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Abstract

The primary goal of this research is to explore the use of arrays of analog self-synchro

nized cells - the cellular neural network (CNN) paradigm - in the implementation of novel 

digital arithmetic architectures. In exploring this paradigm we also discover that the 

implementation of these CNN arrays produces very low system noise; that is, noise gener

ated by the rapid switching of current through power supply die connections - so called 

d i / dt noise. With the migration to sub 100 nanometer process technology, signal integ

rity is becoming a critical issue when integrating analog and digital components onto the 

same chip, and so the CNN architectural paradigm offers a potential solution to this prob

lem. A typical example is the replacement of conventional digital circuitry adjacent to sen

sitive bio-sensors in a SoC Bio-Platform. The focus of this research is therefore to 

discover novel approaches to building low-noise digital arithmetic circuits using analog 

cellular neural networks, essentially implementing asynchronous digital logic but with the 

same circuit components as used in analog circuit design.

We address our exploration by first improving upon previous research into CNN binary 

arithmetic arrays. The second phase of our research introduces a logical extension of the 

binary arithmetic method to implement binary signed-digit (BSD) arithmetic. To this end, 

a new class of CNNs that has three stable states is introduced, and is used to implement 

arithmetic circuits that use binary inputs and outputs but internally uses the BSD number 

representation. Finally, we develop CNN arrays for a 2-dimensional number representa

tion (the Double-base Number System - DBNS). A novel adder architecture is described 

in detail, that performs the addition as well as reducing the representation for further pro

cessing; the design incorporates an innovative self-programmable array. Extensive simu

lations have shown that our new architectures can reduce system noise by almost 70dB 

and crosstalk by more than 23dB over standard digital implementations.

iv
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Chapter 1
Introduction

The objective of this research project is to develop novel arithmetic 

circuit structures using arrays of analog networks and the cellular 

neural network paradigm. The motivation behind this work 

contains both an exploration of this novel concept to a variety of 

arithmetic techniques and a more practical investigation into the 

use of these networks for implementing arithmetic circuits that 

produce very low d i / dt noise as explained in Section 1.1. The 

digital switching noise and cross talk problems are defined in 

Section 1.2. A review of the research literature that addresses the 

noise problem is also presented in this section. Reasons to use the 

CNN paradigm are discussed in Section 1.3 and the state-of-the-art 

CNN-based binary adders are presented in Section 1.4. The design 

goals of the arithmetic circuits are introduced in Section 1.5. The 

thesis is outlined in Section 1.6 and Section 1.7.

1.1 Low-noise - motivation

The migration to sub 100 nanometer process technologies and the 

advances in fabrication processes have allowed the packing of ever 

increasing complex functionality into fewer chips on circuit boards 

by the use of massive integration of circuitry onto single silicon die 

using system-on-a-chip (SoC) tools and technologies. Despite the

In troduction L ow -noise  - m otivation
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impressive reductions in area and cost, signal integrity remains a critical issue when 

integrating analog and digital components onto the same chip; for example digital 

circuitry adjacent to sensitive bio-sensors in a SoC Bio-Platform as depicted in Figure 

1.1. One of the parasitic effects that adversely influences signal integrity is digital 

switching noise (DSN) produced by the supply current drawn by fast switching digital 

components. This noise propagates across the common Si substrate and can easily corrupt 

sensitive analog signals. Noise can also couple to the substrate capacitively, a 

phenomenon known as crosstalk. The noise problem is amplified as operating frequencies 

increase and feature sizes decrease; being primarily responsible for inexplicable design 

failure and poor yields o f mixed-signal SoC designs [1].

Sensors
control Digital processor 

& power

Sensor A/n
ĵ rrav conditioning A/D

circuitry

Figure 1.1 Simplified block diagram of a bio-sensor SoC chip.

The work presented in this thesis couples different digital number representations with 

low precision simple current-mode analog components in a novel way that combines the 

computational capability of analog circuits and noise immunity of digital components. In 

essence, we are building digital arithmetic circuits but using analog components to replace 

uncontrolled digital transitions (produced by the digital processor of Figure 1.1) with 

smooth analog transitions as illustrated in Figure 1.2. Digital arithmetic is converted into 

a problem of processing 2-D binary/ternary images and novel CNN structures are 

designed to manipulate these images to perform the required arithmetic task.
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Figure 1.2 Reducing system noise in the bio-sensor with smooth analog transitions.

1.2 Substrate Noise

Digital switching noise is one of the major sources of trouble in a typical mixed-signal 

VLSI circuit design. When many static gates change state together, they draw a large 

cumulative current from the power supply. Due to the self-inductance of the off-chip 

bonding wires and package pins and the on-chip parasitic inductance inherent to the power 

supply rails, as shown in Figure 1.3, the fast current surges result in voltage fluctuations 

in the power distribution network [2]. The effective supply voltage on chip is given by the 

following equation:

>V /=

The second term on the right hand side of Eqn. (1.1) is referred to as digital switching 

noise (DSN), simultaneous switching noise (SSN), inductive—Ldi/dt—noise, or A/. A 

fraction of this noise is invariably injected into the substrate.
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nn

Shared substrate

Figure 1.3 Lumped model of the substrate coupling.

The presence of parasitic capacitance between the transistors and the silicon substrate 

contributes significantly to the problem. When digital circuits switch, they inject current 

into the substrate via these capacitances. The amount of injected current is directly 

proportional to the slew rate of the switching voltage and the lumped parasitic capacitance 

according to Eqn. (1.2); this will be referred to as “cross-talk noise”.

U  -  d-2)

Therefore, substrate noise increases as the operating frequency increases. Moreover, the 

scaling down of feature sizes increases the total capacitance associated with the internal 

circuitry [3]. With the number of transistors on a chip expected to reach over 600 million 

by 2009 [4], the amount of injected noise increases dramatically.

The common substrate on which both digital and analog circuits are embedded serves as a 

resistor network which can be modelled using a simplified form of Maxwell’s equations 

[1]:

i  vV(r, 0  + £ i.(vV(r, /)) = - | V ,  0  (1.3)
p dt ot
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where p is the resistivity and s the permittivity of the uniformly-doped semiconductor.

V(r, t) is the transient voltage vector and —q(r, t) is the rate of generation of charge per
at

unit volume at location r = (x, y, z ) on the substrate. Consequently, voltage variations 

around the injected points propagate in the substrate and also potential gradients arise due 

to the resistive nature of the substrate. Assuming a 3-D semi-infinite substrate that goes to 

infinity in all but one of the six spatial directions, the solution to Eqn. (1.3) in the Laplace 

domain for the voltage at any point on the substrate, V2 due to a current, /, injected into

the substrate a distance r away, is:

*2«  -  A  • , ''(5? , . (i-4)2ttr 5(p • s) + 1

The time variant substrate voltages are sensed by MOSFETs through the body effect and 

transferred to signal paths in consequence of current fluctuations or gain mismatches in 

analog circuits. On the other hand, sub-threshold current increase due to the body bias 

change may degrade digital signal integrity seriously and thus cause dynamic operation 

failures [5]. On-chip DSN can also create delay uncertainty since the power supply level 

temporally changes the local drive current [6]. Furthermore, logic malfunctions may be 

created and excess power may be dissipated due to faulty switching if the power supply 

fluctuations are sufficiently large [7] [8], Predicting how and when this will happen is a 

difficult problem, since it is highly dependent on the specific layout and process 

technology used. Therefore, it is crucial in today’s sub 100 nanometer technology to 

reduce the peak value of dynamic current provided by the supply source iDD, that is

proportional to the carrier injection into the substrate [9]. Moreover, by monitoring the 

instantaneous power supply current, designers can determine a time window for the worst- 

case substrate current injection [1]. For example. Figure 1.4 shows the Hspice simulation 

of a standard digital inverter in 0.35 pm CMOS technology during one period of 

excitation. The simulation also illustrates the instantaneous power supply current drawn 

by the inverter, digital switching noise, and cross talk noise.

In troduction S ubstra te  N oise

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5



U niversity o f  W indsor

input

Output

Supply current

LdiJdt

Cdv/dt

/

I

■K-

\
I

\
1

time

Figure 1.4 Hspice simulation of a standard digital inverter.

The rapidly growing SoC market presents an urgent need for highly effective solutions for 

the substrate noise problem. Research in this area can be broadly classified into three main 

categories: Process fabrication techniques, physical design and layout techniques, and 

innovative digital circuit design techniques.

Process fabrication techniques: The goal of process technologists, regarding the noise 

problem, is to prevent the substrate from working as a noise-coupling path by increasing 

its resistance, ultimately to infinity. They employ a number of expensive techniques to 

control the substrate noise problem. One technique employs a deep trench (through-the- 

wafer) of porous Si (PS) to provide radio frequency (RF) isolation in Si between noise 

generating and noise sensing circuits [10]. Traditional guard-rings [11][12] have very 

limited effectiveness in suppressing the underlying substrate noise due to the fact that they 

are very shallow structures on the wafer surface. However, a Faraday cage consisting of a 

ring of high-aspect ratio substrate vias encircling noisy or sensitive circuits results in 

improved performance [13]. A popular technique involves creating a deep N-well 

structure where active devices are insulated from the substrate by a buried implant layer 

[12]. Experimental results indicated that an improvement of 25-30dB can be achieved by 

applying a relatively low-fluence proton bombardment on the isolation-intended region

Introduction Substrate Noise 6
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[14]. The expensive option based on silicon-on-insulator (SOI) wafers assures full DC 

isolation; however, it fails to maintain its advantage in the high frequency AC regime [15]. 

Still another technique is to deploy more costly thin-film silicon-on-insulator (TFSOI) 

technology where p+ substrate contact rings are used to improve the cross-talk isolation 

[16] [17]. These techniques can help improve the intrinsic noise immunity of SoC devices, 

but have limited effectiveness at elevated frequencies. Thus, although the use of one or 

more of these fabrication techniques can reduce substrate noise, process remedies alone 

are insufficient to ensure a design's immunity to substrate noise coupling [18].

Physical design and layout techniques. Physical design and layout techniques 

concerning noise immunity primarily aim to reduce the parasitic inductance associated 

with the power supply network and package pins, minimize the parasitic capacitance 

between transistors and the substrate, and attenuate noise coupling from one area on a chip 

to another. It is common practise among analog designers to use separate supplies for 

digital and analog sections of the chip to isolate the sensitive analog components from 

noise introduced on the digital supplies [19]. The same technique is useful to isolate 

different sensitive blocks. Dividing a chip into sections with different substrate grounds 

will mitigate noise coupling [20]. Researchers have also found that using multiple digital 

and analog pins can achieve the largest noise reduction. Decreasing the value of the 

inductance of the bonding wire widens the bottleneck which reduces ground noise [2]. 

Proper choice of substrate contact geometry and placement plays a major rule in substrate 

noise distribution [21] and a careful design of power lines geometry and supply network 

distribution can greatly reduce parasitic inductance [22]. While relative placement of the 

logic and analog blocks affects the amount of noise coupling [19], analog layout 

techniques such as mirror symmetry and common-centroid geometries increases noise 

immunity of analog circuitry [9]. Adding a dedicated backplane substrate contact can 

substantially drain injected noise [23]. A first and excellent experimental study on the 

impact of physical design on substrate coupling noise is presented in [24] and a wealth of 

industry examples to highlight isolation impacts of technology can be found in [25].
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Digital design techniques. Regardless of measures taken to minimize noise coupling 

from digital sections to analog sections on a chip, digital circuitry can still produce 

significant transient noise. For example, the L d i/ dt noise is estimated to reach 0.35 volt 

in 0.1 pm CMOS technology with 1.2 volt power supply [26]. This peak noise seriously 

degrades signal integrity and can easily cause dynamic operation failure. Therefore 

minimizing on-chip noise is an important element in the effort to improve a design's noise 

immunity in high performance mixed-signal integrated circuits. Some techniques have 

been reported that can reduce the effect of DSN. Adding decoupling capacitance can 

reduce the amount of noise created by supplying local charge for nearby switching and 

thus lowering the peak current drawn across the package inductance [27]. Building a 

simple RC filter can leak out DSN with selected frequency roll-off [28]. A negative 

feedback loop can also be formed by sampling the noise and re-injecting it into the 

substrate with inverted phase. This inverted noise can reduce the substrate noise for low 

frequency operations [29]. Using divided switches with current control can also reduce 

switching noise by controlling the current slope [30]. A number of low-switching-noise 

digital CMOS families have also been reported: current steering logic [31], folded source- 

coupled logic [32], NMOS current-balanced logic [33], and cellular neural networks 

[34] [35]. However, static power consumption is the main penalty of such structures. 

Furthermore, some actions at the system level can be taken to minimize switching 

activities, for instance alternative architectural allocation and scheduling [9], reducing 

switching activity by pin swapping [36], and the right choice of the clocking scheme [37].

1.3 CNN-based Arithmetic Circuits - Rationale

Among all of the above methods, the use of cellular neural networks is quite interesting 

for several reasons:

• uses analog circuit blocks with inherently lower system noise,

• additional noise reduction due to the asynchronous nature of the CNN arrays,

• noise reduction is independent of the traditional noise reduction methods (e.g., guard 
rings) and thus can be used in combination with them, and
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• the regular structure of the arrays and locality of connections makes it an excellent 
choice for VLSI implementation.

CNN arrays inherently reduce system noise because their current-mode structures operate 

with almost constant supply current, thus reducing variation in supply current and, hence, 

switching noise. Moreover, the nodes are built with analog building blocks and effectively 

provide controlled slewing. In digital logic, by contrast, the output of logic gates switch 

rapidly between logic states; this switching rate of change being independent of the clock 

rate of the input logic signals. To illustrate this idea, Hspice simulations of instantaneous 

values of Ldi / dt and Cdv f  dt from a standard CMOS static digital inverter are compared 

to those from a CNN cell (which can be used as an inverter by forcing its operation in the 

saturation mode and using the negative output of the cell) in Figure 1.5 and Figure 1.6 

respectively. A parasitic inductance of InH is used to calculate the DSN while a parasitic 

capacitance of 2pF is used in Eqn. (1.2). The CNN circuit clearly significantly suppresses 

the noise in both cases. The advantage of using CNN arrays becomes greater as the circuit 

size increases.

tim e (ns)

Figure 1.5 Hspice simulation of d i / dt for a digital inverter and a CNN cell.
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Figure 1.6 Hspice simulation of dv /  dt for a digital inverter and a CNN cell.

In addition, CNN arrays permit a direct trade off between speed and cross talk (see 

Section 2.3 for details). By increasing the integration time constant, the slope of the output 

voltage is decreased and, hence, cross talk. Figure 1.7 shows Hspice simulations of the 

output voltage of a CNN for different time constants.

>
•7

Direction o f increasing RC22U 1

0 1 s 7 S0 4 6

time (ns)

Figure 1.7 Hspice simulation of a CNN cell output voltage for different time
constants.
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1.4 Existing CNN-based Arithmetic Circuits

Two CNN-based binary adders, the flat adder and the recursive adder, were previously 

introduced in [34] and [35] respectively. In the flat structure, the addition of two iV-bit 

binary numbers A = aNaN_ ]...a2a l and B = bNbN_ ]...b2b] is performed through

successive conversion of the given addition operation to another equivalent addition using 

the rules:

As a result of each conversion step, one digit of the result is obtained and, in the worst 

case, the complete result is obtained in N  + 1 steps. Implementing this algorithm in CNN 

required assigning a row of N  + 1 cells for each original operand. Considering that in the 

worst case N+  1 steps are needed to complete the addition, the network consisted of 

2(N+  1) rows. However, as addition proceeds, more digits of the first operand become 

zero and more digits of the second operand attain final value. Therefore, cells 

corresponding to these digits are not required in the CNN implementation. The optimized 

network structure consists of N(N  + 1) cells as shown-in Figure 1.8 for the addition of 

two 4-bit numbers. Two major drawbacks of this design are the huge silicon area required,

that increases with o{n~) , and consequently large power consumption.

c .
1 = 1
2 < i< N +  1

(1.5)

d-6)
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Figure 1.8 The flat binary adder.

To save on silicon area, the author implemented a recursive adder in [35] that requires four 

rows of N  + 1 cells. In this structure, the information is allowed to flow from the first two 

rows back to the last two rows. Unlike the flat structure which performs quite robustly for 

a wide range of template values, this parameter here should be chosen carefully to avoid 

divergence due to a potential race problem. The structure also lacks speed and stability 

due to the recursive operation as shown in the simulation of Figure 1.9. As addition 

proceeds, the height of the generated carries gradually falls. This indicates that the adder 

will eventually diverge from correct sum outputs for large operands. To alleviate this 

problem, the author suggested applying a positive velocity vector across the array from the 

LSB to the MSB. This was implemented by decreasing the value of the self-feedback 

factor a  by 0.05 per bit position. This fine-tuning method can work with MATLAB 

simulation as variables can be decremented virtually by any small value. However, its 

realization is almost impossible because the analog designer is restricted by the physical 

constraints imposed by the technology being used.
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Figure 1.9 MATLAB simulation of the recursive binary adder.

Our research work builds on the previous work introduced in [34] and [35] by providing a 

novel systematic paradigm for implementing digital arithmetic circuits using analog CNN. 

The design methodology presented in the following chapters takes into consideration the 

pitfalls of the previous designs and ensures convergence of the network while optimizes 

its speed, silicon area, and power consumption.

1.5 CNN-based Arithmetic Circuits Design Goals

There are three major design goals that need to be fulfilled for a practical and successful 

design of a CNN-based arithmetic circuit: Convergence, scalability, and compatibility. 

The first design goal corresponds to the continuous output feedback nature of the CNN 

while the other two design goals come from the wide spectrum of applications using 

arithmetic circuits and a wealth of arithmetic circuit designs available in the literature.

1. Convergence: This requirement ensures that the developed CNN-based arithmetic cir

cuits, after transient time, will always approach one of the stable equilibrium points, as 

will be discussed in Section 2.4.2.
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2. Scalability: Precision required for arithmetic circuits varies by function. Consider mul

tiplication as an example. At the low end, 8 bit words are used, as is the case in image 

compression algorithms, or 16 bits in more precise DSP tasks. At the high end, the 

word lengths in the IEEE double precision floating point standard are 53 bit and 64 bit. 

The scalability requirement ensures that arithmetic circuits with arbitrary sizes can be 

developed to meet the needs of specific applications.

3. Compatibility: The enormous collection of arithmetic circuit designs available in the 

literature places a stringent demand on new designs to provide backward compatibility. 

Instead of re-inventing the wheel, this requirement guarantees that the developed CNN- 

based arithmetic circuits can be used as embedded components in existing, more com

plex circuit structures without the need to re-design the whole circuit.

1.6 Thesis Overview

This research work explores the implementation of arithmetic circuits using arrays of 

analog circuits and the CNN computing paradigm, and also addresses mixed-signal 

applications where the presence of digital switching noise is a major problem. We thus 

describe a general technique for building low-noise digital arithmetic circuits using analog 

cellular neural networks, essentially implementing asynchronous digital logic with analog 

circuits. Each node in our asynchronous architectures uses controlled current sources 

driving into capacitors; providing both low current and voltage time derivatives (5 //5 r 

and 8 v /§ 0  and, as a result, reducing both instantaneous and time-averaged system and 

cross talk noise. In our approach, nonlinear templates are employed to perform the 

required arithmetic task without decomposing the arithmetic operation into primitive 

linear templates. Utilizing nonlinear templates facilitates performing medium complexity 

arithmetic operations with three major advantages. 1) Considerable reduction in 

processing time; since the arithmetic task is performed using one nonlinear template, the 

time needed to load/unload different templates with their inputs and initial conditions is 

eliminated. 2) Simplification of the circuit; this is because the control logic traditionally 

required to control template operations is no longer needed. 3) Decrease in power 

consumption; this result comes straightforwardly from the fact that power consumption is
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directly related to processing time. Therefore, reducing processing time translates into 

lower power consumption. Moreover, removing the control logic from the circuit structure 

reduces power consumption further by the amount needed by the control logic.

To demonstrate the effectiveness of our methodology, we have designed and simulated 

CNN arrays for arithmetic operations using binary, binary signed-digit, and double-base 

number systems. First, we re-defined the arithmetic task in the given number system using 

continuous functions which are mapped into nonlinear templates. We then designed and 

simulated a CMOS circuit implementation of the arithmetic operation. We have 

demonstrated that the designed structures, regardless of the number system being used, are 

quite modular which enables the accurate evaluation of the performance of larger 

networks. We have also presented other novel contributions including the introduction of 

a new class of CNN featuring a 3-state transfer characteristics and an innovative self- 

programmable array using a novel feedback connection between groups of cells. Finally, 

we have analyzed the performance of the designed circuits in terms of power 

consumption, delay, and area. We have finally illustrated the efficiency of our designs to 

suppress noise by comparing them to standard digital implementations.

1.7 Thesis Organization

The thesis is organized as follows. Chapter 2 provides the basic theory of CNN arrays 

required to understand the work presented in subsequent chapters. Chapter 3 to Chapter 5 

introduce general procedures to develop arithmetic circuits for the three number systems 

described in Section 1.6. Each chapter analyzes the corresponding arithmetic operations, 

defines the required templates, and provides Hspice simulations to demonstrate 

convergence of the designed circuits. We also present the designs of multi-bit adders and 

multipliers to illustrate the scalability and compatibility of each algorithm in more useful 

arithmetic tasks. Each chapter also examines the impact of the corresponding design on 

system noise using extensive Hspice simulations. Finally, Chapter 6 summarizes the work 

and provides a detailed comparison of the performance of each design in terms of noise, 

area, delay, and power consumption. Chapter 6 also presents the final conclusions.
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Chapter 2
Cellular Neural 
Networks: An 

Overview

Cellular Neural Network (CNN) arrays represent a massively 

parallel asynchronous computing paradigm that is a hybrid of 

Cellular Automata (CA) and Artificial Neural Networks (ANNs). 

CNN arrays take advantage of both worlds: their local 

connectedness makes the arrays well suited for VLSI 

implementation, and, similar to ANNs, they provide a natural 

parallel processing paradigm. The CNN regular grid-like structure 

also makes it a good candidate for online solutions of systems of 

first order non-linear differential equations. CNNs represent an 

analog nonlinear dynamic system operating in continuous or 

discrete time. When considered as a system, a CNN is characterized 

by the fact that information is directly exchanged just between 

neighboring neurons. Of course, this characteristic does not prevent 

the capability of obtaining global processing. Cells that are not in 

the immediate neighborhood have an indirect effect because of the 

propagation effects of the dynamics of the network. By exploiting 

locality of connections, electronic IC and optical or electro-optical 

implementations become feasible, even for large nets, which is the 

main advantage of CNNs over ANNs. Since the research work 

presented in this thesis is built on CNN arrays, the purpose of this 

chapter is to acquaint the reader with basic CNN theory needed for 

subsequent chapters. A brief history of CNNs and the scope of

Cellular Neural Networks: An Overview 
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applications is given in Section 2.1. The spatial layout and restrictions on connections 

between neighboring cells are described in Section 2.2. In Section 2.3. mathematical 

equations defining the behavior of a CNN cell are reviewed and a general circuit 

architecture of a CNN is given. The dynamics of CNNs is discussed in Section 2.4, and 

modes of operation and notes on CNN stability are also presented.

2.1 CNN History and Applications

Since their introduction in 1988 by Chua and Yang [38][39], Cellular Neural Networks 

have attracted considerable attention. They are well suited for image processing 

applications, because of their two-dimensional structure and local interconnections, which 

are typical characteristics of many image processing algorithms [40]-[42]. Enormous 

advances have been made by many researchers in this field [43]. While software 

prototypes prove the potential of CNN [44]-[46], a great deal of research has also been 

reported in hardware implementations which can be used for real-time applications. These 

implementations include transconductance-mode based processing elements [47], 

switched-current signal processing elements [48], discrete-time implementations [49] [50], 

current-mode implementation [50][51] and more [52]-[54]. The first CNN realizations 

were designed to perform one specific function in image processing or classification, such 

as edge detection [40], connected component detection [55], noise removal [39], or hole 

filling [56]. More complex image processing functions are also reported including image 

and video compression [57]-[60], image rotation [61]-[62], nonlinear image filtering [63]- 

[66], image enhancement [67]-[69], image restoration and reconstruction [70]-[72], image 

segmentation [73]-[75], pattern matching and classification [76]-[78], and character/face 

recognition [79]-[81]. CNN arrays have also been applied to a wide variety of important 

tasks in robot navigation [82]-[84], motion detection and estimation [85]-[88], defect 

inspection [89]-[92], satellite communication and secure transmission systems [93]-[97], 

analysis of brain electrical activity in epilepsy [98]-[100], cryptography [101], bionic 

eyeglasses [102]-[l 03], and solving partial differential equations and optimization 

problems [104]-[l07], just to mention a few. More recently, researchers investigated 

programmable CNNs to provide flexibility in implementing analog parallel array
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processors [53],[108]. In other work, the slope and the threshold of the activation function 

has also been made tunable [109]-[110]. Because of the thresholded activation function at 

the output of the CNN structure, many image processing applications have traditionally 

been based on black and white images even though CNN arrays, by their nature, are 

analog, continuous processing systems. However, grey/color based applications have 

recently started to emerge [61], [66], [111]-[113]. From a hardware point of view, the 

local connectivity of the CNN array lends itself to practical VLSI implementations. The 

addition of logic functions results in a programmable analog/logic array computer capable 

of performing algorithms that combine the strengths of analog template processing and 

logic operations [41],[114]. In fact, CNN arrays sets the platform for a new algorithmic 

style based on the spatio-temporal properties of the array. The key elementary instruction 

is a spatio-temporal transient generated by a two dimensional nonlinear dynamic 

processor array. This basic instruction resembles the typical convolutional operator used 

in image processing applications.

2.2 CNN Structures

The CNN is intrinsically defined spatially; generally only 1- or 2-dimensional space is 

considered, so that the CNN can be realized physically. The most common types of CNN 

can be characterized as a 2-D planar array of dynamic cells (neurons) with rectangular,
-̂1, .L

triangular or hexagonal geometry. Any cell on the / row and /  column, C(i,j), is 

connected only to cells within a small neighborhood, denoted as N(i,f). For hardware 

implementations, and due to the wiring complexity involved, most often neighborhoods 

are of radius 1; although, for software simulations, a radius of 3 or more has been reported. 

As an example. Figure 2.1 shows two different CNN grids with a neighborhood of radius 

1. Note that in this figure, each cell in the rectangular grid is connected to the inputs and 

outputs of 9 cells, including to itself, while cells in the hexagonal grid are connected to the 

inputs and outputs of 7 cells for the same radius.
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Figure 2.1 Examples of rectangular and hexagonal CNN grids with neighborhood 
of size 1. Light grey cells belong to the neighborhood of the dark grey cell.

In a CNN, cells may be all identical or they can belong to a few different types as is the 

case for biological neurons. The interconnection strengths or connection weights are 

usually spatially invariant. However, more than one connection network may also be 

present, with a different neighborhood size to permit short range interactions and 

subsystem connections. To ensure that the cells on the perimeter of the CNN grid achieve 

proper convergence, dummy border cells (hatched cells in Figure 2.1) are added on the 

border of the processing array to simulate interaction with imaginary cells outside the 

CNN grid. The size of the dummy border depends on the neighborhood radius. For 

example, for a rectangular array with a neighborhood of radius 1, the width of the dummy 

border would be 1 cell as depicted in Figure 2.1. A dummy cell outputs a constant voltage 

that a properly converged computing cell would produce if it were in its place. A dummy 

cell would also receive an input signal voltage as if it were a member of the array. 

Therefore, a cell on the perimeter of the CNN array uses the input signal voltage and 

dynamic output voltage of neighboring cells as well as the static output and signal 

voltages of the dummy cells to arrive at the proper final state. The border cells are treated 

as members of the array for initialization purposes and template implementation, but are 

not considered in the final state analysis.

All cells in the CNN operate in parallel and when one computing cell is allocated to each 

pixel in the 2D input signal, the CNN achieves very high signal processing speeds. 

Although the cells are only locally connected, the network is able to perform global
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operations on the 2-D inputs. This is possible because the missing global connections are 

replaced by a time-multiplexing of the connections and the time-propagation of the 

information through the network from cell to cell.

2.3 CNN Cell Architecture

CNN cells are multiple input - single output nonlinear processors that consist o f linear and 

nonlinear circuit elements. Each cell is characterized by an internal state variable Xp that 

is bounded for all time t > 0. Every cell also has a constant external input uj and output y p  

The evolution and dynamics of the state of cell ij is described by the first order nonlinear 

differential equation:

ca/o = - jk/')+ I A * + I v + !
*  C £  N,J C £  A'„

and output function:

= j ( M ' ) + 1 | - K / ' ) - l | )  (2.2)

where I  is a local value called the bias, and Ny is the /--neighborhood of the cell C(/j) 

which contains all cells within a radius r. The output nonlinearity / / /  is a piecewise 

linear function;/is linear in the unit range [-1,1], and outside the unit range the output 

saturates to +1 for positive state values and to -1 for negative state values, as shown in 

Figure 2.2. Ac and Bc are two generic parametric functionals. The Ac template 

connections represents the inter-cell connection weights and provides an output feedback 

mechanism. The Bc template connections in turn represents connections to the input and 

serves as an input control mechanism. Specific entry values of the bias term and the 

feedback and control templates are application dependent and, most often, are identical for 

all cells (so called cloning templates). The constant bias, I, and the cloning templates 

determine the transient behavior of the cellular nonlinear network.
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Figure 2.2 CNN cell activation function.

The solution to this system of equations is the classical exponential function of a first 

order system. The maximum convergence rate of a cell is determined by the integration 

time constant CXRX. Therefore the speed of the CNN array can be controlled by adjusting 

this value. This property is crucial in controlling the cross talk (see Section 1.3).

In Figure 2.3, a block diagram that implements Eqn. (2.1) is represented. The cell sums 

the incoming signal from the neighbors, itself, and the constant bias of the I  template and 

integrates them to compute its internal state. The cell also sends two signals to each of its 

neighbors: one signal is its output multiplied by a weight from the Ac template; the second 

signal is its input multiplied by a weight from the Bc template.

Feedback  m atrix

A ctivation  function

output̂ ,;
state .v,

X,(0) state X,
Control matrix

Figure 2.3 A block diagram representation of a CNN cell.
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The schematic of an electrical implementation of a CNN cell is shown in Figure 2.4. The 

linear capacitor Cx and the linear resistor Rx constitute a lossy current integrator. The 

output yij is generated by a nonlinear voltage controlled current source (VCCS) Iy across 

the output resistor Ry. The VCCS Iy is controlled by the state voltage xiy The linear VCCS, 

Acyc and Bcuc, generate current signals that are sent to the states of the neighboring cells 

(and itself). The /  template is realized by the independent current source I.

C —1— 4 v

Figure 2.4 Schematic of an electrical implementation of a CNN cell.

2.4 CNN Dynamics

Each cell in a CNN is a non-linear dynamic system capable of processing continuous 

signals in either continuous-time or discrete-time modes. Continuous time (CT-CNN) are 

nonlinear dynamic systems described by differential equations. Discrete time (DT-CNN), 

with advantages similar to CT-CNN in terms of local activity etc., is described by 

nonlinear finite difference equations [115]. In most cases, the network is non-Markovian; 

i.e., the future internal state depends also on the past history of the system [116]. In the 

special case of a time-variant CNN, all the templates, neighborhoods, and parameters can 

also be a function of time. This complex dynamic phenomena of CNN arrays has been 

studied by many researchers [117]-[119].

2.4.1 Modes of Operation

The CNN can operate in two modes: Input-driven mode and autonomous mode.
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In input-driven mode, the signal to be processed is applied to the inputs of the CNN cells 

and the states of the CNN cells are set to the initial conditions. After transient time, the 

results of the computation can be taken from the steady state equilibrium values and the 

outputs of the cells.

In autonomous mode, the Bc template is set to zero and the inputs of the CNN network are 

not used. The signal to be processed is applied as the initial conditions of the network. The 

result of the processing operation is contained in the steady state equilibrium values and 

the outputs of the network.

2.4.2 Network Convergence

It is well known that the stability of CNN arrays is a critical characteristic for most 

applications [120]- [123]. The stability criteria requires that the state of each cell should be 

bounded for all time / > 0 and, after the transient has settled down, a cellular neural 

network must always approaches one of its stable equilibrium points. This last fact is 

relevant because it implies that the circuit will not diverge or oscillate. The rate of 

convergence is determined by many factors including the amount of current that is 

flowing into the cell, the capacitor Cx, and the effecvtive resistance Rx in parallel with Cx. 

The stability of CNN networks is analyzed in [38] and [124] by defining a Lyapunov's 

function which expresses the generalized energy present in the system. The properties of 

this function imply that the states of the network will always evolve towards a constant 

DC equilibrium value. Moreover, if the self-feedback term A n = a  satisfies the

condition: a  > 1 / RX, each cell state settles at a stable equilibrium point with a magnitude

greater than 1. This means that the outputs of the network will be binary because of the 

nonlinear activation function. This characteristic makes the CNN very attractive for some 

pattern extracting applications, such as edge detection and connected component 

detection, where a binary output image is acceptable. In such cases, the issues of linearity, 

precision, and offsets of the output values are not relevant because the state variables are 

not of critical importance [51],[114]. However, in some cases, a CNN with linear 

continuous observable outputs is required, for example, to build a real time control system
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or to obtain an output image with multiple grey or color levels. Since the cells outputs are 

limited by the activation function, state variables can be used as continuous outputs [111].

2.5 Summary

In this chapter, the basic theory of cellular neural networks is presented. A brief history of 

CNN and the horizon of applications available in the literature is also given. The most 

common types of CNN can be defined spatially as a 2-D planar array of dynamic cells 

with rectangular, triangular or hexagonal geometry. Dummy border cells are usually 

added on the border of the processing array to ensure that the cells on the perimeter of the 

CNN grid achieve proper convergence. The behavior of the CNN cell is expressed as a 

first-order differential equation and a functional schematic with continuous feedback is 

analyzed. The dynamics of the nonlinear systems are discussed and differences between 

input-driven mode and autonomous mode are explained. The stability criteria of these 

continuous feedback systems requires that the network should always evolve towards a 

constant DC equilibrium value.
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Chapter 3
Binary Arithmetic 

Using CNNs

This chapter presents an intriguing technique for building binary 

arithmetic circuits using analog cellular neural networks. The 

developed circuits also exhibit very low system noise because of 

the smooth dynamics of the interconnected nonlinear analog cells. 

Moreover, cross-talk can be controlled by adjusting the RXCX 

integration time constant of the cell, as discussed in Section 1.3. 

The new designs reduce the peak system noise by up to 57dB and 

cross talk by about 20dB when compared to traditional CMOS 

digital counterparts, developed in the same 0.35pm CMOS 

technology. The chapter is organized as follows. In Section 3.1, the 

binary number system is briefly reviewed and the binary addition 

algorithm is explained. A systematic procedure to implement a 1- 

bit binary full adder using an array of analog CNN cells is 

introduced in Section 3.2. The binary addition algorithm is first 

examined. The sum and carry functions are defined using new 

continuous functions. This facilitates implementing the sum and 

carry functions using simple basic analog circuits which is 

discussed subsequently. CMOS implementation of the full adder is 

then presented. The convergence of the full adder for all possible 

inputs is shown using comprehensive Hspice simulations. This last 

property guarantees the stability of larger arithmetic networks. The 

scalability of the full adder is addressed by designing a 32-bit
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CNN-based binary adder in Section 3.3. The compatibility of the full adder design with 

existing complex structures is discussed in Section 3.4. The design of a 32x32-bit binary 

multiplier is presented to demonstrate that the new full adder can be embedded in existing 

architectures without modifying the original circuit. Noise performance of the new 

designs is also addressed. The chapter is summarized in Section 3.5.

3.1 The Binary Number System: Overview

3.1.1 Definition

The binary number system is a weighted number system in which any algebraic value X  

can be represented by an n-bit vector as:

n - l

X =  2 > x 2'' (3.1)
i =  0

where x j s  [0,1 ] and the algebraic value X  is bound by 0 < X<  (2” -  1).

3.1.2 Binary Addition

Binary addition is the most basic function of binary arithmetic because other binary 

arithmetic operations can be decomposed into primitive operations performed using 

binary addition. For example, binary subtraction can be calculated by adding the minuend 

to the 2's complement of the subtrahend and multiplication can be obtained by adding the 

multiplicand to itself a number of times equal to the multiplier. As with decimal addition, 

when the result of adding two binary bits at position i exceeds the value of the binary radix 

(2), a carry out is produced and added to the next place z+1 as a carry in. This process is 

shown in the binary addition example of Figure 3.1. The example shows the addition of 

two 5-bit numbersX=\2 and 7=23.
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5 4 3 2 1 0
2 2 2 2 2 2 weight

1 1 1 1 1  carry

0 0 1 1 0  1 x
+ 0 1 0 1 1 1  Y

=  1 0 0 1 0 0 5

Figure 3.1 An example of binary addition.

The addition process described above can be made modular by using a functional unit 

called a full adder (FA). The FA shown in Figure 3.2-a accepts three binary inputs x,-, y h

and c/, and generates two binary outputs 5;- and C/+1. The operation of the FA can be

described using the following equation:

x i + y i  + c i = 2 c i + i + Si (3 -2 )

The solution to Eqn. (3.2) is given by:

si = (xi + yi + ci)m o d 2  (3 J)

c/+ i = | > / +J'I- + cf) / 2 J

where \_a J represents the largest integer value such that \_a J < a .

Since each FA exchanges binary values with its immediate neighbor full adders only, one 

can create any arbitrary size w-bit parallel binary adder by cascading n full adders together 

as shown in Figure 3.2-b.
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y, x,
M

FA •  •  • FAFA FA

Figure 3.2 Block diagram of a binary adder: (a) 1-bit full adder, (b) /2-bit binary
adder.

3.2 Designing a 1-bit Binary Full Adder Using CNN 
(CNNBFA)

In the CNN paradigm, developing a certain function or operation means to design 

template connections, both output feedback template and input control template, as well as 

the bias to each cell so that, when applying these templates to the CNN network, the 

output of the network corresponds to the desired function applied to the input. Binary 

arithmetic can be implemented on CNN arrays by decomposing the arithmetic operation 

into a set of primitive Boolean functions. Each Boolean function can be mapped into a set 

of linear templates as described by Galias [126]. These linear templates would be applied 

in sequence, each for a finite time, to obtain the final output of the arithmetic operation. 

Another method to implement binary addition using recursive nonlinear templates is 

described in [34], However, the network proposed is sensitive to template values and 

diverges for operands larger than 8 bits. In this section, a novel method to implement 

binary addition using nonlinear templates is introduced. The algorithm guarantees stability 

of the operation and the scalability of the CNN network to perform addition of operands of 

arbitrary size is discussed in Section 3.3. Binary multiplication using this technique is 

addressed in Section 3.4.
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3.2.1 CNNBFA Templates Design

The objective here is to describe the sum and carry outputs of the binary addition 

operation described by Eqn. (3.3) as continuous (analog) functions of the values of the 

input bits x,-, y h and cr Thereupon, one can use the new continuous functions as the 

templates connecting cells in a CNN network. The binary sum function given in Eqn. (3.3) 

can be re-written using the XOR logic function as:

si = x i @yi @ci (3.4)

The logic XOR function can be defined in the continuous analog domain as the absolute of 

the difference between the two inputs:

x j @yi = (3.5)

Then the binary sum function can be directly mapped into the continuous analog domain 

by substituting Eqn. (3.5) into Eqn. (3.4) twice yielding:

si = IK '-T /I -cJ  (3.6)

Now consider a CNN implementation of the 1-bit binary full adder shown in Figure 3.2-a. 

Each of the output variables, 5/ and can be implemented using one CNN cell. The 

input variables, X;, y-P and cr can be applied as input signals to the CNN network. The 

input signals must be binary voltages for design compatibility with standard digital 

circuits. However, employing current-mode circuits can substantially reduce circuit 

complexity and interconnects. For example, adding two signals in current-mode can be 

performed with a wired sum without active devices. A current-mode CNN cell can act as 

an input buffer that accepts voltage inputs and produces current signals for internal

processing. Observe from Figure 3.2-b that the carry output from weight 2' is the same as

the carry input to weight 2'~' and there is no need to use a CNN cell for the carry input. 

The final CNN grid is shown in Figure 3.3-a. With this mapping in mind, the template 

connections for the binary sum function of Eqn. (3.6) can be written as:

B inary A rithm etic U sing C N N s D esigning a  1-bit B inary Full A dder U sing C N N  (C N N B F A ) 29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U niversity o f  W indsor

Aij:ki(yki(t) )  =  P  • | | y / + 2 , / 0  - ^ + 3 , 7 ( 0 1  - y i+ w ( 0 |  ( 3-7)

where P is a constant chosen to speed up the transition.

The binary carry function of Eqn. (3.3) can be mapped into the continuous analog domain 

using a simple summing node where all the currents from the involved cells are summed 

together. The thresholded output nonlinearity of the CNN cell can be utilized to 

implement the floor function. However, this requires forcing the CNN cell state voltage to 

settle at a value outside the linear range [-1,1]. This can be achieved by subtracting a unit 

current instead of dividing by two in Eqn. (3.3). The new equation describing template 

connections to the carry cell can then be written as:

(3.8)

c,-t

x,

y.

CNNBFA

“ r ~
s ,

b

Figure 3 3  Representation of the CNN-based 1-bit full adder: (a) CNN grid, (b)
block diagram.

3.2.2 CNNBFA CMOS Basic Building Blocks

The CNNBFA shown in Figure 3.3 consists of four CNN cells that are connected together 

using the templates described by Eqn. (3.7) and Eqn. (3.8). The templates can be 

synthesized using several primitive current-mode components. Then the CNNBFA can be 

constructed by connecting the four basic CNN cells using these primitive current-mode 

circuits. The basic building blocks of the CNNBFA are:
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Wired-sum: The most attractive feature of current-mode logic circuits is that arithmetic 

summation, including polarity, of analog currents can be performed by means of a simple 

wired connection without active devices. From Kirchhoff s current law, the current I  in 

Figure 3.4 is given by:

/ = / , + / 2 (3.9)

This property reduces interconnection complexity and the goal in the design of the 

current-mode circuits is to maximize the usage of this operation so that the resulting 

arithmetic circuits become quite simple.

/.

Figure 3.4 Schematic of a current-mode summing node.

Current source: A current source delivers one given level of current (unit current). 

Current sources are designed by a pMOS or an nMOS transistor as shown in Figure 3.5. 

The current level is adjusted by the transistor ratio W 'L  and the gate reference voltage. In 

the event that different current levels are required in other sections of the circuit, current 

mirrors may be adopted as will be discussed next.

Figure 3.5 Schematic of current sources: (a) nMOS current source, (b) pMOS
current source.
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Current mirror: Current mirrors constitute the main interconnections between cells and 

the speed of the circuit depends largely on the speed of the current mirrors. They are used 

for signal distribution by generating replicas of the input current. A replica can be scaled 

by using an appropriate output and input W^L ratio. Current mirrors are also used for 

inverting the current direction. The simple nMOS and pMOS current mirrors shown in 

Figure 3.6 are used in the design of the CNNBFA. The nMOS current mirror is used for 

producing replicas while the pMOS type is used for scaling and inverting direction. The 

replicas are given by:

7;- = m j  (3.10)

where ml is the scaling factor and is determined mainly by the W 'L  ratio of the input and 

output transistors.

ba

Figure 3.6 Schematic of simple current mirrors: (a) nMOS current mirror, pMOS
current mirror

Subtractor: Subtraction can be viewed mathematically as addition of the minuend and 

the negative of the subtrahend; I  = /, + ( - /2) . The realization of a subtractor can be 

achieved using a wired-sum and a simple current mirror (to invert the direction of the 

subtrahend) as shown in Figure 3.7.
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/

/  T

Figure 3.7 Schematic of a subtractor.

Absolute function: For correct operation of a uni-directional current-mode circuit, the

input current should flow in a certain direction. The current output of a subtractor depends 

on the values of the two inputs. If the minuend is less than the subtrahend, the output 

current will be negative; i.e., flows in the opposite direction. The design of the CNNBFA 

uses the absolute function presented in [127], and depicted in Figure 3.8 for convenience, 

to force the current into the correct direction. The current output of the absolute function is 

given by:

(3.11)

/

Figure 3.8 Schematic of absolute function.
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Activation function: The central building block in CNN circuits is the cell and the core 

of the cell is the activation function. The state-to-output converter with a current output 

presented in [128] is used in the design of the CNNBFA. Note in this implementation, 

shown again in Figure 3.9, that one side of the differential pair is used for the 

implementation of the nonlinear activation function and the other side is used for signal 

distribution to the neighbor cells. The output of the circuit is given by Eqn. (2.2).

The CNNBFA consists of four CNN cells as shown in Figure 3.3-a. The two input rows 

function as input buffers to convert binary input voltages into currents for internal 

processing by the other two rows. The template connections for the sum function in Eqn. 

(3.7) can be realized using basic building blocks presented in the previous section. The 

complete CNN sum cell schematic with connections to neighbor cells is shown in Figure

T

Figure 3.9 Schematic of basic CNN cell.

3.2.3 CNNBFA CMOS Implementation

3.10.
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M12Ml  1 M7 M6 MlM2

M3M8

M9 M IS M5M10 M16 M17 M4

Figure 3.10 Schematic of the CNNBFA sum cell with connections to neighbors.

The operation of the circuit can be directly described using Eqn. (3.7) as follows. The 

input signal representing y-t is subtracted from the input signal representing x-t using the 

current subtractor circuit of M l-M2. The absolute of the output of the subtraction is 

obtained using the absolute function generator of M3-M5 and mirrored using the current 

mirror of M6-M7. This last operation inverts the direction of the signal so that the second 

subtraction operation in Eqn. (3.7) reduces to merely addition of the output of the current 

mirror M6-M7 and the input signal representing cr The absolute of the sum signal is first 

obtained using the second absolute function generator of M8-M10 and then mirrored 

using the current mirror of Ml 1-M12. The direction of the output current of the current 

mirror Ml 1-Ml 2 forces the output of the CNN cell to take one of the two binary values 0 

and 1.

The synthesis of the carry function given in Eqn. (3.8) is simpler than the sum function 

because it only includes wired addition of current signals. Therefore, there is no need to 

use absolute function generators. The carry output is also expected to settle down to the 

final value before the sum output because the number of devices in the critical path is less. 

The carry cell with template connections to neighbor cells is shown in Figure 3.11.
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Ml M2 M5 M6

Mi lM9M3 M4 M10

Figure 3.11 Schematic of the CNNBFA carry cell with connections to neighbors.

The operation of the circuit comes directly from the carry function of Eqn. (3.8). The three 

input signals x-p y-t, and c-t are summed together. The sum of the signals is mirrored using 

the current mirror M l-M2. A unit current, implemented using an nMOS current source, is 

subtracted from the sum of the three input signals. The rest of the current is drained by 

transistor M3 and mirrored again using the current mirror M5-M6 so that the output of the 

CNN cell takes one of the two binary values 0 or 1.

3.2.4 CNNBFA Hspice Simulation

The CNNBFA shown in Figure 3.3 has three binary inputs (xh y h and cz) and two binary 

outputs (sz, and cz_i). To test the design for correct network operation, a truth table of the 

functionality of a 1-bit binary full adder is constructed as shown in Table 3.1. The truth 

table is divided into four sections according to the number of logic “ Is” in the input 

patterns. A test circuit is designed using Hspice and parameters from 0.3 5 pm CMOS 

process technology. The inputs from the truth table are applied as a test bench to the 

CNNBFA and the output signals are probed for plotting. The worst case delay of the 

outputs of Hspice simulations of each section in the truth table is plotted in Figure 3.12. 

The squares on the left side of the graph represent the input signals while the squares on 

the right side represent the output signals. Logic “1” is represented by a filled square and 

logic “0” by an empty square. The delay for the sum and carry signals was measured as the 

time it takes the output signal to rise from 10% to 90% of its final value. The worst case
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delay was measured as 2.2,5ns and 1.65ns for the sum and carry signals respectively. 

Hspice simulations also show that the network is stable and the outputs monotonically 

approach their correct steady state values. This also guarantees that multi-bit adders, 

discussed in the next section, will also converge since the CNNBFA units are connected to 

each other through the carry signal which is stable in itself.

Table 3.1 Truth table of a 1-bit binary full adder.

C,
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
1 0 0 1 0
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

0 OS 1 1.5 2 2.5 3 3.5 4

time (ns)

Figure 3.12 Hspice simulation of the CNNBFA.
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3.3 CNNBFA Design Scalability

The CNNBFA can be used as an enabling building block to design binary adders with 

arbitrary sizes. An rc-bit binary adder can be obtained by cascading n CNNBFA units as 

shown in Figure 3.13. Similar to the traditional 1-bit digital full adder, the carry output 

cl+ 1 from the CNNBFA in position i is connected to the carry input c, of the CNNBFA in 

position z'+l. The number of CNN cells required by the n-bit binary adder is 4n because 

each CNNBFA uses four CNN cells.

V ,  • • •  C2 " CNNBFACNNBFACNNBFA

Figure 3.13 Block diagram of an w-bit CNN-based binary adder.

3.3.1 A 32-bit CNN-based Binary Adder

To prove the scalability of the CNNBFA, a 32-bit CNN-based binary adder is designed. 

Hspice simulations using random patterns of input signals were carried out and the outputs 

of the designed adder were verified. It is known, however, that the sum and carry outputs 

at position i depend on the carry input from position z'-l which in turn depends on the carry 

input from position i-2 etc. This means that the worst case for the CNN network 

convergence (and maximum delay) would be to add two binary numbers that force the 

cany to propagate all the way from the least significant bit to the most significant bit. 

Hspice simulations that reflects this situation are shown in Figure 3.14. The figure shows 

the addition process of a small part of the 32-bit adder to make the figure readable. The 

corresponding operands are X=01111111 and 7=00000001. The simulations demonstrate 

that the 32-bit CNN-based binary adder always converges to the correct sum outputs even 

for maximum carry propagation.
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Figure 3.14 Hspice simulation of an 8-bit section of the 32-bit CNN-based binary
adder.

3.3.2 Impact of the CNN-based Binary Adder on Substrate Noise

The amount of switching noise is calculated as the product of the effective parasitic 

inductance and the rate of change of the instantaneous power supply current (i.e., the 

current drawn from the power supply by the circuit under test). The parasitic inductance is 

mainly determined by the specific layout of the circuit and the process technology used to 

implement the circuit. In order to make suitable comparisons, we make the assumption 

that the parasitic inductance is identical for both the CNN and CMOS circuits and so the 

instantaneous noise voltages are given by Eqn. (3.12):

v C A ' .V  =  ^ S i c . v . v /  5 /  . . .(j.12)
v CMOS ~  L § iCMOS/ ^ t

If we use a measure of noise power as the power dissipated in a given resistor, R, then we 

can compute the ratio of this noise power for both the CNN and CMOS noise "sources". 

Expressing this in decibels (dB) we find the effective power ratio is given by Eqn. (3.13):
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' W / c » '  = 2°'log (8t ~ V/̂ f) dB
\0 V iCMOS  0>T;>)

= (2 0  • logj^S/^Y y/S/)) -  (2 0  • log10(8/c ,wos/ 80)

In order to better demonstrate the noise differences as a function of time, we will provide 

separate graphs of the two computations shown in the lower expression of Eqn. (3.13). 

The effective power ratio will be understood to be the difference between the two graphs. 

As an aside, we note that although most calculations of noise are statistically based (where 

there is often an assumption of stationarity), in our case we are very interested in the time 

domain behaviour of what is non-stationary noise, since the switching noise may be 

responsible for circuit errors at specific times (such as the incorrect latching of values in 

registers at high switching noise events such as clock rise and fall). By taking worst case 

time domain values we can make judgments on the relative merits of CNN circuits versus 

CMOS circuits at these specific worst-case times.

In this section, the switching noise of the designed CNN-based 32-bit binary adder is 

compared to the switching noise of a 32-bit standard digital binary adder by monitoring 

the instantaneous power supply current [1]. Both adders are designed using the same

0.35um CMOS process technology and are operated at the same speed, the speed 

determined by the slower CNN-based adder. Several Hspice simulations were performed 

on random operands and the switching noise of each simulation was recorded. The worst 

case switching noise of the CNN-based binary adder is plotted against the worst case 

switching noise of the standard digital binary adder in Figure 3.15.

Notice from the figure that the switching noise of the CNN-based adder is less than that of 

the standard digital adder at all times during the addition process. This is because the 

CNN-based adder tends to smooth out the transitions while the standard digital adder 

changes states abruptly. The worst-case scenario for both adders is when the binary inputs 

(representing the operands) are first applied. During the first few nano seconds, switching 

noise increases drastically and then drops gradually as the addition proceeds and more bits
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settle to the final value. In these simulations, the CNN-based binary adder achieves an 

improvement of 50dB in switching noise over the standard digital binary adder.
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Figure 3.15 Switching noise of the CNN-based and standard digital 32-bit binary
adders.

The presence of parasitic capacitance between the switching transistors and the silicon 

substrate also increases the substrate noise. The amount of noise injected into the common 

substrate is given by Eqn. (1.2) as the product of the lumped parasitic capacitance and the 

rate of change of the switching node voltage. The parasitic capacitance is also a function 

of the specific circuit layout and the process technology used to fabricate the circuit. The 

cross talk of the CNN-based 32-bit binary adder is plotted against that of the standard 

digital 32-bit binary adder in Figure 3.16. The CNN-based adder suppresses cross talk by 

about 20dB over of that of the corresponding digital adder.
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Figure 3.16 Cross talk noise of the CNN-based and standard digital 32-bit binary
adders.

3.4 CNNBFA Design Compatibility

The developed CNNBFA has standard inputs (operands and carry in) and standard outputs 

(sum and carry out). This property facilitates using the CNNBFA in more complex circuit 

structures without the need to change the design of the existing circuit. As an example, 

consider designing a standard n x n  -bit carry-save tree multiplier. The structure of such a 

multiplier is shown in Figure 3.17.

The multiplier uses a carry-save reduction tree of binary full adders to reduce the n binary 

numbers of partial products into two binary numbers. The number of levels of the binary 

full adders used in the reduction tree is 0(\ogri) . The final stage of the multiplier is a 

binary adder that adds together the two binary numbers produced by the carry-save 

reduction tree. This specific application, demonstrates that the CNNBFA can be used as 

an embedded component in the carry-save reduction tree. It also illustrates that the CNN- 

based multi-bit binary adder designed in Section 3.3 can also be embedded in the final 

stage of the carry-save tree multiplier.
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Figure 3.17 Block diagram of a carry-save tree multiplier.

3.4.1 A 32x32-bit CNN-based Binary Multiplier

Using the CNNBFA and the CNN-based multi-bit adder, a 32x32-bit carry-save binary 

multiplier was developed. Extensive Hspice simulations were performed using random 

32-bit binary operands. The multiplier outputs of one of the simulations is shown in 

Figure 3.18 where, for the sake of clarity, only the first 16-bits are shown. The CNN- 

based binary multiplier converged for all simulations and all outputs monotonically 

approached their final state values.
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Figure 3.18 Hspice simulation of a section of the 32x32-bit CNN-based binary
multiplier.

3.4.2 Impact of the CNN-based Binary Multiplier on Substrate Noise

The n x « -bit carry-save binary multiplier presented in Section 3.4 consists mainly of 1- 

bit binary full adders, connected in a carry-save reduction tree, and a multi-bit binary 

adder in the final stage. Since the CNN-based addition process improves switching noise, 

as discussed in Section 3.3.2, one can conjecture that the CNN-based multiplier, as a 

collection of CNN-based addition processes, will also improve switching noise. The 

32x32-bit CNN-based carry-save binary multiplier developed in the previous section has 

binary inputs and outputs and the multiplication process itself is carried out using parallel 

CNN-based addition. To compare switching noise, a 32x32-bit standard digital binary 

multiplier was designed using the carry-save structure of Figure 3.17. Numerous Hspice 

simulations were performed on random operands and switching noise of each simulation 

was recorded. The worst case switching noise of the CNN-based binary multiplier is 

plotted against the worst case switching noise of the standard digital binary multiplier in 

Figure 3.19.

B inary A rithm etic U sing  C N N s C N N B FA  D esign C om patibility  44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U niversity o f  W indsor

-200

-180

-160

120

Digital Binary
■100

-40

-20

time (ns)

Figure 3.19 Switching noise of the CNN-based and standard digital 32x32-bit
binary multipliers.

The CNN-based binary multiplier achieves 57dB improvement in switching noise over the 

standard digital binary multiplier. This measurement was taken as the difference between 

the maximum values of the switching noise of the CNN-based multiplier and the digital 

multiplier during one multiplication process. As in the case of binary addition, the 

maximum values of switching noise occur at the beginning of the multiplication process 

when the binary operands are first applied. Then switching noise decreases as the 

multiplication proceeds toward the final product. The CNN-based multiplier smooths out 

the transitions over a longer period of time which helps reduce peak switching noise.

3.5 Summary of CNN-based Binary Arithmetic

In this chapter, a general procedure to perform binary arithmetic using analog CNNs was 

developed. New equations were derived to perform the sum and carry functions in binary 

addition. The new equations were defined as continuous functions to facilitate mapping 

them into the analog domain. The equations were synthesized using simple analog circuits 

including: summing nodes, current mirrors, and absolute function generators. Following 

the general procedure, a 1-bit CNN-based binary full adder (CNNBFA) was developed. 

The CNNBFA uses the derived sum and carry continuous functions to describe template
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connections to neighboring cells. Hspice simulations of the CNNBFA proved that the 

CNN network will converge for all possible binary inputs.

Similar to the standard digital 1-bit full adder, the CNNBFA accepts binary inputs 

(operands and carry in) and produces binary outputs (sum and carry out). This property 

gives circuit designers the ability to use the CNNBFA as an enabling building block to 

develop multi-bit CNN-based binary adders with arbitrary sizes. It also provides circuit 

designers with a full adder unit that can be embedded in existing, more complex, circuit 

architectures without the need to re-design the circuit blocks.

To illustrates the scalability of the CNNBFA, a 32-bit CNN-based binary adder was 

developed by cascading 32 CNNBFA units. The CNN-based adder converged for all test 

patterns applied to it. The smooth transitions of the CNN nodes achieved improvement of 

50dB in switching noise and 20dB in cross talk over standard digital adder operating at the 

same speed. A 32x32-bit CNN-based carry-save binary multiplier was also developed to 

demonstrate the compatibility of CNNBFA with standard circuit designs. Extensive 

Hspice simulations show that the CNN-based multiplier improves switching noise by 

57dB compared to a 32x32-bit carry-save binary multiplier implemented using standard 

digital logic. All circuits were developed using the same 0.35pm CMOS process 

technology.
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Chapter 4
Binary Signed-Digit 

Arithmetic Using 
CNNs

A novel methodology for building CNN binary signed-digit (BSD) 

arithmetic circuits using analog cellular neural networks is 

described in this chapter. The work extends the concepts developed 

in Chapter 3 to introduce an original application of CNNs to binary 

signed digit arithmetic. In these architectures, the signed-digit

radix-2  number representation with symmetrical digit set {1, 0 , 1 } 

is coupled with low-precision bi-directional current-mode analog 

components in a novel way that combines the computational 

capability of analog circuits and noise immunity of digital 

components. The structures use a new class of current-mode CNN 

that has three stable states to match the three values of the digit set. 

Although switching noise is the primary concern, the designs 

incorporate all the advantages of signed-digit arithmetic such as 

reduced circuit complexity and reduced routing area. The chapter is 

organized as follows. In Section 4.2, an overview of the binary 

signed-digit number system is given and the addition algorithm is 

explained. In Section 4.3, a practical technique to implement a BSD 

adder unit in the CNN framework is presented. First, a new class of 

CNN featuring a fundamental 3-state cell is introduced. This 

facilitates mapping the 3-valued number system naturally into the 

new class of CNN. Subsequently, the BSD addition algorithm is 

analyzed and new functions that govern connections to neighbor
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cells are defined. The design of a BSD adder unit is then presented and convergence is 

illustrated using Hspice simulations. The designs of a 32-digit CNN-based BSD adder and 

a 32x32-digit CNN-based BSD multiplier are presented in Section 4.4 and Section 4.5 

respectively. The impact of the new designs on DSN and cross talk is also examined. A 

summary of the work done in BSD is given in Section 4.6

4.1 Introduction

The design of high speed adders and multipliers has always been a challenging topic in 

computer arithmetic. The signed digit number system (SDNS) is a redundant number 

system that can be employed to further enhance the performance of the LNS computation 

[129], floating-point (FLP) multiplication-add fused (MAF) operation [130][131], 

complex multiplication [132], trigonometric function calculation [133], division [134], 

square rooting [135], online multiply-accumulate (MAC) operation [136], residue 

arithmetic [137][138], and integer multiplication [139]. The representation that has fewest 

nonzero digits is known as the canonic signed-digit (CSD) representation. It was shown in 

[140] that, on average, CSD uses 33% fewer nonzero digits than the binary number. This 

property justifies its adoption in high speed digital signal processing applications [141]. 

Canonic signed digit IIR/FIR filter coefficients result in a much smaller number of 

nonzero digits [142]-[144], By combining subexpressions occurring often in coefficients, 

the CSD representation can be used in design automation algorithms leading to quality 

solutions to Multiple Constant Multiplication (MCM) problems and efficient digital filter 

design [145]-[148]. Several types of programmable filter architectures have also been 

developed and implemented using CSD [149]-[151]. Solinas and Proos introduced one 

kind of SD representation with minimum joint weight, named the Joint Sparse Form (JSF) 

[152] [153]. Such a representation is useful in simplifying the circuits for the 

implementation of elliptic curve cryptosystems (ECC) [154]. The binary signed-digit 

representation (BSD) can be used in adder circuits to limit carry propagations to one 

position to the left by eliminating the dependency of the carry output function on the carry 

input signal [155]-[157], With limited cany propagation, operations can be performed in 

parallel for all digits of two arbitrary size numbers [137],[157][158]. This means that
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addition (and subtraction) of two BSD numbers can be performed in a constant time 

independent of the length of the operands. Consequently, fast computations can be 

performed in a parallel system. On the other hand, in a conventional ripple-carry adder the 

worst-case propagation delay is proportional to the size of the adder. This is because the 

carry may propagate from the least significant bit to the most significant bit. This 

advantage of BSDNS becomes more noteworthy in applications requiring arithmetic 

operations with large operand sizes [159]. Another important property of the BSDNS is 

that individual digits carry their own sign and separate sign information is not necessary. 

If joined with bi-directional current-mode circuits, this property can potentially reduce the 

amount of interconnect and routing complexities since multivalued signals convey more 

information than binary signals, thus requiring less amount of interconnects to transmit a 

similar bandwidth of information [160]-[162]. Efficient sign detection of the operands can 

further improve the performance of applications [163][164]. The choice of BSDNS in this 

work is made because a sufficient noise margin can be obtained using radix-2 SD 

arithmetic circuits compared to higher radix SD arithmetic circuits. Also, using high-radix 

number representations require complex analog components such as threshold detectors 

and comparators whose complexity approaches that of A/D converters. In addition, using 

analog CNNs permits a direct trade-off between circuit speed and power consumption, 

and therefore presents a design alternative to the pure digital circuit with fast-clocked 

pipelined registers with high instantaneous power consumption. Intuitively, reducing the 

instantaneous power consumption reduces switching noise; which is the ultimate goal of 

this research initiative. Obviously, analog circuits are not expected to equal the efficiency 

of power consumption of standard digital logic solutions [165], but in noise sensitive 

applications this should be an acceptable trade-off.

4.2 The Binary Signed-Digit Number System: 
Overview

4.2.1 Definition

The binary signed-digit number system, first introduced by Avizienis [157], is a weighted 

number system in which any algebraic value X  can be represented by an n-digit vector as:
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n -  1

(4.1)
/ = 0

where each digit, xh can assume one of the values in the symmetrical digit set 

L = {1, 0 , 1 }, and I = - 1 .

From the definition above, BSD is a ternary number where each digit x, carries its own 

sign, and there is no extra sign bit assigned to the number as a whole. An n-digit binary 

signed-digit number X  = [xw _ j, xn _ 2, .. -, x ,, x0] has the value:

where X  is bound by ~{2n -  1) < X  < (2n -  1) and the sign of X  is the sign of the most 

significant non-zero digit.

This sign symmetry is advantageous for arithmetic operations in that:

1. The representation for -X  of a BSD number A" can be obtained directly by changing the 

signs of all digits in X. For example, using primes to denote complementation, we have

(I)' = 1 ,  1' = I ,and O' = 0 .

2. Various signed arithmetic operations can be performed without special conversion 

techniques.

The BSDNS is called a redundant number system because a given number may have more 

than one signed-digit representation. For example, the integer 3 can be represented in

BSDNS by any of the 4-digit vectors: 0011, 0101, 0110, l l O l ,  l T l l . This property is 

valid except for the value 0 which has a unique representation; all digits equal to zero. The 

inherent redundancy of the BSD number representation allows limited carry addition and 

(by changing all the digit signs in the subtrahend) limited borrow subtraction. This

(4.2)
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facilitates totally parallel operations, with an 0 ( 1 ) time complexity of addition and 

subtraction of any length operands (i.e., independent of the word length, n).

4.2.2 BSD Addition

The objective of using the BSD addition algorithm is to reduce the addition time by 

reducing the length of the maximum cany propagation chain. The goal is to eliminate the 

carry propagation altogether. Given two BSD numbers, X  = [xn _ ,, xn _ 2, ..., x ,, * 0 ] and

Y = \yn_ \ ,y n_ 2 > - - y7], Ĵ 03 > where X  and Y are described by Eqn. (4.1) and x i,y i s  L ,

the addition of X and Y can be performed in parallel in three successive steps [165]. First, 

each digit x-t is added linearly to the corresponding digity-t to form the instantaneous sum 

digit z-v Second, the instantaneous sum digit z-t is used to form an intermediate sum w,- and 

a transfer digit t-r Finally, the sum digit s-t is obtained by linearly adding the intermediate 

sum digit w;- and the previous transfer digit That is, the transfer digit acts as a form of 

carry to the next position. These three steps can be summarized in the following set of 

equations:

z i =  Xi + Y i  (4 -3 )

2 ti + wi = z i (4.4)

5,-= w , . + (4.5)

where z;-e  {2 , 1 , 0 , 1, 2 }, wi e {1 , 0 , 1 }, and ti e {1 , 0 , 1 } are the linear sum, the 

intermediate sum, and the transfer digit, respectively.

To achieve parallel addition without carry propagation in BSD arithmetic, the last step in 

the algorithm should be performed without producing a carry. This means that final sum 

digit 5/ has to be retained within the digit set L. This can be obtained by imposing

restrictions on values of w;- in Eqn. (4.4). A problem arises only if z i = 1 and tiA is
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negative or z; = 1 and is positive. In this case. Eqn. (4.5) will generate a final sum 

digit 5; = ±2 (sj <z L). To solve this problem, the restrictions on values of w,- in Eqn.

(4.4) are such that w;- e {0,1} when z( _ , < 1 and wi e {1,0} when z; _ , > 1. These 

restrictions on w7- are summarized in Eqn. (4.6):

j  (z, = 2 )0 * ((z , = 1 )AND{zi_ , > 0))

0 (z, = 0)O*((z, = 1 )AND(zi_ , < 0))OR((zl = I )AND(zi_ , > 0)) (4.6)

1 (zf = 2)0/?((z;. = I^iVD(--._, < 0))

From Eqn. (4.6), the final sum s;- is determined by z-t and ziA independent of the other 

linear sum inputs. Therefore, the carry propagation is always limited to one position to the 

left. This property of the BSDNS allows fast parallel operation, and the addition time is 

independent of the length of operands n, as discussed earlier. An example of this BSD 

addition process is shown in Figure 4.1. The example illustrates the addition of two BSD 

numbers X  = -5  and Y = -1 9 .

2 2 2 2 2 2 weight

0 I 0 1 1 X

+ I I 1 0 1 Y

I 2 1 1 2 Z

1 0 I I 0 w
I I 1 1 1 T

= I 0 1 0 0 0 S

Figure 4.1 An example of BSD addition.
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Similar to binary addition, BSD addition can be made quite modular because the final sum 

at position i depends only on the inputs at position i and z'-l. Therefore, given the set of 

equations describing BSD addition (Eqn. (4.3)-Eqn. (4.5)) and the restrictions on the 

transfer digit summarized in Eqn. (4.6), one can create a functional BSD adder unit that 

accepts four inputs and f,-.j) and generates three outputs (w,-, Sj). However, the

linear additions of Eqn. (4.3) and Eqn. (4.5) can be realized in bi-directional current-mode 

circuits using summing nodes without active devices. A block diagram of the bi

directional current-mode BSD adder unit is shown in Figure 4.2-a where the block 

marked SDFA represents the restrictions on the transfer digit t-t of Eqn. (4.6). Now, 

designing a multi-digit BSD adder is made easy. To design an n-digit BSD adder, one can 

simply connect n BSD adder units as shown in Figure 4.2-b.

-/-i
SDFA

7,-. *,-i y,A x,.\

SDFASDFA
w

- - i

SDFA

Figure 4.2 Block diagram of a BSD adder: (a) 1-digit BSD adder, (b) «-digit BSD
adder.

It is worth mentioning that subtraction in the BSD number system is performed by a 

similar procedure. Noting that subtraction is essentially addition of the minuend and the 

negative of the subtrahend:

X - Y  = X +  (-Y)  (4.7)

Therefore, subtraction can be performed by changing the sign of all the digits of the 

subtrahend and adding the two operands together.
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4.3 Designing a 1-digit BSD Full Adder Using CNN 
(CNNBSDFA)

As was mentioned in Section 2.1, the nonlinear controlled current source in a CNN cell 

provides two stable states as shown in Figure 2.2. This property makes CNN a natural 

choice for applications characterized by 2-D binary outputs. The BSDNS, on the other 

hand, is a ternary number system and it is extremely challenging to naturally map BSD 

addition into the CNN framework. Although CNN arrays have been successfully used to 

process images with many grey/color levels, the BSDNS is different because it requires 

three distinctive stable states with sufficient noise margins between the states. This 

restriction guarantees stable and correct arithmetic operations. The two stable states of the

traditional CNN can be used to represent the digits 1 and 1 in the symmetrical digit set

{I, 0 ,1}.  Coding the digit 0 requires creating a third stable state at the center of the linear 

range of the original activation function. The ideal required 3-state transfer function is 

illustrated in Figure 4.3.

*„(/)

Figure 4.3 The required CNN cell activation function.

4.3.1 A 3-State CNN Cell

Current-mode circuits are analog in nature. There is no naturally available stable state 

because the currents flowing can take on any value. This kind of logic circuit is non

restoring, and it is often necessary to introduce some correcting circuits that will quantify 

the amount of current at any stage. In this section, a novel current-mode circuit design is
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introduced that provides three stable states using continuous feedback signals. The design 

utilizes a 3-input median selector which orders the input signals based on the 

instantaneous magnitude and then finds the value in the middle of the sorted list. In this 

section a brief analysis of the median extractor is given. A detailed analysis can be found 

in [166],

Given n real input values lnv i = 1 to n, there is always a permutation :t(z) of the indices 

such that the outputs, defined as Outi = I n ^ , are sorted by value:

O utl >Out2> .. .> O u tn (4.8)

If the number of input signals is odd, n = 2m + 1, the median value is defined as the 

value in the middle of the sorted list:

0 u tm+1 = med(Inl, In 2, . . . , I n 2m + ]) (4.9)

such that the same number of input values are greater than or equal to the median as the 

number of input values less than or equal to the median. The 3-input median extractor, 

shown in Figure 4.4, is implemented with the pMOS series transistors M21-M31, M22- 

M32, and M23-M33. These three groups of transistors provide bias for the matched 

pMOS transistors Mi l -Ml  3 and the bleeding transistor M41. The equilibrium condition 

requires that at least one of these bias paths be "on", therefore, any two of the nodes -4r A3 

have a low potential.

Assuming, without loss of generality, that VinX < Vin2 < Vin3, the corresponding drain 

currents will be / , < / , <  I3 . In equilibrium, node A\ will be saturated high, node A3 will 

be saturated low, and / 0 = h  to maintain a suitable value for the node A2 potential. In this 

case, the M22-M32 path provides the common bias for Mi l -Ml  3 and M40-41. It is 

important to note that M3 and M il are in the linear region. Therefore, even in the case of 

a large input voltage difference Vin2 « Vjn3, the I3 drain current will not become dominant
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and ‘'steal” all the bias current Ib-ias. The DC characteristic curve of the 3-input median 

circuit of Figure 4.4 is shown in Figure 4.5 where Vin2 and Vin2 are held constant at 1 and 

2 volts respectively while VM  is swept from 0 to 3 volts. The median transfer 

characteristic has a unit gain in the range between Vin2 and Vin~ (1V-2V in the graph).

M U | ^  M12[ ^  M I j T  ~  M 4l|  ̂ | m 40

■MC "“’-C
[M l_________  I M2_____________

'  bias

M3 ?MO I

Vrout

©

Figure 4.4 Schematic of the 3-input median extractor.

2.0

1.5

1.0
*>0

I m l (V )

Figure 4.5 Transfer characteristics of the 3-input median extractor.
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Now, consider changing the function of the diode connected transistor MO to subtract a 

mirror of the input current, produced by VM , in a feedback loop as shown in Figure 4.6. 

The gain will be zero in the range between Vin 2 and Vf„3. The gain outside this range will 

be an inverted ratio of the input voltages. The equilibrium equation of this circuit can be 

written as:

W mI M s* _ mJ  y . , v . . \  (4 10)
r , + r2 \ r , + r2 ’ "” J ' '

M il M12 M13 M41 M40

M21 M23

M31 M32 M33l

q  ^ q
[MJ_____________ [M2_____________

ml
M3 MO

Figure 4.6 Schematic of the 3-state circuit.

This circuit has three different operating zones that depend on the input voltage Vjn]. 

Assuming, without loss of generality, that Vin2<Vin2 , the circuit operation can be described 

by Eqn. (4.11).
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The width of the null gain range is determined by the input voltages V-irQ. F/w3, Vrejznd  the 

ratios of the resistors. The slope of the curve is determined by the feedback resistors ratio. 

To compensate for the negative slope, the negative output of the CNN cell is used instead. 

A Hspice simulation of the 3-state CNN cell using this solution is shown in Figure 4.7.

•>

1.5

0.5

0 1 150 0.5

I'm  1 (V )

Figure 4.7 Transfer characteristics of the 3-state CNN cell.

4.3.2 CNNBSDFA Templates Design

The restrictions on the transfer digit t-t in Eqn. (4.6) can be broken into several analog 

primitive functions that can be then processed using the 3-state CNN cells described in the 

previous section. Consider the CNN structure shown in Figure 4.8-a to implement the 

SDFA of Figure 4.2. This structure consists of four 3-state CNN cells. The nonlinearity of 

the CNN cell output in column position /  = 4 can be used to restrict the value of the
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instantaneous sum z-t to one of the digits of the BSDNS. A new intermediate analog signal 

can be defined for the CNN cell in column position /  = 3 as:

Av - M O )  = P  • ( y / + 1 j + y i + 1J + 1 )  (4.12)

where the input signals >7+ y andy/+y +1 represent the thresholded outputs of the instanta

neous sum at row positions / and i -  1 respectively. Template connections for the transfer 

digit t-t can then be expressed as a continuous function of the outputs of neighbor CNN 

cells:

Aij:ki(yki(0 ) = P  • (yi+2j 2J + 1 - y i+ 1J  ( 4 - 1 3 )

Given the value of the transfer digit t} in Eqn. (4.13), one can use Eqn. (4.4) to solve for 

the intermediate sum w-r Template connections to the intermediate sum w;- can be directly 

mapped as:

Aij:ki(ydO) = P  • 0 /  + 3j  ~ 2T/ + i j )  (4-14)

A block diagram of the CNN implementation of the BSDFA is shown in Figure 4.8-b.

CNNBSDFA

Figure 4.8 Representation of the CNN-based 1-digit SD adder: (a) CNN grid, (b)
block diagram.
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4.3.3 CNNBSDFA Hspice Simulation

The inputs to the CNNBSDFA. shown in Figure 4.8-b, z7- and zz-_j, can take any value from

the digit set {2, 1, 0,1,2} while the outputs, // and w-t, can only take values from the BSD

digit set {1,0,1}.  However, for correct BSD addition operation, the value of the transfer 

digit tj is governed by the rules given in Eqn. (4.6). These rules determine the value of // 

based on the values of both z-t and Z/.j. The value of the intermediate sum digit w,- can then 

be obtained by substituting the values of ij and t-t in Eqn. (4.4). The functional operation of 

the CNNBSDFA in Figure 4.8-b can be summarized in the truth table of Table 4.1.

Table 4.1 Truth table of BSD addition (* represents don’t care).

Zi-\ “l w. /,
* 2 0 1
2 1 T 1
1 1 T 1
0 1 T 1
T 1 l 0
2 1 l 0
* 0 0 0
2 I i 0
1 T I 0
0 I i T
1 1 i i

2 1 i i
* 2 0 i

The truth table was used as a guide to test the CNNBSDFA for correct operation. All 25 

sets of inputs (including the don’t cares) were applied in sequence and the outputs were 

probed for plotting. The outputs of each of the Hspice simulations are shown in Figure

4.9. The maximum delay for the output signal to reach 90% of its final value was 

measured as 6A2ns. This delay is comparable to the delay of a voltage-mode BSD adder 

reported using 0.18pm CMOS technology in [159] and one-eighth the delay reported 

using a negative differential resistance method in [161]. Although the delay is larger than
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that of the corresponding CNN-based 1-bit binary adder, nevertheless a multi-digit BSD 

adder is much faster than a binary adder of the same size. This is because the delay is 

constant for the case of the BSD adder. On the other hand, the delay of the binary adder 

increases linearly with the size of the operands. It is clear from the simulations that the 

CNNBSDFA converges to the correct output values for every possible input set. This 

property guarantees the convergence of more complex circuits as will be shown next.

-i

t
40 SO 0 40 SO 0 40 SO 0 40 SO 0 40

Li E F rr
40 SO 0 40 SO 0 40 80 0 40

40 SO 0 40 40 80 0 40 40 80

1 1

i
■ f

40 SO 0 40 SO 0 40 SO 0 40 SO 0 40

. t |L

40 80 0 40 SO 0 40 40 SO 0  40

Figure 4.9 Hspice simulation of the CNNBSDFA.
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4.4 CNNBSDFA Design Scalability

The CNNBSDFA can be used in a similar way to the traditional SDFA in Figure 4.2-b to 

develop multi-digit BSD adders of arbitrary sizes. The operation is also similar where the 

operands at position i are summed linearly using a summing node to form z-v The 

instantaneous sums z-t and z ^  are used to develop the transfer digit /,• and the intermediate 

sum Wj in the CNNBSDFA. The transfer digit is linearly summed to the intermediate 

sum w;- using a summing node to form the sum signal s-r The connections between 

CNNBSDFA units to construct an /7-digit CNN-based BSD adder is shown in Figure

4.10. The complexity of the adder is 0(ri) because the adder uses n units of the 

CNNBSDFA.

*,-i y, x, >’m

-i —i-i
CNNBSDFA

-i 1
CNNBSDFA

w

-/ “ /-I

CNNBSDFA

Figure 4.10 Block diagram of an n-digit CNN-based BSD adder.

4.4.1 A 32-digit CNN-based BSD Adder

To illustrate the scalability of the CNNBSDFA. a 32-digit CNN-based BSD adder was 

developed. The adder is constructed by cascading 32 units of the CNNBSDFA and 

connecting each CNNBSDFA to its immediate neighbors as shown in Figure 4.10. The 

inputs z/_ i and t-t to the first CNNBSDFA are set to zero and the first sum digit s0 is equal 

to the value of the intermediate sum digit w0. A random number generator was used to 

generate test patterns for the adder where each operand is bound by

- (2 j2  -  1) < X, Y < (2 j2 -  1). The adder was simulated using Hspice and the outputs of
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each simulation were verified against the correct sum values of the test pattern. A small 

part of one of the simulations is shown in Figure 4.11. In this simulation, the

instantaneous sum input pattern is 2l202122lIo!ll20010211222 and the

corresponding sum output is TOOlOOllOlOllOOOlTllOOllO. Here logic “ 1” is 

mapped as +1.8v, logic “0” as +lv, while logic “-1” is mapped as +0.2v. The 32-digit 

adder converged for all applied test patterns. This result is not surprising since, from 

Section 4.3.3, the 1-digit CNNBSDFA converges for all possible inputs.

time (ns)

Figure 4.11 Hspice simulation of a section of the 32-digit CNN-based BSD adder.

4.4.2 Impact of the CNN-based BSD Adder on Substrate Noise

Switching noise was recorded for each of the Hspice simulations performed in the 

previous section. The worst case switching noise is plotted in Figure 4.12 against the 

worst case switching noise for a 32-bit standard digital adder. Both adders operate at the 

same speed, the speed determined by the CNN-based BSD adder. The CNN-based BSD 

adder reduces switching noise by 61 dB over the 32-bit traditional digital binary adder. 

This is an improvement of 1 ldB over the CNN-based binary adder presented in Chapter 3.
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Figure 4.12 Switching noise of the CNN-based 32-digit BSD adder and 32-bit
standard digital binary adder.

Cross talk is plotted in Figure 4.13 for both adders. The CNN-based BSD adder reduces 

cross talk by more than 23dB compared to that of the digital adder. This is an 

improvement of more than 3dB over the corresponding CNN-based binary architecture.

Digital

CNN

CO -40

5 10 IS 200

z
zu

time (ns)

Figure 4.13 Cross talk of the CNN-based 32-digit BSD adder and 32-bit standard
digital binary adder.
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4.5 CNNBSDFA Design Compatibility

To the circuit designer, the CNNBSDFA unit has the same functionality and input and 

output pins as the traditional SDFA unit (compare Figure 4.2-b and Figure 4.10). This 

property allows the circuit designer to replace SDFA units in existing complex circuits 

with CNNBSDFA units and obtain the same functionality of the complex structure, but 

with the added advantage of reduced switching noise and cross talk. To illustrate this 

concept, consider the BSD multiplier design by Kawahito et el [167] for four-input 

addition of partial products in the first level of the binary tree. This structure is chosen 

because it speeds up the multiplication and reduces the number of full-adder modules and 

interconnections. The algorithm is repeated here for convenience.

Since the inputs are two's complement binary number representations, the multiplicand 

X = [xm_ x, x m_ 2, *0] and the multiplier Y = \yn_ x, y n_2, are

expressed as:

/ = o

where n and m are even integers. The following expression of X  is obtained by using the 

digit x i = 1 - x i and substituting x i = 1 - x t into Eqn. (4.15):

(4.15)

n - 2

(4.16)

m - 2
(4.17)

The product Pj o f X  and an arbitrary digit >7 of Y  is given by:
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f j - y j * -  l V W x 2 ' (4.18)

where pj j  is a partial product. When j  is even, Eqn. (4.15) is used for the generation of 

product Pj,  and when j  is odd, Eqn. (4.17) is used. Thus, the partial products p i • e {0,1}

when j  is even and the partial products p t j  e  { 1, 0 } when j  is odd except for the most 

significant digits. Therefore, the linear sum Z;j of four successive partial products:

~i , j  Pi ,  4/ + P i - \ , 4j +  1 P i  - 2, 4j  + 2  P i  — 3, 4/  + 3 (4.19)

obviously belongs to the set {2 , 1 ,0 , 1 ,2} .  This means that four product operands, P4j, 

-P4/+1, -f*4/-r2> Py+s, can be added in parallel by using the CNNBSDFA adder designed 

in Section 4.3.

Y X

Ch O iO i O i

 _ /O i/A o rO 
/ r ®  r ©  r °  / f o  fO ,-o ,-o 

rO  rO  ©  rO  ,-C

SDFA

SDFA

' Y '
SDFA

Signed-Digit Binary Interface

Figure 4.14 Block diagram of the BSD multiplier.

Accordingly, the binary tree was modified as shown in the 8x8 -digit multiplier structure in 

Figure 4.14. Since every four partial product operands are added in parallel, the number
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of operands is reduced by one fourth at the first level of the binary tree, consequently, the 

number of SD full adder levels is reduced to

T = [log2( « / 4 ) ]  (4.20)

where [ " a  " I  denotes the smallest integer such that \ a ] >  a.

4.5.1 A 32x32-digit CNN-based BSD Multiplier

In this section, a 32x32 multiplier, that has the structure as Figure 4.14, is designed. 

Similar to the binary multiplier of Figure 3.17, the BSD multiplier consists of three main 

parts: a partial product generator matrix that forms the 32x32 partial products, a binary 

tree that reduces the partial products into two operands in parallel, and an adder that adds 

the final two operands. However, the multiplier uses binary inputs and outputs and

internally uses BSD redundant binary numbers with the digit set {1,0,1}.  A BSD signal 

between tree levels is represented as a bi-directional current on a single wire. From Eqn. 

(4.20), the 32x32-digit multiplier has a delay of three levels of full adders. The bi

directional wired summations are fully used, greatly reducing the number of active 

devices and the complexity of the interconnections. The final stage of the multiplier is a 

BSD-to-binary converter where the 64-digit BSD number is converted into a 65-bit binary 

number. The conversion is performed by a two-input binary adder such as the CNN-based 

binary adder presented in Section 3.3.1. The Hspice simulation of a small section of the 

multiplier output in BSD representation is shown in Figure 4.15. The operands are

X =  10101011 and 7 =  10001010 and the BSD product is P= l l  i l l  100011 10010. 

The multiplier output in binary representation is shown in Figure 4.16 where 

P = 101110000101110.
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Figure 4.15 Hspice simulation of an 8-digit section of the 32x32-digit CNN-based 
BSD multiplier. The output is in BSD representation.

Output bits•>
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Figure 4.16 Hspice simulation of an 8-digit section of the 32x32-digit CNN-based 
BSD multiplier. The output is in binary representation.

4.5.2 Impact of the CNN-based BSD Multiplier on Substrate Noise

It has been shown in Section 4.4.2 that the CNN-based BSD adder improves switching 

noise by lldB  over the CNN-based binary' adder presented in Section 3.3.2. Therefore, 

one can conclude that the CNN-based BSD multiplier will also show switching noise 

improvement over the CNN-based binary multiplier. In addition, the BSD multiplier 

structure used in Figure 4.14 employs fewer full adder units in the reduction tree than the
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binary multiplier structure of Figure 3.17. This property will certainly show an advantage 

in switching noise of the BSD multiplier. Hspice simulation of switching noise of the 

CNN-based 32x32-digit BSD multiplier developed in the previous section and the 

corresponding 32x32-bit standard binary multiplier is shown in Figure 4.17. Both 

multipliers are designed using the same 0.35 pm CMOS process technology.

The CNN-based BSD multiplier achieved 69.2dB improvement in switching noise over 

the traditional digital multiplier. This measurement was taken as the difference between 

the maximum values of switching noise of the CNN-based multiplier and the digital 

multiplier during one multiplication process. The CNN-based BSD multiplier also 

improves switching noise by 12.2dB over the corresponding CNN-based binary 

multiplier. This result is not surprising since, as was mentioned above, the BSD multiplier 

utilizes fewer full adder units.

-200

CNN BSD
-iso

-160

-140

120
Digital Binary

-100
so

-80

-60

-20

time (ns)

Figure 4.17 Switching noise of the CNN-based BSD and standard digital 32x32-bit
binary multipliers.

4.6 Summary of CNN-based BSD Arithmetic

A general methodology to implement BSD arithmetic using the analog CNN paradigm is 

presented in this chapter. The greatest challenge was to discover a way to represent the 3- 

valued BSD number system naturally into the CNN framework. This led to the design of a 

new class of CNN characterized by a fundamental 3-state CNN cell. The 3-state CNN cell
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was used to design a fundamental 1-digit BSD adder unit. Addition in BSDNS requires 

some restrictions on values of the transfer digit to ensure that the final sum will always be 

in BSD representation. These restrictions were defined as primitive analog functions to 

facilitate implementing them in the analog CNN framework. The rest of the BSD addition 

algorithm is implemented using summing nodes without active devices. Hspice 

simulations depict that the 1-digit BSD adder converges for all possible inputs to the 

adder. This property guarantees convergence of any complex circuit that uses the 1-digit 

BSD adder as an embedded block.

To demonstrate the scalability of the 1-digit BSD adder, a 32-digit BSD adder was 

designed by cascading 32 units of the 1-digit BSD adder. The BSD adder is tested using 

Hspice for different random inputs. Switching noise and cross talk are also simulated and 

compared to that of a 32-bit traditional binary adder operating at the same speed. The use 

of bi-directional current summing nodes contributed to the reduction of switching noise by 

a large degree. Although the delay of the 1-digit BSD adder is larger than that of the CNN- 

based 1-bit full adder, the multi-digit BSD adder is much faster than the same size multi

bit binary adder. The key difference is that the delay for a BSD adder is always constant 

regardless of the number of digits being added. On the other hand, in the binary case, the 

delay increases linearly with the size of the operands.

A CNN-based 32x32-digit BSD multiplier is also designed to illustrate the compatibility 

of the 1-digit BSD adder with existing structures. The key feature of the multiplier is the 

addition of four operands in the first level of the reduction tree. This feature reduces the 

number of BSD full adders by half in the first level of the reduction tree. It also reduces 

the interconnections considerably and renders the circuit more compact. Moreover, 

reducing the number of full adders has a desirable effect on switching noise since the 

instantaneous supply current is reduced. Hspice simulations show that the CNN-based 

BSD multiplier reduces switching noise to unprecedented levels. Not surprisingly, the 

switching noise of the BSD multiplier is 12.2dB lower than that of the corresponding 

CNN-based binary multiplier.
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Chapter 5
Double-Base Number 

System Arithmetic 
Using CNNs

This chapter introduces a new architecture and circuitry for 

implementing addition and non-zero digit reduction for the double

base number system (DBNS), a recently introduced highly 

redundant number system with a 2 -dimensional representation. 

This chapter builds on previous work to implement non-zero digit 

reduction using an analog cellular neural network approach, which 

naturally maps the 2-D DBNS representation to a 2-D analog CNN 

architecture. The new design exploits some of the properties of the 

DBNS to provide limited-carry addition with reduced complexity. 

The chapter is organized as follows. In Section 5.2, the DBNS and 

its graphical representation as 2-D maps is briefly reviewed. The 

addition algorithm and non-zero digit reduction to addition-ready 

representation are also explained. In Section 5.3, a general 

methodology to implement a DBNS adder unit using the CNN 

paradigm is presented. First, mapping DBNS addition and non-zero 

digit reduction algorithms into CNN image manipulation is 

discussed. The problems associated with the non-zero digit 

reduction is addressed and, subsequently, a novel and efficient non

zero digit reduction technique is introduced. Finally, the CMOS 

design of a CNN-based DBNS adder unit is presented which uses 

simple current-mode circuits and linear templates without hardware 

overhead. The design of a 20x20 CNN-based DBNS adder is
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presented in Section 5.4. In addition, Hspice simulation results that show the effectiveness 

of the design are also presented and the advantage of reducing system-noise is 

demonstrated. A summary of the work may be found in Section 5.5.

5.1 Introduction

In the two previous chapters we have used both the standard binary representation and 

also the redundant signed digit representation to implement arithmetic using CNN arrays. 

For binary representations, the carry propagation delay in the addition operation accounts 

for the largest portion of the delay. The signed digit representation is redundant, but has 

the advantage of reducing the carry propagation to a fixed delay, independent of the word 

length. More information on classical redundant number representations can be found in 

[168]. Of course, the goal is to achieve both high speed and regularity of layout; as a 

result, making the arithmetic units suitable for very-large-scale-integration (VLSI) 

implementation. The double-base number system (DBNS), introduced by Dimitrov et al. 

[171], has some interesting properties related to reducing the carry propagation, and the 

DBNS has similar properties to the classical logarithmic number system (LNS) if an index 

calculus is used [171][172]. The DBNS provides more degrees of freedom than the LNS 

and promises efficient arithmetic implementation over the LNS for applications such as 

modular exponentiation in cryptography [173], The index calculus double-base number 

system (IDBNS) has already been used to reduce hardware complexity in digital signal 

processing [174][175]. The number system has been extended to more than 2 bases and a 

logarithmic version of this extension, which is referred to as the multidimensional 

logarithmic number system (MDLNS), has also proved useful for implementing digital 

filters [172] [176]. The canonic version of the DBNS promises carry-free addition 

operations by exploiting the redundancy in the representation. This property of the number 

system is useful not only for addition but also for multiplication. Without carry 

propagation, operations can be performed in parallel for all digits of a number. 

Consequently, the computation can be completed much faster in massively parallel 

systems.
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The use of CNN architectures for implementing DBNS arithmetic is not as tenuous as it at 

first seems. The use of CNN arrays for implementing image morphology operations is 

well established [43] and, as will be shown, the manipulation of DBNS 2-D 

representations is quite similar to such image processing operations. For example, 

addition operations consist of simple overlays of number "images'’ followed by a 

reduction of the number system to a form suitable for further additions (addition-ready 

form). In [34], an initial attempt to implement non-zero digit reduction to an addition- 

ready form using the CNN paradigm was reported. However, this implementation has the 

disadvantage of considerable hardware overhead by the requirement for hysteresis in the 

CNN cells and also the necessity to use discrete digital logic circuits to control the 

switching of templates during the computation, which increases the potential of injected 

noise. In the following sections, a new method is presented for implementing digital 

arithmetic in the DBNS that eliminates these disadvantages. The new circuit uses a novel 

self-programmable CNN architecture where the switching of templates is performed based 

on the state values of the cells. After performing the addition of two addition-ready 

representation maps, the CNN reduces the sum back to an addition-ready representation 

using a simple reduction rule. This results in the most efficient implementation reported 

for multiple additions in the DBNS.

5.2 The Double-Base Number System: Overview

5.2.1 Definition

The double-base number system is a weighted number system that uses two bases and 

allows 0 and 1 as its digits. The discussion here will be limited to the original definition of 

the DBNS with orthogonal bases 2 and 3. This assumption will not affect the 

generalization of the techniques presented below.

Any integer X can be represented in the DBNS as in Eqn. (5.1) [171]:

X  = X x..y -3‘ <5-!>
U
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where digits x t- ■ e {0 ,1}. It can be seen that the DBNS reduces to the binary number 

system for / = 0  and to the ternary number system for /  = 0 .

The DBNS can be represented graphically using a 2-dimensional grid by using the base 2 

as the x-axis and the base 3 as the y-axis. Consider a 2-D grid with [ log, A"! columns and

f log-A'I rows where every cell (i.j) corresponds to the 2-integer value 2/3‘. Any arbitrary

integer X < 2k3>m can be represented as a sum of 2 -integers, which appears in the first 

k+  |”log,3m~| columns and m + f log32&~| rows. For example, the integer number 108 

can be represented in the DBNS in different ways as: 108, 72+36, 54+36+18, 

54+24+18+12, 36+27+24+18+3. The geometric interpretation of the integer number 108 

into DBNS-maps is shown in Figure 5.1. DBNS-maps are obtained by representing each 

non-zero term in Eqn. (5.1) as a black pixel, referred to as an active cell, and each zero 

term as a white pixel.

m
t

£ £

B E

Figure 5.1 Different representations of 108 in the DBNS

It is obvious from the above example that the DBNS is a highly redundant number system 

where, in general, each integer X  can have several representations. It is also clear that the 

DBNS-map allows extremely sparse representations of the integers. It is this property of 

sparseness that promises fast arithmetic algorithms with reduced complexity. The
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representation of an arbitrary integer in the DBNS-map, using the minimum number of 

active cells, is called the canonic double-base number representation (CDBNR). This 

canonic form is not, in general, unique.

The average number of nonzero digits required to represent any integer, X, in the form of 

Eqn. (5.1) has a complexity with respect to the number given by Eqn. (5.2) [174]:

The complexity is a weak function of X  so one expects that the implementations of 

arithmetic operations will be quite efficient using the canonic form of the DBNS. The 

major drawback with using the canonic form is that it is a hard problem to compute the 

minimal representation. However, a near canonic form, referred to as the addition-ready 

double base number representation (ARDBNR), can be relatively easily computed with a 

simple greedy algorithm while retaining most of the efficiencies of computing with the 

canonic form [172]. In the following discussion, the ARDBNR form is always used prior 

to implementing any addition operation.

5.2.2 DBNS Addition

Let Ix (i,j) and lv(i.j) be the DBNS maps of two integers X  and Y. represented in the 

ARDBNR. It is known from the definition of the ARDBNR [174] that if both X  and Y

in both maps. Therefore the image I-(i,j) of the DBNS map of the number Z = X  + Y can 

be computed by overlaying the DBNS maps corresponding to X  and Y. Any collisions 

(black squares coincident) are resolved using the following identity:

which can be represented graphically as shown in Figure 5.2. This process is similar to 

the traditional carry propagation in the binary number system and the two terms 

overlaying rule and carry propagation rule will be used interchangeably. By definition.

(5.2)

have an active cell in the position 2/3 \  then the cells in the position l! 13/ are non-active

(5.3)
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the ARDBNR has no adjacent active cells in a row; this means that the carry propagation 

in DBNS addition is limited to one cell position to the right.

... i ...

j 1 r
3i+1
•

... 2* ...
*
i ■
3i+1
•

a b

Figure 5.2 Graphical representation of the overlaying rule: (a) initial map, (b)
final map.

An example of the addition process described above is shown in Figure 5.3. The image 

I-(iJ) of the DBNS map of the number Z = X  + Y  is obtained by overlying the two 

ARDBNR maps Ix(ij) and Iy(i.j). Note that there is a collision at position (2.1) of the 

overlaid image in Figure 5.3-c. The collision is solved by applying Eqn. (5.3). The two 

operands, X  = 91 and Y = 23, are represented in the ARDBNR, but, as generally 

expected, the sum, Z, is not in the ARDBNR form. In order to prepare the final sum for 

another addition, the DBNS map of Z needs to be mapped into an ARDBNR form as will 

be discussed in the following section.

2°  21

1

I 2° 21 22 23

P
33

2° | 2 22 231
32

33 -r
Figure 5.3 Addition in DBNS: (a) X , (b) Y, (c) map obtained by overlaying, (d) Z

after applying the overlaying rule.

D ouble-B ase N um ber System  A rithm etic  U sing C N N sT he D ouble-B ase N um ber S ystem : O verview  76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U niversity  o f  W indsor

5.2.3 Reduction to Addition-Ready Representation

In many applications, the complexity of the computational algorithms depends on the 

average number of zeros representing the data; the greater the number of zeros the more 

efficient the algorithm [165][179]. This means that one should seek the smallest number 

of 2-integers (a CDBNR) to represent the operands before performing any arithmetic 

operation. Finding the canonical form for a DBNS representation is computationally 

complex; however, an efficient greedy algorithm has been introduced in [174] that can 

produce a near-canonic representation (NCDBNR) with a logarithmic complexity. The 

NCDBNR produced by the greedy algorithm is close enough to the canonic form to 

implement efficient arithmetic algorithms. In this section, it will be shown that using a 

very simple reduction rule one can prepare arbitrary DBNS-maps for a limited-carry 

addition process; it is only necessarily to transform the map into an addition-ready DBNR 

(ARDBNR) form that has no consecutive active cells lying in a row. Thus, when adding 

two DBNS representations, carries from any overlapping active cells will have a non

active cell to the right which can hold the doubled weight of the carry (see Section 5.2.2). 

It can also be seen that using ARDBNR representations eliminates carry ripple, similar to 

the limitation on carry ripple available by using signed digit redundant binary 

representations [180]. We state the following definition:

Definition 5.1 We will call two adjacent active cells in positions (i.j) and (z'j+1) an 

active group in position (i.j).

The reduction rule that transforms an arbitrary DBNS-map into an ARDBNR map is to 

replace any active group (two consecutive active cells lying in a row) with a single active 

cell using the following identity:

2/3,’ + 2/+13/’ = 2/3f+1 (5.4)

which has the geometric representation shown in Figure 5.4.
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... 4 f ' ...
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31
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Figure 5.4 Graphical representation of the reduction rule: (a) initial map, (b) final
map.

To perform non-zero digit reduction on any DBNS-map to obtain an ARDBNR-map, one 

needs to eliminate all adjacent active cells lying in a row in the DBNS-map. Therefore, 

Eqn. (5.4) needs to be applied successively to replace any active group in position (i.j) 

with one active cell in position (i+l.j). If the cell in position ( i+\j)  is already active, the 

carry propagation rule described by Eqn. (5.3) is applied so that the cell becomes non

active and the cell in position (i+\.j+\) becomes active. The non-zero digit reduction 

process of the image I:(Lj) obtained in the addition example of Section 5.2.2 is shown in 

Figure 5.5.

2° 21 i 2

3°

31 1r
32

33 ■u
Figure 5.5 Non-zero digit reduction ofZ: (a) initial map, (b) intermediate map, (c)

final map.

The maximum size o f the ARDBNR map obtained using the overlaying and row reduction 

rules can be calculated using the following theorem:

Theorem 5.1 Any M x N  DBNR-map can be transformed into an ARDBNR-map 

that is (M+  2) x iV pixels at most.

D ouble-B ase N um ber System  A rithm etic  U sing C N N sT he D ouble-B ase N um ber System : O verview

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78



U niversity o f  W indsor

Proof. If there is an active group in position (MJ), in the original DBNR-map or as a 

result o f addition-ready transformation, the application of the reduction rule to that group 

will generate an active cell in position (M+\.j). In the special case where an additional 

active cell exists in position (Mj-1), the application of the reduction rule to an active 

group in position (M-lj)  will generate an active cell in position (M.j). This new active cell 

together with the active cell (Mj-1) can be replaced by an active cell in position (M+\.j-\) 

which in turn, with the active cell in position (M+\j),  can be replaced by an active cell in 

position (M+2.j-\). This completes the proof.

5.3 Designing a 1-bit DBNS Adder Unit Using CNN 
(CNNDBNSAU)

The final sum output in DBNS addition as described in Section 5.2 is obtained in two 

steps: performing addition of the two operands represented in ARDBNR-maps using the 

overlaying rule given by Eqn. (5.3) and transforming the sum output to an ARDBNR-map 

using both the overlaying rule and the row reduction rule given by Eqn. (5.4). In the CNN 

framework, this requires the design of two templates: A template for the overlaying rule 

and another template for the row reduction rule. The operation of the templates is usually 

handled using an external control unit that is programmed to load different templates in 

specific order for certain periods of time [41], [181][182]. Another method was reported 

in [34] that used discrete logic gates attached to each cell to control template operation. In 

the following sections, a novel self-programmable analog CNN array that performs DBNS 

addition as well as reduction to addition-ready representation is presented. The network 

switches between the overlaying rule and the row reduction rule based on the output 

voltages of the involved cells without the need to use external control logic.

5.3.1 CNNDBNSAU Templates Design

Consider first designing the template for the row reduction rule described by Eqn. (5.4). 

Examining the graphical representation of the reduction rule in Figure 5.4 reveals that the 

cell at position (i+lj) should be activated if and only if the two cells at positions (i.j) and 

(i.j+l) are active. The operation is similar to the two-input logical AND function with the
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output voltages of the cells (ij)  and (ij+1) representing the inputs to the AND function and 

the output voltage of the cell (i+lj) representing the output of the AND function. 

Therefore, using a superscript notation in order to separate prior and post values on the 

image (array) cell nodes, the output voltage of the cell (i+lj) can be described using the 

equivalent logic equation on the digits in the DBNS representation:

IZ(i + 1 , j)  = l \ ( i , j )  a  l \ ( i , j  + 1) (5.5)

Using the CNN notation, the continuous function of the output voltage of cell (i.j) can be 

written as:

Aij:kl(yki(0 )  =  P  • ( y . - i j  +  i J+ i - i )  ( 5-6)

The row reduction rule replaces the active group at position (ij) with one active cell at 

position (i+lj). Therefore, once the cell at position (NT./) is activated, the cells at 

positions (ij) and (ij+1) should be de-activated. The output voltages of the input cells to 

the reduction rule can then be described using the following logic equations:

r: 0 J )  = / ! ( U ) ®  ( /! ( /,;)  a / ' ( / , ; + 1»  (5.7)

7 J ( i J + l )  = / ! ( / , /  + 1) © ( / ( U )  A  + 1 »  (5.8)

A simple and cost-effective way to map the logic equations given by Eqn. (5.7) and Eqn.

(5.8) to CNN continuous functions is to use a negative mirror of the current given by Eqn.

(5.6) (that is used to activate cell (i+lj)) to de-activate the two input cells (ij) and (ij+1). 

This method ensures that the current given by Eqn. (5.6) will set cells (ij) and (ij+1) non

active only if a reduction rule is detected. Otherwise, the two input cells will keep their 

original state.

The overlaying rule given by Eqn. (5.3) can be realized in a similar way. Notice, however, 

from the graphical representation in Figure 5.2 that one of the two input cells is on a third 

dimension. This can be realized as a 3-D CNN architecture, or by applying one of the 

operands as initial conditions to a 2-D CNN architecture and applying the second operand

D ouble-B ase N um ber System  A rithm etic U sing C N N sD esign ing  a  1-bit D B N S A dder U nit U sing  C N N  (C N N D B N S A U ) 80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U niversity  o f  W indsor

as inputs to the network. Using the second approach, the overlaying rule can be described 

using the following logic equation on the digits of the operands:

IXUj  + 1) = Ix(Uj) a  IyiUj) (5.9)

which can be written in continuous form as:

A o : M O )  = P • (yu - 1 + uu - 1 - 1) (5.10)

As in the case of the row reduction rule, the two input cells to the overlaying rule should 

be de-activated when cell (ij+1) is activated. The logic function that describes this 

condition can be written as:

Iz( iJ )  = Ix( i J ) ® I y(i,j)  (5.11)

Here one can also use a negative mirror of the output current given by Eqn. (5.10) to de

activate the input cells.

5.3.2 Dealing with Special Cases of DBNS-maps

The previous discussion about the reduction of a DBNS-map into an ARDBNR-map (see 

Section 5.2.3), dealt only with one application of the reduction rule in the map. Even in the 

case of parallel applications of the reduction rules across the DBNS-map, the initial 

assumption was that the groups of active cells that participate in the reduction rules are far 

apart with no interaction (and interference) among the active cells. However, if we now 

include the possibility of such interactions, then if an active cell participates in more than 

one reduction rule at the same time, the network might become unstable and, even if this 

does not happen, may settle to a wrong output. Figure 5.6 shows a special case where an 

active cell in position (ij) that can participate in two different occurrences of the row 

reduction rule given by Eqn. (5.4) at the same time. Cell (ij)  can participate with the cell 

(/,/+1) to activate cell (/+!./) as shown in Figure 5.6-b. Another possibility is that cell (ij) 

and cell (i j-1) are replaced by cell (z'-Hj-l) as shown in Figure 5.6-c. Both solutions are 

correct even though they give different DBNS-maps. This is due to the redundancy 

inherent in the DBNS. Now assume that cell (ij) participated in the two occurrences at the
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same time. This means that both cell (7+1 j )  and cell (z+lj'-l) will become active as 

shown in Figure 5.6-d. Now one can apply the row reduction rule again on cells (z'+lj) 

and (7+1,y-1) and replace them with cell (7+2,y-l) as shown in Figure 5.6-e. This final 

value is not correct and clearly it is important to prevent the simultaneous participation of 

a cell in more than one network activity.

... i
:
31 ■ H I
3'+1
3W

... 7' jj t '

3'
3i+1
3i+2

■ ■

... i' i jf’
:
31 ■
3W ■
3-2

a b c

... f i
:
3'
r 1
3i+2 ■

:
... i' i i"

3'
3w
3i+2

■■
d e

Figure 5.6 An example of simultaneous reductions: (a) initial map, (b) and (c) 
correct solutions, (d) and (e) wrong output.

There are two other special cases where the application of a reduction rule on an active 

group can affect another active cell that is participating in a different reduction rule. These 

two cases are illustrated in Figure 5.7. In Figure 5.7-a, the application of the reduction 

rule to the active group in position (i-l j)  will try to activate the cell in position (ij). 

However, since cell (ij) is already active, it will try to participate in the application of the 

overlaying rule. Moreover, cell (ij) can participate in the application of the row reduction 

rule with the cell in position (y -l) .

Figure 5.7-b shows a similar case where the application of the row reduction rule to the 

active group (i-lj)  will invoke the application of the carry propagation rule on cell (ij).
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Also, cell (i,j) can participate in the application of the row reduction rule with the cell in 

position (/,/+ 1).

i r

m

Figure 5.7 Two possible simultaneous applications of Eqn. (5.4) to the same cell.

It is clear that for correct network operation, the simultaneous participation of an active 

cell in more than one reduction rule should be prevented. The above situations can be 

summarized in the following two restrictions:

1. Any active cell (ij) can not, at any moment of time, participate in more than one reduc

tion rule.

2. The application of a reduction rule on any group of active cells cannot affect, at any 

moment of time, an active cell that is a candidate for another reduction rule.

The goal of applying the reduction rules is to generate an ARDBNR map. Therefore, 

giving preference for a candidate cell (ij), which is violating the ARDBNR rule, to 

participate in a certain reduction rule over another, should lead to a more sparse 

representation. Since applying the row reduction rule replaces two active cells in row / 

with an active cell in row z+1  and applying the overlaying rule replaces two overlaying 

active cells in column j  with an active cell in column j + 1, it becomes natural to try to clear 

cells in the last row and last column first. The following theorem proves that using this 

method results in a DBNS-map with fewer active cells.

Theorem 5.2 Given any DBNR-map, applying the reduction rules to active groups 

in positions (ij) in descending order of i and j  results in a DBNR-map with fewer active 

cells.
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Proof. Let us consider the order of scanning rows first. For any M x N  DBNR-map. if 

there is an active group in position (ij) (0 < i< M ),  there is also the possibility that 

another active group will exist in position (i+lj). The active group in position (i.j) cannot 

be chosen first because this will violate restriction 2. In this case, cell (i+lj),  a member of 

the active group in position (7+1./), will be affected by the application of the reduction rule 

to the active group in position (ij). For the case i=M, there will always be an empty row 

M+1 according to Theorem 5.1. Therefor the reduction rule must be applied to active 

groups in every row i starting from i=M in descending order of /.

Now let us look at the order of scanning columns. Assume the DBNR-map has k adjacent 

active cells in a row. We consider two cases:

Case 1: A: is even. Since the application of the reduction rule takes two active cells at a 

time, all the k  active cells will eventually participate in a reduction rule and the order is not 

critical.

Case 2: k is odd. In this case, k-1 active cells will participate in ( k - l ) / 2 applications of 

the reduction rule. The remaining active cell, might be able to participate later if  an active 

group in row z'-l generates an active cell adjacent to it. The remaining active cell will be in 

position (i.j) where 0 <j < N -  1 if we apply the reduction rule in descending order of j .  

and 1 <j < N  if  the application were in ascending order of j.  For 1 <j < N -  1, any active 

group in positions (i-l.j-l). (i-lj),  or (z'-l.j+l) can force the remaining active cell to 

participate in a reduction rule. For the case j=N, only active group in position (i-l.j-l) is 

allowed. For the case j=0, active groups in positions ( i- l j )  and (/-1./+1) are allowed which 

gives an additional 33% possibility for the remaining active cell to participate in a 

reduction rule over the case j -N .  Since the application of a reduction rule results in fewer 

active cells (two active cells are replaced by a single active cell), this completes the proof.

Figure 5.8 illustrates Case 2 where k is odd. The rows were scanned for candidates in 

descending order of / while the columns were scanned in ascending order of j  in Figure 

5.8-b and in descending order of j  in Figure 5.8-c. Note that Figure 5.8-b can not be
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further processed because the final DBNS-map contains no consecutive active cells in one 

row.
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Figure 5.8 An example of the order of reduction: (a) initial map, (b) j  in ascending
order, (c) j  in descending order.

The following theorem calculates the time required to transform any DBNR-map to 

ARDBNR-map using the order of reductions described above.

Theorem 5.3 Any M x N  DBNR-map can be transformed to ARDBNR-map in 

time less than or equal to (M+  f  N Z2]) • T. where T is the time needed to perform a sin

gle reduction.
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Proof: Assume for simplicity that N  is even. For any row / in the DBNR-map, any active 

group at position (/,0) ((/, 1) if N  is odd) will not participate in a reduction rule unless all 

adjacent active groups in the same row have already participated. If all cells in row i are 

active, completing the reductions requires time equal to (N / 2) • T ((JjV/2 j  -  1) • T if A' 

is odd) since the reduction rule takes two active cells at a time. Also, for any column j  in 

the DBNR-map, the active group in position (0 j )  will not participate unless all other 

adjacent active groups in the same column have already participated. If the map has active 

groups in positions (ij) Vi,  completing the reductions requires time equal to M ■ T . The 

worst case scenario would be a map with active groups in positions (/,0) V/ ((/, 1) if N  is 

odd) and also all cells in row M  active. The time required to complete the reductions will 

then be (M + N /2 ) • T ((M+ [ N / 2~\ -  I) ■ T i f  Nis  odd). For the special case where N  

is odd and the map has an additional active cell in position (1,0), the application of the 

reduction rule to the active group (0,1) will generate an active cell in position (1,1). This 

last active cell together with the active cell (1,0) form a new active group that needs one 

more time constant T to be reduced. This completes the proof.

5.3.3 CNNDBNSAU CMOS Implementation

The row reduction rule can be realized using the current-mode circuit shown in Figure 

5.9. This circuit can detect the occurrence of an active group. The input current from cells 

(ij) and ( i j+1) is mirrored by transistor M2. A unit current is subtracted by the current 

source 7sjnk and the rest of the current is drained by transistor M3. The circuit outputs high 

current if both inputs from cells (ij) and ( i j+1) are high and zero current otherwise. When 

a reduction rule is detected at cells (ij) and (/._/+1), a positive current is used to activate 

cell (i+\j)  through the current mirror M6-M7. At the same time, a negative feedback 

current is used to deactivate the two input cells (ij) and ( i j+1) through the current mirror 

M3-M5. Figure 5.10 shows how the feedback template is connected to the cells 

participating in the row reduction rule of Eqn. (5.4). As was mentioned in Section 5.3.1, 

the functions of the row reduction rule and the overlaying rule are essentially the same: 

replace two active cells with one active cell. The only difference is that the row reduction 

rule is mapped in a 2-D architecture while the overlaying rule takes on a third dimension.
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Therefore, the same circuit in Figure 5.9 can be used to implement the carry propagation 

rule of Eqn. (5.3) with appropriate changes in the input/output connections.

from (i.j) and (y + 1 )

M3 P  ^  M4__________ ] M 5

Figure 5.9 Schematic of the reduction rule.

O Template 0

Figure 5.10 Connection to participating cells.

The circuit shown in Figure 5.9 does not prevent a cell from participating in more than 

one reduction rule at the same time, and neither does it enforce the order of applying the 

reduction rules to adjacent active cells, as described in Section 5.3.2. Consider again the 

situation depicted in Figure 5.11. Four groups of active cells that can take part in the row 

reduction rule described by Eqn. (5.4) can be identified. These four groups are outlined 

and marked as G1, G2, G3, and G4.
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Figure 5.11 A situation where the row reduction rule can be applied to four
different groups of cells.

If the order of applying the reduction rules, as described in Section 5.3.2, can be enforced, 

that will take care of the problem of a cell participating in more than one reduction rule at 

the same time. From Section 5.3.2, the row reduction rule should not be applied to group 

G4 unless it is not applicable to groups G l, G2, or G3 respectively. This restriction can be 

realized using a negative feedback mirror o f the output of groups G l, G2, and G3 (Ominus 

in Figure 5.9) to the input of group G4 as shown in Figure 5.12. This will ensure that 

none of the other groups will be active during the application of row reduction rule to 

group G4.

G4

o  GlG2 o

0_ G3

Figure 5.12 Connection between groups of cells.

The circuit schematic for a DBNS adder cell in position (i.j) with the feedback templates 

representing Eqn. (5.6) and Eqn. (5.10) is shown in Figure 5.13. It is important to stress 

that the operation of the CNN-DBNS adder is radically different to that of the CNN 

universal machine (CNN-UM), designed in [41] and implemented in [181], or the work 

presented in [182], While the first two use a stored program to control the use of templates 

and the last one uses temporal superimposition of signals, the CNN-DBNS adder
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architecture is self-programmable in the sense that the network switches, as needed, 

between the two templates described by the row reduction rule of Eqn. (5.4) and the 

overlaying rule of Eqn. (5.3) based on the state voltages of the involved cells.

¥ < n
from other 

groups

J

J - I f t] i | («£ '

T

to C(j-l.y) 
to C (;- l./M )

F T
to other groups
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Row reduction rule 
with order enforcement

G ) I—

1 slate | p  l~—1|_J

from input
to C(v)

$ )

CNN cell C (v ) Overlaving rule

Figure 5.13 CNNDBNS adder cell schematic.

5.3.4 CNNDBNSAU Hspice Simulation

The application of the row reduction rule to the two active cells at positions (i.j) and 

(ij+l) will force the cell at position (i+lj) to change to the active state. However, if  the 

cell at position (i+lj)  was active already, the overlaying rule will take place at the doubled 

weight cell (z'+ly) and will activate the cell at position (i+l.j+l). Therefore, the 

neighborhood of the CNN network required is of radius 1. The truth table in Table 5.1 

summarizes all possible conditions of the cell (i+lj) and neighbor cells prior and post the 

processing of the DBNS map. Notice that from all the 8 possible initial conditions, the 

final DBNS map will be different to the initial map (CNN cells change states) in only the 

last two entries of the truth table. These two cases correspond to the application of the 

overlaying or row reduction rules described above. Hspice simulations of these two cases
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are shown in Figure 5.14. Figure 5.14-a shows the Hspice simulation of the DBNS adder 

cells where only the row reduction rule is applicable while Figure 5.14-b shows the 

Hspice simulation of the DBNS adder cells when both the overlaying and row reduction 

rule are applicable.

Table 5.1 Truth table of DBNS adder unit.

"  V 1 “ V ~ i j ~ \ " ' - u W i

0 0 0 0 0 0 0

0 0 1 0 0 1 0

0 1 0 0 1 0 0

0 1 1 0 1 1 0

1 0 0 1 0 0 0

1 0 1 1 0 1 0

1 1 0 0 0 1 0

1 1 I 0 0 0 1

The worst case delay for the network to settle after applying the overlaying or row 

reduction rules is measured as 5.1ns. This delay is 60% less than the delay reported in [34] 

using discrete logic gates to control template operation.

I
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Figure 5.14 Hspice simulation of the CNNDBNSAU: (a) only the row reduction 
rule is applicable, (b) both the row and overlaying reduction rules are applicable.
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5.4 CNNDBNSAU Design Scalability

The CNN implementation of any M x N  DBNS adder consists of a 2-dimensional grid of 

CNNDBNS adder units with each adder unit corresponding to an entry in the DBNS-map. 

At the beginning of the addition process, the ARDBNR-map representing X  is loaded as 

the initial conditions on the nodes of the array and the ARDBNR-map representing Y is 

applied as inputs for a time unit T equal to the CNN cell time constant. The adder units are 

connected to the input Y using Eqn. (5.3). After a time period T, the input 7  has no effect 

and the adder units use Eqn. (5.3) and Eqn. (5.4) to connect to each other to reduce the 

sum, Z, to ARDBNR.

5.4.1 A 20x20 CNN-based DBNS Adder

A 20x20 CNN-based DBNS adder is developed using a 20x20 grid of CNNDBNSAU. 

This DBNS adder has the same dynamic range as a 32-bit binary adder [171]. The 

CNNDBNSAU are connected to each other using the outputs from the overlaying and row 

reduction rules presented in Section 5.3.3. The CNN-based DBNS adder has a very 

regular structure as shown in the schematic of a 4x4 section in Figure 5.15. A number of 

Hspice simulations, using parameters from 0.35 pm CMOS technology process, were 

performed using random DBNS operands represented in the addition-ready form. To save 

on space, the simulation of only a small 4x4 section of the DBNS adder is presented here 

using the two DBNS-maps shown in Figure 5.16. These maps are not in the CDBNR form 

but they comply with the definition of the ARDBNR. The maps were chosen to illustrate 

the worst case situation where the sum output has to go through successions of 

applications of the overlaying and row reduction rules to be represented in an ARDBNR 

form. The example also illustrates the maximum delay where the row reduction rule has to 

be applied to each row.
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Figure 5.15 Schematic of a 4x4 section of the CNN-based DBNS adder.

a b e d

Figure 5.16 An example of addition using the CNN-DBNS adder: (a) X, (b) Y, (c) 
Overlaying X  and Y, (d) Z  after time T.
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A step by step application of the reduction rules to transform the DBNS-map of the sum 

output in Figure 5.16-d to addition-ready representation is shown Figure 5.17. In this 

figure, the grey color represents a cell participating in a reduction rule at that particular 

instant of time. The output of Hspice simulation of the addition process and the non-zero 

digit reduction to ARDBNR is shown in Figure 5.18. In the worst case, any two M x N  

ARDBNR-maps can be added and the sum converted to ARDBNR-map in a time delay 

given by:

T delay  = (M + [W '2 D  • T (5.12)

where [~ a~\ denotes the smallest integer such that [a~\> a.

2°  2 '

Figure 5.17 Non-zero digit reduction of Z. Starting from left to right, each map is 
obtained from the previous map after a time T.
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Figure 5.18 Hspice simulation of a 4x4 section of the CNN-based DBNS adder.

5.4.2 Constraints on the CNN-based DBNS Adder to be Self- 
Programmable

The negative output current of the circuit in Figure 5.9 can be described using the 

following equation:

O m i n u s  ~  m l ^ n  ~  ^s ink)  ( 5 - 1 j )

where is the ratio of the current mirror M3-M5 and In is the sum of the output currents

from the cells in positions (ij) and (zj+l). The positive output current is given by the

following equation:

° p l u s  =  V z V n - ^ n d  ( 5 - 1 4 )
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where m2 is the ratio of the current mirror M3-M4 and m3 is the ratio of the current mirror 

M6-M7. For simplicity of discussion, we will refer to the multiplying factor (m j in Eqn. 

(5.13) and ^2m3 in Eqn. (5.14)) as the mirror ratio m.

The choice of the mirror ratio m and the value of the current source /sink plays a crucial 

role in the performance of the CNN network. An improper choice of either of these 

parameters might cause instability or force the cell output to settle to an incorrect stable 

point. There are two critical network transitions: A row reduction rule followed by a row 

reduction rule and a carry propagation rule followed by a row reduction rule.

An example of a row reduction rule followed by a row reduction rule is depicted in Figure 

5.19.

... i f ' ...
•
b'

: ■

... i ...
:

s

BW
I

... i ...
:

b'

j*' I H fl
:

a b c

Figure 5.19 An example of a reduction rule followed by a reduction rule: (a) initial 
map, (b) map after the first reduction rule, (c) map after the second reduction 

rule.

Examining Figure 5.19-a. one can see that there is only one group of active cells that can 

participate in the row reduction rule of Eqn. (5.4). The active cells in positions (ij) and 

(/,_/+1) will be replaced by an active cell in position (i+\j)  as shown in Figure 5.19-b. 

This means that the cells in positions (ij) and ( ij+1) will switch from logic 1 to logic 0 

while the cell in position (i+lj)  will switch from logic 0 to logic 1. However, once the 

transition starts and the cell in location (z'+lj) generates an output current, cells at 

positions (i+lj)  and (z+ lj'+ l) will constitute another candidate group of active cells for 

the row reduction rule. Consequently, while the row reduction rule for the active group in 

position (ij) tries to force the state voltage of the cell in position (i+l,j) to rise, the row
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reduction rule of the active group in position (i+lj)  tries to force the state voltage of the 

same cell to fall which leads to undetermined final state. The solution to this problem is to 

ensure that the row reduction rule (for the active group in position (z'+lj )  in this case) will 

not start unless the sum of the output current is more than a certain large threshold. This 

can easily be implemented by setting the current sink in Figure 5.9 to the threshold value 

and then using a high mirror ratio to adjust the level of the current flowing into transistor 

M5 or transistor M7 to the unit current.

The case where the carry propagation rule is followed by the row reduction rule is similar. 

It is known from the definition of ARDBNR that there will always be a non-active cell to 

the right of the doubled weight cell as depicted in Figure 5.20. Therefore, the application 

of the carry propagation rule is straight forward. However, once transition starts and the 

cell in position (i.j) generates an output current, the row reduction rule of Eqn. (5.4) will 

be applicable to the cells (i.j) and (zj+1). This case reduces to the above case where the 

application of one rule forces the state voltage of the cell to rise while the application of 

the other rule forces the state voltage of the cell to fall. The solution is already 

implemented in the solution of the above case; ensuring that the reduction rule will not 

start unless the sum of the output current is more than a certain large threshold.

... r i ...
:

B1 m ■
Bi+1
I

... r i ...
:
3*
3W
:

... r i f ' ...

:

u>
_.

3I+’ ■
I
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Figure 5.20 An example of a carry propagation rule followed by a reduction rule: 
(a) initial map, (b) map after applying the overlaying rule, (c) map after applying

the row reduction rule.
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5.4.3 Impact of the CNN-based DBNS Adder on Substrate Noise

To get an estimate of the amount of switching noise and cross talk reduction, the CNN- 

based adder is compared to a 32-bit standard digital binary adder since, to the knowledge 

of the authors, there is no published DBNS design that uses standard logic gates. The 32- 

bit digital binary adder has the same dynamic range as the 20x20 DBNS adder and is 

designed using standard library cells in the same 0.35pm CMOS technology. Different 

random Hspice simulations were performed on the adders and switching noise was 

recorded. Switching noise for the CNN-based DBNS adder is plotted in Figure 5.21 

against switching noise for the digital design. In all Hspice simulations, the CNN-based 

DBNS adder showed advantages in switching noise with average improvement of 49dB 

over the digital adder.
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Figure 5.21 Switching noise of the CNN-based 20x20 DBNS adder and 32-bit
standard digital binary adder.

Cross talk is also simulated using Hspice and plotted in Figure 5.22. The CNN-based 

DBNS adder reduced cross talk by more than 20dB compared to that of the digital adder.
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Figure 5.22 Cross talk of the CNN-based 20x20 DBNS adder and 32-bit standard
digital binary adder.

5.5 Summary of CNN-based DBNS Arithmetic

This chapter has presented a practical methodology to implementing DBNS arithmetic 

using analog CNN arrays. An interesting property of the DBNS is that numbers can be 

represented naturally as 2-D grids. This property facilitates loading DBNS numbers either 

as 2-D initial conditions or as 2-D inputs into CNN architectures. Therefore, arithmetic 

operations in the double-base number system become a problem of CNN image 

morphology. Subsequently, the challenge is to design proper CNN templates that perform 

the required arithmetic task.

Addition in DBNS is reduced into two consecutive image manipulation steps: Finding the 

immediate sum of the operands maps and transforming the immediate sum into addition- 

ready representation for further processing. These two steps are implemented using the 

overlaying and row reduction rules. First, the row reduction rule is synthesized using a 

simple current-mode circuit. A key advantage of this circuit is that it can be used to 

perform the overlaying rule as well. The only difference is where the inputs come from 

and where the outputs go. A CNN-based DBNS adder unit is then designed by employing 

the overlaying and row reduction circuits as template connections to neighbor cells. The 

functionality of the CNNDBNSAU is proved using extensive Hspice simulations.

Digital
40

CNN

20

0

•20
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The scalability of the CNNDBNSAU is illustrated by designing a 20x20 DBNS adder. 

Special cases of the DBNS-maps are identified and restrictions are defined to control the 

application of the reduction rules. The restrictions are developed using analog feedback 

connections between groups of cells. This property renders the network self- 

programmable in the sense that the adder switches between the overlaying and row 

reduction rules based on the outputs of the involved cells. Hspice simulations show that 

the CNN-based DBNS adder achieved 49dB improvement in switching noise and more 

than 20dB reduction in cross talk over a standard digital adder that possesses the same 

dynamic range and operates at the same speed.

D ouble-B ase N um ber System  A rithm etic Using C N N sS um m ary  o f  C N N -based D B N S A rithm etic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99



Chapter 6
Conclusions

6.1 Summary and Contributions

This thesis reports a rather intriguing research project involving the 

development of analog cellular neural networks for applications in 

implementing arithmetic with special applications in mixed-signal 

systems that require the protection of very sensitive analog signals. 

Noise issues represent a new domain and will become important as 

integrated circuits, for example, start to include the packaging of 

bio-sensors in wireless devices for applications in the health 

sciences. The novelty associated with this work is based on the use 

of arrays of non-linear analog circuits, to perform digital 

processing. Current-mode CNN arrays work with the supply 

current being almost constant providing minimum instantaneous 

supply current variations. This property drastically reduces 

switching noise. In addition, CNN arrays provide smooth output 

transitions with an RC mechanism to control the slew rate. This 

feature allows circuit designers to reduce cross talk at the expense 

of circuit speed. The major contributions in this thesis focus on the 

development of practical methodologies to implement arithmetic 

operations using analog CNN arrays. The research covered 

arithmetic operations using three different number systems: The 

binary number system, the binary signed-digit number system, and
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the double-base number system. CNN realizations for each number system uncover 

certain advantages and disadvantages that will be summarized below. Circuit designers 

then have to weigh the pros and cons and decide which specific number system will best 

suit their application.

Binary number system arithmetic: To tackle the noise issue, the research commenced 

in the arithmetic domain focusing on the binary number system. The main challenge was 

to transform binary arithmetic into 2-D image morphology; to be processed using analog 

CNN arrays. This included defining new continuous functions representing the sum and 

carry functions, synthesizing the new functions using simple current-mode circuits such as 

summing nodes and current mirrors, and designing network neighborhood and template 

connections between CNN cells. A 1-bit full adder was then designed using four CNN 

cells and tested to converge for all possible inputs. This property is of paramount 

importance because it guarantees the stability of larger networks. The 1-bit full adder 

constitutes a basic building block that was used to develop more complex circuits such as 

a multi-bit adder and a multiplier. The designed binary circuits have the following 

advantages:

• Exhibits low switching noise. Hspice simulations show that the circuits improve 
switching noise by 57dB compared to standard digital designs operating at the same 
speed.

• Offer low cross talk. Based on Hspice simulations, cross talk diminishes by more than 
20dB compared to its digital counterpart.

• Provide standard binary inputs and outputs. This property facilitates using the new cir
cuits as black boxes in more complex structures with no changes to the circuits being 
designed.

Nevertheless, the developed circuits have some disadvantages that are common to current

mode circuits as listed below:

• Consumes more power. Since these current-mode structures are driven by current, they 
will always consume power even when the circuits are not processing any data.
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• Longer critical paths. This is a feature of current-driven circuits when optimized for 
low power consumption. The small current requires more time to charge/discharge the 
load capacitances.

Binary signed-digit number system: The exceptional results, regarding noise 

suppression, obtained from the CNN-based binary designs drove the extension of the 

design methodology to a redundant number system which provides benefits of reduced 

delay and interconnects. The binary signed-digit representation was chosen because it 

offers superior noise margins compared to higher radix systems. Nonetheless, the main 

challenge was to discover a means to represent the 3-valued BSD number system naturally 

in the CNN framework. This led to the design of a new class of CNN characterized by a 

fundamental 3-state activation function. The addition algorithm of BSD was analyzed and 

decomposed into several steps. Four 3-state CNN cells, together with new equations that 

define the BSD addition algorithm, were used to develop a 1-digit BSD full adder. As was 

the case with the binary circuits, the 1-digit BSD full adder was tested to converge for all 

possible inputs. This 1-digit BSD full adder forms a key element used in building a multi- 

digit adder and a multiplier. The multiplier features four-input addition of the partial 

products in the first level of the binary tree. This property reduces the number of full 

adders needed and, hence, instantaneous supply current. The developed BSD circuits has 

several advantages:

• Exhibits very low switching noise. The use of bi-directional current-mode summing 
nodes reduced switching noise to unprecedented levels. The BSD circuits achieved 
almost 70dB improvement in switching noise over standard digital circuits. This is an 
improvement of more than 12dB over the corresponding CNN-based binary circuits.

• Offer reduced cross talk. Cross talk is reduced by more than 23dB of that of the digital 
circuits. This is an improvement of more than 3dB over the CNN-based binary design.

• Allows constant delay operation regardless of the word length. This is the main advan
tage for using the binary signed-digit number representation. On the other hand, the 
delay in the binary system increases linearly with the length of the operands. Conse
quently, the advantage of using BSD becomes prominent as operands sizes increase.

• Provides standard binary inputs and outputs even though they internally use BSD repre
sentation. This property facilitates using the new circuits as embedded components in 
existing structures without any changes to the circuits.
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The developed BSD circuits also have some disadvantages such as:

• Increased power consumption. These structures work with three levels of current com
pared to two levels in the case o f binary circuits. Therefore, to keep the noise margin 
the same as for the binary circuits, the current provided by current sources has to be 
doubled.

• Require more transistors and larger silicon area. The BSD algorithm is more complex 
than the binary algorithm. Realizing the restrictions on the transfer digit requires com
plex circuits that use a large number of transistors which usually translates into larger 
silicon area.

Double-base number system: A fascinating feature of the DBNS is that numbers can be 

represented naturally as 2-D grids. This property facilitates mapping DBNS numbers into 

CNN architectures. The DBNS is also a relatively new number system and no practical 

implementations had previously been published when this research work was started. This 

peaked our interest in developing a practical methodology to convert arithmetic operations 

in the DBNS into a problem of CNN image morphology. In order to take full advantage of 

the limited-carry property promised by the DBNS, operands have to be represented in 

addition-ready maps. These addition-ready representations can be obtained by applying 

two reduction rules to the original DBNS-maps: the overlaying rule and the row reduction 

rule. As an initial step toward the goal, an innovative circuit design to implement the row 

reduction rule was developed. The key feature of this circuit is that it can also be used to 

implement the overlaying rule using appropriate inputs and outputs. Special cases of 

DBNR-maps were also identified and a unique feedback connection between groups of 

cells was defined to deal with them. This method guaranteed correct network operation as 

well as obtaining a DBNS-map with the smallest possible number of active cells. The use 

of feedback between groups of cells renders the CNN-based DBNS adder self- 

programmable where the network decides on which reduction rule to use next based on 

the outputs of the involved cells. The main advantages of the DBNS circuit can be 

summarized as follows:
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• Exhibits low switching noise. Since the adder incorporates a pure analog control 
method that governs the operation of the reduction rules, the network embraces the 
common feature of the binary and BSD designs. A 20x20 DBNS adder achieved 49dB 
improvement in switching noise over the corresponding traditional digital adder.

• Offers low cross talk. The smooth transitions of the CNN nodes reduce cross talk to 
more than 20dB compared to that of the fast digital nodes in a digital implementation.

• Promises carry-free addition if  the canonic representation is used. Even so, since the 
canonic representation is difficult to obtain, the addition-ready representation can be 
used to provide limited-carry addition.

The main disadvantage of the DBNS design when compared to digital designs is power 

consumption. This seems to be the bottleneck that faces analog designers and little appears 

to be able to be done to improve it particularly when speed has to be maximized.

A final point to be made for the DBNS representation, is that it appears to be useful for 

cryptographic applications [174] because of its sparseness. One important property of 

crypto hardware systems is their resistance to side attacks. These attacks can take several 

forms in terms of hardware implementations, including measuring circuit power 

consumption changes as certain crypto calculations are being performed. A crypto system 

based on CNN arrays promises to be more resistance to such attacks than a computational 

processor based on standard logic implementations, because of the very low noise levels 

(power consumption changes) inherent in the CNN array operation.

A summary of the design specifications of the novel CNNBFA, CNNBSDFA, and 

CNNDBNSAU designs is shown in Table 6.1. The table also shows design specifications 

for the state-of-the-art CNN-based 1-bit binary full adders, 1-digit BSD adders, and CNN- 

based DBNS structure to perform reduction to addition-ready representation. The new 

CNNBFA consumes about 43% of the power required by the recursive structure reported 

in [35] and much less when compared to the power required by the flat structure reported

in [34] where the power increases with 0 (n ~). The speed of the new CNNBFA is about 8 

times the speed of the recursive structure and about 19 times the speed of the flat structure. 

The new CNNBFA also requires less than half the transistors of existing structures and
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this maps into smaller silicon area. In addition, the new CNNBFA is scalable and 

compatible with the well-known circuit designs.

The delay of the new CNNBSDFA is comparable to the 5ns delay of the voltage-mode 

signed-digit adder circuit reported in 0.18pm CMOS technology [159]. In addition, the 

CNNBSDFA uses 27% fewer transistors than the voltage-mode design. When compared 

to the recently introduced negative-differential-resistance (NDR) signed digit adder

[161][162], the CNNBSDFA is 8 times faster and consumes 82% less power. At first 

glance, the BSD adder appears to be slower than the binary adder. However, an operand 

size of just two digits is required to produce similar worst-case propagation delay values 

for a ripple-carry adder built with binary full adder cells. This indicates that the BSD can 

provide significant speedup of addition for multi-digit adders since addition of operands 

of any length can be accomplished in the time required for a 2-bit binary addition.

The new CNNDBNSAU design performs both addition and reduction to AR 

representation while the existing structure performs reduction only [34]. The new 

CNNDBNSAU design is more than two times faster and uses fewer transistors which 

means smaller silicon area and less power consumption. In addition, reduction rules 

equations and operations are synthesized using simple current mirrors without hysteresis 

or digital logic which leads to improved switching noise.

Table 6.1 Summary of design specifications.

NS Design

Flat [34] 
Recursive [35] 

New CNNBFA  

Digital [159]

ND R  [161]........

New- CNN BSD  

DBN S [34] 
New CNNDBNS

Transistor
Active
Area Delay Power

count
(jtm2) (ns) (pW)

=108x(l+N /4) — = 60 279.5x(l+N/4)

=101 + — =25 =392

43 21.83 3.22 169.98

140 — 5 —

— 4789 17 2300

102 72.44 6.12 412.51

=  78+ — 13 —

56 ' 2S.35 ' 5.1 197.11
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The increased power and silicon area of the CNNBSDFA design, compared to the 

CNNBFA and CNNDBNSAU, can be justified by its ultra-low switching noise 

performance for very sensitive applications where reducing switching noise is of crucial 

importance. The CNN-based BSD design reduces switching noise to unprecedented levels 

as can be seen in Figure 6.1 and Figure 6.2. Figure 6.1 shows switching noise 

comparison for different adder designs as a function of adder size while Figure 6.2 shows 

switching noise comparison for different multiplier designs as a function of multiplier 

size. It is clear that the BSD design offers the lowest switching noise for all operand sizes 

in both cases.

- 1 1 0
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CNN binarv 
CNN DBN’S —■— 
Digital binary •
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Figure 6.1 Switching noise of different adders vs. adder size.
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Figure 6.2 Switching noise of different multipliers vs. multiplier size.
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The CNN-based BSD design also offers reduced cross talk compared to all other designs 

as can be seen in Figure 6.3.
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Figure 6.3 Cross talk of different adders designs.

6.2 Conclusions

In this research work, a practical methodology to develop ultra-low noise arithmetic 

circuits using analog cellular neural networks has been presented. The technique has been 

used to design arithmetic circuits for three different number systems: The binary number 

system, the binary signed-digit number system, and the double-base number system. First, 

for each number system, the addition algorithm has been re-defined using continuous 

functions that can be realized as CNN templates. Next, the templates have been utilized to 

develop a 1-bit adder unit that converges for all possible inputs. This property guarantees 

the stability of larger networks that use the adder unit as an embedded component. For the 

BSD number system, a new class of CNN featuring a 3-state activation function has been 

developed. This enables mapping the 3-valued BSD number system naturally into the 3- 

states of the new CNN cell. The DBNS adder unit uses a novel synthesis of the reduction 

rules to perform addition as well as reduction to addition-ready representation for further 

processing. Using the different adder units as enabling building blocks, complex circuit 

structures such as multi-bit adders and large multipliers have been developed. The CNN-
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based BSD arithmetic circuits are the first to be published in the literature. The DBNS 

design employs a novel self-programmable structure that switches between different 

templates based on the output voltages of the involved cells. This renders the DBNS adder 

circuit the first complete CNN-based adder circuit in the literature. The BSD and DBNS 

designs also incorporate the traditional advantages of such number systems including 

reduced delay and interconnects for large operands. Moreover, all the CNN structures 

developed also exhibit the advantage of the ultra-low noise property. Hspice simulations, 

using parameters from 0.35pm CMOS technology, show that switching noise and cross 

talk have been reduced by up to 70dB and more than 23dB, respectively, when compared 

to traditional digital circuits operating at the same speed.

6.3 Suggestions for Future Work

The following are some directions for future research:

1. When we compare the noise performance of the designed circuits and the digital imple

mentations, we assume that all circuits have equivalent parasitic inductance and capac

itance. This is not always true because the parasitic elements depend greatly on the 

specific layout of the circuit. A more accurate comparison can be performed by fabri

cating the noise source (the design being tested) and a noise sensing element (e.g., a 

sensitive amplifier) on the same chip a certain distance apart. Then random inputs can 

be applied to the noise source and the effect on the noise sensing element can be mea

sured using accurate testing equipment.

2. In Chapter 5, we discussed addition in the double-base number system using the CNN 

paradigm. We also developed an adder that performs addition as well as reduction to 

the addition-ready representation. However, we assumed that the inputs are in the addi

tion-ready representation. For a practical implementation that is compatible with the 

digital convention, the adder should accept binary inputs and produce binary outputs. 

Therefore, the implementation of a binary to double-base and a double-base to binary 

converters needs to be addressed.
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3. We did not discuss the implementation of multiplication in Chapter 5. This is because, 

the traditional method of implementing a multiplier (using shift and add) seems ineffi

cient when considering the required silicon area. A thorough study needs to be done in 

this area.

4. All the measurements presented in this thesis are based on Hspice simulation at room 

temperature. For precise performance evaluation, second-order effects (such as thermal 

noise and device mismatch) need to be taken into account.
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