in demand. As an alternative, they may opt to use the current inter-cloud resource sharing systems which mainly rely on monetary payments and thus put pressure on already stretched cash flows. To address such issues, a new multi-agent based Cloud Resource Bartering System (CRBS) is implemented in this work that fosters the management and bartering of pooled resources without requiring costly financial transactions between IAAS cloud providers. Agents in CRBS collaborate to facilitate bartering among providers which not only strengthens their trading relationships but also enables them to handle surges in demand with their primary setup. Unlike existing systems, CRBS assigns resources by considering resource urgency which comparatively improves customers’ satisfaction and the resource utilization rate by more than 50%. The evaluation results verify that our system assists providers to timely acquire the additional resources and to maintain sustainable service delivery. We conclude that the existence of such a system is economically beneficial for cloud providers and enables them to adapt to fluctuating workloads

    Multi-Criteria Service Selection Agent for Federated Cloud

    Get PDF
    Federated cloud interconnects small and medium-sized cloud service providers for service enhancement to meet demand spikes. The service bartering technique in the federated cloud enables service providers to exchange their services. Selecting an optimal service provider to share services is challenging in the cloud federation. Agent-based and Reciprocal Resource Fairness (RRF) based models are used in the federated cloud for service selection. The agent-based model selects the best service provider using Quality of Service (quality of service). RRF model chooses fair service providers based on service providers\u27 previous service contribution to the federation. However, the models mentioned above fail to address free rider and poor performer problems during the service provider selection process. To solve the above issue, we propose a Multi-criteria Service Selection (MCSS) algorithm for effectively selecting a service provider using quality of service, Performance-Cost Ratio (PCR), and RRF. Comprehensive case studies are conducted to prove the effectiveness of the proposed algorithm. Extensive simulation experiments are conducted to compare the proposed algorithm performance with the existing algorithm. The evaluation results demonstrated that MCSS provides 10% more services selection efficiency than Cloud Resource Bartering System (CRBS) and provides 16% more service selection efficiency than RPF

    Sla Management in a Collaborative Network Of Federated Clouds: The Cloudland

    Get PDF
    Cloud services have always promised to be available, flexible, and speedy. However, not a single Cloud provider can deliver such promises to their distinctly demanding customers. Cloud providers have a constrained geographical presence, and are willing to invest in infrastructure only when it is profitable to them. Cloud federation is a concept that collectively combines segregated Cloud services to create an extended pool of resources for Clouds to competently deliver their promised level of services. This dissertation is concerned with studying the governing aspects related to the federation of Clouds through collaborative networking. The main objective of this dissertation is to define a framework for a Cloud network that considers balancing the trade-offs among customers’ various quality of service (QoS) requirements, as well as providers\u27 resources utilization. We propose a network of federated Clouds, CloudLend, that creates a platform for Cloud providers to collaborate, and for customers to expand their service selections. We also define and specify a service level agreement (SLA) management model in order to govern and administer the relationships established between different Cloud services in CloudLend. We define a multi-level SLA specification model to annotate and describe QoS terms, in addition to a game theory-based automated SLA negotiation model that supports both customers and providers in negotiating SLA terms, and guiding them towards signing a contract. We also define an adaptive agent-based SLA monitoring model which identifies the root causes of SLA violations, and impartially distributes any updates and changes in established SLAs to all relevant entities. Formal verification proved that our proposed framework assures customers with maximum optimized guarantees to their QoS requirements, in addition to supporting Cloud providers to make informed resource utilization decisions. Additionally, simulation results demonstrate the effectiveness of our SLA management model. Our proposed Cloud Lend network and its SLA management model paves the way to resource sharing among different Cloud providers, which allows for the providers’ lock-in constraints to be broken, allowing effortless migration of customers’ applications across different providers whenever is needed

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs
    corecore