
AN ALGORITHM FOR TRADING GRID RESOURCES IN A
VIRTUAL MARKETPLACE

BENJAMIN AZIZ∗

Abstract. This paper presents an algorithm for trading resources in Grids. Resource description
includes main technical attributes of a resource, such as processing power, memory capacity, etc., as
well as a price. Trading is performed in a marketplace where providers’ resources are matched with
consumers’ demand by means of auction mechanisms. The matching algorithm follows a strategy
where a consumer’s demand is matched with providers meeting the technical requirement and the
price closest to the one offered by the consumer.

Key words. Trading algorithms, Virtual Marketplace, Grid, Scheduling

1. Introduction. All the advantages provided by utility computing, grid com-
puting and virtualization do not only enable the execution of computationally inten-
sive, scientific applications but also allow commercial customers to use the power of
such a Grid to exectute their applications quickly, effectively and efficiently. However,
there are many different kinds of users such as SMEs, large enterprises, academia, etc.,
distinguishing themselves in the amount of budget, urgency of their application, and
quality of service expectations. For example, users who require the termination of the
execution of their application within specific period of time, are willing to pay a higher
price than other users. There exists a wide variety of related market systems which
are based on fixed prices, bartering, negotiations or auction models for leasing Grid
contracts. These systems include GridEcon [1], SORMA [15], BREIN [7], BEinGRID
[19], Edutain@Grid [6] and GRIA [21]. However, very few efforts have been made to
fully specify the design of a market that is tailored for the Grid resources and services.

A Virtual Marketplace of Resources (VMR) is a marketplace, which comprises all
the functionality for leasing of computational services for a time period so as to use
Grid resources effectively and efficiently. A VMR allocates Grid resources according to
their specifications to applications as a means of meeting performance goals described
by the application provider to the available resources. The VMR system architecture
we consider here was developed earlier in the context of project XtreemOS [23].

The main contribution of this paper is to introduce a marketplace trading al-
gorithm that facilitates the commercialisation of Grid resources, where a provider
is capable of listing the Grid resources, and buyers demand the required comput-
ing resources for their applications on the basis of utility (e.g. price/number of re-
sources/time). The VMR algorithm offers a public Internet market that would be
open to registered users to buy and sell computing resources. The ability to utilize
remote Grid computing platforms frees both the provider and the buyer from the
need to own or acquire the necessary computational infrastructure. Furthemore, the
marketplace system will provide an infrastructure that will allow end-users not only
to consume but also to sell services and resources on the Grid. Therefore, creating
a new economy in which all users can actively participate. VMR offers a solution
to both the high cost of ownership and the fluctuating usage patterns of computing
capacity.

The VMR system facilitates the creation of self-governing collections of providers
and buyers that make resource allocation decisions strictly based on current price/resource

∗School of Computing, University of Portsmouth, Portsmouth PO1 3HE, United King-
dom(benjamin.aziz@port.ac.uk).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29583648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 B. AZIZ

availability. Providers and buyers act autonomously to improve their own standing in
a market. The price and resource specifications mentioned by the provider/buyer are
their own choice and can adapt any strategy/technique as conditions change. Buyers
usually want to pay the least amount possible for the resources needed to execute
their application. Providers, on the other hand, wish to generate greater and greater
revenue and larger profits from their offered resources.

VRM considers a fixed price approach instead of performance management ap-
proaches based on Service Level Agreements (SLAs) and utilization. Once the match
has been allocated between a resource and and application, the published price has
to be paid by the buyer to the provider after the execution of the application. Once
the payment has been made the result of the execution is sent to the buyer.

This paper is organised as follows: Section 2 presents the computing resource
exchange related work. In Section 3, we give an abstract view of the VMR solution.
Section 4 mentions how the demands and offers are be described and when the trading
algorithm is being activated. Section 5 describes the trading algorithm, and Section 6
explains how the trading algorithm is being executed with the help of an example,
and finally, Section 7 concludes the paper giving directions for future work.

2. Related work. Several research systems [3] have explored the use of differ-
ent economic models for trading resources to manage resources in different application
domains: CPU cycles, storage space, database query processing, and distributed com-
puting. Despite the fact that there are a few commercial providers of utility computing
(e.g. Amazon [18], HP [10], IBM [9], Google [8], Sun [20]), these providers (being
commercial) offer their resources at a relatively expensive cost. If compute resource
users (providers and buyers) accept and trust the computing resource exchange for
executing their trades, it will increase the supply of computing resources in the mar-
ket. Consequently, computing resources price will decrease and become affordable to
a low budget enterprises. Two open source systems SORMA [14] and GridEcon [1]
have been developed in order to attract customers to computing resource exchanges.

SORMA [15] uses self-organizing resource management system to develop meth-
ods and tools for an efficient market-based allocation of resources. SORMA provides a
flexible market infrastructure, which can access resources over different virtualisation
platforms and enable different resource managers to plug in the market. SORMA fol-
lows the bottom up strategy, means it first define the market mechanisms for trading
the resources and then design the appropriate middleware components for broker-
ing, accounting, and charging. SORMA is being developed to offer the possibility of
loosely integrating emerging Grid markets.

On the other hand, GridEcon [2] provides computing resource exchange for com-
moditised computing resoruces by offering a set of services that could help new users
to accept the computing resource exchange concept. GridEcon is a computational
resource auctioning system built upon a bid matching algorithm. Offers submitted
by the resoruce buyers and providers are matched to execute the application on the
cheapest available resource. GridEcon follows the top down strategy, means it first
identify the kind of higher-level goods that applications would like to obtain in a
commercial Grid environment and then defines the appropriate business model.

While SORMA focuses on the openness of decentralised complex service markets
and GridEcon addresses an exchange for basic Computing resources, VMR is a com-
pliment to these systems as VMR is an auctioning system that provides decentralised
computing resource exchange to access resources over different platforms. VMR is
independent of any underlying Grid middleware of the platform. VMR matches de-

A Trading Algorithm for a Virtual Marketplace of Grid Resources 3

mands and offers and executes them against each other only after verifying the terms
and conditions defined by the users.

Other more recent works have also addressed the problem of establishing a mar-
ketplace of Grid/Cloud resources. For example, in the Polish Agents in Grid (AiG)
project [22], software agents are used to provide a meta-level Grid middleware where
economic models can be established based on Service Level Agreement (SLA) repre-
sentations of the Grid resources and clients. In this middleware, owners can make
their resources available and clients can commission those resources for the execution
of jobs, after SLAs of both sides are negotiated.

In [24], the authors propose also a multi-agent system for carrying out automated
negotiations in any service-oriented environment including Grids. Similarly, in [11],
the authors use the cost of electrical power as the unit of cost in a model of scheduling
they propose for environments of distributed servers. This approach provides a more
concrete realisation of the concept of cost than in our case and the case of other
models.

Business-oriented large-scale systems, such as Clouds, have also adopted SLA-
based trades. These include for example OPTIMIS [16], mOSAIC [13] and Cloud4SOA
[4]. In this paper however, we stay within the scope of marketplace research carried
out in the context of Grid system.

3. The Concept of a Virtual Market Place. At its heart, a VMR facilitates
the commercialization of Grid resources on-demand through a virtual marketplace of
computational resources, where a seller is capable of listing the Grid resources, and
buyers can ask/bid dynamically for required computing resources for their applica-
tions. VMRs assume that resources are available in Grids based on various technolo-
gies (e.g. Globus-based, gLite-based Grids etc.). One such VMR was developed within
the scope of project XtreemOS [5, 12]. XtreemOS aimed at building a Grid-based
distributed operating system that provided a single abstraction of physical hardware
and software services offered by a collection of standalone Linux operating systems to
users within a Grid.

Such VMR system aims at providing a computational resources auctioning system
built upon a dynamic bid matching algorithm tailored specifically for the trading of
computing power. It helps both consumers and providers of computational resources
to use the resources efficiently so as to maximize the economical benefits and minimize
the idle time for them. The XtreemOS VMR was developed to integrate into a single
framework three key features:

• Interoperability is achieved by using a standard programmable interface, the
Simple API for Grid Application (SAGA) [17], to bridge the gap between
existing Grid middleware and application level needs. The same system could
run on any Grid platform (e.g. XtreemOS, gLite etc.), or interoperate on
Grids using resources from other platforms.

• Cost saving for end users is guaranteed by allocating the applications to the
more economical resource(s), following policies defined by the end users.

• Dynamic scheduling is achieved through the virtual marketplace, which imple-
ments scheduling and trading algorithms that allocates applications following
classical performance parameter as well as the cost of resource usage.

Figure 3.1 (originally from [23]) illustrates a logical layered architecture of the
virtual marketplace defined in XtreemOS. This architecture represents the entities and
their dependency to other entities, where the flow of information or control is depicted
by arrows. An arrow from an entity X to an entity Y means that X sends information

4 B. AZIZ

Fig. 3.1. Abstract view of VMR [23].

to Y or passes control to Y. Our system offers the mechanisms for deploying and
executing the application (e.g. automatic deployment, execution monitoring, and
hardware resource discovery) for the business processes to purchase the resources on
the Grid. Implementing such a business model requires at least the following basic
roles, which belong to three layers: the Grid users application layer, the Virtual
marketplace layer, and the Grid resources layer.

Grid users application layer: This layer allows end-users (scientist, chemist,
physician etc.) to submit applications to the deployed resources. We consider Grid
application to be a collection of work items to solve a certain problem or to achieve
desired results using the Grid infrastructure. Grid applications can be scientific,
mathematical, academic problems or the simulation of business scenarios, like stock
market development, that require a large amount of data as well as a high demand for
computing resources in order to calculate and handle the large number of variables
and their effects.

Virtual marketplace layer: This layer implements monitoring, trading and
scheduling services so as to utilize the available Grid resources efficiently and exploit
the benefits of the interoperability and scalability of the Grid platform. This layer
consists of four main components:

• Monitor implements the monitoring/reporting techniques, which monitors
resources and reports changes such as dynamic re-allocation of resources, ac-
cording to changes generated from evolution in the resource market,execution
status of submitted applications, etc. Monitoring is achieved by either direct
or indirect capture of resource status and pre-defined events. The indirect in-
terface uses logs generated at run-time by the Grid infrastructure. The direct

A Trading Algorithm for a Virtual Marketplace of Grid Resources 5

interface is a portal collecting dynamically events generated by monitoring
services associated to the Grid infrastructure.

• Trader implements the trading algorithms that depends on criteria such as
cost, processing power, execution time or resource availability. It is also
responsible for sending notifications to users about the status of their request.
For example, inform a bidder whether the bid is winning or not.

• Scheduler schedule the application on to the selected Grid resource. Schedul-
ing of the end users application is done on to the selected resource by following
the analysis provided by the trader.

• Interface to Grid resources provides simple access for distributed systems and
abstractions for applications and thereby address the fundamental application
design objectives of interoperability across different infrastructure. It also
supports job submission and data management (efficient data access, data
replication, streaming of data, etc.).

Grid resources layer: This layer consist of the resources (server, storage and
network) used to execute the end users applications. The submitted application is
executed on the selected Grid resources and result is sent back.

4. VMR Marketplace Mechanism and Matching module. In our market-
place, Buyers and providers interact through the marketplace by means of the broker,
in order to lease/offer Grid resources. Providers are indifferent regarding how their
machines will be consumed in the market, i.e. what kind of needs the consumers
want to accommodate by leasing the providers’ resources. The providers solely offer
their resources and it is the responsibility of the marketplace to match them with the
consumers’ demand by means of a market mechanism and a matching algorithm.

A buyer’s order is specified by means of the total number of resources (with its
required specification) that must be made available up to a specific time interval, so
that a certain computationally-intensive task is executed in time. All parties publicly
announce the maximum price they are willing to buy for and the minimum price they
are willing to sell for. All buyers should mention the maximum price they are willing
to buy for and all the providers should mention the minimum price they are willing
to sell for the leasing of resources in a specified time interval. These prices, resource
information, participants’ information are recorded and put in a database.

Below we define the demand (resp. the offer) that the buyers (resp. the providers)
submit to the VMR in order to express their services, which comprises of computa-
tional elements that are made available in a time interval whose start and end time
are specified upon submission and are not flexible.

A demand describes the buyer’s requirements. Demand is specified as:
• (1) Rb - The resource specification (processing power, hard disk, RAM, OS,

etc.),
• (2) Qb - The number of resources that are demanded,
• (3) Sb - The start time of the interval for using the resources,
• (4) Db - The time duration, for which resources are needed,
• (5) Pb - The price expressed in £for use of one resource/min, and
• (6) Etb - The expiration time of the demand.

An offer describes the resources posted by the providers. Offer is specified as:
• (1) Rp - The resource specification (processing power, hard disk, RAM, OS,

etc.),
• (2) Qp - The number of resources that are available,
• (3) SpStp - The start time of the interval when the resources are available,

6 B. AZIZ

• (4) Dp - The time duration, for which resources are available,
• (5) Pp - The price expressed in £for use of one resource/min, and
• (6) Etp - The expiration time of the offer.

When more than one offer/demand is added to the queue at same time than sort
according to submission expiry time if two same then sort according to the start time.

Buyers/providers orders will not be immediately fulfilled unless there is a pre-
viously posted compatible reciprocal demand/offer. All the compatible trades i.e.,
when the buyers demand price exceeds the providers offer price for a match between
an application requirements and resoruce specification, are immediately executed. If
no compatible reciprocal offers/demands are available, the offer/demands remain in
the respective queue until they are matched in the future or expire.

The matching module is invoked whenever a demand or an offer is submitted to
the VMR. The rationale behind the matching module is summarized as follows:

• a) Demands are completely satisfied, i.e. there are never remainder demands,
pieces of the same demand that are still pending. This is not the case for
offers, which can be partly matched in order to serve demands.

• b) Each demand is served by one provider.
• c) Matching solution ensures that the demanded resources are allocated through-

out the service time interval (application’s demanded duration), so that the
resources switching is avoided over time.

Matching module activates in the following two events:

• 1) A new demand is submitted by the buyer: Matches candidates for a de-
mand (whose price is Pb) only those offers (whose price Pp) where Pb ≥ Pp

holds. Therefore, we omit examining higher price offers and try combining
them with lower price offers, even if such combinations could in fact serve the
demand.

• 2) A new offer is submitted by the provider: Matches candidates for an offer
(whose price is Pp) only those demands (whose price Pb) where Pb ≥ Pp holds.
Therefore, we omit examining lower price demands and try combining them
with higher price demands.

The rationale of the matching procedure is to provide the required coverage of a)
the demand with the cheapest matching offer and/or b) the offer with the equal or
higher matching demand by means of a matching algorithm. If a demand is matched
fully then reservation of resources, accounting and computation of remainder offer
that replace the original offer in the offer queue are performed; and the demand is
removed from the demand queue and subsequently serviced. On the other hand, if
an offer is matched fully then reservation of resource and accounting are performed;
and the offer is removed from the offer queue and the demand is removed from the
demand queue, which is subsequently serviced.

As a demand is always fully matched, this is not the case for an offer. Therefore, in
general a fraction of an offer may be used to (partly) match and serve a demand, thus
generating remainder offers. Thus, when an offer is matched partially, the reservation
of resources, accounting and computation of remainder offer that replaces the original
offer in the offer queue is performed; and the matched demand is removed from the
demand queue and subsequently serviced.

It is the responsibility of the matching module to be invoked periodically, in order
to compute matches and remove expired offers and demands from the offer/demand
queue. The results of the matching procedure are subsequently passed to the scheduler
and the accounting system of the market place.

A Trading Algorithm for a Virtual Marketplace of Grid Resources 7

5. Trading algorithm. The algorithm defines how demands (submitted by the
buyers) and offers (submitted by the providers) are matched. VMR trading algorithm
is based on market mode because it offers a control strategy that is computationally
efficient, flexible in the face of emergent behavior, and makes visible to IT person-
nel mission-critical price-performance statistics that directly reflect the marketplace’s
ability to deliver infrastructure tailored to real business value. The market-model
trader used in VMR is capable of trading any kind of resources (compute resources,
storage resources etc.), as long as the resource’s consumption requirements can be
translated into the trader’s key-value format.

Currently, we assume that demands should be fully served by resources of a
single provider, however in the future, buyers may be allocated resources of multiple
providers, as long as each of these is reserved for the buyers throughout the specified
time interval. This assumption is imposed due to technological constraints, since there
may be significant switching costs when shifting unfinished computing jobs between
virtual machines of different providers within the service time interval.

Psuedo codes 1 and 2 next present the VMR trading logic that is executed
when a new demand/offer is submitted. As a first prototype, a meaningful matching
procedure for the VMR is to try matching a demand with the cheapest matching offers.
In future other matching procedures can be plugged-in to do matching according to
the company preferences/constraints such as buyer can specify the list of providers
they would like to submit their application for execution.

The trading algorithm runs from scratch, whenever a new demand arrives or a
new offer arrives to perform a matching between the offers and demands respectively.
When an offer arrives that match a demand, three things have to be decided a) how
much of it to use, b) where to place it and c) what to do if offer is not completely
used. The solution we adopt is a) order the matching offers according to the demand’s
time constraints i.e., use till demand is completely fulfilled, b) place it meet the
demand’s deadline such that offer is divided in minimum chunks and c) if offer left
with services/time to be used, remaining offer is calculated according to pseudo code
3 and resubmitted.

Trading is performed by means of an auction mechanism. The submitted demands
and offers are placed in the demand queue and the offer queue respectively. If two
or more orders at the same price appear in an allocated queue, then they are entered
by time with older orders placed above the newer orders. Trader collects orders from
buyers and providers and executes trades (makes a call) periodically to clear the
market by matching buyers with providers. A demand/offer remains in the queue
until it is allocated, removed due to its expiration time or removed by the submitted
user. Resources are allocated for a specified amount of time that is required by the
application and defined by the buyer.

The trading algorithm initially computes the candidate matches to demand by
means of creating a matrix as shown in Figure 5.1. Each column of the matrix
corresponds to a time slot (i.e. the time interval in which service can be provided).
Each row corresponds to a provider that can offer service now, with the cheapest being
on the top row. A cell of the matrix is marked if the provider can offer computing
resources during this specific time slot, as shown in Figure 5.2.

Complexity of buyers and providers trading algorithm: Counting the
total number of basic operations, those which take a constant amount of time in
Psuedo code 1 followed by the while loop where the value of i changes every time
through the loop (N + (N - 1) + · + 2 + 1 = N(N+1)/2), the total number of

8 B. AZIZ

Pseudo Code 1 when a new demand is submitted by a buyer.

if offer queue 6= null then
select the offer where Rb == Rp

store the selected offers in ascending order of offer prices Pp

Select the offers where Pb ≥ Pp

if selected offer queue 6=null then
i← 0
while i < sizeof(selected offer queue[]) do
if ((Qp[i] ≥ Qb) &&(Dp[i] ≥ Db)) then

begin time= max(Stp[i], Stb)
end time=min(Etp[i], Etb)
if (end time-begin time) ≥ Db then

if begin time == Stp[i] then
Computation start time St=begin time

else
Computation start time St=end time-Db

end if
end if
pass information (selected offer queue[i], St, Db)to the scheduler
if (Dp > Db[i])||(Qp > Qb[i]) then

calculate the remaining offer using Pseudo code 3.
resubmit the new created offers

else
remove the offer from the offer queue

end if
else

i++
end if

end while
else

put the demand in the demand queue
end if

else
put the demand in the demand queue

end if

operations is equivalent to O(N2). As the runtime complexity of Psuedo code 2 is
less than Psuedo code 1, we can say that Psuedo code 2 is more efficient than Psuedo
code 1. However, both falls into O(N2) complexity class.

6. Implementation of Virtual Marketplace of Resoruces. To explain the
trading algorithm, we assume that VMR has a demand queue as shown in Figure 6.1
and an offer queue as shown in Figure 6.2 with respect to the matching martix of
Figure 5.1. For simplicity, the time in demand/offer queue is considered to be of same
day and even the resource specifications is limited to the OS only. However, VMR
uses the timestamp datatype for describing the time which enables the provider/buyer
to specify the time from future dates. Similarly resoruce specification is not only
limited to the OS, a provider/buyer can speciy the resoruce’s hardware and software
description along with the versions.

A Trading Algorithm for a Virtual Marketplace of Grid Resources 9

Pseudo Code 2 when a new offer is submitted by the provider.

if demand queue 6= null then
select the demands where Rb == Rp

store the selected demands in descending order of offer prices Pp

Select the demands where Pb ≥ Pp

i← 0j ← 0
while selected demand queue 6=null do
if ((Qp ≥ Qb[i]) &&(Dp ≥ Db[i])) then

begin time= max(Stp, Stb[i])
end time=min(Etp, Etb[i])
if (end time-begin time) ≥ Db[i] then

selected demands[j]=selected demand queue[i]
calculate sorting condition[j] = Db[i] ∗Qb[i] ∗ Pb[i]
j++

else
i++

end if
end if

end while
if selected demands6=null then

Sort selected demands in descending order of sorting condition.
Select the selected demands[0]
if Stselected demands[0] > Stp then

Computation start time St=Stselected demands[0]

else
Computation start time
St=min(Etp, Etselected demands[0])-Dselected demands[0]

end if
pass information (selected offer queue[i], St, Db)to the scheduler
Remove the demand from demand queue

end if
if (Dp > Db[selected demands[0]])||(Qp > Qb[selected demands[0]]) then

calculate the remaining offer using Psuedo Code 3
resubmit the new created offers

end if
else

put offer in offer queue
end if

First case is when a new offer is submitted by a provider. For example, Provider
P offers 8 XtreemOS resources for 5 hrs, starting at time 11:00, with offer price £0.03,
and time limit 23:30. Following the Psuedo Code 2 buyers B1, B3, B5 are selected and
sorted in descending order of price from the demand queue, i.e., B5, B3, B1. After
comparing the price PB5 , PB3 , PB1 ≥ Pp only demands from B5 and B3 are added
to the selected demand queue. First quantity and duration required by the buyer B5

is checked. Possible available duration is calculated by matching the start time and
expiry time of buyer B5 and provider P , which is similar to the Figure 6.3(6). As
available duration is more than the required duration by B5, the demand is added

10 B. AZIZ

Pseudo Code 3 calculate the remainging offer.

if St == Stp then
if Qb < Qp then

Submit new offers for partial used resources as (St + Db, Etp, Pp, D = Dp −
Db, Qb) and totally unused resoruces as (Stp, Etp, Pp, D = Dp, Q = Qp −Qb)
(Case of Fig. 5.2(1))

else
Submit new offer as (St + Db, Etp, Pp, D = Dp −Db, Qp)
(Case of Fig. 5.2(2))

end if
else
if St + Db == Etp then
if Qb < Qp then

Submit new offers for partial used resources as (Stp, Etp−Db, Pp, D = Dp−
Db, Qb) and for unused resoruces as (Stp, Etp, Pp, D = Dp, Q = Qp −Qb)
(Case of Fig. 5.2(3))

else
Submit new offer as (Stp, Etp −Db, Pp, D = Dp −Db, Qp)
(Case of Fig. 5.2(4))

end if
else
if Qb < Qp then

Submit new offers for partial used resources before use as (Stp, St, Pp, D =
Dp −Db, Qb), after use as (St + Db, Etp, Pp, D = Dp −Db, Qb), and unused
resoruces as (Stp, Etp, Pp, D = Dp, Q = Qp −Qb)
(Case of Fig. 5.2(5))

else
Submit new offers for only partial used resources before use as
(Stp, St, Pp, D = Dp − Db, Qp) and after use as (St + Db, Etp, Pp, D =
Dp −Db, Qp)
(Case of Fig. 5.2(6))

end if
end if

end if

to the slected demands queue and its sorting condition is calculated (3*3*0.06) as
0.54. Then next demand from the selected demand queue is selected i.e., demand
from buyer B3 and same procedure the repeated as mentioned for the demand by
buyer B5. Now the selected demands B5 and B3 are sorted in descending order of
the sorting condition, which conclude B3’s demand to be the matching demand for
the P ’s offer. Time slot for the matching matrix is calculated (shown in Figure 5.1).
Demand is removed from the demand queue.As provider P has offered quantity and
duration is more than used by the demand of B3, remaining offer is calculated using
Pseudo code 3. As starting time St is calculated to be 19:00 which is neither Stp
(11:00) nor Etp (23:30), however QB3

(5) is less than the QP (8), the remaining offers
(Figure 5.2(6)) are resubmitted to the VMR.

Second case is when a new demand is submitted by a buyer. For example, Buyer
B demands for 3 Linux resources to be used for 2 hrs, starting at time 13:00, with de-

A Trading Algorithm for a Virtual Marketplace of Grid Resources 11

Fig. 5.1. Matching Matrix.

Fig. 5.2. Grey: Matching (demand and offer) possibilities, other colors: recalculated offers.

Buyers Requirement Qunatity Duration Price Start time Expiry time
B1 XtreemOs 4 3 0.02 12:00 20:00
B2 gLite 9 3 0.04 10:00 18:00
B3 XtreemOs 5 4 0.03 15:00 23:00
B4 Windows XP 3 2 0.05 18:00 23:00
B5 XtreemOs 3 3 0.06 10:00 20:00

Fig. 6.1. A demand queue.

mand price £0.05/resource/min, and time limit 23:00. Following the Pseudo Code 1,
providers P2 and P5 offers the similar resources as required by the buyer B. P2 and
P5 are sorted in ascedning order of price and placed in selected offer queue as both
has (PP2

, PP5
) ≥ PB . First, the quantity and duration offered by P5 is checked and

possible available duration is calculated (which is similar to Figure 6.3(7)). As avail-

12 B. AZIZ

Providers Requirement Qunatity Duration Price Start time Expiry time
P1 gLite 5 3 0.04 8:00 16:00
P2 Linux 4 4 0.05 10:00 20:00
P3 Windows XP 2 5 0.04 12:00 23:00
P4 gLite 10 5 0.03 9:00 18:00
P5 Linux 5 3 0.04 18:00 23:00

Fig. 6.2. An offer queue.

Fig. 6.3. Possibilities of demand and offer start and expiry time combinations.

able duration is greater than the demanded duration, the match between P5 and B is
added to the matching matrix. Provider P5 has offered more quantity and duration
than used by the demand, remaining offers are calculated using the Pseudo code 3.
As end time of the execution is equal to Etp5

, the remaining offers (Figure 5.2(1)) are
resubmitted to the VMR.

VMR GUI is a visualisation tool that provides an online marketplace for provider
and buyers to publish their products and needs. Matches that have been made by the
trading algorithm are also displayed.

The VMR GUI provides a portal for new users to register and check the cur-
rent status of the market. Currently, the GUI displays the demands/ offers of buy-
ers/providers and matches that has been made by the trading algorithm. GUI Devel-
opment Language is English and database is MySQL. Resources from two different
Grids (gLite and XtreemOS) are added to the database. To achieve interoperability
when using resources from different platforms SAGA [17] is considered.

Each resource allocation requires:

• Resource specification: This specification contains the application’s require-
ment list. The list is used to specify which operating system, how much
memory, which software, etc. are needed. Time Frame specification: This
specification defines a window of time (in seconds) within which the allo-
cation is to be considered valid. Applications execution start time, duration
and deadline time should be specified by the buyer and similarly, the resource
availability start time, duration and deadline time should be specified by the
providers.

A Trading Algorithm for a Virtual Marketplace of Grid Resources 13

• Periodic matching : This time in seconds/minutes defines the interval at which
VMR will execute the trading algorithm. A periodic cycle consists of the
steps followed to process and execute trades. At the end of the trading cycle,
compatible demands and offers are paired up. Demands and offers that are
not converted into successful trades at the end of the trading cycle will wait in
the queue till the next trading cycle, until cancelled or matched. The length
of the cycle depends upon the type (CPU, storage) and purpose or sector (a
user community like research, bank) or can be fixed as in our first prototype
to be 120seconds.

• VMR Catalog : It is an organized and searchable repository of resources,
providers and buyers information. The information is composed of a variable
length amount of metadata in the form of name-value pairs that describes
performance requirements or capabilities. Each entry in the catalog represents
a single entity (resource, provider, and buyer) and contains metadata that
describes the entities’ attributes, properties, performance requirements and
functionality. The catalog can be searched by specifying a query composed
of a set of metadata that must match the metadata of one or more entries to
be included in the result set.

7. Conclusion. This paper presents an algorithm for trading resources in Grids.
Resource description includes main technical attributes of a resource, such as process-
ing power, memory capacity, etc., as well as a price. Trading is performed in a mar-
ketplace where providers resources are matched with consumers demand. The VMR
solution presented in this paper answers questions such as “which Grid resource should
be used that will minimize cost along with achieving efficient applications’ execution
time?”, “how end-user can select Grid resources according to pre-defined policies,
including cost policies?” and “how to achieve interoperability when using resources
from different platforms?”.

For future work, we would like to extend the algorithms to allow them to become
more flexible incorporating other criteria that may affect the decision for selecting
offers and demands. The presence of several factors, not just cost, would imply
a trade-off-based algorithm, which will be able to provide compromises among the
different criteria. For example, one such criterion could be matching the security
requirements (privacy, assurance, or risk-based) as expressed by the policies of the
buyers and providers. Usually, security comes at an increased cost. So, depending on
the level of assurance provided by the provider, the buyer may be willing to pay more
for better security.

The current form of the algorithm assumes that the buyer or the provider is a
single entity or organisation. In the future, we would like also to consider federations
of entities (buyers/providers) or virtual organisations. This would have implications
on the underlying architecture, as it would imply some form of synchronisation or
consensus among the different entities comprising the federation as to how the price
of the offer or demand is reached.

Currently trading algorithm consider that each demand is served by one provider,
it will be useful if more provides together can serve the demand. For example, if a
demand of 10 resources arrives and no one provider can serve the demand, however,
3 providers together can do so than demand should be matched, instead of adding to
the demand queue. Even, once the match has been made, the application is executed
on the selected resoruces even if any cheaper resoruces become available during the
course. On the fly switching of application to cheaper suitable resource is also under

14 B. AZIZ

consideration.

REFERENCES

[1] J. Altmann, C. Courcoubetis, J. Darlington, and J. Cohen, Gridecon - the economic-
enhanced next-generation internet, in GECON’07: Proceedings of the 4th international
conference on Grid economics and business models, Berlin, Heidelberg, 2007, Springer-
Verlag, pp. 188–193.

[2] J. Altmann and S. Routzounis, Economic modeling of grid services, 2006.
[3] R. Buyya and S. Venugopal, MARKET-ORIENTED COMPUTING AND GLOBAL

GRIDS: An Introduction, in Market-oriented Grid and Utility Computing, John Wiley
and Sons, Hoboken, NJ, USA, 2010, ch. 1, pp. 3–27.

[4] Cloud4SOA, Cloud4soa. World Wide Web electronic publication. http : //www.cloud4soa.eu/
accessed 04-Jan-2013.

[5] T. Cortes, C. Franke, Y. Jégou, T. Kielmann, D. Laforenza, B. Matthews, C. Morin,
L. P. Prieto, and A. Reinefeld, XtreemOS: a Vision for a Grid Operating System.
XtreemOS Technical Report # 4, May 2008.

[6] T. Fahringer, C. Anthes, A. Arragon, A. Lipaj, J. Müller-Iden, C. Rawlings, R. Pro-
dan, and M. Surridge, The edutain@grid project, in 4th International Workshop on Grid
Economics and Business Models, D. J. Veit and J. Altmann, eds., vol. 4685 of LNCS,
Springer, August 2007, pp. 182–187.

[7] H. M. Frutos and I. Kotsiopoulos, Brein: Business objective driven reliable and intelligent
grids for real business, International Journal of Interoperability in Business Information
Systems, Issue3 (1) (2009).

[8] Google, Run your web apps on google’s infrastructure. World Wide Web electronic publication.
http : //code.google.com/appengine accessed 07-Oct-2010.

[9] IBM, e-business on demand: A developer’s roadmap. World Wide Web electronic publication.
http : //www.ibm.com/developerworks/ibm/library/ i− ebodov/index.html accessed 07-
Oct-2010.

[10] H. Labs, Utility computing services. World Wide Web electronic publication. http :
//www.hpl.hp.com/research/about/ utility services.html accessed 07-Oct-2010.

[11] S. Mani and S. Rao, Operating cost aware scheduling model for distributed servers based
on global power pricing policies, in Proceedings of the Fourth Annual ACM Bangalore
Conference, COMPUTE ’11, New York, NY, USA, 2011, ACM, pp. 12:1–12:8.

[12] C. Morin, XtreemOS: A Grid Operating System Making your Computer Ready for Participat-
ing in Virtual Organizations, in Proceedings of the Tenth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC 2007), IEEE Computer
Society, 2007, pp. 393–402.

[13] mOSAIC, mosaic cloud. World Wide Web electronic publication. http : //www.mosaic −
cloud.eu/ accessed 04-Jan-2013.

[14] D. Neumann, J. Stoesser, A. Anandasivam, and N. Borissov, Sorma - building an open grid
market for grid resource allocation, in GECON’07: Proceedings of the 4th international
conference on Grid economics and business models, Berlin, Heidelberg, 2007, Springer-
Verlag, pp. 194–200.

[15] J. Nimis, A. Anandasivam, N. Borissov, G. Smith, D. Neumann, N. Wirström, E. Rosen-
berg, and M. Villa, Sorma — business cases for an open grid market: Concept and
implementation, in GECON ’08: Proceedings of the 5th international workshop on Grid
Economics and Business Models, Berlin, Heidelberg, 2008, Springer-Verlag, pp. 173–184.

[16] Optimis, Optmised infrastructure services. World Wide Web electronic publication. http :
//www.optimis− project.eu/ accessed 04-Jan-2013.

[17] S. Sehgal, M. Erdélyi, A. Merzky, and S. Jha, Understanding application-level interoper-
ability: Scaling-out mapreduce over high-performance grids and clouds, Future Generation
Comp. Syst., 27 (2011), pp. 590–599.

[18] A. W. Services, Amazon elastic compute cloud (amazon ec2). World Wide Web electronic
publication. http : //aws.amazon.com/ec2 accessed 07-Oct-2010.

[19] K. Stanoevska-Slabeva, D. M. Parrilli, and G. Thanos, Beingrid: Development of busi-
ness models for the grid industry, in GECON ’08: Proceedings of the 5th international
workshop on Grid Economics and Business Models, Berlin, Heidelberg, 2008, Springer-
Verlag, pp. 140–151.

[20] Sun, Sun grid engine. World Wide Web electronic publication. http :
//wikis.sun.com/display/GridEngine/Home accessed 07-Oct-2010.

A Trading Algorithm for a Virtual Marketplace of Grid Resources 15

[21] M. Surridge, S. Taylor, and D. D. Roure, Experiences with gria - industrial applications on
a web services grid, in In E-SCIENCE 05: Proceedings of the First International Conference
on e-Science and Grid Computing, IEEE Computer Society, 2005, pp. 98–105.

[22] K. Wasielewska, M. Ganzha, M. Paprzycki, M. Drozdowicz, D. Petcu, C. Badica, N. At-
taoui, I. Lirkov, and R. Olejnik, Negotiations in an Agent-based Grid Resource Bro-
kering System, Saxe - Coburg Publications, 2012, ch. 16, pp. 355 – 374.

[23] XtreemOS Consortium, Methodology and design alternatives for federation and interoperabil-
ity, in XtreemOS public deliverables - D3.5.15, A. Arenas, ed., Work Package 3.5, March
2010.

[24] J. Zhang and J. Luo, Agent based automated negotiation for grid, in Computer Supported
Cooperative Work in Design, 2008. CSCWD 2008. 12th International Conference on, april
2008, pp. 330 –336.

