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ABSTRACT

This is a report of a study of techniques for the realization of

ultrareliable, high-performance, spaceborne computers. The study included

the evaluation of, and several new contributions to, the most significant

known techniques and the proposal and investigation of several promising

new techniques. The state of the art of existing redundancy techniques

for fault-detecting and fault-masking is assessed, with special emphasis

on multiple-line voting redundancy, error-correcting codes, and redundant-

state schemes for sequential networks. A number of directions for the

improvement of these techniques are described. Significant potential

improvements in reliability are available in designs allowing for a high

degree of reconfigurability in structure and programs, and system schemes

and design techniques needed for such behavior are proposed and investi-

gated. In particular, we discuss the design of minimal test schedules

for fault detection and diagnosis, the design of highly modular processing

networks and of programmable interconnection networks, and the overall

organization of maintenance and computation functions in a computer system.

The application of error control techniques to memory systems and to power

supplies is considered, and the possible use of all-magnetic logic networks

is examined. Included in the report is a critical and selective survey

of the literature that is relevant to the attainment of reliable systems

"and networks through the judicious use of redundant structures. Finally,

recommendations are made for further research into the development of

techniques for ultrareliable system design.
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FOREWORD

This is a report of a one-year research study of techniques for the

realization of ultrareliable spaceborne computers. This study was con-

ducted in the Computer Techniques Laboratory of Stanford Research Institute,

under the sponsorship of the Electronics Research Center of the National

Aeronautics and Space Administration.

The major objective of the study was to provide guidelines for the

design of computers intended to function reliably under the severe con-

ditions imposed by spaceborne missions. It is clear that the spaceborne

requirement introduces design difficulties which are not attendant to other

applications. For example, the possibility of unprogrammed maintenance and

inspection routines is severely limited; the successful use of a radio link

cannot always be assured; the computations are complex and highly varied;

the performance requirements are very high; and there are special physical

constraints on the construction and operation of the computer. In order

to attain an acceptably reliable system the judicious use of redundant

structures is mandatory. Of course, the observation that redundancy is

required to improve reliability is not unique to this study, and hence in

the course of our investigation we utilized many well-established (at least

in principle) techniques, e.g., fault masking by multiple-line voting and

adaptive replacement of faulty subsystems with standby units. In order to

properly assess the myriad of proposed redundancy measures, a considerable

portion of the report is devoted to commentaries on state-of-the-art

developments. This inclusion of review material enables an engineer who

is related to this area solely as a user to satisfy his requirements with

minimal recourse to other documents.
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However, many novel developments are reported herein, and our con-

cern in this Foreword is to guide the reader--whether he is a research

specialist or one with little prior knowledge of the subject matter--

to those sections which are of most interest to him.t

The report is organized into four chapters and four appendices.

Each major section of the chapters contains conclusions and a detailed

listing of outstanding research problems; the major conclusions of the

research study and recommendations for further research are presented in

Chapter IV. The first chapter serves as an overall introduction to the

report. It contains (i) the statement ol the problem--in particular a

detailed discussion of the characteristics of advanced spaceborne com-

puters; (2) the goals, methods and assumptions of the study; (3) the

criteria of performance, including a discussion of relevant reliability

and cost measures; and (4) the organization of the report.

The second chapter is concerned with those logical design techniques

for fault masking and error detection in which the error control is

passive. In Sec. II-A-I @ we present a detailed (historical) review of

the most important known fault-masking techniques. Specific combinational

fault-masking design techniques are given in Sec. II-A-2. Included herein

are reviews of the multiple-line voting approaches [Sec. II-A-2-a-2)] @

as applied to such simple network models as cascades and trees, and also

some embellishments of known techniques [Sec. II-A-2-a-3)] for the

analysis of arbitrary replicated networks. Some new results are presented

on bounds on the reliability of arbitrary replicated networks [Sec. II-

A-2-a-4)] and also on optimum techniques for the realization of multiple-

output networks which are replicated [Sec. II-A-2-a-5)]. In Sec. II-A-

2-b we present some unique digital realizations of the extremely powerful

adaptive-voting scheme, along with a detailed examination of schemes which

combine fault masking and network replacement. Such schemes have hereto-

fore not been reported in the literature. In Sec. II-A-2-c @ a review is

t Sections containing reviews of prior techniques are marked, in this

Foreword, by an asterisk.
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presented of the known techniques for the realization of voting networks--

muchof the prior work has related to networks which realize the majority

function of 3 or 5 inputs--and also somenovel designs (which are approxi-

mately minimal) are given for majority-function networks with an arbitrary

number of inputs, suitable for different technologies. A review of the

known techniques of fault control for sequential networks is presented in
Sec. II-A-3 @along with some(apparently) novel fault-detection schemes

relying upon state-parity checking and state-weight checking. Chapter II
concludes with Sec. II-B, which surveys in detail the knowncoding

techniques which appear to be appropriate for checking computer operations.

Chapter III is concerned with techniques for dynamic error control,

i.e., ways in which the logical interconnections amongthe componentsof

the computer may be altered. In Sec. III-A we discuss the particular sys-

tem organization features that facilitate dynamic maintenance processes.
Section III-B is concerned with the design of test schedules of minimal

length, for the fault diagnosis of combinational networks. Included here

is a review of the state of the art of diagnosis (Sec. III-B-3) @along

with a discussion of somenovel techniques for fixed-schedule and serial-

schedule types of tests based upon reduction of a fault table. In

Sec. III-C we consider the design of networks for a reconfigurable net-

work--an area which has received little prior attention. The design of

commutation networks--networks whosefunction is to provide interconnection

between operating modules and to disconnect faulty modules for the system--

is discussed in Sec. III-C-2. Twotypes of structures are presented--a

unique sequential network and a combinational type of network which is

somewhatsuggestive of the central telephone exchange. In Sec. III-C-3

we consider the design of a modular arithmetic processor wherein the
functions of computation, storage, and primitive control are all combined

in an iterated set of replaceable modules. The chapter concludes with

brief descriptions of somenovel techniques for realizing programmable
control units. This remains a major area for further research.

Appendix A* emphasizes the practical problems of applying redundancy

to spaceborne memories. Included here is an evaluation and comparison of

several state-of-the-art schemes,e.g., the use of codes to protect the
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data channels and the access circuits, in addition to somesuggestions
for future research such as a consideration of those reliability tech-

niques which relate to special memorytypes.

Appendix B is a detailed discussion of the reliability problems

peculiar to power supplies. Suggestions are given for novel meansof

error control, including considerations of weight and volume.

Appendix C is an examination of the possible role of magnetic logic

for attaining ultrareliable operation, with special attention to appli-

cations wherein the low speed of operation attendant to magnetic logic

does not limit overall computation speed.

Appendix D_ is a critical and selective survey of the literature

that is relevant to the attainment of reliable systems and networks

through the judicious use of redundant structures. Although several

complete bibliographies of the literature have appeared previously, no

surveys were available which could be used to quickly distinguish those

contributions which are concerned with tactical expositions, applications,

or advancedmathematical theories.

The technical studies reported here are the work of the following

membersof the ComputerTechniques Laboratory:

Mr. J. A. Baer

Mr. C. B. Clark

Dr. B. Elspas

Mr. J. Goldberg
Dr W. H. Kautz

Dr K. N. Levitt

Mr S. W. Miller

Dr R. A. Short

Dr H. S. Stone.

All of these individuals contributed to the writing of the various sec-

tions of the report. The report was organized and edited by Mr. J. Gold-

berg, who wasProject Leader, Dr. K. N. Levitt, and Dr. R. A. Short.
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I OBJECTIVES AND APPROACH

In this chapter we shall discuss the problem of realizing ultra-

reliable spaceborne computers and explain the method of approach taken

in the study of the problem. We first discuss the basic characteristic

of an advanced spaceborne computer and the problems of design that result

from the novel operational and technological requirements involved. We

then discuss the particular goal of the study, its technical scope, and

the criteria employed.

A. Statement of the Problem

In this part we consider the basic characteristic of a future advanced

spaceborne computer, and the problems of design that arise from the re-

quirements of performance, the constraints on construction and operation,

and the unreliability of components and assembly.

1. Basic Characteristics of an Advanced Spaceborne Computer

a. Special Requirements and Constraints in Computation,

Maintenance, and Construction

The range of computational problems and the rates and capacities

of computation that will be required in the coming generation of space

computers are currently under study by NASA. .114 Some qualitative

statements may be made at this time:

First, the computations will be complex and highly varied. 4s

They may be expected to include the checkout, monitoring and control of

other spacecraft subsystems; guidance; navigation; maneuvering; the control

of communications and of experiments; the processing of data from experi-

ments and photographs; and display. If the scope of the missions is

extended to operations on the surface of a moon or planet, the list may be

* References are listed alphabetically at the end of this report.
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extended to include control of complex stationary or non-stationary

mechanisms. The computations may thus be expected to be of the general

scientific type, possibly including heuristics.

Second, the performance requirements will be very high. For

the foregoing tasks, large memory capacity would be required for storage

of constants and intermediate variables and for storage of the many

complex programs required, both for the objective computations and for

executive and maintenance computations. The input signals for such

applications would range widely in form and rate and might be synchronized

with the computer's cycle of operation. Thus the computer must be

capable of sustaining a number of active inputs at once, and it must be

interruptible by external command.

Certain tasks, such as guidance in the vicinity of a planet,

require very high computation rates.

Some of the computations, such as pattern processing and co-

ordinate transformations, have functions that may be evaluated with a high

degree of parallelism; hence not only is general high-speed arithmetic

needed, but some kind of bulk-parallel processing may also be very useful.

Third, the computations will have a range of priorities. In

complex missions of long duration it is natural to include as many activities

as are permitted by constraints of weight and power. The activities will no

doubt have widely differing values to the overall mission, and there will

no doubt be a complex set of interdependencies among the activities. Also,

some computations will have a range of acceptable precision, with a corre-

sponding range of values to the mission.

Fourth, there will be special physical constraints on the

construction and operation of the computer. In construction, there will

be severe limitations on weight, volume and allowable power dissipation.

Also, it is likely that physical accessibility to components will be very

restricted. In the operation of the computer, there may be occasional

interruptions in power, either planned or unplanned. Restarting and recovery

of a computation after such interruptions must, of course, be automatic.



The most important physical constraint is that the components

available for construction are not perfectly reliable. In fact, for the

number of components needed and for the length of time of operation of

the missions of interest, not only is the probability of error-free operation

unacceptably low, but it is extremely expensive in time and equipment to

test a computer @ so as to estimate its reliability accurately.

Fifth, the amount of available human intervention will be very

limited. The computers of interest to NASA for the present study include

those for manned and for unmanned missions. The main functions that will

be affected by the presence of a man are the executive control of the

various phases of computation, the checking and repairing of the computer,

and the peripheral functions of input and output. Even with a man present,

there will be some limitations on control due to restrictions on time,

accessibility, or technical knowledge. Some radio communication with a

manned maintenance facility should be possible in many missions.

b. Design Consequences_the Special Requirements and Constraints

The requirements and constraints described have special signifi-

cance in the design of a computer system. The complexity and variety of

computations require that the computer be general-purpose programmable.

The high performance requirements call for large memory capacity, high

processing speed, and input-output facilities with elaborate signal-

processing and control features. Thus a large number of components will

be needed for logic and for storage functions. The variability in value

among the computations requires that the computer be capable of altering

the scheduling of tasks to match the available performance capability,

in the event that failures in equipment reduce that capability below

its nominal value.t

@ We emphasize the computer as a whole, since the reliability of the

assembly of components is as significant a factor in the reliability

of modern systems as is the reliability of the components themselves.

Such behavior is known colloquially as "graceful degradation" and

"failing soft."
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The limitation on human intervention for executive control

requires that there be some degree of built-in capability for the basic

executive functions, as follows:

• For organizing the equipment and the programs

so as to achieve the highest possible level of

service on the tasks of a mission, according

to the value of the tasks.

• For organizing the equipment and the programs

to avoid errors, by avoiding the use of faulty

equipment or by performing computations redun-

dantly.

• For detecting errors and correcting them by

recomputation.

In addition to this built-in capability, any radio communication that is

available should be exploited to its limit, because the reliability and

depth of analysis in a manned facility will be superior to that available

in an on-board program. However, for deep-space missions, the data rate

and delay time and the reliability of such communications may well be in-

adequate to ensure the reliability of some real-time computations.

The special physical constraints on construction and operation

have a number of implications for the logical organization of the computer.

In modern semiconductor technology the weight and volume of a computer

is predominantly that of the packaging and the interconnections. These are

strongly influenced by factors of logical organization, such as the degree

of parallelism of logical operations, the size of the basic packages, and

the way in which logic functions are divided among the packages. The

limitations on power dissipation are significant in several ways. First,

there is a complex interaction between system speed and power dissipation;

i.e., use of slow circuits reduces the power cost per circuit, but it

requires use of more circuits, operating with a higher degree of parallelism,

in order to achieve a given computation speed. Second, in a redundant
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system, it would be advantageous to be able to remove power from inactive

components, both to reduce power consumption and to increase the life

of components.*

Finally, the fact that it is impossible to ensure perfect

operation with adequate confidence for large computers over the period

of time appropriate to sustained space missions, requires that the

computer have the capability of accommodating failures among its component

parts. Since modern component parts do not have the capability for physical

self-repair, some form of redundancy of components is clearly required.

To summarize, an advanced spaceborne computer for future

deep-space missions must be general-purpose programmable; it must have

high memory capacity, high computation speeds and complex input-output

facilities; it must have some combination of remote and local control

of error-accommodation processes; and it must employ some form of

logical redundancy in its construction.

2. Problems of Design for Reliability

In the foregoing part, it was concluded that it will be necessary

to employ logical redundancy in high-performance, long-duration spaceborne

computers. A number of redundancy schemes have been described and employed

in practice, but a generally-accepted design art for such redundancy does

not exist. Recent advances in device technology are making it possible

to apply redundancy with much greater effectiveness than in the past; in

particular, microelectronlc fabrication has lowered the weight, size,

and cost Of logic elements, permitting the use of high orders of redundancy;

and continuing refinements in production have increased the inherent

reliability of components, thus making a given order of r_dundancy more

effective in extending component life.

* Knowledge as to the effect of removing power from modern digital com-

ponents on their life is not well substantiated. Various authorities

estimate an increase in the mean time to failure of from 50% to 300%.



The components and assemblies produced by employing micro-electronic

fabrication have cost and reliability factors that differ from those of

previous fabrications. Several examples may be given.

First, recent reliability reports S4s indicate that failures in

interconnections are as significant as failures in active elements.

Among various kinds of connections, those within a monolithic circuit may

be substantially more reliable than those between the circuit and the

external connection system, although as connections within arrays are made

more complex (e.g., by using two or more layers of connections) this may

not be so.

A second new factor is standardization. If the logic networks of a

conventionally organized computer are simply partitioned and realized as

monolithic arrays, a great number of different kinds of arrays will result--

perhaps as many as there are arrays. The number of different array types

influences the initial reliability of the arrays and the techniques of

diagnosis and replacement in service, as may be seen by the following

considerations.

Using many array types tends to reduce initial reliability, since it

is generally accepted that the reliability of a product increases with the

accumulated experience in producing and using it. Using many array types

requires that many different sets of diagnostic tests be kept available

within the computer memory. Finally, using many array types reduces the

effectiveness of a set of spare parts, since a given spare may be employed

only in a few positions.

The desirability of using large monolithic arrays of semiconductors

for low weight and high reliability (primarily due to the minimal use of

unreliable kinds of connections), is in conflict with the desirability

of standardizing the arrays, and new schemes of logical organization are

clearly needed to achieve a good balance among the various factors.

Other new criteria for the logical design also apply. Thus, networks

should be designed so that they are easy to diagnose, so that a failure at

a given point does Mot propagate very far in either direction of signal

flow; so that they are as multlfunctlonal as is practical; and in general,



so that they are well suited to various modes of system redundancy such

as error detection, fault masking, and replacement. The conventional

criterion of minimality of the number of active elements is clearly not

a major one in itself.

On the system level, the key new criteria that have not applied with

great strength in previous computers are autonomy and flexibility. It is

not sufficient, as in usual applications of redundancy, to have errors

indicated, but it is necessary to have the capability to accommodate

them incorporated in the system; furthermore, such accommodation should

be accomplished with great flexibility, both in programming and in hard-

ware, so that the redundancy of equipment is employed to realize the ut-

most in performance.

In summary, the new cost criteria and failure characteristics of

advanced devices and the special logical requirements of fault accommoda-

tion present novel problems and opportunities for logical design. These

problems and opportunities apply both in the realization of existing

error-control techniques and in the design and realization of advanced

error-control techniques.

B. Goals, Methods, and Assumptions of the Study

In this section we state the goals of the study, describe the method

of approach taken, and state the assumptions that were made in the study,

including the scope of the systems of interest and the criteria of evaluation.

i. Goals of the Study

In view of the crucial need for powerful techniques of reliability

design for advanced spaceborne computers, the goals of the study have

been as follows:

(I) To survey the state of the art of logical design of

spaceborne computers as it pertains to the enhance-

ment of reliability; in particular, to examine the

various known techniques so as to determine their

adequacy for the expected mission requirements, and

to determine their mutual compatibility when applied

in a computer system
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(2) to conceive and evaluate new schemes of system

design and operation that offer promise of

advancing the state of the art

(3) to recommend further directions of research that

will aid in the improvement of present techniques,

the evaluation and realization of the new schemes

conceived, and the conception of further advanced

schemes.

2. Method of Approach of the Study

a. Survey of Known Techniques

The first task of the study was to survey relevant, known techniques.

The approach taken to this task was to distinguish those sections of a

hypothetical spaceborne computer to which distinctive problems of design

apply, to survey the literature for design techniques appropriate to those

sections, and to evaluate the merits of the techniques that are deemed

most useful for the application.

The major sections of a hypothetical spaceborne computer that were

distinguished were the general logic networks, the arithmetic section,

and the memory system. The reliability techniques that were considered

relevant to the study included the encoding of information for transfer,

storage, arithmetic, and control function and for error control; the

logical structuring and testing of networks; and those aspects of circuit

fabrication that bear on logic design. The literature surveyed included

books, professional journals, conference proceedings, and unclassified

research reports; in addition, several conferences were attended which

were in part or in whole devoted to problems of reliable computer design. _

The evaluation of a given technique was concerned both with the

state of the engineering art for its application and with its intrinsic

or potential value for the application. The state of the engineering

art was taken to include the accuracy and convenience of known methods

of analysis of systems employing the technique, and the difficulty of

_ A detailed survey of the literature on the application of redundancy

techniques to reliable computer design is presented in Appendix D of

this report.
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applying the technique in practical system design. In some cases where

a promising technique appeared to need further development, effort was

made to solve some of the outstanding problems in order to contribute to

the art and to help assess necessary directions of development. The

choice of criteria of evaluation will be considered in Sec. I-B-3.

b. Conception of New Schemes

The second task was to conceive new schemes of system design

and operation that offer promise of advancing the state of the art.

Serious exploration of the basic concepts of redundancy design date back

at least to the work of von Neumann in 1952; 318 the concept of a highly

reconfigurable modular computer dates back at least to the work of Holland

in 1959. ISS Fundamentally new notions (e.g., Moore and Shannon's scheme

for recursive construction of relay nets 214 and Pierce's scheme for

adaptive voting) 24° have been rare. New schemes have generally been

ingenious implementations of known principles, or means for exploiting

some special circuit characteristics such as asymmetries in fault types.

Some new schemes of this type were developed during the study for the

realization of adaptive circuits using only digital switching elements.

Although fundamentally new schemes are to be desired, the study

has revealed that there is a substantial lack of design knowledge appro-

priate to the practical realization of a computer having a high degree of

flexibility and autonomy and employing modern device fabrication. Such

realization calls for the creation of particular schemes for the overall

distribution of functions in such a system, for the realization of

particular functions, and for the integration of various kinds of error-

control processes. A number of such schemes will be described in this

report.

c. Recommendations for Directions of Further Research

In the course of the study a number of significant problems

were uncovered. Some were concerned with the advancement of a known

technique--e.g., improvement of the facility and accuracy of the analysis

and synthesis of "restoring" type redundancy (Sec. II-A-2-a); some with

new kinds of networks--e.g., "commutation networks" (Sec. III-C-2); and



some with basic design problems, such as the incorporation of error-

control criteria (e.g. ease of diagnosis of faults) in general network

synthesis. This report presents the results of some original work on

these problems. Recommendations for fu£ure work are also included in

this report.

3. Technical Assumptions of the Study; Definition of Terms

In this part we shall discuss the technical assumptions that guided

the study; in particular, the scope of the design techniques considered,

the choice of device technologies, the level of reliability of interest,

and the criteria for evaluating reliability techniques.

a. Definition of Terms

We shall first define a number of terms that will be used

repeatedly in the report; we have attempted to be consistent with estab-

lished usage. The definitions are as follows:

Fault:

Error:

A physical condition of a component that pre-

vents the system of which it is a part from

completely performing its specified function.

A system within such a state will be called

faulty; otherwise it will be called perfect.

An incorrect information state (this state can,

of course, appear at the output of a perfect

network as a result of an erroneous input).

Fault Masking: A property of a system such that it is

perfect even though some of its subsystems may

be faulty (see Fault Accommodation).

Fault Detection: Determination as to whether or not a

system is faulty.

Fault Location: Determination as to which subsystem in

a system is faulty.

Fault Characterization: Determination of the subset of

functions of a system that are improperly per-

formed. For each output, the precise characteri-

zation will be that subset of inputs resulting

in erroneous output. A simpler characterization

might be simply a distinction as to which outputs

of a system are perfect.
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Fault Diagnosis: Techniques for fault detection, location,
or characterization.

Fault Correction: Alteration of the physical condition

causing a fault so as to restore the system to

perfect operation (this could include changing
operating conditions such as voltages and

frequency).

Fault Accommodation: Essentially the same as fault

masking, but masking usually refers to an

instantaneous process, while accommodation may

also include a sequential process.

Error Detection: Determination that the information

state of a signal or a set of signals is in

error. This determination may be a computation

on the set of signals itself, or in reference

to another set of signals from which the set

is derived.

Error Correction: A computation upon a set of data,

perhaps including other related data, that

corrects an error in the set. @

Error Accommodation: (not a widely used term): Compre-

hends both error correction and alteration of

system behavior so as to achieve some modified

objective.

Error Control: A general term, including error accommo-

dation and fault accommodation.

Static (or Passive) Error Control: Error-control prc-

cesses in a system that do not involve changes

in the functions of its subsystems or their

interconnections.

Dynamic (or Active ) Error Control: Error-control pro-
cesses in a system that involve changes in the

functions of its subsystems or their inter-

connections.

b. Scope of Design Techniques

The scope of the error-control techniques studied was centered

about the logical behavior of a computer and its component subsystems.

Questions of good design practices for devices and circuits, on the one

hand, or on the other hand for computational programs, were excluded.

* The distinction between error correction and fault masking is usually

clear, but it is often dependent upon how a system is considered to be

partitioned.

11



However, the interactions between logical and circuit design, and logic

and program design, that affected the implementation of an error-control

technique were of great interest. Thus it is of interest to determine

what special constraints upon logical design result from limitations on

devices and programs, and also what special device types or program
functions would aid the effectiveness of a logical design scheme.

c. Device Technologies

Because of the requirement for high performance, it was assumed

that the major devices technology employed will be that based on modern

high-speed semiconductor devices. Special emphasis was given to the

use of integrated circuits, and in particular it was assumed that the

use of large-array monolithic circuits would be very significant in the

realization of future spaceborne computers.

The study of memory systems was primarily on the logical level,

so that choice of device type was net important. However, it was assumed

that the memory performance is consistent with high-speed bit-parallel

computation. In the report on that study (Appendix A) it is noted that

monolithic semiconductor memory arrays have some attractive features for

the spaceborne computer application.

A study was also made of the possible benefits of using magnetic

logic devices for special functions within a spaceborne computer (Appendix C).

C. Criteria of Performance

The major criteria used in evaluating an error-control technique

were the increases in the measures of reliability, weight, volume, and

power consumption of a functional unit employing that technique, relative

to the measures of those parameters in a unit having the same processing

function but without special error-control features.

There are a number of factors that complicate both the absolute

and relative estimates of these measures. In the case of the reliability

measure, modern logic components have a high reliability but the time-

failure distribution of a given product or assembly method is usually

not known; hence it is extremely costly or in many instances impossible,
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to estimate absolute reliability. Since it has been established that

redundancy is essential to the task, and since one of the ultimate goals

of the study is to find the most effective means for employing redundancy,

it is sufficient to be able to compare alternative schemes on a relative

basis. Thus the major reliability criterion used in the study was compari-

son of the reliabilities of alternative networks as analytic functions

of the reliabilities of their components, where reliability is defined,

as usual, as the probability that a component remains perfect for a speci-

fied operating time. In some examples, the familiar exponential failure-

distribution law was assumed, and various published failure-rate values

were employed, in order to give some engineering "feeling" of real time.

The resulting probability and time values should be taken very cautiously.

A comment on time measures of reliability is appropriate at this

point. A common time measurement is the "mean time to failure" (MTF)

which in the literature is almost invariably computed on the assumption

of an exponential failure law. It should be noted that for such a failure

law the reliability of a system for the time base equal to the MTF is I/e.

This is too small a value for an expensive mission such as a deep-space

probe; hence if MTF is used as a measure, values substantially greater

than the mission life must be considered. Comparisons of schemes on the

bases of their MTF values must consequently deal with time values that

have only weak intuitive significance. Thus for I - P(t) = 1 - exp

(-TMission/MTF) very small [where P(t) is the probability of perfect

system operation at time t] MTF is approximately TMission/[l - P(t)].

For example for P(t) = 0.999, MTF = T X i000 A measure having
mission

much greater engineering significance, proposed by Knox-Seith 164 and

Angell s is the "useful life," defined to be the longest mission time

for which the probability of failure is no greater than _, where A is

usually much less than one. Not only does this measure have greater

heuristic significance for the missions of interest, but it is also

more sensitive to variations in redundancy than the MTF measure. This

measure is discussed further in Sec. II-A-2-a-l).
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Measures of weight and volume are complicated by packaging consider-

ations, since the weight of the active components in future technologies

may be considered to be almost negligible compared to that of the pack-

aging and interconnections. For nonintegrated circuits, packaging costs

are approximately proportional to component count; but for integrated

circuits, packaging costs depend upon the component count and the number

of components that may be incorporated within a package. The latter

number may be expected to increase within a range of two orders of magni-

tude over present integrated-circuit values (which typically provide

the equivalent of one flip-flop per package). Hence comparisons of the

weight and volume of realizations of alternate schemes must consider the

effects of a rapidly developing technology. Thus, if one scheme lends

itself better to larger array realization (by reason, for instance, of

greater modularity), the packaging cost may actually be less than for a

scheme whose count of logic circuits is lower.

Measures of power are somewhat simpler. The obvious factors of

significance are the number of logic circuits and the fraction of those

that may be in a power-on status. One indirect factor that is sensitive

to logical organization is the degree to which circuit speed may be ex-

changed for number of parallel-acting circuits. Thus if such an exchange

may be made in direct ratio, it would permit a reduction in total power

consumption to be realized by the use of devices having low values of

switching time--power consumption product.* Increases in parallelism

adequate for significant power savings may not be feasible because of

inherent serialism within the computations of interest, but the possibil-

ity of such savings should not be overlooked.

* To illustrate, if in a system with n circuits, each with circuit

switching time t and power consumption p, computation speed s is pro-

portional to t/n, then total power = p n _ pt/s. For a given system

speed, devices having lower values of pt would take less total power.
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D. Organization of the Report

Chapter I has been a review of the operational and technical problems

of realizing reliable spaceborne computers and an explanation of the method

of approach of the present study. The technical analysis of reliability

techniques is presented in Chapter If, which is concerned with techniques

for fault masking and error detection, and Chapter Ill, which is concerned

with techniques for automatically controlled fault diagnosis and recon-

figuration.

The techniques of Chapter II are moderately well included in the pres-

ent state of the art of reliability design; but, as is seen, by no means

are they adequately understood. Most of these are forms of passive error

control, but several elementary active schemes are also included. For

example, the use of codes for error detection is a component of dynamic

error control, but it is included in Chapter II because it is a fairly

well-studied technique, and because the coding approach is helpful in

describing certain fault-masking schemes.

The techniques of Chapter IIl are all components of dynamic error

control, and they are all either new techniques, or practical implementa-

tions of hitherto "ideal" schemes.

In Chapter IV we present the conclusions of the study and recommenda-

tions for a program of further research.

There are four appendices. The first is concerned with the applica-

tion of error-control techniques to memory systems. The second is con-

cerned with the design of modular distributed power supplies in relation

to the modularization of the logic of a computer. The third considers

the possible applications of magnetic-logic devices. Since such devices

are slow, the study concentrated on those functions for which their use

would not substantially slow down a computer's basic cycle of operation.

The fourth appendix is an extensive guide to the literature that is

directly pertinent to the design of reliable spaceborne computers. It

is intended that this guide be directly usable as an introduction to the

literature; hence there is some overlap between it and the comments on the

literature found in the main text.
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II TECHNIQUES OF LOGICAL DESIGN FOR FAULT MASKING AND ERROR DETECTION

This chapter is concerned with techniques of logical analysis and

design that are needed for the realization of computer functions in which

the control of errors is static; i.e., in which the error state of the

computer is a subject of concern only to the local areas.

In this chapter we will discuss refinements of basic techniques that

are well known. Our goal is to distinguish those methods which are parti-

cularly suited for the achievement of high reliability for specific

functions, at minimum cost, and also to indicate algorithm-like methods,

wherever possible, for the optimum application of the techniques.

Section II-A is concerned with fault masking as applied to general logic

functions, both combinational and sequential. A comprehensive review is

first presented of the known fault-masking techniques, followed by a

detailed discussion of the voting-type restoration scheme. Here several

techniques are presented concerning the analysis of arbitrary restored

networks; in addition, several novel implementations are presented of the

powerful adaptive-restoration scheme. Several schemes are discussed for

detecting failures in sequential networks.

The chapter concludes with Sec. II-B which discusses the status of

error-correction coding techniques for passive error control, in parti-

cular as applied to arithmetic and storage operations.

In the attempt to distinguish the optimum applications of the

logical design techniques many problems were uncovered, both analytical

and of an engineering nature. In some instances detailed solutions were

examined, while in other cases rough designs were presented with con-

jectures relating to the optimum solution, thus providing a framework

for future research.
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A. Fault-Masking Techniques for General Logic Functions

In this section we consider logical techniques for the masking of

faults in networks realizing general logic functions. In the first part

we review the most significant known techniques. In the second part we

examine two of the most important techniques in detail--the multiple-line

voting scheme and the combined fault-masking and replacement scheme--in

order to assess the state of the art of their application. Also in the

second part we examine some realizations of voting networks. The first

two parts are concerned essentially with combinational networks; in the

third part we examine the state of the art of techniques for error control

for sequential networks, with special emphasis on error detection.

i. Review of Significant Techniques

In this part we attempt to assess the applicability to spaceborne

computers of the most significant known techniques for designing logic

networks that can mask internal faults. A number of the most attractive

techniques are distinguished, and reference is made to the sections of

this report that consider the techniques in greater detail.

Many schemes have been described for designing logic networks having

fault-masking capability. The well-known schemes exhibit a great deal of

ingenuity, but only a few have combinations of features that make them

practical for application to present-day digital networks.

The tree of Fig. II-A-I has been constructed in order to display the

most significant techniques in an orderly perspective. Only those tech-

niques have been included that have been described in sufficient detail

that functional networks could be designed, and for which circuit and

design techniques are currently available. Several other interesting

schemes, for which some circuit or logical action has been hypothesized

but for which no practical designs have been given, will be mentioned

separately.

_b Several reviews that may be of interest to the reader are those by

Teoste, 3°° Pierce, 243 and Garner et al. s2
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The first (top) level distinguishes these major classes of redundancy

techniques: circuit, lo$ical, and programming. The standard method of

circuit redundancy is the replacement, within a circuit, of an unreliable

circuit component (e.g., a diode or a resistor) by a cluster of components

whose net circuit impedence or transfer function changes within limits that

are acceptable for correct circuit operation when some number, or fewer,

of the components fail. General methods for organizing such networks

have been given by Shannon and Moore. 214 In practice, this approach is

useful for special circuits within a computer, in which a given component

is under heavy electrical stress (e.g., in power supplies or high-current

pulse drivers), or in which the circuit has very generous operating margins.

It has been found that application of the technique to low-level logic

circuits or memory sense amplifiers results in circuits that have sub-

stantially poorer margins with respect to component aging, noise, and

variations in operating voltages and temperature than equivalent non-

redundant circuits; hence there is likely to be a reduction in reliability

if the technique is applied to low-level circuitry. Programming redundancy

is a very important technique for spaceborne missions; it is discussed in

Sec. III-A of this report. The remainder of the tree is concerned with

techniques of redundancy at the logic level.

The second level distinguishes techniques in which the logical

structure of a system is variable or fixed. Provision of a variable

structure in a system that is part of a larger system increases the

flexibility with which the larger system may accommodate faults; thus,

not only may the number of tolerable fault conditions be increased, but

the system may permit tradeoffs in performance that may enable critical

functions to be performed. This technique is discussed at length in

Chapter III of this report.

The third level distinguishes techniques of fixed logic function in

which faults are accommodated by masking or by switchover. Automatic

switchover of spare parts to replace faulty parts is commonplace in

general electrical and electronic practice, and is an established practice

in space vehicles. 265 Although many computer-oriented reliability
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analyses have been made of abstract models of this method (e.g., by

Kruus 171 and Muth, 225), practical applications to computers has been rare.

Some recent examples are the Bell System ESS-I Central Switching System 39

and the memory system of the Saturn Guidance Computer 61 (anticipated by

Kemp, Is7) both of which use duplex switching. Recently, descriptions of

techniques for the practical logical design of computers, in which switch-

over would be applied at relatively low levels within the computer, are

appearing in the literature (e.g., Terris 3°3 and Agnew et al.1). In this

report, techniques relating to this method are discussed in Sec. II-A-2-b

and in Chapter III. All the remaining schemes are forms of fault masking

within a network of fixed structure; i.e., at no time may a part of the

network be blocked from contributing to the network output.

The fourth level distinguishes techniques that deal with networks

essentially as sequential or as combinational networks. Although a com-

puter is ultimately a sequential network, it is helpful to approach the

design of various subsystems with emphasis either on their state-sequence

behavior or on the classes of combinational functions that are realized

in the network. Error-control techniques for sequential networks are

discussed in Part 3 of this section.

The fifth level distinguishes techniques in which the process for

the construction of a fault-masking network is either recursive or

modular. In a recursive process, first employed by Shannon and Moore, a

given subsection of a network is replaced by a cluster of elements in a

way that preserves the structure of the network, and this process is

repeated for all subsubsections of the subsection, until a desired im-

provement in reliability is achieved. Amarel and Brzozowski 6 described

an approach in which the unit of recursion is a single gate (producing

so-called "triangular nets") and Urbano sx2 extended their scheme by

making the unit of recursion a network (producing so-called "iterated

neural nets"). These approaches are of considerable theoretical interest

in relation to the question of limits to achievable reliability, but the

schemes lead to networks that are so large, or that have such drive

requirements that they may be considered impractical for present-day

realizations. Modular schemes proceed by adding functional networks to
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one or more nonredundant functional networks, and combining their outputs

in some special manner. The remaining schemes to be discussed here may

all be considered to be modular.

The sixth level distinguishes between simple replication and coded

redundancy. In coded redundancy, the functions provided by the resultant

nets are not identical to those of the original nets, but are related in

ways that may usually be described conveniently in terms of a code. Code

redundancy may be more or less effective than replication, depending upon

the logical functions performed. Coding redundancy has been demonstrated

to be either superior to or competitive with replication redundancy for

special functional areas within a computer that are characterized by a

high degree of uniformity of structure. These are data storage, arith-

metic, and analog-digital conversion. Methods for these functions have

been highly developed, following the early work on the different subjects

by Hamming, 117 Peterson, 23s and Kautz, TM respectively. _ Recent develop-

ments are discussed at some length in Sec. II-B of this report. Coding

methods for sets of general, complex logic functions have been described

by Lofgren, TM and presented (more comprehensively) by Armstrong. I° The

value of these methods for general logic functions has not been demon-

strated, and has been doubted by several authorities (e.g., Pierce, 243

pp. 132-145). The two factors that lead to low efficiency are the need

to apply fault masking to the decoding logic and the possible high cost

of producing the redundant checking functions independently of the non-

redundant functions. Although the approach is not attractive as a general

method, logical designers would be well advised to be aware of its pos-

sible value for particular applications.

The seventh level distinguishes between schemes in which the resto-

ration of the desired function from the possibly imperfect set of functions

produced is performed according to an adaptive rule or a fixed rule. The

* In citing early authorities, we attempt to specify those references

which first developed a concept with some generality; these have often

been preceded by disclosures of particular schemes that embody the

general principles.
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use o£ an adaptive rule was proposed by Pierce, who demonstrated a

rule which, i£ implemented reliably, would achieve higher reliability

than a £ixed rule o£ the same order o£ redundancy. The method has not

been applied, because o£ the unavailability in modern technology o£

circuit elements that would implement the rule reliably. With the

miniaturization o£ logic elements, it appears to be increasingly £easible

to implement an adaptive rule in an all-digital circuit. Several schemes

£or such implementation are described in Sec. II-A-2 o£ this report.

The remaining schemes are distinguished by the criteria o£ levels

8 and 9. These are, respectively, whether or not the £ault-masked net-

work produces redundant output functions, and whether the restoration

£unction and the basic logic £unctions are accomplished in distinct logic

networks or are integrated in a single network.

The scheme of Liu and Liu lss (with its derivatives) is the only

example found in this study o£ a general treatment of single-output,

integrated restoration. It employs a network o£ redundant-input threshold

logic elements. In these elements, an output is produced i£ the linear

sum o£ weighted inputs exceeds a threshold, and the weight and the

threshold are chosen so that i£ an input is in error, the sum is still on

the correct side o£ the threshold. A serious disadvantage o£ this scheme

is that the sum o£ the weights required £or the many inputs to an element

is so great, even £or simple £unctions, that presently designable threshold

logic circuits would have unacceptably low margins. The scheme as it

stands must thus be considered impractical. It is clearly possible to

trans£orm the threshold-element networks into networks o£ simpler

(e.g., NOR) elements, but it is not known how such networks would compare

in size with those realized by nonintegrated schemes. This possibility

has not been investigated during the present study, but some consideration

is recommended. De Plan and Grisamore s9 have noted the possible merits

o£ this approach, and have given an illustration that is too simple to

permit a general evaluation.

Networks built according to the schemes o£ von Neumann ("single-

vote-taker redundancy") 318 and Teoste ("gate-connector" redundancy) 3°°
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have single outputs and distinct sections for corrections and for the

basic logic. The scheme of Teoste may be considered as an adaptation of

the von Neumann scheme for even-order redundancy. Although its de-

scription supposes the availability of three-terminal branch-type (relay-

like) logic for the restoration circuit, there is a simple gate-type

equivalent. In the very well-known von Neumann scheme, the restoration

logic is the majority function. A number of significant, good features

of these schemes may be enumerated as follows.

(i) The scheme is equally effective for both 0 _ 1 and 1 _ 0 errors.

(2) The correction logic may be realized by the same kind of digital

circuitry as the functional logic; i.e., no special elements are

needed.

(3) The size of the functional module is unlimited; i.e., it may

range from a single gate to a whole computer.

(4) No modifications are required to the method of realizing the

functional logic, either in network structure or in factors of

element usage, such as fan-in or fan-out.

(5) The scheme is extendable to high orders of redundancy, and a

system may employ different orders at various points without

causing any special problems in design.

A significant limitation of the scheme is its sensitivity to faults within

the restoring network. For the ultimate output of a computer, if there is

a single receiver, the reliability of the element producing the output

must affect the reliability of the output; also, there is no benefit in

cascading vote-takers upon vote-takers. Hence the reliability of the

restoring network is an ultimate limit to the reliability of the system.

When the receiver of a system output may be replicated itself, then

limitation due to the restorer can be reduced significantly, as in the

following schemes.

The multiple-line voting scheme (also called multiple vote taking,

triple modular redundancy, etc.) derived by a number of workers from

yon Neumann 318 and the scheme of Tryon S°s (also called quadded logic or

interwoven logic) employs a redundant encoding on the output of a

functional network. Thus, a number of versions of a logic function are

generated, and all of these are employed as inputs to successive logic

networks (the order of redundancy of output lines is often made the same

24



D

as the order of redundancy of the functional modules, but this is not

essential). This approach is beneficial because it reduces the dependency

of the system's reliability upon the reliability of the elements in the

restoring circuit.

Tryon's scheme is effective and simple to apply (see Pierce, 243

Chapter V). The following are some of its weaknesses:

(i) Fan-in and fan-out requirements for all logic elements are

increased significantly; e.g., for fourfold redundancy both

fan-in and fan-out are doubled. This tends to decrease the

basic reliability of the elements, and if more elements are

used to handle the increased input and output loading, new

sources of error are introduced. Moreover, for quadding the

redundancy in elements is approximately eightfold.

(2) Cross connections among logic elements (which are essential for

the fault-masking action) must be made at every level of logic.

This tends to increase the number of interconnections and the

weight and volume of the interconnection scheme. Also, it does

not permit variation in redundancy ratio except by changing

whole orders of redundancy.

(3) Reliability analysis of the networks constructed is extremely

complex; hence it is difficult to design for good reliability

improvement under weight and power constraints.

(4) Design of networks for ease of preflight testing @ appears to be

difficult; for example, in order to isolate a set of elements

for testing, all untested gate outputs must be set to a constant

i or a constant O, depending on the position of a gate within a

network.

Because of these weaknesses, the Tryon scheme has not been employed

extensively in practice. It is an elegant scheme of substantial theoreti-

cal interest, and it is almost practical, but it appears to be generally

inferior to the multiple-line voting scheme.

The multiple-line voting scheme has all the advantages enumerated

for the single-line voting scheme, in addition to the reduction of the

sensitivity of the system to vote-taker unreliability. Also, preflight

testing is reasonably straightforward, given independent control of the

_b Such testing is desirable in order to expose faults that would other-

wise be masked, so that the computer may be started in as perfect an

initial state as possible.
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power supply for the individual ranks of logic. This schemeappears to

be the most attractive way o£ accomplishing fault masking for general

logic functions presently known. Furthermore, it is applicable to net-

works for special functions such as arithmetic and storage, and it is

in fact quite competitive with schemesbased on coding. A number of

important problems o2 analysis and optimum designs remain to be solved.
These are discussed in detail in Sec. II-A o2 this report.

Several concepts for fault masking that have been described in the
literature have been omitted from the above classification and discussion.

Someo2 these are the multivalue logic schemeso2 LowenschussIs5 and the

Transor and Quantile schemesby Mann195. These have been omitted because

they require somehypothetical circuit element or circuit-design scheme,
the feasibility o£ which has not been evaluated. It is not known that

any o2 these schemeshave been developed since their description.

Inspection of the classification tree o2 Fig. II-A-1 suggests a
numberof possible variations in the approaches o2 adaptive restoration

and coded redundancy, based on the use o2 either redundant outputs or

integrated restoration or both. Someo2 these variations may provide
bases for useful schemes.

It should be reiterated that all the schemesdescribed here accom-

plish 2ault masking locally within a system; i.e., there is no provision

for reallocation o2 redundant equipment amongdi2£erent 2unctions. It

should be noted that those schemesin which basic logic 2unction and

restoration are distinct permit an easy augmentation in logic to provide,

concurrently with the fault-masked data output, a separate signal that

may indicate a fault condition; and further, to provide indication as to
which replica is faulty. This 2eature is clearly use2ul in a replacement-

switching system.

2. Combinational Techniques for Fault Masking in General Logic

Networks

In this section we discuss techniques for the design of networks

for realizing general logic functions that can mask internal faults.

The techniques to be considered do not depend on the history of the
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network, so although the network maycontain sequential elements, it is
convenient to visualize the networks to be discussed in this section as

strictly combinational networks. Fault-masking schemes that are based

on the sequential nature of a network are discussed in Sec. II-A-3. In

part a we review the state of the art for the analysis and design of

multiple-line voting-restoration networks, which is deemed to be the most

important available technique. A number of improvements to existing

methods of application are offered, and a number of suggestions are made

for further points of improvement. In part b we consider several new

schemes for the combination of fault-masking and switch-over redundancy.

Detailed schemes for networks having such features are presented, and a

number of problems that require further development are indicated. In

part c we present a number of particular designs for restoring elements;

included are single-output majority-function nets which are suitable for

passive fault masking, and multiple-output threshold-function nets,

which are useful in schemes for combined fault masking and switch-over.

a. Techniques for the Design of Multiple-Line Fault-Masking
Networks

i) Introduction and Summary of Prior Work

The preceding discussion has served to introduce the

various known techniques of digital logical design for error detection,

fault masking, and repair.

In the present section a detailed description will be

presented of the passive fault-masking technique wherein redundant

circuits are used in connection with selectively placed restoring organs

(voters) throughout the system. Our ultimate aim in this study is to

distinguish those portions of a spaceborne computer which can most benefit

from the application of the restoration technique, and also to provide

computer designers with an indication of the reliability improvement

that can be anticipated and specific rules for designing redundant net-

works.

Since yon Neumann's initial paper proposing the restoration

scheme, many subsequent papers have appeared discussing various aspects of
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this technique. Each of these studies can be considered as relating to

one or more of the following three categories:

(a) Qualitative description of the advantages of using
redundancy and restoring organs. 31s, Is8, 33, 333
These studies were primarily concerned with estab-
lishing the basic theory embodyingthe restoration
scheme,and also with distinguishing the overall
improvement in reliability for simple digital models
incorporating restoration.

(b) Quantitative discussion of simple models. These
studies were concerned with the extension of previous
results to provide a quantitative evaluation of the
improvement in reliability which can be achieved with
the restoration scheme, and also with methods of
determining for a given system "cost," the optimum
allocation of redundancy, i.e., the evaluation of the
order of replication and the placement of voters so
as to minimize the probability of system failure.
Unfortunately these studies pertained only to simple
models of digital systems--namely, the visualization
of a computer as a cascade of single-input, single-
output blocks, Is4' i_5 or as a tree network of
double-input, single-output blocks, s9

(c) Analyses of complex system models. The recognition
o£ the shortcomings of the simple cascade or tree
models led to the search for techniques permitting
the analysis o£ arbitrary restored systems. These
studies culminated in Monte Carlo simulation programs
for the analysis of specific systemsvs, 188, 141 and
also in an approximate analytical approach based upon
determining the set of network cut-sets which when
individually faulty will result in system fail-
ure.140, 141 With either analysis technique, it
is possible to determine the optimum placement of
voters (given a maximumpermitted numbero£ voters)
by, in effect, evaluating the probability of system
failure for each possible set of voter locations,
and then choosing that set which minimizes the failure
probability. A dynamic programming approach272 to
the voter placement problem has been proposed along
with several other approachesTM which are not as

lengthy as the exhaustive procedures, although their

application has not yet been established.

Although this prior work provides an adequate framework

for determining, for certain systems, the expected gain in reliability
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from the use of the restoration technique, several important questions

have remained unanswered. These include the following.

(a) For a given logical network, and a maximum permitted

overall redundancy, how can one estimate the expected

reliability, assuming optimum allocation of voters?

This question has remained unanswered in spite of the

abundance of research. For example, a reliability

simulation was conducted 7s of an arithmetic and con-

trol section of an airborne digital computer, which

as a nonredundant unit required 300 4-input, single-

output gates and exhibited a probability of failure

of 0.095. With triple replication and the use of

3 X 246 = 738 voters it was found that the probability

of failure was decreased to 0.004. On the basis of

visualizing the computer section as a cascade of 300

triplicated gates with 3 X 246 voters placed optimally

in the network, it can be shown by the analysis

technique discussed in Ref. 164 that the failure

probability is O.0001. Thus it is indicated that

extreme care should be exercised in applying results

derived from consideration of the simple model.

(b) What logical design techniques, if any, relating to

the logical dependence of the outputs of a multiple-

output network, yield replicated networks with minimum

probability of failure?

(c) For a given logical network, and a maximum permitted

redundancy, what are "simple" techniques for deter-

mining the optimum allocation of the available

redundancy?

Question (a) is discussed in Sec. II-A-2-a-3), where

several simple techniques are presented for the analysis of given repli-

cated logical networks with arbitrary placement of voters. These analysis

techniques are then used in Sec. II-A-2-a-4) to derive upper and lower

bounds on the redundant network reliability (assuming that the initial

network has a high circuit reliability) as functions of the number of

gates in the network and the maximum fan-in and fan-out. It is shown

that the simple cascade model provides an optimistic estimate of the

probability of failure.

Question (b) pertains to optimum logic design techniques

for multiple-output networks which are replaced by redundant versions of

the network with a restoring organ for each output. The major query is
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whether, on the basis of minimum probability of failure, the network

should be realized in a minimal-gate manner--with, of course, a dependency

in the outputs--or whether it should be implemented with a distinct

independent block for each output. In Sec. II-A-2-a-5) it is shown that

for a complete decoding tree the minimal dependent output implementation

is to be preferred, although at this time we have not yet established

that the minimal-gate solution is to be preferred in general.

Question (c) concerns simple techniques for the determina-

tion of the optimum replication order and the optimum placement of voters

given a fixed, but arbitrary, amount of available redundancy. Except for

the simple cascade and tree models this question has remained unanswered,

although we have formulated several conjectures relating to heuristic

programming techniques, which are discussed in Sec. II-A-2-a-6).

Before proceeding to the development of analytical

techniques for answering the three questions, it is convenient to define

seven assumptions concerning circuit failures.

(i) A nonredundant network is composed of many circuit

blocks; the operation of each circuit block is
45

essential for overall network operation.

(2) A circuit under consideration either is working

properly or has failed completely.

(3) If a circuit has failed, its output will always be

in error, regardless of the condition of the input

variables. This is tantamount to assuming that the

period of occurrence of those inputs for which the

output is in error due to the failure is low com-

pared to the mission life.

(4) The failure of a circuit will not affect the input

to the circuit.

(5) If a circuit has failed, it can only be restored to

proper operation by being repaired.

_* This assumption negates the possibility of inherent logical redundancy

which can effect fault masking.
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(6) Circuit failures are independent and are due primarily
to random component failures, as contrasted to pre-

dictable component wear.

(7) The probability of circuit failures is small, through-

out the mission time of interest.

In the discussion to follow we will determine the perfor-

mance of complex redundant systems as a function of the failure probabili-

ties which are assigned to each of the circuit blocks of the network.

Although it is understood that the overall failure probability of the

network will be a function of time, the exact functional dependency can

be determined only if a temporal function relating the occurrence of

circuit failures is known. It has been shown 6s that for the assumption

of random circuit failures, the number of circuit failures in a given

period of time will have a Poisson distribution if each circuit is

repaired or replaced after it has failed, and also if several other weak

conditions are satisfied. The replacement (or renewal) assumption is

valid for redundant systems with high values of replication, in which

case for the purposes of calculation it can be assumed that the probability

of an individual circuit block operating correctly decreases exponentially

with time.

It is not immediately clear that the exponential failure

law applies to the circuit blocks when low orders of replication (e.g. 3)

are used, but because of the unavailability of accurate data on the

distribution of component life we will assume that the exponential law,

with published parameters for components, can be applied.

In the consideration of an appropriate measure of reli-

ability it is important to weigh the intended application of the system.

Clearly all of the pertinent information concerning system reliability

is contained in the function P(t), which is defined as the probability

that the system is operating correctly at time t. The system behavior

could also be expressed in terms of the function Q(t) = l-P(t)--the
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probability that the system will fail during the time interval (O,t). _

The relative improvement in reliability obtained by using redundancy can

be expressed as

P(t) for redundant system

P (t) for nonredundant system

pR(t)

- Po(t ) (II-i)

In many cases it is difficult to derive explicit functions

P(t), Q(t), and moreover it has been the practice of reliability engineers

to refer to one parameter as a means for describing performance. The

commonly used parameter is the mean time to failure (MTF), defined as

0o

MTF = J_ P(t)dt . (II-2)

o

The corresponding improvement factor is expressed as

I = MTF for redundant system (II-3)
MTF for nonredundant system

Assuming that the exponential failure law is satisfied for

the system, then the MTF expresses the time at which the probability of

the system operating correctly is i/e = 0.37. If a single parameter is

used to describe the system performance for such applications as manned

space missions, it is evident that the term MTF is not appropriate since

it is unlikely that a mission would be permitted to progress to the point

where the probability of success is as low as 0.37. Perhaps a more

appropriate single term for describing the performance of a system is the

useful life164, s T_, which is defined to be the longest mission time for

which the probability of failure is no greater than A, where A is usually

much less than one.

_ In the following sections it will at times be convenient to discard

the argument t in referring to success or failure probabilities. It

is understood, however, that these probabilities indeed are temporal
functions.
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It then follows that

Q(TA) = A , (II-4)

and the corresponding improvement factor is defined as

T A for redundant system

T for nonredundant system T50

In the following section a brief review is presented of

the simple models which visualize a complex network as a cascade or tree

of simple logic networks.

@
2) Techniques for the Analysis of Simple Models

In Fig. II-A-2 the use of redundant binary circuits

followed by a redundant set of majority vote takers is illustrated.

r I
i I

L J
TA- 55 llO - 4

FIG. II-A-2 STAGE FOR CASCADE NETWORK

If voters are spaced throughout a large redundant logical network it is

not difficult to visualize the network as consisting of sets of redundant

9b Portions of this section incorporate some of the analytical techniques

presented in Refs. 164, 69, and 188.
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circuit blocks surrounded by redundant voters. It will be convenient to

define a stage in such a redundant network as a portion of the network

including a set of input voters and all of the circuit blocks between

the input and output voters. The stage concept, which is admittedly

ambiguous at this point, will be clarified in Sec. II-A-2-a-3) when

arbitrary networks are discussed. At present it will suffice to refer

to a stage, shown enclosed in the dotted lines of Fig. II-A-2, in a

simple cascade of redundant, single-input, single-output circuit blocks

with spaced voters. (It will at times be convenient to represent the

replicated networks with voters as a nonredundant network with circles

placed at locations where the set of replicated voters would appear.

This simplified representation is illustrated in Fig. II-A-3 for the

cascade stage.)

[ I

L J
T&-5S80-12

FIG. II-A-3 SIMPLIFIED REPRESENTATION
OF A RESTORED NETWORK
STAGE

In this case the order of replication is 2e + i, e = i,

2, .... We will characterize the stage (distinguished as the i th stage)

as operating (correctly) if at least e + i of the circuit blocks

s(i)_(i) provide correct outputs, given that at least e + 1S (i)
i' _2' '''' 2e+l

of the previous circuit blocks (contained in the i - 1 stage) S ki-lj,_

S_ i-l), ..., S_ ) provide correct outputs. Similarly the ithlstage

is characterized as not operating if at least e + i of the pertinent

circuit blocks do not provide correct outputs. With these definitions

of "stage" and "operating stage," an entire network will be operating

if all of its stages are operating.
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Referring to Fig. II-A-2 the probability q

stage is not operating is

(i) that the ith

2e+l

q(i) = z
j =e+l

2ej+ i)_ _2e+l-j• kppv J (i - ppv )j (II-6)

where

P

Pv

j - j'(2e + 1 - j):

= probability that a circuit block is operating

= probability that a voter is operating

(II-7)

If Eq. (II-6) is expanded in a series involving powers of

the parameters q = i - p and qv = 1 - Pv' and all higher-order terms are

discarded, it is noted that

_) _e+lq(i) _ \ e+Re + (q + qv ) when q, qv << 1 (II-8)

It is of interest to augment the conditions q, qv << i, for which the

above approximate equation is valid, with more precise conditions. It

can be shown that the term of the expansion of Eq. (II-6) in which q, qv

appear with exponents summing to e + 2 is

( : ) _e+2 (2: + i)_ [qe+l e+lq] e+22 +2+ 1 [q + qv ] _ + 1 e + i) qv + qv + eq
e+2"]

+ eq v

(II-9)

The ratio of (II-9) and Eq. (II-8) is, for q _ qv' of the order of q.

This indicates that the error introduced by using the approximation

(II-6) is negligible for practical systems. Also, for e = i,

(II-9) is negative indicating that (II-8) provides an upper bound on the

stage failure probability.

Equation (II-6) can be derived in an alternate manner.

Let us say that the stage of Fig. II-A-2 does not operate correctly if

and only if the proper combinations of e + 1 failures occur covering
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voters and circuit blocks. (Under this failure condition we ignore the

occurrence of more than e + 1 failures.) As an illustration of the pro-

cedure for the counting of the proper failure combinations, let e - 1

of the total of e + 1 permitted failures occur in the voters, and 2

failures occur in the circuit blocks. There are then -(2e + i) " combina-

e - i. _

tions of e - 1 voter failures, and !_e + 2)\ circuit-block" failures which
2

can result in stage failure. Hence the probability of stage failure due

to e - i voter failures and 2 circuit-block failures is

t2e + l)(e + 2\ e-i 2 e+2 2e-i_ e - 1 2 /qv q PV P

(2e + i" (e + 2) e-i 2e - l J 2 qv q for q, qv << 1

Considering, then, all proper combinations of voter and circuit-block

failures, the expression for the probability of stage failure is approxi-

mated by

q(C) e_l(2e + i )(e + j)e jqje +I- j j qv-

j =o

(Be + i) q)e+l= (qv ++ 1

( i-io)

This failure-counting technique will be exploited further in Sec. II-A-

2-a-3) in the consideration of arbitrary networks.

When a network is formed by connecting N identical stages

of the type shown in Fig. II-A-2 in a simple cascade_ the resultant

expression for the probability of network failure is

(i))N (II-11)
QR = i- (i- q

_ Once the positions of the voter failures have been established there

are only e + 2 circuit block locations remaining for which combinations

of failures can result in stage failure.
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Equation (II-11) can be approximated as

QR _ N(2ex e + 1+ 1)(qv + q)e+l (II-12)

with an error term on the order of the value specified by Eq. (II-9) but

increased by a factor of N.

Equation (II-12) reflects the probability of overall net-

work failure based upon the assumption that only the proper combination

of e + i failures occurring in the N(2e + i) circuit blocks and voters

can result in failure.

As a final remark concerning the reliability of simple

cascades, consider the problem of determining the optimum number of

voters (and also, as a trivial question for the cascade, the placement

of the voters) so as to minimize the failure probability. Assume that

in the cascade of N replicated circuit blocks, a set of voters is placed

after every N/N t circuit blocks. @ We then find that the expression for

I

network failure probability QR reduces to the following Eq. (II-13),

where it is noted that the network, whose performance is described by

Eq. (II-12), now consists of a cascade of N t stages and the probability

of circuit-block failure in each stage is (N/Nt)q.

Then

QR _ N' 2 + 1+ i (II-13)

We find that QR is minimized (performing the minimization

over the variable N ') for

N'qv = eNq . (II-14)

@ It is assumed that N' divides N.
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For e = l--which, it is recalled, is tantamount to triple

replication--the optimum stage division of the network is such that the

failure probability of the voter is equal to the combined (nonreplicated)

failure probability of the circuit blocks in each stage. It is noted

that with the optimum stage division, for triple replication, the amount

of equipment required is on the order of six times the nonredundant

equipment, assuming that circuits exhibiting comparable failure probabili-

ties are of similar complexity. If fewer stage divisions than specified

by Eq. (II-14) are employed in order to reduce the overall redundancy

level, then the optimum placement of the available voters is such that

all stages exhibit equal (or nearly equal) failure probabilities.

It is of interest to determine the tradeoffs between

reliability improvement achieved through the use of redundancy as a

function of the cost of implementation, and the cost of the nonredundant

network. In this instance the cost factor will simply reflect the ratio

of the number of components in the redundant and nonredundant networks.

The analytical procedure, however, can be easily modified to include

other cost factors.

Consider the simple cascade of N circuit blocks each with

failure probability q = 1 - p. The probability of failure for the

resultant restored network, with voters placed after every N/N _ circuit

blocks, can be derived in a conventional manner by application of simple

modifications of Eqs. (II-6) and (II-ll) @ accounting for the existence

l

of N stages as opposed to N stages. The following assumptions are

pertinent to the analysis:

_ The following discussion related to reliability as a function of cost

was adapted from notes of E. K. Van De Riet. The results reported

herein are an extension of the results presented in Ref. 164 to include

the effect of realistic cost and reliability measures for the voters.

The exact formulas for failure probability rather than the approximate

formula (II-12), were employed because some consideration was given to

circuit-block and voter failure probabilities which were not low

enough to warrant the use of the approximation.
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Ca) There are an equal number of components in a single-

circuit block and a 3-input voter circuit.

(b) The complexity of a voter circuit, for more than 3

inputs, is proportional to 3 e-1. (This complexity

assumption is based upon a component count of non-

minimal realizations of majority gates. The majority-

gate implementation presented in Sec. II-A-2-c

indicates that perhaps a more realistic complexity

factor would be 2e-1.)

(c) We can define the following overall restored-network

cost ratio C, based upon the above assumptions, and

also contingent upon the assumption of component

count as the primary cost factor.

N I

C = (2e + 1) + _ (2e + 1)3 e-1 . (II-15)

Also the probability of voter failure can be

expressed as

qv 3e-i= q . (II-16)

It will be convenient to express all failure probabilities

in terms of the failure probability of the nonredundant network,

Q0 = 1 - P0' Thus the probability of a circuit block operating is

given by

p = (1 - Q0)I/N .

Then the expression for network failure probability becomes

2e+l
Qr = 1 - i - _.

j =e+l
(2e J÷ l) iX - Q0)X/Nt3 e-I _ - (1 - QO)I/N

N'

(1- Q0)I/N'3e-1 _- (i - QO)I/N']}> j] .

(Ii-17)
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Figure II-A-4 shows plots of the ratio of redundant

failure probability and nonredundant failure probability, QR/Qo , as

a function of the cost ratio and the nonredundant-network failure

probability. The curves provide an indication of the cost of achieving

failure-probability improvements corresponding to QR/Qo = i0 -I, l0 -2,

i0 -S 10 -4 The discontinuities in the curves for the latter three

values of QR/Qo indicate where the particular reliability improvement

can be achieved by changing the order of replication•
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FIG. II-A-4 RELIABILITY IMPROVEMENT AS A FUNCTION OF COST FOR CASCADE MODEL

The preceding discussion is concerned with the effect of

voting-type redundancy in that model wherein a computer network is

visualized as a cascade of identical single-input, single-output circuit

blocks. The analytical techniques employed therein can be directly
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extended to a case where a uniformly converging tree is realized from a

basic primitive fan-in circuit block. A redundant fan-in stage with
f inputs and one output is shownin Fig. II-A-5. As with the cascade

stage of Fig. II-A-2, it is convenient to visualize the set of input

voters as associated with the stage. Wefind that the probability of

the fan-in stage not operating is approximated by

q(i) _ (2e ++ll)(q + fqv)e+l , for q, qv << 1 (If-18)

The error term is evaluated from Eq. (II-9) by replacing qv with fqv"

A uniform tree is easily formed from the fan-in stages; in this case

voters are placed on f input lines to each circuit block. For example,

a 4-1evel tree is shown in Fig. II-A-6, where the dotted lines indicate

the division of stages (of which there are 15). The network failure

probability can be approximated by multiplying the number of stages formed

(i)
by the value of q derived from Eq. (If-18). If, in the uniform tree,

voters do not appear on the inputs to each circuit block--as shown also

in Fig. II-A-6 where voters appear every other level to form 5 stages

(the stages are enclosed in dashed lines)--then the application of the

stage failure probability expression, Eq. (II-18), must be altered. This

is because for the case considered here each stage encloses three circuit

blocks* and the fan-in to each stage is increased to 4. Thus for each of

the "dashed" stages of Fig. II-A-6 the probability of failure can be

expressed as

q(i) (2e + i) )e+l (II-19)e + 1 (3q + 4qv

The relative values of q and qv which minimize the failure

probability of a tree can be easily determined in a manner similar to

that used for the cascade. Curves for reliability improvement as a

function of cost can also be easily derived for the tree model. The

* Clearly deleted from the stage are the two voters connected to the

output circuit block.
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results for the tree case are not presented here since it is felt that

the corresponding results for the cascade model provide a sufficient

qualitative measure of the utility of the restoration technique for a

given network size. In the following section techniques are discussed

for the analysis of specific arbitrary networks and the utility of the

simple cascade model is discussed.

3) Techniques for the Analysis of Arbitrary Triplicated

Networks

In the preceding section it was shown that the probability

of failure of a cascade-type restored stage (Fig. II-A-2) could be

approximated by determining the number of sets of e + 1 failures, e + 2

failures, etc., which resulted in stage failure. A similar analysis of

determining the occurrence of the "most-likely" failures will be used

to evaluate the failure probability of arbitrary networks, and the

analytical method will be illustrated with an example. Consider the

"arbitrary" triplicated @ stage of Fig. II-A-7, where it is assumed that

the failure probability of each voter is qv and the failure probability

of each circuit block Sij , i = 1 .... , 4, j = i, ..., 3 is q. (This

latter assumption concerning the equality of circuit-block failure

probabilities is based upon our supposition that logical designers will

probably attempt to employ large sets of nearly identical blocks in

designing combinational and sequential nets. If this assumption is not

valid in certain applications, then the analytical method to be discussed

is still applicable in theory, but the "bookkeeping" operations become

somewhat involved.)

As a first step in the analysis of this stage let us

count the number of occurrences of two failures which result in stage

failure, where the stage (of Fig. II-A-7) is defined as operating correctly

if and only if at least two of the outputs designated A and at least two of

* Unless otherwise stated we will, in the remainder of this section,

consider only triple-order replication; but it should be noted that

the results reported herein can be extended to higher-order replication
values.
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FIG. II-A-7 "ARB TRARY" TRIPLICATED STAGE

the outputs designated B are correct. For example, failures of the

elements Vll and $42 will result in two errors in the output B (and

hence will result in stage failure), while failures of the elements

S21 and $42 will not result in stage failure. In the terminology of

Ref. 141 we say that groups V 1 and $4" are linked t and groups S 2 and S4

not linked, where two groups are defined as linked if two failures, one

occurring in each group, can result in stage failure. It is noted that

* Only a single subscript is used if the purpose is to identify a group

of 3 replicated elements (voters or circuit blocks).

The analytical approach based on linked groups is somewhat related to

previous investigations (Refs. 140, 141), but these prior studies give

accurate results only when the probability of occurrence of more than

two failures is minimal or when the network structure closely approxi-

mates either of the aforementioned simple models. We have modified the

procedure so as to account for the occurrence of more than two failures.
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all groups are trivially linked to themselves. In the consideration of

the linked groups S. and S. _ , i _ i , it is easily shown that there are
l l

6 sets of double failures (one failure occurring in each group) which

can result in stage failure. In the consideration of the trivially

linked groups S. and S. it is verified that there are 3 sets of double
i l

failures which result in stage failure. If two groups are not linked

then there are no double failures covering these 2 groups which can result

in stage failure.

The "bookkeeping" procedure for the double-failure patterns

is facilitated by a table such as Table II-A-I, relating to the stage of

Fig. II-A-7 and reflecting the linked groups in the stage. An entry in

Table II-A-I

DOUBLE FAILURE PATTERNS BY LINKING PROCEDURE

V 1 V 2 S 1 S 2 S 3 S 4

I

V 1 3 3 f 3 3 3 3

Region I l Region II

V 2 3 3 I\ 3 3 3 3

S 1 3 3 \I 3 3 3 3

I

S 2 3 3 I 3 3 0 0

I

Region II S 3 3 3 I 3 0 3 0 Region III

I

S 4 3 3 i 3 0 0 3

the table is either 3 or O, according to whether the groups corresponding

to the respective row and column headings are linked or not linked. The

table is partitioned into three regions, each reflecting the element types

in which the failures have occurred. Region I relates to the occurrence

of failures exclusively in voters; region II relates to the occurrence of

_ We could have equivalently selected the linked groups V i and V i, or

the groups S.I and V i.
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one voter failure and one circuit-block failure; and region III relates

to the occurrence of failures exclusively in the circuit blocks. The

probability of stage failure resulting from the occurrence of two element

failures is then derived from the double-failure-pattern table as

Prob. of stage failure from 2 element failures =

N(r)_2 N (r)

(Sum of entries in Region I)[q_(l - qv ) v (i - q) s ]

N(r)_l

+ (Sum of entries in Region II)[qvq(l - qv ) v

N(r)_l
(i - q) s ]

N (r) N (r)_2

+ (Sum of entries in Region IIl)[q2(l - qv ) v (i - q) s ]

(II-20)

where N "r"( _ and N 'r'( _ are the number of voters and the number of circuit
v s

blocks (replicated), respectively, in the stage. It will be convenient

to approximate Eq. (II-20) as

Prob. of stage failure from 2 element failures =

f2(q,q v) + f3(q,q v) (II-21)

where f2(q,qv ) and f3(q,qv ) are respectively the terms in the expansion

of Eq. (II-20) in which the sum of the exponents of q and qv are 2 and 3.

We can visualize f2(q,qv) as representing an approximation to the failure

probability and f3(q,qv ) as representing a contribution to the dominant

error term.

Hence for the stage being considered the expression for

the probability of failure becomes

12q2v( 1 _ qv)4(l _ q)12 + 24qq v(l _ qv )5(I - q)ll + 30q2(i_ qv )6(I - q)lO

(12q2 + 24qqv + 30q2) - (48q3v + 264q2q + 444qvq2 + 300q 3) .
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It is of interest to consider the effect of error patterns

of weight greater than 2 on the failure probability, to augment the error

term f3(q,qv). We have developed a systematic procedure for determining

the contribution to the failure probability from triple element failures,

and this procedure can be generalized for the consideration of an arbitrary

number of element failures. As might be expected, the complexity of the

bookkeeping operations increases as additional failure combinations are

considered.

In the consideration of triple-element failures, six cases

completely cover all combinations of group linkings of circuit blocks (or

voters). For example, if we are concerned with the number of triple

failure patterns of the groups Si, Sit , Six , (one failure occurring in

each group) which will result in stage failure, then the counting pro-

cedure simply reflects the manner in which the three groups are linked,

and also the equality of i, i' and i x . As a specific case consider (for

the stage of Fig. II-A-7) the 3 failures as occurring in the groups SI,

$2, and SS. In this case one group (SI) is linked to each of the other

groups, and also i _ i' i v ' ', i _ , i" _ i , where i = i, i' = 2, i v = 3.

There are 27 triple error patterns covering the 3 groups, and 24 of

these--all except the error patterns SIj S2j S3j , j = i, 2, 3--will

result in stage failure. The six cases are summarized below.

Case a :

Case b:

Case c :

Case d:

Case e:

Case f:

i = i' = i#--i failure pattern

.t i _ _ #
i = i _ ; S i and S i not linked--9 failure
patterns

i = i t _ i v; S i' and S #i linked--9 failure patterns

i _ i I i v .t #, i _ , I _ i ; all group pairs not

linked--O failure patterns

# S ti _ i t , i _ #, i t _ i ; S and . linked,

remaining two group pairsinot li_ked--18 failure

patterns

t and S_--24
i = i t , i _ i v, i S _ i v, S i linked to S i I
failure patterns.

As was the case with the double failure patterns, the

failure probability calculation resulting from the consideration of triple
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error patterns is greatly facilitated with the use of a failure-pattern

table, as illustrated for the stage of Fig. II-A-7 by Table II-A-2. The

row headings, as in the table for the double failure patterns, are a

listing of the N voter groups followed by the N circuit-block groups
V

However, the column headings are a listing of the 2 + N + N
V S

combinations of the groups taken two at a time. The entries in the

table relate to the number of failure patterns corresponding to each of

the 6 above cases, where the particular case is distinguished by the

corresponding row-column headings. For example, the entry corresponding

to row S 3 and column $2S 4 is defined by Case e, in that S 3 and S 4 are

linked, and the resultant entry is 6.

The table is partitioned into 4 regions, each reflecting

the element types in which the failures have occurred. Then the contri-

bution to the stage failure probability from the occurrence of triple

failures is given by the following, where only the lowest-order terms

are retained.

Prob. of stage failure from triple failures

(sum of entries in Region I)q_

+ (sum of entries in Region II)q_q

+ (sum of entries in Region III)qv q2

+ (sum of entries in Region IV)q 3 . (II-22)

Combining the results of Eqs. (II-21) and (II-22) we can

then represent the failure probability of a stage by the term f2(q,qv )

_b The entries corresponding to Cases d, e, and f are 0, 6, and 8 respec-

tively or one-third of the number of failure patterns listed for these

cases, since there are 3 locations in the table in which entries appear

for Si, Sil , Sin , i _ i l, i d in , i I _ iH. Those entries corresponding

to Cases b and c are 9/2 or one-half of the number of failure patterns,

since there are 2 locations where i = i I _ i#. The entry corresponding

to Case a is i.
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plus an error term given by the sum of f3(q,qv ) and the result of

Eq. (II-22) above. It appears that the error term (for triple repli-

cation) is always negative, but no proof of this conjecture has as yet

been formulated. It also appears, for q _ qv' that the ratio of the

error term to f2(q,qv ) is on the order of the product of qN s.

For the stage we have been considering, it is easily

verified that the error term is

2 3
20q3v + 96q2vq + 84qvq + 98q

Prior to this point in the discussion of arbitrary

restored networks we have been concerned with finding the failure

probability of an artefact unit called a "stage." It is noted, by

referring to the stage of Fig. II-A-7, that voters only appear on the

input lines. However, the techniques illustrated for the stage can be

applied to any arbitrary restored network with arbitrary placement of

voters. For arbitrary networks, the failure-pattern tables for double

and triple failures are applicable, but appropriate row and column

headings must be present for each group of circuit blocks or voters. In

the compilation of this table we note that two groups (circuit blocks

or voters) are linked if there exists at least one path (in the direction

of normal signal flow) connecting the output of either group with the

output of the other group which does not include a voter, or if there are

two paths, one emanating from the output of each group, which intersect

at a circuit block without including a voter. For example, referring

to the network of Fig. II-A-8 (in simplified representation), it is seen

that V 3 and S 4 are linked and S 2 and V 4 are linked, but S 1 and S 2 are

not linked.

It is easily verified that this property of linked groups is consistent

with the definition presented previously in this section in terms of

the effect of failures in the respective groups. It is also noted that

a circuit-block group followed by a voter group is not linked to it (in

the absence of feedback) since there is a voter in the path connecting
the outputs.
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FIG. II-A-8 NETWORK TO ILLUSTRATE LINKING

The approximation to the failure probability of a network

as the probability of only two or three linked-circuit-block failures is

only valid if the product of the failure probability of a circuit block

and the number of circuit blocks in the nonreplicated network is much

less than unity. _ If this assumption is not valid (although for most

networks in a spaceborne computer the assumption indeed appears to be

satisfied) then an accurate analysis can be performed by visualizing the

network as a composition of stages and utilizing the analytical techniques

discussed in order to determine the reliability of each stage.

In Sec. II-A-2-a-2) an ad hoc definition of a stage was

given. At this time we can formulate the definition in more precise

terms relating to linked groups.

Definition: A stage of an arbitrary restored

network is a collection of circuit-block and

voter groups with voters only on external in-

put lines and also with the restriction that

no group within the stage is linked to a group

external to the stage.

The probability of the network operating correctly is

then given by the product of the operating probabilities of the respec-

tive stages, where the expression for the probability of a particular

stage operating is derived by the methods of this section, t

¢_ An illustrative example is discussed in Sea. II-A-2-a-4).

The circuit-block failure probabilities will probably be low enough to

permit the evaluation of the stage operating probability in terms of the

probability of 2 or 3 element failures.

52



It has been noted previously 272 that for certain network

topologies there is somedifficulty attendant to the problem of revealing

the stages. As an example, consider the restored network of Fig. II-A-9.

£ H

M

C

D

FIG. II-A-9 ARBITRARY NETWORK TO BE SUBDIVIDED INTO STAGES

The subdivision of the network into stages is not possible with the

present connection. However, the subdivision can be performed by con-

t # appearing on the appropriatesidering the voter V 6 as two voters V 6 and V 6

input lines of circuit blocks SII and S12 respectively, and also con-

' and # appearing on the appro-sidering the voter V 4 as two voters V 4 V 4

priate lines of circuit blocks S 7 and SI0. Three stages, as shown in

Fig. II-A-10, can then be formed; it can be shown that the failure

probability of the original network is slightly lower than the failure

probability of the modified network with the additional voters. Thus, in

the analysis, the error attendant to the modification is in the direction

of a conservative estimate of reliability.

In the present section techniques have been given for the

analysis of arbitrary restored networks. In many applications it is

important to estimate the reliability of a given network with an assumed

number of available voters, without going through a lengthy analysis. A

method for the evaluation of upper and lower bounds on network failure

probability is discussed in the following section.
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FIG. II-A-IO STAGE SUBDIVISION OF NETWORK
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4) Bounds on Network-Failure Probability

In this section we will present upper and lower bounds on

the failure probability which can be expected from triplicated restored

networks of a given "size" with a given density of voters. Our major

motivations for considering this problem are to discover the relevance of

describing the performance of arbitrary networks in terms of the simple

cascade model, and also to present easily applied methods for evaluating

a rough measure of the reliability of redundant networks. It is shown

below that visualizing a complex network as a simple cascade gives an

optimistic measure of the reliability.

In considering the derivation of upper and lower bounds on

the expected failure probability of networks we have assumed the following

constraints, in addition, of course to the assumptions discussed in

Sec. II-A-2-a-l).

(a)

(b)

The (nonredundant) network is composed entirely of

one primitive element type; in the analysis to follow

we assume the primitive element to be a S-input,

single-output circuit block where all possible inter-

connections are permitted (provided the fan-in and

fan-out do not exceed 3). The assumption of this

primitive element type is not restrictive, and the

results can be readily generalized.

The voters are dispersed throughout the network so

that the overall failure probability is close to

minimal. It is not known how to optimally place the

voters in an arbitrary network, so we have operated

on the premise that the restored network will be

close to optimal if the voters are placed so that the

maximum number of circuit blocks traversed on any path

between voters is minimized. (For regularly structured

networks this placement criterion appears to be

optimal, but it is not difficult to visualize topo-

logies for which the failure probability is not

minimized by such a technique.) In order to facili-

tate the calculations we assume that the maximum

number of circuit blocks on nonrestored paths could

assume, for different cases studied, the values

i, 2, .... This latter assumption enables the deter-

mination of bounds on the failure probability for

different numbers of available voters.
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(c) Voters are placed on the output lines of circuit

blocks.

(d) The circuit-block and voter failure probabilities are

low enough that the analytical techniques of the

previous section, based upon only double element

failures resulting in network failure, are applicable.

First we will consider the determination of the greatest

lower bound on the failure probability, Q_L)-. Assume that we have a

network composed of interconnections of N 3-input single-output circuit
s

and that voters appear following every Ns/N' blocks. @ Hence forblocks,

triple replication 3N t voters are required. We recall that the failure

probability is minimized by minimizing the number of linked circuit

blocks and voters. Since there are at least N /N t circuit blocks between
s

voters, the failure probability is minimized if each circuit block is

linked to a total of N /N t circuit blocks, each voter is linked to Ns/NI
s

circuit blocks, and each voter is only linked to itself. The network

which satisfies these linking conditions is the simple cascade shown in

Fig. II-A-II; this cascade is admittedly artificial since all of the

inputs to a circuit block originate at the same source.

FIG. II-A-11

T&-5500-25

CASCADE NETWORK WHICH MINIMIZES FAILURE PROBABILITY

mined as

The failure probability of the network is easily deter-

G Ns )2Q(i_)L = 3N' +v _'7 q .
(II-23)

Now consider the upper bound on failure probability which

is realized for a topology for which the number of circuit-block and

@ It will be assumed that N
S

and N' are such that N'IN .
s s
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voter groups which are linked is maximized. Consider a 3-input, single-

output circuit block whose output is connected to a voter. Distinguish
this circuit block as a first-order block. Since there is a voter on the

output of the first-order block, only self-linkings and linkings by means

of the 3 inputs are possible. Assume that the sources of these three in-

puts, called second-order blocks, are all distinct. In turn, each of

these second-order blocks is a sink for 3 third-order blocks, etc.

(Since in the network as visualized the number of circuit blocks between

voters does not exceed Ns/Nt , the maximum "order" of a block is Ns/Nt.)

It is then seen that the maximum number _8 of e-order blocks with which

a B-order block is linked is given by

_0_ = 3 [max(c_' _)-i ] . (II-24)

The maximum number of y-order blocks which can be linked

to a y-order block is

_7 = 37-1 . (II-25)

In a network with N' voters we can treat the voters as equivalent, on the

basis of the calculation of linkings, to (Ns/Nt + 1)-order blocks. A

portion of the network which exhibits the maximum possible linkings among

the various circuit blocks and voters, for N /N I = 2, is shown in
s

Fig. II-A-12.@ It is seen that all 9 voters are linked and also that

each voter is linked to each of the 18 circuit blocks. Each second-order

circuit block is linked to 3 second-order circuit blocks (including it-

self), and is also linked to 3 first-order blocks. Each first-order

block is linked to itself, and also to 3 second-order blocks.

i/(3Ns/N')@ The overall network, which is a cascade of N stages of the

Ns/N N /N Is
type shown in the figure, contains 3 inputs and 3 outputs.
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FIG. II-A-12 NETWORK WHICH MAXIMIZES FAILURE PROBABILITY
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The expression for the upper bound on the failure probabil-

ity, Q_U)- for arbitrary N and N l, is derived as follows.
' s

Consider, first, the contribution to the failure probabil-

ity from the linking of circuit blocks. A block in order i is [from

Eq. (II-24)3 linked to a maximum of 3 i-I blocks, contained in orders

i, 2, ..., i - i. This block in order i is also linked to 3j-I blocks

contained in orders for which j satisfies j = i, i + i, ..., N /N'.
s

Thus the total number of circuit blocks to which each block in order i

is linked is given by

Ns/N '

(i - i)3 i-I + _. 3 j-I

j=l

(II-26)

However we note that, assuming an equal number of blocks of each order

in the network, there are a maximum of N' blocks of order i; and also,

from Eq. (II-20) the contribution to the failure probability from each

2
linking between circuit blocks is 3q . Thus the contribution to the

network failure probability from circuit-block linkings is given by

N s/N ' Ns/N '

3NZq 2 T, [(i - i)3 i-I + E 3 j-l] .

i =i j =I

Ns/N '

Each voter is linked to a maximum of 3 voters, and

N tsince there are voters in the overall network, the contribution to

the failure probability from voter linkings is given by

(II-27)

l

3N 'qv23 Ns/N . (I 1-28 )

N /N'

Similarly, each of the N' voters is linked to (Ns/N')3 s

circuit blocks (and of course each of the N s circuit blocks is linked to
N /N'

3 s voters), thus indicating that the contribution to the failure

probability from voter-circuit block linkings is given by

N /N'

s (II-29)
3 X 2Nsqqv3
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Simplifying Eq. (II-27) and summingthe resultant expression
(u) becomeswith Eqs. (II-28) and (II-29) we find that QR

f )Ns/N' Ns/N1Q_U) = 3Ntq2 Ns/NI 3 + 1 - 3

I 2_Ns/N ' Ns/N'

+ 3N qv,_ + 6Nsqqv3 . (II-30)

It is of interest to compare the lower and upper bounds as

specified by Eqs. (II-23) and (II-30). We can visualize the two networks

which satisfy the lower and uppe_ bounds as each containing N s circuit-

block groups and N' and N'/3 Ns/N" stages respectively. A meaningful

comparison is achieved by tabulating as a function of Ns/N' (the number of

circuit blocks between voters) the quantities

and

(3N ,q2 ) (3N ,q2 )

These two quantities are a measure of the failure probability per voter

group divided by q2 (assuming q _ q ). These values are shown in
v

Table II-A-3; it is not meaningful, in the context of the two networks,

to show smooth plots connecting these points.

Table II-A-3

MEASURE OF LOWER AND UPPER BOUNDS

ON FAILURE PROBABILITY

N s/N '

1

2

3

4

5

QR(L)/3N ,q2

4

9

16

25

36

QR(u)/3N ,q2

i0

55

243

963

3646
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It should be noted that the upper bound is somewhat

pessimistic since it is unlikely that circuit connections of the type

shown in Fig. II-A-12 would occur in practical networks. However, these

studies do indicate that care should be exercised in applying the reli-

ability measures obtained from consideration of the simple cascade model,

since these results tend to be optimistic. If an accurate measure of

the performance of a network is required, then it appears that a complete

analysis must be performed. It is recommended that consideration be given

to the development of computer-aided techniques for the rapid analysis of

arbitrary restored networks; for systems with fairly high initial reli-

ability the simple analysis technique based on linked elements and

described in this report can be applied.

5) Techniques for the Realization of Multiple-Output

Networks with Voter Redundancy for Fault Masking

In this section we briefly discuss a problem which apparently

has not been previously considered. It was noted previously [Sec. II-A-

1-b-l)] that the output functions in a multiple-output network must be

realized independently in order to apply parity-cheek codes for the

parallel checking of the outputs. This independent realization condition

is required so that the number of outputs in error does not exceed the

number of failed components in the network.

A related question arises in the consideration of multiple-

output networks to which are applied the conventional restoration tech-

niques, discussed in this report. The question is whether, if the outputs

of a multiple network are each protected by voting-type redundancy (where

the voters are placed only at the network inputs) the output functions

should each be realized independently so as to minimize the failure

probability.

_ The results of the cascade can be applied if the density of voters is

high--say one voter for every 2 or 3 circuit blocks--in which case the

difference between the upper and lower bounds is probably less than the

inaccuracies attendant to the determination of component reliabilities.
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At present, we do not know the answer to this question

for all function types, although we conjecture that the minimumfailure

probability is achieved if the function is realized minimally, regardless

of the dependencyof the outputs. An example illustrating this conjecture

for triple replication is presented below, wherein the failure probabili-

ties of two realizations of a serial decoding circuit are compared.

A serial decoder for 2 m signal lines can be realized as

an m-level tree network, of the type shown in Fig. II-A-13, composed of

simple, single-input, double-output sequential decision blocks. It is

assumed that there are 3 replicas of the entire network, and a single

_ 2 mperfect voter is employed for each of the outputs.

SERIAL
INPUT

LEVEL I LEVEL 2

• 2 m OUTPUTS

LEVEL m
TA-5580-18

FIG. II-A-13 TREE REALIZATION OF SERIAL DECODER

_ In order to simplify the analysis we have assumed, with no loss of

generality, that the voters are perfectly reliable.
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Another implementation of the decoder is shown in

Fig. II-A-14, in which each of the 2 m outputs is realized independently

by a cascade of single-input, single-output sequential decision blocks.

We would expect that the sequential blocks of the tree realization and

the cascade realization would be of comparable complexity, indicating

that equal failure probabilities can be assigned to the blocks of both

networks. Also, in the discussion to follow, we will employ the sim-

plified analytical techniques based upon the assumption that the occurrence

of more than two failures can be ignored.

LEVEL I LEVEL 2 LEVEL m

2 m OUTPUTS

T&-5580-19

FIG. II-A-14 CASCADE REALIZATION OF SERIAL DECODER

easily determine that the failure probability of Q_c)(We

of the independent cascade connection is given by

QR(c) = 3 • 2m(mq) 2 = 3 • 2mm2q 2 . (II-31)

The analysis for the tree is as follows. The block in the

first level is linked to all blocks in the network. Each block in level 2

is linked to one-half of the blocks in each of levels 2, 3, ..., m.

Similarly each of the 2 0/-1 blocks of level _ is linked to 2 8-_ blocks in

each of the levels _ = _, _ + i, ..., m, and each is also linked to

1 block in each of the levels i, 2, ..., _ - i.
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Thus the expression for the failure probability of the

tree, Q_T),_ can be reduced by application of Eq. (II-20) to

m m
QR(T) = 3q 2 7, 2a'-l[(01 - i) + 7, 2 . (II-32)

8-_2

It can be verified that the above equation reduces to

Q(T) = 3q213 + 4m2 m-I - 3 • 2m3 (II-33)

For the purpose of comparison the values of Q_C) and

Q_T) for a few values of m are shown in Table II-A-4.

Table II-A-4

COMPARISON OF FAILURE PROBABILITIES

FOR CASCADE AND TREE REALIZATIONS

m

2

3

4

m>>l

2
48q

2
216q

768q 2

6m22m-lq 2

2
21q

2
81q

2
249q

6m2mq 2

It is seed that for large values of m the ratio _R /_R is of the order

of m/2; but for small values of m, (say _ 4) the difference between the

reliability measures is probably negligible.

At first glance these results appear somewhat paradoxical

since, in the application of parity-check codes for the masking of faults

in multiple-output networks, a basic requirement is that all outputs must

be realized independently. However, this basic independence tenet is not

in fact violated. The code being applied here to each output is equivalent

to the simple slngle-error correcting code which consists of one informa-
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tion digit and two independently generated check digits for each output.

This code as applied to the serial decoder in question (either realization)

will mask single failures, and it is clear that the occurrence of any

single fault cannot result in two errors on the three signal lines
associated with any output.

6) Conclusions and Future Problems for Study

The ultimate aim of this study, as stated in Sec. II-A-

2-a-l), was to indicate to a designer the expected improvement in reli-

ability that could be anticipated from the application of the restoration

technique, and also to provide algorithms for the optimum application of

the technique. At this point in the research the aim has not been entirely

achieved, but with the tools outlined in this report and in the many papers

related to the subject, it is possible for a potential user of the res-

toration method to determine its application in most networks of interest

by following systematic (though possibly lengthy) analytical procedures.

The major results of the study are as follows.

(a) Techniques are presented for the analysis of

arbitrary restored networks, where the appli-

cation of the analysis is subject to the

constraint that a fairly simple failure model

is pertinent. The analysis is facilitated if

the original nonredundant network is reasonably

reliable, although this is not a necessary

requirement.

(b) A method is presented for determining upper

and lower bounds on the failure probability of

restored networks on the basis of the assumptions

that the simple failure model is pertinent, that

the network is composed of interconnections of a

single primitive circuit block, and that the

voters are placed optimally throughout the

network.

(c) It is indicated that when the restoration

technique is applied to multiple-output net-

works, a lower value of failure probability

is probably achieved if each replica of the

network is realized in a minimal manner--even

though the outputs might be quite dependent--

than if the network is realized with independent

outputs.
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A numberof outstanding problems still remain, primarily

related to the need for techniques by which restored networks which

globally minimize the failure probability can be synthesized, subject to

a maximum available redundancy. Some of the specific areas for recom-

mended future research, related to this problem, are as follows:

(a) The development of techniques for determining

for arbitrary networks the "form" of the res-

toration, so as to minimize failure probability.

For example, if an overall redundancy of 5.S is

available, the question is whether the replica-

tion order should be S with a high density@of

voters, or 5 with a low density of voters. In

addition the expected reliability improvement

realized by the application of several other

forms of restoration should be quantitatively

evaluated. These schemes include:

• Variable redundancy; i.e., replication

order not constant throughout the network.

• Techniques wherein only a subset of the

replicated circuit blocks are connected

as inputs to each of the replicated

voters--previous research in this area232, _43

has been concerned with qualitative de-

scriptions.

• Generalized interwoven logic243--it is

felt that the analysis will be extremely

difficult, and at present the technique

appears to be quite costly, especially

when multiple failure correction is re-

quired.

(b) The development of easily applied techniques for

determining the optimum placement of voters--

initially for networks where the replication

order is constant and each voter weighs all

replicated signals equally. The placement

techniques which have been described relate to

the evaluation of failure probability for each

set of voter positions either by simulation 75

(requiring approximately two hours of computer

* The results of Knox-Seith Is4 which provided a solution to this prob-

lem for the cascade model, are discussed in Sec. II-A-2-a-2).
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(c)

(d)

time for a network of 300 gates) or by systematic

analysis. TM It is felt that a much simpler

technique can be developed, in particular when

only double failures are considered in the

analysis. We have conjectured that the following

dynamic programming systematic procedure will

always converge to the optimum placement.

• Consider an arbitrary initial placement

of voters, and evaluate the failure prob-

ability. Move one voter in turn to each

available position and for each position

calculate the failure probability. If

the failure probability with the voter in

any new position is not lower than the

initial failure probability, return the

voter in question to the original posi-

tion; otherwise place the voter in that

position which provided the minimum

failure probability. Repeat this opera-

tion, perturbing the position of each

voter separately, until the failure

probability is not further reduced. If

this placement technique proves to be

suboptimal, then it is recommended that

consideration be given to determining

for what network topologies a solution

close to optimal is obtained. It is

also of interest to determine, in parti-

cular for large networks, the probability

that a random voter placement yields a

solution close to optimal.

The development of computer-aided techniques for

the analysis of given restored networks, and also

for the synthesis of optimum restored networks,

possibly on the basis of the conjectured optimum

dynamic programming approach described above.

It appears that some LISP programming techniques

designed for locating loops in a linear graph

might be applicable for specifying the linked

elements in a restored network.

All of the analytical procedures developed for

restored networks have been based upon a simple

failure model* where it is assumed that failure

of a component will not affect the state of any

signals which appear as inputs to the failed

* See Sec. ll-A-2-a-1) for a complete discussion of the assumptions

attendant to the model.
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component. This model is only consistent with
networks in which there is somedegree of iso-
lation between gates. A more complex model
based upon considering componentfailures as
producing errors in both outputs and inputs,
which has been considered in simulation studies, 76
can be examinedby appropriately modifying the
linking definition of Sec. II-A-2-a-3).

In describing the performance of complex networks, we
have distinguished the network as either operating (correctly) or not

operating, and then described meanswhereby the probability of the net-

work not operating is minimized. However, the criterion of minimum
failure probability is somewhatinconsistent with the tenet that a com-

puter should function, although with possible loss in computation capa-

bility, as failures occur. (This point of view has been considered

briefly before. Is) Hence, for somemultiple-output networks it is

meaningful to assign a cost metric to the occurrence of each failure,
and then allocate the redundancy so as to minimize the average "loss"

in capability. In addition, it is meaningful to assign a probability
measureto the occurrence of somemembersof the set of inputs. The

inclusion of the cost function might alter the conclusion of Sec. II-A-

2-a-5) relating to the optimum realization of multiple-output functions.

b. Techniques for the Combination of Fault Maskin_

and Replacement

1) Introduction

In this section logical designs will be presented for

three schemes of replacement-type redundancy. All of the schemes are

autonomous in the diagnosis and repair of faults, and they also provide

for a certain degree of fault masking during replacement. The autonomy

and masking are provided by the employment of various forms of voting,

so that the schemes might actually be considered as hybrids of voting

and replacement redundancy.

An idealized model that encompasses all three schemes

has been described and analyzed by Kruus. 171 It is hoped that the

presentation of practical designs will enable designers of future complex

systems to evaluate the proper system level for the application of these

schemes.
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as follows:

The three schemes to be described may be characterized

(z) Adaptive voting (after Pierce24°)(Fig. II-A-15)--

A basic functional network is replicated, and

the outputs of the replicated units are combined

in a variable-threshold network to provide a

system output; if a unit dissents from the system

output, it is disconnected, and the threshold is

diminished so as to make the system output equal

to the majority of the outputs of the remaining

units.

WEIGHTS

X I • "1-1

> 0

J --I

XR

EXCL, FF
-OR TLU

D

r

CLEAR TA-5580-72

FIG. II-A-15 ADAPTIVE-VOTING SCHEME (using threshold logic)

(2) Switching-over-voting (Fig. ll-A-16)--Replicated

units are grouped in subsystems and are combined

to provide single subsystem outputs; externally

the outputs are selected by a stepping circuit

that advances to a new subsystem when the con-

nected subsystem fails or when it is undesirably

close to failure; internally, subsystems employ
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adaptive voting redundancy, as in scheme (i),

for fault masking and for indication of the

degree of closeness to failure.

.PuTI ®
VARIABLES

MODULE

v _ OUTPUT
/ FUNCTION

SWITCH

k COMPONENT

TA- 5580-7 _,

FIG. II-A-16 SWITCHING-OVER-VOTING SCHEME

(3) Voting-over-switching (Fig. II-A-17)--A fixed

number of units is selected from a store of

replicas, and their outputs are combined by

majority voting; as a unit dissents from the

system output, it is replaced by a unit in the

store. Several replacement algorithms are

feasible; e.g., the input whose unit was faulty

may be distinguished, and a replacement unit

directed to it, or all inputs may have fresh

assignments, by selecting valid units in a

predetermined order. The latter strategy ap-

pears to be better, because it is iess suscep a

tible to the propagation of faulty decisions

among the subsystems.

The major advantage of these schemes over passive fault

masking is the increased tolerable number of faulty subsystems--approxi-

mately N-2 instead of N/2, for N-order redundancy. Another advantage,

of significance for spaceborne applications, is the economy of power

consumption possible in schemes (2) and (3).
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TA-5580-74

FIG. II-A-17 VOTING-OVER-SWITCHING SCHEME

There are several disadvantages. First, to varying degrees

among the schemes, certain multiple failures occurring between replacements

may cause the whole system to collapse. For example, in scheme (3), if a

majority of the presently connected units are faulty, all of the units in

store may be invalidated; in scheme (2), a subsystem might simply become

stuck in a fixed, erroneous state if a majority of units in it become

stuck. A system might be externally programmed so as to recover from such

conditions, but such coutrol adds to the system cost. A second disadvan-

tage is that the number of components--hence the unreliability--of the

control and switching is greater than for passive fault masking. Thus

the minimum size o£ functional unit to which the schemes may be advan-

tageously applied is greater. A third disadvantage is the difficulty of

design for proper response to noise. Thus, if a unit has a transient

fault, it may be disconnected. It would be desirable to reconnect these

units, but it would be hazardous to do so without testing each one, since
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if all were permanently faulty the faulty units might "outvote" the good

units. The solution of this problem requires either a built-in sluggish-

ness of disconnection, a capability for external diagnosis, or provision

for autonomous verification of individual units prior to reconnection.

The latter is feasible if at least two good units remain connected to

serve for testing a candidate unit. The importance of these factors must

be evaluated in the context of a particular system.

The idea of adaptive voting was suggested by Pierce. TM

He and others Iss have proposed implementing the scheme by the use of

special elements, such as variable impedances with memory, or fuses. The

technology for realizing the special impedance elements has not developed

sufficiently to realize devices of adequate reliability for the missions

of interest, and the use of fuses does not allow the reconnection of re-

covered logic units; hence in the discussion of the several schemes to be

described, the use of conventional elements will be assumed.

2) Techniques for the Realization of the

Adaptive-Votin_ Scheme

In this section, a number of techniques for realizing the

Adaptive Voting scheme will be discussed. The first approach assumes the

use of a 2N-input threshold logic unit, for order-N redundancy. The

second approach assumes that only AND, OR and NOT elements are employed,

and a number of alternative schemes employing such elements are described.

Although the number of such elements are far in excess of the number of

threshold logic weights employed in the first approach, the low cost and

high reliability of such elements realized in microelectronic arrays make

the approach worth consideration in future design.

Scheme usin_ a linear-input threshold lo_ic element:

A fixed-weight realization of Pierce's adaptive logic scheme is shown

in Fig. II-A-15. Associated with each input signal, xi, are a gate

controlled by a "status" flip-flop, and two weights: +2 for the gated

input and -i for the ON state of the flip-flop. When the status flip-

flop is ON, the net signal contribution to the threshold logic unit is

+i for x i = i, or -i for x i = O. When the flip-flop is off, the net
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contribution is O. The threshold logic unit is set so that the output is

1 if the sum of all contributions is 1 or more, and 0 otherwise.

The output of the threshold logic unit is fed back to each

channel, and upon any disagreement between the output and the input of a

channel (indicated by a 1 at the output of an Exclusive-OR gate) the

status flip-flop is reset, essentially disconnecting the channel.

The disadvantage of this realization is that the reliability

of threshold logic circuits with a range of summed input variables of ten

or more is not very high at present. In the following schemes, only binary

switching elements will be employed.

Scheme usin_ nonlinear elements only: The scheme illus-

trated in Fig. II-A-18 performs the same overall function as the previous

one, but internally it uses binary signals only. The flip-flops perform

the same functions of gating according to status, and their control is

the same. Instead of combining the valid input signals so as to generate

a single signal with a multivalued range about 0, a binary vector is

generated. The elements of the vector, T2, T3, T4, ... are the monotonic

symmetric functions of the inputs; that is, the elements are 1 if at least

2, at least 3, at least 4, ..., respectively, of the N inputs are i. The

proper one of these functions is then selected to be the output, depending

upon the number of input channels that are valid. Thus, T 2 is selected if

the number of valid channels is two or three, T 3 if the number is four or

five, and in general T is selected if the number of valid input channels
j+l

is 2j or 2j+l, j = i, ..., m; N = 2m + i.

Thus the combining network may be decomposed into three

parts, as shown in the figure:

(1) A network that realizes the monotonic symmetric

functions

T 2, T 3, .-., Tin+1

(II) A network that realizes the symmetric functions

$2, 3' $4,5' ... S2m,2m+ 1
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FIG. II-A-18 ADAPTIVE-VOTING SCHEME (using digital elements)

(III) A network that combines the S and T variables

according to the function

D = $2,3T2 + $4,5T3 + $6,7T 4 + ... S2m,2m+iTm+ 1 •

The symmetric functions $2,3' etc., may be realized very

inexpensively from monotonic symmetric (threshold) functions; hence the

combining network may be obtained as in Fig. II-A-19, using two threshold-

function networks, one slightly augmented, and a simple AND-OR network.

A number o£ approaches to the economical design of

multiple-output threshold networks, employing simple nonlinear gating

elements, are described in Sec. II-A-2-c.

3) Description of the Switching-over-Voting Scheme

This scheme is a simple extension o£ the adaptive-voting

scheme; thus, each subsystem is adaptive, with the additional feature
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FIG. II-A-19 COMBINING NETWORK FOR DIGITAL-ADAPTIVE SCHEME

that a "warning" indication is given when the number o2 valld £unctional

units is such that one more lailure could not be masked.

The external control 02 subsystem replacement is quite

simple: selection o£ a subsystem is determined by the state 02 a counter

(shown in Fig. II-A-20) which steps upon receipt 02 a "warning" signal.

The designs o£ the component data and control subsystem

are quite straight£orward, and will not be described in £urther detail.

4) Description o£ the Votin_-over-Switchin_ Scheme

The voting-over-switching scheme is illustrated in

Fig. II-A-17 £or the case ol three _unctional units taken at a given

time. The switching and control functions are the costliest ol the three
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FIG. II-A-20 LOGICAL STRUCTURE FOR SWITCHING-OVER-VOTING SCHEME

schemes described, but the potential saving in power consumption is

greatest.

In this system, the status information for each functional

unit must have four values, indicating connection to one of the three

channels (conveying data to the voter) or to none. The sequencer must

implement one of the several possible strategies referred to in the

introduction to this section.

The design of the signals that identify which channels

dissent from the majority is straightforward, at least for low-order

voting. For example, a dissent variable d. may be defined, with the
l

value 1 indicating that channel i dissents; then

d = x QMajority (Xl, XN)i i "''' '

th
where x. is the i input to the voter. Greater economy is no doubt

1

possible.
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5) Comparisons and Conclusions

Some reasonable criteria for comparison of the three

schemes described are

(i) The number of faulty functional units that may be

tolerated

(2) The minimum power requirement

(3) The number of components required for the realization

of decision and switching functions

(4) The number of simultaneous faults that cannot be

tolerated.

The performance of the schemes with respect to these

criteria is summarized in the following table, in which a is the number

of units voting together in systems 2 and 8, b = N/a in system 2, and

power cost is given assuming unit power in a functional unit.

System

Adaptive

Voting

Switching-

over-Voting

Voting-over-

Switching

Tolerable

Number of Unit

Failures

N - 1

N- (2b +a +i)

N - 1

Minimum Cost

Power of

Cost Voting

N high

a low

a low

Cost of

Switching

and Control

low

low

high

Intolerable

Number of

Simultaneous

Faults

(N + i)/2

(a + i)/2

(a + i)/2

Practical designs have been described for realization of

several schemes combining voting and replacement redundancy methods.

The decision and switching logic is more costly than the logic employed

in simple fault masking, but technological developments may reduce these

costs to an acceptable level.

The schemes are advantageous in the number of tolerable

unit failures and in the possible reduction in power consumption, but

they are somewhat more susceptible to collapse under simultaneous failures.
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It is important to note that the scheme has merit even if

it is not operated autonomously; that is, if the switching of a channel

is controlled by an external computer rather than locally.

Further development of this approach should consider the

application of redundancy to protect the decision and switching circuits,

and the development of schemes for recovery from multiple simultaneous

permanent or transient failures.

c. Votin_ Networks

i) Introduction

Although there are many published analyses of voting-type

redundancy of arbitrary order of replication, there are surprisingly few

published logical designs for voting networks, aside from the majority-

of-three function. In the first part of this section, several designs

for majorities of three, five and seven variables will be presented to aid

in the assessment of circuit costs of high-order redundancy schemes and to

serve as starting points for designs appropriate to particular technologies.

The second part of this section is concerned with the

realization of voting-type circuits needed for the all-digital adaptive-

voting schemes of Sec. II-A-2-b. These circuits produce a set of outputs

that are the monotonic symmetric functions of their input variables,

i.e., the functions T. that are 1 when at least j input variables are i.
9

One of these functions is, of course, the majority function, and since

the structures presented are in a canonical form, they provide a simple

means of design for that function for any number of variables. Such a

design_ however, will generally be less efficient for that single function

than the designs described in the first part.

Designs appropriate to several kinds of logic gates are

presented_ including threshold elements and AND-OR gate combinations. The

AND-OR networks use more gates, but they are more easily produced by

current technology, and considering advances in microminiaturization,

their costs are not prohibitive.
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2) Logical Designs for Simple Majorit 7 Networks

Use of single high-weight linear-input logic elements:

The majority function is a linearly separable switching function; hence

it may be realized by a single linear-input (or threshold) logic element,

as illustrated in Fig. II-A-21. The notation M k will be used for the

majority function of k variables. For 2e + i variables, the appropriate

input weight for each variable is +l, the appropriate bias is -e, and the

range of the summed inputs is from -e to e + 1. The threshold circuit

must thus be capable of resolving one unit in 2e + l, and for increasing

values of e the requirements on circuit precision become increasingly

difficult to satisfy in practice (for example, see Coates and Lewis43).

X I

X2e+l

-e

M2e+l

TA-5580-51

FIG. II-A-21 LINEAR-INPUT-LOGIC

MAJORITY GATE

Furthermore, the circuit technology is not well suited to integration with

non-linear circuits in a single monolithic structure; hence this approach

is probably best used in a system in which all functions are realized by

linear input logic.

Use of multiple low-wei_ht linear-input lo_ic elements:

Amarel, Cooke, and Winder 7 have described designs for high-order majority-

function networks composed of majority-of-three logic elements. Their

designs for the majority functions of five and seven variables are given

in Fig. II-A-22. These networks permit the use of low-weight, low-

precision, linear-input logic circuits. Thus, they would be expected to

have greater noise immunity and operating range than a single-element

realization. The problem of compatibility in fabrication and operating

levels with other system logic circuits remains.
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FIG. II-A-22 MAJORITY-ELEMENT MAJORITY NETWORKS (Amarel, Cooke& Winder)

Use of AND-OR lo6ic elements: Nonlinear logic elements are

much more widely used than linear elements; hence it is of interest to

investigate the design of majority-function networks composed of such

elements, so that such networks may be physically integrated with the

general logic networks of a system. We will consider here the use of

AND and OR elements.

The majority-of-three function may be represented alge-

braically as

M3 = XlX 2 + xlx 3 + x2x 3 •

The well-known network realization is given in Fig. II-A-23(a). A

realization based on M 3 = XlX 2 + x3(x I + x2) employs one less gate input,

at the price of an additional stage of delay.

@ In this figure the variables are represented by numbers.
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FIG. II-A-23 AND-OR MAJORITY NETWORKS

The majority-of-five function may be represented as

M5 = %%(Xl + x2 + %) + %x2(Xl+ % + %) + (% + %)(x3 + x2)Xl

It is easily verified that the ten combinations of the variables, taken

three at a time, are all represented. By introducing the intermediate

variables

a = x2 + x 3
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b = x 4 + x 5 ,

the function may be expressed as

M5 = x5x4(x I + a) + x3x2(x I + b) + Xlab .

A network based on this expression is given in Fig. II-A-23(b). This

realization has the lowest number of gates and the lowest number of gate

inputs known to us.

In explaining the design of the M7 function network, it is

convenient to employ as an intermediate function the monotonic symmetric

m which has the value 1 when k or more of its m input variables
function Tk,

are i. Then, grouping the seven variables, we employ the functions

A k = T_(Xl,X2,X 3)

B k = T_(x4,x5,x6), k = i, 2, 3

Then useful representations of M 7 are

(Form i )

(Fo 2)

M 7 = A3(B I + C I) + A2(B 2 + BIC I) + AI(B 3 + B2C I) + B3C I

M 7 = A3B I + A2B 2 + AIB 3 + CI[A 3 + A2B I + AIB 2 + B 3] •

It may be noted that the sum of the subscripts of each product term is

four, signifying that at least four variables must have the value i in

order to make that product term true.

A useful set of intermediate variables is

Yl = x2x3' Y2 = x2 + x3

w 1 = x4x 5, w 2 = x 4 + x 5

Then

A 3 = xlY I, A 2 (x I + Yl)Y2, A I
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and

B 3 = x6w 1, B 2 = (x 6 + wl)w 2, B 1 = (x 6 + Wl) + w 2 or x 6 + w2 .

A network based on Form (2) above, and employing these intermediate

variables, is shown in Fig. II-A-23(c). The five gates marked by an

asterisk may be combined into three gates in an obvious way; they are

shown separated as an aid to following the realization of the terms of

the functional equation.

It may be noted that this network costs half as much as a

direct AND-OR realization of the majority-element network of Fig. II-A-23.

The cost in gates and number of inputs for M3, M5, and M 7

may be summarized as follows:

Number of Gates Number of Inputs

M3 4 8, 9

M5 8 20

M7 18 44

At least for these cases, the costs approximately double with each increase

in odd-order of redundancy.

3) Canonical Structures for Multiple-Output Votin_ Networks

Use of majority logic elements: The paper by Amarel, Cooke,

and Winder referred to in the previous section also presents canonical net-

work structures, composed of majority logic elements that realize the com-

plete set of monotonic symmetric functions of the input variables. The

structure is illustrated in Fig. II-A-24, where the notation (a/b) is

equivalent to T b as defined in the previous section.
a

Their realization is based on the identity

T b+l . T b
a+l(xl,x2,xb,Xb+ 1) = Xb+ 1 a(Xl,X2 .... ,x b)

_b+l.

+ T a (Xl,X2,...,X b)
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FIG. II-A-24 MAJORITY-ELEMENT MULTIPLE-OUTPUT VOTING NETWORK

A logic cell realizing this function could be built using one AND gate

and one OR gate, but since the realization is restricted to majority

gates, a highly redundant logical operation is actually employed, i.e.,

T b+l = Majority T b T b+l)
a+l (Xb+l' a' a

Use of AND and OR _ates: One way of using AND-OR gates is

to employ the structure of Fig. II-A-24, in which each cell contains one

AND and one OR gate as described above. This construction requires that

input variable x drives j gates. An alternate realization, in which
3

each input variable drives exactly two gates, is shown for seven variables

in Fig. II-A-25. Extension to more variables is obvious. The validity

of this network is less obvious than that of the previous network, so a

formal proof of its validity will be given.

We wish to prove that the network construction scheme

shown realizes the desired functions for any number of variables. This

will be done inductively by showing that a valid network for n variables
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FIG. II-A-25 AND-OR MULTIPLE-OUTPUT VOTING NETWORK

may be augmented to £orm a valid network for n + 1 variables, and that the

augmented network follows the stated construction scheme•

Let Tn be the monotonic symmetric function on n variables;
m

that is, Tn is true if at least m of the variables are true• Let it be
m

assumed that a network A produces the functions Tn(Xl, ..., xn) , Tn_ l •

(xl, ..., xn), ..., Tl(x I .... , xn). We wish to augment the network A

Un+l
with a network B, with inputs YI' Y2' '''' Yn+l and outputs n+l =

Yl Y2 "" Yn+l and• • . • Xn, Xn_l, ..., x1. The x:s also form the inputsl

for the n-variable network A, and are determined as follows:
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Xn = Yn+l + (YnYn-i "''yl)

Xn-i = Yn + (Yn-lYn-2"''Yl)

x2 = Y3 + Y2Yl

Xl = Y2 + Yl "
(11-34)

un+l n+l
Let the outputs of the combined (n + l)-variable network be n+l' Un '

n+l We must show that
• .., U I •

U n+l = T n+l
m m

Proof:

(i) By construction of the network B,

U n+l = T n+l
n+l = Yn+IYn'''Yl n+l"

(2) Examine U n+l n
m = Tm(Xl, ..., Xn) , and

suppose m or more of the y's are true.

Then by Eq. (II-34) it follows that m

or more of the x's are true; for, in

particular, if Yi = i, so does xi_ I.

(In the special case where Yl = Y2 = i,

we have m - 1 x's = 1 by the above

argument, plus one more for the output

xi = Yi+l + yi...y I, where Yi+l = 0 and

all yj = 1 for j < i + i.) Hence U n+Im

is 1 whenever m or more of the y's = i.

(3) To show that U n+l = 0 whenever m - 1 or
m

fewer y's = i, let at least n - m + 2 Yi'S

= 0 (corresponding to n - m + 1 x.'s);
i

let them be

Yi l' Yi 2' "'', Yin_m+ 2
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where

iI > i2 > ... > in_m+ 2 •

Then at least n - m + i x. 's = O•
1

Eq. (II-34) they are

F rom

= Yi I + YiI-IYil-2"''Y .... Yl '12

since = 0

Yil = Yi2

= Yi2 + Yi2_IYi2_2...Yi3..•Y 1 ,

since = 0

Yi2 = Yi3

x. " + ........ Yl
in_m+l- I = Yln_m+ I Yln_m+l-i Yln_m+ 2

siuce = 0 .
Yin_m+l = Yin_m+2

But if at least n - m + 1 x.'s = 0, then no
l

more than n - (n - m + i) = m - I of them are

1 and U n+l = O. Hence U n+l = 0 whenever less
m m

than m of the Yi'S = i.

(4) By (2), U n+l = i whenever T n+l = i, and by
m m

(3) U n+l = 0 whenever T n+l = 0; hence U n+l = T n+l
m m m m

and the inductive step is demonstrated.

(s) Clearly the network construction results in the

proper output functions for low values of n,

say n = 2; hence the desired result is demon-

strated for all n.

Use of sequential "diffusion" networks for multiple

threshold detection: Given a set of n binary variables, one way to

realize a threshold function is to sort the O's and l's into two strings
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and to observe whether or not the string of l's exceeds a given length.

This behavior may be realized in a special kind of shift register, shown

in Fig. n-A-26(a).
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FIG. II-A-26 DIFFUSION-TYPE MULTIPLE-OUTPUT VOTING NETWORK

The register has three modes o£ operation. In the first

mode it is loaded in parallel by the input vector. In the second mode

the information is allowed to propagate through the stages asyachronously.

After a time determined by the length of the register and by the switching

times of the stages, the register will reach a stable state, and it may

then be interrogated. In the third mode it is cleared by allowing all

strings to shift out serially. Parallel clearing is also possible at

greater expense.

88



The register is based upon Muller's speed-independent

modules, TM but instead of using a three-state code--0, l, and _ ("null")--

only two states are needed, namely 1 and _. Cascades of such stages have

the property that a data symbol (in this case, just the symbol l) will

propagate by being copied over a _ symbol in a forward module unless a

data symbol is resident in the module beyond--in which case, the first

data symbol is held in place. In other words, the _ symbol serves to

separate 1 symbols of different origins. This rule results in a forward

diffusion o£ 1 symbols, until a string of alternating 1 and _ symbols is

built up in successive modules. In the course of this diffusion, a given

1 symbol may be momentarily replicated, but all such replications will be

in a contiguous string, bounded by _ symbols. In the final resting con-

figuration, all replicas deriving from a given symbol will coalesce into

a single symbol. Thus, in the resting state, the presence of a 1 at the
th

2j module indicates that there were at least two l's at the input.

Figure II-A-26(a) is a block diagram of the register, for

the case N = 5. Each stage contains two modules, which are identical

except that one may be loaded by external data. The output taps are

self-explanatory. Clearing is accomplished by allowing the data to

propagate out of the register.

Figure II-A-26(b) shows a pair of modules constituting a

stage. Each module contains a single flip-flop and two or three gates.

Feedback is provided to ensure safe asynchronous operation. The state

diagram for a module in its propagation mode is given in Fig. II-A-26(c).

Some racing may occur in the transition between modes, but

this is easily handled. It may be noted that the cost of this approach

is linear with the number of variables.

Conclusions: A number of designs have been presented for

single and multiple-threshold combinational logic networks, up to order

seven, using AND and OR gates, majority gates, and flip-flops, and for

sequential networks for multiple threshold detection. The latter scheme

permits an exchange between time delay and amount of hardware that may be
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advantageous for systems employing high orders of replication. These

designs should facilitate estimates of cost and reliability for fault-

masking systems.

3. Sequential Networks

a. Introduction

The networks discussed in Sec. II-A-2 above are combinational

by virtue of the fact that their outputs are uniquely determined by their

present inputs. That is, their proper operation does not depend in any

essential way on memory, storage or delay. Of course, all physical

devices involve some finite (though small) delay--the distinction between

combinational and sequential networks rests on the point that such delays

are merely incidental to the operation of combinational networks, while

they are an essential part of the behavior of sequential networks. Loosely

speaking, sequential networks--to be discussed in this section--remember

some aspects of their past history (inputs and/or outputs) and make use

of this memory to influence their present (and future) behavior.

Examples of sequential networks used in digital computing sys-

tems are counters, registers, accumulators, sequence generators, sequence

sensors, classifiers, and decoders. Sequential networks are thus capable

of much richer and more varied behavior than are purely combinational nets.

By virtue of this richer behavior, the variety of misbehavior that may

occur in the presence of faults is likewise much richer than with com-

binational nets.

In order to discuss the various possibilities that can arise,

let us consider the standard (Mealy) model for (clocked _) sequential net-

works shown in Fig. II-A-27. Here the combinational portion of the net-

work has been lumped together into one box, labeled "CL," while the

storage functions are embodied in delay units. The vector X = (XI, ...,

X ) represents external inputs to the net; the vector Z = (ZI, ..., Z )m P

_$ Clocked = synchronous; we shall not discuss asynchronous sequential nets.
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FIG. II-A-27 MODEL OF SEQUENTIAL NETWORK

represents its outputs to the external world 0 The state vector

S = (Sl, ..., Sn) of delay-element outputs embodies the network's

memory of past behavior•

It is seen that the behavior of the net is governed by the

following logical design equations:

s' = F(x,s)

z = G(X,S)

(Next-State Equation)

(Output Equation)

where the variables X, Z, S, and S I are all vector Boolean variables.

The variable S t represents the inputs to the delay elements (memory-

excitation function) and it is thus the next state of the network,

assuming that no faults occur. Thus, in terms of the discrete time

variable t we have, as an additional relation,

s(t +i) = s'(t) (Delay-Element Equation) .

If our model had used, say, flip-flops instead of delays as storage

elements, this last equation would of course have to be altered to

describe flip-flop behavior. In other respects an entirely equivalent

model would then result.
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The three equations given above suggest that it would be con-

venient to partition the sequential network model further, as shown in

Fig. II-A-28. Here, the memory-excitation function and the output

function are separated, conceptually at least, into boxes marked F and G

respectively. It must be recognized, however, that in a given realization

of such a network, there may be a good deal of sharing of components

between these two functions. Thus, in particular, a single component

fault could conceivably result in incorrect outputs from both functions

F and G.

XO i

S

_Z

_-- S l

TA- 5580- 39

FIG. II-A-28 PARTITIONED MODEL

OF SEQUENTIAl' NETWORK

b. Classification of Faults

We propose now to classify and analyze the kinds of misbehavior

that can result from faults in various portions of the network. We shall

classify faults according to which of the logic functions they invalidate.

Thus, we have the following types of faults:

(1) Faults affecting only the output function G(X,S) (output-

only faults)

(2) Faults affecting only the storage elements (delay elements)

of the network (delay-element faults)

(3) Faults affecting only the memory-excitation function

F(X,S) (memory-excitation function faults)

(4) Faults affecting both functions G and F (output-plus-

memory-excitation faults)
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(5) Faults affecting both the combinational and storage
portions of the net. (These maybe combinations of
faults of the other types, or they maybe simple faults

involving overall aspects of the network, e.g., faulty

or missing clock pulses, out-of-tolerance supply voltages,

etc.)

Of course, one may group these kinds of faults according to

whether they result in errors in state-transition behavior or output-

signal behavior (or both). Possibly a closer analysis would be worthwhile.

We give next a brief description of some distinguishing features of the

above types of faults, followed by a discussion of applicable fault-

detection techniques.

i) Output-Only Faults

These faults are essentially combinational in nature. The

state-transition behavior of the network is not affected--only the output

signals which communicate this behavior to other portions of the computer

system. Consequently, this problem can be treated entirely in combina-

tional terms, and the methods of Sec. II-A-2 are applicable.

However, the availability of the memory-excitation logic

and its delay-feedback loops can conceivably act as an aid to fault diag-

nosis, provided it is known _ priori (or can reasonably be assumed) on the

basis of other diagnostic information that there are no state-transition

faults. Even without certainty as to the correct functioning of the

state-transition system, that portion of the network can often be used as

a test input generator for checking the output logic, provided that the

state variables (and the external inputs) can be monitored.

2) Delay-Element Faults

In this case, the memory excitation function F is itself

correctly generated, but the memory units fail to execute the proper

transitions in response to F. It would seem that a highly probable variety

of fault condition in this case is one in which one or more delays (or

flip-flops) are "stuck" at 0 or at i. Note, however, that in some tech-

nologies the occurrence of transient faults (e.g., occasional failure of
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a flip-flop to trigger) is also quite possible. A paper by Rubio =Ts con-

siders error-correction techniques for such a situation, where "slow"

flip-flops are used (for reasons of economy).

The distinguishing characteristics of delay-element faults

are that the memory excitation is correctly related to the input X and

present-state variables S, and that the output function is likewise

correct for the stated conditions--yet the required state transitions

are nevertheless improperly executed.

3) Memory-Excitation Faults

Though these are faults occurring in the combinational

logic, they make themselves felt in terms of erroneous state transitions,

much as do delay-element faults. Hence they may be much more difficult

to locate ('or even to detect) in some kinds of systems than are output-

logic faults. Also, in all except the simplest kinds of sequential

circuits, memory-excitation faults can lead to much more varied and com-

plicated kinds oi erroneous behavior than can delay-element faults.

However, in general terms, memory-excitation faults and

delay-element faults are alike in that they both lead to state-transition

errors. Much the same techniques are applicable to the detection of either

kind of fault. We will usually be able to discuss these together in the

remainder of this section.

4) Output-Plus-Memory-Excitation Faults

When a fault arises in the logical circuitry common to the

production of the functions F and G (or when several simultaneous faults

are present affecting both F and G), then the diagnostic situation is

complicated by the fact that neither the output Z nor the memory-excitation

function F(X,S) is correct. However, it seems reasonable to expect that

such faults (though difficult to locate) are at least as easy to detect

as faults in F or G alone. This will be the case when independent

checking means are provided on the Z output and on S I for errors that

remain undetected in one case may be detected in the other.
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5) Overall-Network Faults

We have not yet discussed faults arising in portions of a

sequential network which are common to (or affect) both the combinational

and delay functions. Examples of such are power-supply or clock-pulse

malfunctions, or shorts occurring between these two portions of the cir-

cuit, perhaps rendering two signals invalid. A good many such faults

will be detectable by essentially nondigital tests: excessive circuit

loading, for example, may result in poor rise time or out-of-tolerance

voltage levels; or they may be detected by direct checking of the clock

source at various points in the network.

It is not intended to minimize either the possibility or

the variety of such fault conditions when we state that this section is

not primarily concerned with them. We merely wish to point out that

other means are available for their detection and diagnosis (see Appen-

dices B and C).

c. L0gical-Redundancy Techniques

We turn next to the principal subject of this section, a dis-

cussion of some logical-redundancy techniques for fault detection in

sequential networks. Historically, the first treatment of this problem

was undertaken by Moore. 21s His approach involved the design of a

checking experiment to test a given (presumably nonredundant) sequential

network, rather than the deliberate incorporation of redundancy to facili-

tate checking. Certain assumptions were used by Moore to guarantee the

existence of a finite-length checking experiment. These assumptions,

which involve both the original, unfaulted network and the admissible

faults, are:

• The unfaulted network must be strongly connected--i.e., by

using only signals applied to the external inputs it must

be possible to put the network into an arbitrary state,

regardless of its initial state. (The input sequence that

accomplishes this will in general depend on both initial

and final states.)

• There must be at most a finite number of admissible faults,

and their effects on the state diagram (i.e., on the

functions F and G) must be known or calculable.
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Implicit in the second assumption is the requirement that no malfunction
occurs during the course o£ the experiment.

Under the above assumptions it can be shown$13' los that in

principle at least it is possible to design a checking experiment that

will determine whether the circuit is behaving correctly, or whether some

admissible fault condition has arisen. This experiment also determines

which one o£ these malfunctions (if any) is present. Thus Moore's test

is not only a fault-detecting experiment, it is also fault-locating.

Unfortunately, the amount of computation involved in designing

a Moore experiment is far beyond the capabilities of even a large com-

puter, except for quite simple sequential networks, and then only if the

set o£ admissible faults is small. For example, if all malfunctions
leading to a state diagram with no more than N = 2n states are to be

treated, and the network has only a single binary input and a single binary
output, then one must consider (2N)2N different state tables. Even if n
is as small as 3, this leads to 264 distinct state tables. One cannot even

list all of these on any existing computer.

It is possible to makesomeprogress, however, by admitting only

a limited set of the most probable faults. The Moore method when applied

in such cases is still cumbersome,but for reasonably simple machines it

leads to checking experiments with a tractable amount of computation.

One of the difficulties with Moore's approach (and with that of
Poage and McCluskey,247 which is essentially a specialized simplification

of Moore's method) is that it requires too much information. Weare

interested in manycases only in detecting a fault condition, without
going into location on the spot. Replacement of the whole unit will lead

to an operable system, and detailed off-line testing can be used later to

locate the source of the trouble if desired. Hennie 127 has developed a

completely different checking procedure which is simply fault-detecting

but which is capable of protecting against large numbers o£ malfunctions.

This procedure does not require the enumeration of the possible kinds of

faults. Although Hennie's technique does not necessarily lead to the

shortest possible experiments, it does seem to lead in most cases to
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reasonably good ones. Thus, it is often possible to design a checking
experiment whose length is proportional to N2 or N3 (where N is the

numberof states). However, in the worst cases, the experiment length
may increase exponentially with N.

Hennie's methods are most practical when it can be assumedthat
(1) both the correct circuit and the admissible faulted circuit have no

equivalent states (i.e., each has the samenumberN of states as a "re-

duced" machine), and (2) the reduced-state table has a distin_uishin_

sequence such that the circuit produces N different responses according

to which of the N states it occupied at the start of the experiment.

However, the method is applicable also under slightly more general con-

ditions (see Ref. 127). All of these conditions still require that the

original machine be strongly connected, as in Moore's method.

The testing philosophy and methods introduced by Hennie have

been carried somewhat farther and elaborated by Kime. Is°, isi Kime's

principal contribution seems to have been in the direction of transforming

a given circuit which does not possess a distinguishing sequence into a

circuit which does, but also retains the desired overall sequential

function. This is accomplished by (i) the addition of test points which

make some (but not necessarily all) of the state variables S. available
1

as outputs, and (2) the addition of logic and a single input terminal.

It appears at this point in the development of the subject that

the most promising avenues for future research on fault detection for

sequential machines lie in the directions opened by Kime's work, i.e., in

the incorporation of fault-detection features into the design of the

original machines. The more basic work of Moore, Hennie and others is

extremely valuable for its generality and for its indication of the

severe difficulties which beset any really general approach to fault

detection and still more to fault location. Rractical solutions to these
i"

problems that are applicable to networks of realistic size and complexity

seem to require a more pragmatic approach.

Indeed, there is a spectrum of regimes whereby fault detection

(or location or masking) can be employed, depending on the extent to which
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checking is integrated into "normal" circuit operation. At one extreme

of this spectrum lies the philosophy implicit in Moore's and related

studies, wherein checking is treated as an aspect of the device's opera-

tion entirely separate from its usual functioning. Here the network is

subjected to a distinct sequential experiment whose purpose it is to

determine whether the internal structure is functioning correctly. Since

the length of such an experiment may run to hundreds or even thousands of

input symbols, it is clear that the execution of the experiment may require

appreciable idle periods.

use only in a gross sense.

checking.

The experiment can be "time-shared" with normal

,, • ,!

We might call this "off-line" or intermlttent

At the other extreme of this spectrum lie techniques--to be

described below--which involve continuous checking (on-line) of the device

on a bit-by-bit basis. Here the checking operations are completely inte-

grated with normal circuit functioning, but at a cost in added circuitry.

On the other hand, intermittent checking per se involves a cost in opera-

ting time (and power consumption) though it may be cheaper in terms of

hardware.

Between these two extremes lie varieties of checking which

interleave test operations with steps in the normal functioning of the

circuit, but at different time scales, not at every clock pulse. For

example, a counter can easily be subjected to checking at every kth input

pulse by providing a recycling mod k counter to quiz the main counter's

state so as to test for divisibility by k. Such intermittent checking,

where applicable, involves a lower order of circuit redundancy than is

the case with continuous on-line checking. It also possesses considerable

flexibility of operation to suit a variety of conditions.

d. Schemes for Fault Detection

We next discuss in some detail several schemes for the incor-

poration of fault-detection capability (in the continuous mode) into the

design of arbitrary synchronous sequential networks, such as are typically

found in the central control portions of digital computers. All of the

techniques to be described involve the introduction (in different ways)
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of redundant states into the state diagram of the sequential network.

The general principle used is that of requiring that only a subset of the

network's states (the "valid" states) correspond to correct functioning,

and any transition to an "invalid" state signals a faulty condition.

Alternatively, it can be the state transitions that are checked. Two

classes of redundant-state logic will be considered: state-parity

checking and state-weight checking.

i) State-Parity Checking

This technique (closely related to Armstrong's error-

correction scheme I° is conceptually the simpler of the two. It draws

heavily on the use of parity-check codes in communications for the pur-

pose of error detection in message transmission. Here we employ sets of

parity checks over the state variables of a sequential network to help

insure the validity of a state, and hence of a state transition.

As a simple example, consider the introduction of a single

extra state variable P1 in addition to the existing state variables

SI, ..., Sn, where P1 is defined to be the modulo-2 sum:

P1 = S1 (_)$2 (_''" (_Sn "

t with combinational logic entirely independent of theThus, we may form P1

logic which generates the memory-excitation signals Sf. Then, any single
l

(or any odd-order) error in the vector (S_, ..., S' ;)n' P will appear as

a parity violation. If we provide P1 with its own delay element, as in

Fig. II-A-29, then on the next clock phase t + i, the signals S;(t), ...,

S'(t)n , P;(t) will appear at the delay-element outputs. By checking parity

over these n + i signals we will be able to detect any odd-order errors,

not only in the combinational logic but also in the delay elements them-

selves. It is evident that by the addition of a single extra delay and

its associated excitation logic we have made half of the possible erroneous

state transitions detectable.

Since parity functions (especially of more than two or

three variables) are awkward to generate in combinational logic, almost
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regardless of the particular technology, @ it might seem that the parity-

checking technique would lead to considerable hardware costs. The situa-

tion is better than it appears at first sight since the memory-excitation

t is not actually generated as a parity check over the other
function P1

excitations, S t. (Indeed, if it were so generated the scheme would break
l

down and check only the delay elements, not the combinational logic.)

For example, if we happened to have

t = S2S3S I

I

S 2 = $3S I

$3•I = _IS2

@ Relay-contact logic, cryotrons, etc., are exceptions.
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then we see that

=  ls2®s2s3 ®s l

m

= M(s1, s2, ss)

where M denotes the three-input majority function, a function very readily

realized with threshold logic.

Of course, the above example is a very special case. In

general, the complexity of the combinational logic involved in generating

will be highly dependent on the particular formsa parity-check signal Pl

that the other memory-excitation functions happen to have. In order to

increase the detection capability over that provided by a simple parity

check, we need to supply additional check signals, P_, pt checking"''' r

over independent subsets of the state variables Sf. One scheme for doing
l

this is provided by the Hamming codes. These are, however, not the most

suitable for our purposes, since each Hamming parity check involves almost

half of the nonredundant state variables, thus leading to a large number

of exclusive-OR gates in the checking circuit. Better schemes are avail-

able in the form of low-density parity-check codes; see Gallager. ss These

codes can be designed to use no more than two or three state variables

for each redundant check signal.

It is clear that if, say, r independent checks are used,
-r

then all but a fraction 2 of the states will be detected as invalid.

The probability of detecting incorrect state transitions then increases

to 1 2 -r *- . We come now to an objection which may already have occurred

to the reader. It may be argued that the addition of redundant delay

elements and combinational logic will increase the number of possible

* Strictly speaking this number i - 2-r is only the fractional number of

invalid state transitions from any given state; it becomes a probability

only if we assume that all faulty transitions are equally likely.
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incorrect transitions, and will also increase the probability of such

transitions, so that we are no better off than before we added redundant

states. It is indeed correct that both the number and probability of

incorrect transitions will be increased by the addition of redundancy.

However, adding a single delay element, while it doubles the number of

possible erroneous transitions, does not double the probability of such

an error. That would be the case only if we had to double the complexity

of the whole network every time we added one redundant state variable.

Of course, that is far from the case--typically, adding one delay element

(plus logic) will add one unit of complexity to the network. Thus, it

increases the complexity by about 5 percent if there were 20 state vari-

ables to begin with. We can therefore expect that the overall fault

probability is increased by about 5 percent, but we have cut in half the

probability of its going undetected.

To put the matter more succinctly: the inherent unreli-

ability of the network increases roughly linearly with its complexity (as

measured by the total number of state variables). The probability that

once a fault has occurred it will go undetected, however, decreases

exponentially with r, the number of redundant variables (i.e., as 2 r)

independently of the number of nonredundant state variables. We are

therefore fighting a very favorable battle, rather than a losing one,

when we increase r.

The major remaining questions in this area are:

(1) How best to arrange the parity-check signals

(i.e., which Gallager codes, or others, to employ

for typical sequential networks).

(2) What redundancy ratios, r/n, are most effective.

(3) How best to combine this technique (i.e., in what

proportions) with other, purely combinational,

fault-detection techniques or with intermittent-

checking schemes.

It should be noted also that a number of authors have dis-

cussed the employment of parity checking in sequential networks for auto-

matic error correction, i.e., for sequential fault masking, rather than

for fault detection. Among these are Armstrong, 10 Rubio, _73 and Frank
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and Yau. ss While such possibilities should not be overlooked, it is our

feeling that masking should not be applied except for relatively small

networks. A particularly good discussion of this question can be found

in Chapter VII of Pierce 24s (see also Sec. II-A-I).

2) State-Weight Checking

Another checking technique, in some respects analogous to

state-parity checking but in others quite distinct from it, is implemented

by restricting the valid states to lie among specified weight classes.

That is, we arbitrarily restrict our state assignments in the design of a

sequential circuit to those state vectors containing specified numbers of

_ _ A variant of this techniquel's, say to the weights Wl, w2, ..., w c .
k o

is to restrict the weights of the state transition vectors S GS t, rather

than the states themselves.§ The simplest scheme of this sort uses a

unit-distance code (Gray code) for transitions (i.e., only one flip-flop

is allowed to change state in each transition); for a discussion of these

codes, see Kautz. tee This code seems especially suitable for counting

circuits. More complicated versions are also possible and useful, wherein

each transition may involve a small but fixed number of state variables

changing.

A representative circuit for the implementation of a

state-weight checking scheme is shown in Fig. II-A-30. For simplicity

of description the network chosen is a scale-of-ten counter employing a

distance-two, constant-weight code (two-out-of-five code) whereby five

state variables are used in accordance with the following state assignment.

* The weight of a vector (in particular, of a state vector) is defined to

be the number of l's it contains.

The reader will observe that the simplest case of parity checking (a

simple overall parity check, such as Pl in the preceding paragraphs) is

equivalent to restricting state weights to even values, [0,2,4, ...] .

The resemblance does not go much further, however.

§ This alternative technique was not discussed in relation to parity

checking, since parity checking of the transitions S QS t is logically

equivalent to checking the state vectors, S.
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State No.
S 1 S 2 S3 S4 S5

i i i 0 0 0

2 i 0 i 0 0

3 0 i i 0 0

4 0 i 0 i 0

5 0 0 i i 0

6 0 0 i 0 i

7 0 0 0 l i

8 i 0 0 l 0

9 1 0 0 0 1

i0 0 i 0 0 i

It is natural to check the operation ol this circuit with

a two-out-of-five validity checker using the symmetric £unction _2(Sl, S2 ,

S3 , S4 , $5). Zeros at the output o£ the validity checker then signal mal-

£unction through the occurrence of an invalid state.

As indicated above, an alternative way to check the opera-

tion of this counter is by monitoring the weights of the "change" signals.

I£ trigger (T) £1ip-£1ops are used for memory, then there will be exactly

two active change signals at each step. If set-reset (R-S) £1ip-flops

are used, there must be exactly one set signal and one reset signal at

each transition. In all cases there are obvious ways to monitor these

changes.

Circuits of the above types are attractive, perhaps,

because of their logical simplicity. They also appear to be fairly com-

petitive with parity-checked circuits in terms of efficacy in reducing

the number o£ undetected faulty transitions. The two-out-of-five counter

above uses l0 out o_ a possible 32 states. Thus, the fraction of un-

detected errors is i0/32 = 0.31 approximately. A binary counter would

have required four nonredundant state variables; and with straight parity

checking, one extra state variable would only reduce the undetected errors

by a factor of i/2. Thus the constant-weight counter is slightly superior

in this case.
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A more general scheme for state-weight checking is shown

in Fig. II-A-31. Here the weights of the states are not restricted

priori. Full flexibility in state assignment to the nonredundant vari-

ables is available to facilitate economical (or otherwise desirable)

synthesis. Instead, a set of check signals C1, C 2, ..., Cr is generated

(as in the parity-check scheme, though these C are not parity checks).
1

The rule used in their generation is that the binary number represented

by CrCr_l...C2C1, i.e., the quantity Z Ci 2i-1 is just equal to w(S'), the

weight of the state vector S'. These check signals, Ci, are then applied

(as memory excitation) to a redundant set of r delay elements. Thus,

densely encoded information as to the weight of the next state vector is

fed around the combinational logic and delay loop. At the delay element

output terminals, the weight of the new state vector is checked against

the indication provided by the binary number Cr...C1. Any failure of

these numbers to agree results in a fault-detection signal.

The number r of redundant state variables required with

this scheme is bounded above by

r <log 2 (n +i)>*

where n is the number of nonredundant state variables. This relation

follows from the fact that the weight of S can range in general from 0

to n, in the worst case. Of course, if the state assignments are suitably

restricted to employ only a narrow range of weights, then r can be made

smaller in particular cases.

The same principle can be applied to the checking of the

weights of state transition vectors, rather than of the state vectors

themselves. This alternative may be preferable in some cases, particularly

when the state vectors can range over all weights from 0 to n but the

transition vectors are limited to weights of, say, i or 2.

* <x> = smallest integer greater than or equal to x.
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We have suggested a good many schemes for the implementa-

tion of fault detection in sequential networks. Some of these are dis-

cussed only in relation to counting functions, yet they are applicable

much more generally. For example, unit-dlstance coding can be used in

the design of decoding trees. _s What is still lacking is a clear under-

standing of how such schemes compare in cost, in reliability, and in

general efficacy. The problem of efficient redundant state assigumen_

for fault detection in sequential networks is intimately bound up wlth

the general question of (ncnredundant) state assignment; and the latter

has long been known to be an extremely difficult problem on which progress

has been made only recently.

Another large area ripe for future study is the design of

sequentlal networks for easy dlagnosabillty. The work of Kime le° mentioned

earlier may be relevant to this problem (though he was concerned wlth

facilitating detection only).
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B. Use of Codes for Storage and Arithmetic Operations

i. Introduction

Almost immediately after the use of error-correcting codes was

proposed as a technique for achieving reliable communication over noisy

channels, studies were conducted to determine the utility of codes for

checking computer operations. Unfortunately, it appears that except for

the checking of memory cells and for the checking of arithmetic opera-

tions, the use of codes is not feasible* for achieving reliable computa-

tion, because of the following factors.

(a) Serial checking, as is commonly employed for checking

transient errors on communication channels, cannot be

applied for checking component failures since generally

permanent failures occur.

(b) Parallel checking is theoretically feasible, but in many

cases single component failures result in errors on many

data lines, dictating either the costly realization of

networks wherein all outputs are independent or the use

of codes with extended error-correction capability.

(c) Means must be provided for ensuring reliable operation

of the encoding and decoding circuits, which are in

many cases as complex as the protected networks.

Two cases where single component failures do not result in multiple

data-line errors are in the memory section and the arithmetic section.

Kautz 151 has described a class of codes which combines the properties

of error checking, such as single-error detection, and unit distance--

which means that successive code elements of the code sequence differ

in only one bit. These codes are potentially useful for either an

error-detecting code for an analog-to-digital converter (in the sense
that the most likely binary errors are either detected or result in

negligible analog errors) or as an error-detecting code for an asyn-

chronous counter (in that a failure is detected which causes a flip-

flop to fail to change statewhen it should or to change state when

is should not). These codes have suffered from the unavailability

of efficient encoding and decoding implementation, but Kautz has pointed

out to the authors that by specifying a code which is somewhat sub-

optimal it is possible to describe reasonable efficient encoding and

decoding algorithms. With this advance these codes might prove to

be useful for the indicated applications.
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Avizienis 14 has proposed a system wherein the same arithmetic code

is used for the checking of arithmetic operations and those storage

operations which relate to the arithmetic data. The advantages of the

scheme arise from the requirement of only a single encoder in the system,

compared with the two encoders dictated by the use of two distinct codes.

However, if the memory and arithmetic processor are checked separately

then two arithmetic-type decoders must be included, each of which is more

costly than a decoder for independent failures. The scheme also suffers

in that it is difficult to specify different levels of protection for

the memory and processor.

In the followin_ two subsections we then discuss the use of different

types of codes which are particularly appropriate for either arithmetic

or storage. Although the decoders are still complex, some progress has

been realized in the implementation of failure-tolerant decoders.

It should be noted that the followin_ discussion is intended mainly

to survey the prior coding research in order to distinguish cases where

coding is pertinent to the realization of reliable computers, and also

to distinguish future problems for research.

2. Codes for Checking Storage

It was indicated previously that most error-correcting coding

techniques, as applied to computer circuits, are not attractive because

of the need for costly extra circuits so as to provide failure-tolerant

encoders and decoders. One possible exception to this tenet is for the

error-control technique distinguished as threshold decoding, s,352'

wherein the estimated value of a particular information bit is determined

by a majority vote of a function of the output bits from the memory. In

this case the minimal implementations of the encoders and decoders are

such that most patterns of failures are correctable, including failures

in the decoders and encoders--not, of course, exceeding in weight the

capability of the code. In this section we will briefly discuss the

properties of codes which are amenable to threshold decoding, and also

discuss the tradeoffs between error probability and additional memory

locations required, attendant to the use of various error-correcting codes.
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a. Threshold Decoding

As an example consider the implementation of a double error-

correcting code for a memory-channel byte of two bits, as shown in

Fig. II-B-l(a). In this case the optimum (least redundant) code requires

6 check digits. It is easily verified that all double failures occurring

in either the encoder, the memory channel, or the exclusive-OR gates of

the decoder are correctable. In addition, some of the failures occurring

in the 5-input majority gates are also correctable if the triangular

realization of Sec. II-A-2c is incorporated.

This feature of protection against encoder-decoder failures is

not realized for implementation (such as those described by Kautz, 14s

wherein a syndrome is first calculated and then utilized to uniquely

distinguish the bit or bits in error. A single error in the determination

of the syndrome will generally result in erroneous decoding.

It is of interest to observe the basis for the threshold

decoding algorithm for this (8, 2) code. The code can be conveniently

described in terms of the 6 × 8 parity check matrix (H matrix) shown

below.

H

l l I l l I l l

x I x 2 x 3 x 4 x 5 x 6 x 7 x 8

i o 1 o o o o o-

1 0 0 1 0 0 0 0

1 1 0 0 1 0 0 0

i i 0 0 0 i 0 0

0 1 0 0 0 0 1 0

_0 1 0 0 0 0 0 I_
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The following set of 6 parity equations then must be satisfied by the

code digits

t i 0
x I Q x 3 =

I I

XlQX 4 = 0

I I IxI ® x2® x5 _-0
I I IxI ® x2 ® x6 = o
I I

x2(_)x 7 = 0

I I

x2(_)x 8 = 0

Transforming the above set of equations and appending the trivial identities

'Qx_ = O, x_x_ = 0, we note that we can write a set of 5 equationsx I
I

t and a set for x2,for x I wherein no set variable appears more than once

as an independent variable. These equations are:

x I x I x2

x 1

I I I l

x I = x 4 x2 = x 8

I I I I I 6x 1 = x 5(_)x 7 x2 = x 3_x

I I I I I I

x 1 = x 6(_)x 8 x2 = x 5(_)x 8

t and _ be the estimates of the informationIf we let the estimates of xI x 2

symbols a and b, then it is evident that any single or double errors will

be masked by the majority decoding rule indicated in the figure.

For many codes, such simple encoder-decoder realizations are

not possible, although it is possible to specify a "pseudothresheld"

implementation in which the estimate of at least one bit is dependent

upon the estimate of other bits. As an example, consider the realization

shown in Fig. II-B-l(b) 5 of the Hamming single error correcting code,

with 4 information bits and 3 check bits. As in the previous example

most single failures occurring in the encoder and decoder are masked as

well as, of course, those occurring in the memory channel.
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At present it is not known what codes are implemented by the

threshold-decoding technique, nor is it known what codes are implemented

by the pseudothreshold technique as illustrated in Fig. II-B-l(b).*

We have developed methods for specifying parity-check matrices based upon

balanced incomplete block designs, for codes which can be guaranteed to

be decodable by threshold decoding; but the research has not proceeded to

the point where reporting is appropriate. It appears that these codes

are somewhat less efficient than codes derived by other algebraic pro-

cedures--for example, Bose-Chaudhuri Codes.

b. Tradeoffs Between Memory Redundant Channels

and Error Probability

Here we are concerned with the subdivision of the memory

information channels into bytes to which we apply the error correction.

Although the reliability of a code group will increase with

the number of errors that are correctable, the corresponding increase in

complexity of the decoding equipment tends to decrease both the speed of

operation and the reliability of the system. Hence, for the present

examination, only single and double error-correcting codes will be

considered.

Thus, for a given number of information channels, we wish to

determine the reliability and the number of redundant channels resulting

from the subdivision of the channels into code groups (bytes) of various

sizes, for single and double error-correcting codes. It is assumed that

channel failures are random and independent, and that all channels are

equally reliable. Furthermore, we shall consider the reliability of a

Massey Ss2 has shown that codes based upon maximal-length sequences can

be threshold-decoded, and he has also shown that all Hamming codes are

implemented by the pseudothreshold.
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channel to be high, because only then is the use of redundancy beneficial

for overall system reliability. In the analysis, the following definitions

apply:

Q = probability that system fails
s

Qb = probability that byte fails

q = probability that channel fails

p = l-q

n = number of bits/byte

k = number of information bits�byte

n-k = number of check bits/byte

b = number of bytes

w = kb = number of information bits/system.

For single error-correctin_ codes,

Qb,l = P(exactly 2 errors) + P(exactly 3 errors) + ...

(2) 2 n-2 (3) 3 n-3= q p + q P + ....

2For q << 1, we approximate Qb,1 _ ) q "

Then Qs,l = 1 - (I - Qb,l)b_ 1 - (i - bQb,l) = b(:)q 2.

For double error-correcting codes,

Qb,2
= p(exactly 3 errors) + p(exactly 4 errors) + ...

(3) 3 n-3 (4)q4 n-4= q P + P + ...

For q << i, we approximate Qb,2 _ (_)q3.

Then Qs,2 = 1 - (i - Qb,l )b _ 1 - (i - bQb2 ) = b(_)q 3.

Tabulations of Qs,l and Qs,2 are given in Tables II-B-I and

II-B-2 respectively. The reliability Qs' the total memory size nb,

and A, the product of Qs and memory size are given for a number of codes

for bytes containing one to four information bits. The reciprocal of

A is a useful measure (although it is clear that A is not universally

applicable) of the effectiveness of a given redundancy scheme.
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Table II-B-1

RELIABILITIES AND MEMORY SIZES

FOR SINGLE ERROR-CORRECTING CODES

n k b

3 1 w

5 2 w/2

6 3 w/3

7 4 w/4

8 4 w/4

nb Qs 1 A1 = Qs 1 nb/w2q2

3w

2.sw

2w

1.75w

2w

3wq 2

5wq 2

5wq2

5.25wq2

7wq 2

9

12.5

i0

9.2

14

Table II-B-2

RELIABILITIES AND MEMORY SIZES

FOR DOUBLE ERROR-CORRECTING CODES

n k b nb Qs,2 A2 = Qs,2 nb/w2q2

5 1 w 5w 10wq3 50q

8 2 w/2 4w 28wq 3 112q

i0 3 w/3 3.33w 40wq 3 133q

12 4 w/4 3w 55wq 3 165q

For equal memory size (3w each):

(3,1) single ECC, _ qs,l(3,1) = 3wq 2

(12,4) double ECC, Qs,2(12,4) = 55wq 3

The ratio of probabilities of failure is

Qs,1 (3'1) 3

Qs 2 (12'4) = 55--_
P

It is recalled that an (n,k) error-correcting code (ECC) contains

code words of length n with k information bits.
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It is clear that for low probabilities of channel failures,

-2
i.e., q < i0 , double error-correcting codes are far superior to single

error-correcting codes, ignoring the costs of encoding and decoding.

For example, considering two schemes having equal total memory size, the

(3, i) single ECC and the (12, 4) double ECC, the ratio of system failure

probabilities is 3/55q.

It was indicated that these studies ignored the complexity of

the encoder and decoder circuitry in establishing a measure of the

effectiveness of various error-correcting codes for memory channels. In

future work measures which reflect these complexity factors should be

established, at least for the codes discussed in this section. Since

no complete theory has been formulated concerning the encoder-decoder

complexity as a function of the code, it will probably be necessary to

establish the logical realizations of the circuits in the process of

comparison. Some initial studies have indicated that the threshold-

decoding scheme, besides providing for the masking of many encoder-decoder

circuit failures, also appears to provide the least costly implementation

(on the basis of a realization in terms of AND-OR gates).

3. Codes for Checking Arithmetic Operations

In this section we review the reliability techniques that apply

specifically to the protection of arithmetic computations. Although

this discussion does not mention the general reliability techniques

that are described elsewhere in this report, it is tacitly understood

that general techniques may be used in addition to or in place of the

techniques discussed here.

Historically, reliable arithmetic computation techniques have

closely paralleled reliable communication techniques. By redundant

coding of operands it is possible to perform a consistency check on

the results of arithmetic operations, much the same as the consistency

For several codes Allen 5 has developed logical realizations of the

encoders and decoders.
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checks performed on code words that may have been corrupted in transmission

through a noisy channel. The major e£forts, therefore, have been to

discover redundant number systems with good distance properties, to find

easily implemented techniques for encoding, decoding, and performing

consistency checks, and to find ways in which the redundant in£ormation

can profitably be put to use.

Activity can be broadly classified into two areas: separable and

nonseparable codes. Separable-code schemes are characterized by the use

o£ check symbols that are treated as separate entities £rom the operands

that they check. To detect computation errors that may occur during an

arithmetic operation on a pair o£ operands, a special module operates

on the corresponding check symbols of the operand pair and predicts the

check symbol o£ the computation result. At the termination of the

computation, a check symbol for the result is produced and compared to

the predicted result, signalling a detected error if a disagreement is

iound. Figure II-B-2 shows a typical system based on a separable code.

Error correction can be implemented, when code distance conditions

permit, by calculating a correction term as a function of the predicted

b-
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TERM I ERROR .

[ CORRECTORJ

t
I
I

.,___ CHECK SYMBOL _,[
GENERATOR COMPARATOR
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ERROR ALARM

ARITHMETIC
UNIT
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_i PREDICTOR J

FIG. II-B-2 A SEPARABLE CODE SYSTEM

T&-5580- 43
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check symbol and the actual check symbol. This is indicated in Fig. II-B-2

by the dashed module labeled "error corrector."

Nonseparable codes are characterized by the coding of operands in a

special form such that the results of correct arithmetic operations are

again of the special form. Faulty arithmetic operations have a high

probability of producing results that are not of the required form. To

detect computational errors, the results of computation must be analyzed

to determine whether they are properly coded. A typical nonseparable-

code-based system is shown in Fig. II-B-3. In this system the analyzer

signals a detected error when a result fails to satisfy the code require-

ments. If code parameters permit, the analyzer can also generate a

correction term to correct the error, as indicated by the dashed line

in the figure.

5

a.

CORRECTION

),TERM I

I
I
I
I
I

ANALYZER I DETECTED

I ERROR ALARM

I ARITHMETICUNIT

T&-S610-44

FIG. II-B-3 A NONSEPARABLE CODE SYSTEM

The remainder of this section describes each of the two areas in

greater detail and concludes with a brief summary of the problems that

remain to be solved to aid the implementation of these techniques.
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a. Separable Codes

The theoretical foundation for separable code schemes has been

formulated by Peterson 239 with the proof of the following theorem:

Theorem: Let C(N) be the check symbol associated with the

number N. For the addition operation N 3 = N 1 + N 2,

let the check-symbol predictor perform the opera-

tion "*" such that the predicted check symbol

C(N 1 + N2) satisfies

i . N2) = I)* c(N2)

If there are fewer symbols in the check-symbol

alphabet than there are integers in the permissible

range of integers, then C(N) must be the residue

of N modulo b, where b is the number of symbols

in the check-symbol alphabet, and "@" is addi-

tion modulo b.

The importance of this theorem is that it completely specifies

the error-detection system given in Fig. II-B-2 when the operation is

addition. The check-symbol generator in the figure computes the residue

of the sum modulo b while the check-symbol predictor is a modulo b adder.

Since addition is the elementary arithmetic operation of a

computer, all error codes must check addition. Checks of the other

arithmetic operations can then be designed to make best use of the coding

scheme which checks addition. Consequently, Peterson's theorem has far-

reaching effects with respect to the design of systems to check all

arithmetic operations.

Garner 89 has extended Peterson's work to show that a coding

scheme that checks addition can be used directly to check multiplication.

The predicted check symbol for multiplication is simply the product

modulo b of the operand check symbols. Consequently, each of the

components (except the error corrector) in Fig. II-B-2 is determined
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when the operation is multiplication. The results of Peterson and Garner

come directly as a result of the fact that addition and multiplication

of integers in a computer are equivalent to the operations defined on a

mathematical ring. Peterson's proof uses the fact that the check symbols

must lie in a cyclic subgroup of the ring, while Garner notes that the

subgroup must satisfy the stronger requirements of being an ideal of

the ring. This completely determines the form of the operations on the

check symbols that check multiplication and addition in the ring. Since

subtraction in the ring is addition of the additive inverse of the

minuend, subtraction is automatically checked if addition is checked.

Division is not, in general, a defined ring operation. Con-

sequently, it is not possible to check division as directly as the other

operations. The most thorough check is to check each addition and

multiplication step of an iterative division. Since checking during

the course of an iterative operation may substantially increase the time

of the operation, an alternate approach is to perform a consistency

check on the combination of divisor, dividend, quotient, and remainder

at the completion of the operation. Since they satisfy the equation

n I = n 2 • q +r

their check symbols must satisfy the same equation modulo b. Although

this appears to be a valid check, it allows some errors to escape

detection. Whenever one member of the pair n2, q is 0 modulo b, the

product n 2 • q is forced to be 0 modulo b, independent of the value of

the nonzero member of the pair. Consequently, errors in n 2 or q cannot

be detected in this scheme when one member of the pair takes on a correct

value congruent to 0 modulo b. The choice of a method to check division

is still an open question. Neither of the schemes described here is

completely satisfactory. In some systems, the consistency check may

suffice if the cost of undetected errors is negligible. In systems

with more stringent reliability requirements, one is faced with the

cost of step-by-step checking, unless a more satisfactory method can be

found.
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Thus far, we have discussed how arithmetic operations are

checked with separable coding schemes. We have indicated that the

check-symbol predictor is a modulo b adder and multiplier for checking

addition and multiplication, respectively. Since these are commonly

used devices, it is not necessary to consider how they might be imple-

mented in this section. The check-symbol generator, on the other hand,

is a device that lends itself to further study.

Since the check symbol for an integer n is its residue

modulo b, the most direct way of computing the check symbol of n is

to divide n by b, discard the quotient, and keep the remainder. Since

division is usually much more complex than either addition or multiplica-

tion, the generation of a check symbol by division could be substantially

more costly in terms of time or hardware than the operation to be checked.

However, because of an observation by Rothstein 271 and extended by

other% 10°,14,215,21s it is possible to compute the residue without

actually performing the division. In particular, if the modulus b is

of the form 2a-1 (more generally pC-1 for base p computer representations)

then

2 a m 1 mod b

and therefore

(2a) r - 1 mod b

Consequently,

k • (2a) r m k mod b

so that the extraction of a residue of a number reduces to the sum

modulo b of the coefficients of the radix 2a representation of the

number. (This corresponds to the familiar process of casting out nines

by summing digits in a decimal representation.) Hence, to compute a

residue modulo b = 2a-l, a binary representation is partitioned into

a-bit bytes, each of which is treated as an integer modulo 2a-1 and
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summed modulo 2a-l. Rothstein 2vI and Germeroth I°° give other algorithms

for the computation of the residue when b = 3. The JPL-STAR computer 14

actually uses this technique in its design for b = 15. The technique

described above makes the calculation of check symbols practical without

the expense associated with division hardware.

This completes the description of the devices associated with

error-detectlon shown in the system in Fig. II-B-2. We now focus our

attention on the correction of errors.

Before discussing the actual implementation of an error

corrector, it is necessary to consider the error mechanism in some

detail. Clearly no system can correct all errors, so it is desirable to

be able to correct the most probable errors. It is possible to define

an "arithmetic distance" such that the most probable errors have a small

distance measure.

The following definitions are due to Peterson. 2Ss

Let the weight of a number n in base p be the least number of

nonzero coefficients required to represent n as the polynomial

r 1
n = a p + ... + a_p + a.

r 1 u

where the coefficients are positive or negative integers with fail < p.

Let the arithmetic distance between two integers n I and n_ be

the weight of [nl-n2].

This definition of distance is somewhat different from the

definition commonly used for transmission codes, but it is purposely

so in order to account for the characteristics of arithmetic operations.

During an addition operation, for example, the result of a single digit

error can account for a burst of digit errors in the sum due to propaga-

tion of an error in the carry process. Such errors will show up as

single errors (errors of weight l) under the definition given above.

In a parallel adder, the errors that correspond to a single component

failure are single errors. Unfortunately, this is not true of serial
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adders in which the multiple use of a single faulty component can cause

a multiple error.

The necessary and sufficient conditions for single error

correction have been derived by Brown 31 for nonseparable codes, but

apply to separable codes also. In simple terms, a nonseparable code

for the integers in the range 0 _ i _ 2m-1 can correct single errors if

and only if each of the 2m possible single errors, _2 J, 0 _ j < m, and

the integer 0 have 2m + 1 distinct residues modulo b. To correct single

errors, it is necessary to compute the difference between the predicted

check symbol and the calculated check symbol. This gives the residue

of the error. Since each of the correctable errors gives a unique

residue, it is possible (usually by means of table look-up) to compute

the correction term. Hence, the error correcter contains a modulo b

adder and a table with 2m + 1 entries.

This completes the description of systems based on separable

codes. Before proceeding to nonseparable code systems, it is worthwhile

to mention some variations on the separable codes that have been described

in the literature.

Although Peterson's theorem completely determines the nature

of the separable-code system, it does not determine the nature of the

number representation in the computer. Hence, the adders and multipliers

need not be conventional. The most competitive choice of number representa-

tion next to radix representations is the residue representation. 91,297

This representation has certain advantages over radix representation with

respect to elimination of carry propagations and the inherent modularity

of the arithmetic-unit logic associated with the representation.

Unfortunately, several operations such as sign detection, overflow

detection, magnitude comparison, and division are much more costly in

residue-based computers than in radix-based systems.29s, 153

Watson 32e,a21 and Moore 216 have investigated error-detecting

and correcting redundant-resldue representations which are similar to

the separable codes described here. The redundant-residue systems are

124

L



characterized by modules like those shown in Fig. II-B-2 except that the

arithmetic operations are performed by logic characteristic of the

residue operations. Check symbols are residues, as in the radix

representation, except that the check symbols themselves are represented

by residues of moduli smaller than the check modulus b. Hence, the

check-symbol predictor is a residue adder or multiplier rather than a

conventional modulo b adder or multiplier. The process of generating

check symbols from the residue representation is commonly termed "base

extension." The simplest known method of base extension is much more

complex than the residue-extraction method described above for radix

representations (see Moore216). At best it requires several additions

and a table look-up.

The use of redundant residues can simplify some of the problems

associated with residue operations. The processes of sign detection and

magnitude comparison, for example, are easier to implement with redundant

residues than without. 21s Nevertheless, residue representation appears

to be far less attractive than radix representation in general, while

the high cost of base extension lends further support to the apparent

unsuitability of residue representations for error-detection systems.

For historical reasons, it is pertinent to mention Garner's

generalized parity scheme s° in which the check symbols are parity checks

on the operands. In this scheme the check-symbol predictor for an

addition operation determines the parity of the sum from the parity of

both addends and the generated carries. Because the carry-generation

process itself is not checked by the code, it is not suitable for

error-detection systems.

b. Nonseparable Codes

In view of material presented above, it is not surprising

that the form of a nonseparable-code error-detectlng system is almost

completely determined by the properties of the addition and multiplication

operations. To see this, let F(n) be the coded form for the integer n,

and note that F(nl) * F(n2) = F(n I + n2) where "*" is the operation on
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code words that corresponds to addition. But this is precisely the

condition that holds for check symbols of a separable code. Using this

condition and others it follows that the structure required to check

addition and multiplication is that the code words must lie in an ideal

of a mathematical ring, 89 which is the same structure required for the

check symbols of separable codes.

A suitable candidate, the AN or "linear residue" code, was

first proposed by Diamond s° and has subsequently been studied by

Brown, Sl Peterson, 2S8 Henderson, 12s'_2s and Garner. 89 For these codes,

the integer n is represented by the integer A • n where A is a selected

constant. Since An I + An 2 = A(n I + n2) , the arithmetic sum of two

coded numbers is the code of the sum, so that ordinary addition can be

used to sum two code words. Multiplication and division operations

on code words are more complex, however, than the equivalent operations

on uncoded integers. The product of two code words must be calculated by

ordinary multiplication and reduced by a factor of A because An I ' An 2 =

A2nln2 . Division is checked by premultiplying the dividend by a
factor

of A and then performing ordinary division. Hence, to perform either

multiplication or division, it is necessary to perform both operations

on the code words. Avizienis 14 has used a clever technique for imple-

menting the premultiplication by A required for division. When A has

the form 2a-l, the product n A • n can be computed by subtracting n from

n " 2 a, where the latter product is obtained by shifting n left a bit

positions. This technique can also be used to encode numbers.

The consistency check for these codes is to determine the

residue of the code word modulo A, and signal an error if the residue

is nonzero. Note that the residue extraction can be performed by the

technique described for separable codes if A is of the form 2a-i for binary

computers. Similarly, a single error can be corrected by a table look-up

or alternate calculation if and only if each possible single error and the

integer 0 have distinct residues modulo A. In this case, as before, the

definition of single error is an error of arithmetic weight one.
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The implementation of a nonseparable coding scheme must include

provision for coding and decoding numbers. Since these operations are

multiplication and division, respectively, for the AN codes, the form

of the operations is completely determined. There is special form of

the AN code in which it is unnecessary to perform the division by A in

order to decode a number. This case, the so-called "systematic code,"

is characterized by the fact that a subfield of the coded representation

of a number is the uncoded representation of the number. Hence, decoding

is accomplished by extracting the information subfield from the coded

representation. Garner s9 shows that the format of a systematic code

must be such that an integer n is represented by the left concatenation

of a field c to the representation of n; i.e., such that n is represented

by (c,n), so that decoding requires the extraction of the least significant

bits. This quality also simplifies the coding somewhat in that only the

most significant bits of the product A • n must be calculated in order

to encode n. Several systematic codes have been constructed by Henderson, .25

and the constraints on code parameters for these codes have been described

by Garner. ss

Although we have briefly mentioned how to implement arithmetic

operations with a nonseparable coding scheme, we have not discussed the

problem of computing an additive inverse (negative). In conventional

representations the subtraction of one number from another is usually

implemented by computing the additive inverse and performing addition.

Radix representations allow one to compute the inverse simply by comple-

menting the stored form of the number, either with or without an end-

around carry depending on the representation. The AN code does not, in

general, allow this flexibility. However, it is always possible to find

a constant B such that the coded form of a number is AN + B and the additive

inverse of the number can be determined by complementing its representation.

These codes were first reported by Diamond so with the description of the

AN codes. Notice that arithmetic operations on code words coded in

AN + B form usually require addition or subtraction of a contant B at
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one or more points in the arithmetic processes that is otherwise not

required for AN codes. Hence, it is not immediately clear that the

advantage of simplified negation is worth the price of more complex

operations.

Garner s9 has shown how to construct a systematic AN code with

complement coding of the negative inverse by applying a special set of

weights to the bit positions of the representations. This approach is

particularly promising because it has the advantages of complement

coding without requiring the inconvenient addition and subtraction of B.

In order to implement the code, carries generated in the arithmetic units

must be distributed according to rules derived from the weights of the

bit positions. This does not appear to be as costly as the alternative

of adding and subtracting B during operations. At least one code derived

by Henderson 125 is a systematic AN code with complement coding, which

uses conventional weighting of binary-bit positions. This kind of code

is the most attractive of the many nonseparable codes described in this

section.

It is apparently not feasible to use An and AN + B codes for

the correction of two or more errors in arithmetic operations for several

reasons, the most important of which is that the hardware required to

correct more than one error is sufficiently complex to decrease the system

reliability unless it can be protected by still more hardware. Peterson 23s

gives a good table of single error-correctin_ AN and AN + B codes, while

Massey's more recent paper 201 is a good up-to-date summary of AN codes.

Garner s9 has the most complete collection of the many conditions on

code parameters that determine separable, nonseparable, and (nonseparable)

systematic codes.

c. Evaluation

To estimate the hardware costs of detecting errors with coded

arithmetic logic, notice that the extra arithmetic units required for

separable codes may be substantially smaller than the units they protect

because operations are performed modulo b, where b is presumably smaller
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than the system modules. Nonseparable codes do not require separate

arithmetic units as such, but require that the principal arithmetic

units be made to accept larger operands than otherwise required for

the system. In both cases, the redundant arithmetic logic accounts for

about a 30-percent hardware increase. Together with consistency checking

comparison, and control logic, the amount of hardware required is about

double that of an unprotected system. Imposed on the system is the

additional cost of slower operating speed due to consistency checking

operations.

The most competitive uncoded method of detecting errors is to

use two identical arithmetic units and compare the outputs. The uncoded

scheme requires at least twice the hardware of an unprotected system

and results in a slight time penalty to make the comparison. It is

difficult to compare the time penalties for the uncoded and coded

protection schemes because part or all of the consistency-check and

comparison operations may be concurrent with normal arithmetic-unit

operations. The coded system may require less hardware, and could be

used to pinpoint fault locations, provided that the arithmetic code

has minimum distance three. A doubly redundant uncoded system cannot

tell which of the two copies of an arithmetic unit contains a fault,

although it can be used to indicate that a fault exists in a specific

digit or carry line. On the basis of the estimates made here one cannot

eliminate one scheme in favor of another. The point is that coding

appears to be competitive with other reliability methods so that it

should be considered with the other methods in system design.

With error detection, transient errors can be masked by

repeating faulty operations. If repetition does not eliminate the error,

then a faulty element is indicated. Hence, detection and repetition

constitute a self-diagnosis system which, with replacement capability,

constitutes an attractive approach to achieving system reliability.

Since error detection alone cannot mask faults, it is necessary to

include repetition, replication, or a suitable alternative in order

to achieve high reliability.
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Error correction is more difficult to evaluate. With error

correction, it is possible to mask faults, except that the error-correction

hardware itself must be checked. With the necessity to use redundant

error-correction hardware, the attractiveness of the scheme is somewhat

diminished. In order to decide whether or not error correction is

desirable in a particular system, the designer should go through the

exercise of comparing at least two competitive designs, one based on

error correction and the other on replication or repetition with

majority decision logic.

Of the coding schemes described here, the separable codes and

the systematic AN codes are the most attractive. Both schemes offer the

advantage of being able to identify the binary representation of a number

in its coded form. This simplifies masking and shifting operations on

numerical quantities. The principal difference between the two schemes

is how the check symbol is formed. With separable codes, a predicted

check symbol is calculated by a separate module. With systematic AN

codes, the check symbol is integral to the coded form of the number,

and is formed by the arithmetic unit during a normal operation. The

two schemes require about the same amount of hardware to form the check

symbol. Since the consistency check can be performed similarly for

the two systems, they both require roughly the same amount of total

hardware to implement. Separate code schemes offer more inherent

modularity than the systematic AN codes, which may be an asset in systems

that permit replacement of faulty modules. Again, the method that is

best for a particular system must be selected on the basis of a detailed

comparison of the two coding schemes against other methods of achieving

reliability.

Among the outstanding questions that relate to the use of

arithmetic coding are the following:

(i) Division checking is particularly unwieldy for

separable codes. Are there techniques that can

simplify this process?

(2) Are there ways to simplify the checking of

multiplication and division for the AN codes?
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(3) How can faults in serial operations be detected

and/or masked?

(4) How can arithmetic codes be used to check non-

arithmetic computer operations?

(5) Can arithmetic codes be profitably used to

protect memory and input/output modules7

(6) The inherent modularity of residue number systems

is still sufficiently attractive to keep interest

in the idea alive. What techniques can be used

to eliminate the problems of residue interacting

operations?

(7) Several detailed systems designs should be developed

using different methods of achieving reliability.

This should shed light on the performance and cost

of ultrareliable systems.

(8) It appears that the use of arithmetic coding is

attractive for the location of failures in an

arithmetic processor. Of course, error-correcting

codes can be used which locate an error at a bit

level, but the circuitry related to a bit of

computation represents a circuit block which is

not complex enough to conveniently reconfigure. A

class of codes is required which can locate errors

to within one of several consecutive bits.
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III TECHNIQUES FOR DYNAMIC ERROR CONTROL

This chapter is concerned with techniques of logical analysis and

design that are needed for the realization of computers in which the

control of errors is dynamic, i.e., in which the logical interconnections

among the components of the computer may be altered. In the case of

autonomous error control, the error state of the computer is a subject

of computation and control by high-level processes within the computer

itself.

In this chapter we shall consider the various problems of analysis

and design that arise in such systems. The first section deals with the

overall design of the computer system, including the design of its structure,

and the coordination of the various maintenance and computational processes.

The second section deals with the design of tests for the detection and

diagnosis of faults within the subsystem networks of the computer. The

third section deals with the design of networks of the special kinds

needed for the composition of the computer systems of interest.

In each section we attempt to characterize the problems of design

in terms of their relevance to the overall objectives of system performance,

in order to determine how well present engineering techniques satisfy the

given design requirements, and to indicate what problems require further

study. In some of the cases we present analytic solutions to several of

the problems that were uncovered, and in others we present rough logical

designs, in order to give concrete illustrations of general design approaches

and to uncover problems of detailed design.

A. Problems of System Organization

This section considers the design problems relative to the structure

and the operating modes of an advanced computer from the overall system

point of view. In the first part, we examine the basic computational

and maintenance processes that are desired and distinguish certain struc-

tural features that follow from these requirements. In the second part,
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we examine the major maintenance processes in further detail and consider

the problems of coordinating these processes. In the third part, we

examine the major aspects of system structure and attempt to distinguish

the problems of design of various components of the structure.

1. Basic Behavioral and Structural Characteristics of an

Advanced Spaceborne Computer

In Sec. I-A-1 it was noted that computers for advanced, long-duration

space missions will have to perform computations of great variety and

complexity and with a range of priorities; that many of the computations

will have to be performed at high speed and with large memory capacity;

that the reliability of an electronic system with the required computational

capability and mission time cannot be ensured without some degree of error

control; and that the amount of human error control available will be

very limited. We wish to determine how these characteristics affect the

structural characteristics of a computer.

The requirements of complexity of computation and high performance

clearly indicate the probable need for a high degree of parallelism of

logical operations, although the degree of parallelism needed is not known

at this time. It is appropriate to note the different kinds of parallelism

that may be employed in future spaceborne computers. Some conventional and

feasible domains of parallelism are: (1) the bits of a computer word,

(2) the set of words in a vector, (3) the phases of an instruction cycle,

(4) the set of instructions in a single program segment, and (5) several

program segments belonging to one or more computations. The parallelism

may have several forms: for example, the concurrency of operation may

apply to all the elements of a single entity in the domain, e.g., all the

bits of a single word; or it may apply, say, in an overlapping manner,

to elements of several entities in a domain, e.g., the address calculation

of one instruction and the arithmetic of a second instruction.

The need for a high degree of autonomous error control can have

a substantial influence on computer structure. In Sec. II it was noted

that logical fault masking, either fixed or adaptive, could be employed

locally within a system to increase the reliability of a system without

any need to substantially modify the system's basic logical structure.
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However, there are two basic limitations inherent in the exclusive use of

fault masking, both of which may be considered as inefficiencies in the

use of redundancy. It will be seen that substantial modifications in

system organization are needed to achieve error control that overcomes

these limitations.

The first limitation of local fault masking is that it does not

provide for the transfer of redundant equipment between functional

locations; thus a functional location, such as a program-counter subsystem,

may exhaust its fault-masking capability, while another location, such as

a time-counter, may have a surplus of perfect parts. In general, there

are many such functional locations in the central portion of a computer

where failure is catastrophic for the system as a whole.

The second limitation of local fault masking is that it does not

provide for soft failure, i.e., for the reallotment of computational

resources among tasks according to their priority for the mission. It

is well known as that the logic of general-purpose computation can be

realized with a much smaller number of logic elements than is found in

a modern computer. It may also be expected that a great range exists

both in the value of the set of computational tasks and in the usable

precision of their computations. It is thus seen that there exists a

wide useful range for the exchange of equipment and performance in a

complex spaceborne computer, and it is submitted that the design of an

advanced computer should attempt to exploit this range to a high degree.

Translated into system terms, the overcoming of these limitations

requires that the structure of the computer be reconfigurahle. Thus,

overcoming the first limitation calls for the capability of reassigning

equipment among the functional locations within a given computer structure.

Overcoming the second limitation calls for the capability of reorganizing

the available equipment into a new general-purpose structure, and of

modifying the programs so as to maximize the value of the computations

performed. The key problems of design in achieving such capabilities are

flexibility of structure, simplicity of diagnosis, and reliability of

control.
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Flexibility requires that the hardware should be capable of being

logically interconnected in manyuseful ways in order to accommodate

many fault patterns. This capability is enhancedin turn by a high

level of modularity amongfunctional units and by a high degree of

uniformity in the structure of interconnections amongthe units.

Modularity, i.e., the use of a small number of different kinds of

functional units or modules, increases the number of locations at which

redundant equipment of a given type may be employed. Modularity is also

consistent with technological considerations of reliable fabrication,

as discussed in Sec. I-A-2. With the advent of complex monolithic

arrays, it may be advantageous to employ a small number of complex module

types that can be programmed by stored information or by external connection

to perform one of a number of different functions in different functional

locations. Uniformity of interconnection structure, e.g., as in cellular

logic, would help to maximize the number of different possible configurations

of functional units.

Simplicity of diagnosis requires that the fault status of the

functional units of the computer should be accurately diagnosable in a

short time and that the size of the program needed for such diagnosis

should be small enough to be compatible with the combined resources of

local memory capacity and the data link to a remote diagnosis facility.

Reducing the number of module types also has the beneficial result of

reducing the total size of the diagnostic program.

Reliability, in this instance, means that the control of such re-

configuration must be either fault-free or fail-safe, and that the

reliability benefits of the reconfiguration scheme exceed the reliability

losses produced by the added equipment. The reliability of switching

and control is crucial to the whole approach of reconfigurability. It is

well known that a reconfigurable system with perfect control and switching

is superior to a fault-masking system, but the potential faults in the

equipment needed for such functions may make the system less reliable

than one in which the same amount of equipment is used in fault masking.

High reliability of switching and control may be achieved by minimizing
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the amount of equipment needed for a given complexity of function, and

by the use of static or dynamic error-control techniques. It should also

be noted that static error-control schemes may be useful in increasing

the basic reliability of the modules and their intercommunication paths.

The application of such means to particular control and communication

structures is itself an important design problem.

In summary, it is suggested that in order to achieve the highest

levels of reliable performance, an advanced spaceborne computer will

need the following structural features to a high degree: parallelism

of logical operation; modularity and programmability of functional modules;

regularity and programmability of interconnection; and autonomous capability

for fault diagnosis and control reconfiguration. It is also suggested that

a number of error-control techniques, both static and dynamic, will need to

be employed to enhance the reliability of basic functional units. It is

not clear at this time that the use of redundant equipment in a reconfigur-

able structure will result in a more reliable system than the use of

redundant equipment in a localized fault-masking system, nor is the optimum

degree of reconfiguration for a given technology known. New schemes of

system organization and network design for such reconfigurability are

needed to permit a proper evaluation of this approach.

2. Organization of Basic Processes

In this section we wish to review the basic processes of general

computation and maintenance computation that must be realized in space-

borne computer employing dynamic error control.

The basic computational processes in a general-purpose computer may

be grouped as follows:

(G1) Executive: including the steppin_ of the major phases of

an instruction cycle, control of "interrupt" action,

communication with maintenance processes (i.e., for alarm)
try-again, roll-back $ and return.

"Try-again," as suggested by the name, is an attempt to correct an error

in a computation by repeating it, and "roll-back" is a return to a pro-

gram step that preceded an error in order to regenerate (to the degree
possible) information that was lost because of the error.
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(_2)

(G3)

Instruction: including the determination of and access

to an instruction, and the transformation of the address

portion, e.g., by indexing or table look-up.

Operation: including the retrieval, computation, and

distribution of operands.

Input-output: including selections or recognition of an

active terminal, receipt of transmission of information,

buffering, formatting, and preprocessing (e.g., integration).

The basic maintenance processes for a highly reconfigurable computer

may be grouped as in the following list, which proceeds in order of

increasing degree of system modification.

(MI)

(M2)

(M3)

(M4)

(M5)

(M6)

(M7)

Passive error control: including localized fault masking and

error correction.

Fault indication: including detection that an error has

occurred, and the location of the general area of the fault

that produced the error.

Transient discrimination: including attempts to correct an

error by repetition of the general computational process.

Fault diagnosis: including the selection of and access to a

subject logic network, presentation of test patterns, and

retrieval and interpretation of responses, in order to detect,

locate, and characterize faults.

Reconfiguration: including the generation of schemes for the

re-allocatlon of hardware resources, the assignment of function

for multi-functional modules, and the setting of interconnection

paths.

Reorganization: including the generation of an alternative

schemes system organization for realizing general-purpose

computation, the relocation of data in storage assignment of

functions and interconnections among modules, and the modification

of program subroutines.

Alteration of tasks: including the determination of an appropriate

allottment of the available hardware to the set of computational

tasks.

In the order listed, the maintenance processes involve increasing

losses in time, corresponding to the increasing seriousness of the fault

conditions for which they are appropriate. It is therefore sensible to

organize these processes in a hierarchy, so that the capability of

accommodation of a given process may be fully utilized before employing

a process of a higher order.
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Process MI is valuable in enhancing the basic reliability of the

functional units of a computer, and it is especially needed for protecting

those circuits that control the execution of the higher-order maintenance

processes. Processes M2, M4, and M5 are essential to dynamic error control,

and process M3, which must follow M2 if it is employed, is probably of

value in space missions, in order to accommodate nonpermanent faults,

such as transient errors in logic networks due to radiation bursts and

power interruption, and data-sensitive errors in memory networks. Process

M6 represents a higher-order capability that is not essential to dynamic

error control, but which provides accommodation for more extreme error

conditions. Its employment inevitably calls for some reduction in

performance, hence process M7 must also be employed to some extent.

Under some circumstances, process M7 may stand alone; for example, if a

particular machine order is inoperable, it may be expedient simply to

reduce performance for some task, rather than reconfigure the machine

structure.

The addition of new processes brings new possibilities for error.

Some policies that may help reduce errors due to failures in the mainten-

ance processes are:

(I) Employ a maintenance process only when it is needed.

(2) Provide for remote human control of at least the initiation

of a maintenance process.

(3) Provide many easy exists from a maintenance process to some

stable (perhaps imperfect) operating configuration.

(4) Subdivide maintenance processes into small steps such that

each one has only a limited effect on the system.

The design and organization of general computational processes is,

of course, a highly developed art; but the design and organization of

the maintenance computational processes is not well developed, especially

for the present case, in which a high degree of autonomy is required.

Further research is recommended to develop techniques for the design of

these processes and the coordination of these processes with general

computation.
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3. Approaches to System Structure

a. Introduction

In this section we consider a number of possible approaches to

the design of system structure, i.e., the assignment of functions to sub-

systems and the ordering of communication among subsystems.

The dominant qualities of the computers of interest, from a struc-

tural point of view, are the need for parallelism of computation within a re-

configurable structure and the distinctness of maintenance control. For

the various functions of both general and maintenance computations, there

is a choice as to the extent to which a given function is performed

exclusively in a given network type. We shall consider how this choice

appears in system structuring.

b. Approaches to Structural Parallelism and Functional

Specialization for General Computation

In order to see how parallelism may be employed both for compu-

tation and _or error control, it is instructive to examine the known schemes

of parallelism for computation alone.

In the design of the conventional, serial computer (due to

yon Neumann), specialization of function is carried out to a high degree.

Thus, as illustrated in Fig III-A-I, the functions of storage, processing,

input-output, and control are realized in special networks (or subsystems).

Figure III-A-2 illustrates three schemes for increasing the parallelism

of some of these functions that have been realized in machines built

within the past eight years. Figure III-A-2(a) illustrates parallelism

in storage units. An early example of its use was in the Larc computer, 7°

in which a number of units operated with overlapping access cycles.

Figure III-A-2(b) illustrates parallelism in processors, and the distribu-

tion of control among processing units; an early example of this scheme

is the Gamma 60 computer, ss Figure III-A-2(c) illustrates parallelism

in a combined storage and processing function. Such a system is often

called an "associative" or "logic-in-memory" processor; Lee 17s conceived

a machine in which the combined storage and processing elements connected

essentially in a one-dimensional array, and Slotnick 2as conceived a machine
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(SOLOMON) using a two-dimensional array. In all of these systems, either

storage or control operates in an essentially serial-by-instruction mode.

All of these schemes, of course, may be realized with different degrees

of parallelism at the bit level.

Only two schemes of fully parallel processing have been

discussed in the technical literature. One is the "polymorphic" scheme $49

(usually the structure connoted by the term "multiprocessor"), illustrated

in Fig. lll-A-S(a), in which the functional specialization of the yon Neumann

computer is preserved. The other, illustrated in Fig. lll-A-S(b), is the

iterative-structure processor (often called "the Holland machine"), Iss

in which storage, processing, and control functions are combined in a

cell and all cells are identical and regularly connected. In the poly-

morphic scheme, particular functional units that are to be combined may be

chosen freely and the paths connecting them will usually be fixed for a

whole computation, while in the iterative-structure machine the building of

new paths among cells occurs at every instruction in order to retrieve the

operands needed. The polymorphic scheme is superior with respect to

efficient use of hardware, and the iterative-structure scheme is superior

with respect to flexibility of reconfiguration. In both schemes, the

parallelism in structure may be employed either for concurrency of inde-

pendent or redundant computations, for reservation of spare parts, or for

combinations of these functions.

c. Factors of Module Size and Specialization

A critical factor governing system design is the size of the

basic unit of reconfiguration. It would seem to be an unnecessarily

artificial constraint to assume that this unit should be identical to some

traditional whole-function entity, such as a central processor or a register.

Furthermore, there is no need to make such a unit identical to the contents

of a single device package, since, in a multifunction monolithic device of

the size to be expected within the next two years, discarding an entire

module because of a single faulty output would be very wasteful of reserve

logical capability.
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d. A Suggested Model

Because of the high storage capacity required for the missions

of interest, it is probably necessary to assume the continued use of

specialized memory arrays, in order to achieve high density and low power

consumption. These benefits apply both to magnetic memories and to

monolithic semiconductor memory arrays. (The latter appear increasingly

attractive for use in systems where volatility of information--i.e.,

loss of information with removal of power--is tolerable). A variety of

memory types is likely to be needed, including variable destructive-read

memories, variable nondestructive-read memories, and fixed-read memories.

In addition, a special processing memory as shown in Fig. III-A-2(c) may

be needed for some missions.

It is not clear to what extent a single structure can cover all

computational functions, but it is clear that certain basic operations

such as storage, counting, and addition occur both in processing and in

control functions. Also, there is usually substantial freedom in the

structuring of the networks that realize control functions, so that there

could be a substantial similarity in the use of basic operations. There

could therefore, be a substantial sharing in equipment; hence, an a priori

separation of processing and control functions is not justified.

Since input-output functions have very special characteristics

related to selection, formating, and buffering, a separation of input-

output functions from other system functions appears justifiable.

The above considerations are embodied in a simple model of a

parallel, reconfigurable computer illustrated in Fig. III-A-4. Sets of

storage modules of various types S1, $2, ... and, optionally, a processing

store SP are connected to X , a central exchange, by a multiple-channel
c

switch or directory network. Similarly, sets of logic modules are

connected to X by an interconnection network The sizes of the storageC

and logic modules are not specified at this point; thus, for example, a

given memory address range may cover a number of storage modules. Finally,

a number of input-output interface modules are connected by a local inter-

face exchange _ to Xc, and by a terminal exchange X T to the external terminals.
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This model is closer to a polymorphic structure than to an

iterative structure. It may be expected that iterative structures will

be advantageous for the realization of the Interconnection networks

and for other inherently iterative logical functions, due to their

simplicity of testing and reconfiguration. The model does not yet reflect

consideration of the maintenance computations. We consider these next.

e. Approaches to Structural Specialization for Maintenance

Computation

Investigations have been made (e.g., by Manning) 197 of the

extent to which a conventional computer is capable of diagnosing its

internal faults. It has been found that the fraction of self-dlagnosable

faults is high, but that there are some faults that escape diagnosis

either because the machine is blocked by the fault or because a given unit

is logically essential to its own diagnosis. For autonomous operation it

is therefore necessary to provide some equipment for the execution of the

maintenance processes (i.e., diagnosis and reconfiguration) whose operation

is not dependent upon the equipment being maintained.

144



A straightforward approach studied by Terris SoS is a system

composed of a conventional serial-process computer, employed for general

computation, in combination with a special primitive computer (called by

Terris the "master machine"), employed for diagnosing faults and switching

in spare parts within the first computer. Terris's design may be repre-

sented as in Fig. III-A-5, in which M is the master machine, PG is the

general computer processor and (SG, SM) is a single memory storing both

general program variables and the maintenance program. The general

computer accomplishes much of its own diagnosis, and the master machine

serves to diagnose and remedy failures in a few critical operations in

the general computer. The maintenance process may be considered a form

of bootstrapping.

An interesting variation on the basic idea is described by

Forbes, et al.,S4, 1 in which a single bit-parallel computer can be

partitioned into identical bit-parallel computers, each capable of serving

as a diagnosing computer, and each with its own master machine.

As the complexity of the general computer grows, the size of

the diagnostic and repair program will also grow. Furthermore, it is

desirable to give special protection to the maintenance program, to avoid

both accidental destruction of information and blockage of access to the

information by failures in the general computer. Therefore, it would seem

prudent to provide the maintenance section with its own program store,

perhaps with most of it in the form of a nonvariable memory. Such a

system is shown in Fig. III-A-6. In the figure, the various kinds of

signals exchanged by maintenance logic and general computer logic--i.e.,

error alarm, test data, response, and configuration control--are dis-

tinguished as separate channels.

In extending the scheme to polymorphic (multiprocessing)

computers, there is a choice as to whether the maintenance computer should

exist as a distinct entity, or whether the assignment of maintenance

functions to functional units should be subject to change even to the

degree of flexibility that is provided for general computational functions
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in modern polymorphic designs. A number of discussions of this idea

have appeared (e.g., Joseph) 14S and a reliability model has been studied by

Welch. S2s A sketch of such a system in terms of the polymorphic model

previously developed is given in Fig. III-A-7. A special subsystem

labeled "Referee" is provided, which has the task of assigning the main-

tenance role to a particular subcomputer. In this scheme the distinction

between storage modules for maintenance and for general computation is

preserved, but free access to all storage modules is provided to all

logic subprocessors. Separate communication between modules for computation

and for maintenance is provided by exchanges XS and XM respectively,

although it is not clear that such separation is essential.

The choice between the two approaches is not an obvious one.

Use of a special machine permits use of special measures to increase the

reliability of the very critical maintenance function, i.e., reduction of

its size (e.g., by making it highly serial) and application of high-order

redundancy fault masking. Allowing the maintenance function to "float"

among a set of identical processors has the advantages that maintenance

computations may be performed with a higher logical power than in a

primitive master machine, that a high order of redundancy is still

available for protection of maintenance control, and that the computer

has a homogeneous structure. Two design problems exist for which the

costs of solution are not presently known; these are (i) the problem of

protection against those faults within a processor that can block the

transfer of maintenance authority, and (2) the provision of intercommuni-

cation among all processors for the special diagnostic and control

information.

Future investigations of system organization should consider

how the merits of the two approaches may be realized in an integrated

structure.

f. Coordination of Information Types

It has been indicated that a self-diagnosing, reconfigurable

computer should have a very uniform structure. At the same time, the

number of information types that must be processed is very large. Some
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of these types are: instructions, operands, memory, arithmetic, control,

error indication, diagnostic tests, test responses, and configuration

control.

Special care must be taken in order to avoid a proliferation

of special codes, formats, and data paths within a computer. Avizienis 14

has indicated the benefits of uniformity of coding for transfer of operand

information among the various functional sections of a diagnosable computer.

Further work is needed to achieve uniformity among all the various types.

In addition to the problem of checking the correctness of

information transfer, there is also the problem of ascertaining that a

desired transfer did in fact occur. This may be facilitated by combining

information messages into higher-order strings, perhaps containing a

mixture of information types.

g. Problems of Subsystem Design

The novel structural features described in previous sections,

together with new constraints and freedoms associated with developments in

device technology, bring new problems of subsystem and network design.

In the next sections of this chapter several of these problems will be

explored. It may be expected that further investigations of these and other

subsystem problems will place new requirements on the overall system

structure that cannot be anticipated at this time.

Some of the important questions about subsystem structures are:

(i) In Module design: What shall be the sizes and the
functions of the various modules? How shall fault-

masking, error-detection, and fault-dlagnosis aids

be incorporated? How shall the reprogrammability

and reconfigurability of modules be accomplished?

(2) Intercommunication-network design: How shall the

network be designed so as to achieve high flexibility

and programmability? How shall fault avoidance and

fault masking be incorporated?

(3) Maintenance-control network design: How can the size

of the network be reduced, while preserving capability

for adequate bootstrapping of a complex computer? What

is the best combination of static and dynamic fault

masking to apply within the network?
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B. Tests for Diagnosis of Fault Conditions

I. Introduction

A high degree of equipment reconfigurability implies the availability

of accurate information as to the actual functional capability of the

equipment. In ground-based computers, maintenance procedures may be

conducted by intelligent technicians equipped with catalogs of fault

syndromes, and capable of probing the structure of the computer at a

great number of points. The spaceborne missions of interest to NASA may he

manned or unmanned, and some useful communications with Earth may or may

not exist. In all of these cases some autonomous on-board capability for

the diagnosis of faults is either essential or extremely helpful, because

of limited accessibility to test-points or because of a shortage of time.

Limitations in storage capacity and accessibility in a spaceborne computer

put high requirements on the completeness and efficiency of test schedules.

Unfortunately, the test procedures that can be designed with present

knowledge cannot be considered adequate.

In this section, the problems of designing test schedules for

fault diagnosis will be considered in some detail. In parts III-B-2 and

III-B-3, tests for combinational networks are considered, in which the

choice of successive tests is unconditional or conditional on the responses

to test inputs. A number of new results are included. In part III-B-3,

the present state of the art of diagnosis is assessed and directions for

further development are suggested.

2. Fault Diagnosis in Combinational Circuits Using Fixed Test
Schedules

a. Introduction

To determine whether a network of digital-logic and storage

elements is working properly, one may apply to the network all possible

input combinations and sequences, and compare the resultant outputs with

the corresponding correct outputs--using, for example, a faultless version

of the same network. Any discrepancies indicate the presence of a fault.
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Moreover, if the user is armed with a table showing which faults give

rise to which patterns of discrepancies, he can readily distinguish

any fault from the others--at least within a subset whose effects on

the network output are identical. This procedure is perfectly valid for

all types of digital networks--combinational and sequential, single and

multiple output, gate-type and branch-type, binary and nonbinary, etc.--

and all families of faults which have a more or less permanent effect

on the behavior of the network.

Such exhaustive tests as these are usually much too long to be

practical, however, and except for a few exceptional cases they are not

at all necessary. It is normally possible to test a network for the

presence or the presence and location of faults, by a schedule of tests

which is shorter by one to several orders of magnitude than an exhaustive

test.

In this part we consider the problem of devising economical

test schedules for the diagnosis of fixed (i.e.,nontransient) faults in

an arbitrary combinational switching network. By "diagnosis" we mean to

include the three separate cases when (a) any of a prescribed list of

faults is to be merely detected, (b) the particular fault is to be located--

that is, we are to determine which fault has occurred--and (c) the fault

is located, but only to within the module (package on subnetwork) in

which it occurred.

After defining these three minimization problems in mathematical

terms, we proceed to a formal solution of each, for the case where it is

assumed that the test schedule is flxed--that is, when the choice of the

succession of test inputs which are applied to the network does not depend

in any way upon the outcome of the tests. It is then shown (Part 3) that

shorter test schedules can be expected for fault location when this

assumption is not made--that is, when the choice of which test input to

apply at each step in the testing is allowed to depend upon the outcomes

of previous tests. A solution is offered for this case of serial testing.

In describing these solutions, principal attention is given to single-

output, binary networks; extension to the multloutput case is not difficult,

and is described later. Nonbinary networks can also be handled easily.
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The fixed-schedule solutions offered here may be considered

to be satisfactory for derivation on a digital computer, for any

combinational network having up to eight or ten inputs, several outputs,

and about i00 faults. While some much larger networks can also be

handled, procedures are presently lacking for generating even reasonably

good test schedules for very large arbitrary networks. It is this

remaining problem, as well as the problem of fault diagnosis in sequential

networks, which may be considered to be the most important subjects for

further research in this area. For a discussion of this problem, see

Sec. II-A-3.

Most of the procedures to be described below are contained

in the literature, but in a context having nothing to do with fault

diagnosis. Consequently, the pertinent parts of them have been collected

here, using a common notation and viewpoint with some original extensions

and evaluations•

b. Formulation of the Problem

Given a single-output combinational network, there is no

conceptual difficulty in imagining that an analysis of it has been con-

ducted, in order to determine the effect on its output of each of various

hypothetical faults. The results of such an analysis may be expressed

in a multi-output table of combinations such as the one below•

Xn "'" x2 Xl f fl f2 "'" fj "'"

0 ... 0 0

0 ... 0 1

0 ... I 0

1 ... 1 1

0 1

1 1

0 1

0 0

0 .,, 0 ,i.

0 ... 0 ...

0 ... 1 ...

0 .o.
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The Xl, x2, ... Xn are the input variables to the network; f = f(x I,

x2, ... Xn) is the fault-free (correct) output; and fl' f2' "''fj " "
are the erroneous outputs, each corresponding to one of the possible faults

which the desired diagnosis schedule is supposed to check. The left side
of the table simply lists all 2n possible combinations of the input

variables. Note that no assumptions have (yet) been madeabout the nature

of the faults--whether they are due to isolated or multiple component

failures, to open or short-circuited devices or conductors, to short cir-

cuits betweenseparate parts of the network, or to either sudden failure

or slow degradation.

It will be convenient to reduce this table somewhat before

stating the problem formally, as follows.

(I) Suppose some column fj is identical to column f. This

indicates that the jth fault has no effect on the net-

work output, so that there is no way--and in fact, no

need--to detect its occurrence. The column fj may

therefore be deleted from the table. This type of

condition can occur either if the network is redundant

or if certain of the faults cause local logical changes

which leave the output the same.

(2) Suppose that two columns fj and fk are identical. This
indicates that two different faults have the same effect

on the network output, and for purposes of detection and

location they must be treated together. One of the two

columns may therefore be deleted from the table. It is

easy to imagine how this condition could arise in practice.

After any such deletions, all of the columns f = fo' fl'

f2' "'" fm (say, for _ distinguishable faults) will be different. We

may collect these m + 1 columns into a 2n-row binary fault matrix or

fault table F:

F

-0

i

= 0

0

1 0 ...

1 0 ...

1 0 ...

0 0 .,•
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If a fixed schedule of input tests is to be employed to check

a possibly faulty network, we are interested in economizing on the number

of different test inputs--i.e., the length--of such a test. The problem

is therefore one of selecting a minimal subset of rows of the matrix F

that preserves a certaindegree of distinguishability among the columns.

More precisely, for the detection of the presence of any of the m faults,

we want to delete from F as many rows as possible, so that:

The first column is different from all other columns.

For the location (as well as the detection) of the m faults, we want to

delete from F as many rows as possible so that:

Every column is different from every other column.

Finally, a third minimization problem of interest arises from

the common situation in which the faults are classed according to the

module, package, or subnetwork in which they occur. Thus, if it is

desired to locate a fault (column of F) only to within its preassigned

module class, we want to delete from F as many rows as possible so that:

Every two columns which fall in different module classes

are different.*

For this condition, the f column should he treated as belonging to a

separate module class.

These three problems of fault detection, fault location, and

fault location-to-within-modules correspond conceptually to the problems

of error detection, error correction, and error location, respectively,

in error-checking codes. Unfortunately, this appears to be about as far

as this analogy can be carried.

One assumption must be made about the nature of the faults if a

test schedule is to have meaning: we must assume that any fault which is

to be detected or located has a duration in the network which is no less

* If columns fj and f. in simplification (2! above fall in separatemodule classes, neither should be deleted but this requirement should

then be relaxed to exclude this particular column pair.
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than the interval of time over which the pertinent test inputs are applied•

In practice, this meansthat the diagnostic methods described here are
limited to fixed (i.e., permanent and semipermanent) faults. Someother

meansmust be employed to protect the network against the effects of

any transient or intermittent faults which are deemedlikely to occur.

c. Formal Solution Using the G-matrix

We now show how the fault-detection problem and both fault

location problems may be converted to familiar switching minimization

problems•

Since it is only the distinguishability of certain columns of F

which is at stake, we may conveniently express the distinctness condition

in terms of a matrix G, each of whose columns is the modulo-2 sum of a

different pair of columns of F that are supposed to remain different.

That is, considering the same row of both F and G, a 1 is entered in the

column of G labeled with the pair (i, j) if the digits in the two columns

of F labeled f. and f. are different, and O otherwise. Under deletion
1 j

of corresponding rows of F and G, two columns of F will then remain

distinct if and only if the corresponding single column of G does not

become a column of all O's• Thus, the three conditions on F stated in

the last section for fault detection, location, and location to within

modules may be expressed as a single condition on the G-matrix; namely:

Delete from G as many rows as possible, so that_condJtion X
every column is non-zero J

In the case of fault detection, the G-matrix (GD, say) has

just m columns, one for each column pair (So, _) in F (j = 1, 2, .. m).

For the example used above, we have

GD =

01 02.. Om

-1 0 ... -

0 1 ...

I 0 ...

o

0 0 ...
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For fault location, the matrix G L has (m + 12 ) columns, one for

each column pair (fi' fj) in F (i, j = O, i, 2, .. m; i _ j):

G L

010212 m-l,m

-I01...

011...

101...

000 ...

In similar fashion, the matrix G M for fault location to within

modules is of intermediate width, having one column for each pair of

columns in F which belong to different module classes•

Condition X expresses precisely the problem of finding a

minimal prime-implicant cover of a given switching function from its

prime-implicant table. 246 Good solutions to this problem are well known,

and have been programmed for execution on computers for quite large

tables.254, 1°5,44 We describe here a version of this procedure which

is adequate for solving only simple problems by hand, but which never-

theless illustrates well the two main steps in all of the programmed

algorithms:

(a) Simplification of the table to delete certain superfluous

rows and columns

(b) Final selection of one or more minimal row subsets from

the residual table. 2°6

The justification of the following simplifications (a) is

fairly obvious:

(i) Delete any row whose l's all fail in the same columns as

the l's in some other row. That is, delete any row which

is covered by, or is the same as, some other row.

(2) Delete any column which has l's in all of the rows in

which another column has l's. That is, delete any column

which covers, or is the same as, some other column.
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These steps may be applied in any order until neither is

applicable. The resultant matrix (G*, say) has distinct rows and distinct

columns; also, no row covers another row, and no column covers another

column.

The selection (b) of a minimal row subset S is made by first

labeling the rows of the simplified matrix _ with binary variables a,

b, c, ... each of which is to have the value 1 if its row is to be in-

cluded in S, otherwise O. We now form a Boolean function L(G @) as a

product of sums, one sum per column of G*, such that each sum contains

just those row variables assigned to rows in which the corresponding

column of G @ has l's. The function L(G @) will therefore have the value

1 when and only when a sufficient subset of row variables a, b, c, ...

have the value 1--namely, when every column of G* is represented.

Expansion of this product of sums into a sum of products then

expresses as individual products all of the alternative row subsets which

satisfy the column condition. This allows one to select for S any one of

the products which has the least number of variables.

As an example, consider the following matrix for n = 3, m = 7:

0 1 2 3 4 5 6

-0 1 0 1 1 0 1

1 1 0 0 0 0 1

0 1 0 1 0 1 0

0 0 0 i 0 1 1

1 0 1 1 1 1 1

1 1 0 0 1 0 0

0 0 0 0 i 1 1

0 0 0 1 1 1 0

7

f a

0 b

1 c

1 d

1 e

0 f

1 g

0_ h
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For fault detection we list the column sums (modulo 2) for the seven

column pairs (0,1), (0,2), ... (0,7), to get

1 2 3 4 5 6 7

-1 0 1 1 0 1 1-

0 1 1 1 1 0 1

1 0 1 0 1 0 1

0 0 1 0 1 1 1

1 0 0 0 0 0 0

0 1 1 0 1 1 1

0 0 0 1 1 1 1

_0 0 1 1 1 0 0_

a

b

c

d

e

f

g

h

The simplification step (I) first allows deletion of rows d and _, which

are covered by rows f and a, respectively; then columns 3, 5, and 7, which

cover column 2, may also be deleted by simplification step (2). This

leaves:

-i 0 i i- a

0 1 i 0 b

i 0 0 0 c

0 i 0 I f

0 0 I i g

0 0 1 0 h

Rows _, g, and h (covered by row _), then the last two columns, may also

be eliminated:

b = f
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With the rows labeled as indicated, we obtain simply

L(G ) a (b v f)

= ab v af

One minimal set S therefore consists of rows a and b. The minimal

F-matrix is just

FDmin =
0 I 0 i I 0 i i

1 I 0 0 0 0 i 0

and the list of input tests to be applied is simply

x 3 x 2 x 1

a 0 0 0

b 0 0 1 .

For fault location, we sum all possible column pairs of F. The

same example of an F-matrix yields the following G-matrix:

GL =

Ol 0203 ...071213 ... ... 565767

-1 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0-

0 1 1 I 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 I 0 I

1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1

0 0 i 0 1 1 i 0 1 0 1 1 i 1 0 1 1 1 I 0 0 0 1 1 1 0 0 0

1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0

158



Using first the columns of lowest weight, most of the other columns may be

deleted. Then rows d and e may be eliminated to give:

-i 0 0 1 0 0 1 0-

0 1 0 0 0 0 0 1

1 0 1 0 0 1 0 1

0 1 1 0 0 1 0 0

0 0 1 1 1 0 0 0

_0 0 0 0 1 1 1 0

a

b

c

f

g

h

Thus,

L(G_) = (avc)(bv f)(cv fvg)(avg)(gvh)(cv fvh)(_vh)(bvc)

= (_ v cgh)(b v fc)(c v f v gh)(g v h)

= abcg v abch v abgh v ...

A minimal subset S of input tests for fault location therefore consists

of rows a, b, c, and g. The minimal F-matrix is therefore:

1 0 1 1 0 1 1

1 0 0 0 0 1 0

1 0 1 0 1 0 1

0 0 0 1 1 1 1

which corresponds to the schedule of test inputs:

x 3 x 2 x 1

a 0 0 0

b 0 0 1

c 0 1 0

g 1 1 0 .

Both McCluskey 2°s and Gill *°4 have provided solutions to the

fault-location problem, in the course of solving a seemingly unrelated

problem in pattern recognition. The solution described above follows

that of McCluskey. Gill's procedure is recursive. He shows how to
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generate all possible solution subsets of rows of F for the first k

columns only, from a listing of all such subsets for the first k-i

columns. (Nonminimal subsets are included, but any subset which contains

another is not listed.) The list for k = 2 is easily formed by inspection,

and the procedure is repeated successively for k = 3, 4, ... m + I. The

method involves a tremendous amount of bookkeeping, even for small problems,

and cannot be considered to be very practical for present purposes.

For location of faults to within module classes, suppose that in

the above F-matrix faults I, 2, and 3 are associated with the same module,

as are faults 4, 5, 6, and 7. The G-matrlx for this case (GM, say) is

therefore the same as GL, except that certain columns representing pairs

of faults within the same module need not be included: (12), (13), (23),

(45), .. (67). This leaves a narrower G-matrix:

010203 ... 3637

G M = 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0

0 1 1 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0

1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0

1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 .

After one cycle of column and row deletions, we obtain the matrix

1 0 0 1 0

1 0 1 0 0

0 1 1 0 0

0 0 1 1 1

Subsequent simplifications yield

@ =
G M

1 0 0

0 1 0

0 0 1

a = c

f

g
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Hence

Thus, a minimal F-matrix is

FMmin = 0

I

0

and a minimal test schedule is

= (a v c)fg

= afg v cfg

1 0 1 1 0 1 1

1 0 0 1 0 0 0

0 0 0 1 1 1 1

x 3 x 2 x 1

a 0 0 0

f 1 0 1

g 1 1 0.

It should also be pointed out that the procedure described

above involving the G-matrix can also he applied to a fourth problem in

fault diagnosis--namely, the problem of testing for the presence of one

particular fault (with output fk' say) which one might suspect to have

occurred, it being already known that some fault has occurred. 41 In

this case it is only necessary to form G from those column pairs (i,k),

i = I, 2, .. k - 1, k + 1, .. m. The matrix G will then have m - I

columns. This situation is identical to fault detection, except that

attention is focused on column k instead of column 0 of F.

^
d. Simplified Solution Using the W-Matrix for Fault Location

The above example seems to be typical of most fault-location

problems, in that considerable simplifications can be made in the matrix

G. This is to say that the distinctness of most of the column pairs in

F is taken care of automatically, if only a certain smaller subset of

column pairs can be guaranteed to be distinct. One way to identify
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these critical column pairs is to display the weights (number of l's)

of the columns of G in the (m + l)-by-(m + I) matrix

W = FtF,

in which F t indicates the transpose of F and matrix multiplication is

carried out with exclusive-OR (modulo-2) addition used in place of

element multiplication. Each off-diagonal entry w. of W is therefore
13

the number of l's in that column of G corresponding to column pair (i,j)

in F. (The matrix is symmetric, so only the upper triangle of entries

need be calculated.)

For the running example, this W-matrix takes the form

W -3264645

-555755

-44444

-4242

-444

-42

-2

The column pairs corresponding to low-weight entries in W are certainly

good candidates for the subset of critical column pairs for G _. Inspec-

tion of F now allows many of the noncritical column pairs to be excluded

from further consideration; this exclusion may be conveniently indicated

by simply deleting the corresponding entries in the W-matrix. In this

manner, the formation of the G-matrix may be postponed until its width

has been reduced well below the large value of (m + 1 1 columns.

\ 2 ]
r

As a computational convenience, it may be desired to enter

not just the number w.. of differing digit pairs between columns i and
ij

j, but the labels of the particular rows in which these columns differ.

Selection of an entry as "critical" then allows one to delete immediately

by inspection all other entries which contain the same row labels.
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For the example, this labeled W-matrix (_, let us say) becomes

^
W ace bf

- abcef
m

abcdfh abgh bcdfgh adfg abcdfg

bdefh bcegh abdefgh cdefg bdefg

acdh afgh cdgh abdg acdg

- cdfg ag bcgh gh

- acdf bdfh cdfh

- abch ah

- bc

(The compact listing of row labels in each entry is not meant to have

any significance as a product.) Selection of the shortest entries bf,

ag, gh, ah, and bc as critical now permits numerous deletions, leaving:

^
W = ace bf _ -

m

- cdfg

D

m

- cdefg -

ag - gh

acdf - cdfh

- - ah

- bc

Similarly, entry cdefg may be deleted, since it includes entry cdfg.

A deletable row of G (like _ or 2) is readily identified in W as a letter

which always occurs along with some other letter; such letters may be

removed:

^
W = ac
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+_ may now be formed from the remaining entries in _. Actually,
GL

however, it is easier to write down L(G_) directly from _, bypassing the

formation of G_:

a:, before.

T,(c_) = (a v c) (by f) (c v fvg) .. (by c)

= abcg v abch v ...

If faults within the same module class need not be distinguished,

^
the'_ large blocks of entries in W may be deleted (or simply not calculated)

r2ght at the start:

--- . ace bf abcdfh "abgh bcdfgh adfg abcdfg
,o,..,,,,,,+,+,,++.+,,elll,+.lllll,+l+ll,+l,+l+,l,ll

- - - bcegh abdefgh cdefg bdefg

- - "afgh cdgh abdg acdg

- :cdfg ag bcgh gh
.l+,.+.+l+e•.++lll,,.*.,+.el,i++l

^
W =

Selection of the shortest entries bf, ag, and gh as potentially critical

now yields

= ace bf ..... --

- - cdefg -

- cdfg sg - gh
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Entry cdefg still includes entry cdfg and may be deleted. Also row

labels b, d, e, and h may be deleted, since these letters always occur

with letters f, c, a, and g, respectively.

^
W = - ac f -- --

- cfg

This yields

ag - g

Hence

L(G_) = (a v c) f (c v f v g) (a v g) g

= fg (a v c)

= afg v cfg.

Chang 4° recognized the importance of the problem of fault

location to within modules problem, and offered a solution which he

claims "tends to give a 'fairly good' set of test patterns." He does

not prove this assertion, however. His method will be sketched in the

next part of this section, since it appears to be more successful when

adapted to serial test schedules than when used for fixed test schedules,

as originally proposed.

e. Some Bounds on the Number of Tests Required

Let N D, NL, and N M be the number of test inputs in the minimal

solution subset S, for the cases of detection, location, and location-

to-within-module-class, respectively. A tight upper bound *°4 on all

three of these quantities is provided by a particular case of the matrix

F--namely, the case when all columns of weight zero and one are present.

Thus, F is just an identity matrix of order m, bordered by a single

column of O's:
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F = FO 1

0 0

0 0

0 0

0 0 0 . . .

1 0 0 .

0 1 0 . .

0 o 0

o-

0

0

1 .

It is easily seen that no rows may be deleted without leaving a resultant

matrix in which some column is the same as the first column• Moreover,

the presence of even one additional new row in the matrix would allow at

least one row to be deleted. Thus we have

ND._< m, NL_.< m, NM_< m •

Tight lower bounds may be obtained as follows. For the case

of fault detection, the possible presence of a row such as

(0 I 1 1 ... 1 i) in F immediately yields

ND_ 1

For fault location, *°4 the most favorable case arises when F contains a

subset of rows which constitute a binary coding of the columns. NL

such rows can generate as many as 2 NL different columns, so

NL _> 1 + [log 2 (m)]

where the brackets denote the integer part of the quantity within.

Finally, location of a fault to within one of p module classes requires

only that each module class have a distinct column coding; all columns

in one class may be alike. Thus,

i + [iog2 (p)] .
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Our experience with examples of random matrices tends to

indicate that actual minimal test-schedule lengths fall closer to the

lower than the upper bound. Whether or not these samples of matrices

are truly representative of the patterns of faults in typical switching

circuits is another, more difficult question.

f. Reductions in the Size of the Fault Table

In order to be able to handle networks of a practical size,

it would be very desirable to reduce the width and height of the original

fault table (F-matrix) below the values m + 1 and 2 n, respectively. We

now show how some reductions can be made for the case of fault detection

at a cost whose exact value is not presently known, though felt to be

small.

If both the width and the height of the fault table are to be

reduced appreciably, some sort of analysis of the internal structure of

the network will be necessary. This is in contrast to the point of view

taken so far, in which the network has been viewed only from its terminals.

That is, the method used so far is one of testing the behavior of the

network for every possible input and for every possible fault. It must

be replaced by a method which asks: for which inputs will particular

faults manifest themselves at the output terminal of the network, and

(for fault detection) which other faults will have the same effect as

these faults?

The literature contains a few pertinent contributions on this

matter.246,11, 41, 192, 87 Armstrong 11 (following a suggestion of

Muller's) and Maling and Allen 192 propose approaches which, taken

together, suggest that one may check for a fault in a single gate within

the network by (a) applying those network inputs which will "sensitize'

to signal changes the complete path from the gate in question to the

network output (see Fig. III-B-I), and then (b) flex the remaining input

variables through whatever sequence of combinations of values is

necessary to check the proper operation of the gate. For most common

types of gates the number of such combinations is just one more than
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FIG. Ill-B-1 PATH-SENSITIZING TESTS IN GATE NETWORKS

the number n of free inputs at a particular gate; with more complex

gate circuitry it may become as large as 2ng, the total number o£ input

possibilities for the gate. ls2 The complete test schedule for fault

detection therefore consists of the union of these individual gate tests,

taken over all gates which have one or more inputs driven by network

input variables.* (Purely internal gates are checked automatically.)

Any duplicate test inputs may be deleted, of course.

For example, for the size comparison cell in Figure III-B-l(b),

the following test schedule is obtained:

a b c

Gate AI 0 0

1 0

Gate O 1 1 1

0 1

f0 1 0
Gate A 0 1 1

* Actually, this procedure must be modified somewhat for those gates

whose fanout exceeds unity, in order to cover all of the multiple

paths to the network output. See the Appendix to Armstrong's paper.
11
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For the first three tests, the path through gates A1 and 02 is

sensitized by setting c = 0. Gate A 1 is tested by applying inputs

a = b = 1, to give an output 1, then a = l, b = 0, followed by a = 0,

b = l, which should give an output 0. (In a conventional AND-gate,

there is no need to apply the input a = b = O, since there is no

reasonable way the circuit could fail so as to make it behave like an

inequivalence gate.) For the second group of three tests, the path

through gates O1, A2, and 0 2 is sensitized, by setting c = I and holding

ab = 0. Gate O 1 is then flexed with input combinations a = b = 0;

a = 1, b = 0; and a = 0, b = 1. Finally, the last two tests (which

happen to be duplicates of prior tests) arise from the flexing of gate

A 2 by means of its free input c, having set ab = 0 and a + b = 1 to sen-

sitize the path from A2 to 0 2 . Thus, six different test inputs are

required in the schedule. This may be shown to be the minimum number for

this example, by the procedure described earlier in this memorandum.

Actually, Armstrong assumed an even simpler set of fault

conditions in describing his proposed method--namely, that the only

failures which can occur are those which result in a gate output being

"stuck( at 0 or 1, for all possible gate inputs. For this case, each

gate may be tested by applying only two tests, one of which tends to

make the gate output 0, and the other of which tends to make it 1.

All gates along the sensitized path are then checked automatically;

therefore, the procedure need be applied only to those gates whose

inputs are all network input variables. As a result, the derivation of

a test schedule is simplified considerably.

For the above example, all single "stuck at" faults may be

readily detected with just four test inputs, corresponding to the flexing

of gates A1 and O1, each with its own path to the network output

sensitized:

a b c

A1 I1 1 01 0 0

0 0 iOl 0 i I .
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Depending upon the network form, there may be a degree of

arbitrariness in the selection of the input-variable combinations

which are used to sensitize a particular path or to test a particular

gate. The length of the overall test will in general depend upon these

choices made for each path and each gate, since they will determine the

extent of duplication of test inputs in the formation of the schedule.

Armstrong 11 gives an algebraic procedure aimed at increasing the number

of duplicates. At worst, however, one may proceed by listing the

alternative tests which are valid for each path and each gate, and

then making desirable selections from this list when the complete

schedule (with multiple choices) has been compiled.

To summarize, the path sensitization method introduced by

Armstrong provides a means for generating a test schedule for fault

detection directly from the network, thereby bypassing the formation

and manipulation of the fault table itself. The method appears to be

an efficient one, although it is not guaranteed to lead to a minimal

test schedule.

For fault location and fault location to within modules, no

satisfactory procedure exists. Armstrong's procedure might be augmented

to allow one to go back and include additional gate-input combinations

that may be necessary to distinguish otherwise identical faulty outputs.

However, what is most needed for fault location is a condition for the

sufficiency of a trial test schedule, to be certain that all pairs of

possible faults are indeed distinguishable on the basis of their output

patterns. This problem remains unsolved.

Galey, Norby, and Roth 87 have also proposed a method for

deriving a test schedule for the case of fault detection, again based

upon analysis of the network structure. Their algorithm is similar to

but longer than Armstrong's, but is probably better suited for execution

as a computer program. Again, it generates the test schedule directly,

without the necessity of deriving the fault table first, and may be

extendable to fault location.
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g. Implementation of the Test Schedule

After a test schedule has been derived by one of the methods

discussed above, it is necessary to arrange for it to be applied on

demand to a network under test. In addition, the results of the test

must be condensed into a form suitable for evaluation and for trans-

mittal either to a human or to an automatic switchover mechanism, in

order that the appropriate repair action can be initiated. These

tasks which precede the actual repair can be assumed to be performed by

a device which we will call a diagnoser, as shown in Fig. III-B-2. The

diagnoser can be realized in the form of either a special digital circuit

or a computer program, and it may be locai_d either physically adjacent

to the network (i.e., in a spacecraft) or remote from the network (e.g.,

on the ground).

When the diagnoser is in the form of a circuit, it is composed

of an autonomous sequence generator, which produces in sequence at its

output each test input in the test schedule. For the case of detection,

it also produces with each test input the corresponding correct network

output. This output is applied to a comparator, that checks the actual

network output against the correct output, noting any disageements.

The sequence of comparator outputs is then merely "OR-ed" together, by

applying it to a flip-flop (for example), the result of which is then

available for repair purposes. For fault location, the sequence of

network outputs must be decoded in accordance with the columns of Fmin,

in order to determine which fault has occurred. For human repair, and

SEQUENCE
GENERATOF

_ NETWORK t

S_" ERROR"

(O) FAULT DETECTION

SEQUENCE
GENERATOR

NETWORK

(b) FAULT LOCATION
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...._ OK
,--_1
"_2

DECODER o
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if time permits, a code book is probably the simplest way of decoding.

Otherwise, a special decoder network must be constructed.

In any case, the specifications on the special circuitry needed

can be precisely stated:

Sequence generator:

Given: A list of test inputs for the network under test,

and (for fault detection) the corresponding out-

puts. This is just a truth table for the function

f, with rows deleted in correspondence with the

minimization of the matrix F, as described in the

preceding sections. This list has N rows (where

N = ND, NL, or NM) and n or n + 1 columns.

Synthesize: An economical, autonomous sequential network

which produces at its n or n + 1 outputs the rows

of the given list, in any convenient order.*

Decoder:

Given: The minimum F-matrix, Fmin, with the rows ordered

in accordance with the row permutation used in the

design of the sequence generator.

Synthesize: An economical single-lnput sequential net-

work which produces a 1 at a unique one of its

m + i outputs, for each N-digit input sequence

which appears as a column of Fmin. Other possible

input sequences of the same length may be treated

as "don't cares."

Both of these circuits are assumed to start from a unique starting

state, which implies some means of reset to this state, and will probably

require a synchronizing clock when incorporated into the rest of the

system.

In view of the stringent reliability requirements on the

diagnoser, one might seriously consider realizing it with multiaperture

magnetic devices. These devices are also naturally well suited for

sequence generation and decoding operations.

@ Goldberg suggests generating first all the set of inputs which corres-

pond to f = O, followed by the set of inputs for which f = I (for

fault detection).
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When the diagnoser is to be realized as a computer program,

the operations of sequence generation and decoding are described by flow

charts, and the design and execution of the program present no difficulty.

The process of sequence generation is no more than the successive

retrieval from memory of N binary words of length n or n + I. The flow

chart for the decoding is a N-level decision tree, having 2, m + i, or

p + 1 outputs for fault detection, fault location, and fault location to

within modules, respectively. The decision trees for these three cases

are illustrated in Fig. III-B-3 for the running example.

While one could probably not justify a spaceborne computer

solely for the purpose of fault diagnosis, the fact that a computer

may be available anyway, and the flexibility it offers for diagnosing

a large number of different networks, makes it an attractive solution.

h. Tests for Multiple-Output Networks

If the network for which a test schedule is being determined

has q (>i) outputs instead of a single output, the problem-formulation

and solution procedures described above remain essentially the same but

are modified in detail, as follows.

(i) The entries in the fj-columns of the fault table

F, as well as in the entire F-matrix, are q-digit

binary numbers instead of single binary digits.

(2) Two columns of the fault table should be considered

to be identical when and only when all of the

corresponding q-digit entries are exactly the same.

TO 7

5 o

0

0 0 O 0 0

3 I I

(b) Cc)

4,5,6,7

(o) TH_,o-7o

FIG. Ill-B-3 DECISION TREES FOR FAULT LOCATION
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(3) The matrix G should have only single-binary-digit

entries, according to the rule: if two multidigit

entries in the same row of F differ in any of their

digits, then the corresponding entry in G for these

two columns is a I; otherwise it is a 0. This rule

is a direct reflection of the fact that a fault may

be detected on any one or more of the q network

outputs. The rest of the minimization procedure

is carried out on G just as for the single-output

case. Note that since the matrix G now usually

has a greater number of l's in it, the length N of

the test schedule can be expected to be smaller,

assuming that the other parameters remain the same.

Similarly, in forming W = FtF, element multiplica-

tion is defined to produce a 1 when and only when

the q-digit elements are different in any digit.

(Clearly, this reduces to exclusive-_R when the

entries are single-digit numbers.) W is defined

as previously.

(4) The Armstrong path-sensitizing procedure remains

unchanged, so long as it is kept in mind that a

path to any one or more of the q outputs is

adequate to render a fault conspicuous.

(5) The sequence generator for fault detection now

has n + q instead of n + 1 outputs, the decoder

has q-inputs, and the number of exclusive-OR

gates in the comparator is q instead of one.

Similar increases apply to the realization of

the diagnoser as a computer program.

It should also be pointed out that one possibility for reducing

the length of a test schedule is the extraction of one or more selected

nodes of the network as test points, which are then treated as separate

outputs as far as the diagnosis is concerned. The key problem here is

the selection of those circuit nodes which will result in the greatest

reduction in the length of the test schedule for a given network. This

and other problems worthy of further investigation are listed at the end

of the next part of this section.
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3. Fault Diagnosis in Combinational Circuits Using Serial Test

Schedules

a. Introduction

The preceding part of this section presented a statement of the

fault-diagnosis problem for combinational switching networks, and solutions

for the most important cases when the test schedule is fixed.

We offer here corresponding solutions for the same cases when

the test schedule is serial--that is, when the selection of successive

tests depends upon the outcomes of previous tests in the schedule. In

particular, we show that by using a serial test schedule there is nothing

to be gained for fault detection, but for fault location and fault

location to within modules the possible reductions in test-schedule length

are substantial. A solution procedure is given which is easy to carry

out and is reasonably effective, although it does not necessarily lead

to a test whose length is absolutely minimal. Bounds on the length of

the test schedule are derived. Finally, the principal problems remaining

for further research are itemized.

It may be observed that the test schedules derived in the pre-

ceding part of this section are completely independent of the outcome

of the individual tests in the sequence; moreover, the length of the

schedule is independent of the order in which the tests are performed.

It is quite conceivable, however, that after the first test input of

a schedule has been applied and the output noted, the residual test

schedule which is minimal with respect to a 0 output is not the same as

that which is minimal with respect to a 1 output. Similarly, after two

test inputs have been applied, the four partial test schedules which

should follow may be all different in content and length; and so on for

successive test inputs. We consider here the economies to be achieved

by choosing each test input to be applied to the network on the basis

of the outcomes of all previous tests in the schedule.

Solutions to this problem for the three cases of fault

diagnosis, fault location, and fault location to within modules are

best represented in the form of decision graphs, such as were used to
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describe the f_xed-schedule solutions in the preceding part; see for

example Fig. III-B-3. For serial schedules, however, the row labels

a, b, c, ... which are attached to the nodes of these graphs are no

longer restricted to be identical over all of the nodes in the same

level of the graph. The serial solutions which will be derived below

for this same example are shown in Fig. III-B-4. It may be seen in

Fig. III-B-4(b) that for fault location a shorter schedule results

than was required in Fig. III-B-S(b). However, one now needs to know

in which way the first test (g) turned out before the second test

(f or h) can be applied.

The minimization of decision graphs of this type has been

considered by Lee 17s and by Short. 2s3,2s4 Short showed that the problem

is equivalent to the minimization of an important family of transfer-

contact networks called disjunctive and exhaustive networks. The

transfer-contact networks corresponding to the solutions shown in Fig.

III-B-4 are given in Fig. III-B-5 in the same order. The direct graphical

correspondence can be readily seen. While this analogy is useful

theoretically and in a few specific problems, good general procedures

are unfortunately lacking for obtaining absolutely minimal networks

of this type.

Nevertheless, several methods are known for deriving economical

networks which sometimes turn out to be minimal. All of these methods

consist of a successive selection of the node labels of the decision

graph (row labels of the fault table), working from left to right.

After selection of the left node label on the basis of some criterion,

the O's and l's in the corresponding row of the fault table effectively

separate the table into two subtables, each of which corresponds to one

of the two subgraphs (subtrees) to the right of the leftmost node in the

decision graph. Each of these two subtables may now be attacked indepen-

dently by exactly the same selection and reduction process to generate

four smaller subtables (subtrees), and so on. The only difficult aspect

of this method is the particular criterion employed to select at each

step that row of F which ultimately causes this iterative procedure to

terminate after a minimal (or reasonably small) number of steps.
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Further discussion of this method, as well as examples, will

be taken up separately for fault detection, fault location, and fault

location-to-within-modules.

Serial fault location was first proposed by Brule et al., 34

under some rather restrictive assumptions, and without giving any pro-

cedure for deriving a test schedule for a given network.

b. Fault Detection

The problem in fault detection is one of choosing a minimal

subset of rows of F to distinguish the first column from all others.

Thus, each step of the procedure results not in two but in only one

residual subtable (subtree). Consequently, there is no advantage to

be gained by performing the tests in any particular order, and the

fixed-schedule solution having ND tests is also optimal with respect

to the minimal number %D of levels required. In fact, %D = ND"

Thus, serial testing offers no improvement over fixed-schedule

testing for fault detection, and the same decision graph _Fig. III-B-3(a)

and Fig. III-B-4(a)] solves both problems.

c. Fault Location

One way to select the appropriate row label at each step of

the procedure is to try all possible remaining row labels. For even a

small fault table, however, the total number of possible graph labelings

which need to be tried to determine the minimal number of levels is

astronomical. This approach is therefore impractical.

Sindeev 2s7 and Chang 4° employ two different criteria for

selection of successive row labels of the decision graph for the

fixed-schedule case. Their methods can also be applied to the individual

steps in serial testing, however, and in this case yield exactly the

same results. This extension of the Sindeev and Chang methods proceeds

as follows.
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Let the numbers of O's and l's in row i of a fault table or

subtable be Wio and Wil , respectively. Sindeev proposes the selection

of that row _ which maximizes the amount of information (in an information-

theoretic sense) which is gained by that row decision regarding the

particular column which was "transmitted:"

J = -Po l°g2 (Po) - h l°g2 (Pl)

where PO = Wio/W' Pl = Wil/W' and w = Wio + Wil. Manipulation of this

expression for J reveals that its maximization is equivalent to minimiz-

ing the expression

(Wio)wiO Wil(Wil)

Chang, on the other hand, suggests the selection of that row i which

maximizes the number of (0, 1) pairs between digits in that row--that is,

which maximizes the expression (WioWil) .

These two quantities in parentheses are simultaneously optimized by

selecting that row which has the most nearly equal distribution of O's

and l's; that is, that row (or one of the subset of rows) for which

[Wio - Wil[ is minimal.

The use of this criterion appears to work very well for most

problems. Applied to the F-matrix used as a running example in the

first part of this section, namely

F= -0 i

i I 0

0 i 0

0 0 0

I 0 1

1 i 0

0 0 0

0 0 0

0 1

0

1

1

1

0

0

1

1 0 1 I- a

0 0 1 0 b

0 1 0 1 c

0 1 1 1 d

1 i 1 1 e

1 0 0 0 f

I 1 1 1 g

1 i 0 0 h
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any one of the rows c, d, or g should be chosen first, since these rows

have Wio - Wil = O. Selection of row g yields the two submatrices:

F
0

= -0

1

0

0

I

1

0

1o a1 0 b

1 0 c

0 0 I d

0 1 _]1 e
1 0 f

0 0 h

F

1
-1 0 1 1-

0 0 1 0

0 1 0 1

0 1 1 1

1 1 1 1

1 0 0 0

1 1 0 0

For the second step, one of the rows a, b, c or f should be selected

from F0, and one of the rows c or h from F1, since only these rows have

an equal number of 0_S and 1_s. Choosing the last alternative in each

case gives the following partitions into four smaller submatrices:

FO0 = -0 I] a FOI =.-0 I-]

00l b 1 11

0 1] c 0 i[

0 1[ d 0 _1

I 1] e I

_0 lJ h 0

FIO = 'I-I _] ba FII = '-i0 _]

0 11 c 0 11

1 II d 0 iI

1 11 e 1 11

_0 OJ f 1 Oj

For the third step, there are many possibilities, but choice of row c

serves simultaneously for all four submatrices. The resulting decision

graph is shown in Fig. III-B-4(b), and has gL = 3 levels.

Sindeev gives an example in his paper of a fault matrix with

14 rows and m = 15. His own method (which he claims to yield a minimal

number of levels in a flxed-schedule solution) applied to this example

yields a decision graph having six levels. Application of Chang's method to

to the same example yields the same fixed-schedule result, six levels.

The G-matrix method described in the preceding part of this section

yields five levels. Therefore Sindeev's method does not give a minimal

result, as he claims. Moreover, both Chang's and Sindeev's methods can

result in very long fixed schedules if the wrong choices happen to be
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made at those points in the procedures when two or more rows are

calculated to be equally desirable choices.

The risk of making such unwise choices appears to be much less

for the serial-test procedure described above. Applied to Sindeev's

example, this procedure gives a decision graph having only four levels.

d. Yault Location to Within Modules

The method described above applies with little change to the

case of fault location to within modules. Following Chang, we now modify

the criterion of row acceptance to count not all (0, 1) pairs, but only

those in each row in which the 0 and the 1 fall in different module

classes. This quantity is most easy calculated by subtracting from the

total number of (0, 1) pairs the sum of the number of (0, 1) pairs which

fall entirely within the individual classes, namely

P
R. - E w. w
I = WioWil ljO ijl

j=l

where wij 0 and wij I are the numbers of O's and l's, respectively, in the
.th
3 module class in row i. The row to be selected is the one with the

largest row count R..
1

For the running example, with the previously used column

partition (0) (123) (4567) into module classes, the row counts on the

8 rows of F are:

a: 15 - 2 - 3 = i0

b: 15 - 2 - 3 = 10

c: 16 - 2 - 2 = 12

d: 16 - 2 - 3 = 11

e: 7 - 2 = 5

f: 15 - 2 - 3 = I0

g: 16

h: 15 - 2 - 2 = 11

181



Clearly, row g should be selected first, and the same two submatrices

F 0 and F 1 as arose in the previous section result. F I falls entirely

within (and in fact covers exactl_ module class (4567), so it need

not be further decomposed. For the rows of F0, the row-count values

are:

a: 4-2=2

b: 4-2=2

c: 4-2=2

d: 3-2=1

e: 3-2=1

f: 4-2=2

h: 3-2=1

Any of a, b, c, or f should be chosen. Selecting f, only FO0 need be

further decomposed, and any of the nonconstant rows a, c, d, or h may

be used. Figure III-B-4(c) displays the resulting decision graph.

Note that the graph of Fig. III-B-4(c) could have been

obtained from the graph of Fig. III-B-4(b) by typing together outputs

1, 2, and 3, then 4, 5, 6, and 7, in accordance with the grouping of

columns into module classes, and then reducing the resulting graph

according to s well-known procedure for the simplification of transfer-

contact networks. 2s4 While this method yields a minimum-level graph in

the present example, it will not do so in general, and the procedure

described above must be used to group together advantageously the out-

puts associated with each module class.

Similarly, a valid fault-detection graph could be obtained from

the graph of Fig. III-B-4(c) by merging the outputs (I, 2, 3) and

(4, 5, 6, 7). However, the resulting graph cannot be further simplified.

The graph of Fig. III-B-4(a) has fewer levels, and is therefore preferable.

e. Bounds

The bounds derived in Sec. III-B-2-e on the minimal number N

of tests in fixed test schedules apply without change of argument or
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or result to the number £ of levels in serial test schedules:

I %:ND m

1 + [log 2 (m)] _ _ _ N L _ m

1 + [log 2 (p)] _ ZM _ NM _ m

For most problems, of course, we can expect _L to be much smaller than

NL

We have assumed throughout this section that the parameter to

be minimized when optimizing a serial test schedule is the number % of

levels in the decision graph, since this number is proportional to the

running time of the diagnostic test. If, instead, it is the total length

of the diagnostic program (that is, the amount of memory space required

to store the test schedule) which is of principal interest, then it is

the total number d of decision nodes in the graph which should be

minimized. However, a simple argument shows that for fault location,

this number _ is fixed for a given F-matrix, and is equal to m, the

total number of faults. To see this, observe that each of the 2_

output arrows from the % nodes of the graph terminates either on one

of the m + 1 outputs, or on one of the (d L - I) nodes to the right of

the leftmost input node. Thus:

or _ = m.

2d L = m + 1 + (_ - i),

For fault detection, we have % : ND = % _ m. For fault

location to within modules, all we can assert is: _M <_ NM <_ dM_< m.

f. Potential Economies of Serial Test Schedules for

Fault Location

The following exemplary family of F-matrices demonstrates that

there exist problems for which the number of levels in a minimal serial

test schedule is approximately equal to the logarithm of the number of

levels in the corresponding minimal fixed test schedule.
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Consider first the particular F-matrix

F _

-0 1 2 3 4 5 6 7-

0 0 0 0 1 1 1 1

0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

_0 0 0 0 0 0 0 1

a

b

c

d

e

f

g

which has m = 7 and seven rows. For a serial test schedule, the decislon

tree has m + i = 8 outputs, so %L --_l°g2 (8) = 3. Three levels are

clearly adequate, as shown in Fig. III-B-6(a). For a fixed test schedule,

observe that all seven rows of F are necessary, since deletion of any

row causes two columns to be identical. Thus, _L --> 7. This decision

tree is shown in Fig. III-B-6(b).

I

I I

6 ', T i
7 I I I I I ' 7

I I I I I I

FIG. III-B-6 SEQUENTIAL DECISION TREE FOR A LIMITING CASE
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More generally, let m + I be any power of two, and let F be

formed according to the same pattern as was used above: the O's and

l's in the first row separate the set of columns into two equal-sized

groups; the second and third rows similarly divide each of these two

groups in two, leaving four groups; the next four rows divide each of

these four groups in half, leaving eight groups; etc. In each instance

of group splitting by a row, O's are entered in the columns corresponding

to all other groups. Realization of the decision trees in the same

pattern as shown in Fig. III-B-6 yields immediately:

_L = l°g2 ( m + i) for serial tests

£L = m for fixed tests.

However, regardless of F, the number of levels in an (m + i) - output

decision tree must fall somewhere in between these same values (see the

Sec. III-B-2-e. Therefore, these are extreme values, and cannot be

further separated.

This family of examples shows that there exist problems in

fault diagnosis (location) for which serial test schedules are vastly

superior to fixed test schedules.

4. Fault Diagnosis in Digital Computers: Present State of the Art

This part summarizes the present status of diagnostics as applied

to digital circuitry and systems of the type anticipated for use in

spaceborne computers. This status is evaluated with respect to the need

for fault-diagnostic techniques, and recommendations are offered for

future research work to satisfy the deficiencies that exist at present.

Diagnostic procedures for the detection and for the location of non-

transient faults in completely arbitrary digital networks, subsystems,

computers, and systems are presently either unavailable or inadequate.

Satisfactory procedures exist for the derivation of diagnostic test

schedules only for the class of combinational networks which (I) are

not too large ( 8 to i0 inputs, and up to about 4 or 5 outputs) but

otherwise arbitrary, and (2) are subject to a limited number of

definitive, specified faults--not more than a few hundred for fault
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detection, and not more than about 100 for fault location. In addition,

procedures are known for the detection of the most common types of

faults in large combinational nets, for the location of faults in some

special cases of large combinational networks, and for a few special

types of small and medium-sized sequential networks. For all other

conditions, however, including many situations of practical interest,

the only techniques which are available cannot be considered to be

satisfactory, either because they lack generality, because they are

too difficult to carry out, or because they lead to test schedules

which are much too long. For some cases, no techniques have even been

proposed.

For the known procedures, it is assumed that a general-purpose

computer is available for carrying out the derivation of a test schedule

for a given network. If this is not so, the maximum size of the network

and the number of faults which can be handled are much reduced. It is

also assumed that the resultant diagnostic test schedule, to be applied

on demand to a network in actual service, can be expressed as a simple

computer program which may be stored in the spacecraft computer or

communicated to the spacecraft. If the testing cannot make use of an

already existing digital memory or communications link for diagnostic

purposes, then a special subsystem must be designed to serve this pur-

pose. Presently known design techniques for such subsystems are

available, but are not completely adequate, since they often lead to

circuitry which is unnecessarily costly or which cannot itself be readily

diagnosed or protected against its own faults.

It should also be noted that there is much to be gained in reducing

the complexity and length of diagnostic test schedules, if one or more

of the following additional techniques are employed:

(1) Extracting selected circuit nodes as test points or

inserting additional control inputs, to facilitate

testing

(2) Using "serial" test schedules--in which the selection

of successive tests in the test schedule is made to

depend upon the results of the tests applied earlier,

in closed-loop fashion
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(3) Designing the original network in such a manner as

to make it more readily diagnosible.

Circuits are known for which considerable improvements can be demonstrated,

using each of the above techniques. Unfortunately, however, practically

nothing is known in general about how to actually achieve these improve-

ments. In some cases, one or more of these techniques may be absolutely

necessary in order to obtain acceptable test schedules. For example, it

may be essential to employ a small number of test points when testing

large sequential circuits.

In summary, there are unsolved problems, the solution of which would

contribute substantially to the realization of advanced reliable space-

borne computers; these are*:

(I) Development of techniques for selecting an economically

small number of test points or additional inputs for a

given combinational network, in order to drastically re-

duce the length of the test schedule required for (a)

fault detection and (b) fault location (to within a

replaceable module).

(2) Evolution of a general approach to finding good diagnos-

tic techniques for sequential circuits, and the deriva-

tion of some useful procedures for arbitrary moderate-

sized circuits; also, the identification of those

special classes of large sequential networks for which

these procedures might still be used.

(3) Development of practical procedures for deriving

economical test schedules for very large combinational

networks.

(4) Investigation of the economies to be achieved and the

methods which are appropriate when serial test schedules

are used for combinational networks; also, the identifi-
cation of those cases in which the use of serial test

schedules offers the greatest advantage over fixed test

schedules.

(5) Resolution of the principal questions regarding which

system organizations should be employed to facilitate

both diagnostic testing and subsequent repair (switch-

over to a spare or to a reconfigured system).

* It should also be noted that the first four of these topics are of

considerable importance to the manufacture of integrated circuit

packages for computer use.
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(6) Study of the ways in which the original design of

a digital network or subsystem may be modified in

order to make it more susceptible to the diagnostic

procedures which have been developed.

(7) Development of techniques for the design of special-

purpose diagnostic circuitry, including estimates

of the economies to be achieved through its use.
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D

C. Design of Networks for a Reconfigurable Computer

1. Introduction

In Sec. III-A-1 it was pointed out that a reconfigurable computer

should have high degrees of flexibility of structure, simplicity of

diagnosis, and reliability of control; and furthermore, that both flex-

ibility and inherent reliability of manufacture are improved by using

a small number of different kinds of complex logic modules in the compo-

sition of the computer. It was also noted there that in order to realize

the potential increase in reliability of reconfiguration, it is necessary

to accomplish the switching of data and the control of reconfiguration

efficiently, that is, to achieve a large number of configurations with a

small number of switches. New network schemes and design techniques are

needed to realize these unusual requirements.

In the next three sections we consider approaches to the design of

networks that are especially well suited to the functions of inter-

connection, logical processing, and control, respectively. Other net-

work types might be considered, e.g., some based upon combinations of

these functions; but those chosen appear to offer good possibilities

for efficiency of design.

The particular kind of interconnection network described in

Sec. III-C-2 is called a commutation switch. It is intended to be

complementary to the processing network described in Sec. III-C-3.

Several approaches to control networks are discussed in Sec. III-C-4, one

of which is based on the processing module of Sec. III-C-3.

All of the networks to be considered are designed to be multipurpose

and programmable. The criteria of ease of diagnosis and incorporation

of fault masking have not been incorporated, and constitute problems

for further development.
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2. Programmable Interconnection Networks

a. Introduction

The preceding discussion has served to describe the overall

features of a system which can diagnose its internal faults and correct

them by reconfiguring its subsystems. Of major importance in such a

reconfigurable system are the circuits whose function is to provide

interconnection between the operating modules and to disconnect faulty

modules from the system. These circuits, which we call commutation

networks, are discussed in this subsection. Our aim is to describe

techniques which a designer can use to develop commutation networks

which provide reliable flexibility of interconnection at low cost.

Initially we have selected a simple model for analysis, based

upon the control of data flow between two parallel linear arrays of

modules--as, for example, between two registers or between a register

and memory. Figure III-C-l(a) shows the conventional interface between

each of the M modules of two arrays, for the parallel transfer of data

where there are no spare units. Figure III-C-2(b) shows the same two

arrays, with the addition of N1 - M spare modules on the input array

and N 2 - M spare units on the output array. The function of the

commutation network is to provide connection between a set of M input

modules and a set of M output modules, and also, of course, to disconnect

the paths from (and to) faulty modules. It is assumed that the modules

of the two arrays are diagnosed by an external authority, which in

turn furnishes status signals to the commutation network.

Usually in the parallel flow of data it is of primary impor-

tance to preserve the order of the signals; i.e., the digits contained in

a set of M operating modules of the input array should be transferred in

order to a set of M operating output modules. In some applications it

might be possible to append an identifier to the signals traversing the

arrays, indicating the source of the signal. In this case the commuta-

tion network is not constrained to preserve order. We ascribe primary

importance to the order-preserving case, particularly in describing

implementations, because in conventional computer functions the order
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of data is preserved; as, for example, in the transfer of data between

registers and arithmetic units. However, we also briefly consider

the non-order-preserving case because of the reduction in complexity

afforded by such commutation networks. _

All of the networks considered here provide for total

commutation, i.e., up to some number of faults at the input and some

number of faults at the output, all arrangements of the faults are

accommodated. Consideration of partial or nontotal commutation is an

important problem for future study.

In Sec. III-C-2-b we consider an order-preserving asynchronous

commutator in which the data "diffuses" along a register between the

inputs and outputs. The operating status of the input and output modules

is stored in the register.

A combinational approach, relating to both the order-preserving

and non-order-preserving cases, is initially discussed in Sec. III-C-2-c.

With this approach there are a set of possible connections between the

inputs, visualized as single-pole single-throw switches, which are

controlled by status signals. The design goal here is to minimize the

number of switches required for complete flexibility.

In Sec. III-C-2-d we briefly discuss the conventional implemen-

tation of these commutation networks as a simple combinational net, and

we also present a cellular implementation which is suggestive of a

Holland-Machine structure. Techniques for achieving commutation switches

which are failure tolerant are discussed in Sec. III-C-2-e.

_ It is recognized that similarities exist between the design of efficient

commutation circuits and the design of telephone central-office systems.

(The reader is referred to Benes 24 for an analytic discussion of tele-

phone interconnection networks.) However, there are several important

distinguishing factors; e.g., in the commutation case all pairs of in-

put and output modules are not required to be connectable, and also the

network must function unattended. These factors are sufficient to re-

quire an extensive examination of both the interconnection system it-

self and the control modules by which the decisions are made.
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b. A Sequential Commutation Network

This section describes a sequential buffer network that pro-

vides total order-preserving commutation with reasonable economy.

Although the network contains logical delay elements, no clock signals

are needed. If this scheme is used within a synchronous computer,

higher network speed will result than if the system clock were used in an

equivalent clocked network. The network is composed of a cascade

of stages, with parallel input and output facilities, and with serial

propagation with the cascade. In the propagating mode, the network

acts essentially as a speed-independent cascade, @ specially modified to

accommodate invalid sources and loads. Another application of this mode

of operation is described in Section II-A-2-C-3.

i) Overall Behavior of the Network

The overall behavior will be explained with reference to

Fig. III-C-2. The network is seen to be a cascade of 2n stages, serving

n data sources and n data sinks.

The use of a double-length register is one of several

possible techniques for allowing a relative positive or negative dis-

placement of the indexes of corresponding source and load channels.

That is, depending upon the distribution of invalid source and data

channels, the index of a source channel may be greater than, less than 9

or equal to the index of the corresponding load channel. Another approach

might be to use a register of n cells, in which propagation may be forced

in either direction.

Stages 1 through n receive information in parallel from

source channels s I through sn respectively, and stages n + 1 through 2n

deliver information in parallel to load channels _i through _ . It isn

assumed that some diagnostic process distinguishes the validity or

invalidity of the data channels. Information as to which load channel

shall receive data is stored within the corresponding cell of the

* Conceived by D. Muller. TM
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cascade. In the identification of the validity of data source channels,

there are two design choices:

(a) The s signals may have a three-valued encoding,

e.g., 0, 1, _, in which one symbol _ indicates

an invalid source.

(b) Information as to the validity of a channel may

be stored within the network, at the correspond-

ing cell.

Choice b will be assumed here, because it leads to the use of the same

cells throughout the cascade.

Information as to the validity or invalidity of each data

channel, then, is stored at the corresponding cell. This storage is

assumed to be accomplished during a setup mode. The processing mode

has three phases: write-in, propagation, and read-out. The first and

last are parallel processes on the s and % channels respectively. In

the second, information propagates toward stages of higher index, and

comes to rest in a stable configuration in such a way that symbols

obtained from valid source channels are collected in a contiguous string,

starting at the rightmost cell but skipping cells corresponding to

invalid load channels.

In the event that the number of valid symbols exceeds the

number of valid load channels, the leftmost symbols will be lost. If

the opposite is true, the leftmost load channels will be unused. The

design to be described provides that a special symbol indicating the

absence of valid data is available for entry to such channels.

2) General Description of the Propagation Mode

Before describing the detailed design of the cells, the

overall behavior of the propagation mode will be described, with the aid

of Fig. III-C-S.

Each cell is composed of two stages, which may be con-

sidered to be identical for simplicity of description. The figure

illustrates a case in which an incident pattern I, O, 1 appears on

channels i, 3, and 4 respectively and the pattern I, I, 0 is read out
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D

to channels 5, 6, and 8, respectively. The symbol _ in both stages of

cells 2 and 7 indicates invalid channels. The _ symbols shown serve

two functions: they serve to indicate the absence of valid data, and

they serve to separate independent valid symbols; i.e., the network

is designed so that two valid symbols may never come to rest in adjacent

stages.*

In the propagation mode, then, each stage acts as a

repeater of incident information, with temporary data storage. The

effect of storing a _ symbol in a stage is to remove its temporary data

storage capacity.

3) Description of the Cell Design

Since the network is derived from Muller's Speed-

Independent module, a brief review of that module will be given. Following

that, a state diagram will be derived, and then a logical realization.

Review of Muller's SI stage: Muller's cascade is illustrated

in Fig. III-C-4(a). The stages are indexed i - 1, i, i + 1. The inputs

to stage i are w_ and W i
r' which are obtained from z_ -I and Zr respec-

i+l

i

tively. All paths carry one of the three symbols O, i, @, and on the basic
i i

design zf = zr.

The state diagram for stage i is shown in Fig. III-C-4(b).

On the branches, symbols with index i-I appear at the wf input, and

symbols with index i + 1 appear at the w input. The symbols in the
r

state circles are those presented on the Zr, zf outputs.

The state behavior provides for the temporary storage and

propagation of information, at a rate dependent on the time-response

characteristics of the stages. The feedback of information in the

* In the transient mode, a given symbol may be temporarily replicated

in two or more adjacent stages, but strings of replicas that are de-

rived from different sources will be separated by one or more _ sym-

bols. For example, the sequence ... 0 1 1 0 I ... may appear momen-

tarily in the cascade as the string ... G 0 _ 1 1 1 0 1 _ 0 0 _ _ 1

..., and will come to rest in the form ... @ 0 0 1 _ I _ 0 @ 1 ....
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direction opposite to that of propagation serves to prevent accidental
elimination of data. This feature may be exploited to permit the block-

ing of the flow of information by forcing the feedback path to some

stage to a 0 or 1 status. The data will then accumulate in a contiguous

string of alternating spacer (_) and data (0 or l) symbols.

State behavior of an augmented cell: As described in

the general description of the propagation mode of the buffer network, the

effect of labeling a cell as invalid is to deprive it of its temporary

data-storage capability. This is accomplished by adding a fourth state,

_, to a basic Muller stage, in which the forward-feeding output signal

i repeats the forward-incident w_ signal and the feedback output signal
zf _i

zi repeats the incident feedback w signal, each without delay. The
r r

output functions in the other three states are exactly as in the Muller

stage.

There are several design possibilities for the transitions

into and out of the _ state. Pernaps the simplest (at least for purposes

of describing a basic design) is to assume one special input signal ms,

capable of forcing a transition into _ from any other state, and a second

special input signal mr, capable of setting the stage to some other state,

most naturally the _ state.*

The block diagram is shown in Fig. III-C-5(a) and the

state diagram is shown in Fig. III-C-5(b). The conventions of Fig.

i
III-C-4 apply to the inputs (with the addition of the m input, whose

values are ms, mr' and m@), but the outputs zf and Zr are indicated

explicitly at the state circles. The dotted lines indicate possible

parallel data inputs and outputs.

For simplicity, two functions have not been shown in the

state diagram; these are the writing of data into a cell from an ex-

ternal source, and the permitting or inhibiting of propagation within

the cascade. The first is trivial, given the ability to accomplish the

* A more elegant means (requiring fewer special input lines) might be

to provide that a string of O's and l's be entered serially (repre-

senting invalid and valid cells), and then "frozen" into _ and non-_

states upon special command.
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second. One satisfactory way to inhibit propagation is to provide a

common signal to the second stage of all cells, that injects a I signal

into the w input. This will serve to keep all such cells in the
r

state (at which state the cells naturally arrive following all complete

propagations). To permit propagation, these I signals are removed.

Even if the signals are not removed simultaneously, the presence of a

symbol within the driven cell prevents the loss of information.

By applying such a signal only at the last stage in the

cascade, information may be caused to "pile up" in a stationary pattern

at the end of the cascade. Removal of the signal will permit the discharge

of the information from the cascade.
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A logical realization: In the following illustrative

realization, the w and z signal variables and the x state variable are

encoded as pairs of binary variables, as follows:

wf = (Wfl, Wf2 ), Wr = (Wrl, Wr2 ), zf = (Zfl, zf2 ), Zr = (Zrl, Zr2)' and

x = (Xl, x2). The values corresponding to the symbols of the state

diagram are

0 : 0 1

1 : 1 1

,0 : 0 0

: 1 0

The m variable is likewise encoded as a pair, (ms, mr) , and it is assumed

that m . m = O.
s r

Table III-C-I lists the symbolic and logical functions

governing entry to the four states, together with the output functions

of the states. The conditions for external entry of data are also

included, with s i = (0, i) the external data, "write" = (0, i), the

sampling function, and p = (0, I), the "propagate release" function.

Table III-C-I

STATE-TRANSITION AND OUTPUT LOGIC FOR REGISTER CELL

State Code

x XlX 2

10

9 00

0 01

1 11

Entry Function--logical

m
s

m or & ( or li+l)r _i-I 0i+l

(0i_ 1 & _i+1) or (_i & write)

(li_ I & ¢i+i) or (s i & write)

Entry

Function--

Boolean

m
s

m +
r wf2Wr2P

wf2wfl Wr2P

+ s..wri te
1

m

wf2wflWr2P

+ si.write

Outputs

Zfl zf2 Zrl Zr2

Wfl wf21Wrl Wr2

0 0 0 0

0 I 0 I

1 1 1 1
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Figure III-C-6 shows a logical realization using flip-flops,

AND gates, OR gates, and inverters.

4) Summary

The scheme described is one of several possibilities.

Other asynchronous schemes should be investigated, as well as the

synchronous-sequential and combinational approaches. Some merits of the

present scheme are (i) its complete flexibility within the limits of

redundancy, (2) the linear growth in size with number of channels, and

(S) the absence of the need for a clock. These merits are achieved at

the cost of some control logic (not shown here) for the sequencing of the

various phases of operation, and of time (not calculated here). An

additional feature which may be useful in applications such as parallel

arithmetic is that the order of information among the input channels is

preserved at the output.

c. Combinational Commutation Networks--Minimization of Number

of Switches

1) Introduction

In this section and the two succeeding sections we present

a detailed examination of the combinational commutation networks. We

distinguish these networks as combinational because in estimating the
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expected complexity, for given values of N1, N2, M it is convenient

to visualize the commutation network as a multiple-input multiple-output

combinational network where the inputs are the data lines from the input

arrays along with the status lines, and the outputs are the data lines to

the output array. Indeed, these commutation networks can be implemented

strictly as combinational circuits, working from the truth table; or for

some applications it might be convenient to incorporate some sequential

blocks.

At present we seek techniques for minimizing the complexity

of the commutation networks. In order to facilitate the synthesis we

propose to initially consider the commutation network as a switch net-

work, i.e. a net of single-pole single-throw switches. We can then state

the following problem relating to the synthesis of efficient commutation

networks:

For a given number M of operating modules in both the input

and output arrays, and a set of N 1 - M spare input modules

and N 2 - M spare output modules, find the switch network,

denoted as the minimal switch network, with the least num-

ber of switches such that all sets of M inputs and M out-

putsare connectable both when the ordering of the input

data Is preserved at the output and when disordering is

allowed.

It should be noted that the minimization procedure based

upon this switch model is not necessarily an optimum approach for all

applications, but it is felt that efficient designs will generally result

from the consideration of the minimal switch networks as a point of em-

barkation.

We now distinguish types of switch networks according to

the number of intermediate levels present between the input and output

arrays. To be more specific, first consider the single-level switch

network of Fig. III-C-7(a). In this case the lines between the N 1 inputs

and the N 2 outputs represent switches that are either open or closed. A

double-level switch network is shown in Fig. III-C-7. In this case

there are a set of switches connecting the N 1 inputs with the N' inter-

mediate collection points, and also a set of switches connecting the N 1
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outputs with the N t intermediate points.

level switch networks is straightforward.

The extension to general multi-

One immediately observes that the required commutation

can be accomplished if the single-level switch network contains NIN 2

switches, but we will show that significantly fewer switches will suffice.

In addition the commutation can be accomplished by a double-level switch

containing N' = M intermediate collection points and M(N 1 + N2) switches,

but once again this connection is not minimal.

We will demonstrate the techniques for the realization of

minimal single-level switch networks, for both the order-preserving and

non-order-preserving cases. For most values of the parameters M, NI, and

N2, double-level switch networks can be found which are less complex than

the corresponding minimal single-level network. Unfortunately, we do not

know the techniques for realizing precisely minimal double-level networks,

nor do we indeed know the optimum number of intermediate levels, but a
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technique is presented for realizing double-level networks which appear

to be "near" minimal. Examples of networks which are less costly are

discussed, so as to provide a basis for future research.

First we will consider the case where the ordering of the

input signals is preserved at the output. Primarily intuitive methods

will be employed to establish that particular switch networks can perform

the required reconfiguration.

2) Single-Level Order-Preserving Network

The number of switches required for the single-level switch

network may be counted with the aid of Fig. III-C-8, in which the horizon-

tal lines represent input buses, the vertical lines represent output buses,

and a heavy dot represents a switch connecting an input and output bus.

For ease of visualization, the case N 1 = 15, N 2 = 15, M = 5 is illustrated.

(Although the example indicates a case where N 1 = Nb, the theory is applica-

ble for cases where there are an arbitrary number of spare modules for the

input and output arrays; these general results may be useful when the in-

put and output arrays are of different reliability.) Input 1 need be

connected to only N 2 - M + 1 outputs to assure it of access to one of the

M valid outputs. In order to preserve the order of input and output

channels, input 2 must be able to cover the outputs of input 1 (since 1

may be inactive) plus one more (in case input 1 is active). Successive

inputs must thus cover the outputs of the preceding inputs, plus one

more, until the (N 1 - M + 2)th input. That input need not cover the first

output, since if the first output is active it will be supplied a signal

by one of the preceding N 1 - M + 1 inputs, one of which must surely carry

a valid signal. Successive inputs, then, need cover one output terminal

less.

The number of required switches S_ p) , may be seen,

by inspection of Fig. III-C-8 to be

M

S_LP) = NIN 2 - 2i_li = N I N 2 - m(m- i).
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FIG, III-C-8 SINGLE-LEVEL ORDER-PRESERVING COMMUTATION

NETWORK N I = N 2 = 15, M = 5

3) Double-Level Order-Preserving Network

Under some conditions, a double-level network may be

advantageous. The structure of a possible network is shown in

Fig. III-C-9, in which the horizontal lines represent input and output

buses, and the vertical lines represent intermediate buses.

Considering the intermediate buses, labeled in numerical

order, l, 2, 3, ..., we may note that each bus must be connected to an

active input. The first intermediate bus, l, need by connectable only

to the first N1 - M + 1 inputs in order to serve the first valid

input; the second intermediate bus, 2, need be connectable only to inputs

2 through N 1 - M + 2 in order to serve the second valid input, since, at

worst, if the first valid input is at input N 1 - M + 1 (II, here), the

second valid input must occur at input N1 - M + 2, the third at input

N 1 - M + 3, and so on, with the Mth at input N1 - M + M = NI.
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The second set of switches, connecting the intermediate

buses to the outputs, follows the same construction. The number of

switches S_[p)" required for this two-level switch may be seen, by

inspection of the figure to be

s_P) : M(N1 - M ÷ I)÷ _(N2 -M + i) = M(NI+ N2)- 2M(M- i)

It is instructive to compare the two networks with respect

to the number of switches required. To be specific, we seek the relation-

ship among the variables NI, N 2 and M such that S_p)" > S [Op)'" In order' SL "

to simplify /_the analysis/_ we will consider the case N 1 = N 2 = N. Then in

order that S_ p) > s_[P)o2 it is necessary that

2_ 2M 2 + 2M > N 2 M2- - +M

which is equivalent to the condition that

N 2 - 2MN + M 2 > M

or

(N - M) 2 > M

or

N>M+_M .

The "break-even" values of N for various M's are given

in Table III-C-2; for values of N equal to and above those given, single-

level switching is more costly than double-level switching, at least

for the double-level switch described.

Table III-C-2

"BRF_K-EVEN" VALUES OF N

M 1 2 3 4 5 I0 20 50

sN-E 3 4 5 7 8 14 25 58
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It is conjectured that this double-level switch network

is the minimal double-level switch network (and in general the minimal

multilevel switch network) when the order is preserved not only on the

output buses, but also on all intermediate level buses. However, it is

clear that the order need not be preserved at the intermediate level,

and in fact we have found some examples which illustrate cases where

less costly order-preserving networks result when disordering at the

intermediate buses is allowed.* At present we have not been able to

adequately generalize these examples to provide large classes of economi-

cal networks, but it appears that only a small reduction in cost is

achieved when compared with the simple double-level realizations of

Fig. III-C-8.

We now proceed to investigate non-order-preserving switch

networks. Our motivation for studying such networks is based upon the

fact that the realizations appear to be less costly than the order-

preserving realizations,t and also that we envision future computers as

being composed of large reconfigurable arrays of identical programmable

modules in which case it might be feasible to consider an identifier

appended to the data on each signal line.

4) Single-Level Non-Order-Preserving Network

The switch network schematic as illustrated in Fig.

III-C-7(a) is suggestive of a graph called a bipartite graph.2Ss§ The

* The realization of sample networks is discussed further on in this sec-

tion when the techniques of non-order-preserving networks are described.

It appears that the non-order-preserving networks offer significant

economy only if N1 and N2 are quite unequal.

§ The method for establishing that particular non-order-preserving switch

networks perform the required reconfiguration was formulated by B. Elspas

on the basis of the properties of bipartite graphs. Briefly, a graph con-

sists of certain points, called its vertices, and certain line segments

connecting vertices, called the edges of the graph. A graph where the

set of vertices is decomposed into two separate parts such that there are

edges only between these parts is called a bipartite graph. This type of

graph is commonly used to match a set of available jobs with a set of men,

when each man is qualified for certain of the jobs.
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set of input modules are represented by a set of N 1 vertices, the output

modules by a set of N 2 vertices, and the switches by lines connecting

the two sets of vertices.

It is indicated in the footnote below that the theory of

bipartite graphs can be applied to the problem of matching men and jobs.

A very powerful condition, known as the diversity conditlon 233 has been de-

rived in order to establish whether a suitable job exists for each man:

Suppose there are _ men applying for positions.

Then each man can be assigned if and only if

for each group of _ men, for all 8 = I, 2,

..., _, there are at least _ jobs for which

they are collectively qualified.

The diversity condition can be used to determine whether

a particular single-level switch network can reconfigure M input and out-

put modules despite the occurrence of N I - M or fewer failures in the

input array and N 2 - M or fewer failures in the output array, as follows:

The non-order-preserving switch network can

perform the required reconfiguration if and

only if each group of 7 input modules, for

all 7 = 1, 2, ..., M, is connectable collect-

ively to at least y + N_ - M output modules,
2

and if and only if each group of 5 output

modules, for all 8 = i, 2, ..., M is connect-

able collectively to at least 5 + N 1 - M

input modules.

It is convenient, in performing analyses utilizing the

diversity condition, to describe the switch network in terms of an N 1

× N 2 Boolean matrix B, where the entry b. is i if the i th input
th iJ

module is connectable to the j output module, and 0 otherwise. Then

the reconfigurability of a particular network can be stated in terms of

the matrix B as follows:

The switch network can perform the required

reconfiguration if for the matrix B, a vec-

tor which is the Boolean sum of any 7 rows,

= I, 2, ..., M, has weight (number of

entries which are one) at least 7 + N 2 - M,

and if the vector which is the Boolean sum

of any 8 columns, 8 = I, 2, ..., M, has

weiRht at least 8 + N 1 - M.
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The above condition will now be utilized in connection

with a specific case. Consider the switch network shown in Fig. III-C-lO

and its matrix B below.

t 2 3 ...
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v _ w

3 -- A = :

A

NI

A A
v v

v v

, A ,
. w .

• _ A A
• v v v

• v v
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T&-5580-17

FIG. Ill.C-10 SINGLE-LEVEL NON-ORDER-PRESERVING COMMUTATION

NETWORK N 1 = N 2 = 15, M = 5
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1 2 3 4 5 6 7 8 9 i0 ii 12 13 14 15

1 _ 1 1 1 1 1 1 1 I 1 1 0 0 0 0--

2 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0

3 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

6 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1

7 i I 0 0 0 0 I 1 i I i I I I I

B = 8 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1

9 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

I0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

ii 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1

12 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1

13 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1

14 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1

15 _ 1 1 1 1 1 1 1 1 1 0 0 0 0 1

Clearly no network is less costly since each row in the

above matrix contains the minimum allotment of N 2 - M + 1 = ii ones.

It now remains to demonstrate that the Boolean sums of rows (and equiva-

lently columns since the matrix is symmetric except for cyclic permuta-

tions) satisfies the weight conditions. Form a vector V given by

m

V = _ (Vk£) , m K M = 5
£=1

where V k is the k_h_ row vector of B and represents the Booleam sum

of the vectors.

It is easy to verify that the minimum weight of v, Wmi n (v)

is given by Wmi n (v) = N 2 - M + 1 + m, which is the weight when kl, k2,

..., k are successive integers, where 16 is taken to be equivalent to 1
m

Thus the diversity condition is satisfied and the indicated switch net-

work can perform the required reconfiguration. Although for the example

shown it was specified that N 1 = N2, a minimal single-level

non-order-preserving switch network with, for example, N 1 > N 2 can be
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synthesized from a Boolean matrix whose first column is a vector con-

sisting of N1 - M + 1 ones followed by M - 1 zeros, and whose succeeding
columns are any set of distinct cyclic shifts of this column. For this

(nop) is given bynetwork the numberof switches SSL

S(nop) [mn(NI,N2)] {[_ax(N1 N2)- M + i]}SL = " '

S. Double-Level Non-Order-Preserving Network

Here we are concerned with synthesizing double-level

non-order-preserving switch networks which are approximately minimal.

Techniques are presented from which double-level networks can be synthe-

sized, although at present we do not know how close they are to minimal.

The general structure of the double-level network to be

investigated is illustrated in Fig. III-C-II. It consists of a

distributing network whose function is to distribute the information from

any arbitrary set of M input lines onto any M of N' intermediate lines,

followed by a collecting network whose function is to collect the signals

appearing on any M intermediate lines for delivery to any M output lines. _

In driving the number of switches required by the collecting network we

note that it performs the same function as a single level

non-order-preserving network with N' input channels. Hence the required

number of collecting switches S is
C

Sc= EMin(N2,N')]{E_ax(N2,N')- M+ 11}

The number of switches required by the distributing net-

work is considered below. It is not clear that this method of arbitrary

distribution followed by collection is indeed the most efficient commuta-

tion technique, but since networks which are significantly more economical

than single-level realizations did result in example cases, we will briefly

pursue some procedures for synthesis.

_ The double-level network as shown with the distributing network

associated with the inputs is based upon the assumption that N 1 > N2.

If N2 > N1 then the distributing network should be associated with the

output_ for optimum economy.
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Consider first the case where the number of intermediate

levels assumes a minimal value, namely N' = M. Then the function of the

distributing network is identical to that of the single-level network

with N' = M output channels, and the total number of switches required,

(hop) I-M+ 1] +M[N i]
SDL

= MINI + N2 - 2M + 2] .

It is noted that this result is identical to the number of switches

required for the order-preservin_ case.

However, specifying N' = M does zot generally result in

the most economical double-level networks. For example consider a

distributing network, with parameters N 1 = 15, N' = 6, M = 5 (N 2 = 15),

described by the following matrix, B'.

1

2

3

4

5

6

7

B' = 8

9

i0

ii

12

13

14

15

1 2 3 4 5

-I 1 l

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

I 1 1

1 1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

6 = N'

1

1

1

1

1

We will show that the double-level switch network contain-

ing a distributing network related to the above matrix B', with the

addition of the appropriate collecting matrix, is more economical than
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the network illustrated in Fig. III-C-10. First it is necessary to

prove that for the indicated distributing network each set of M input

channels is connectable to M distinct intermediate lines.

This will be accomplished by using the diversity condition

as related to the matrix B_; i.e., it is necessary to show that the

weight of the vector formed as the Boolean sum of any j rows, j = I, ...,

M, is at least j. Clearly, the condition is satisfied for j = l, 2, 3

since the weight of each row is 3, and the condition is also satisfied

by j = 4 since all row pairs differ in at least 2 places (i.e. maximum

overlap* is 2). However, we note that the number of vectors of weight 3

with overlap exactly 2 is limited to 4; hence if we consider 5 vectors

there must be at least one row pair with overlap not exceeding I. Then

the Boolean sum of any 5 rows yields a vector of minimum weight 5, thus

establishing the diversity condition.

It can be shown that the 4 underlined entries in the B'

matrix can be discarded without affecting the diversity condition. Hence

the distributing network contains 3(15) - 4 = 41 switches, which when

added to the 6 (15 - 5 + I) = 66 switches required for the collecting

array indicates a total of 107 switches as compared with the II0 switches

for the double-level network with N I = M. Admittedly the relative

improvement in economy is not startling, and indeed it appears that for

N 1 _ N2, the double-level network with N _ = M is quite economical; but

if N 1 and N 2 are somewhat unequal, significant economy is afforded by

allowing N _ > M.

Unfortunately we have not formulated deterministic

techniques for deriving the optimum value of N t, nor do we know techniques

for synthesizing distributing networks for all values of the parameters

NI, N e, M; but by a cut-and-try process it is generally possible to syn-

thesize reasonably economical networks. The most efficient distributing

networks we have found are based upon balanced incomplete block designs.

* The overlap of two vectors is defined as the weight of the dot product.
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Before proceding to a discussion of the distributing

networks based upon block designs it is convenient to consider the

problem of determining a lower bound on the weight of the Boolean sum

of vectors, subject to certain constraints on the structure of the vec-

tors. Consider a set of vectors of weight W and maximum overlap max"

It can De shown from a result presented in connection with another

problem *s2 that the weight of the Boolean sum of j vectors, each of

weight W with a maximum overlap _ is greater than j provided the
max

inequality

j>

w
(max +l )

is satisfied.

It is not difficult to show that if the inequality is

satisfied for some integer j, then it is satisfied for all integers less

than j. Hence if the matrix for a distributing network consists of rows

of weight W with a maximum overlap, _max' then all sets of m inputs are

connectable if the inequality

(m )k + 1
max

m

is satisfied. We will now demonstrate the technique of forming distribu-

ting networks from block designs.

Briefly, a block design _b constitutes s multiparameter

arrangement of objects, which for present purposes may conveniently be

represented as a matrix of zeros and ones. The incidence matrix B _ of a

so-called balanced incomplete block design (BIBD) with parameters

_ For a complete discussion of block designs the reader is referred to

Ref. 121.

216



(v, k, b, r, _) has b rows, v columns, k ones per row, and r ones per column,

and is such that the dot product of every pair of columns is just _. The

well-known identities

must be satisfied.

vr = bk

r(k - 1) = (v - 1)

H
Generally we will identify the rows of B with the switch

connection from the input channels (i.e. N 1 = b, M' = v), since for a

BIBD v _ b. (Otherwise a distributing network with N S > N 1 would result,

yielding an inefficient network.) However, in order to determine whether

the diversity condition is satisfied for the case of interest it is

necessary to know the maximum value of the dot product _max of any pair

of rows of B".

H
For the case where the rows of B consist of all of the

v

(k) combinations of vectors of length v each with k ones, then

_max = v - I. For example, the matrix B H for the block design of1

this type with v = 6, r = I0, b = 20, k = 3, k = 2, is shown below

1

2

3

4

5

6

7

8

9

H
B 1 = I0

ii

12

13

14

15

16

17

18

19

2O

1 2 3 4 5 6

1 1

1 1 1

1 1 1

1 1 1

1 1 1

I 1 1

1 1 1

1 1 1

1 1 1

1 1 1

i 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1
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Applying the inequality concerning the weight of the

Boolean sum of vectors, we note that the matrix B; describes a valid

distributing network for all m satisfying m < 5.

Another case where _max is known for a BIBD is for _ = I,

in which case _max = i. Many examples of BIBD's with _max = 1 have been

tabulated 121 4s

It is of interest to compare the number of switches in the

various types of networks (minimal or approximately minimal) distinguished

as single-level order-preserving, double-level order-preserving, single-

level non-order-preserving, double-level non-order-preserving (N' = M),

and double-level non-order-preserving (N' _ M). The results for two examples

are tabulated in Table III-C-3 for commutation networks with parameters

N 1 = 20, N 2 = 6, M = 5 and N 1 = 63, N 2 = 28, M = 13. The appropriate

distributing network for the former example (illustrated with the appro-

priate collecting network in Fig. III-C-12 is based upon the matrix B z
1

with N S = 6, and the distributing network for the latter case is based

upon the block design with parameters b = 63, v = 28, k = 4, r = 9,

= i, in which case N' = 28. (It is easily verified that the "pertinent

inequality" is satisfied for m < 13 with these parameters.)

Table III-C-3

COMPARISON OF SWITCH NETWORKS

N 1 = 20, N 2 = 6, M = 51N 1 = 63, N 2 = 28, M = 13

I00 1608Single-level order-

preserving

Double-level order-

preserving

Single-level non-order-

preserving

Doub]e-level non-order-

preserving (N t = M)

Double-level non-order-

preserving (N t _ M)

9O

96

9O

72

871

1428

871

644
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It is seen that the double-level non-order-preserving

switch networks with N t _ M are clearly the most economical. Admittedly

these examples are somewhat artificial since the parameters were chosen

so as to be consistent with the parameters of known balanced incomplete

block designs. We cannot state a formal procedure for synthesizing

economical double-level networks for all values of parameters N 1, N 2,

M, but the following method appears to result in "fairly good" networks.

Choose a BIBD with parameter k = 1; parameter k a minimum

such that the inequality for the number of active channels M is satisfied;

parameter b = NI_; and parameter v > M. If several designs satisfying

these properties exist, then a cut-and-try procedure is employed in order

to select the design which results in the most economical network.

Before concluding this section we can present an order-

preserving network which is more economical than a double-level network

of the type shown in Fig. III-C-9. The network for parameters N 1 = 45,

N 2 = 4, M = 3 consists of a distributing network based upon the BIBD

with parameters b = 45, k = 2, v = 10, r = 9, k = 1, and a special

collecting network consisting of vN 2 = N'N 2 switches, t Hence the total

number of switches required in the double level network is

2(45) ÷ i0(4) = 130. The double-level switch network based upon the

structure of Fig. III-C-9 requires 3(45 + 4) - 2(3)(2) = 135 switches.

Our primary purpose in presenting this example (which is

somewhat pathological) is to indicate that many theoretical questions

remain unanswered concerning commutation networks which are minimal in

the context of the switch-network models. We have presented methods

for synthesizing minimal single-level networks, both order-preserving

and non-order-preserving, for all values of the parameters N I, N 2, M.

_ If no design with b = N I exists then a design with b _ N1 can be al-

tered by adding or deleting a few rows, so as to form an incidence

matrix containing N1 rows.

Clearly this network is order-preserving since the special collecting

network can transfer any disordered pattern on the intermediate lines,

onto the output lines so that the order at the input is preserved.

220



It was shown that significant economy is realized if double-level

realizations are considered. Techniques were presented for synthesizing

double-level switches which, although shown to be nonminimal, represent

an adequate engineering solution. For the practical case of an order-

preserving network with N I _ N2, the indicated network appears to be

close to minimal. For future work in this area the following studies

are recommended.

(i)

(2

(3

(4

Consider the derivation of lower

bounds on the number of required

switches, with an arbitrary number

of intermediate levels, in order

to indicate how close to minimal

are the networks presented in this

report.

For the order-preserving case with

multiple levels, consider additional

examples where disordering of the

signals on the intermediate levels

is allowed.

Consider other tools besides balanced

incomplete block designs for the

specification of distributing net-

works. Partially balanced incomplete

block designs have been studied

extensively and many more examples

are tabulated of these than of BIBD's.

In addition the structures of matrices

used to specify error-correcting codes

appear to be applicable here.

Consider the design of partial commutation

switches (defined in Sec. III-C-2-a).

d. Setup and Control Circuits

In the previous section we considered a model which visualized

the commutation circuits as a network of single-pole single-throw

switches. Our motivation for studying that model was based upon our

belief that logic designers in implementing commutation circuits might

prefer to employ realizations in which the commutation function is

executed by combinational means. In this case the switch network

is programmed by an external executive when reconfiguration is required.
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The switch-network models which were presented should provide an

adequate basis for design.

In addition it is possible to synthesize the commutation

network by combinational techniques exclusively. The circuit, as

relating to the single-level switch network, can consist of a net

containing N 1 + N 2 inputs indicating the status of each of the modules

of the input and output arrays, N 1 signal inputs, and N 2 signal outputs.

Indeed, the resultant net as synthesized from a truth table

will be quite large, although some simplification is possible by the

consideration of "don't cares." The circuit as relating to the double-

level network will consist of two combinational parts--the first part

containing the N I + N 2 status inputs and the N 1 signal inputs but only

N s outputs, and the second part containing N t signal inputs, N 1 + N 2

status inputs, and N 2 outputs. We have not yet considered the estimation

of the complexity of these realizations.

It is not immediately clear that the most economical implemen-

tation is afforded by incorporating exclusively combinational logic for

the control. Moreover, some simplification could be realized by noting

that all connections need not be established anew after each failure;

rather, the circuit could "translate" to different connections with only

slight modification in organization. Comprehensive study will be required

to specify synthesis techniques which will minimize the overall cost of

the combinational commutation switch, and indeed also to ascertain the

specific advantages of the combinational approach as compared with, for

example, the diffusion circuit discussed in Sec. III-C-2-b.

Of major importance in the consideration of the implementations

are methods for ensuring that the resultant circuits are failure-tolerant.

This question is considered briefly in Sec. III-C-2-e.

As in our other studies, our aim with respect to the design of

commutation circuits is to present realizations which achieve reliability

at low cost and which are compatible with the anticipated future tech-

nology. In accordance with this goal we chose to consider cellular
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implementations of the commutation networks. Although the circuits

based upon this approach will be costly compared with the combinational

types, considering component count exclusively, they do offer the

following advantages:

(I) The network is composed of a rectangular array of
identical cells.

(2) The control operation is straightforward in that

the paths between the input and output channels

are formed automatically.

(3) The networks can be diagnosed for faults in a

straightforward manner.

(4) It appears that low-cost redundancy is easily

incorporated into the design, permitting the by-

passing of faulty cells.

One type of cellular order-preserving commutation switch

which has been conceived shown in Fig. III-C-13, is based upon the

structure of the Holland Machine. IS3 The purpose here is to first

delineate distinct nonintersecting paths between each of the M operating

input and output channels. (It is assumed that the paths are formed

essentially anew upon the detection of each failed input or output

module.) Once the appropriate paths have been defined, the network

returns to the operating state in which data is transferred between

input and output modules, essentially through combinational logic

attendant to the cells.

The path-defining operation can be described as follows

[Fig. lll-C-iS(a)]. The network consists in general of a rectangular

array of Max (NI, N2) x M cells. The input and output modules which

are operating are distinguished, and a path commencing at the first

operating input seeks the first operating output by the following

strategies, executed in preferred order by the cells.

(I) An attempt is first made to establish a path

between the cell in question and the cell

immediately above.
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D

(2) If a path has already been defined including the cell

above, or if the cell in question is on the upper

boundary of the array, or if the cell "northeast"

has been included in a path*, then an attempt is made

to establish a path to the adjacent cell on the right.

(3) If connection with the adjacent right cell is not

possible, then an attempt is made to establish a

path to the cell immediately below.

The path is complete when it reaches the cell adjacent to an

operating output module. The inputs and outputs required of such cells

for the path formation are shown in Fig. III-C-13(c). Since each cell

is to deliver a signal to one of three adjacent cells, two flip-flops

are required for each cell.

Other cellular realizations have been conceived, relating to

the minimal switch-network designs of the previous section. At present

we have not formulated well-defined measures for the comparison of the

various commutation-circuit realizations, but it is felt that a major

factor will be the cost of ensuring failure-tolerant operation. In

the following section we discuss techniques for synthesizing redundant

commutation switches.

e. Failure-Tolerant Interconnection Networks

Here we are concerned with establishing techniques whereby the

reliability of commutation circuits can be improved. Before proceding

to synthesis studies it is appropriate to question the need for reliable

commutation circuits. Most studies concerned with the estimation of

the reliability of reconfigurable computers have either neglected the

reliability of the interconnection networks, or have considered the

commutation circuits as part of the hard core. In either case it has

been assumed that the amount of equipment allocated for the commutation

networks is a negligible portion of the overall computer. Our studies,

as well as others, 3°2 have indicated that the reconfiguration method is

@ This last restriction is necessary to avoid the creation of a dead-

end path as would result if in defining the path between input 3 and

output 3 _of Fig. III-C-13(b)_ connection was permitted to the cell

in row 2, column 2.
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feasible only if the blocks which are replaced are sufficiently small.

Admittedly this is imprecise, and indeed it is recommended that

consideration be given to quantitative determinations* of the optimum-

size replaceable network block, but at present it will be sufficient to

note that the self-repair method should probably be applied at present

to such regularly structured units as a block of memory, or a portion

of a register or adder. In addition, such blocks as the programmable

control units to be described in Sec. III-C-4 appear to be of approxi-

mately the proper complexity for replacement.

We have made a brief qualitative assessment of the properties

of the fault-masking techniques discussed in Sec. II-A-I as applied to

both the diffusion register and the combinational and cellular commuta-

tion networks. We note that a commutation network is essentially a

block with many outputs which requires, on the average, little equipment

per output, although it requires a large overall amount of equipment.

The voting type of redundancy is of little value here since the voters

will form a significant portion of the network, and unlike the cases

discussed in Sec. II-A-2-a, the voters cannot be replicated conveniently.

Thus the reliability of a large set of nonredundant voters will essen-

tially specify the reliability of the entire net. Particular timing

problems are encountered in applying the voting technique to the

diffusion register of Sec. III-C-2-b. in that each copy of a replicated

register operates asynchronously. It is possible to consider additional

redundant channels associated with the commutation circuits, and then

employ the error-correction techniques discussed in Sec. II-C-2. However,

it is felt that the additional equipment required for the decoding might

result in too costly a system.

* On a qualitative basis we note that if complex blocks are replaced

then a large number of spare blocks must be available, and if small

blocks are replaced the attendant commutation circuits tend to be

more complex than the replaceable blocks. Of course various policies

are possible whereby large blocks are replaced, but repaired off-line.
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Since the commutation networks can be modelled (as in Sec.

III-C-2-c) as a net of switches, it appears feasible in the context

of this model to specify additional switches beyond the minimal number

required, so that modules are still connectable in the presence of

switch failures. We have considered the problem of synthesizing such

failure-tolerant switch networks considering two types of switch

failures--permanent shorts and permanent opens--and the resultant in-

crease in cost is not severe.

For example, consider the nonredundant double-level order-

preserving switch network of Fig. lll-C-14(a) with parameters N 1 = 4,

N 2 = 4, M = 2. A network containing only 8 additional switches which

is single switch-failure-tolerant is shown in Fig. III-C-14(b). It

is clear that an additional channel is required on the intermediate

level since the shorting of a switch connecting to a faulty input or

output module will cause the pertinent intermediate line to be inopera-

tive. On an intuitive basis we note that there exists a Moore-Shannon 214

type two-level single fault-masking hammock net, between each pair of

input and output modules which are connectable.

A double switch-failure-tolerant network, requiring 32 redun-

dant switches, is shown in Fig. III-C-14. The synthesis techniques

illustrated here can be extended to specify switch networks with arbitrary

failure tolerance, by noting that for each additional failure an addition-

al level, and an additional channel for each intermediate level are re-

quired.

There are several unanswered practical questions concerning

the applicability of the spare-bath technique. Means must be provided

for the diagnosis of the commutation network in order to locate sus-

pected faulty switches. It is not clear at present what is the optimum

diagnosis policy, but it appears that the exhaustive checking of all

connection combinations in a large redundant commutation network will

result in lengthy tests. In this instance a good policy might involve

waiting for a switch failure, and then using the information thus de-

rived, concerning the location of the faulty output channel, to form

a shorter test.
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Moreover in the implementation of a redundant switch network,

possibly as a combinational net, care must be taken so that single

component failures do not result in multiple equivalent switch failures.

The problem here, however, is not as formidable as in the case of most

multiple-output networks, in that there is little dependence between

the outputs of the commutation network. An important question is, for

example, "In a network which can tolerate at least single switch fail-

ures, what multiple failures can be tolerated?" The answer to this

question would lead to designs whereby selected portions of the net-

work could operate dependently.

We have not yet considered ways to incorporate redundancy

into the cellular commutation networks considered previously. However,

it appears that provision can be specified for bypassing faulty cells

in the path-delineation phase. It is not presently clear how the by-

passing instruction can be reliably implemented.

f. Conclusions and Problems for Future Study

In this Sec. III-C-2 we have presented the results of an

initial study concerned with the synthesis of the commutation circuits

required to effect the reconfiguration of modules upon the location of

faults. This exploratory examination was primarily concerned with a

simple model where each module of a given array (called the input array)

is required to transfer data to a module of an output array, and where

spare modules are present on both arrays.

One approach to the commutation-circuit design problem is

based upon a diffusion register of speed-independent cells. This net-

work, although it is attractive because of an economical design, exhibits

several drawbacks. The operation is slow because the data is transferred

through many sequential cells, and also it appears to be difficult to

incorporate low-cost redundancy into the design.

A somewhat different approach to the problem was considered,

based upon a multiple-input, multiple-output combinational net, which

could be modelled as a network of single-pole single-throw switches,

somewhat suggestive of a telephone exchange. The problem of deriving
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networks of this kind which contain a minimal number of switches was

considered; although many networks which appear to be close to minimal

were synthesized, the global minimum has not been achieved. The

solutions obtained appear to be adequate in the engineering sense,

however. Techniques were discussed for the practical implementation

of such networks and some attention was directed towards the realization

of failure-tolerant implementations. In addition cellular implementations,

which afford simple control operation, were briefly discussed.

Many questions have been uncovered in this brief examination.

The problem still remains, for the simple model of the two reconfigurable

arrays, of determining the globally minimal switch networks for both

total and partial commutation networks. There remains also the problem

of synthesizing improved economical and reliable implementations.

3. Programmable Processing Modules

In this section we describe the detailed design features of a

modular arithmetic processor where the functions of computation, storage

and primitive control are all combined in an iterated set of replaceable

modules.

a. General Structure of a Modular Processor

The module to be described was designed to be suitable for the

composition of a reconfigurable parallel processor for arithmetic and

Boolean operations. A number of the design features of the module make

it attractive for other system uses. These are described following the

explanation of its functioning within a parallel processing unit.

Many of the logical processes in the central processor of

a bit-parallel computer are naturally realized in iterative structures

such as registers, counters, and accumulators. In collecting the logic

elements that process the various words into modules, there is a choice

to be made as to whether the collection is bit-oriented or word-oriented;

i.e., whether a module will process corresponding bits of a number of

words, or whether it will process all the bits of a single word.
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Thus, if a processor serves w words of b bits each, if up to

t words are active at a given time, and if each bit has a total of s

input and output signals associated with it, the following dimensions

result from the two approaches:

Bit-oriented:

b modules

st leads per module for signals

t log2w leads maximum @ per module for selection of active

elements.

Word Oriented:

w modules

sb leads per module for signals

1 lead per module for selection of the module.

For the word lengths and numbers of active words common in

general-purpose computers, sb is substantially greater than t(s + log 2 w);

hence the bit-oriented approach would result in modules with substantially

fewer leads. As mentioned previously, this tends to increase the

reliability of the module; it also reduces the number of switch points

in a reconfiguration network.

These arguments are the motivation for the design example of

a reconfiguration parallel processing unit, illustrated in Fig. III-C-15.

The processor is composed of n identical functional modules, where n

may be greater than the number of digits of the words to be processed.

Adjacent modules exchange data bidirectionally, with outputs BOL and

C O _ taken to the left and BOR taken to the right. The set of outputs

'{B_I)oL' B(2)OL' "'" , B_)), and the set of inputs (B_I), B_2), ..., B_n))

are taken in parallel, and are joined to the external system by a

commutation switch of the kind described in Sec. llI-C-2. The set of

modules also communicates with an external control as follows: (i) the

BOL outputs of the first and last modules provide overflow and underflow

@ This result is seen as follows. In order to specify sets of w words

each containing O, i, 2..., t words, then log2 _;)1 (_> + ...

+ (_)_ _ tlog2 w bits are required.
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D

status information to the control in arithmetic operations, and (2) the

control issues coded microcommands on a set of buses M, and coded register

address information on a set of buses X. Both sets go to all modules.

Within each module the X information specifies the selection of a bit

of stored information, and the M information specifies the logical

operation to be performed.

A key feature of the system is the method of reconfiguration.

If a given stage fails, means are provided for shifting its function

and the functions of all stages of higher order to the corresponding

next stages of higher order. For the data that flows between adjacent

stages, this shift is accomplished simply by logically short-circuiting

the faulty stage, under the individual command of the signals SI, $2,

... S . These signals are assumed to be derived from an external mainte-
n

nance control source. For parallel-access data, the commutation switch

must be designed so as to displace all bits of order higher than a given

index, for any index, preserving order in the displacement. The design

of such switches is discussed in Sec. III-C-2. This mode of reconfigura-

tion makes possible the use of all spare units, if needed, no matter

what the configuration of faulty stages, without the necessity of

providing that a given spare be capable of being switched into any

faulty position.

In the next part of this section, the interior design of the

module will be described; and in the following part, illustrative micro-

programs will be given for several familiar logical operations.

b. Module Description

The module will be explained with reference to Fig. III-C-16.

The main data operation is accomplished by a full-adder network, labeled

Z, with inputs a, b, c and outputs s (sum) and c O (carry). The accumulator

flip-flop A may record either s or c. The b data is obtained from one

of a set of storage elements 81 , ... , 8k , belonging to system registers

i to k respectively, or from one of three external inputs BIL , BIR , and

BIE , corresponding to the b outputs of the left and right cells and the

external system input, respectively. The k internal sources of b data

are selected by a decoder, with external inputs X and outputs X1, X2,
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FIG. Ill-C-16 MODULE FOR A RECONFIGURABLE PROCESSOR
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..., Xk.* The external inputs are selected under the commands YL' YP'

YR" Shifting operations may be accomplished by a combination of commands;
th

thus if Xj and YL are energized, all the bits of the j word will be

presented to the b inputs of the adder networks of the modules one place

to the right.

The value of the A element may be read out as an input to the

adder, a, and as the data input to the set of _ storage elements. The

c input is equal to the external CIR input in arithmetic operations, and

zero in vector operations. The various commands WB, WA, RA, V, Sc, Y,

YL' Y and YR are derived from external command signals M. Finally ifP

the stage is allowed to operate normally (indicated by the signal S h

FALSE) the outputs BoR,BoL , and COL are equal to B, B, and c O respectively,

while if the state is to be shunted out these outputs are equal to BIL ,

BIR , and CIR respectively. The details of the logic are given in Table

III-C-4.

Using the data and control logic described, it is possible

to construct a number of useful operations that can be programmed to

accomplish a variety of useful functions. Table III-C-5 contains a

list of such basic operations, conventionally called microoperations.

The following notation is used:

(i) A refers to the set of A-elements.

(2) By (x) refers to a set of B-type data elements selected

according to the address index x, where x = I, 2,

..., k for the k internal sources, x = X for the null

input, and for shift-index y = I, L, P, R, for Internal,

Left-, Parallel- and Right-external sources. If no

y is specified, y = I is understood. Thus, for example

(3) refers to the presence at each adder b-input
the stored B bit of word 3 of the module to the left.

(3) B0 refers to the set of module outputs; in active

modules B0 = BOL = BOR-

* Providing an identical decoder to all modules causes the total parts

count to be high, but the separate decoding increases reliability by

decreasing the number of module terminals, and by reducing the damage

due to a fault in a decoder. Also, it may now be noted that another

means is available for accommodating faults within single storage

elements, aside from shunting out the entire stage; that is, to
assign the function of the entire register to which the fault element

belongs. This may be done by changing the address code externally,
at the central control unit.
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Table III-C-4

LOGIC EQUATIONS FOR A PROCESSING MODULE

Storage elements: 8 = (81 , 82 , .... 8k); A

Data Inputs: BIL, BIR, BIp, CIR

Contro] Inputs: X = (Xl, x2, ..., Xs); M = (ml, m2, ..., m e )

Maintenance Input (for Shunting Stage): s h

Storage Selection Variables Decoded from X: X 1, X 2, ..., X k

Control Variables Derived from M:

W B (Write B) Y Read External B

W A (Write A) YL Read B L

R A (Read A) Yp Read Bp

V (Vector Operation) YR Read B R

S ( Sum-Carry Choice)
C

Intermediate Variables :

Selected Internal 8

Selected External 8

Composed Inputs to Adder:

a=A RA

b = Yt_i + Y BE

c =VCIR

Adder Outputs: s = Parity (a, b, c)

c 0 = Majority (a, b, c).

Data Inputs to Storage Elements

Element

A

8i, l<i<k_

Data Outputs:

!

BOR = S h 81 + S h BOL

I

BOL = Sh 81 + S h BOR

COL = S h e O + S h CIR

81 = X181 + X282 + ... + Xk8 k

8E = YLSL + YpSp + YRSR

Change Condition New State

WA s S + S'cC C

W B a X i

A -- a
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Table I II-C-5

BASIC MICROOPERATIONS FOR A MODULAR PROCESSING UNIT

Micro-

operation
Code

M1

M2

M3

M4

M5

M6

M7

M8

Symbolic

Operation

A<--0

A .-B (x)
m my

A <--A'B (x)
m my

A+-A EB (x) 7, c o_ _ -y

Description

Clear A

Load A from a specified B

Accumulate logical product of A

and a specified B

Accumulate sum of A and a specified

B, with initial carry

A <--A C)By (x)

B (x) .- 0

B (x) _A

B0 = B (x)

Accumulate mod-2 sum of A and a

specified B

Clear a specified internal B

Copy A into a specified internal B

Read a specified B at the B0 output

Table III-C-6

MICROOPERATION CODES

M I

M2

M 3

M 4

M 5

M 6

M 7

M 8

B Spec

Shift Index

Y X

0 1

y x

y x

y x

y x

0 x

0 x

B Control

Write B

0

0

0

0

0

1

1

1

A Control

Read A Write A

0 1

0 1

1 1

1 1

1 1

0 0

1 0

0 0

Logic

Vector

Operation

Sum/Carry

1/0

Table III-C-6 gives the appropriate excitations of the

internal control signals required to realize the given microoperations.
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In the next part, microprograms are presented for several

familiar processes.

c; Microprograms for Common Functions

The basic microoperations given for the processing module may

be applied to a cascade of modules in obvious ways to realize the behavior

of familiar computer functional units, such as a bidirectional shift

register, a counter, and an adder. Subtraction may be accomplished by

adding the modulo-2 sum of the subtrahend (obtained by applying microcode

M5) to the minuend, with an injected carry, C O .

The structure is also obviously well suited to serve as a set

of index registers, with built-in adder for index arithmetic.

A program for arithmetic multiplication is given in Table

III-C-7. All the components of this process are held in the B registers

of a single processor, including Multiplier, Multiplicand, Product, and

Cycle Counter; hence these components must be processed serially. The

program loop has ten significant time steps. In conventional practice,

independent structures are used at least for the multiplier and the

cycle counter, with the advantage of greater parallelism, and at the

cost of many more data paths.

A program for decoding a binary vector is given in Table III-C-8.
.th

The object of the program is to yield a 1 at the output of the j stage

of the processor, where j is the binary-number equivalent of the binary

vector. The calculation employs a set of vector constants c(1), c(2),

etc., stored in the B registers, as shown in the table. The program is

the sequential equivalent of 2m-1 combinational functions; for example,

the function at stage i is

(x I ) (x 2 ) (x m )

Pi = el(l) • c(2) • ... • c(m) , 1 i 2m-1 ,

where a given c is taken directly if its exponent is true, or complemented

if its exponent is false. For the vectors indicated, this process results

in Pi = 1 when (x 1, x2, ... , Xm ) is the binary equivalent of i, as

desired.
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Table III-C-7

MICRO,PROGRAM FOR MULTIPLICATION

Register Use

B (I) Multiplier*

B (2) Multiplicand*

B (3) Product

B (4) Cycle Counter

Program

Step Conditiont

1

2

3

4

Operation

A <---- 0
n

A _ A ZB I (3) 7.C O

B (4)_--A

_A _----BR (4)

5 B (4)_- A
m

6 B 0 = B 1 (4)

7 B = I Exit
n

90 B 0 = 0

91 B 0 -- 1

10

11

so = BL (S)

LSD = least significant digit

MSD = most significant digit

A .----_BL(1) B_-O-- ' n

A _ _SL (1) B_-I-- * n

B 1 (1) <---_A

_A<---- BL (3)

Description

12 _0 = 21 (1)

131 Bn = 1 _ *-- A Z21 (2)

14
BI (3)<---_

Return to Step 4

Clear Accumulator

Start Ring Counter

Store Count

Load and shift ring
counter left

Store count

Read Count

Count ended, multi-

plication ended

Read product, looking

right, test

Load multiplier, shifting

right, set MSD = 0

Load multiplier, shifting

right, set MSD = 1

Store multiplier

Load product, shifting

right

Read multiplier, test
LSD

Accumulate multiplicand

into product

Store product

* Assume factors in place at start

# If condition is not satisfied, skip step.
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Table III-C-8

MICROPROGRAMFORDECODINGA BINARYVECTOR

Register Use

Register Function

B (I) constant c(1)

B (2) " c(2)

B (S) " c(3)

B (4) " c(4)

B (5) Input vector

B (6) Temporary product

Program

Step Condition Operation

Initial Value

(i 0101010)

(110011O0)

(11110000)

(11111111)

(0 0 0 0 0 x3x2x 1)

(oooooooo)

Description

1 A <---- B 1 (4)

2
B (6)_---A

3 A _-----BL (5)

4 B (5) +--- A
m

5 A _ BI(i)

6 _Bo = _BI (5)

7 B 0 = 0 _A _-- _A(_B I (4)

s A _-- A-B I (6)
9 B (6),__A

Load accumulator to i
m

Store temporary product

Load accumulator to input

vector shifting left

Store input vector

Load first constant

Read next input vector bit

Complement first constant

Accumulate first logical product

Store temporary product

Repeat steps 3 - I0 twice more, replacing B (I) first by B (2), then by

B (3)
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For example, for m = 3, i = 6, the binary vector for i = 6 is 011.

Then P6 = (0)0 (1)1 " (1)1 = 1 1 1 = 1.

An alternative way of realizing this function is simply to

subtract the number 1 from the binary vector, treated as a number, until

the value zero is reached, and at each step shift a fiducial 1 digit

one stage to the left. This process would take an average of 2m-I

major steps, compared with the m major steps of the given process.

d. Other Uses of the Module

The module described has a number of features that make it

useful for realizing general logical functions. For example, suppose

it is desired to realize an arbitrary switching function of d variables

where d _ 2k. If the truth table (with column elements tl, t2, ... tk)

for the function, is stored in the like-index _ elements of the module

and the variables are applied to the X decoder inputs, the resulting

_I line realizes the function

_I = tl Xl + t2 X2 + "'" + tk Xk = _ (Xl' x2' "'" ' x d)

where X. is the 1-indexed i th
i min-term of the set of d variables; _i

may thus be set to be any switching function of the d variables by

proper choice of the t's.

As a further enhancement, the s output of the adder may be

set to provide the function

s =B (xI, x2, ..., xd)Qv'c,

where V and c are single, independent variables. This form makes the

module well suited to the realization of so-called "ring-sum" canonical

compositions of arbitrary switching functions.
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e. Problems for Further Study

The following problems for further study are evident:

(a) Study augmentations of the given design that enlarge

the range of applications.

(b) Develop efficient means for testing the module.

(c) Study means for ensuring that the stage-shunting

action may be accomplished reliably, e.g. by

fault masking.

(d) Consider designs which incorporate register bits of

more than one index.

(e) Consider module designs that incorporate more control

functions.

4. Programmable Control Units

a. Uses of Programmability in a Control Unit

With few exceptions the control units of modern computers have

a fixed logical structure. In self-repairing reconfigurable computers,

several reasons may be distinguished for making the control unit a

variable structure, subject to external programming. The major uses

for such variability are the following:

(i) To allow for failures in functional blocks by

changing the hardware address of the block em-

ployed for a given function

(2) to allow for modification in the microsequence for

a given order, if hardware capability for that

order is lost

(3) in the control unit of a given processor in a

multiprocessor, to allow for specialized operation

of the processor by assumption of a special order

code

(4) to accommodate faults within the control unit itself.

In the first three uses, the variability in operation could be

achieved at the program level; but providing it in the control unit

permits greater compactness in the order code, or higher normal speed

of operation, or both. The benefits of the fourth use depend upon how
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the reliability of the unit is affected by the added equipment needed

for the programmability.

In the next part, several methods for achieving such program-

mability will be discussed.

b. Approaches to the Structuring of Modular Programmable
Control Units

Fixed-function control units are usually quite complex in

structure. The criteria of feasibility and modularity suggest the

use of a high degree of regularity in structure. In this part, three

approaches will be considered that emphasize such regularity. The

modularization of control units is currently a subject of widespread

investigation, and the schemes described should be taken only as

examples of possible approaches.

i) Control Based Upon a Microprogram Memory Store

The well-known microprogram structure Sa° for control is

well suited for realizing a programmable control unit. It employs an

addressable memory, the contents of which are called a microprogram,*

and the state of the central unit is defined by the memory word currently

selected. Each such word carries information specifying (i) an output

excitation, and (2) the address of the next word (state) or words which

may be its successor in a program sequence. The output excitation in-

cludes both the specification of functionsl units--e.g., registers--and

of function--e.g., shift operation. In operation, the code for a given

machine order is used to address and retrieve a stored microorder;

thereafter the sequence of accesses is self-sustaining. The result is

the production of an arbitrary sequence of control signals that im-

plement the machine order.

* Early advocates of this scheme proposed that the stored microprogram

be alterable, but almost all realizations have employed permanent-

storage memories. The present discussion, of course, assumes variable

storage. An interesting scheme combining fixed and variable stores

has been proposed by Grasselli. 112
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Several design approaches may be followed to provide for

branching within the sequence. One known scheme is to add special logic

to the access switch, so that when the address specified by a branching

instruction is applied to the access switch, the memory line selected

depends upon the state of some external logical variables.

The following scheme (which is believed to be original)

does not require any augmentation of the access switch.

Let the address be the base-2 number specified by the

m-bit vector (X, Y) = (XO, X1 ... Xa_1, YO' ... Yb_l), with x digits

having lower significance; and in each word, in addition to the X and

Y segments, let there be a bit B, which, if true, signifies that the

word is a branch point; then,

(1) in a nonbranch word, the X digits are
interpreted as the least significant

digits of the address of the successor

word, while

(2) in a branch word, the X field is interpre-
ted as a mask upon the external control
variables, such that if xi = 0, the i th

address digit is 0, while if xl = l, the

ith address digit is the i th control

variable, say zi.

For example,

let (X, Y) = (0101, 10110),
for B = 0, next address = (0101, i0110), while

for B = i, next address = (0z 2 0z4, loll0).

By this scheme, up to 2a-way branching is possible at a

given step; however, if two branches refer to the same successor, at

least one will have to pass by way of an intermediate nonbranching step,

which will have a full range of addressing. A limitation of the scheme

is that as the number a of external variables increases, the number 2m-a

of branch points decreases. One way of extending the number of usable

external variables would be to decode the X variables so as to select

one of 2a external variables as a single binary condition. This method,
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with some refinements, is described by Kampe. 144 A general structure

covering these variations is illustrated in Figure III-C-17. Data paths

for modifying storage are not shown.

It is clear that various schemes may be devised that do

not require use of a special access switch; this means that it is

possible to use main memory as a backup for a microprogram store, in

the event that part of the microprogram store is lost because of a

permanent failure.

Another attractive way of accommodating faults in the

store is to use an associative memory. Such a memory provides for

relocation of words within memory without change of address code; but

of course the given fault must be localized to a few words in its

effect in order for relocation to be useful.

Finally, it may be observed that all the methods of

error control for memories, such as error-correcting codes, may be

employed to increase the reliability of the control unit.

One of the main limitations of this approach is that

large numbers of branch conditions, and complex branch conditions, are

not handled with great flexibility. Further development of the approach

should seek to increase this flexibility.

ACCESS STORAGE

INITIAL
ADDRESS A

BRANCH Z
CONDITIONS

FUNCTION

UNIT

TA-55flO-48

FIG. III-C-17 A MICROPROGRAM CONTROL UNIT
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_) Control Using a Programmable Cellular Network

The use of a network of logic elements clearly provides

more complexity of logical operation than does a similar number of

elements in a memory structure. Recent investigations (by S. Wahlstrom

and others) at Stanford Research Institute have indicated the practical

feasibility of building logic networks with substantial variability in

function. These investigations are part of a general study of cellular

networks, i.e., networks of logic modules, having a uniform, primarily

neighborly interconnection structure 21°'21.'212'285 the approach con-

sidered provides for storage of information within the cells of such a

logic array. This information would specify both the logical function

performed by the cells, and the choice of particular connections of a

cell to its neighbors and to signal buses, from among the available

connections.

An example of such an array is illustrated in Fig. III-C-18.

The light lines indicate the signal paths available at each cell, the

heavy lines indicate the particular paths that are active in the illustrated

design, and the dashed lines indicate the paths used to program the array;

the x variables are the inputs, the F variables are the outputs, and the

letters a, b, ..., i represent the logic functions realized by the

X X 6 X. X 8

x2
X3 i

x,

m

-_- PROGRAMMING
DATA

I

m

F I F2 Ta_558o-64

FIG. III-C-18 A PROGRAMMABLE CELLULAR LOGIC NETWORK
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individual cells. In the arrays studied thus far, typical functions are:

a set of combinational functions of two or three variables; a single

universal function (e.g. NOR) of six or seven variables; or a single

flip-flop.

A more detailed view of a cell is given in Fig. III-C-19.

The information stored in box f controls the functions performed by a

multifunctional logic network N, and the information stored in boxes

t, u, v and w controls the connections of the cell terminals to the

inputs and outputs of the network N. Signal paths for the introduction

of program data are indicated by dashed lines. Clearly, program data

can be designed to compensate for faulty cells.

The number of storage elements needed for control of a

cell is substantial, but with the advent of microelectronic arrays of

high component density, the cost of programmability may not be prohibi-

tive. The most natural form of storage would be flip-flops, which would

allow the use of the same technology as the controlled circuits. This

has the possible disadvantage of volatility of information with loss of

power, but it would seem to be quite a straightforward matter to record

the program state of a network in the main nonvolatile system memory.

This example is meant only to illustrate the basic ideas,

since there are many possible variations in cell functions, in inter-

connection structures, and in the means of introducing program data.

The general design problem, of course, is to develop arrays that have

LOGIC
VARIABLES

PROGRAMMING
DATA

FUNCTION
CONTROL MULTI FUNCTIONAL

NETWORK N

., TA-5580--65

FIG. III-C.19 DETAILS OF A PROGRAMMABLE CELL
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a good combination of flexibility and economy. Additional design

problems of special relevance to reliability are

(I) The design of arrays that are easy to test

and diagnose

(2) The design of arrays that provide for avoidance

of faulty cells and connections with minimum

sacrifice of nonfaulty elements.

It is to be expected that cellular networks are, in

general, easier to diagnose and reconfigure than noncellular networks.

3) Control Based upon a Network of "Universal" Logic
Modules

Advances in microelectronics have resulted in an increase

in the potential complexity of prefabricated networks. Since the number

of possible switching functions grows exponentially with the number of

variables, a serious problem of standardization of fabrication arises

because of the large number of different networks that are needed to

realize arbitrary functions.

It is well known that a given m-input combinational net-

work may be used to realize a number of functions of the m variables,

by permuting and complementing the input variables at the terminals.

If it is permitted to tie terminals together or to apply constants

arbitrarily, the number of independent input variables, say n, is of

course less than m; but the fraction of the total number of possible

switching functions of the n variables that may be so realized is poten-

tially greater than the number that may be realized by permutation and

complementation at an n-input network. It is not at all obvious which

networks offer the greatest flexibility for such realizations. In

particular, it would be very useful to have a network which provides all

such functions for some appreciable number of variables. Kautz has

suggested the problem of finding universal logic modules (UfO's). These

are defined as follows:

Consider a (combinational) logic net with m in-

put terminals and two (complementary) output

terminals. The m input terminals may be connected

freely to any of 2 (n + I) source wires, carrying
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D

the variables, Xl, Xl, -.., Xn, Xn and the con-

stant signals zero (0) and one (i), respectively.

If under arbitrary connections of this sort the

output terminals produce all n-variable Boolean

functions (and their complements), f, f, then

we refer to the net as an (m,n) ULM. The princi-

pal questions associated with such nets are:

(i) Find ULM's with m = minimum for n up to say,

4 or 5.

(2) Determine the dependence on n of the minimum

m = M(n).

(3) Alternatively, find good estimates (upper

and lower bounds) on M(n).

This problem is currently under investigation by Kautz,

Elspas, and Stone at Stanford Research Institute under Institute sponsor-

ship. The function F3(a , b, c) = a Gbc is readily seen to be universal

for two variables. Investigations have disclosed that all functions

of three variables may be obtained from the function of five variables

!

F 5 (a, b, c, d, e) = e F 4 (a, b, c, d,) + e (abc),

where F 4 is the Harvard function of index 87. F 4 may be represented by

the set of min-term indexes (0, i, 2, 5, Ii, 12), or by the expressions

= + C + dca = a (dcb' + d'c'b).F 4 b'a' (d' ') '

Minimal functions for more than three independent variables

are not known, but upper and lower bounds have been investigated. The

following limits are known for M(n), the minimum m for an (m,n) ULM

for the next few values of n:

6 < M(4)< s,
m

i0 < M(5) < 18, and

17 < M(6) < 37.

If the value of M(n) proved to be excessive for the n of

interest in a particular design, it would also be useful to have a small

set of modules that together would provide coverage of all switching

functions of n variables, or even of a large subset of all the functions.
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For the realization of a reconfigurable control system

for a computer, it would be necessary to provide controllable means

for permuting, complementing, and busing the inputs to a ULM. A

programmable universal logic module (PULM) could then be composed, as

illustrated in Fig. III-C-20 of an (m, n) U.L.M. (labeled U), fed by

an m-input, n-output connection network (C), which can be programmed

by an external input. The connection network itself must be rather

complex, and it is not inconceivable that using a larger value of m

than M(n) may result in the more economical overall design.

For the large number of variables found in a modern

control unit, it is clear that a number of PULM's would have to be

combined in some larger network. For maximum reconfigurability, the

interconnections within that network should have some degree of

programmability, both for modification of the control functions and

for the replacement of faulty PULM's. Such a control system is sketched

in Fig. III-C-21.

Several completely open questions pertaining to the

design of such a system, in addition to the problem of ULM minimization

already mentioned, are as follows.

(i) The design of the internal connection
network C

(2) The design of the external connection

network N to achieve a useful degree

of flexibility

(3) Suitable means for incorporating memory
within the overall structure.

The present discussion has been concerned with combina-

tional logic networks. The notion of universality may also be applied to

sequential networks, and, practically, it would also be desirable to

have modules with flexible, even if less than universal, state behavior.

This topic is currently being studied by a number of investigators. 229'2s5

The design of simple multipurpose combinational-sequential modules has

also been discussed by Ledley. 177
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IV CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

A. Conclusions

In discussing the conclusions of the report it is convenient to assess

our results on the basis of the goals of the study set forth in See. I-A,

which can be summarized as follows:

(i) To examine the known techniques for reliability improve-

ment to determine their adequacy for the achievement of

long mission life.

(2) To conceive and evaluate new schemes of system design

and operation that offer promise of advancing the state

of the art.

(3) To recommend future directions of research which will

aid in the improvement of present techniques and also in

the development and realization of new schemes.

Each of these three areas received significant attention during the

course of the study as reviewed below:

(i) In the examination of known techniques, the approach

taken was to distinguish those sections of a hypotheti-

cal spaceborne computer to which distinct problems of

reliability apply, and to assess the utility of existing

reliability enhancement techniques in the light of space-

borne requirements and of advances in device technology.

Most of the logical design concepts previously examined

have applied to static error control--in particular, to

fault-masking techniques. Several significant analytical

problems have not been satisfactorily solved; these

problems involve the optimum application of the techniques,

and the estimation of the reliability improvement realized

by the techniques. However, the results which have been

obtained indicate that the exclusive application of present

static error-control techniques cannot lead to designs

which achieve the required mission life under the severe

constraints of the spaceborne environment. We conclude,

however, that fault masking techniques are very useful

for the protection of limited crucial functions, and that

existing known error-detection schemes are useful for

diagnosis, e.g., as illustrated by the use of error-

checking codes for arithmetic processors or for sequential

circuits.
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(2) In the study, a number of error-control processes were

distinguished that, if implemented reliably, are capable

of realizing substantially higher reliability than can be

achieved by fault masking alone. These schemes relate to

dynamic error control, in which a computer is subject to

reconfiguration in structure and program. This mode has

been discussed in recent literature, but the study has found

a substantial lack of design knowledge appropriate to the

practical realization of a computer exhibiting a capability

of automatic diagnosis and reconfiguration. Indeed of

primary concern here is a new viewpoint on the overall

design of a computer system, including the design of its

stracture, and the coordination of the various maintenance

and computational processes.

In summary, it is suggested that in order to achieve the highest

levels of reliable performance, an advanced spaceborne computer will

need to have the following structural features to a high degree:

parallelism of logical operation, modularity and programmability of

functional modules, regularity and programmability of interconnection,

and autonomous capability for fault diagnosis and the control of re-

configuration. A number of error-control techniques, both fixed-

structure and variable-structure, will be needed to enhance the reliability

of basic functional units. These needs are summarized in the next section.

In addition to the general conclusions stated above, many conclusions

have been derived concerning particular aspects of the analysis and design

of various reliability schemes. The reader is referred to the individual

sections for detailed discussions of these conclusions.

B. Summary of Needs for Technique Development

We have distinguished the following major needs for further develop-

ment of reliability techniques:

(i) Fault-masking techniques represent the area of technical

interest that has received the most attention previously,

ranging from the protection of simple contact networks to

the construction of very complex adaptive networks that can

tolerate a wide variety of internal failures. However, it

still remains difficult to actually calculate the probability

of failure of any but the simplest network structures. Thus

new techniques are needed to facilitate the analysls of complex

fault-masked networks. An example of the more general analytic

techniques that are needed is the consideration in Sec. II-A-2
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(2)

(3)

(4)

of comparative advantages between tree-like compositions of

multiple-output switching functions and compositions that

minimize the number of outputs that are affected by a given

element failure. There is a great need for further investi-

gations of this type for different network structures and

for different probabilities of failure amongst the elements.

Most failure analyses assume independence among different

faults. This assumption is made in order to yield an

analytically tractable model, but it is usually unrealistic

from a practical point of view.

An immediate consequence of this last point concerning the

independence of failures is the need to understand the design

of systems wherein it i_s true that faults are correlated only

over a relatively small and easily definable range of elements.

For example, in a modular system, it is desirable to constrain

fault propagation to within the module that first suffers a

fault. If this can be done, then the assumption of fault

independence between modules is tenable. One implication of

this desire to minimize fault propagation between modules is

that such systems will probably minimize communication between

modules; i.e., the modules will be sufficiently complex that

much useful computation can take place entirely within each

one, with communication between them limited as much as

possible to summary-type information that is highly protected.

This requirement on intermodule independence must also involve

the environmental facilities such as power supplies, radiation-

protective devices, and the like. Thus a power-supply failure

that results from a fault in a given module cannot be allowed

to disrupt all the other modules as well. Much work is thus

needed in extending redundancy techniques to the protection

of these peripheral factors.

Another consequence of the desire for modularity and recon-

figurability is the need for the development of the family

(or families) of modules themselves that simultaneously meet

the various system requirements imposed upon them, including:

(a) Compatibility with the dimensions and constraints

in logical and topological structure characteris-

tics of modern semiconductor technology, especially

that of large-scale integrated networks.

(b) Sufficient complexity to allow a considerable

amount of calculation to take place entirely

within the confines of a given module.

(c) Sufficient flexibility for the same module to

be usable for several different computational

tasks depending on its particular assignment

or reassignment within the system, and for the
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family of modules to be complete--i.e., so that
all tasks can be accomplished by the set.

(d) Sufficient accessibility for the modules to be
easily diagnosed on the advent of trouble, and
easily switched from one point in the system to
another.

(e) Suitable scaling of complexity so that each
replaceable module is a small enough fraction
of the overall system for the redundancy ratio
required to be minimized.

As seen in Sec. III-C-3, for the case of regularly structured
functions (e.g., arithmetic or memory) such modularity is not
hard to achieve. For more complex, irregular functions
(e.g., control) several new approaches maybe seen, but more
work is needed to determine the best approach and to develop
practical design.

The problem of diagnosing modules only emphasizes the more
general fault-diagnosis situation. The formal fault-diagnosis
requirements are understood (and have been reported in this
document), but we are still a long way from understanding
approaches that are practical, particularly for systems
as large as the modules of a reconfigurable system will
probably be. As well as more efficient techniques for large
combinational networks, we need more work in serial testing
and in the design of efficient diagnosers themselves.
Finally, the problem of the design of networks that are
intended to be easily diagnosable has only recently been
introduced, either in this report or in the general
literature. Much further work in the utilization of
auxiliary terminals for monitoring purposes as well as for
test inputs is needed. Also the diagnosis of sequential
machines, in general, remains almost completely an "art
form" for any but the simplest machines.

A great deal of work is needed in the programming,
whether by software or hardware means, of systems that
can autonomously (and efficiently) change their program
mix in response to external problem demands, as well as
in response to gradual failures within the modules. Such
approaches should include the accommodationof problems
of highest priority first--resulting in sometasks simply
not being handled--as well as arrangements that involve a
selective degradation of the problems that are handled--
whether involving a decrease in accuracy, or an increase
in solution time.
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(8)

(9)

(10)

(11)

The role of the new generation of integrated circuits must

be more fully evaluated, both in terms of the realization

of specific redundancy techniques that are appropriate for

them, and in the opening up of new possibilities they

imply because of the changing cost factors involved--e.g.,

the diminution of the total number of components as a

prime contributor to expense. Again, with regard to

modularity, it is important that these new components be

designed hand-in-hand with the design of modules that meet

the previously summarized requirements.

The need for better means of calculating the reliability

of static redundant systems has been mentioned, and the

need also exists, and is probably compounded in the case

of dynamic systems. Work is thus required on analyzing

the reliability of systems under different rules of re-

configuration, and under different reliability assumptions

concerning the switching system itself by means of which the

dynamic reconfiguration is actually determined and carried

out.

The design of reliable and efficient interconnection

switching systems for the reconfigurable spaceborne com-

puter remains an unsolved problem area. Some specific

designs were discussed in Sec. III-C, but much work remains

in the achievement of the goal of flexibility of inter-

connection in a design which is itself failure-tolerant,

and also in the design of control modules by which the

decisions are made.

All the various techniques that have been mentioned for

module design and error-control procedures, both in equip-

ment and in programming realizations, must be coordinated

in practical system designs. A number of approaches have

been suggested in the literature which differ in the extent

of the control of diagnosis and reconfiguration that is

invested in special equipment and in the balance of external

and self diagnosis for subsystems. New approaches need to

be considered and evaluated.

A number of special problems are found in the design of

memory systems. Several well-established schemes exist

for data-channel protection, and a number of potentially

useful schemes have been suggested for access-switch pro-

tection, but because of the close interaction of physical

and logical design in memory systems, there is a need to

test various schemes by carrying out complete designs.
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(12)

(13)

A number of possible applications have been noted for

the use of magnetic-logic networks, in which the high

reliability and the lack of volatility of information

with loss of power of this technique may be exploited

without intolerable reduction in system speed. There

is a need for detailed analytical and experimental

work to verify the validity of this preliminary view.

Finally, the spaceborne system will in general be serviced

by some sort of radio link with either the ground station,

or with a "mother ship" control station. However_ the role

that such a link can play is widely variable, depending upon

the distances involved, the time available, and the specific

problem mix as a function of time into the mission. Much

further analytical work needs to be done in determining first

the range of mission characteristics, and then the relative

roles to be played by the ground and spaceborne stations

with regard to diagnosis_ backup computation, control9 re-

configuration specification, idle-time discourse, and storage

of programs.

C. Summary of Suggested Problems for Future Research

Detailed suggestions for future research are presented in the various

sections of this report. In this section we give brief summaries of these

suggestions, listed by sections and appendices.

(1) Consider variations on coding and adaptive logic schemes

to include redundant outputs and integrated restoration

(Sec. II-A-I).

(2) Develop improved computer-aided techniques for analysis

of complex restored nets and methods for globally opti-

mizing placement of restorers; extension of model to larger

classes of fault types (Sec. II-A-2-a).

(3) Develop more economical hybrid fault-masking switchover

realizations, and provide for noise insensitivity; extend to

to multiple-output networks; and incorporate fault masking

in the switching networks (Sec. ll-A-2-b).

(4) Develop efficient realizations for high-order threshold-

function networks using NOR elements (Sec. II-A-2-c).

Develop techniques for applying the parity-check and state-

weight types of redundant-state encoding for error detection

in a range of useful sequential networks (Sec. II-A-3).

(6) Develop codes and encoders that allow efficient, fault-masked

instrumentation of transmission-type error-control codes

(Sec. II-_l).
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(7)

(8)

(9)

(10)

(11

(12

(13

(14)

(15)

(16)

Develop more easily instrumented arithmetic codes for error

detection and location, investigate possible improvements in

residue coding, and compare alternative arithmetic checking

schemes by detailed designs (Sec. II-B-2).

Develop a framework for the design of maintenance programs

that are well coordinated with hardware-maintenance processes

(Sec. III-A-2).

Develop and evaluate new schemes of system organization for

maintenance and general computations, especially those suited

to polymorphic (multi-processor) structures; develop tech-

niques for coordinating the flow of various data and control

information; specify subsystems so as to achieve high

modularity (Sec. III-A-3).

Develop improved techniques for fault diagnosis of large

multiple-output combinational networks, and of important

types of sequential networks; determine good means for

utilizing test points; develop techniques for including

ease of diagnosis in the original design of a network

(Sec. III-B).

Develop efficient means for control of commutation networks

and for avoidance or masking of faults within the network;

develop and evaluate practical path-seeking cellular inter-

connection arrays; extend present investigations to multi-

position switching (Sec. III-C-2).

Develop and evaluate more powerful logic modules; incorporate

aids for fault diagnosis; incorporate fault masking for

crucial functions (Sec. III-C-3).

Develop and evaluate new schemes for realizing programmable

control units, especially to incorporate complex functions

of a large number of variables; develop schemes for micro-

program control to incorporate memory backup and branching

(Sec. III-C-4).

Develop and evaluate schemes for logical error control of

memory access-switch failures; investigate error-control

needs of special types of memory systems (e.g., associative,

fixed); study the interaction of logical error-control tech-

niques and physical design techniques (Appendix A).

Develop practical designs for distributed power-supply system;

investigate feasibility of magnetic switching (Appendix B).

Carry out detailed analytical and experimental evaluation of

proposed all-magnetic logic network schemes (Appendix C).
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Appendix A

ERROR-CONTROLTECHNIQUESFORMEMORYSYSTEMS

i. Introduction

The primary effort of this task is to assess the manner of adding

redundancy to the main memory subsystem of a spaceborne digital com-

puter and the potential gain in doing so, and to distinguish those

areas where more work is needed. Special memory types, such as per-

manent memories and associative memories are not included in this

review. The techniques described are generally applicable to these

memory systems, but special techniques may be advantageous for those

types.

Part 2 of this Appendix presents the model and the assumptions

made in the several analyses. Part 3 examines a redundancy scheme based

upon replication of whole memory modules. Part 4 examines several

schemes for error control applied to the bit-channel, word-select, and

supply and control sections of a memory module. Part 5 describes the

logical design of a parallel encoder-decoder and Part 6 presents the

conclusions and recommendations of this study.

This study has emphasized the present state of the art of memory-

error control; thus the quantitative estimates for the benefits and

costs of the particular schemes described are based upon the use of

off-the-shelf components. The main effect of expected future reductions

in the size of logic components will be to increase the feasibility of

schemes involving complex operations on data and address information.

2. General Discussion of the Problem

The primary function of the main memory subsystem is to accept data,

address and control information, store that data in a specified location

(word register) for an indefinite time, and return it error free upon

demand to the parent system. This basically simple function establishes
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a requirement for four separate functional units within the system. The

data section receives, stores and delivers information, one word at a

time. The access section controls the selection of the word location

being processed. The cycle control section encompasses the sequential

control of the signal sources that accomplish the reading and writing pro-

cesses. The support section supplies operating power and thermal control.

The information and control signals for these functions appear on

a number of busses. The data bus carries the data bits (of which it is

assumed there are b) in a data word to (and from) the main memory sub-

system (MMS). The address bus carries the address information during

either the store or the fetch cycle to specify the address or location

of the word register desired. The cycle control leads provide the

timing and control signals for the individual steps of the store and

fetch cycles. During the store cycle a valid address must be on the

address bus and valid data on the data bus. The specified word register

is then cleared to all zeros and the data word is copied into that

register. The fetch cycle requires only an address. The contents of

the specified word register are copied out onto the data bus and then

rewritten into the word register without change.

The power supply is required to produce a minimum of three forms

of power: one for write drivers, another for read drivers, and at least

one other form for logic circuits. The term environmental control is

used to refer to any necessary sensing and compensation for temperature-

sensitive elements.

The overwhelming majority of the physical storage techniques for

the data sections of present-day main working memories involve some form

of magnetic storage elements. All of these techniques have in common a

strong, complex intermix of circuits with both logic-level binary signals

and analog signals. Furthermore, the analog signals exist in close

proximity both at the driver power level and at low (near-noise) levels.

Much of the art of memory design is in where and how these circuits are

mixed. The wiring itself is an art and must take into account the
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electrical and mechanical properties of the wire, as well as the winding

patterns. The circuit problems are difficult and many. The success

of the memory depends on attention to circuit and mechanical design

details and the behavior of the parameters of magnetic material. In

this Appendix, we consider the data section of the main memory subsystem

as a single, asynchronous entity with error-control capability independent

of the rest of the computer system. Integration of internal and external

error-control schemes is an important problem for future study.

We wish to discuss here the techniques of redundancy for error

protection separately from techniques of good design. To do this we

need a simple functional model of the MMS. The model we will use is

based on the connections to the parent system as shown in Fig. A-I.

ADDRESS
BUS

CYCLE

CONTROL

POWER AND

ENVIRONMENT

DATA INPUT BUS

MAIN MEMORY

SUBSYSTEM STATE OF CYCLE

CONTROL

DATA OUTPUT BUS

TA-5580-30

FIG. A-I FUNCTIONAL CONNECTIONS BETWEEN MAIN MEMORY SUBSYSTEM

AND COMPUTER SYSTEM

The data bus will be gated to a single data register; thus each bit of

any one data word going to and from the main memory system will pass

through this data register. All of the equipment for a single bit
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is called a bit channel. Hence a bit channel includes the gating for a

single bit from bus to register, the gating from register to digit driver,

the digit driver itself, the array of storage cells for that bit, the

digit sense amplifier, the gating back to the register, and the gating

from register to output bus.

The model includes an address register, gated to the address bus,

word drivers for both reading and writing, and address decoders for the

selection of individual word registers. All of the necessary parts of

this portion of the MMS which are required to excite or select a single

word register and make it receptive to digit drive or make it excite a

digit sense amplifier are called an access circuit. The number of

leads threading an excited or selected word register from the access

circuitry is generally what determines the so-called dimensionality of

a memory. The model is receptive to only two types of cycle control--

store (clear/write) and fetch (read/restore). It is assumed to operate

completely asynehronously, i.e., once either cycle is started it will

go to completion in a time referred to as the cycle time, and return

the subsystem to a state of readiness to initiate either type of cycle.

The intersection of a bit channel and an access circuit is referred

to as the bit cell or storage element. The present model is sufficiently

general to represent the wide variety of storage elements available for

spaceborne computers. These include single- and multiple-aperture

ferrite cores, orthogonal-aperture ferrite cores (biax), thin planar

magnetic films (bieore) and thick or thin circumferential films (plated

wire). Monolithic-semiconductor memories do not require the conversion

from logic level to drive level nor the conversion from sense level to

logic level, since they do not exhibit the very large attenuation between

drive and sense analog levels in the bit cell.

There are three primary classes of redundancy techniques which will

be considered when comparing models. They are (i) circuit redundancy,

achieved by using series and parallel connections of components,

(2) logical fault masking, and (3) dynamic error control, achieved by

sequential fault detection and active switchover to a nonfaulty unit.
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It should be noted that circuit redundancy may be applied, practically,

in only a limited number of places due to the reduction in circuit margins

which usually results. Hence, the emphasis in this section is on logical

fault masking and dynamic error control.

There are a number of criteria which could be used for the comparison

among various proposed memory organizations. For spaceborne computers,

the most important of these are (i) power consumption, (2) weight, and

(3) the system success probability as a function of failure of a functional

part within the subsystem.

To develop these criteria for comparisons of different organizational

schemes, we will assume four memory sizes: (i) 256 words X 8 bits/word;

(2) 256 words × 24 bits/word; (3) 4096 words X 8 bits/word and

(4) 4096 words X 24 bits/word. The storage elements are assumed to be

0.03 X 0.018 inch single-aperture ferrite cores. The access is assumed

to be of the coincident-current type, with both ends of the drive lines

available for the extensively used, so-called "switch-sink" type of word-

register selection. This selection scheme requires 4 wires per core.

Data is transferred in and out in parallel, and a cycle time of 1 micro-

second is assumed.

Under these assumptions for w words in the memory, with b bits per

word, there will be (b + w) register cells for data and address registers,

(4b + 2w) transfer gates to move information into and out of the registers

(in both directions in the case of data registers), b digit drivers,

b sense amplifiers, b X w cores, and finally not less than 4(w) 1/4

switch-sink line drivers. These assumptions establish numbers of

primary components.

On the basis of an examination of currently used components, we

have assumed a 30 X 18 mil ferrite core and i inch of _30 copper wire/

core--12 milligrams, and 40 milliwatts per _s/cycle. For these values,

the weight of the copper overshadows that of the ferrite. The weight

of the frames and other packaging components is assumed to rise
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approximately in proportion to the numberof cores. If each core in the

word switches every cycle and the store is cycled at the maximumrate,
b × 40 mWwill be dissipated in the store. (This, of course, does not

account for the power dissipated in the half-selected cores).

For register cells (RC) and transfer gates(TG) we have assumedthe

Fairchild Semiconductor DT_line of integrated circuits and a popular
5-flatpack "mother board." Sense amplifiers (SA) and driver�switches (DS)

are assumed to be gated, and operate with a duty factor of 0.5. Further-

more, no more than b + 4 drivers can be active simultaneously, i.e.,

b digit (inhibit drivers) and 1 switch and 1 sink each for X and Y word

selection.

These assumptions yield:

Register cell

Transfer gate

Sense amplifier

(with threshold R)

Driver/switch

(with terminating R)

2 grams

1 gram

4 grams

4 grams

80 milliwatts

4 milliwatts

360 milliwatts × 0.5

= 180 mW

800 milliwatts X 0.5

= 400 mW

These assumptions yield the following relative power and weight

figures for the basic irredundant memory sizes which are to be used as

standards for comparison.
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Words X

Bit/Word

256 X 8

Total

256 X 24

Total

4,096 X 8

Total

4,096 X 24

Total

Part

16 RC

48 TG

8 SA

24 DS

32 RC

112 TG

24 SA

40 DS

20 RC

56 TG

8 SA

72 DS

36 RC

120 TG

24 SA

88 DS

Weight

(gr)

32

48

32

96

Power

(mW)

1,280

172

1,440

4,800

Cores

2,048

Weight

(gr)

24.5

Power

(mW)

320

240 7,690 24.5 320

2,560

448

4,320

11,200

18,448

1,600

224

1,440

4,800

8,064

2,880

480

4,320

11,200

18,880

64

112

96

160

432

6,144

32,768

93,304

40

56

32

228

416

74

74

393

393

1,180

1,180

72

120

96

342

630

960

960

320

320

960

960
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3. Error Protection by Replication of Whole Memories

a. Triplication with Voting

One of the conceptually simplest means of protecting against any

type of error in the MMS is defamiliar scheme of replication and voting.

In this scheme input data to the MMS from the control leads and the

address and data busses is sent simultaneously to three independent,

irredundant copies of the MMS. During the fetch cycle, the selection

of a particular word register is identical in all three modules. The

output from the individual bit channels is combined with a three-input

voter (assuming triplication) before being placed on the output bus.

Thus, an individual corresponding bit cell in each data register would

be gated to the input of a single voter whose output would drive one

bit position on the output data bus.

The advantages of this scheme are numerous. First, no new design,

redesign, or alteration to the design of an existing irredundant MMS

is required. The only equipment needed in addition to the two full

replicas of the MMS is a three-input voter for each bit position in a

data word. This redundancy scheme, called "TV" for triplication with

voting, would protect against failures in any one module regardless of

whether that failure occurred in the bit-channel hardware, the access

circuits, the cycle control, or the power supply. The cost of such

potential gain is quite high; that is, the redundancy ratio is 3, plus a

small fraction for the voting circuits. Alternatively, for a given size

and weight of memory, the capacity is cut down by approximately a factor

of three. It may be noted that the same redundancy ratio is applied to

all components. Since the components differ widely in their reliability,

the relative reliability, improvement for the various components is quite

uneven in this scheme.

In order to be able to compare different schemes, we assume a single-

aperture, coincident-current ferrite-core design, with a destructive-

readout fetch cycle. The bits of the data words (or characters) are

entered and retrieved in parallel. In accordance with common practice,
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it is assumed that both ends of the word selection drive lines are

available; hence a switch-sink (or driver-switch) scheme is applicable.

It is also assumed that address decoding is done in a diode decoding

tree before the conversion from logic level to power level is made.

In order to assess the potential gain in performance, we let X be

the probability that one bit is in error at the output of a set of bit

channels for a single MMS module.

The probability, Q, that the system is faulty is:

QTV = 1 - [(1 - X) 3 + 3(1 - X) 2 X] b, for the redundant system

QNR = 1 - (i - X) b, for the non-redundant system.

For the 8-bit or character-access case, neglecting higher orders

of X, this reduces to

QTV = 24X2' versus QNR = 8X.

For the word-access case, we have

QTV = 72X2 versus QNR = 24X.

In each case, QTv/QNR = 3X. Thus, the effectiveness of the redundancy

increases with channel reliability.

These probabilities hold regardless of the word capacity of the

memory, although X will increase with increased memory size.

If we assume that a "voter" is approximately the equivalent of a

register cell in power and weight, we can compute the relative costs as

follows.
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Size

3(256 X 8)

Total

3(256 X 24)

Part

56 RC

144 TG

24 SA

72 DS

128 RC

336 TG

72 SA

168 DS

We igh t

(gr)

112

144

96

288

640

256

336

288

672

Power

(mW)

4,480

576

4,320

14,400

23,776

10,240

1,344

12,960

34,600

Cores

6,144

18,432

Weight

(gr)

74

74

221

Power

(roW)

960

960

2,880

Total 1,552 59,144 222 2,880

5,440

576

4,320

14,400

24,736

10,560

1,440

12,960

34,600

3(4K X 8)

Total

136

144

96

48O

93,304

294,912

904

264

360

288

1,056

1,968

68 RC

144 TG

24 SA

120 DS

I, 180

1,180

3,539

3,539

132 RC

360 TG

72 SA

264 DS

3(4K X 24)

Total 59,560

960

960

2,880

2,880
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It is noted that for a large memory (say 4000 words and 24 bits/word)

the cores account for approximately 64 percent of the total system weight,

and the inhibit drivers account for a significant portion of the total

power. Since both the core weight and the inhibit drive power increase

proportionately with the replication order, it is of interest to consider

redundancy schemes which do not require constant replication of all com-

ponents. One example of such a technique involves the use of error-

correcting codes, as described in Sec. 4-a of this appendix. Various

other techniques can be conceived which involve augmenting the storage

section with additional data channels (comprising less than 100-percent

redundancy) and also with additional bits/word for which simple parity

checks are applied; the access circuitry can be protected by triplica-

tion and voting. Such a scheme is particularly attractive for memories

in that the cores probably comprise the most reliable section of the

memory and hence require the least protection.

b. Duplication with Parity Checkin G

The word capacity of the main memory is frequently the limiting

feature in the capabilities of a spaceborne computer system. This makes

it highly desirable to seek techniques which provide suitable measures

of protection and permit the realization of the maximum storage capacity

within given constraints of power and weight.

A considerable measure of protection can be afforded by merely

duplicating (rather than triplicating) the MMS, provided some means is

available for identifying and selecting the valid output. Such a

"duplex" scheme was proposed by Kemp 157 and has been designed and used

on the Saturn V computer, sl In order to provide for a validity check,

an additional bit channel is added to each block of the MMS to permit

parity checking on the output. Inputs are fed to both modules of MMS

simultaneously. During the fetch cycle, the output word is checked for

parity and in normal operation only one output is connected to the output

data bus. This data register is used in conjunction with the one module

so long as parity is correct. With each restore half-cycle, the data
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from this correct data register is used to restore the information read

from the selected module into both duplex modules. On detection of a

parity error, operation is transferred entirely to the other module.

This scheme, called DP for duplex-parity, offers good protection

against all single-bit failures that are detectable by a parity check.

This may be an error in a bit channel or an error in the access circuits

which partially stimulates multiple locations in turn yielding a number

of improper bit channel outputs. By using odd parity, even the failure

of the cycle control circuits to give any output would be protected

against. Errors which cannot be detected by a single parity checker,

cannot, of course, be protected against.

Another important feature of the scheme is that good protection is

afforded against failures in access circuitry that affect a small number

of words. In an extreme case, up to w single-word faults could be

tolerated between the two sections.

The probability of system success, P, for the duplex-parity checker

(DP) arrangement can also be found as a function of the probability of

failure in a single bit channel, S.

P = 1 - Pr(system failed)

= 1 - Pr 2 (1 module failed)

The probability of one module failing is 1 - P (all bit channels in

a module are good) or 1 - (l-X) b. Hence the probability of system

success is

P=l- [i- (i- x)b] 2

P= i- [1- 2(1- x) b+ (1- x) 2hI
P_2(1- x) b- (1- x) 2b

For the character-access case this is

PDP = 1 - 84X 2

and for the word access case

PDP = 1 - 576X 2
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We can extend this analysis to include errors in access and/or

control by considering the following:

Let

X = probability that a bit channel is in error

S = probability that an access and control group (A-C) is

in error;

then the probability of system success is

P = Pr(all A-C good) + Pr(at least 2 out of 3 bit channels good)

+ Pr(exactly 2 A-C good) + Pr(all bit channels good)

P : (i - S) 3 [3(1 - X) 2 - 2(1 - 3)33 b + 3(1 - S) 2 (i - X) 2b

P _ 1 - 3bX 2 - 6bXS - 6S 2

which reduces to

PDP = 1 - 24X 2 - 48SX - 6S 2 for character access

PDP = 1 - 72X 2 - 144XS - 6S 2 for word access.

While the memory capacity, w, does not appear in these results, it

must be understood that the probability of error in access or control (S)

certainly increases with increasing w. As would be expected, as S

approaches zero, the probability of success, P, approaches the value

indicated in the previous paragraph where S was neglected.

The relative power and weight for the duplex modes can be found by

assuming the exclusive-OR gate for the parity check requires approximately

the same power and weight as the register cell. The 9-input parallel

checker for the character requires ii gates and the 25-input word requires

28 gates. These will, of course, be required on both modules within the

duplex (DP) organization. These assumptions yield the following (the

notation 2[256(8 + i)] indicates a system composed of two 256-word

memories, with eight data bits and one check bit per word).
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Size

2[256(8 + I)]:

Total

2[256(24 + 1)]

Total

2[4,096(8 + 1)]:

Total

2[4,096(25 + 1)]

Total

Part

54 RC

96 TG

18 SA

50 DSt

: 122 RC

232 TG

50 SA

114DS§

Weight

(gr)

108

96

72

2O0

476

244

232

200

456

1,132

128

112

72

328

640

Power

(roW)

4,320

384

3,240

10,400

18,344

9,760

928

9,000

23,200

42,888

5,120

448

3,240

10,400

19,208

Cores

4,608

12,800

Weight

(gr)

55

55

154

154

885

885

Powe r*

(roW)

720

720

2,000

2,000

720

720

64 RC

112 TG

18 SA

82 DS

130 RC

248 TG

50 SA

178 DS

260

248

200

712

1,420

10,400

992

9,000

23,200

43,592

73,728

204,800 2,457

2,457

2,000

2,000

_b
Although the duplex scheme is not as costly as the triplication

method (and of course not as powerful from the standpoint of

error correction) it still requires strict duplication of all

memory channels--producing a costly increase in power and weight.

The techniques of the following part are more economical, al-

though providing comparable protection.

t A maximum of 2[9 + 4] drlver/switches (DS) can be "on" at any

one time.

t!

§ A maximum of 29 drlver/switches can be "on .
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4. Error Protection by Redundancy Within a Memory

There are many ways of controlling transient or permanent errors

which do not involve replicating the entire MMS. These fall generally

into two rather natural groups: (i) those that increase the number of

bits per word--i.e., redundant bit channels--and (2) those that increase

the number of address locations--i.e., redundant storage registers. Both

approaches will be discussed in this section. In applying redundancy,

precautions should be taken to avoid overloading heavily stressed circuits.

For example, if a redundancy scheme increases the load on the current

drivers, which are usually stressed more heavily than other parts, they

may be expected to be more susceptible to failures, unless separate

access circuits are added to handle the increased load.

a. Redundant Bit Channels

Many faults may occur independently among the bit channels; hence

the use of error-correctin_ codes may provide an efficient method of

fault masking.

One manner in which this might be accomplished is illustrated in

Fig. A-2. Since the incoming data is assumed here to contain no redundant

bits, the generation of the necessary bits to store in the redundant bit

channels must be done within the MMS during the store cycle. During the

fetch cycle these bits are used to correct erroneous bits from the MMS

before they are placed on the output bus. The number of errors per word

that are detectable or correctable by this technique depends on the design

of the particular error-correcting code. We wish to illustrate here the

practical implementation of such codes for several word sizes.

A familiar and very effective family of codes is the family of

single-error-correcting Hamming codes. Circuits to implement this

scheme for the 8-bit character, the 24-bit word and the 24-bit word

broken into S 8-bit bytes are discussed in Sec. 5.
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FIG. A-2 REDUNDANT BIT-CHANNEL CONNECTION

For an 8-bit byte or character, four redundant bit channels are

required. Besides adding to weight and power dissipation, the individual

drive lines must now drive more cells or cores; hence they must either be

redesigned or suffer some loss in expected reliability. Protection is

afforded against failures in gating, the data register, digit drivers,

storage cells, and sense amplifiers. No protection is afforded against

failure to select the correct word, the encode-decode equipment, or the

cycle-control hardware.

The probability of system success for the single-byte (or single-

character) case can be computed as follows. There must now be 12 bit

channels--8 data and 4 parity. Again X is the probability that a single
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bit (or bit channel) is in error, P the probability that the system is

good, and Q the probability that the system is not good. Then

P (i X) 12 12X(I X) II

Neglecting high order terms,

Q = 1 - P = 66x 2, for the character, versus QNR 8X.

Since this does not take into account failures in the access sub-

system this holds for both word capacities considered. If we now assume

3 bytes, similarly protected to make up a word, we have

3

P [(i X) 12 12X(i X) II
-- + -- ]

and

Q = 1 - P = 198x 2, versus QNR = 24X.

For both cases,

Q/QNR = 8.25X .

The minimum number of redundant bits to protect a 24-bit word against

single-bit errors is 5. Hence, to find the system success probability for

29 bit channels using single error correction, we have the following.

P = (i - X) 29 + 29X(1 - X) 28

Q = 1- P = 406X 2

Each of these cases neglects higher powers of X.
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The relative power and weight are only slightly increased over the

irredundant case and are as follows.

For the character case:

Size

256 (8 + 4):

Total

4,o96 (8 + 4):

Total

256 (24 + 5)

Total

4,096 (24 + 5)

Total

Part

20 RC

60 TG

12 SA

28 DS

24 RC

68 TG

12 SA

76 DS

37 RC

127 TG

29 SA

61 DS

: 41 RC

135 rig

29 SA

93 DS

Weight

(gr)

4O

6O

48

112

260

48

68

48

304

Power

(roW)

1,600

240

2,160

6,400

10,400

1,920

272

2,160

6,400

Cores

3,072

49,152

We ight

(gr)

37

Power

(mW)

480

37 480

590 48O

468 i0,752 590 480

74

127

116

244

7,424

118,784

561

2,960

508

5,220

13,200

21,888

3,280

540

5,220

13,200

9O 1,160

90 1,160

1,426

22,140

82

135

116

372

705 1,426

7,160

7,160

Thus we see that the cost of the protection here is significantly less

than the cost of either the triplication scheme or the duplex scheme.

Although the protection afforded by the triplication scheme is somewhat
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greater than the error-correcting scheme discussed here, if the probability

of an element failure is low then the protection levels are approximately

the same.

For the case where a word is treated as 3 bytes of 8 bits each, the

following costs apply:

Size

256 × 36

Parts

44 RC

148 Tfi

36 SA

68 DS

Weight

(gr)

88

148

144

272

Power

(roW)

3,520

592

6,480

16,000

Cores

9,218

Weight

(gr)

111

Power

(mW)

1,440

Total 652 26,592 Iii 1,440

147,45648 RC

156 TG

36 SA

i00 DS

3,840

624

6,480

16,000

i, 77096

156

144

400

4,096 × 36: 1,440

Total 796 26,944 1,770 1,440

b. Redundant Words

The use of error-correcti_ codes on the bit channels is of no help

in masking faults in the access section. Faults in an access switch

usually invalidate at least one word, and usually a block of words.

Certain faults in the access switch or in the decoding circuits may

invalidate all words.

One straight-forward way of preventing such catastrophic failure is

to subdivide the access equipment into independent parts, each giving

different sets of words, so as to limit the extent of propagation of a

given fault. In use, this requires that the system have the addressing

flexibility to permit transfer of data to different locations in memory.

Such flexibility is well developed in modern computers designed for

281



multiprogramming or for multiprocessing. Its implementation is aided by
use of a special directory table, which specifies the physical location

of memoryaddresses, in groups of addresses knownas blocks, or pages.

This table may be located in an ordinary memory, or perhaps replicated

in several memories, for safety. No discussion of this technique has

been found in the literature, but it would seemto have sufficient merit

to justify further development.

c. Accomodation to Access Faults

A fault in an access system may invalidate one or more words. It

would be desirable to shift the contents of such words to new locations.

One way to accomplish this relocation is to change the address code of

all instructions that call upon that word.

For those words that are directly addressed, the change may be

accomplished by changing the contents of the address field within the

instruction word stored in memory. Determination of those instructions

that address a given word may be accomplished in one of two ways: either

by exhaustively searching all instructions within memory or by waiting

until such references actually occur (at which time the location of the

calling instruction is revealed).

For those words that are accessed by the stepping of a counter or by

some other arithmetic operation, or by a composition of several address

subfields, such changes are impractical. One solution for these kinds

of access is to use an associative memory in which such exceptional

addresses are stored together with the address of the substituted words,

and to drive the memory with address data in parallel with the main access

switch. The output of the associative memory may then be used to sub-

stitute for the nominal, unusable address.

The merit of such schemes is that faults in access equipment may

be accommodated with equipment low redundancy compared to other known

schemes.
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d. Addition of Access Redundancy

A very interesting scheme of error control for memories has been

suggested by C. A. Allen. This scheme uses redundant bit channels plus

the encoder--decoder for error-correcting codes exactly as in the previous

section. The essential addition is that each bit channel is provided

with its own word-access circuits for address decoding, and with read/

write drivers. In this organization, failures in any one set of access

circuits affect only a single bit channel. The error is then corrected

as the word is transferred to the output data bus during the fetch cycle.

This scheme has obvious disadvantages for magnetic memories. The

access circuits must be replicated b + k times. Each of these circuits

must not only decode the address input but amplify the decoded signal

from logic level to drive level. The replication of amplifiers (drivers)

is not likely to be practical. However, future memories may well be

built from techniques which require only decoding--that is, in which the

access information remains at logic levels. Integrated circuits with a

flip-flop for a bit-storage cell are an example.

Much of cycle control is associated with the access circuits. The

rest is associated with transfers, such as from register to bus. If

circuit redundancy is applied to this portion of cycle control it is

possible to design an MMS which is completely protected against single

part failures throughout the subsystem, and which costs considerably

less in power and weight than its TV counterpart.

e. Redundant Access Circuits

Probably more design effort has gone into the development of reliable

access switches than any other part of the MMS. In the area of design

for fault prevention, some knowledge of the mechanism of failures is

required. A very interesting study has been done by Minnick, 11°,11.

based on the assumption that the ferrite and wire portions of memories

are far more reliable than the semiconductor portions. Techniques are

Described in a graduate seminar at Stanford University, Fall 1965.
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then developed which employ magnetic switching elements for address

decoding, and transistors are assumed to be restricted to the driving

of the magnetic switches. Thus, a number of drivers are turned on to

accomplish the selection of a single storage resistor, and the energy

from these drivers is combined in a magnetic access switch to do both

the selection and driving of the specified storage register. The switch

is wired according to certain codes, such as those based on block designs.

The design is such that the failure of a single driver changes only the

amplitude of the current supplied to the selected memory line. A further

development in the design consists of placing a load core on the ground-

return side of the memory lines so that its switching resistance assists

in regulating the amplitude of current which passes through the storage

module, in order to tolerate the variation in current due to a faulty

driver. A further requirement of these selection switches is that the

access lines to memory be single-ended; thus it does not permit a

switch-sink type of decoding. The utility of this technique is greatly

increased if the address information is generated in a redundant code

at the computer, since the drivers require a redundant code for their

excitation. If irredundant addresses are transmitted from the computer

to the MMS, an encoder from the address register to the drivers or from

the address bus to the address register must be provided. Minnick also

considered design techniques for a number of recoders using magnetic

elements. 111

It would be desirable to evaluate the total weight and power costs

of several of the schemes described by Minnick. These costs are probably

very high compared to all-semiconductor realizations, but recent advances

in the miniaturization of magnetic elements may increase the feasibility

of the approach. A disadvantage of the scheme is the small number of

faults that may be accommodated with reasonable cost.

Very little has been published on detection schemes for telling

whether or not the proper storage register has been selected. An

See Section III-C-2-c of this report for an illustration of this method.
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interesting detection scheme has been published by the General Electric

Company 157 as to whether or not any word has been selected or whether

more than one word has been selected. This scheme involves the addition

of one core plane or bit channel, which lacks an inhibit driver. Each

storage register then has an additional core, and since there are no

inhibit circuits, the core switches on read and switches back on restore,

giving a sensible output on every cycle. Two separate sense amplifiers

are used on reading--one set with a threshold level for a single core

switching and the other with a threshold level for two cores switching.

If neither amplifier senses a switched core during a cycle, no storage

register has been selected and there has been improper operation in the

word control. If the single-threshold amplifier switches but not the

double-threshold amplifier, proper operation is assumed. This scheme

gives no indication as to which storage register was selected, but con-

sideration of several access-switch schemes indicates that an exchange

of single register selections due to a fault within an access switch is

extremely unlikely. If the double-threshold amplifier switches, it

indicates that two or more storage registers have been simultaneously

selected during that cycle. This information could be used in conjunction

with parity checks on the data to switch over to an entirely different

block of core memory. This scheme has been given the term "memory-cycle

validation check."

f. Redundant Material in the Storage Module

Single-aperture ferrite cores have proven to be exceedingly reliable

elements and little has been published on redundancy on the element level

within the storage module. The fact that readout requires destruction of

the stored information and relies upon the electronics external to the

storage module to restore the information has caused considerable concern

about the possible loss of information due to transient electronic failures.

Considerable effort has gone into the development of techniques to provide

nondestructive readout (NDRO).
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It is difficult to design an NDRO memory to the same tolerances as a

DRO memory of the same size, speed, and power consumption. The principal

technique of construction is based on the use of some multiaperture

(usually two-aperture) magnetic element. Problems of drive-current

tolerance have led to the use of large structures, with consequent heavy

use of power. Use of more complex (three-aperture) elements can be help-

ful, but this requires extra drivers and wire. These costs of weight,

power, and reduced reliability should be evaluated with respect to the

extra costs of protecting DRO memories by special control circuits.

These weaknesses apply to an NDRO memory which is required to record

new information during its mission. It is useful in spaceborne missions

to have NDRO memories in which writing occurs only prior to launch,

perhaps using externally fed writing currents. In this case, the main

disadvantage is the extra weight due to the use of (generally) heavier

memory elements.

g. Redundant Cycle Control

The function of the circuits within the cycle control is to accept

the two commands from the computer, distinguish between them, and then

generate the detailed sequence of control pulses which will turn on

gates for data transfer, initiate drive pulses, and gate sense amplifiers

at appropriate times. The two primary types of circuits that are used

for this function are tapped delay lines and special counters. Delay

lines may of course be replicated and their outputs combined in majority

voters. For lines in which the expected failure mode is dropout, only

duplication is needed. Fault-tolerant counter circuits have been described

in the literature and they are generally smaller and require less power

than delay lines.

h. Redundant Power and Environment Control

Current must move through the access lines, and hence through the

storage cores, in opposite directions during the write and read portions

of a cycle. This is generally accomplished by having separate current

drivers which operate from power supplies having opposite polarities.
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As temperature increases in a ferrite core, the drive current required to

switch it decreases. This change in drive current as a result of change

in temperature is usually built into the power supply with a temperature-

sensing device to control the voltage of the driver supplies. While

many designs are available to permit this variation in drive voltage with

temperature, no literature has been found on the use of redundant techniques

in the power supplies. A third supply voltage is generally required,

separate from the two just mentioned, to supply all of the logic circuits

within the main memory. Since historically power supplies and turn-on

transients have occasioned a great deal of lost data, it is surprising

that so little attention has been paid to this part of the memory design.

This problem is discussed further in Appendix B of this report.

5. Design of a Parallel Encoder/Decoder

Several techniques based on the use of error-correctiD_ codes have

been described which permit the addition of redundant bit channels to

achieve an improvement in reliability, with redundancy ratios less than 2.

In order to conserve operating speed, it is desirable that the code-

processing functions be performed on all data channels in parallel. The

design of parallel encoders has been studied in the past, but there is

little information as to the practical costs of such networks. The use

of error-correcting codes with additional bit channels to store the

redundant digits would provide a method of masking any single-error fault

within the bit-control module. In this section we study the design of

an encoder placed between the input data bus and the data register, with

the mating decoder placed between the data register and the output data

bus. Such placement of the encoder/decoder will mask faults within the

data register, the digit drivers, the storage module, the sense amplifiers,

and the transfer gates, but of course not in the encoder/decoder itself.
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The design of the encoder/decoder was carried out assuming a commerical

line of integrated circuits in order to get some reasonable estimate of

size, speed, and power consumption. The design is based upon the following

parity matrix.

P

A B C D E F G H I J K L

1 0 0 i 1 0 i 0 I 0 0 0

i i 0 0 0 1 i i 0 i 0 0

0 i i 0 1 0 i i 0 0 i 0

0 0 1 1 0 1 0 1 0 0 0 1

This matrix is based on the 12,8 single-error-correcting Hamming code.

The data bits are represented by bit positions A through H and the four

redundant check bits are represented by positions I, J, K, and L. Hence

twelve bit channels are required for storing a given data word. The task

of the encoder is to generate the information which will be stored in the

redundant bit channels. As the operation of the encoder/decoder is

described, it will be helpful to follow Fig. A-3.

The encoding is accomplished by checking parity over those bit

positions in the data word for which ones exist in a given row of the

parity matrix. Thus, for example, bit I is obtained as the mod-2 sum

of the information in channels A, D, E, G, and H.

Decoding is done in the following manner. Four parity checkers are

built, whose outputs are designated W, X, Y, and Z, one corresponding to

each row of the parity matrix over all bits containing one, now for all

12 columns. The four bits from these checker outputs are termed the

"syndrome character." If there have been no errors, these 4 parity-

checked outputs will all be zeros. An error in any one bit channel will

cause one or more of the parity checkers to give a one output, generating

a syndrome character that is not all zeros. For single-bit error, the

possible syndrome characters will correspond to one of the columns A

The reader is referred to Sec. II-B-2 for a general discussion of

error-correctlng codes for storage.
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through H. Occurrence of a single error will result in one channel being

indicated, and the error in that channel may be corrected by inverting

its data before transferring it to the output bus. That column, then,

must have its bit output from the data register in error. This is done

by including an exclusive-OR gate in the output transfer, so that any

line containing a one bit from the syndrome decoder will invert the

output of that bit channel as it is placed on the data bus.

The parity generators for generating the Ith and Kth bits during

encoding are assumed to be built from Fairchild integrated circuits,

model DT L 930, and are shown in Fig. A-4. Similar parity generators

are required for the generation of the J and L bits and also in the

decoder for the generation of the W and X, Y and Z. Fig. A-5 shows the

necessary integrated circuits to accomplish the syndrome decoding, the

bit correction, and the data register to data bus transfer gates for

bit channels A and B.

It should be noted that a single four-input gate can be used to

detect the fact that an error has been generated somewhere even though

the error is masked in the transfer. That is, if the syndrome character

has a l, i.e., if it is not all O's, then an error has been detected and

masked. This fact can be transmitted to the computer for possible status-

of-equipment analysis.

The HamminG-code equations for a parity matrix to permit single error

detection and correction in a 24-bit word require 5 redundant bit channels,

or a parity matrix with 29 columns and 5 rows. Such a parity matrix can

be obtained from a binary counting sequence by eliminating the all-O

columns, the all-l's column, and the column with four l's. The parity

generator then requires the design of parity checkers over 15 bits.

The parity matrix for 24 information bits plus 5 redundant bits is:

P =

C1 C2 A C3 B C D C4 E F G H

01010101010

01100110

0011110

0000001

0000000

0110

0001

1111

0000

IJKCsLMNO

O101O1O

1100110

1100001

110.0000

0011111

PQRS

1010

0110

1110

0001

1111

T U V W X

i010 1

0110_
0001

iiii

1111
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The columns with single l's are chosen to be the check bit, since

they can be generated with a single parity generator over the l's in

that row.

6. Conclusions

Several schemes have been described for the control of errors within

the various sections of a random-access main-memory system. The relative

costs in power and weight and the relative improvement in reliability

have been compared for a number of major approaches, for several parameters

of word size and count. The evaluation of costs is made on the basis of

cost parameters for present off-the-shelf components. Future developments

in technology promise to reduce the proportional weight costs of the

electronic subsystems.

The use of error-correcting codes for masking independent faults

in bit channels is practical and very beneficial.

Several schemes have been discussed for masking, avoiding, or

otherwise accommodating faults in access equipment, but their complexity

is such that a good comparison would require very extensive analysis, and

the analysis of some schemes would have to be tied to particular circuit

schemes. Further investigation of these schemes is recommended. Of

the various schemes, paging appears to be the easiest to employ.
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The need for new techniques for the protections of power supplies

has been noted.

It is recommended that techniques of error control be investigated

for various special kinds o£ memory systems not considered here; e.g.,

associative memories, fixed memories, and buffer registers, assuming

the various appropriate device technologies. Also, although the scheme

described here are generally applicable to NDRO memories, special redun-

dancy techniques may be useful to particular memory structures. These

possibilities should be investigated further.

Because of the close physical interaction among the several func-

tional sections of a memory, it is necessary to evaluate a set of schemes

with respect to the overall reliability of an integrated memory system.

Such evaluation requires the conducting of design exercises based upon

the choice of particular sets of operational requirements and particular

device technologies. It recommended that such design studies be

undertaken.
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Appendix B

DISTRIBUTED POWER-SUPPLY SYSTEMS

I. Introduction

The design of power supplies has been too often considered as a

separate (and usually secondary) system problem. It is very clear that

as high-performance systems grow more complex, the power-supply and power-

conditioning equipment must be carefully designed as an integral part of

a system, rather than being added on as a separate system component.

There are many possible power-supply methods for ultra-reliable computers,

ranging from single (nonredundant) designs to methods of using distributed

power supplies, or at least distributed power conditioning.

Early in the present project we felt that the distributed power supply

(having a separate power unit for each logic group) had merit; we now feel

that some form of distributed, noncentralized power supply is essential to

the success Of complex, long-life computer systems for space use.

In the following pages the advantages and disadvantages of distributed

power conditioning systems and the interdependence between supply and logic

circuits will be discussed. Three examples of possible ways to design

power-supply systems are given, along with comments on these examples, and

some notes on areas where additional work is needed.

2. Advantages of Distributed Power-Supply Systems

(i) There is nearly complete independence between a logic circuit

group and other subsystem parts.

(2) Various logic circuit types of different origins could easily

be merged to fulfill new system needs, without being required

to power the units from available supply voltages. This is

particularly true if ac coupling is used at data interfaces

between modules.

(3) A power cutoff switch could be included in each module, so

that unused modules would not consume power.
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(4) Current limiting is mucheasier, making it easy to protect
the raw power source from damage.

(5) There is very little electrical interaction between modules
through the power supply.

Semiconductor device reliability is better, since a large
numberof small-junction transistors and diodes are used,
rather than a few large-junction units. 278

(7) Switching a single power-input line to a multiple-output
logic module, in combination with the use of decoupling
diodes at each output, provides an economical meansfor
switching the whole module in and out of the system.

3. Disadvantages of Distributed-Power-Supply Systems

(i) A DPS system is heavier than a single nonredundant system,

possibly heavier than two single systems, unless higher

frequency converters are used in the DPS.

(2) Circuits are more complex, since each DPS module supply is

nearly as complex as a single large supply.

(3) Electrical efficiency is lower, particularly if some con-

ditioning is required before the raw dc power is distributed.

(4) The load requirements of each logic group should be similar,

to avoid too many different types of DPS in a given system.

Further comparisons are not particularly useful unless specific

systems are compared. The entire computer system should be considered

without attempting to treat the power supply separately.

4. The Interdependence Between Power Supply and Logic Circuits

a. Noise Problems

Many digital system problems can be traced to the power supply, or

are blamed on the power supply. Usually the troubles are due to "noise"

caused by logic-circuit loads being switched on and off abruptly in the

course of normal computation tasks. Unless the power-supply output im-

pedance is extremely low, the voltage on the power supply varies rapidly

as the loads are switched, causing noise on the output bus. If the noise

voltage is of sufficient magnitude, false triggering of circuits can occur.
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The usual remedy is to use bypass capacitors distributed among the groups

of circuits, so that the short-duration currents are drawn from a local

capacitor. The most widely used form of digital logic uses dc level

shifts to define a 1 or 0, rather than ac coupling of pulses between

circuits or groups of circuits.

If several different power supplies are used in a system employing

dc coupled logic, the power supplies must have nearly equal voltages, or

the noise margins of the circuits will suffer.

The ratio between the 1-to-0 voltage swing and the noise-voltage

magnitude is a good measure of the susceptibility of a digital system

to noise problem. Some circuits require only a few tenths of a volt,

and are affected by very small noise voltages on the power supply (or on

data leads), while others require several volts to trigger, and are

therefore relatively unaffected by power-supply noise. High-speed cir-

cuits are more susceptible to supply problems, unless great care is

taken to minimize the length of leads.

If distributed supplies are used with dc coupled logic systems

having poor noise immunity, ac coupling at the data interfaces would

be very desirable, since a few tenths of a volt difference between the

individual module supplies would not degrade the noise immunity of the

logic circuits.

If high-level devices such as field-effect transistors were used in

logic circuits, ac coupling at the data interface would probably not be

required, and the design of a workable application of DPS system would

be much easier.

Note that the ac noise problems in a computer using DPS are not as

serious as in single-power-supply systems, since individual module regu-

lators are in effect cascaded (in series), greatly reducing mutual coupling

between modules.
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b. Fault Location, Isolation, and Corrective Action

When a malfunction occurs in a computing system, it is desirable to

determine where the fault is, to isolate the defective elements, and to

take the best available course of action to restore as much computational

ability as possible.

When a power-supply fault occurs, the first order of business is to

protect as much of the system from consequential damage as possible. If

the fault results in a transient overload, it may be desirable to simply

limit the fault current to prevent damage to the raw supply, and restore

voltage to the module after a brief interval. If excessive current de-

mands persist, then the module should be disconnected from the raw supply

to prevent energy loss to a useless module. If voltage can be restored

after a momentary fault, then logical checks should be made to determine

whether the computational performance of the module has been impaired.

Note that a logic check will always determine whether significant

damage has occurred, so that the main function of the module supply itself

is to prevent consequential damage to other system elements. Permanent

disconnect of the module is thus a supervisory function, while protection

from damage is a local, self-contained function of the module supply

itself.

Future computers will operate on very low power, as evidenced by the

work being done by Fairchild. 343

5. Examples of Three Possible Designs for Power-Supply Systems

Of the many designs that could be used for supplying power to a

spacecraft computer, three methods have been selected as examples of power

conditioning. These examples are shown in Fig. B-I.

Method 1 is the most conventional of the three, and is used in some

systems already designed. Raw dc power is "chopped" in an dc-to-ac

converter, rectified and filtered, and regulated by a series regulator.

Method 2 is similar to Method I, except that the regulators are

distributed and located at each logic group. This kind of system has

been tried, but not used to any extent.
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Method 3 represents a true distributed power-conditioning approach,

since raw dc is wired to each power-supply converter/regulator, and no

elements are common to all logic groups.

The scheme used for switchover to a spare supply (Methods I and 2)

is very elementary: open 1 and 2 and then close 3 and 4. More complex

schemes using more switches and crossovers have been proposed. These

schemes allow a spare regulator, for instance, to be switched into the

existing supply. If the switch reliability is not considered, the com-

plex schemes could have much higher reliability than the simple spare-

supply concept. Switch reliability is important, and the control prob-

lems of the complex rerouting schemes are serious. Weight penalties of

two to three times the normal supply weights are also involved. The

complex schemes have therefore not been widely used.

Although individual regulators are not presently employed at each

logic group, series filter inductors or resistors and bypass capacitors

are frequently used.

Method 3 certainly involves more parts than the other examples, but

it should be easier to manage from a supervisory standpoint, and the weight

penalties are not severe.

6. A Possible Configuration for a Power-Control System

The converter/regulator associated with each logic group should also

include a disconnect function so that (I) the logic group can be removed

from the source of energy in the event of a fault within the group, and

(2) unused groups can be disconnected to conserve power.

It is believed that such disconnect circuits should have a toggle

action, so that if directed "off" or "on," they will remain in the

desired position, even though a general power failure has occurred.

A possible scheme for such a system is shown in Fig. B-2. Each power-

control element has a square-loop magnetic core associated with it, so

that when the core is "set," voltage is applied to the logic group.

Power would be applied to the computer by applying coincident pulses

to crosspoint Jl (Logic Group A energized), J-2 (B energized) etc.;
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if logic group B failed, or was suspected to have malfunctioned, cross-

point J-2 would be pulsed off and the spare group turned on by pulsing

K-1. Magnetic control of this type would be easy to address, and has the

additional advantage of being electrically isolated from both the data

and power-supply components.

A carefully designed system for controlling power would probably

simplify data-switching problems since a failed logic unit would not

deliver any erroneous signals to adjacent units. As pointed out earlier

power can be conserved by turning off unused units. A simple method for

doing this by means of a series transistor is described in a very recent

article by Clift. 42 Note that this could be the same transistor used in

the regulator, or a separate unit. At least one commercial computer

already uses power switching to conserve power within an integrated

circuit memory. 253

7. Weight and Power Required for a Distributed Power Supply

As an example of how much one would have to pay in terms of weight

and power loss for a distributed supply system, we have considered a single-

voltage 20-watt supply. A well-regulated conventional supply would weigh

350-500 grams and consume about 22 watts from the raw supply under nominal

input-voltage conditions. In this power range, the chop frequency would

probably be approximately 1000 Hz. Weight could be reduced by increasing

the frequency, but efficiency would suffer.

Small supplies with oscillating converters can be made light and

efficient. As an example, consider the power supplies built at SRI for

the NASA PIONEER experiments. These units have the following speci-

fications:

Input voltage: 28 ± 9 volts, 80 mA nom. (3.1 watts)

Output voltages: -3, +5, +12, +2.5

Regulation factor: over I0,000

Chopper frequency: 30-40 kHz

Efficiency: 85% under nominal conditions, input may vary

from 19 to 37 volts

Power output: 2.6 watts, 90% of the power being in the

12-volt circuit

Weight: 55 grams, including transformer and filter

capacitors.
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We have estimated that a 1-watt, single-voltage unit would weigh

about 25 grams"

Four degrees of split-up of the power supply have been considered;

a 1-section, a 25-section, a 36-section, and a 64-section system. The

individual supply sections would have to deliver slightly over 1 watt

for the 16-section unit, and about 1/3 watt for the 64-section.

Figure B-3 is a plot of the weight of the distributed system and the

amount of power needed for operation. Note that even for a 64-element

system, the weight is less than triple that for a single supply. In

making this estimate, we have assumed the transformer and capacitor

weights per unit would decrease from I0 grams for a 16-section system

to about 5 grams for a 64-section system, that the semiconductor weight

would decrease from 12 grams to about 4 grams, and that the core-switch

weight would be constant at about 4 grams. Efficiency was assumed constant

at 85 percent, except that each unit consumes about i0 mW for voltage-

reference circuits.
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Note that the small supplies can operate efficiently with a high

oscillation frequency (50 kHz or more), allowing the use of very small,

light transformers and smaller filter capacitors. With the possible

exception of the series regulator transistor, power dissipation is low

enough so that integrated circuits could be used for control and reference

amplifiers. Some integrated circuits are already available for this

339
purpose.

8. Conclusions

The distributed power-supply notion can be applied to the design of

a system of "self-powered" logic groups using individual dc to dc conver-

ters with very slightly more power loss than conventional single-supply

systems. The weight, including on/off control circuitry, should be only

about twice the weight of a single-unit supply, since the chop frequency

of the individual units is higher than for the large (single) unit.

The design of distributed power-supply systems is closely allied with

the design of the logic groups themselves. Unless the data-interface

circuits are ac coupled, slight differences in the relative voltages of

the supplies will cause loss of operating margins for data signals between

logic groups.

The average power consumption of a distributed power-supply computing

system can be reduced by turning off unused units. 0n/off cycling should

not present a serious reliability problem.

Although the work we have done deals mainly with dc to dc converters,

and indicates that a workable system could be made with such units, other

possibilities such as ac distribution systems should be investigated.

Either sine-wave or pulse-waveform ac systems could be used, but a careful

comparison needs to be made between dc, sine-wave, and pulse-waveform

systems. The desirability of using rough preregulation of the raw power

source also needs attention.

The use of a magnetic core for memory in the on/off switches for power

supply is feasible, but perhaps the possibility of using a thln-film memory

element should be investigated, since thin-film elements would allow con-

struction of small, rellable switches for power-control purposes.

306



Appendix C

APPLICATION OF MAGNETIC LOGIC

307



Appendix C
APPLICATIONOFMAGNETICLOGIC

i. Introduction

In this section of the report we give the results of a brief survey

and evaluation effort that we have undertaken to ascertain the role, if

any, that magnetic logic should have in future spaceborne computers

employing integrated semiconductor circuits. We think it is important

to conduct such a survey in a program aimed at ultrareliability because

digital magnetic elements have proven to be highly reliable in their

application to memories and logic. To anticipate our conclusions, we find

that it is feasible to use magnetic circuits in conjunction with inte-

grated semiconductor circuits in a high-speed (MHz region> ultrareliable

computer to effect a substantial increase in the overall system relia-

bility. We reach this conclusion chiefly on the basis (i) that magnetic

elements per se are extremely reliable, and (2) the speed of operation of

magnetic logic circuits is adequate for performing certain functions.

By way of contrast to this general conclusion, an example is described

wherein an attempt to apply magnetic logic circuits leads to a question-

able increase in reliability.

In addition to the reliability of magnetics, there are other charac-

teristics that make their use attractive. Magnetic circuits provide

nonvolatile information processing with no standby power; they are

essentially immune to many types of noise; and they are highly resistant

to all nuclear-radiation components, both steady-state and transient.

One approach to the use of magnetics in future space programs is to

follow the past pattern of decentralization of functions rather than

using a complex centralized computer. In such an approach magnetics are

used in systems (sub-systems) that are essentially separate from the

systems that use integrated semiconductors. A magnetic programmer,
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a time-sequencer and an A/D converter W, are examples of separate magnetic

systems. While this is a concept that bears serious consideration, it is

not one that we shall deal with here.

In what follows, there is a brief discussion of the reliability of

magnetics, and then possible approaches to applying magnetics are dis-

cussed. We have categorized these approaches according to the kinds of

functions magnetics can perform in conjunction with high-speed integrated

semiconductor circuits.

The first category is that of monitoring the performance of the

semiconductor circuits to determine when (and perhaps what) corrective

measures are required. Two types of monitors are discussed: one is a

sophisticated current meter and one performs digital operations that are

the same as certain portions of the semiconductor unit.

The second category we discuss is that of magnetic switches.

Several different types and functions of switches are included.

The third and last category is that of a "hard-core" backup control.

In certain of these backup-control schemes the nonvolatile characteristics

of magnetics is essential. All of the schemes rely on the long life of

magnetics.

2. Reliability of Magnetics

The basic premise that motivated this survey is that magnetic

elements are ultrareliable. As a part of a recent SRI project for NASA

an attempt was made to determine a reliability figure for magnetic

ferrite elements. 122 The conclusion was that ferrite cores do not fail

in service, so long as they are operated within their physical limits,

even when operating at temperatures up to at least 250°C. t The reason

For one published example of a magnetic control unit, see Ref. 277.

f More specifically, this conclusion is for manganese-magnesium ferrite

cores. Most square-loop ferrite cores are of this type and hence

failure information (really the lack of it) could be gathered only

on this type of ferrite. There is no known failure mechanism for

these cores.
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that no quantitative reliability figure has been established is that

there is no failure data. One method that has been used is to estimate

the number of cores used in memories that a particular company has pro-

duced, and then estimate the number of failure-free operating hours for

these cores. This number of core-hours is then taken to be the mean-

time-between-failures. For ferrite cores the MTBF has been variously

estimated to be between 10 I0 and I012 hours (i.e., l0 -I0 to l0 -12

failures/hour ). 340,294

A reliability analysis of a system that uses magnetics must include

the reliability of windings, connections, and associated nonmagnetic

components. It appears that it is really these parts that determine

the reliability of a magnetic system. As a part of the NASA work

mentioned above, a reliability analysis was made of a magnetically im-

plemented digital system. .24 For this particular purpose the following

failure rates were supplied by Langley Research Center:

Part Failures per 108 Hours*

transistor (discrete part)

ferrite core (wound)

solder joints (inspectable)

2

0.01 (assumed value for worst case)

0.01

Note that the failure rate for the ferrite core was supplied as a worst-

case value, and is consistent with the core-failure data above. We see

from this table that inspectable solder joints are highly reliable--this

is important in a core-wire system. Furthermore, redundant joints could

be used to further increase reliability if necessary.lS6, 34s

It is instructive to compare the failure rate of ferrite cores with

that of integrated semiconductor circuits; the latter may be as low as

2 failures per 108 hours. This number comes from a recent survey conducted

by TRW Systems Inc., in which many users of integrated circuits were

* Rates are based on high component reliability employing 100-percent

screening for known weaknesses, approved derating policies (stress

level assumed to be 50 percent), and approved fabrication techniques.

Failure rates correspond to 65°C maximum ambient and 15°C temperature

rise for part.
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contacted. The average failure rate assigned to integrated-circuit
devices that are i00 percent screened is 7 failures per 108 hours, and

the lowest rate reported is 2 failures per 108 hours. We estimate that

a typical integrated circuit to which these rates are applicable comprises

about 30 components. (In this context it is important to note that a mag-

netic implementation of a function often requires fewer components than

does a semiconductor version.)

A comparison of these failure rates indicates that a single ferrite

toroid may have from 2 to 5 orders of magnitude lower failure rate than

an integrated circuit. We recognize that a comparison such as we are

making here is open to question from several points of view. Neverthe-

less, the large difference in the failure rates ascribed to the ferrite

core and an integrated circuit are significant and support the contention

that magnetics should be considered for ultrareliable applications.

3. A Magnetic Monitor Concept

a. A Metering Monitor

One method of using reliable magnetic circuits to increase system

reliability is to use magnetics to monitor critical electrical variables

within the main computer, such as power supplies and high-current pulse

drivers.

The nature of the monitor and the functions it performs can con-

ceptually take several forms. One possibility is to use a magnetic in-

strumentation system--a metering monitor--that would measure voltages and

currents and give an electrical signal indication when an out-of-

specification condition is detected. The voltages and currents could

be dc, pulse, or both. That such a magnetic system is feasible has

recently been demonstrated by the development of a magnetic telemetry

system122, 123 wherein currents from sensors are digitized and, in effect,

commutated. @ Currents as low as l0 microamperes and as high as one-quarter

_ The sensor currents per se are not commutated in this system and no

analog amplification is required. This magnetic implementation of

telemetry does not follow the standard organization for such a

system.
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ampere can be measured with 1-percent accuracy. Voltages are measured by

determining the value of the current flowing through a known resistance.

b. An Information-Sampling Monitor

Another possible way to use magnetic circuitry to monitor performance

is to detect errors by processing selected data in parallel with the main

computer. In the event that an error is present in the sampled block of

information, this error will propagate through the high-speed system until

the magnetic unit has completed its testing of the block. A means of

stepping backward in the program and starting the processing again after

the equipment fault has been corrected is implied in this concept.

Alternatively, the system must tolerate the incorrect processing that

occurs during the error-detection interval.

A variation of the sampling technique is to generate error-detecting

codes in the fast processor and use the magnetic processor as reliable

error detector, e.g., a parity or arithmetic-code checker. If the speed

of such checking is too slow, the magnetic circuits may be used for a

delayed-output verification of a high-speed checker.

4. Implementation of Magnetic Monitor

There are three parts into which the implementation of an information-

sampling magnetic monitor can be logically divided: input and output

buffers, a comparing circuit, and the processor. The processor is the most

complex portion of the magnetic unit. There are several possible magnetic

approaches to implementing the processor; these can be categorized into

semiconductor-magnetic and all-magnetic logic schemes. Typically, semi-

conductors are used with both types of logic schemes, but in the case of

the all-magnetic logic the semiconductors are used only to generage clock

pulses. It is possible, however, to generate clock pulses from an ac

source (e.g., a sine or square wave) without using semiconductors.*2s, 17

Because the intent here is to achieve ultrareliable operation, the use

of a clock-pulse source that does not require semiconductors should be

considered. The semiconductor-magnetic logic schemes are usually faster

than the all-magnetic logic schemes, and within the all-magnetic logic
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category the nonresistance schemes are usually faster than the resistance

schemes. Resistance schemes generally have greater tolerance to tempera-

ture and drive variations than do the nonresistance schemes. 2G

In this survey we cannot go in depth into the characteristics and

attributes of the various technologies that are applicable to the magnetic

processor. However, the following magnetic digital systems represent

technologies that may be applicable to the processor: Sperry Gyroscope

Magloc Computer; 338,267 Burroughs D210 Magnetic Computer;319, 34° Univac

Ferractor-type Magnetic Computer 3° (principally of historical interest);

Di/An Controls Core-Transistor-Logic systems;166, 342 Stanford Research

Institute MAD Feasibility Machine;51, 52 IBM Flux Logic Evaluation

Assembly (FLEA);347, 348 Stanford Research Institute Magnetic Versatile

Information Corrector (MAVERIC); 72 Stanford Research Institute Atomic

Reactor Control Module; 4s and Bell Telephone Laboratories Magnetic Stored

Program Computen 2°s Because of the speed limitations of magnetic circuits,

it is pertinent to note that the Sperry Magloc Computer has a 300 kHz bit

rate, an addition time of 86 _s, and a multiplication time of 3.87 ms for

24 bits. The Burroughs D210 has a 100 kHz bit rate, an addition time of

30 _s and a multiply time of 570 _s for 24 bits. For the benefit of the

reader who is interested in the details of magnetic techniques, we have

listed bibliographies on magnetics as Refs. 27, 120, 230, and 19.

In addition to the low-speed processor, the information-sampling

magnetic monitor comprises a comparing circuit, input and output buffers,

sampling gates, and synchronizing circuitry. These do not appear to be

difficult to implement in a manner that will be compatible with the

technology used in the magnetic processor. However, in the joining of the

integrated semiconductor units and magnetic units, the interface problem

must be carefully considered. It is probable that signal amplification

will be necessary in order to drive the magnetics from the semiconductor

units. If the number of transistor amplifiers becomes a significant number

when compared to the number of components in the processor, then the re-

liability increase achieved by a magnetic implementation over an integrated

semiconductor version can become small or nonexistant. Another way of
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saying this is that the magnetic-monitor approach can add significantly

to the system reliability if the functions performed by the processors

are moderately complex. (This aspect is also discussed in the section

of interconnection switches.)

5. Magnetic Switches

The function that we envision for a magnetic switch is to direct

power or information (data) to or from a module on command of an electrical

signal, e.g., a signal from a magnetic monitor. Magnetic switches are

attractive because they offer high reliability, dc isolation (for noise

immunity and for coupling between subsystems that have different signal

levels), low susceptibility to noise from external sources, and nonvolatile

storage of information. In the case of an information switch the power

level will be low and the rate of change of the information could be in the

low MHz region. For the power switch the typical power level will be

higher than for the information switch, and the frequency will be in the

low or tens of kHz range. For both types of switches, low speed in the

switchover from one module to another one is acceptable, and switching

will be required only when a malfunction has developed in the computer.

The switches that are described below are of both the information and

power types. With one exception, the investigation to date indicates that

these switches merit further investigation.

a. Converging Switch

The converging switch is the name given to a unit that gives access

to one of N information sources from any one of K data processors, $2 The

processors supply the switch with the address of an information source.

The converging switch contains address-decoding circuits and magnetic-

gating structures. The magnetic-gating structure is a multipath ferrite

device that operates on the balanced-circuit principle. An information

signal upsets the balanced condition to store or transfer a logic i. The

particular device reported in Ref. 32 uses a low coercive ferrite material

(between 0.15 and 0.2 oersteds) and requires 30 mA to upset the balance.

An early production model produced by Western Electric connects to 128
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sources, each with a 26-bit capacity; it has an access time of 1 _s and

a cycle time of 2 _s. The number of semiconductors required for the

switch is not reported. The converging switch was originally developed

for a missile application and is now being used in a modified form within

the Bell System.

b. Interconnection Switch

This switch exists as a paper design and is the result of work under-

taken by SRI for NASA. s14 The switch is part of a redundant computer

that is implemented by integrated semiconductor circuits. The inter-

connection switch is used in two different places. In the first appli-

cation, one of a set of three arithmetic units is connected to a processor,

and in the second application one of a set of three memories is connected

to the processor. Information flows through the switch in both directions

at a 1 MHz rate; voting also takes place in the switch. Toroids and

multiaperture devices are used in the switch implementation. The investi-

gation of this switch revealed that it was possible to perform the necessary

functions magnetically, but there are undesirable features. Perhaps the

major problem lies in the fact that a transistor driver is required at

each input terminal to the magnetic unit in order to increase the signal

power level sufficiently. This results in a large number of added semi-

conductors. Another major problem arises from operating at 1 MHz--the

power dissipation is high. (By way of reference, it takes about 0.1 watt

to switch a 30/50 memory core at 1Mttz.) The attributes of magnetic

implementation of this switch as compared to a semiconductor version of

the same switch are summarized in the table below.

Advantages of Magnetic Version Liabilities of Magnetic Version

Reliability is increased somewhat

Has nonvolatile characteristic

Number of semiconductors used is

between 1/2 and equal to number

required in an all-semiconductor
version

Power is greater (i0 times at 1MHz,

equal at i00 kHz)

Weight and volume are greater
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This switch is an illustration of an application where the use of a

magnetic implementation is questionable. The functions required of the

magnetics are quite simple, and the interface between the integrated cir-

cuits and the magnetics therefore becomes a major problem.

It is apparent from this example that if a block of magnetic circuits

is interposed between blocks of integrated semiconductor circuitry, the

functions required of the magnetics should be at least as complex as those

that could be performed by the equipment in the interface circuits. An

exception to this generalization arises if the power level of the inte-

grated circuits is adequate to drive the magnetics directly without added

amplifiers. Balanced magnetic circuits have reportedly operated with an

input current of only 30 mA (but probably at less than 1 MHz). 32 It is

also worth noting that 30 mA is about the amount of current that is re-

quired to "tip" the flux in coherent-rotation switching in a metallic thin

film. 113 Since it is possible to get 30 mA (and more) from integrated

circuits that include a line driver as one of the available units, these

integrated-circuit units could be used to drive magnetic logic circuits.

(These units have an amplifying junction that is on the same silicon chip

as other junctions and components.) The reliability of an integrated-

circuit system is more a function of the number of chips than of the number

of junctions, so it may be possible in some systems to incorporate a line

driver on the chip without reducing the reliability of the integrated-

circuit portion of the system. This would mean that the semiconductor-

magnetic interface would be effected without a reliability penalty at this

point in the system.

It should be pointed out that the balanced magnetic scheme cited above

is a bipolar scheme that equates a logic 1 with a particular polarity of

output signal and a logic 0 with the opposite polarity signal. This

bipolar characteristic gives rise to some problems; for example, it

cannot be used as a switch to connect and disconnect a pulse train.

Additionally, the "balanced" feature of the scheme means that a clock

source switches flux repeatedly in a magnetic structure, irrespective of

the logic state of the circuit. This can mean high power consumption.
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The problem of the semiconductor-magnetic interface should be

further investigated.

c. Data-Path Switch

The switch to be described has certain interesting features of dc

transmissions, with dc isolation. Figure C-I is a sketch of the switch.

SQUARE LOOP _CONTROL CURRENT

COR 
t_) FEEDBACK LOOP

I NPUT OSCILLATOR L

v

DC POWER MONITOR
TA-5580- 45

FIG. C-I DATA-PATH SWITCH

In this switch the oscillator is powered from the same module that

supplies the input data to the switch, and the output transistor is

powered by the module that receives the data. When an input signal is

received the circuit will oscillate if the feedback conditions are

correct. The oscillator output is coupled through a transformer and,

upon rectification, it becomes the input to the following stage. Units

operating in a manner similar to that just described are available from

Dynamics Instrumentation Company (floating digital drivers) and from

Radiation Incorporated (modular solld-stage telegraph relay). In the

data-path switch shown above we have added to the circuit a magnetic

core that controls the feedback of the oscillator. The state of the

magnetic core determines whether or not the circuit will oscillate upon

receipt of an input signal; therefore, the switch can be activated under

logic control. This means the switch could be used in redundant systems

to switch modules in and out of the system upon receipt of an electrical
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signal. The details of this switch have not been worked out, but we think

that it is feasible and potentially useful for reliable computer applica-

tions and that it bears further consideration. The advantages we see for

such a switch are the following.

(I) Dc coupling is achieved so that logic levels, rather than

pulses, are transmitted.

(2) Isolation is complete--there are no grounding problems.

(3) There are no power-supply interaction problems.

(4) Low-power, coincident-current setting of the magnetic

element is possible because only feedback power is

controlled.

(5) The state of the switch (on or off) is nonvolatile (with

power failure) because of the magnetic element.

(6) It is easy to monitor data flow by adding a winding to

the output transformer, or by coupling through a small

capacitor.

(7) The geometry of the magnetic control element is simple;

that is, a toroid is adequate and a multipath device is

not required.

Another switching method that has merit for data-path applications

makes use of a multiaperture magnetic element (a MAD). Only a single

highly reliable oscillator is required for the entire system for this

switch implementation; however, an amplifier is required between the

input to the MAD and the integrated semiconductor circuitry. The re-

quired dc output is obtained by rectification as in Fig. C-I.

d. Power Switching

In a redundant system we believe it is beneficial to switch power on

and off to individual modules for several reasons: (i) it simplifies in-

formation switching; (2) it simplifies testing; and (3) it permits a

reduction in operating power. It may be possible to replace information-

path switching with power-supply switching. Magnetic technology is an

attractive candidate here because of its reliability and nonvolatility.

If all the power goes off and is subsequently restored, memory of the

information states at the subsystem level immediately preceeding the

failure will be valuable information.
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Since a magnetic core responds to alternating current, magnetic im-

plementation of a power switch means switching ac power. For this reason

the only real differences between a magnetic switch for power and a switch

for data pulses is the power level and frequency. A module in a computer

typically requires dc power, so using a magnetic switch requires that

rectification be carried out in each module. This rectification require-

ment is consistent with the concept of individual power supplies for

modules rather than one big supply for the entire system. This concept

is discussed in Appendix B of this report.

Because of the similarity between an information-flow switch and a

power switch when magnetic implementation is employed, the data-path

switch described above is a candidate for an ac power switch. Likewise,

the MADs that are used in the interconnection switch and in one version of

the data-path switch can be used for controlling the flow of ac power.

The suitability of these approaches has not been evaluated in detail in

this survey.

A switching method that was not discussed as an information-flow

switch is that of a ferroresonant circuit. 292 This type of nonlinear,

bistable circuit relies upon the change in inductance of a reactor as it

is driven into and out of the saturation region. There are two charac-

teristics of these circuits that lead us to consider them for power switching

rather than information switching: (1) they are capable of handling reason-

ably large amounts of power, and (2) they control a continuous ac wave

rather than pulses.

A particular ferroresonant circuit is shown in Fig. C-2. 135 When

T l is saturated the inductance of the winding L 1 has just the right

value to resonate with capacitor C 1 at the applied carrier frequency.

The same is true for T2, L2, and C2; however, only one of the series cir-

cuits can be resonant at a given point in time. If both circuits were to

be resonant simultaneously then the voltage drop across C would increase
c

beyond the value it has when a single branch is resonant. With this In-

creased voltage drop, the current magnitude possible in the two branches

is not sufficient to maintain both T 1 and T 2 in saturation. Therefore
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only one branch can be resonant and drawing a large current. The other

branch draws only a small current. Output power is obtained across

C 1 or C 2.

Ferroresonant circuits have been the basis for digital circuits

such as flip-flops and shift registers, and have been used in steady-

state ac circuits as voltage regulators.

Up to this point we have considered using the ac power switch as a

means for controlling the dc power supplied to a module. An additional

possibility is to use such a switch to control the distribution of

clock power to the various modules. The feasibility and utility of a

magnetic clock switch needs to be further investigated, as does the

possibility of applying the principle of ferroresonance to ac power

switching.

6. Backup Control

There are two types of backup control systems that we point out

here: one that is used to re-initiate operation of the integrated-

semiconductor computer after it has become inoperative, and one where

certain portions of the semiconductor computer are replaced by magnetic
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units in the event of semiconductor failure. The purpose of the first

type of backup is to protect against a power failure that shuts down

the entire computer. When such a failure occurs but is not permanent,

it then becomes important to reestablish the operation of the computer

when system power is restored. It is not sufficient to simply allow the

power to be reapplied to the semiconductor logic circuits, because the

logic state that the flip-flops would assume is indeterminate. Even if

the flip-flops did assume predetermined states it would be necessary to

execute certain functions to reach the desired position in a program

and initiate the proper mode of operation. An ultrareliable magnetic

backup unit could be beneficially used to reinitiate operation of the

semiconductor circuits when power is restored. The backup unit would

execute certain primitive functions--e.g., control processor flip-flops

would be cleared to a reference state (that may be dependent upon the

point in real time at which failure occurred), and a program sequence

would be started. The return of power to the system would in itself pro-

vide the input signal required to bring the magnetic unit out of its

passive state and give it control of the entire computer. After proper

operation conditions were established, the magnetic backup unit would

be "locked out" of operation except for periodic updating. While the

magnetic unit was locked out, the operating speed of the computer would

\

not be impaired. In this type of backup the nonvolatile characteristic

of magnetics is an essential ingredient.

A backup control unit of this type could also be used to protect

against transient failures other than those of the system power supply.

If a transient caused malfunction of large segments of the computer so

that the utility of the computer as a whole were impaired, then the

backup could reestablish proper operation. In this mode of operation

the backup unit would be given control of the computer upon receipt

of a signal other than power supply turn-on.
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In the second type of backup, upon command, a magnetic unit per-

manently replaces a faulty semiconductor unit, such as a control se-

quencer or program counter, at a sacrifice in operating speed and possibly

with a reduction in the type of functions that can be performed. This

type of control unit can be updated periodically, like the one described

above, to prepare it for operation on demand.

An interesting variation of this second type is to duplicate, with

a magnetic computer, all computations of the semiconductor computer that

are critical for the mission. This redundant computer could operate in

parallel, or it could be started when failure occurs in the main computer.

Alternatively, the concept of a redundant magnetic computer could be

reserved for missions of very long duration; use of the magnetic unit

instead of the semiconductor computer could save an appreciable amount

of power in the phase of the mission where the vehicle is at a great

distance from earth and high-speed computation is not essential.

The two types of backup controls described above are applicable

at the system level. The principle of magnetic backup can also be

applied at the circuit level. At this level magnetic circuitry could

be switched in and out as it is at the system level, but this would

probably result in too complex a switching system to actually increase

system reliability. A better method of supplying a backup at the cir-

cuit level is to use the magnetic elements in ankintimate mix with the

semiconductors. We propose, for example, in conjunction with certain

critical semiconductor flip-flop circuits, that toroids be set and re-

set according to the state of the flip-flop. The primary purpose of the

toroids is to remember the state of the flip-flop and maintain this in-

formation in the event of power failure. The toroids are not essential

to the circuit operation except for this nonvolatile characteristic.

A circuit that does operate in this manner at modest speeds has been

reported by Harry Diamond Laboratories. 19s An alternate method of

providing the same nonvolatile feature is to use a portion of the main

memory to store the state of the flip-flops. There are advantages and

disadvantages to both approaches that need to be further evaluated.
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7. Conclusions and Recommendations

The reliability of magnetic-logic circuits is superior to that of

integrated-semiconductor circuits by several orders of magnitude, and

therefore magnetic logic should be applied to future ultrareliable

spaceborne computers. The high reliability of magnetic-logic systems

derives from the fact that ferrite-core failures are unknown and the fact

that inspectable solder joints are very reliable. In addition to long

life, magnetics have other characteristics that are important in ultra-

reliable systems: they require zero standby power and are therefore

nonvolatile, they are immune to most kinds of noise, and they are

radiation-tolerant.

The operating speed of magnetic circuits is a restriction upon

their general application in the megahertz region. However, this brief

survey indicates that there are substantial areas where magnetics can

and should be used in conjunction with high-speed integrated-semiconductor

circuits. We have discussed several different methods of applying mag-

netics in concept, and have given an indication of the kinds of schemes

and circuits that can be used.

We recommend that the following steps be taken:

(I) Further effort should be devoted to strengthening the

concepts presented here, and analytical and experimental

work should be carried out to support or refute the ideas

and circuits discussed.

(2) Because this survey is admittedly incomplete in scope and

depth, a continuing effort of this nature is recommended.

(3) In support of (i), we recommend that one or two specific

concepts be selected for a detailed design feasibility

study. Such a study should include circuit-level problems

of speed, synchronization, power required, and interface

compatibility with integrated-semiconductor circuits.
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Appendix D

A SURVEY OF THE PUBLISHED LITERATURE ON THE ATTAINMENT

OF RELIABLE SYSTEMS THROUGH THE USE OF REDUNDANCY

i. Introduction

The primary thesis of this program for developing means for achieving

ultrareliable spaceborne computers has been that such systems can only be

achieved through the judicious use of redundancy. While it is of course

essential that component reliability be as high as possible, and that all

elements be operated well within the physical tolerances that guarantee

their continued operation, it is also necessary to provide backup facili-

ties that allow systems to tolerate internal failures, whether transient

or permanent, so that the computational mission can be successfully carried

out. For as the complexity of computer systems increases--as represented

most obviously by the enormous increases in the number of components re-

quired--almost any level of guaranteed reliability of individual elements

becomes insufficient to provide a satisfactory probability of successful

mission completion. These observations are particularly pertinent in the

case of extended spaceborne missions where the possibility of unprogrammed

maintenance and inspection routines is severely limited, and where success-

ful use of the radio link for such activities cannot be successfully

carried out unless careful anticipatory provisions have been made con-

cerning the types of spares to be installed and the interconnecting links

for installing and removing them on the detection of a fault.

These arguments are not new with this program, of course, and their

general validity has been recognized for at least a decade. As a result,

a great deal of effort has been expended in understanding just how re-

dundancy can be "judiciously" applied to systems, that is in such a

fashion that the overall reliability is actually increased. A not insig-

nificant factor that has compounded the problem of evaluating such systems

has been the paucity of good analytical tools for actually calculating the

reliability of complex configurations, or even of providing good lower
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bounds so that overall mission probabilities can be estimated. Finally,

a new technological factor has appeared that is effectively changing the

rules of the game--we refer to the imminent widespread availability of

extremely reliable, very small, batch-fabricated elements having extremely

low power dissipation. The availability of such elements implies that

the number of components involved is not the critical factor in measuring

system cost--whether from energy, volume, or weight points of view--and

makes it possible to seriously consider large ratios of redundancy, if

indeed the resultant increase in reliability of the overall system can

be demonstrated.

As a result of the unquestioned relevance of redundancy techniques

in the construction of extremely reliable systems, the technical literature

is replete with reported activities that attempt to cover one aspect or

another of the large area. An important aspect of this program, then_ has

been to instigate a general and continuing appraisal and review of these

activities that have been reported and are available to us. Much of the

literature in this field has not been of a high technical quality, and

much of it is no longer relevant to today's technology. Hence, in making

a survey of activities in reliability theory it is necessary to prune away

much material in order to highlight the efforts that do seem to be

important.

Our goal in this section, then, is to present a critical and select-

ive survey of the literature that is relevant to the attainment of reli-

able networks and systems through the judicious use of redundant struct-

ures. In the following section we attempt to restate briefly the point

of view which leads to the particular categorization of topics that we

have chosen. Our concluding section contains a brief discussion of the

various activities that have been reported in the different categories

of reliability technology.
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2. Summary of Subject Areas

a. Overview

The intention of this survey is to provide the interested reader

with an introduction to the literature on redundancy techniques by several

means. First of all, we provide an outline, or categorization of topics,

which serves to partition the field into the various technical areas

against which the reader may sharpen his own perception and conclusions

regarding the valid lines oi technical inquiry. Admittedly, the outline

we have chosen is one relevant to the concepts of modularity and recon-

figurability that we have regarded as essential to the program addressed

in the main body of this report.

Secondly, within this outline of topics we make reference to specific,
@

selected articles that are in general easily available to the researcher;

in addition, we briefly summarize their contribution to the technology.

The conclusions of the report (Sec. IV) essentially reflect the

conclusions o£ this literature compilation. Although valuable technical

contributions have been made in the development o£ systems that are more

reliable through the application of redundancy techniques, and although

these contributions are increasing in number and quality, it is clear

from a survey o£ the published literature that much remains to be done

before efficient and demonstrably reliable systems can be realized. Many

unsolved problems were uncovered as a result of this survey; a sampling

o£ these is contained in the listing of recommendations for future re-

search--Sec. IV.B.

* Included in the referenced articles are results from an earlier survey

of Soviet activities in the field o£ reliability theory. 28s This

survey, in the form o£ a preliminary draft, was presented at the Work-

shop on the Organization o£ Reliable Automata earlier this year. It

was supported partially by this program, and partially by the Air

Force Cambridge Research Laboratories. Since the Soviets have also

been quite productive in addressing themselves to these technical

areas; and since most of the work is available in translation to

researchers in the United States; and finally, since work in this

country and in the Soviet Union represents the overwhelming majority of

work done anywhere in these subjects, the Soviet references have been

freely included in this survey whenever appropriate £rom the technical

point o£ view.
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It will be noted that almost all of the referenced articles have

appeared within the last ten years, and the great preponderance of them

within the past four years. This results partly from the selection

process, of course, but mainly occurs because that is simply the way the

density of publication has taken place--and it is still on an upward

slope.

Finally, it should be noted that several rather comprehensive bibliog-

raphies on reliability topics have appeared, and these are appropriately

referenced in their place below. It should be emphasized here, though,

that no attempt has been made here to supplant these bibliographies in

terms of comprehensiveness, although, of course, we shall make note of

some entries that appeared subsequent to their publication. Our goal

has been strictly to provide a selective reference to the literature,

from which the reader can proceed to his own ends.

b. Categorization of Subject Areas

In this program, redundant, modular, highly reconfigurable systems

have been identified as the basic organizational structure that holds the

most promise for the successful attainment of the mission objectives of

spaceborne computers. Accordingly, this guide to the literature is

structured to partition the referenced papers in a way that best serves

this point of view. Given a module that is a subsystem within a larger

complex, we have pointed out that there are two fundamental ways in which

redundancy can play an integral part in its functioning within the system.

These two ways are differentiated by the role played by the terminals of

the module. In static redundancy techniques, faults are accommodated

within the module itself (e.g., by fault masking) and the terminal activ-

ity is unaffected. In dynamic techniques, terminal activity plays an

essential role (involving fault detection, diagnosis, and the resultant

reconfiguration). These two basic categories are reflected in Secs. 4

and 5 in the discussion below, and all the other categories are, in a

sense, supplementary to them.

Thus the introductory Sec. 3, below, is concerned with papers of a

general nature. They involve either arguments supporting the need for
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redundancy, or tutorial or survey papers on the subject, or developments

in general reliability theory, including the calculation of the probabil-

ity of failure, or pertinent papers on the characteristics of specific

components. Also included are references to the several rather extensive

bibliographies that have appeared and are easily available to the reader.

The application of redundancy to other than computing networks and

subsystems (e.g., power supplies), as well as papers concerned with

environmental aspects (e.g., additional weight requirements of redundant

@
systems), is briefly reported on in Sec. 6.

3. Discussions of General Background

a. On the Need for Reliable Systems

The problem of achieving reliable systems in the face of today's

severe mission requirements has been well recognized in the published

literature. We mention several of these articles in order to set the

stage for the survey of the technical contributions that have been made.

In the first place, it is clear that the use of redundant structures

is but the last step in a hierarchy of measures that can be taken to

attain fault-free operation. It has been pointed out that increased

measures to achieve reliability are necessary in all stages of system

life, from the original design to the final installation and subsequent

maintenance of the system. Is° Certainly it is necessary that the com-

ponent reliability be as high as possible, that adequate attention be

given to the details of fabrication and assembly of equipments, and that

circuit designers carefully recognize the existence of tolerances and the

need for conservative designs, s7 Nonetheless, in systems consisting of

thousands of elements, it is necessary to provide also for alternative

* All of the reference numbers in this Appendix are keyed into the

common reference list that serves the entire report. This reference

list, in turn, has been alphabetically ordered so that it may serve

a separate function as a selected bibliography to the subject (although

it has not been supplemented as a bibliography--nonreferenced articles

do not appear in it).
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system responses to accommodate to the almost certain event that an

unknowable number of components will fail before the end of the desired

life of the equipment--indeed, the likelihood is high that some failures

will occur before initial turn-on of power.

Furthermore the point has been made that the failure mechanisms in

modern solid-state components are such that periodic replacement and

testing simply do not make sense any more. 8 The reason for this is that

it is asserted that the state of the art has advanced to the point where

the few failures that do occur are purely random in nature. Present

component lifetimes are on the order of one failure per 1010 component

hours, and all identifiable causes of trouble have been eliminated to

the point where it is impossible to obtain adequate life-test data on

what the characteristics of the components truly are. s From these facts

it is reasoned that only redundant structures can be effective in markedly

increasing mission time, and even in deriving bounds that are useful in

estimating what the effectiveness time actually is.

Of course, the mission time is increased if it can be guaranteed

that all of the elements in a redundant system are initially working

properly, and the initial testing of such systems that are specifically

designed to ignore the occurrence of faults poses some problems. This

problem has been considered by Masters 2°2 who asserts that it may not be

necessary to know that all equipment is faultless initially, but only

that enough of it is functioning to be able to assert something about

the mission probability of success. In his discussion he develops some

analytical formulations relevant to such estimates.

Redundant structures may be effective, of course, in either of the

two fundamental ways that have been emphasized in this report. One way

is through the provision of auxiliary networks and schemes for the de-

tection and diagnosis of faults, with the implication that subsequent

manual or automatic action will be taken to replace the failed part.

The other way is to design the original networks so that a certain class

of faults can occur without affecting the input-output relations, i.e.,

by utilizing what we have called static redundancy techniques. Both of

these techniques may play a role in the same system.
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In the first method, involving the use of dynamic redundancy

techniques, it is not at all clear just to what degree the human operator

can effectively play his role in the closed system. In unmanned space

vehicles his role is necessarily no more than performing analysis on

the basis of telemetered data (over noisy channels), followed by appro-

priate action signalled over the same channel in order to initiate

corrective procedures that must be implemented within the craft itself.

Even in the case of manned vehicles, the need for automated repair on

spaceborne vehicles seems substantiated. In a recent interview with

Roger Chaffee, one of the astronauts in the Apollo program, it was

claimed that all of the stabilization, control and communications

electronics utilize redundancy, usually a switchable redundancy at a

rather high level, lls When asked what role he thought in-flight main-

tenance could play--that is, whether the man on board could actually try

to fix a detected fault--Chaffee's answer was direct: "Not in the

electronics. As you know, these systems are pretty complex...and there

are quite a few integrated circuits .... "

On the other hand, even though there may be some argument that the

man may accomplish some of the physical aspects of repair, e.g., by

adjusting control switches, there seems to be general agreement that he

can play almost no role in the analytical functions that are required to

detect and locate troubles that may occur in the spacecraft electronics.

Indeed, even the possibility of using plug-in modules has been questioned

because of the unreliability of connectors. 3 In the same reference it

is asserted that much has already been done in the provision of automatic

malfunction detection and switchover logic--although so far mainly in

the control of relatively large subsystems, and certainly not on the

small module or component level.

Thus, at least in the Apollo program, the concept of manual in-

flight maintenance seems to be discarded as too demanding on the astro-

naut's time, and has been replaced by an automatic self-repair approach

that Uses a dual form of redundancy. In these dual circuits, a fault-

detection unit continuously monitors the operational unit and automatically

switches power to the auxiliary unit whenever a fault occurs. 12s
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We shall not attempt to document similar problems that still pertain

to ground-based systems and conventional general-purpose computer installa-

tions, except to note that they exist; nor shall we consider the applica-

tion of redundancy to nondigital systems, e.g., contlnuous-control systems,

except to note that similar kinds of redundant structures and approaches

apply. 175 Even the Soviet Union, which hardly makes the activities of

its space programs a part of the accessible literature, has admitted the

general need for improved reliability in its main-line conventional com-

puter systems. Indeed it has been admitted that some of their present

computers, e.g., the BESM, STREL, and URAL computers, are simply not

reliable enough. TM

Thus it is clear that the problem of attaining reliable digital

systems continues to be paramount in the tasks of designers of spaceborne

equipment. A quotation from a recent book on the multitude of factors

involved in space exploration is appropriate: "Before the nearest

stellar systems can be probed, one of two technological breakthroughs

must take place. Either probe equipment, including electronics and power

supplies, must be given lifetimes on the order of ten years, or self-

diagnosing, self-repairing automata must be developed. Both avenues will

certainly be attempted."

b. On the Analysis of Reliable Systems--Bibliographies

Both in this country and in the Soviet Union there has been a great

deal of reported effort devoted strictly to the analytical problem of

calculating the probability of failure of a given network configuration,

given the failure probabilities of its component parts. These analyses

vary according to the different assumptions made about the failure law,

about the nature of the replacement-and-repair process, if any, and about

the nature of the structural or time redundancy provided. With few

exceptions, a fundamental shortcoming concerning these analyses is the

basic assumption concerning the independence of events--that is, the

assumption that one failure is in no way conditioned upon the occurrence

of another.

_ Ref. 49, p. 34.
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There have also been a large number of survey papers which purport

to provide fundamentals to anyone new to the field; some of them are

quite good--including the several books that have been devoted exclusively

to the subject of reliability and redundancy--and provide a rich trove

for one who wants to delve into the subject for the first time, or for

the specialist who wants to broaden his understanding of the field as a

whole. Finally, there have been several good bibliographies published

on the subject.

An interesting qualitative discussion of the improvement in computer

reliability through redundancy techniques is found in a nontechnical

summary by Pierce. 24s This article includes a discussion of many of the

pertinent structures--such as restoring organs, threshold gates, vote

taking, and the like--all in terms that can be easily understood by the

nonspecialist. Herwald presents a concise summary of the state of reli-

ability theory, TM while Aroian 12 gives a summary of the basic formulas

needed for the calculation of the reliability of redundant systems. A

survey of the various redundancy techniques that have been proposed is

given by Teoste, s°° including detailed descriptions of the mathematical

models for estimating the reliability improvement and for comparing the

relative advantages of the several techniques including Moore-Shannon,

majority circuits, and other kinds of redundancy structures. He concludes

that where it is applicable, the Moore-Shannon type of redundancy provides

the most significant improvement. Other similar treatments are avail-

able. ss'2ss,2°9 In particular, Creasey's paper ss includes a review of

the role that can be played by the application of error-correcting codes,

while Fedderson and Shershin 35° describe the problem of determining the

optimum number of redundant elements when various restraining factors

such as cost, weight, and volume are taken into account. A more advanced,

theoretical treatise that surveys the mathematical models useful in

solving reliability problems, but from a mathematical point of view, is

found in Barlow and Proschan. 21 Also worth mentioning is the generally

high-caliber collection edited by Wilcox and Mann, 329 which brings to-

gether a great many contributions to reliability theory, ranging from

the quite scholarly to the eminently practical.
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The purely statistical approach to reliability theory is summarized

in the collection edited by Zelen 336 which cites many interesting prob-

lems and contains papers concerned with statistical models, maintenance

and replacement policies, confidence limits, and the like. In particular,

325

a very readable review of the literature is in the paper by Weiss,

including topological and time-dependent aspects of reliability models.

The statistical basis for the exploration o£ redundancy systems is also

treated by Moscowitz 21s and by Kuznetsov 173 who presents a method for

determining the reliability of a system from the results on tests made

on part of the system (applying standard statistical techniques to the

assumed situation where complete testing is impractical because of the

amount of test equipment required and the limited amount of time avail-

able). Drenick 67 introduces the notion o£ expected economic gain, which

is a random function depending upon the number of failures and their

times of occurrence, as well as upon the particular replacement policy.

He also is concerned with the probability laws by which equipments fail B6

and purports to show that the time between failures tends toward an

exponential distribution as the number of components grows large.

The relevance of these models depends strongly, of course, on the

accuracy of the assumptions on which they are based. In an early paper,

Creveling 54 points out, among other things, the need to design circuits

so that the assumption of independence of faults is justified. Either

this approach is necessary, or the statistical models must be made more

complex; for, as Pollyak 249 demonstrates, an incorrect statistical-

independence assumption will indeed lead to errors in calculating reli-

ability. (He gives examples of calculations showing the effect upon

series-connected and parallel-connected components in particular.)

Virene 317 has discussed this problem rather directly in his pre-

sentation of nonparametric life testing--that is, the use of statistics

in which no assumption is made concerning the underlying distribution

that characterizes the operating life of an equipment--although he warns

of the possible losses o_ efficiency when such methods are used.
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Many other discussions of the application and estimation of system

reliability have appeared,lS,21s, 2s° including attempts to relate the

probability characteristics of system reliability to the detailed failure-

distribution law of the parameters of the components 26s and discussions

of the usefulness of statistical assumptions concerning independence,

probability distributions, and the like. 222

Most of the papers in this field give adequate reference to previous

and related publications; this is certainly true of most of the documents

cited above. In addition several lengthy bibliographies have appeared.

Of these we mention Balaban 18 and certainly the useful assemblies by

Jensen .I38,1 37

c. Optimum Redundancy and Other Considerations

An area of inquiry that is closely related to the previously dis-

cussed papers concerned with the various aspects of general reliability

theory, yet that asks a more system-oriented question, is that repre-

sented by a number o£ papers on determining the "optimum" value, or

ratio, of redundancy. These usually take into consideration other

environmental factors such as power consumption, volume, weight, etc.,

affected by the extra components iu the redundant system. We have

already mentioned one of these, 35° which attempts to formulate redundancy

as a function of total costs, individual element probabilities, etc.,

for various abstract configurations. Not surprisingly, the techniques

of dynamic programming are among the tools presented for the solution o£

such multiple-constraint problems.

An approach along these lines is given by Webster, 322 who bases his

work on the theorem that making a low-reliability part redundant causes

a larger numerical increase in reliability than making a high-reliability

part redundant. Hence redundancy should be progressively applied,

starting with the less reliable portions of the system, until some system

constraint--such as power consumption--is exceeded. In a later paper 323

he demonstrates the practical application of these procedures to a system

composed of 14 subsystems.
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More abstract approaches to the question are presented by Barlow et

al. 22 and by Pierce, 242 who advances a procedure for synthesizing a sys-

tem to obtain the greatest reliability corresponding to a set of fixed

costs, or alternatively to obtain a given, fixed reliability specification

with the minimum set of costs. In a similar vein, Barlow and Hunter 2°

obtain relations for determining the number of components that maximizes

the expected life of a circuit, given an exponential failure law.

On a different question, Esary and Proschan 77 have considered the

relation between the failure rate of a system of (identical) components

and the failure rates of the components themselves. In particular,

they have treated the important case of "k out of n" circuits--that is,

circuits which function properly if any k of the n components are still

functioning.

In yet another area, an interesting point of view is represented by

the work of Merekin, 2°4 Malyugin, Is3 and Muroga, 224 who show how to form

expressions for the reliability of certain types of combinational circuits

directly from their switching functions, without analysis of the circuits

themselves. Gendler, ss on the other hand, analyzes a very particular

circuit logic structure by considering the probability that a given

threshold function is indeed realized by a threshold device that suffers

statistical variations in its weights and in its threshold.

4. Discussions of Static Redundancy Applications

a. Fault-masking Techniques

In a broad sense the terms "static redundancy" and "fault masking"

may be considered synonomous; as pointed out in this report the basic

concept embraced by both terms is that the redundancy is provided as an

internal, integral, autonomous part of the network and operates without

intervention through the input-output terminals--at least until the net-

work fails completely because the number of faults has become too large

to be covered by the masking provisions. In this sense it matters not

what the form of the redundancy is--whether a multiple-line voting scheme,

series-parallel configurations, an internal error-correcting code process,
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or some other scheme. For the purpose of this exposition, however, we

shall reserve the term "fault masking" for the obvious structural type

of replication represented by voting schemes, for example. We shall

treat the signal type of redundancy based upon coding theory in the

following section. This is strictly for convenience, however, as close

inspection reveals that the distinction is quite artificial. Further-

more, we shall separate the structural fault-masking techniques into two

parts: voting schemes and nonvoting schemes, primarily because such a

split roughly represents an equally weighted division of the work that

has been done in the field.

i) Nonvotin_ Schemes

For our purposes, we shall consider the basic paper by Moore

and Shannon 214 to be the starting point for nonvoting redundancy schemes.

Here relay-contact networks are explicitly considered as the components

of interest in primarily combinational network construction. It is shown

that as long as the failures in contacts can be considered statistically

independent, then arbitrarily reliable networks can be built regardless

of how unreliable the individual contacts may be. The construction pro-

ceeds by an iterative process wherein the individual contacts of the

number are replaced by a certain network of contacts. Moore and Shannon

showed the number of contacts required to achieve a given reliability as

a function of the individual relay characteristics. Kochen Iss has

directly extended their results by showing that the required redundancy

in such networks is also a function of the particular logic function

being realized. Further extensions to more general types of networks,

including the important "k-out-of-n" structures, have been made by

Esary et al., 76'29,7s who also consider the case where the components

may have differing reliabilities. Many other papers have appeared that

are concerned with various other extensions or special network proper-

ties.172,s2,118,132,234, 111 Asymptotically, it turns out that the cor-

rection of any single fault in a contact network does not increase the

complexity of the network; this is shown for the case of shorted contacts

in a paper by Potapov and Yablonskii 252 and for contacts that fail by

opening by Madatyan. *ss For two or more shorts or opens, however, the
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asymptotic complexity of the network must increase. In a similar fashion,

it can be shown that the asymptotic complexity of two-level rectifier

gate circuits must increase with the number of faults to be tolerated. 227

Some economies can be achieved by taking advantage of "don't-care" con-

ditions, however, as is the case with straightforward switching-function

realizations. Dunning et al. s9 consider the specific logic-block case

of general NOR-gate trees (including considerations and comparisons of

quadding, voting, etc., in such networks), while Weinstock 324 has treated

the mathematical problem of reducing arbitrary network structures to a

series-parallel form resulting in systematic methods for deriving the

reliability parameters of any network involving a flow of information

between two terminals.

Another important core technique for implementing a nonvoting

kind of redundancy is due to Tryon, 3°5 who introduced what he calls

"quadded" logic--a circuit construct wherein the components appear in

quadruplicate so that errors are corrected one or two levels downstream

from their inception by a mixing of good signals from neighboring units.

Many papers have been devoted to extending Tryon's original results

(e.g. Ref. 139 for NOR-gate networks). Of especial note are the valuable

extensions and generalizations developed by Pierce 244'243 in his "inter-

woven" logic, where Tryon's work was shown to apply to other than the

AND/OR/NOT logic blocks, and to much more general patterns of correction.

In some cases double, triple, and other errors can be corrected, as well

as single errors.

Taking a quite different approach, but in a similar vein--

namely, the replacement of each component by a network of components--

Urbano 310'311,312 has investigated what he calls polyfunctional networks.

These are an iterated network construction in which each component is

replaced by a copy of the entire network, and the iteration may be

carried on to any desired degree. Questions such as the stability of

such networks, and their convergence to a fixed function set, are

examined. Sethares TM has also examined the characterization of functions

in polyfunctional networks.
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In yet another direction, Muchnik and Gindikin 22° have examined

the question of whether the conditions which establish the completeness

of a set of logical primitives need to be modified when some of the

primitives are unreliable. They find that some modification is necessary,

and determine the new conditions.

2) Voting Schemes

The large number of papers on vote-taking redundancy can be

traced back to the fundamental paper of Von Neumann, 31s where multiple-

line redundancy was first established as a mathematical reality for the

provision of arbitrarily reliable systems. In this paper it was demon-

strated that arbitrarily specified reliability could be achieved using

unreliable components (of bounded unreliability, however). It was

essentially a mathematician's answer to the question of whether redundancy

could indeed pay off. A spate of engineering attempts have followed in

an attempt to adapt the fundamental results to practical computing sys-

tems. In some sense, the voting schemes can be distinguished from the

nonvoting schemes (such as quadding) by the fact that the restoration

unit, i.e., the vote-taker, can be physically distinguished from the

units actually performing the logic. In essence, voting schemes simply

replicate the function to be realized in several different "lines" and

then takes a weighted measure, usually a majority vote, over the outputs

of the independent lines.

Subsequent papers treating such systems in general are numer-

ous. 33'156,ss'196 Jensen has developed a lower bound on the reliability

of multiple-line networks, 14o using a minimal-cut concept to describe

the system and analyze its failures. The fact that the reliability o£

majority voting circuits is sensitive to the particular modes of failure

(i.e., whether the probabilities of failing to zero and to one are

different) is discussed by Rhodes; 264 an extension to components that

can exhibit three possible states of behavior is discussed by Rau. 2s2

Lyons and Vanderkulk ls8 consider voting circuits in which the vote-takers

are assigned either to the inputs of the loglc modules or to the outputs.

It is shown that the output voting scheme is generally to be preferred,

341



from the standpoints both of improved reliability and of reduced redun-

dancy ratio. The important concept of adaptive vote-taking, in which

inputs are weighted according to their error history, was conceived by

Pierce TM and is discussed by Angell s and in Sec. II-A-2-b of the body

of this report.

A number of papers have been concerned with the detailed design

of the all-important vote-taker itself, s°,ls5 Farrell s° also considers

the problem o£ the optimum decomposition of a system, i.e., exactly where

the vote-takers are to be placed, as does Cohn, 47 who determines the

optimum level for a system composed of identical components. If the

vote-takers and connecting wires are also vulnerable to failures (an

often ignored assumption), it can be shown that it is not always best to

make systems redundant on the component level. Knox-Seith ls4 carries on

in this tradition and determines the best placement and resulting reli-

ability for cascaded logic systems. Gurzi x15 also has some recent results

on the cascaded three-line situation; she derives upper and lower bounds

on the possible improvements through triplication, and compares the

single-voter and three-voter schemes. Jensen et al. TM and Rubin _72

have also developed synthesis techniques which determine the minimum-cost

voter placement locations, as well as new techniques for estimating the

reliability of the resulting systems.

Many papers have been devoted to comparing the results that

can be obtained for the various schemes, voting and otherwise (e.g.,

Refs. 300 and 37). Attempts in this direction have also been made by

Domanitskii and Prangishvili, e3 who compare the failure probabilities of

systems using multiple-line voting structures with those of systems using

more elemental replication on the component level, specifically for the

case of transistor NOR circuits. Their results indicate that as the

reliability o£ the individual components increases, so does the preference

for replication at the component level. In the same vein, but for

different redundancy procedures, Polovko and Zaynashev TM compare fault-

masking schemes with replacement schemes; they observe that the situation

is ambiguous (perhaps not surprisingly) and that for one set o£ assump-

tions one approach is preferable to the other, and vice versa. They
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conclude that the widest range of tolerance is achievable by using a

combined scheme employing both masking and replacement strategies--

certainly consistent with the couclusions of this report.

Variations on the majority scheme have also been mentioned in

the literature. For example, Depiaa and Grisamore 58 discuss the re-

storing element which averages its inputs, rather than taking a majority,

and conclude that the averaging method can provide greater reliability in

some cases. On the other hand, Lowrie questions the efficiency of the

triple-line scheme itself lss and proposes instead the use of a duplex

approach. In essence this is simply the parallel operation of two

identical logic circuits or computer subsystems, with associated cir-

cuitry to detect any discrepancy between the two. The system is not

truly fault-masked, however, for at this point the redundancy becomes

dynamic--not only must the discrepancy be detected but it must then be

responded to by external diagnostic equipment to localize the faulty

system and to initiate switching action to disconnect the offending

system. Nonetheless it is in the replicated-line family and it is claimed

that in some cases it can achieve a higher reliability than triple-line

systems, while using fewer parts. This assertion obviously stands or

falls on the complexity of the associated equipment needed for detection,

diagnosis, and switching, and on whether the lost time is acceptable

within the operation scheme of the system.

b. Applications of Codin_ Theory

The connection between error-detecting and correcting codes, which

have been largely developed and formalized under the aegis of communica-

tion theory for noisy-channel applications, and the application of re-

dundancy in computing networks has long been recognized, and a numerous

literature exists which formalizes the relation. These involve both

abstract determinations of bounds and specific implementations to various

network types. We shall point to a few of these contributions, recog-

nizing that the differentiation between static and dynamic systems

becomes a little hazy at this point. We also wish to mention fault

masking in sequential machines in a separate, subsequent section, and it
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is obvious that we shall suffer some overlap, since clearly one very

direct application of error-correcting codes is in the judicious encoding

of the states of sequential machines in order to obtain certain proper-

ties of the code for the machine behavior. Nonetheless, coding is such

a well-developed formalism in its own right, as well as in its easily

identifiable relevance to computing networks, that we shall risk the

possible redundancy in this discussion.

An early, elementary discussion of the use of checking codes in

digital-computer applications is presented by Diamond; 6° in this paper,

for example, he pointed out the required distance properties for various

applications. Shortly thereafter, Elias 71 considered the problem of

reliable computation with a model resembling a noisy channel and on the

basis of his assumptions shows that truly arbitrary reliable computation

may be obtainable only at the expense of reducing the computational

capacity, in an information-theoretic sense, to zero.

A summary of the applications of error-correcting codes is found in

Massey, 2°° as well as some original work on "reversible" codes which make

it possible to read data from memory starting with either end of a data

block. Peterson 238 has a useful chapter on arithmetic codes, and Kautz 14s

presents an evaluation of the use of several code families in digital

systems, including a consideration of some new codes, and of the simpli-

fications that are possible if simply detection is of interest and cor-

rection is not.

Mandelbaum 194 applies cyclic codes for burst-error detection to the

case of arithmetic operations, and attempts to accommodate single,

double, triple, and double-burst errors, while Armstrong treats the use

of nonbinary single error-correcting codes, I° developing both bounds on

the required redundancy and some specific codes that meet the bounds.

Ray-ahaudhuri 263 has extended Armstrong's work and has shown that mul-

tiple error-correcting codes can be applied to the correction of failures

in several different units. Many other papers are available that treat

various aspects of the problem (e.g., Refs. 293, 304, and 237), and much

work has gone into the development of codes that are peculiarly well-

suited for certain arithmetic operations (e.g., Refs. 28, 31, 239, 89, 90).
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Avizienis 13,1s has pointed out the use of codes for diagnostics in a
dynamic sense, as well as in the static sense.

Homan has described the logical design of an adder used in the IBM

Stretch computer TM which utilizes four-bit groupings that are tied

together by a carry-look-ahead system. This paper is one of the first

to describe high-speed (25 ns for the add operation) checking circuits

for arithmetic operations. The automatic correction of burst errors

originating in a computer memory has been described by Daher ss in con-

nection with the automatic error-correction unit for a disk memory.

The Soviets have also been active in the application of codes. For

examples following Gavrilov's leadSS,ss,s7, ss several attempts have been

made to apply error-correcting codes to the design of switching net-

works. 64'172'234'31s,296 For sequential circuits, Kurdyukov 172 has

developed a single fault-correcting counter based upon a Hamming code,

and Gavrilov 9s'98 has designed some redundant sequential relay networks

that are insensitive to the malfunction of any one relay. A similar

approach has been taken by Svechinskii 29s and his use of error-correcting

codes for redundant state assignment. Sagalovich 27s has also recently

considered the application of codes to the state-encoding problem in

automata so that failures can be tolerated.

Rubio 273 has also considered the design of self-correcting counters

using coding results. Other more abstract treatments of the general

interrelevance of coding theory and redundant networks are avail-

able.2O 3,332,333

c. Static Redundancy in Sequential Machines

There have been a number of more or less abstract papers dealing

with the careful encoding of the secondary state assignments of sequen-

tial machines, often directly utilizing the properties of error-correcting

codes. These machines are encoded redundantly, hence have redundant

states, and if properly designed can possess any of several error-

tolerant properties. For example, the assumption of a redundant state

may signal an error-detection circuit that an improper transition has

occurred; or the redundant states may be so organized that the machine
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returns in a finite number of steps to the proper primary state, thus

truly masking the error (after a period of time, during which the output

behavior may be insensitive to the fact that something was in error).

Levenshtein TM has made an attempt to define the class of sequential

circuits which are insensitive to an accidental change of state, in the

sense that they will return to proper state behavior after a finite

amount of time following the occurrence of an internal error. Thus the

present state of the network is dependent only on the inputs and a finite

amount of past history. This situation has also been investigated by

Dauber sG and may be compared with the model described by Winograd TM and

Harrison, 119 where the errors are due to accidental input changes.

We have already noted the contributions of Sagalovich 27s and

Svechinskii 296 in the use of error-correcting codes to make secondary

assignments such that failures can be tolerated. Another paper which

considers a similar model that tolerates error in its state transitions

is that of Frank and Yah. ss The special problems in relay machines have

been discussed by Mullin 223 including the particular problems of analyzing

the reliability of such machines.

The general problem of analysis of such machines is still difficult

and not well understood. Tsertsvadze3°S, 3°7 has suggested the use of a

stochastic automaton model as the appropriate general approach to the

design of finite automata with specified reliability characteristics,

composed of unreliable components. His methods, which are based on Von

Neumann, as well as Moore-Shannon models, appear to be addressed both to

permanent and to intermittent faults within a system.

Several papers have been directed toward the design of specific

machine types; in particular, counters serve as a convenient vehicle.

We have mentioned Rubio's _73 paper in this regard; Russo 274 has also

used codes to design counters--using distance-three codes in the input

equations, thus assuring a tolerance to slngle-blt errors, either per-

manent or transient.
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5. Discussions of Dynamic Redundancy Applications

a. Approaches to Fault Diagnosis

For systems where dynamic redundancy is used to increase the reli-

ability, it follows by definition that auxiliary equipment is involved

in the response of the overall system to a fault in one of its subsystems.

Thus the terminals of the subsystem are involved, with the help of equip-

ment external to the subsystem proper, in the detection, location, and

analysis of the nature of the fault (which we lump under the term diag-

nosis for this discussion). Secondly, external equipment (perhaps with

human intervention) decides the nature of the response and carries through

on its execution. Diagnostic procedures are reviewed here; the second

phase is reviewed in the next section. In the last section we mention

complete system organizations that have been proposed to facilitate

self-repair.

All structural redundancy is, after all, in some sense simply the

provision of spare parts in a mechanism to enable it to tolerate failures.

In static redundancy these spare parts are permanently part of the

mechanism and the toleration (up to some saturation point) takes place

autonomously (and anonymously) within the mechanism itself. In dynamic

redundancy, although the spare part may be fully powered--even performing

the same job--there must be a switchover process on the advent of a fail-

ure. Hence the task of diagnosis must be no more than to determine the

replaceable unit--whether that be an individual component, a network, or

a subsystem. Thus, depending on the system, simple fault detection may

be all the diagnostics that are needed if the replaceable unit is the

entity signalling the detected fault. On the other hand, the fault de-

tector may embrace a number of replaceable units, or modules, in which

case fault-location routines must be instigated in order to find the

particular offending module that must be removed. Finally, if the re-

placeable units are the actual components within a physically contained

module, then what is more conventionally described as a diagnostic test

routine must be used to locate the particular component that has failed.
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Thus all of the terms "detection," "location," and "diagnosis," which

cause some semantic confusion, we identify as describing general diag-

nosis activities.

The formal problem statement and solution of the fault-diagnosis

situation for combinational networks has been presented in this report,

as well as in an earlier summary. 149 Given a network with inputs and

outputs, a fault can be diagnosed if and only if it produces an output

column in the fault table that is distinguishable from all other columns

(including the column for the network without faults. The problem then

evolves into one of determining which rows of the fault table to use as

inputs in a test schedule so that some criterion of the schedule is

optimized (e.g., perhaps the maximum length is important, or perhaps the

average length). Kautz' procedures 149 will formally give minimal sched-

ules but become unwieldy for large networks. He has also introduced the

notion of serial test schedules and has shown that these may result in

much shorter routines.

The similar problem in the Soviet Union stems from an early work by

Chegis and Yablonskii 41'33s who first introduced the notions of the fault

table and the use of a minimum-length test schedule for the isolation of

single faults (opens and shorts) in combinational relay-contact networks.

They proposed the use of special switching functions, and showed how

manipulations of these expressions could be considerably simplified when

the network is planar, by working with the dual network. Alexander 4 in

this country has also shown that special switching-circuit notations can

be applied to the drawing up of test and maintenance schedules.

Later Soviet work has relied heavily on the earlier work; for

example Kogan 167 improved the Chegis-Yablonskii procedure somewhat by

using the notion of proper-cut sets of the graph of the contact network,

and also evaluated some special networks based upon disjunctive and con-

junctive normal-form expansions. Kogan, 1ss in another paper, and later

Vaksov, 313 showed how to minimize the length of the test schedule for

the location of any number of shorts and opens in the class of nonrepe-

titious networks (i.e., those networks having just a single contact in
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each input variable). Later, Glagolev I°6 specialized the Chegis-Yablonskii

approach to iterative contact networks, and others 291,287 have extended

the concepts to gate-type networks, including location to either the

faulty gate or the faulty subsystem. The possibility of utilizing

auxiliary inputs is examined by Karibskii, 145 and a special form of serial

testing is proposed by Kinsht 162 in an attempt to shorten the average

test-schedule length.

On the level of entire digital systems, there have been two interest-

ing analyses; one by Fleyshman, 83 who studied the self-monitoring concept

and concluded that such a system needs an ultrareliable "hard core" which

can be used to check out in succession increasingly larger portions of the

system hierarchy, and one by Lyabutov, 187 who solved the general problem

of optimizing a sequence of tests on a multimodule system, given for each

module its probability of failure, the length of time required to test

the module, and the probability that the test will not reveal a fault

within the module. (An optimal sequence is defined here to be one whose

average length is minimal.) In addition, the area of programming diag-

nostics has been examined for particular systems, e.g., the URAL com-

puter. 79 There have also been more sophisticated diagnostic approaches

which involve diagnosing over successively less gross portions of a

computer until finally the particular offending gate is isolated. 316

This sort of approach appears closely related to similar philosophies of

serial testing that have been mentioned previously.

Several papers have discussed the importance of diagnostic pro-

cedures in complex systems (e.g., Refs. 182 and 136), the nature of the

diagnostic equipment, and routines (e.g., Refs. 34 and 87). Lee Is°

proposes a method for the situation where normal operation can be inter-

rupted, while Schneider and Wagner 276 are concerned with the case where

uninterrupted operation is crucial. Several papers concern themselves

with diagnostic programs in particular machines,27s,158, TM and Tsiang

and Ulrich TM have described the routines used in the modern

electronic central office of a telephone system. The operation appears

to have the same flavor as the duplex-redundancy scheme previously

mentioned; that is, the central-office control is duplicated; both units
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work together on the same input and the resulting outputs undergo con-

tinual comparison. Any discrepancy calls for fault-diagnosis routines

to be started during the next available period.

Poage 246 has also considered efficient schedules for combinational

networks, and has proposed an analytical procedure that yields an output

expression which reflects network structure; he then uses this output

expression to develop tests to detect single faults, and also extends

the method to multiple faults as well. Chang has also investigated the

problem of efficient diagnostic tests for combinational networks 4° and

develops an algorithm for reducing the redundancy in the rows of the

fault table selected for a schedule. Armstrong 11 uses a "path-sensitizing"

concept in the treatment of the class of faults wherein connections become

stuck at logical one or zero, and describes a procedure that can be ap-

plied to larger networks than can be treated by exact methods. Roth 27°

has also developed diagnostic algorithms for faults in combinational net-

works. One way of developing a set of tests is to simply simulate the

network on a computer and let the computer generate the failure cases;

this approach is proposed by Seshu and Freeman 28° who use a decision tree

to successively isolate the fault to a smaller and smaller set. Johnson

considers the cost of a given test and the information gained by it to

develop a figure of merit to help in developing the most efficient test

procedure. 142

Kautz 147 has described constructive procedures for the design of net-

works that provide an output to indicate a failure within the network--

that is, an automatic fault detection signal--while Kilmer Is9 has discussed

an idealized computer organization composed entirely of fault-detecting

circuitry of the fault-detecting type which can correct a bounded number

of transient failures which might occur anywhere within the computer.

Thus the area of combinational network diagnostics would appear to

be very well represented, and the formal problems seem to be well under-

stood. There are still problems in large networks, in the handling of

transient errors in general, in the utilization of auxiliary inputs and

outputs, etc., but much comprehensive work has been done and directions

for further research are relatively clear.
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Such is not the case for the diagnosis of sequential machines,

however. Some very excellent work has been done, but it is still largely

of a theoretical nature and certainly is not practicable for machines

larger than a very few states.

In one very basic approach, the problem is formulated in a fashion

rather analogous to the fault-table representation for combinational net-

works. If the given machine is designated by S, then the class of faults,

k in number say, corresponds to faulty machines S1, ..., S k. The obvious

approach, then, is to determine a set of inputs so that the resulting out-

put sequences will distinguish all the S from each other, as well as
1

from the good machine S. This is essentially the formulation proposed by

Gill l°3 and by Poage and McCluskey, 247 wherein procedures for developing

appropriate input sequences are presented. It is reiterated that the

procedures rapidly become unwieldy, even with computer aids, beyond a

few states and a small set of faulty machines.

Hennie 12_ takes a similar approach, related to early work by Moore, 21s

and asks for appropriate "checking experiments" (i.e., input sequences

again) which will allow the determination of whether the assumed state

table for the machine is actually the one being traversed by the machine

being checked. An important consideration is whether the given machine

has a "synchronlzzng sequence, that is, a sequence which will return it

to a given starting state--not all machines do. Kime le°'lel proposes a

specific testing method based on Hennie's testing philosophy and considers

the problem of designing circuits that have "distinguishing" sequences.

Soviet treatment of the problem of diagnosing faults in sequential

networks is also rather skimpy. We mention only Karibskii et al. 14e

where Gill's procedure l°s has been successfully generalized and a few

bounds on the lengths of the test schedules are given. However, the

problem is far from solved, and there is much work to do.

b. Spare-Equipment Considerations

There has also been a great number of papers concerned with the

statistical aspects of systems with standby parts, under various assump-

tions on the lifetime of such spares, on their number, on their
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repairability, and so on. It is convenient to mention, in this same

context, questions concerning maintenance procedures and the effects

that various maintenance policies have on system life, depending on

various assumptions on checking periods.

Weiss 326 has considered the determination of the optimum checkout

interval for a system which does not exhibit the usually assumed expo-

nential failure characteristics. Flehinger 81 provides a treatment of a

number of different probabilistic models corresponding to different

preventive-maintenance policies.

Teoste 299 presents the design of a computer which can continue

operating satisfactorily even while a part of it is being repaired. He

provides a general discussion of machines of this type; the first gross

approach is to consider several computers all operating on the same

inputs, with the output taken from one unit till it fails, then from the

next, and so on; then the system can be broken into smaller parts and

essentially the same process applied to these parts, etc. Gaver 94 also

discusses the time to failure and the availability of redundant systems

in which repair is permitted. He assumes that failures are immediately

identifiable, and again takes primarily a duplex approach. In a later

paper 93 he loosens the assumptions somewhat and analyzes the failure time

of such a system when the two units are not the same--in particular, when

they possess different kinds of statistical failure properties. He

develops explicit formulas and approximations for the mean time to failure,

and shows how these are affected by various repair-time distributions.

Other papers that consider various assumptions on the number and failure

distributions of spares include Refs. 207, 217, 163, 327, and 334.

Rosenheim and Ash 2ss assume that the redundancy in spares extends to

entire machines, rather than just to components or small units.

Flehinger s2 has presented a comparison between, on the one hand, the

situation where the redundancy is applied over complete independent

machines, and on the other hand, the provision o£ spares on the basis

of much smaller units. She calculates the resulting reliability in each

case as a function of the number of units in the nonredundant machine

and of the degree of replication.
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Other special assumptions are reported by Sinitsa, 2ss who includes

the possibility of statistical dependence between the active and spare

components of a system, and by Muth, 225 who assumes limited repair capabil-

ities and plots expected time to failure as a function of the capability

for one repair, two repairs, and so on. Nerber 22s and Buckley 35 both

examine the necessity of including failure rates for the idle standbys,

even in the power-off mode, and including the problem of detecting whether

a turned-off part has failed.

The Soviets have also been fairly aggressive in examining these

areas. General but fairly conventional formulations, concerned with

determining the probability of failure-free operation of systems which

are operable until a given number of failures have occurred, seem to be

well represented.lS4,22s,2ss, TM These are generally concerned with the

calculation of the mean time to failure under different probability

assumptions. Closely related to these papers is the work of Shcherbakov 282

who investigates the characteristics of the "up-time" distribution of

systems under various assumptions on the time for repair once a break-

down occurs. Also worth noting in this regard is Zhozhikashvili and

Raikin's ss7 extension to include the consideration of systems in which

there is an elemental amount of self-diagnostic capability included in

order to signal the loss of some fault-masking capabilities as a system

progressively deteriorates. On the other hand, Malev 19° assumes that

maintenance procedures are instituted periodically and calculates the

average period of correct operation under this regimen, while the effects

of incorporating both standby-reserve equipment and a maintenance-and-

repair schedule are considered by Zubova TM and by Raikin et al. 2ss

Zubova assumes duplicate systems, with one in idle standby, under

different assumptions on failure times for each system, and different

times within which a system is assumed to have fully recovered.

Similar studies of standby systems have been reported by Gnedenko1°7, 1°s

and others.23,1°2, 2s7 The possibility of using one of the computers in

an interconnected system to check out the other for faults automatically

has been recognized, and programs for accomplishing this possibility have

been developed. TM
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In a sequence of papers Raikin, 255,2se,259 Kel'mans, 155 Smolitskii

and Chukreev, 29° and Alekseev and Yakushev 2 have studied the problem of

determining the optimal number of spare modules of each type in a modular

system, taking into account the "cost" of each type of spare module, the

probability of failure of each module, and whether or not the module may

fail while it is a spare. Several algorithms for the optimization are

discussed in these papers. Gertsbakh I°2 and Barzilovich 2s have investi-

gated the same type of system, under the condition of minimizing the

average loss which occurs between the times of fault occurrence and fault

repair, and algorithms are derived for optimal maintenance based upon

this condition. Raikin 257 has extended his results on the average number

of standby modules that remain available as a function of time.

Korman 169 has addressed himself to the inverse of the problem of

determining the optimal reserve for a modular system; in particular he

assumes a given ratio of spare modules and determines the necessary re-

liability characteristics of the module itself in order to achieve a

specified overall system probability of trouble-free operation.

The possibility of using memories which are segmented into units is

an important aspect of complex reconfigurable systems. In this regard,

we note that in studies using the URAL-I and the M-20 computc[_ .7° it

has been concluded that the use of substitute, switchable memory spares

is feasible, even under the assumption that the switching system itself

is no more reliable than the balance of the system. In a related approach,

a duplexed memory system has been reported TM which may be operated in

either the duplex mode--with both memories being read simultaneously and

updated by the particular section being used--or in a simplex mode. In

the simplex mode, both memories are actively used and the choice of mode

is determined by the nature of the mission.

Cosgrove and Masters, s° and other workers at Westinghouse TM have

considered an interesting self-repair variation on the conventional

multiple-line voting scheme: they make provision for the shifting

around of blocks of circuitry as a function of the failure history. As

failures occur and leave certain networks more vulnerable than others to
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succeeding failures, circuit blocks are switched about in order to in-

crease the reliability of the more vulnerable networks. In computer

simulation programs they produce results that show that only a modest

amount of switching is necessary to produce significant reliability

gains.

Goldberg I°9 has developed several network schemes that use both

static-masking techniques and adaptive-replacement techniques to augment

the reliability of multiple-line systems. (See also Sec. II-A-2-b of

the body of this report.)

c. System Organizations that Facilitate Self-Repair

There is also a growing number of papers concerned with the organi-

zation of entire systems that optimize the capability for self-diagnosis

and repair, reconfigurability, or modularity. For example, Terris and

Melkanoff 3°3 describe a self-repairing system with a switching mechanism

for the replacement of failed circuitry which has been automatically

diagnosed. They utilize a "master machine" to aid in the control functions,

and find that a thirty-percent increase in required equipment results in a

fourfold increase in the mean lifetime between failures.

Landers 174 attempts to categorize self-repairing systems in a

general way, notes that very little reduction to practice has been made

of the many concepts that have been formulated, and offers the debatable

opinion that the difficulties stem from the fact that such concepts border

on self-reproducing systems--and hence share their fundamental difficulties.

Doyle 6s describes a program that is used to enable a digital system to

repair itself, and in application to the SAGE system it is asserted that

the system provided automatic recovery from over 90 percent of the failures

occurring during the period of study. Kruus 171 has also studied self-

repairing systems composed of a number of identical machines, spare parts,

and the necessary interconnecting mechanisms. He has simulated machines

operating in parallel, with faults being detected by observing a difference

in outputs. He also notes the problem of the initial setting of a newly

substituted machine in order that its outputs agree with the outputs of

the operating machines.
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Agnewet al. 1 have presented the design of a hypothetical aerospace

computer; they use a partitioning technique to determine the appropriate

diagnostic subsystems. Interestingly enough, they conclude that diagnosis
and self-repair (i.e., dynamic redundancy) are not sufficient for maximum

system availability, but that static redundancy techniques must be used
also in order to achieve the optimum configuration. Avizienis 14 has pre-

sented complete processor organizations using his codes for continuous

generation of real-time diagnostic information in order to initiate repair,

replacement, or reorganization of the system.

Forbes et al. 84 describe the organization of a computer specifically

designed to maximize up-time through self-diagnostic routines, but consider

only manual replacement of faulty modules. Manning197 has reported on an
extension of earlier work198 on the self-diagnosis problems in a single-

processor machine to those in a large multiprocessor machine. Joseph143
also reports on a specific multiprocessor configuration, and England74

describes a space-guidance computer configuration that exhibits both

static and dynamic redundancy techniques at different hierarchical levels.

6. Peripheral Considerations

Redundancy techniques can be applied systems other than computing

networks: for example, to power supplies, mechanical systems, etc.

There have also been a number of papers concerned with the other environ-

mental aspects exhibited by redundant systems: the increased volume and

weight requirement, the adjustment of loads within a system when fault-

masked components fail, and so on. These problem areas were not directly

attacked in developing this survey, but several relevant articles can be

noted that were accumulated while searching for articles pertinent to the

main body of interest.

It has already been noted that redundancy techniques can be trans-

formed directly to application in continuous systems. 17s Raikin has

investigated the problem of redistribution of loads in a series or

parallel-connected system; if an element fails during operation the re-

maining elements must take over its load or voltage, and specific reli-

ability formulas are derived for given dependencies of the damage incurred.
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Herron 12s considers weight as a constraint in maximizing reliability,

and shows how his method can be extended to include other environmental

constraints as well.

Finally, Paynter and Mathis TM consider the problem of redundancy

in power-supply design; they treat replication of entire units, as well

as component redundancy within units. The important point is made that

while a component failure in a signal-processing unit need not be cata-

strophic, a failure in a power supply usually is--hence, under the

philosophy that the weakest unit should be strengthened first by the use

of redundant structures, the attainment of power-supply reliability is

extremely important. Techniques for this purpose are considered in

Appendix B of this report.
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