3,225 research outputs found

    A fast-initializing digital equalizer with on-line tracking for data communications

    Get PDF
    A theory is developed for a digital equalizer for use in reducing intersymbol interference (ISI) on high speed data communications channels. The equalizer is initialized with a single isolated transmitter pulse, provided the signal-to-noise ratio (SNR) is not unusually low, then switches to a decision directed, on-line mode of operation that allows tracking of channel variations. Conditions for optimal tap-gain settings are obtained first for a transversal equalizer structure by using a mean squared error (MSE) criterion, a first order gradient algorithm to determine the adjustable equalizer tap-gains, and a sequence of isolated initializing pulses. Since the rate of tap-gain convergence depends on the eigenvalues of a channel output correlation matrix, convergence can be improved by making a linear transformation on to obtain a new correlation matrix

    Mathematics and Digital Signal Processing

    Get PDF
    Modern computer technology has opened up new opportunities for the development of digital signal processing methods. The applications of digital signal processing have expanded significantly and today include audio and speech processing, sonar, radar, and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others. This Special Issue is aimed at wide coverage of the problems of digital signal processing, from mathematical modeling to the implementation of problem-oriented systems. The basis of digital signal processing is digital filtering. Wavelet analysis implements multiscale signal processing and is used to solve applied problems of de-noising and compression. Processing of visual information, including image and video processing and pattern recognition, is actively used in robotic systems and industrial processes control today. Improving digital signal processing circuits and developing new signal processing systems can improve the technical characteristics of many digital devices. The development of new methods of artificial intelligence, including artificial neural networks and brain-computer interfaces, opens up new prospects for the creation of smart technology. This Special Issue contains the latest technological developments in mathematics and digital signal processing. The stated results are of interest to researchers in the field of applied mathematics and developers of modern digital signal processing systems

    Succinic semialdehyde dehydrogenase deficiency: in vitro and in silico characterization of a novel pathogenic missense variant and analysis of the mutational spectrum of ALDH5A1

    Get PDF
    Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare, monogenic disorder affecting the degradation of the main inhibitory neurotransmitter \u3b3-amino butyric acid (GABA). Pathogenic variants in the ALDH5A1 gene that cause an enzymatic dysfunction of succinic semialdehyde dehydrogenase (SSADH) lead to an accumulation of potentially toxic metabolites, including \u3b3-hydroxybutyrate (GHB). Here, we present a patient with a severe phenotype of SSADHD caused by a novel genetic variant c.728T > C that leads to an exchange of leucine to proline at residue 243, located within the highly conserved nicotinamide adenine dinucleotide (NAD)+ binding domain of SSADH. Proline harbors a pyrrolidine within its side chain known for its conformational rigidity and disruption of protein secondary structures. We investigate the effect of this novel variant in vivo, in vitro, and in silico. We furthermore examine the mutational spectrum of all previously described disease-causing variants and computationally assess all biologically possible missense variants of ALDH5A1 to identify mutational hotspots

    Robust and reliable hardware accelerator design through high-level synthesis

    Get PDF
    System-on-chip design is becoming increasingly complex as technology scaling enables more and more functionality on a chip. This scaling-driven complexity has resulted in a variety of reliability and validation challenges including logic bugs, hot spots, wear-out, and soft errors. To make matters worse, as we reach the limits of Dennard scaling, efforts to improve system performance and energy efficiency have resulted in the integration of a wide variety of complex hardware accelerators in SoCs. Thus the challenge is to design complex, custom hardware that is efficient, but also correct and reliable. High-level synthesis shows promise to address the problem of complex hardware design by providing a bridge from the high-productivity software domain to the hardware design process. Much research has been done on high-level synthesis efficiency optimizations. This dissertation shows that high-level synthesis also has the power to address validation and reliability challenges through three automated solutions targeting three key stages in the hardware design and use cycle: pre-silicon debugging, post-silicon validation, and post-deployment error detection. Our solution for rapid pre-silicon debugging of accelerator designs is hybrid tracing: comparing a datapath-level trace of hardware execution with a reference software implementation at a fine temporal and spatial granularity to detect logic bugs. An integrated backtrace process delivers source-code meaning to the hardware designer, pinpointing the location of bug activation and providing a strong hint for potential bug fixes. Experimental results show that we are able to detect and aid in localization of logic bugs from both C/C++ specifications as well as the high-level synthesis engine itself. A variation of this solution tailored for rapid post-silicon validation of accelerator designs is hybrid hashing: inserting signature generation logic in a hardware design to create a heavily compressed signature stream that captures the internal behavior of the design at a fine temporal and spatial granularity for comparison with a reference set of signatures generated by high-level simulation to detect bugs. Using hybrid hashing, we demonstrate an improvement in error detection latency (time elapsed from when a bug is activated to when it manifests as an observable failure) of two orders of magnitude and a threefold improvement in bug coverage compared to traditional post-silicon validation techniques. Hybrid hashing also uncovered previously unknown bugs in the CHStone benchmark suite, which is widely used by the HLS community. Hybrid hashing incurs less than 10% area overhead for the accelerator it validates with negligible performance impact, and we also introduce techniques to minimize any possible intrusiveness introduced by hybrid hashing. Finally, our solution for post-deployment error detection is modulo-3 shadow datapaths: performing lightweight shadow computations in modulo-3 space for each main computation. We leverage the binding and scheduling flexibility of high-level synthesis to detect control errors through diverse binding and minimize area cost through intelligent checkpoint scheduling and modulo-3 reducer sharing. We introduce logic and dataflow optimizations to further reduce cost. We evaluated our technique with 12 high-level synthesis benchmarks from the arithmetic-oriented PolyBench benchmark suite using FPGA emulated netlist-level error injection. We observe coverages of 99.1% for stuck-at faults, 99.5% for soft errors, and 99.6% for timing errors with a 25.7% area cost and negligible performance impact. Leveraging a mean error detection latency of 12.75 cycles (4150× faster than end result check) for soft errors, we also explore a rollback recovery method with an additional area cost of 28.0%, observing a 175× increase in reliability against soft errors. While the area cost of our modulo shadow datapaths is much better than traditional modular redundancy approaches, we want to maximize the applicability of our approach. To this end, we take a dive into gate-level architectural design for modulo arithmetic functional units. We introduce new low-cost gate-level architectures for all four key functional units in a shadow datapath: (1) a modulo reduction algorithm that generates architectures consisting entirely of full-adder standard cells; (2) minimum-area modulo adder and subtractor architectures; (3) an array-based modulo multiplier design; and (4) a modulo equality comparator that handles the residue encoding produced by the above. We compare our new functional units to the previous state-of-the-art approach, observing a 12.5% reduction in area and a 47.1% reduction in delay for a 32-bit mod-3 reducer; that our reducer costs, which tend to dominate shadow datapath costs, do not increase with larger modulo bases; and that for modulo-15 and above, all of our modulo functional units have better area and delay then their previous counterparts. We also demonstrate the practicality of our approach by designing a custom shadow datapath for error detection of a multiply accumulate functional unit, which has an area overhead of only 12% for a 32-bit main datapath and 2-bit modulo-3 shadow datapath. Taking our reliability solution further, we look at the bigger picture of modulo shadow datapaths combined with other solutions at different abstraction layers, looking to answer the following question: Given all of the existing reliability improvement techniques for application-specific hardware accelerators, what techniques or combinations of techniques are the most cost-effective? To answer this question, we consider a soft error fault model and empirically evaluate cross-layer combinations of ABFT, EDDI, and modulo shadow datapaths in the context of high-level synthesis; parity in logic synthesis; and flip-flop hardening techniques at the physical design level. We measure the reliability benefit and area, energy, and performance cost of each technique individually and for interesting technique combinations through FPGA emulated fault-injection and physical place-and-route. Our results show that a combination of parity and flip-flop hardening is the most cost-effective in general with an average 1.3% area cost and 5.7% energy cost for a 50× improvement in reliability. The addition of modulo-3 shadow datapaths to this combination provides some additional benefit for some applications, even without considering its combinational logic, stuck-at fault, and timing error protection benefits. We also observe new efficiency challenges for ABFT and EDDI when used for hardware accelerators

    A computer-aided design for digital filter implementation

    Get PDF
    Imperial Users onl

    An introduction to the interim digital SAR processor and the characteristics of the associated Seasat SAR imagery

    Get PDF
    Basic engineering data regarding the Interim Digital SAR Processor (IDP) and the digitally correlated Seasat synthetic aperature radar (SAR) imagery are presented. The correlation function and IDP hardware/software configuration are described, and a preliminary performance assessment presented. The geometric and radiometric characteristics, with special emphasis on those peculiar to the IDP produced imagery, are described

    Novel arithmetic implementations using cellular neural network arrays.

    Get PDF
    The primary goal of this research is to explore the use of arrays of analog self-synchronized cells---the cellular neural network (CNN) paradigm---in the implementation of novel digital arithmetic architectures. In exploring this paradigm we also discover that the implementation of these CNN arrays produces very low system noise; that is, noise generated by the rapid switching of current through power supply die connections---so called di/dt noise. With the migration to sub 100 nanometer process technology, signal integrity is becoming a critical issue when integrating analog and digital components onto the same chip, and so the CNN architectural paradigm offers a potential solution to this problem. A typical example is the replacement of conventional digital circuitry adjacent to sensitive bio-sensors in a SoC Bio-Platform. The focus of this research is therefore to discover novel approaches to building low-noise digital arithmetic circuits using analog cellular neural networks, essentially implementing asynchronous digital logic but with the same circuit components as used in analog circuit design. We address our exploration by first improving upon previous research into CNN binary arithmetic arrays. The second phase of our research introduces a logical extension of the binary arithmetic method to implement binary signed-digit (BSD) arithmetic. To this end, a new class of CNNs that has three stable states is introduced, and is used to implement arithmetic circuits that use binary inputs and outputs but internally uses the BSD number representation. Finally, we develop CNN arrays for a 2-dimensional number representation (the Double-base Number System - DBNS). A novel adder architecture is described in detail, that performs the addition as well as reducing the representation for further processing; the design incorporates an innovative self-programmable array. Extensive simulations have shown that our new architectures can reduce system noise by almost 70dB and crosstalk by more than 23dB over standard digital implementations.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .I27. Source: Dissertation Abstracts International, Volume: 66-11, Section: B, page: 6159. Thesis (Ph.D.)--University of Windsor (Canada), 2005

    Algorithms and VLSI architectures for parametric additive synthesis

    Get PDF
    A parametric additive synthesis approach to sound synthesis is advantageous as it can model sounds in a large scale manner, unlike the classical sinusoidal additive based synthesis paradigms. It is known that a large body of naturally occurring sounds are resonant in character and thus fit the concept well. This thesis is concerned with the computational optimisation of a super class of form ant synthesis which extends the sinusoidal parameters with a spread parameter known as band width. Here a modified formant algorithm is introduced which can be traced back to work done at IRCAM, Paris. When impulse driven, a filter based approach to modelling a formant limits the computational work-load. It is assumed that the filter's coefficients are fixed at initialisation, thus avoiding interpolation which can cause the filter to become chaotic. A filter which is more complex than a second order section is required. Temporal resolution of an impulse generator is achieved by using a two stage polyphase decimator which drives many filterbanks. Each filterbank describes one formant and is composed of sub-elements which allow variation of the formant’s parameters. A resource manager is discussed to overcome the possibility of all sub- banks operating in unison. All filterbanks for one voice are connected in series to the impulse generator and their outputs are summed and scaled accordingly. An explorative study of number systems for DSP algorithms and their architectures is investigated. I invented a new theoretical mechanism for multi-level logic based DSP. Its aims are to reduce the number of transistors and to increase their functionality. A review of synthesis algorithms and VLSI architectures are discussed in a case study between a filter based bit-serial and a CORDIC based sinusoidal generator. They are both of similar size, but the latter is always guaranteed to be stable

    Techniques for the realization of ultra- reliable spaceborne computer Final report

    Get PDF
    Bibliography and new techniques for use of error correction and redundancy to improve reliability of spaceborne computer
    • …
    corecore