
© 2017 Keith A. Campbell

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158324051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ROBUST AND RELIABLE HARDWARE ACCELERATOR DESIGN
THROUGH HIGH-LEVEL SYNTHESIS

BY

KEITH A. CAMPBELL

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Professor Deming Chen, Chair
Professor Wen-Mei W. Hwu
Professor Martin D. F. Wong
Associate Professor Nam Sung Kim

ABSTRACT

System-on-chip design is becoming increasingly complex as technology scaling

enables more and more functionality on a chip. This scaling-driven complexity

has resulted in a variety of reliability and validation challenges including logic

bugs, hot spots, wear-out, and soft errors. To make matters worse, as we

reach the limits of Dennard scaling, efforts to improve system performance

and energy efficiency have resulted in the integration of a wide variety of

complex hardware accelerators in SoCs. Thus the challenge is to design

complex, custom hardware that is efficient, but also correct and reliable.

High-level synthesis shows promise to address the problem of complex

hardware design by providing a bridge from the high-productivity software

domain to the hardware design process. Much research has been done on

high-level synthesis efficiency optimizations. This dissertation shows that

high-level synthesis also has the power to address validation and reliability

challenges through three automated solutions targeting three key stages in the

hardware design and use cycle: pre-silicon debugging, post-silicon validation,

and post-deployment error detection.

Our solution for rapid pre-silicon debugging of accelerator designs is hybrid

tracing : comparing a datapath-level trace of hardware execution with a

reference software implementation at a fine temporal and spatial granularity

to detect logic bugs. An integrated backtrace process delivers source-code

meaning to the hardware designer, pinpointing the location of bug activation

and providing a strong hint for potential bug fixes. Experimental results show

that we are able to detect and aid in localization of logic bugs from both

C/C++ specifications as well as the high-level synthesis engine itself.

A variation of this solution tailored for rapid post-silicon validation of

accelerator designs is hybrid hashing : inserting signature generation logic

in a hardware design to create a heavily compressed signature stream that

captures the internal behavior of the design at a fine temporal and spatial

ii

granularity for comparison with a reference set of signatures generated by

high-level simulation to detect bugs. Using hybrid hashing, we demonstrate

an improvement in error detection latency (time elapsed from when a bug

is activated to when it manifests as an observable failure) of two orders

of magnitude and a threefold improvement in bug coverage compared to

traditional post-silicon validation techniques. Hybrid hashing also uncovered

previously unknown bugs in the CHStone benchmark suite, which is widely

used by the HLS community. Hybrid hashing incurs less than 10% area

overhead for the accelerator it validates with negligible performance impact,

and we also introduce techniques to minimize any possible intrusiveness

introduced by hybrid hashing.

Finally, our solution for post-deployment error detection is modulo-3 sha-

dow datapaths: performing lightweight shadow computations in modulo-3

space for each main computation. We leverage the binding and scheduling

flexibility of high-level synthesis to detect control errors through diverse

binding and minimize area cost through intelligent checkpoint scheduling and

modulo-3 reducer sharing. We introduce logic and dataflow optimizations to

further reduce cost. We evaluated our technique with 12 high-level synthesis

benchmarks from the arithmetic-oriented PolyBench benchmark suite using

FPGA emulated netlist-level error injection. We observe coverages of 99.1%

for stuck-at faults, 99.5% for soft errors, and 99.6% for timing errors with a

25.7% area cost and negligible performance impact. Leveraging a mean error

detection latency of 12.75 cycles (4150× faster than end result check) for soft

errors, we also explore a rollback recovery method with an additional area

cost of 28.0%, observing a 175× increase in reliability against soft errors.

While the area cost of our modulo shadow datapaths is much better

than traditional modular redundancy approaches, we want to maximize the

applicability of our approach. To this end, we take a dive into gate-level

architectural design for modulo arithmetic functional units. We introduce new

low-cost gate-level architectures for all four key functional units in a shadow

datapath: (1) a modulo reduction algorithm that generates architectures

consisting entirely of full-adder standard cells; (2) minimum-area modulo

adder and subtractor architectures; (3) an array-based modulo multiplier

design; and (4) a modulo equality comparator that handles the residue

encoding produced by the above.

We compare our new functional units to the previous state-of-the-art

iii

approach, observing a 12.5% reduction in area and a 47.1% reduction in delay

for a 32-bit mod-3 reducer; that our reducer costs, which tend to dominate

shadow datapath costs, do not increase with larger modulo bases; and that for

modulo-15 and above, all of our modulo functional units have better area and

delay then their previous counterparts. We also demonstrate the practicality

of our approach by designing a custom shadow datapath for error detection

of a multiply accumulate functional unit, which has an area overhead of only

12% for a 32-bit main datapath and 2-bit modulo-3 shadow datapath.

Taking our reliability solution further, we look at the bigger picture of

modulo shadow datapaths combined with other solutions at different ab-

straction layers, looking to answer the following question: Given all of the

existing reliability improvement techniques for application-specific hardware

accelerators, what techniques or combinations of techniques are the most

cost-effective? To answer this question, we consider a soft error fault model

and empirically evaluate cross-layer combinations of ABFT, EDDI, and mod-

ulo shadow datapaths in the context of high-level synthesis; parity in logic

synthesis; and flip-flop hardening techniques at the physical design level. We

measure the reliability benefit and area, energy, and performance cost of each

technique individually and for interesting technique combinations through

FPGA emulated fault-injection and physical place-and-route. Our results

show that a combination of parity and flip-flop hardening is the most cost-

effective in general with an average 1.3% area cost and 5.7% energy cost for a

50× improvement in reliability. The addition of modulo-3 shadow datapaths

to this combination provides some additional benefit for some applications,

even without considering its combinational logic, stuck-at fault, and timing

error protection benefits. We also observe new efficiency challenges for ABFT

and EDDI when used for hardware accelerators.

iv

To my parents, for their love and support.

v

ACKNOWLEDGMENTS

I would like to thank my advisor Prof. Chen for showing me the meaning of

“brute-force” effort and for operating like a true scientist: being convinced once

presented with sufficient evidence. I would like to thank my friends in the lab

who have kept me company over the years: in particular Yun Heo for giving

me insight into the hardware world, Ashutosh Dhar for stepping up to help

me maintain our critical lab infrastructure, Yao Chen for complimenting my

ideas and treating me like a professional, Wei Zuo for her honest assessments

of my work, and Anand Ramachandran for interesting conversations.

vi

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . ix

CHAPTER 1 INTRODUCTION . 1
1.1 Root Causes for Hardware Failure 3
1.2 Root Cause Effects . 8
1.3 Error Propagation . 10

CHAPTER 2 BACKGROUND . 12
2.1 Execution Signatures . 12
2.2 Modulo Arithmetic . 14
2.3 High-Level Synthesis . 17

CHAPTER 3 RELATED WORK . 19
3.1 Hybrid Quick Error Detection 19
3.2 Modulo Shadow Datapaths . 21
3.3 Cross-Layer Reliability . 23

CHAPTER 4 HYBRID QUICK ERROR DETECTION 25
4.1 Basic Principles . 25
4.2 Hybrid Tracing vs. Hybrid Hashing 28
4.3 Effectiveness and Practicality 29

CHAPTER 5 PRE-SILICON DEBUG: HYBRID TRACING 31
5.1 Comparison to Software Debugging 32
5.2 Hybrid Tracing Framework . 33
5.3 Simulation Breakpoint Trigger 42
5.4 Bug Example . 42
5.5 Experimental Results . 43

CHAPTER 6 POST-SILICON VALIDATION: HYBRID HASHING . 52
6.1 Hybrid Hashing Framework 54
6.2 Binding to Minimize Area . 60
6.3 Integration into PSV Testing 60
6.4 Real-time Error Detection . 61
6.5 Experimental Results . 62

vii

CHAPTER 7 POST-DEPLOYMENT RESILIENCE: MODULO-3
SHADOW DATAPATHS . 66
7.1 Framework . 66
7.2 Results and Analysis . 77

CHAPTER 8 CHEAPER MODULO FUNCTIONAL UNITS 82
8.1 Modulo Functional Units Architecture 82
8.2 Quality of Results Comparisons 88

CHAPTER 9 CROSS-LAYER RESILIENCE SYNERGIES 92
9.1 Framework . 93
9.2 Results and Analysis . 101

CHAPTER 10 CONCLUSIONS . 107

REFERENCES . 110

viii

LIST OF ABBREVIATIONS

ABFT Algorithm Based Fault Tolerance

ACM Association for Computing Machinery

ARM Company that designs CPU cores, initially an acronym for
Acorn RISC Machine

ASIC Application Specific Integrated Circuit

AST Abstract Syntax Tree

BTI Bias Temperature Instability

CDFG Control and DataFlow Graph

CED Concurrent Error Detection

CHStone C-based High-level Synthesis benchmark suite

CLEAR Cross-Layer Exploration for Architecting Resilience

CPU Central Processing Unit

DAC Design Automation Conference

DICE Dual Interlocked Storage Cell

DIVA Dynamic Implementation Verification Architecture, a fault-
tolerant CPU architecture

DMR Double Modular Redundancy

DRAM Dynamic Random Access Memory

ECO Engineering Change Order

EDDI Error Detection by Duplicated Instructions

EDL Error Detection Latency

ix

ERC End Result Check

FA Full Adder

FPGA Field Programmable Gate Array

FSM Finite State Machine

GCC GNU Compiler Collection

GNU GNU is Not Unix

GPU Graphics Processing Unit

HA Half Adder

HH Hybrid Hashing

HLS High-Level Synthesis, also known as behavioral synthesis

HT Hybrid Tracing

HW HardWare

IC Integrated Circuit

ID IDentifier

IEEE Institute of Electrical and Electronics Engineers

IR Intermediate Representation

ISA Instruction Set Architecture

JPEG Joint Photographic Experts Group, develops image compression
standards

JTAG Joint Test Action Group, develops on-chip instrumentation
standards

LEAP Layout design through Error-Aware transistor Positioning

LFSR Linear Feedback Shift Register

LHL Light-Hardened LEAP

LLVM An open-source compiler development framework, initially an
acronym for Low-Level Virtual Machine

LUT LookUp Table

MAC Multiply and ACcumulate

x

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MSB Most Significant Bit

MUX MUltipleXer

P&R Place and Route

PSV Post-Silicon Validation

QA Quarter Adder

QED Quick Error Detection, detecting errors by fine-grained dupli-
cation

RISC Reduced Instruction Set Computing

RTL Register Transfer Level, referring to the Verilog or VHDL hard-
ware description languages

SDC Silent Data Corruption

SEC Statistical Error Compensation

SEMU Single Event Multiple Upsets

SER Soft Error Rate

SEU Single Event Upset

SoC System on a Chip

SP Service Pack, a minor software update

SP&R Synthesis, Place, and Route

SRAM Static Random Access Memory

SSA Single Static Assignment

TMR Triple Modular Redundancy

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit, a U.S. government program

XOR Exclusive OR, addition in modulo-2 space

xi

CHAPTER 1

INTRODUCTION

Designing hardware is hard.1 A system designer chooses a custom hardware

design when a pure software solution is inadequate for power consumption

and/or performance reasons. Thus problems that require a hardware solution

already come with demanding power and performance constraints. With the

end of Dennard scaling, improvements in power consumption and performance

for microprocessor-based software platforms have slowed down, pushing more

and more system designers to custom hardware solutions.

The result is an explosion in system complexity with increasing effort

and chip area dedicated to custom hardware on SoCs. To make matters

worse, designers often have additional constraints: limited time to get into a

market, complex functionality demanded by that market, and limited chip

area budgets due to fabrication costs.

As if this were not enough, the continuation of Moore’s law scaling has

resulted in new hardware reliability problems. Reliably operating billions

of transistors is not easy when power “brown outs” start occurring and

thermal hot spots start forming as transistors are packed closer together.

Reliably fabricating smaller wires and devices is also not easy, resulting in

more permanent defects. Smaller devices are more vulnerable to particle

strikes, which manifest as soft errors. Physical effects cause smaller transistors

to wear out, resulting in longer gate propagation delays leading to timing

errors after prolonged use. All of this does not even consider that designers

themselves, without needing any help from circuit physics, are more than

capable of creating their own logic bugs to trip over in their complex designs.

Clearly, there is a need for effective methods to manage the complexity of

hardware design. High-level synthesis, also known as behavioral synthesis, is

one such approach. HLS provides a bridge from the high-productivity software

paradigm to the hardware design process, enabling hardware designers to

1That is why it is called hardware.

1

create behavioral specifications of their design in dialects of traditionally

software languages. HLS frees hardware designers from the tedious details of

hardware resource allocation, scheduling, and binding, allowing them to focus

on meeting design requirements and designing effective hardware algorithms.

From a research point of view, starting from a behavioral specification pro-

vides the synthesis engine with richer information about the behavior and

architecture of a design, enabling scheduling and binding optimization poten-

tial not possible with RTL design entry, and giving the synthesis engine more

freedom to exploit this flexibility to meet multiple optimization goals.

In this thesis, we discuss our research to leverage this power of HLS to

address the aforementioned hardware validation and reliability problems

through three automated solutions, targeting three key stages of the hardware

design and use cycle.

In Chapter 5, we propose the insertion of non-synthesizable instrumentation

into an HLS-generated hardware design to capture a trace of internal behavior

at a fine spatial and temporal granularity in hardware (RTL) simulation.

By comparing this trace with a software version generated to produce the

same result, we show that logic bug detection is possible for both bugs in the

hardware specification source and in the HLS engine. Furthermore, through

the use of debugging metadata, we show that this technique can pinpoint

the line where a source-code bug resides. This technique also leverages co-

simulation to use high-level language simulation for parts of the design not

being directly tested. HLS is critical here because it identifies key RTL

variables that have source-code meaning, avoiding the deluge of data from an

RTL-level value change dump.

In Chapter 6, we propose the insertion of signature generation logic into a

fabricated hardware design to create a heavily compressed signature stream

that captures the internal behavior of the design during post-silicon validation

at a fine temporal and spatial granularity. By comparing the generated

sequence of signatures to a reference set generated by high-level simulation,

we can detect both logic and electrical bugs in hardware designs. HLS also

plays a critical role here by identifying important variables to capture and

enabling the sharing of expensive signature generation logic.

In Chapter 7, we propose creating a redundant, but smaller “shadow”

datapath based on modulo arithmetic to detect reliability problems in a

design’s main datapath. HLS is critical here because it provides a clear

2

picture of the datapath of the design and enables effective sharing of expensive

checksum computing resources.

In Chapter 8, we take a dive into gate-level optimization to further optimize

these shadow datapaths, exploring new gate-level algorithms and architectural

templates for modulo arithmetic functional units with the goal of automating

the generation of these units. We show that the use of these new functional

units reduces shadow datapath cost, and enables practical scaling to larger

shadow datapath widths for improved error detection effectiveness.

In Chapter 9, we take shadow datapaths further by looking for cross-layer

synergies with techniques for improving soft-error reliability ranging from

the algorithm to the physical design level. By combining techniques, we can

exploit the strength of each technique while compensating for weaknesses. As a

side effect, this chapter explores the effectiveness of algorithm and instruction

level techniques when applied in the context of high-level synthesis.

Before these main chapters, we will provide some background on the

reliability and validation problems hardware designers face in the rest of this

chapter, introduce important concepts used in our work in Chapter 2, and

discuss related work in Chapter 3. Chapter 4 introduces the concept of hybrid

error detection, which creates the foundation for Chapters 5 and 6. We end

with concluding remarks in Chapter 10.

This thesis is based on our three publications in the IEEE/ACM Design

Automation Conferences of 2015 and 2016: “High-Level Synthesis of Error

Detecting Cores through Low-Cost Modulo-3 Shadow Datapaths” [1], “Hybrid

Quick Error Detection (H-QED): Accelerator Validation and Debug Using

High-Level Synthesis Principles” [2], and “Debugging and Verifying SoC

Designs through Effective Cross-Layer Hardware-Software Co-Simulation” [3].

Chapter 9 is based on a publication to appear in TECHCON 2017: “Cost-

Effective Cross-Layer Resilience for Hardware Accelerators” [4].

1.1 Root Causes for Hardware Failure

Figure 1.1 provides an overview of the hardware engineering process, which

consists of the following steps:

1. The designer writes a Verilog and/or VHDL description of the design.

3

SystemC / C Dialect

Gate Netlist

Physical Design

Hardware

High-Level
Simulation

High-Level
Synthesis

Logic
Synthesis

Place and
Route

RTL
Simulation

Netlist
Simulation

Timing
Simulation

Fabrication

Post-Silicon
Testing

Deployment

Verilog/VHDL

Logic
Bugs

Permanent
Faults

Soft
Errors

Wear
Out

Hot
Spots

Figure 1.1: The hazards inherent in designing custom hardware.

4

For improved productivity, the designer may also elect to specify design

blocks at the behavioral level in SystemC or the HLS-tool’s proprietary

C dialect.

2. The designer simulates behavioral design blocks using a software com-

piler.

3. The designer uses a high-level synthesis tool to generate an RTL imple-

mentation of behavioral design blocks.

4. The test engineer runs the resulting RTL implementations through an

RTL simulation tool.

5. The designer runs the RTL blocks through logic synthesis to generate a

technology mapped gate netlist.

6. The test engineer may simulate the netlist with a netlist simulation

tool. Simulation at this stage is very slow.

7. The designer runs the gate netlist through a placement and routing

engine, which produces a physical design.

8. The test engineer may simulate the physical design with a chip simula-

tion that takes wire and gate delays into account. This simulation is

extremely slow.

9. The designer sends the physical design to a foundry, which fabricates

the chip.

10. Test engineers test the actual hardware to verify that it meets specifica-

tions and validate that it implements the correct design.

11. Hardware that passes post-silicon testing is sent to end-users who deploy

it in their systems.

Figure 1.1 also shows what can go wrong during the hardware engineering

process, which we now discuss in the following subsections.

5

1.1.1 Logic Bugs

Logic bugs are mistakes that the hardware designer makes in writing the

C or RTL version of a design that cause it to function in violation of the

design specification. Most of these bugs are caught in high-level simulation

or RTL simulation. Due to the complexities of system design, it is difficult to

design these tests such that they exercise every possible interaction between

a design block under test and other design blocks around it. Thus some logic

bugs escape high-level and RTL simulation and can make it into the physical

design. Some of those bugs evade detection in post-silicon testing and survive

all the way to deployment. We define two primary classes of logic bugs:

� Deterministic logic bugs have well-defined behavior that is not com-

piler or synthesis tool dependent. For input languages with well-defined

standards, semantics that are defined in the standard are deterministic

for tools that conform to the standard. An example of a deterministic

logic bug is a memory copy operation for input data that simultane-

ously (for faster performance) copies the first half of an input array

to both halves of an output array when the programmer intended to

copy corresponding halves of the whole input array to the whole output

array.

� Non-deterministic logic bugs do not have well-defined behavior; the

behavior can depend on the compiler or synthesis tool used, how the

tool was configured, what environment the tool was run in or the design

was tested in, and even other parts of the design that are seemingly

unrelated; the behavior of these bugs can depend on almost anything!

For input languages with well-defined standards, non-deterministic

semantics may be specified as resulting in “undefined behavior.” An

example of a non-deterministic logic bug is a read from uninitialized

memory.

1.1.2 Hot Spots

Hot spots are regions on a chip that exceed local heat dissipation capacity

and/or power supply capacity under certain operating conditions. Hot spots

happen when a large amount of transistor switching activity is concentrated

6

in a small region of a chip. An excess current demand that lasts long enough

causes voltage drops on power supply wires, resulting in longer than expected

transistor delays. High power consumption exceeding the thermal dissipation

capability of a region of a chip that lasts long enough results in excess heat

that causes the transistors in that region, which are not designed to operate

at high temperature, to slow down. The net effect is that signal propagation

delays increase, leading to timing errors (defined in Section 1.2.1).

1.1.3 Fabrication Defects

Fabrication defects result in gates implementing the wrong logic function (or

being permanently bypassed) due to wire or transistor fabrication failures.

These permanent defects typically manifest as stuck-at faults: wires that are

supposed to be the output of a logic gate are stuck at logic 0 or logic 1 and

never change regardless of circuit input.

1.1.4 Soft Errors

Soft errors are caused by a particle striking a transistor with enough energy

and the right timing to cause bit-flips in storage elements including flip-flops,

SRAM cells, and DRAM cells. The victim transistor can be part of the

storage element or an upstream gate that propagates a resulting logic glitch.

These particles are typically part of a shower of particles that results when

a cosmic ray strikes the Earth’s atmosphere. Thus these events are random

and unpredictable in nature.

1.1.5 Wear Out

Like mechanical systems, MOSFETs can wear out from prolonged, heavy use.

High-energy charge carriers can build up over time in a MOSFET’s insulating

dielectric, increasing the threshold voltage which causes the transistor to

switch more slowly. Bias temperature instability (BTI) is another effect that

can charge the insulating dielectric over time, although some of its effects

are temporary [5]. Like hot spots, both of these problems can lead to timing

7

errors (defined in Section 1.2.1). Unlike hot spots, these aging effects can

take years to develop.

Worse problems can occur when the dielectric layer breaks down, which

can result in a short that causes a permanent failure of a transistor. Another

effect called electromigration causes atoms in wires to slowly “flow” down-

stream, thinning the wire upstream until it becomes a permanent open circuit

defect [5].

1.2 Root Cause Effects

The effects of many of the above root causes are predictable enough that

they can be modeled. For each effect, there are activation conditions, or

conditions required for the effect to occur. More precisely, an activation

condition is the condition required for an error, fault, or bug to change the

internal behavior of a design. Thus if an error, fault, or bug is not activated,

then it is undetectable even with perfect observability of the internal behavior

of a design.

1.2.1 Timing Errors

Power and thermal hot spots, charge carrier injection, and bias temperature

instability all result in transistors switching more slowly than they normally

would. The result is that signal propagation delays along chains of gates

increase, resulting in a signal taking so long to propagate from a launch

flip-flop to a latch flip-flop that it misses the latch window. The result is that

the wrong value can be latched at the latch flip-flop; when this occurs it is

known as a timing error.

We can model this timing error as a bit flip at the latch flip-flop, given

these four activation conditions for a timing error to occur along a given

combinational path at a given cycle from a launch flip-flop to a latch flip-flop:

1. The sum of the arrival time of the launch flip-flop output and delays of

each gate along the path must exceed the required arrival time for the

latch flip-flop input.

2. The path must be sensitized, meaning that all logic values are such that

8

a flip in the logic value of the launch flip-flop results in a flip along each

segment of the path up to and including the latch flip-flop.

3. The launch flip-flop toggles at the given cycle.

4. The latch flip-flop latches the wrong value. Favorable glitches may cause

the latch flip-flop to latch an intermediate value that happens to be

correct even though the final value arrives too late.

1.2.2 Stuck-at Faults

Fabrication defects result in gate outputs being stuck at either a 0 or a 1. The

more dramatic wear-out problems that cause permanent defects can also have

this effect. Modeling these faults is straightforward: disconnect a net from its

original driver and connect it to a constant logic 0 or 1 instead. Stuck-at 0

(1) faults have one activation condition, which is that the input logic values

to the gate with the stuck-at fault are such that the output should be 1 (0).

The result is an internally detectable deviation in the behavior of a design.

1.2.3 Soft Errors

Soft errors cause random logic values to be injected into storage elements

of a design, overwriting the previous value. For this event to be internally

observable, the activation condition is that the value injected must differ from

the value that would otherwise be latched at the storage element at the time

of injection. Thus we model these events as random bit-flips at random cycles

in randomly selected storage elements, using the value that would normally

be latched as the reference for the flip.

1.2.4 Logic Bugs

While logic bug activation conditions and effects are in general more difficult

to pin down than the above electrical bug scenarios, they still exist. Logic

bugs have activation conditions, which are the conditions under which the

internal behavior of a design deviates from what the designer expects, and

9

effects, which are the actual behavior of the bug as compared to a designer’s

expectations.

1.3 Error Propagation

When an error, fault, or bug is activated, it has by definition begun to

change the internal behavior of a circuit. This change in behavior is not

necessarily externally observable, however. Errors that are activated have

multiple possible outcomes:

� The error effects are masked before they affect any output of the

circuit. This means the error changes the internal behavior of the circuit

temporarily, but that eventually, the circuit reverts to behaving as if

the error had never activated. Externally (i.e. observing the circuit

outputs), there is no way to know a masked error has activated. An

example of a masked error is a value that is computed incorrectly, but

is then ignored because it is not selected by a multiplexer.

� The error effects change the output of the circuit. In this case, we say

that the error is unmasked.

� For effects that are not quickly masked or unmasked but instead make it

to internal storage elements, there can be a third “limbo” state known

as silent data corruption. In this state, the error has changed the

internal behavior of the circuit, but whether the error will be masked or

unmasked depends on the next access to the corrupted storage elements.

For example, the corrupted elements may be overwritten, in which case

the error becomes masked or the corrupted elements may be read and

outputted, in which case the error becomes unmasked. Since data can

be stored in memory indefinitely, there is no limit to how long silent

data corruption can last.

While unmasked errors are clearly the most problematic, one should be careful

about considering masked errors to be benign. In the same way that errors

have activation conditions, errors are also sensitive to masking conditions that

can turn a masked error into an unmasked one. A particularly insidious case

is a masking condition that causes an error to be masked in testing mode,

10

but unmasked in production mode. Thus for circuit validation, increasing

observability to detect masked errors is also important.

11

CHAPTER 2

BACKGROUND

Each of the sections in this chapter provides some useful background infor-

mation for the convenience of the reader who may be unfamiliar with some

of the concepts in the chapters that follow.

2.1 Execution Signatures

A software program contains variables that will have dynamic values during

the program execution. Similarly, a hardware design has storage elements

such as flip-flops that will have dynamic values during hardware execution.

An execution signature is a hashed trace of the dynamic value of variables

during software or hardware execution. Comparing the trace of hardware to

be validated with a reference execution trace is a useful way to catch bugs.

As one might imagine, tracing all variables at all times during software or

hardware execution is expensive. We can use the following complementary

techniques to reduce that cost:

1. Select a subset of all variables to trace. This reduces overhead, but also

observability.

2. Create a diverse tracing schedule (i.e. different variables are traced in

different execution states). This allows tracing resources such as buffers

and I/O ports to be shared, reducing overhead.

3. Hash some of the traced variables. In order for the hash to be repro-

ducible to detect errors, the values of the traced variable must be known

(i.e. if there is an unknown or “x” value, then the hash cannot be

reproduced and false bug detection positives will occur).

4. Compute a running hash to combine variables across cycles. Again all

of the values that go into this running hash must be known.

12

In Chapter 6, we use all four of these techniques, and hash all of the traced

variables to detect errors, using the high-level synthesis binding solution to

identify when register values are known.

2.1.1 Catching Logic Bugs

If a design contains a non-deterministic logic bug and is run in a reference

simulation and in hardware, the dynamic trace of the variable values will

likely be different. The simulation would involve a different process (e.g.

compilation by a high-level C compiler) than the hardware synthesis process,

so the undefined behavior would likely manifest itself differently. For example,

the values stored in uninitialized memory in hardware could be the device

physics dependent power-on state, while uninitialized memory in a reference

simulation might contain values from when it was used by another software

process.

If a design only contains deterministic logic bugs and the simulation and

synthesis tools correctly interpret the input code, the dynamic hardware and

reference trace of the variable values will be identical. Thus hybrid comparison

techniques will not catch deterministic logic bugs. The good news is that

due to their deterministic nature, these bugs are easily reproducible in both

hardware and reference executions. Furthermore, for hardware designs written

in software input languages, we can leverage traditional software debugging

techniques to debug hardware designs.

2.1.2 Hash Functions

In order to minimize hardware cost, we select the following xor-based hash

functions:

H(x1, x2, ..., xn) = x1 ⊕ x2 ⊕ ...⊕ xn (2.1)

Sn =

H0 ⊕ C if n = 0

Hn ⊕ rotate(Sn−1, r) if n > 0
(2.2)

where H is the reduction function that reduces a set of multi-bit variable

values (technique 3 above) to a single hash. Similarly, Sn is the running hash

13

that combines the values of H across execution cycles (technique 4 above)

(H in cycle n is denoted Hn). The function rotate(v, r) denotes bit rotation

to the left of the bit vector v by r bits. C and r are constants. In Chapter 6,

we refer to the hardware that implements these hash functions as an XOR

tree and an LFSR, respectively.

Both of these functions have the desirable property that a change in any

bit of the input variables will result in a change in at least one bit of the

output. Equation (2.2) has the additional desirable property that Sn depends

on the number of cycles that have passed, n, even if all Hn = 0.

2.2 Modulo Arithmetic

Modulo-b arithmetic is arithmetic defined in a finite field with b possible values,

where each possible value corresponds to a remainder when an integer is

divided by b (using Euclidean division so that remainders are always positive).

Addition, subtraction, and multiplication are defined with “wraparound”

arithmetic where the result is immediately divided by b and the remainder

taken as the result.

For example, in modulo-3 space the possible values are {0, 1, 2} and 2+2 = 1

since in integer space (2 + 2) mod 3 = 1 where a mod b is the remainder after

dividing a by b. Table 2.1 shows the mapping from integer space to modulo-

3 space and Table 2.2 provides the modulo-3 addition, subtraction, and

multiplication tables.

2.2.1 Properties

Since equivalent lightweight computations can be performed in modulo space

as in integer space, modulo arithmetic can be used as a way to independently

check integer computation. This works because we have defined a homomor-

phism from integer arithmetic to modulo arithmetic. In other words, given inte-

gers {x, y, z} and corresponding modulo variables {x′, y′, z′} = {x, y, z} mod b

we observe the following properties:

x + y = z =⇒ x′ + y′ = z′ (mod b) (2.3)

14

Table 2.1: Integer to Modulo-3 Space Mapping

Integer value -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Modulo-3 value 0 1 2 0 1 2 0 1 2 0 1 2 0

Table 2.2: Modulo-3 Addition, Subtraction, and Multiplication Tables

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

− 0 1 2

0 0 2 1
1 1 0 2
2 2 1 0

× 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

x− y = z =⇒ x′ − y′ = z′ (mod b) (2.4)

xy = z =⇒ x′y′ = z′ (mod b) (2.5)

where (mod b) next to an equation indicates that the arithmetic is performed

in modulo-b space. Thus for Equations (2.3), (2.4), (2.5), z′ can be indepen-

dently computed two ways: by mapping z to modulo space or by mapping x′

and y′ to modulo space and performing the “shadow computation” in each

equation.

Note that this “shadow computation” property holds for arbitrarily complex

integer arithmetic involving addition, subtraction, and multiplication. For

example, x2−4xy+2y2 = z =⇒ x′2−x′y′+2y′2 = z′ (mod b). Exploiting the

ability of homomorphisms such as this integer to modulo-b mapping to scale

to arbitrarily complex expressions is the key to implementing cost-effective

error detection.

2.2.2 Aliasing

When using modulo-b arithmetic as an error detection technique, aliasing

occurs when the integer result of an erroneous computation corresponds to

the same modulo-b checksum as the correct result. For example, for modulo-3

arithmetic, if the correct integer result of a computation is 5, but the value -4

is produced instead since both values map to 2 in modulo-3 space (Table 2.1)

the error may not be detected since the correct “checksum” was produced.

One should be particularly wary of the aliasing that can occur when

15

multiplying by a multiple of b. For example, for modulo-3 arithmetic, if

any erroneous integer value is multiplied by 6, then the result will be 0 in

modulo-3 space (Tables 2.1 and 2.2). Thus, in our application of modulo-3

arithmetic, we pay special attention to multiplication operations (see Section

7.1.2).

2.2.3 Modular Base

To use modulo-b arithmetic to detect errors effectively in binary logic, we

choose b such that z′ = z mod b is a function of all of the bits in z. For

example, b = 4 would fail this test because now z′ is just the last two bits

of z, ignoring the higher-order bits (and any errors in those bits). We also

want each bit in z to have the ability to affect any bit in z′ to reduce the

probability of aliasing. For example, b = 6 would fail this test because the

last bit of z′ would only be affected by the last bit of z. The choice of b will

pass both of these tests if b is odd and b ≥ 3. In Chapters 7 and 9, we choose

b = 3 to minimize the hardware cost, as only two bits are needed to represent

the three possible modulo-3 values.

2.2.4 Mersenne Numbers

For positive integers n we define the Mersenne numbers by M(n) = 2n − 1.

The use of M(n) as a modulo base has the following useful property for n ≥ 2:

2n = 1 (mod M(n)) (2.6)

2.2.5 Binary Representations

Our encodings for modulo residues are based on the standard binary repre-

sentation for integers, where bits have weights with successive powers of two.

In other words the integer value of a particular sequence {bn−1, bn−2, ..., b0}
of bits is defined as:

v =
n−1∑
i=0

2ibi (2.7)

16

A standard Mersenne number residue r with base M(n) will be in the range

0 ≤ r ≤ M(n)− 1 = 2n − 2. Thus n bits are sufficient to encode a residue

with base M(n), and the most significant bit (MSB), bn−1, will have weight

2n−1. If a carry bit is generated from adding two MSB bits, it will have weight

2n which is equivalent to 1 by application of Equation (2.6).

2.2.6 Normalization

There is one special encoding possible for an M(n) residue encoded with n

bits, the value where all bits bi = 1. This encoding has the integer value

2n − 1 = M(n) by Equation (2.7). Since this residue is the same as the

modulo base, it is equivalent to zero. We call this special encoding for zero

the denormalized encoding of zero, write it as −0, and call encodings that

allow it non-normalized encodings.

2.3 High-Level Synthesis

High-level synthesis, also known as behavioral synthesis, is a process that

turns a software behavioral specification with an architectural description

into hardware that implements that specification. The input to a high-level

synthesis tool is typically a C language dialect with language extensions (e.g.

pragmas and directives) and libraries to annotate the behavioral description

with architectural specifications. The output is a hardware description,

typically specified in Verilog or VHDL. A typical synthesis engine will perform

the following steps:

1. Compilation: The synthesis engine parses the input code and converts

it to an intermediate representation (IR).

2. Transformation and Optimization: The synthesis engine runs the

IR through a series of optimization passes, similar to software compiler

optimizations. The engine also does architectural transformations such

as loop unrolling and pipelining.

3. Allocation: For each hardware resource—memories, ports, registers,

and functional units—the synthesis engine determines what kind and

17

how many of each to use. Larger allocations usually increase performance

at the cost of area.

4. Scheduling: The engine creates a state machine corresponding to the

control flow of the software specification. For each state, the engine

determines what operations—computations, memory access, and/or

I/Os—will occur in that state. The engine may insert extra states to

provide sufficient cycles to complete complex chains of operations.

5. Binding: For each operation, the engine determines which hardware

resource(s) will be involved in performing the operation. Operations

that can never occur at the same time can share a common hardware

resource. The engine inserts multiplexers at this stage to facilitate such

sharing.

6. RTL Generation: The engine generates a complete RTL description

of the final state machine and datapath solution.

18

CHAPTER 3

RELATED WORK

3.1 Hybrid Quick Error Detection

The inspiration for H-QED is QED [6–9], which is a software technique for the

validation of programmable microprocessors. In general, validation techniques

that target processors (e.g., [10,11] and others) are inadequate for bugs inside

accelerators.

Given a high-level specification and a design produced by HLS (referred to

as an implementation), there is a large class of techniques that check if the

implementation is equivalent to the high-level specification, often relying on

formal techniques [12–14]. The goal is to detect bugs in the implementation

that are caused by the HLS tool. However, formal equivalence checking

techniques are limited in their capacity to handle HLS transformations and

this limitation is further compounded by the large state space of HLS imple-

mentations. In contrast, H-QED is a dynamic technique that integrates into

the HLS engine to follow instructions through HLS transformations and to

generate the corresponding software reference implementation. H-QED can

be run in pre-silicon simulation at RTL simulation speeds (with acceptable

overhead) or during post-silicon validation at full hardware speed.

3.1.1 Hybrid Tracing

Prior works such as [15, 16] perform source-level transformations to create

external ports for selected signals to improve observability. However, this

approach requires manual source code instrumentation. Furthermore, source

instrumentation interferes with compiler optimizations, creating intrusiveness.

A hardware-software runtime trace comparison technique is proposed in [17,18]

to provide automated HW/SW discrepancy detection. Both techniques use a

19

mapping between software variables and hardware components through LLVM

variables to detect discrepancies and assist debug. Again, these techniques are

intrusive as they insert additional error detection operations that change the

schedule of the hardware design. In contrast, hybrid tracing instrumentation

is integrated into HLS to eliminate intrusiveness, creating an RTL design

with nonintrusive debugging annotations that can easily be removed before

synthesis.

3.1.2 Hybrid Hashing

Although hybrid hashing may appear to be similar to tracing techniques

used in PSV (e.g., using trace buffers or system memory [19–22]), there are

important differences:

1. Hybrid hashing systematically collects signatures, unlike tracing tech-

niques that are often ad-hoc or based on heuristics.

2. Hybrid hashing does not require extensive low-level (e.g., RTL) simula-

tion.

3. Hybrid hashing does not require designer-crafted assertions.

4. Hybrid hashing enables very short error detection latencies and high bug

coverage, unlike tracing techniques that become ineffective for difficult

bugs with long error detection latencies.

Hybrid hashing is distinct from fault-tolerant computing techniques for

processors (e.g., using watchdog processors, DIVA, multi-threading and sig-

nature techniques for duplex systems [23–28]). Many of these techniques only

check the register values as defined by the Instruction Set Architecture (ISA).

In contrast, hybrid hashing is effective for arbitrary hardware accelerators

created using HLS and automatically identifies signals to check in the resulting

designs. Unlike time redundancy and cycle stealing techniques for enhancing

reliability of designs created using HLS [29–31], hybrid hashing utilizes unique

aspects of the PSV environment (where the generation of software signatures

after a PSV run is acceptable vs. reliability techniques that focus on quick

error recovery) to minimize area/performance costs and intrusiveness.

20

3.2 Modulo Shadow Datapaths

3.2.1 Low-Level Fault Resilience

There are many existing approaches to fault resilience. The classical approach

is modular redundancy [32,33], duplicating the entire hardware module and

comparing the outputs for discrepancies. Such an approach has 2× – 3× area

cost, which is prohibitively expensive and negates the benefits of Moore’s law

scaling.

Razor logic [34,35], an approach involving creating a shadow latch for each

flip-flop in a design, has been proposed to address timing errors, but also

imposes timing constraints on a design. Flip-flop hardening techniques [36,37]

have been proposed to address soft errors in flip-flops, but such techniques

do not protect combinational logic. Logic parity [38] is another technique

for protecting flip-flops by adding a parity flip-flop for flip-flop clusters with

parity prediction and checking logic. Such parity techniques are practically

limited to protecting only the flip-flops in a design using the aforementioned

clustering technique [38] due to the high overheads (e.g., around 30% area

overhead for a 32-bit adder [39]) associated with parity prediction across

functional units.

While razor logic, flip-flop hardening, and parity are limited to certain kinds

of faults and certain parts of a datapath, modulo shadow datapaths have

none of these limitations. Modulo shadow datapaths holistically protect the

entire datapath from input to output, including all of the combinational logic.

Modulo shadow datapaths is a general purpose error detection technique with

essentially no assumptions about fault behavior.

3.2.2 High-Level Error Resilience

There are also a number of high-level error resilience techniques, which are

related to (or may be leveraged in) our high-level synthesis approaches in

Chapters 7 and 9. DIVA [23] is a popular technique which uses an extra

checker core to verify the correctness of a main core computation and commit

only non-faulty results. Concurrent error detection (CED) [40] uses HLS to

introduce redundancy at the functional unit level. Although each component

is fully duplicated, this technique aims at reducing area and performance

21

overhead through resource sharing. But this technique can incur at least 75%

area cost for simple and small datapaths.

Another approach is time-redundancy, where we re-compute results using

the same hardware units to detect errors. In [41], Wu and Karri use a time

redundancy-based concurrent error detection scheme with diverse binding

solutions in its re-computation stage but has performance overheads even

though it incurs low area cost. Argus [42] is a prototype processor with

a modulo-3 arithmetic checker that can detect up to 98.0% and 98.8% of

unmasked transient and permanent errors respectively. Argus has low area

(17%) and performance (4%) costs but it is limited to the Von Neumann

processor architecture and, to the best of our knowledge, there is no similar

work in high-level synthesis that targets application-specific custom logic and

accelerator designs.

In [43], Karri et al. integrated modular redundancy into high-level synthesis

and presented techniques to increase reliability with cost and performance

constraints and decrease cost given reliability constraints, but not both

together. New approaches to modular redundancy such as statistical error

compensation (SEC) involving pairing an estimator module with unreliable

hardware still come with high (50-100%) area cost [44]. Tosun et al. [45]

proposed a technique to recover from soft errors but do not perform any error

injection experiments and has a passive approach to masking errors whereas

we actively detect and correct errors.

Finally, Algorithm-Based Fault Tolerance (ABFT) [46, 47] is an algorithm-

level technique for protecting linear vector and matrix computations by

predicting and checking the sums of groups of output elements. ABFT

can involve expensive extra memory accesses for checksum computation and

storage and may require the duplication of vectors for certain computations. In

Chapter 9, we empirically show that these costs make cost-effective application

of ABFT to reliable accelerator designs difficult.

3.2.3 Modulo Arithmetic Functional Units

For small modulo bases, a lookup table based approach has been used for

basic functional units [48] with explicit don’t cares inserted to provide hints

to the logic synthesis engine for inputs combinations that should never occur.

22

A reducer is built with a tree of such lookup-table based modulo adders [48].

Such an approach is impractical for larger bases due to exponential scaling.

Piestrak et al. propose a design for a modulo-3 reducer consisting of full-

adder (FA) cells and interleaved inverters [48, 49] which exploits the fact

that for a given bit b ∈ {0, 1}, 2b = −b = 3 − b = 2 + (1 − b) (mod 3). In

other words, bits of weight 2 can be inverted and treated as a bit of weight

1 with a constant offset (which can be lumped together at the end) so that

all bits have the same weight of 1 and can be passed through stages of FAs.

While this design may appear superficially similar to our reducer design in

Figure 8.1b on page 83, our design uses a more general strategy inspired

by Wallace trees that does not require separate inverters. Furthermore our

strategy generalizes to any Mersenne base while their design trick is limited

to modulo-3 arithmetic.

For cryptography applications, there are also a number of hardware accel-

erator designs for accelerating modulo exponentiation of large (e.g. 256-bit)

numbers which is performed with a series of modulo multiplies [50]. These de-

signs use application-specific algorithms (e.g. Montgomery multiplication [51])

that make them very specialized for big-integer modulo exponentiation, and

thus unsuitable for reliability applications.

3.3 Cross-Layer Reliability

The CLEAR study [38] was a cross-layer approach to finding the most cost-

effective way to improve flip-flop soft error reliability in programmable mi-

croprocessors, considering both software and hardware transformations and

their combinations to improve reliability. But, with Dennard scaling ending,

the status quo of using programmable microprocessors for all computation is

disrupted by hardware accelerators that proliferate on SoCs and embedded

FPGAs due to their performance and energy benefits. Thus, a complete relia-

bility solution for modern complex SoCs must consider both microprocessors

and accelerators.

In Chapter 9, we take a cross-layer approach to the reliability problem for

application specific hardware accelerators. While existing coding techniques

address soft errors in memories and CLEAR [38] addressed soft errors in

microprocessor flip-flops; cost-effective error resilience for flip-flops in hardware

23

accelerators remains a challenging problem.

Compared to the microprocessor reliability problem, the hardware acceler-

ator reliability problem poses some unique opportunities and challenges. As

shown in [38], when limiting processor cores to running specific applications,

combinations incorporating algorithm-level techniques like algorithm-based

fault tolerance (ABFT) correction can further reduce energy overheads. In

general-purpose processor cores, imposing such limitations are not always

possible; however, the application-specific nature of accelerators allows us to

fully explore these opportunities.

Additionally, in application-specific hardware accelerators, most of the

software parts of the stack are removed since the algorithm is hard-wired

into the hardware logic. Thus, algorithm and instruction overhead (which

manifested as execution time overhead on microprocessors) is translated into

hardware overhead. On the other hand, this translation into hardware results

allows for optimizations of the software techniques at the hardware level by

leveraging hardware customization not previously possible in general-purpose

processors. Finally, given the interest of implementing application-specific

accelerators not only on custom application-specific integrated circuits (ASICs)

but also in an agile manner by utilizing reconfigurable field-programmable gate

arrays (FPGAs), it is necessary to explore and understand the implications

for reliability when changing the underlying hardware assumptions.

24

CHAPTER 4

HYBRID QUICK ERROR DETECTION

In this chapter, we introduce the basic concepts for the Hybrid Quick Error De-

tection (H-QED) technique to overcome validation and debugging challenges

for non-programmable hardware accelerators on SoCs. Such accelerators

implement a pre-defined set of functions and are not programmable using

software (unlike processor cores or software-programmable accelerators such as

GPUs). H-QED is inspired by the QED technique for PSV [6–9]. Since QED is

(mostly) implemented in software, the error detection latencies of bugs inside

hardware accelerators can be very long (e.g., bounded by long execution times

of hardware accelerators). H-QED builds on advances in high-level synthesis

(HLS) [52,53] to overcome this challenge by automatically embedding small

hardware structures inside hardware accelerators. H-QED simultaneously

improves error detection latencies and coverage of logic and electrical bugs

inside hardware accelerators. H-QED is compatible with QED. By combin-

ing H-QED with QED, we provide a systematic solution for PSV of SoCs

consisting of processor cores, uncore components, software-programmable

accelerators, and hardware accelerators. H-QED can be applied to both

pre-silicon and post-silicon validation and debugging scenarios and provides

effective source-code bug localization.

4.1 Basic Principles

The basic principles of H-QED are illustrated in Figure 4.1, which involves

three key components:

� fine-grained debugging instrumentation

� simulation/execution with two diverse toolchains

� comparison of the instrument outputs

25

Compile

Instrument

Toolchain A
(e.g. HLS)

Toolchain B
(e.g. SW Compiler)

Compare

IR

IR + Instruments

Source Code

Instrument
Outputs

Instrument
Outputs

Bugs

Compile

Test Execute

Synthesize

LinkFabricate

Figure 4.1: Basic working principles of H-QED. A toolchain can be any
process that executes or simulates the design. IR = Intermediate
Representation.

26

The instrument pass adds debugging logic or instructions that cause the

design to generate output which is a function of the design’s internal state.

This instrumentation can be translated to unsynthesizable code for pre-

silicon validation or signature generation logic for post-silicon validation. The

two toolchains are abstract processes that perform transformations on the

design leading to some execution or simulation that produces the runtime

output of the instruments. When a design contains a non-deterministic

bug, it is unlikely that two diverse toolchains will generate models and/or

physical designs with identical external and internal behavior. Fine-grained

instruments will capture this behavioral discrepancy resulting in two different

instrument outputs and the bug will be caught. Because the instruments

are fine-grained, the error detection latency will be low and many masked

bugs will also be caught. Thus H-QED should quickly detect any bug in the

source code that results in non-deterministic behavior. It is also clear from

Figure 4.1 that H-QED can detect toolchain bugs as a bug in one toolchain

that affects the instrument outputs in that branch will result in a mismatch

with the outputs produced by the other toolchain. When one “toolchain”

involves a full IC fabrication and testing process, this capability of H-QED is

particularly important for detecting electrical bugs.

While different variations of this process are possible (in particular inte-

grating the instrumentation pass into parts of the two toolchains is beneficial

as we will see), the key invariant is that the instruments must produce the

same output in both toolchains if the design is free of bugs. In order to

achieve this, the instruments must generate output that is a function of

deterministic variables, e.g. output cannot depend on signals in unknown

states. Furthermore, the order of the instrument output must be preserved in

both toolchains. Finally, an important constraint from a practical point of

view is to insert instruments so as to avoid intrusiveness, meaning that the

external and internal behavior of a design should not change when instru-

ments are added. Instruments that change the behavior of a design can also

change the behavior of bugs in that design, undermining its bug detection

and localization benefit.

27

4.2 Hybrid Tracing vs. Hybrid Hashing

Since pre-silicon validation and post-silicon validation have different con-

straints for inserting instruments into a design, we created different variations

of H-QED for each scenario. In this thesis, we present both adaptations

of H-QED: a pre-silicon tailored adaptation called hybrid tracing which we

discuss in Chapter 5 and a post-silicon tailored adaptation called hybrid

hashing which we discuss in Chapter 6. We now provide a brief comparative

overview of each adaptation.

4.2.1 Hybrid Tracing

In pre-silicon validation, simulation time is the primary challenge. As men-

tioned before, simulation speeds are many orders of magnitude slower than

real-time, limiting testing coverage. To address this problem, hybrid tracing

leverages HLS to select RTL signals for only CDFG variables, minimizing over-

head. Hybrid tracing also leverages co-simulation to use high-level language

simulation for parts of the design not being directly tested. As mentioned

before, high-level language simulation is 1000× faster than RTL simula-

tion. Compared to hybrid hashing, hybrid tracing has the following unique

advantages:

1. Hybrid tracing instrument output produces full variable values with

unsynthesizable constructs, making the design state fully visible.

2. Hybrid tracing leverages this information to pinpoint the source code

location for bug activation.

3. Hybrid tracing instruments are easily removed or ignored from the

generated RTL when the design passes validation and is ready for

synthesis.

4.2.2 Hybrid Hashing

In post-silicon validation, minimizing area and instrument output bandwidth

costs are the primary challenges. To meet bandwidth constraints, hybrid

hashing probes internal CDFG variable values and reduces those values with

28

a running hash function, reducing output bandwidth to a single bit for each

multi-cycle interval. The hash function logic has significant area cost, so it

is shared as much as possible with multiplexers by scheduling probes for a

“non-temporary” variable subset (variables with long lifetimes and thus also

scheduling flexibility). Compared to hybrid tracing, hybrid hashing has the

following unique advantages:

1. Hybrid hashing instruments are designed to be synthesized as lightweight

hardware integrated into an accelerator, enabling bugs to be caught

(electrical bugs in particular) that could not be caught in pre-silicon

validation due to model limits.

2. Hybrid hashing has essentially no performance impact and allows a

manufactured IC to run at full speed.

4.3 Effectiveness and Practicality

As a preview for our experimental results when applying H-QED, we observe

the following, demonstrating the effectiveness and practicality of the technique:

1. H-QED enables 2–3 orders of magnitude improvement in error detection

latencies for both electrical bugs and logic bugs vs. validation techniques

using end-result-checks that compare accelerator outputs against known

correct outputs.

2. H-QED uncovered two previously unknown logic bugs in the widely

used CHStone HLS benchmark suite [54].

3. H-QED does not require any failure reproduction or low-level simulation

(e.g., RTL or netlist) to detect bugs.

4. H-QED allows accelerators to operate in “native” mode (similar to

normal system operation) and has a minimal intrusiveness impact.

(Incorporation of H-QED continues to detect bugs that are detected by

traditional validation techniques.)

5. Hybrid tracing detects all non-deterministic logic bugs in CHStone

within one cycle.

29

6. Hybrid tracing pinpoints where in the source code the bug activates

and provides a strong hint for possible bug fixes.

7. Hybrid hashing improves electrical bug (timing error) coverage by up

to 3× compared to PSV techniques using end-result-checks.

8. Hybrid hashing incurs an 8% accelerator area overhead and negligible

performance costs.

Chapters 5 and 6 discuss our pre-silicon and post-silicon H-QED imple-

mentations in detail. Chapter 5 discusses the hybrid tracing technique and

Chapter 6 discusses the hybrid hashing technique.

30

CHAPTER 5

PRE-SILICON DEBUG: HYBRID TRACING

We call our pre-silicon variation of H-QED hybrid tracing since we use

uncompressed traces of variable values for the instrument outputs in Figure 4.1

on page 26. Hybrid tracing can be used for both module-level pre-silicon

verification of HLS-produced RTL as well as pre-silicon integration testing —

verification of multiple RTL modules and software on a CPU into a system.

Although module-level testing is important, integration testing invariably

detects additional bugs that went undetected due to insufficient module-level

test vectors or bugs that relate to integration (e.g. a module that works

perfectly with the expected number of input data items, but another module

sends the wrong amount of data). In both cases, the goal of hybrid tracing is

to detect logic bugs as RTL-level simulation models only logic, not electrical

behavior.

As illustrated in Figure 5.1, hybrid tracing enables hardware designers to

isolate logic bugs by swapping between C/C++ reference implementations

and RTL implementations with HLS. Thus, designers can validate complex

designs piecemeal, selecting one module at a time to integrate with the rest

of the system for verification. Note that the designer of a target module only

needs high-level C/C++ models of the system it interfaces with, which need

not be synthesizable, enabling early stage integration testing for parts that are

synthesizable. Our framework compares the series of module output values

for discrepancies between the software model and the RTL implementation.

When validation reveals a problem due to non-deterministic behavior, our

code instrumentation, trace comparison and back-tracing steps (discussed in

Section 5.2) provide the hardware designer with C/C++ locations where the

discrepancies occur.

31

C++ CPU

C++ I/O

C++
Memory

C++
Accelerator

C++ Test
Bench

C++ CPU

C++ I/O

C++
Memory

RTL
Accelerator

C++ Test
Bench

HLS

SoC

SoC

Compare

Interface
Trace

Internal
Trace

Bugs

Figure 5.1: Using hybrid tracing for early pre-silicon integration testing.

Table 5.1: Methods for Catching Different Kinds of Logic Bugs

unactivated masked unmasked
deterministic coverage

analysis
unit testing debug tools

non-deterministic hybrid tracing

5.1 Comparison to Software Debugging

As mentioned in Chapter 1, logic bugs have many ways to elude detection.

Fortunately, hybrid tracing leverages HLS, which brings in a variety of software

debugging tools to bear on the problem. Table 5.1 broadly classifies logic bugs

by their behavior in three categories: unactivated, masked, and unmasked.

Each of these bug classes can be further divided into deterministic and

non-deterministic subcategories.

Unactivated bugs are caused by gaps in coverage (e.g. the buggy line

of code was never executed or a condition was never met) which are best

addressed by software coverage analysis tools. Such tools will point out these

gaps, allowing the hardware designer to modify the design or test vectors to

eliminate the coverage gaps and activate bugs that may be hiding in those gaps.

A deterministic, activated bug is reliably reproducible by definition. Existing

32

software debugging tools are good at helping a user to isolate a deterministic

bug. While software debugging tools can help with deterministic, masked

bugs as well by increasing observability, software practices also encourage

unit testing to help detect such masked bugs in the first place.

Software debugging techniques are much less useful for non-deterministic,

activated bugs. By definition, such bugs are likely to behave differently

in a software testing environment when compared to an RTL simulation

environment. For example, the bug may cause a failure in RTL simulation,

but the high-level simulation produces correct output, rendering software

debugging techniques by themselves unhelpful. Without any aid to track this

bug down, the hardware designer has little choice but to attempt to find the

bug in the RTL waveform by tracing backward in execution from the observed

failure to the root cause. After this painstaking process, the designer has

another difficult problem to solve: determining the source-code level meaning

for the buggy RTL variable he identified. This can be very non-trivial with the

complex software and HLS transformations involved in translating a high-level

language to RTL. Hybrid tracing is designed to address both of these difficult

problems, making isolation for the most difficult bugs automated and fast.

5.2 Hybrid Tracing Framework

Our hybrid tracing implementation is illustrated in Figure 5.2. The input to

the framework is a C++ module targeted for debugging and written with a

synthesizable subset of C++ supported by the HLS tool. Additional non-

synthesizable modules (not shown to simplify the illustration) representing

the system environment such as those in Figure 5.1 can be integrated into the

hardware simulation through co-simulation and into the software simulation

environment through linking.

As one would expect from an H-QED variant, there are two branches of

the framework, a hardware RTL-level simulation branch and a “reference”

software branch. Both branches have integrated instrumentation passes

to enable greater observability of internal source-level variables. In the

hardware branch, the instrumentation is integrated into the HLS engine after

scheduling to minimize intrusiveness. The HLS engine produces SystemVerilog

as output, which is then translated to a cycle-accurate SystemC module

33

Reference
Simulation

Hardware Simulation

Bug Source Locations

BacktraceDebug
Info

Buggy
Variable
IDs

Compare

Trace Output
CPU

CPU

Machine
Code

Machine
Code

Clang +
LLVM

LLVM
Backend

SystemC

Verilator

System
Verilog
RTL

HLS

LLVM-IR

Clang

Input C++ code

Trace
Output

Schedule

Bind

Instrument

Tr
ac

e
Sc

he
du

le
+

A
dd

re
ss

 M
ap

LLVM
IR

Instrument

Figure 5.2: Our hybrid tracing framework.

34

using Verilator [55,56]. The software branch performs software compilation

using the LLVM framework [57] and contains a custom instrumentation

pass designed to reproduce the trace output produced by the hardware

simulation given some scheduling and address mapping information from the

HLS instrumentation pass. The output of the two branches is variable trace

sequences for discrepancy analysis; when mismatches are found, information

on which variable(s) caused the discrepancy can be used to identify the

C/C++ source code involved with the bug. We now discuss each component

of our framework in detail in the following subsections.

5.2.1 Hardware Simulation

The hardware simulation is a cycle-accurate RTL simulation of the hardware

module in a test environment that can include high-level implementations of

modules it interfaces with. This process starts with the high-level synthesis of

the LLVM Intermediate Representation (LLVM-IR) for the hardware module.

We use an in-house high-level synthesis engine that is based on LegUp [58]. We

insert our hardware instrumentation pass after scheduling and optimization,

but before binding. The pass takes an optimized, scheduled CDFG as input

and adds trace annotations on all variables that have a software counterpart.

In our previous prototype implementation in [3], the instrumentation pass

was inserted pre-scheduling. The problem with this approach is that the trace

calls need to be scheduled and their dependencies considered. This results

in some cases in deferred scheduling of trace calls to maintain ordering (i.e.

the scheduler would prefer to reorder the trace calls to match the scheduling

of the operations traced, but is not allowed to) which can increase register

pressure artificially, change the synthesis result, and result in multicycle

error detection latencies. Furthermore, trace calls create false dependencies

that can potentially block or complicate HLS optimizations. To improve the

hybrid tracing implementation in [3], we split the instrumentation pass into

complementary hardware and software passes as shown in Figure 5.2 and

integrated the hardware instrumentation pass into our HLS engine.

Adding the trace calls pre-binding makes them mere debugging annotations

on signals that the HLS engine has decided are “real” signals (i.e. not

redundant operations or dead operations) that must be bound to a physical

35

Listing 5.1: Input C++ Code (foo.cpp)

1 int bar [4] ;
2 int f oo (int x , int index) {
3 int y = bar [index] ;
4 bar [index] = x + y ;
5 return x * y ;
6 }

Listing 5.2: LLVM-IR (Simplified for Clarity)

g l o b a l [4 x i32] bar

i 32 foo (i 32 x , i 32 index) {
i 32 * addr = gete l ementptr (bar [index])
i 32 y = load addr
i32 tmp1 = add x , y
s t o r e tmp1 → addr
i32 tmp2 = mul x , y
r e t tmp2

}

resource. The trace annotations simply follow their operations and variables to

the physical functional units and registers that they are bound to, producing

the appropriate output in the state the variable is generated. During binding,

the annotations are handled separately from the binding of “real” hardware.

In other words, the addition of these debugging annotations is nonintrusive

as they do not affect the synthesizable binding solution generated by the HLS

engine. Furthermore, the annotations can easily be removed or ignored for

the purpose of synthesis.

We illustrate our hardware instrumentation pass with an example shown

Listing 5.3: Scheduled Operations (Custom IR)

<0x1000> g l o b a l [4 x i32] bar

i 32 foo (i 32 x , i 32 index) {
[0] i 32 addr = add index , 0x1000

[0−1] i 32 y = load addr
[1] i 32 tmp1 = add x , y

[1−2] s t o r e tmp1 → addr
[1−2] i 32 tmp2 = mul x , y

[2] r e t tmp2
}

36

Listing 5.4: Hardware Trace Operations Inserted

i 32 foo (i 32 x , i 32 index) {
. . .
[0] t r a c e (0 , x)
[0] t r a c e (1 , index)
[0] t r a c e (2 , addr)
[1] t r a c e (3 , y)
[1] t r a c e (4 , tmp1)
[2] t r a c e (5 , tmp2)
[2] r e t tmp2
}

Listing 5.5: Software Trace Operations Inserted

i 32 foo (i 32 x , i 32 index) {
. . .
t r a c e (0 , x)
t r a c e (1 , index)
t r a c e (2 , addr convert (addr))
t r a c e (3 , y)
t r a c e (4 , tmp1)
t r a c e (5 , tmp2)
r e t tmp2

}

Table 5.2: Hardware Address Map

Memory Address Depth Width
bar 0x1000 4 32

Table 5.3: Trace Schedule

Func. Block Traced Variables
foo entry x:0, index:1, addr:2,

y:3, tmp1:4, tmp2:5

Table 5.4: Debugging Information

id func:var file:line:col
0 foo:x foo.cpp:2:14
1 foo:index foo.cpp:2:21
2 foo:addr foo.cpp:3:16
3 foo:y foo.cpp:3:9
4 foo:tmp1 foo.cpp:4:20
5 foo:tmp2 foo.cpp:5:14

37

Table 5.5: Address Translation Table

Variable SW addr HW addr
bar[0] 0xa7010 0x1000
bar[1] 0xa7014 0x1001
bar[2] 0xa7018 0x1002
bar[3] 0xa701c 0x1003

in Listings 5.1–5.5 and Tables 5.2–5.5. Listing 5.1 shows an example input C

program with a global variable to be mapped to a memory and a function

which becomes a hardware module. Listing 5.2 shows the same program

lowered to LLVM-IR and Listing 5.3 shows the scheduled, optimized hardware

IR (internal scheduled CDFG and memory address space map representation)

right before binding. The memory is annotated with its base address on the

left, and each instruction is annotated on the left with scheduling informa-

tion indicating the cycles the instruction is scheduled for execution in. An

instruction result becomes available on the final cycle it executes.

Listing 5.4 shows the additional trace instructions inserted by our hardware

instrumentation pass as well as their scheduled states. Table 5.2 shows the

hardware address map determined by our HLS engine and passed to the

software instrumentation pass (Section 5.2.2). Each row of the address map

indicates an LLVM variable, its base hardware address and the corresponding

memory block depth and width. Table 5.3 is the trace schedule passed from

our hardware instrumentation pass to the software instrumentation pass. The

trace schedule has a row for each basic block in each function and indicates

the LLVM-IR variables traced in that basic block, in the order they are traced,

as well as a unique integer identifier for each variable.

The challenge in creating this trace schedule is mapping hardware IR vari-

ables to LLVM-IR variables. Not all LLVM-IR variables have a corresponding

hardware IR counterpart as some CDFG nodes may be optimized away by

HLS transformations (e.g. a global array reference becomes a constant address

in hardware IR after the HLS engine defines a static address space mapping

which can lead to further constant propagation optimizations). Similarly

not all hardware IR variables have an LLVM-IR counterpart. An abstract

LLVM-IR operation such as the memory address computing getelementptr

operation can involve a number of additions and multiplications, generating

multiple hardware IR variables that represent intermediate computations and

38

do not correspond to the final getelementptr result.

Our solution to this problem is to propagate debugging annotations in our

hardware IR. During the initial lowering of LLVM-IR to our hardware IR,

we annotate hardware IR CDFG nodes with references to the corresponding

LLVM-IR variables they are equivalent to. We then preserve these LLVM-

IR variable references across hardware IR transforms such as scheduling

and optimization where feasible. Even if a variable is lowered to a con-

stant, we propagate the variable annotation to a constant as this enables the

compile-time computation of the constant value to be checked. Our hardware

instrumentation pass can then scan the hardware IR to find all nodes with

debugging annotations, generate trace instructions for them, and use the

annotations to produce the corresponding LLVM-IR instruction in the trace

schedule.

Once the trace annotations are inserted, our HLS engine performs binding

and finishes with RTL generation, during which our HLS engine lowers each

“trace” instruction instance to a SystemVerilog “$fwrite” call that prints the

corresponding variable ID and value to a file.1 The hardware simulation

process then proceeds with the following steps:

Verilator Send the resulting SystemVerilog RTL code through Verilator [55,

56]. Verilator translates the RTL code to an equivalent cycle-accurate SystemC

representation that a standard C++ compiler can compile and run against

the SystemC libraries.2

Clang+LLVM Using the Clang and LLVM compiler toolchain, compile

the cycle-accurate SystemC version of the hardware module. The hardware

module can optionally be linked with untimed high-level C/C++ versions of

software modules it interfaces with some additional glue code to connect the

SystemC interfaces to the untimed C/C++ function calls.

CPU Execution Run the resulting machine code on a CPU. The binary

will use the CPU for untimed execution of software portions of the design,

and will perform cycle-accurate RTL simulation of the hardware module. The

1These calls can easily be ignored or removed for the purpose of synthesis after debugging
is complete.

2An alternative to SystemC translation is RTL/C++ co-simulation. We find that
SystemC RTL simulation is faster [3].

39

instrumented hardware module will dump RTL execution traces to a file to

be sent to the comparison step (Section 5.2.3) together with the software-only

reference trace.

5.2.2 Reference Simulation

The purpose of the reference simulation is to produce a “gold” reference

trace that the hardware simulation should reproduce exactly under bug-free

conditions. This process starts with the LLVM-IR software instrumentation

pass that inserts instrumentation that generates this trace. In order for the

software instrumentation pass to generate code that matches the hardware

trace, it needs two pieces of information from the hardware instrumentation

pass (Section 5.2.1): a trace schedule and a hardware address map.

The trace schedule provides the ordering of the trace calls as determined

by the decisions made by the HLS scheduler, enabling the software pass to

generate code that produces the trace output in the same order. The hardware

address map enables the software pass to generate code that reproduces hard-

ware address values by translating software addresses to hardware addresses.

The hardware instrumentation pass also generates a debugging information

table that provides a source location for each LLVM-IR variable that is traced,

which enables the backtracing process (Section 5.2.3) to provide source-level

meaning to the hardware designer. This debugging information is generated

from debugging metadata provided by the LLVM compiler infrastructure.

We continue our example to illustrate this process. Listing 5.5 shows the

software trace operations the software instrumentation pass adds to the LLVM-

IR in Listing 5.2 and Table 5.4 shows the outputted debugging information

file. The pass adds calls to two library functions that we implement and link

the LLVM module against: “trace” and “addr convert”. The trace function

is semantically equivalent to the hardware variant, taking a variable ID and

value and writing that variable ID and value pair to a file with an “fprintf”

call. The addr convert call is inserted for all address variables traced and

takes a software address as input, translates it to a hardware address, and

outputs that hardware address. This translation process is based on a static

address translation table generated at runtime, which we will discuss shortly.

We then run the instrumented LLVM-IR through the LLVM backend to

40

generate machine code that runs on the host CPU, linking the code with

our library that implements the “trace” and “addr convert” functions. Since

the trace function generates output, the software compiler cannot change the

relative ordering of the trace calls, ensuring that the software trace order will

match the hardware trace order under bug-free conditions.

The resulting machine code is then run on the CPU, which executes the

software model of the module and generates a trace through the inserted

“trace” calls. To enable the “addr convert” calls, we first generate a translation

table for all variable elements mapped to hardware memory blocks at the start

of execution using the hardware address map as well as dynamic software

addresses of variable elements in that address map. Table 5.5 shows the

address translation table for our example, generated with the help of the

hardware address map (Table 5.2). The software addresses for these variables

are fixed at runtime and thus can be computed at runtime initialization

because we ensure that such variables are mapped to static memory. Once

the table is initialized, each software to hardware address conversion is a

simple lookup in this table.3

5.2.3 Trace Comparison and Debugging

Once the reference simulation (Section 5.2.2) and hardware simulation (Sec-

tion 5.2.1) are complete, we compare the resulting trace files for both simula-

tions. Under bug-free conditions, the traces will be identical since we ensure

that the ordering of the trace calls produced by the reference simulation

matches the hardware schedule and we perform software to hardware address

translation to produce hardware address values in the reference simulation.

Thus any discrepancy indicates a bug. (See Section 5.4 for an example bug

and how our process detects it.) For discrepancies observed, we look up

the variable IDs with mismatched values in the debug info file generated by

the software instrumentation pass (Section 5.2.2, Table 5.4) to identify the

variable name and source locations for the mismatched variables. For the first

variable ID with a discrepancy, we report the variable name, source location,

and the pair of mismatched values observed to the hardware designer.

3To translate legitimate pointers to the “end” of an array (i.e. one past the last element,
used as an upper pointer bound in a loop), we first pass the LLVM-IR module through a
transformation that adds an extra dummy element to each array.

41

Table 5.6: Bug Detection Example

Source Code Reference Trace Hardware Trace

int x ;
i f (cond) {

x = 1 ;
}
z = x + y ;

cond : 0
−− sk ip body −−

x : 7461
y : 7

x + y : 7468

cond : 0
−− sk ip body −−

x : −24905
y : 7

x + y : −24898

5.3 Simulation Breakpoint Trigger

A variation of hybrid tracing can be used as a hardware simulation breakpoint

trigger. This can be useful if a bug is only activated in the generated hardware.

In this variation, the reference simulation trace must be generated first. In

the hardware simulation, the trace function is then implemented as a function

that reads one variable ID and value pair from the reference simulation trace

and checks if it matches the variable ID and value parameters the function

receives. If there is a mismatch, the function calls the Verilog “$stop” function

(or similar) to suspend the simulation, put it in interactive mode, and enable

the test engineer to examine the simulated hardware state right at the point

the bug first activates.

5.4 Bug Example

How does hybrid tracing detect bugs? We have found that a reader’s intuition

often leads one to the conclusion that source code bugs cannot be caught

because the same buggy code is fed to both the hardware and software

simulations, and thus the two simulations will produce identical traces. While

this intuition is correct for deterministic bugs that always behave the same

way, this intuition fails for non-deterministic bugs that have hard-to-predict

behavior that depends on many confounding factors. (The reader may want to

refer back to Section 1.3 for insights about different kinds of bug behavior and

to Section 5.1 for how hybrid tracing fits in with other debugging techniques.)

To drive this point home, we provide a simple example of a non-deterministic

source-code bug in Table 5.6. The bug in the source code is that “x” is used

42

uninitialized, and thus its value is non-deterministic, i.e. it is toolchain and

environment dependent. The reference simulation will likely use some garbage

value from the stack, previously used for some other variable. The hardware

simulation could use the register initial power-on state. It is unlikely that the

hardware and software values for “x” are identical, and thus hybrid tracing

pinpoints the location where the bug activates.

Note that while this bug is a simple example for explanatory purposes,

initialization bugs can have much more complex activation conditions (e.g.

involving large buffers that are partially initialized). More importantly, there

are many other types of non-deterministic bugs that cause different hardware

and software behavior such as undefined memory accesses, timing dependent

bugs, and hardware-specific protocol violations. In our experiments with all

of the known bugs in the CHStone high-level synthesis benchmark suite [54]

in Section 5.5.3 we find that hybrid tracing is able to detect many different

kinds of logic bugs, including some previously unknown bugs as well as bugs

that a suite of existing static software analysis and dynamic software bug

detection techniques are unable to detect.

5.5 Experimental Results

To demonstrate the effectiveness and practicality of hybrid tracing we ran a

series of simulation experiments to collect data for cycle, flip-flop, and simu-

lation overhead as well as error detection latencies and coverage estimates for

logic bugs. We used all 12 benchmarks from CHStone [54] and 15 benchmarks

from the PolyBench [54] benchmark suites.

5.5.1 Intrusiveness

To determine the intrusiveness of hybrid tracing, we performed HLS with and

without hybrid tracing and measured the number of flip-flops and benchmark

execution cycles for each benchmark. The hybrid tracing values normalized to

the baseline values are shown Table 5.7. For reference we also performed the

same experiment with the LLVM-level instrumentation insertion approach

of [3]. We observe significant overheads for that approach as high as a 247%

cycle overhead and a 2.5% flip-flop overhead.

43

Table 5.7: Overhead Due to Intrusiveness (flip-flops / cycles, %)

Bench [3] HT

adpcm 24.91 / 0.00 0 / 0
aes 246.88 / 0.02 0 / 0

atax 0.00 / 0.00 0 / 0
bicg 0.00 / 0.00 0 / 0

blowfish 29.16 / 0.00 0 / 0
dfadd 11.05 / 2.51 0 / 0
dfdiv 0.00 / 0.00 0 / 0

dfmul 5.65 / 0.00 0 / 0
dfsin 7.55 / 1.47 0 / 0

doitgen 0.00 / 0.00 0 / 0
floyd-warsh 17.87 / 0.00 0 / 0

gemm 0.00 / 0.00 0 / 0
gemver 5.80 / 0.00 0 / 0

gesummv 0.00 / 0.00 0 / 0

Bench [3] HT

gsm 0.31 / 0.00 0 / 0
jpeg 25.63 / 0.00 0 / 0

matrix 0.00 / 0.00 0 / 0
matrix-tiled 28.20 / 0.00 0 / 0

mips 0.00 / 0.00 0 / 0
motion 0.00 / 0.00 0 / 0

mvt 26.48 / 0.00 0 / 0
reg-detect 22.96 / 0.08 0 / 0

sha 18.28 / 0.00 0 / 0
symm 0.00 / 0.00 0 / 0
syr2k 0.00 / 0.00 0 / 0
syrk 0.00 / 0.00 0 / 0

trmm 0.00 / 0.00 0 / 0

The LLVM-level instrumentation of [3] creates significant cycle overhead

because it imposes an additional constraint on the scheduler to maintain

trace call order. The flip-flop overhead is the result of variable lifetime

extensions needed for trace calls scheduled one or more cycles after what

would normally be the end of a variable’s lifetime. This delayed trace call

scheduling is the result of the aforementioned scheduling constraints and causes

increased register pressure, and thus may increase required register allocation.

Our hybrid tracing approach, in contrast, has no intrusiveness because the

instrumentation is inserted after scheduling, so the instrumentation cannot

interfere with the schedule by design. Furthermore, we show that QoR is

unaffected by instrumentation, and thus the instrumentation can be ignored

or removed for logic synthesis input equivalent to the same design without

instrumentation.

5.5.2 Simulation Time Costs

To determine the simulation performance impact of hybrid tracing, we mea-

sured the SystemC RTL simulation time of untraced RTL code for our 27

benchmarks and compared it with the combined time of software simulation

and SystemC RTL simulation with tracing enabled. The results are shown

44

Benchmark C-sim + trace (s) RTL-sim (s) RTL-sim + trace (s) Both traces (s)

adpcm 0.103 0.347 0.402 0.505

aes 0.041 0.043 0.071 0.112

atax 0.044 0.032 0.062 0.106

bicg 0.031 0.029 0.052 0.083

blowfish 0.901 1.931 2.516 3.417

dfadd 0.012 0.012 0.017 0.029

dfdiv 0.006 0.011 0.016 0.022

dfmul 0.005 0.010 0.011 0.016

dfsin 0.124 0.303 0.427 0.551

doitgen 15.137 7.734 18.038 33.175

floyd-warshall 0.552 0.210 0.628 1.180

gemm 0.525 0.342 0.700 1.225

gemver 0.065 0.106 0.153 0.218

gesummv 0.035 0.023 0.047 0.082

gsm 0.029 0.047 0.061 0.090

jpeg 2.469 30.131 31.938 34.407

matrix4x4 0.030 0.022 0.040 0.070

matrix 0.123 0.031 0.109 0.232

mips 0.025 0.019 0.040 0.065

motion 0.020 0.039 0.050 0.070

mvt 0.046 0.040 0.073 0.119

reg-detect 2.411 5.037 6.380 8.791

sha 1.210 2.331 3.128 4.338

symm 0.332 0.191 0.409 0.741

syr2k 0.774 0.407 0.919 1.693

syrk 0.530 0.254 0.637 1.167

trmm 0.012 0.010 0.018 0.030

adpcm 0.297 1.000 1.159 1.455

aes 0.953 1.000 1.651 2.605

atax 1.375 1.000 1.938 3.313

bicg 1.069 1.000 1.793 2.862

blowfish 0.467 1.000 1.303 1.770

dfadd 1.000 1.000 1.417 2.417

dfdiv 0.545 1.000 1.455 2.000

dfmul 0.500 1.000 1.100 1.600

dfsin 0.409 1.000 1.409 1.818

doitgen 1.957 1.000 2.332 4.290

floyd-warshall 2.629 1.000 2.990 5.619

gemm 1.535 1.000 2.047 3.582

gemver 0.613 1.000 1.443 2.057

gesummv 1.522 1.000 2.043 3.565

gsm 0.617 1.000 1.298 1.915

jpeg 0.082 1.000 1.060 1.142

matrix4x4 1.364 1.000 1.818 3.182

matrix 3.968 1.000 3.516 7.484

mips 1.316 1.000 2.105 3.421

motion 0.513 1.000 1.282 1.795

mvt 1.150 1.000 1.825 2.975

reg-detect 0.479 1.000 1.267 1.745

sha 0.519 1.000 1.342 1.861

symm 1.738 1.000 2.141 3.880

syr2k 1.902 1.000 2.258 4.160

syrk 2.087 1.000 2.508 4.594

trmm 1.200 1.000 1.800 3.000

median 1.069 1.000 1.793 2.862

mean 1.178 1.000 1.789 2.967

R
un

tim
e

(R
TL

-s
im

 =
 1

)

0

2

4

6

8

ad
pc

m ae
s

at
ax

bi
cg

bl
ow

fis
h

df
ad

d
df

di
v

df
m

ul
df

si
n

do
itg

en
flo

yd
-w

ar
sh

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gs
m

jp
eg

m
at

rix
4x

4
m

at
rix

m
ip

s
m

ot
io

n
m

vt
re

g-
de

te
ct sh
a

sy
m

m
sy

r2
k

sy
rk

trm
m

m
ed

ia
n

m
ea

n

RTL-sim + trace
C-sim + trace

�1

Figure 5.3: Hybrid tracing instrumented RTL simulation and C++
simulation time normalized to uninstrumented RTL simulation.

in Figure 5.3. We observe a mean RTL simulation time of 1.79× and an

additional reference simulation time of 1.18× compared to untraced RTL

simulation for a total mean overhead of 2.97×. Reduction of overheads may

be possible by engineering faster variations of the trace functions, in particular

by using binary mode I/O operations for writing and comparing traces (i.e.

to avoid formatting overhead for human readability of trace files).

5.5.3 Logic Bug Effectiveness

To evaluate the effectiveness of hybrid tracing in detecting logic bugs, we

considered all 21 known real bugs in the current and past versions of CH-

Stone [54], 7 synthetic bugs injected into CHStone benchmarks, 2 bugs in

previous versions of our HLS engine itself, and 3 bugs in a synthesizable C

implementation of a matrix multiply kernel generated by FCUDA [59]. We

attempted to detect these bugs with both hybrid tracing and hybrid hashing.

Hybrid hashing is designed primarily to detect electrical bugs, but we provide

logic bug results for hybrid hashing here for the sake of completeness. (We

discuss hybrid hashing in detail in Chapter 6.) We also use an end result check

that compares the output of the benchmark with a known correct output and

several software-based static and dynamic bug detection tools as references

for comparison. In hardware simulation, we initialized registers and memories

45

to random values, a common technique for enhancing bug detection. Results

of our experiments are enumerated in Table 5.8.

Real bugs were identified by exhaustively exploring the version changes

of CHStone for bug fixes. H-QED also uncovered some previously unknown

bugs in the then-current version of CHStone, 1.10, prompting the release of

1.11, in which H-QED found yet another bug that was introduced. Previously

unknown bugs are highlighted in bold in Table 5.8. For each bug found, we

isolated it by fixing all of the other bugs in the last version of CHStone with

that bug, creating bug benchmarks containing one known bug each. All real

CHStone bugs were confirmed with the CHStone authors.

We also created synthetic bugs in some CHStone benchmarks by violating

interface assumptions made about benchmark inputs (e.g. that the number

of inputs is even). HLS engine bugs were reproduced by modifying our HLS

engine to emulate the original buggy behavior. The FCUDA output bugs

were handled in the same way as the real CHStone bugs: each bug is isolated

into a bug benchmark.

The columns in Table 5.8 are as follows:

� Benchmark: Versions(s) indicates the CHStone benchmark and

version the bug benchmark was based on. For the real CHStone bugs,

the version indicated is the last version of the benchmark containing

the bug.

� Bug Patch Line(s) indicates what line(s) of code were modified to

fix the bug. Canonical bug fixes from version history are used for this

column where applicable. For the synthetic bugs, this column indicates

the line modified to inject the bug.

� Bug Type indicates the root cause classification for the bug. The type

acronyms in this column are defined in Table 5.9.

� Nondet.? indicates whether the bug is non-deterministic, meaning

that the bug behavior is not well defined by standard C [60] semantics

(or only affects the hardware in the case of the two HLS engine bugs).

A “C only” value means that the bug is non-deterministic, but becomes

deterministic after compiler optimizations.

� Act.? indicates if the bug activates during benchmark execution.

46

Table 5.8: Evaluation of H-QED and Software Tools against Logic Bugs

Benchmark:
Version(s)

Bug Patch
Line(s)

Bug
Type

Non-
det.?

Act.?
Clang
Cov.

Nondet.
Act. Line

Cpp-
check

Val-
grind

Clang
San.

HT
Line

Com.
Vars

HT
Lat.

HH
Lat.

ER
Lat.

R
ea

l
C

H
S

to
n

e
B

u
g
s

adpcm:1.8 adpcm.c:689 MLU no yes yes N/A - - - N/A N/A N/A N/A yes

gsm:1.4
lpc.c:87 OOB C only yes yes lpc.c:88 - 88 88 - N/A - - -
lpc.c:150 OOB C only yes yes lpc.c:151 - 151 151 - N/A - - -
lpc.c:157 OOB yes yes yes lpc.c:158 - 158 158 158 no 1 77 -

jpeg:1.9

decode.c:204 *++ no no no N/A 204 N/A N/A N/A N/A N/A N/A N/A
decode.c:205 *++ no no no N/A 205 N/A N/A N/A N/A N/A N/A N/A
decode.c:209 *++ no no no N/A 209 N/A N/A N/A N/A N/A N/A N/A
marker.c:0a INIT yes yes yes marker.c:385 - - - 400 N/A 1 - -

mips:1.6 mips.c:172-173 USE no no no N/A - N/A N/A N/A N/A N/A N/A N/A

mips:1.9
mips.c:102 INIT yes yes no mips.c:179 - - - 179 yes 1 - -
mips.c:103 INIT yes yes no mips.c:182 - - - 182 yes 1 - -

mips:1.10 mips.c:105 INIT yes yes yes mips.c:255 - - - 255 yes 1 22 -
mips:1.11 mips.c:91 OOB yes yes yes mips.c:134 134 - 134 134 yes 1 9 -
motion:1.2 mpeg2.c:225 OOB yes yes yes mpeg2.c:226 - 226 - 226 yes 1 8 91

motion:1.4

getbits.c:113 SHFT C only yes yes getbits.c:113 - - 113 - N/A - - yes
motion.c:155 SHFT C only yes yes motions.c:155 - - 155 - N/A - - -

motion.c:160 SHFT yes yes yes motion.c:160 - - 160
mpeg2.c:
388

no 1 15 15

motion.c:166 SHFT yes no no motion.c:166 - N/A N/A N/A N/A N/A N/A N/A

motion:1.10
getbits.c:134 SHFT yes yes yes getbits.c:134 - - 134 134 yes 0 102 -
getbits.c:144 SHFT yes yes yes getbits.c:144 - - 144 144 yes 0 - -
getbits.c:155 SHFT yes no yes getbits.c:155 - N/A N/A N/A N/A N/A N/A N/A

S
y
n
th

etic
B

u
g
s

adpcm:1.11 adpcm.c:778 OOB yes yes yes adpcm.c:848 848 854 848 848 yes 1 46 -
aes:1.11 aes.c:83 OOB yes yes yes aes func.c:159 - 140b 159 159 yes -7 362 903
blowfish:1.11 bf pi.h:77 OOB yes yes yes bf enc.c:105 105 - - 105 no 1 180 643
gsm:1.11 gsm.c:32 OOB yes yes yes lpc.c:59 - 59c 59 59 no 1 179 999
jpeg:1.11 huffman.c:86 ZERO no yes yes N/A - - - N/A N/A N/A N/A yes

motion:1.11 mpeg2.c:354 INIT yes yes yes motion.c:68
mpeg2.c:
377

68 68b 68 yes 1 10 168

sha:1.11 sha.h:52 OOB yes yes yes sha.c:84 - - 84 84 no 1 11 857

H
L

S
B

u
g
s

jpeg:1.4 HLS Engine INIT yes yes yes jfif read.c:69 N/A N/A N/A 69 yes 1 122 hang
jpeg:1.11 HLS Engine ZERO yes yes yes huffman.c:118 N/A N/A N/A 118 yes 1 70 811k
matrix-mul:
FCUDA
generated

mm.c:52, 54 BUF no yes yes N/A - - - N/A N/A N/A N/A yes
mm.c:157, 161 INF no yes yes N/A 157, 161 - - N/A N/A N/A N/A hang
mm.c:165-172 OOB yes yes yes memcpy.h:5 - - 5 5 no -1 30 292k

a Bug is the absence of a header file “#include” directive.
b Execution was terminated with a segmentation fault reported at this line.
c add.c:68 is at the top of the reported trace, followed by lpc.c:59.

47

Table 5.9: Bug Types

Type Description

MLU Manual loop unrolling omits one iteration

OOB Out-of-bounds array access

*++
Wrongly assuming dereference (*) has higher precedence
than postincrement (++)

INIT Read of uninitialized variable

USE Unintended sign extension

SHFT Bit shift by out-of-bounds amount

ZERO Variable initialized to zero instead of nonzero initializer

BUF Copying from the wrong half of a split buffer

INF Infinite loop due to erroneous loop termination condition

� Clang Cov. The Clang coverage analysis tool [61] provides source-

based dynamic code coverage through code instrumentation that tracks

the execution count for AST nodes. We used the coverage tool in Clang

3.9 with the “Source-based Code Coverage” reference methodology to

determine if code lines relevant to each bug are executed. The “Clang

cov.” column indicates if the non-deterministic activation line is covered.

If the bug is deterministic, this column indicates if the bug patch line(s)

are covered.

� Nondet. Activation Line indicates the line of code, determined by

inspection, where non-deterministic behavior first occurs (e.g. uninitial-

ized variable access, out-of-bounds memory access, etc.).

� Cppcheck [62] is a static analysis tool that detects many kinds of

C/C++ bugs through a battery of static checking heuristics. We ran

Cppcheck 1.76.1 with additional “warning” checks enabled. We report

the first line flagged as a warning or an error by this tool.4 An entry of

“-” means that a technique failed to detect the bug.

� Valgrind [63] is a dynamic binary instrumentation framework with

instrumentation modes that can detect memory errors as well as stack

4 We ignored warnings in the “gsm” benchmark about a function parameter assignment
having no effect outside of the function as inspection of the code showed this kind of coding
style to be intentional. Cppcheck also flags this in the current version (free of all known
bugs) of gsm at lpc.c:308. We also ignored warnings in the FCUDA benchmarks about an
uninitialized struct member as we determined through exhaustive search that this member
was never accessed.

48

http://llvm.org/releases/3.9.0/tools/clang/docs/SourceBasedCodeCoverage.html

and global array overruns. We ran two passes of Valgrind 3.11.0 using

the reference methodology provided in the “Valgrind Quick Start Guide”

using GCC 4.9.2 as the source compiler.5 The first pass invoked the

“Memcheck” memory error detection tool and the second invoked the

“SGCheck” experimental stack and global array overrun detector tool.

When Valgrind detects an error, it will indicate the line where the

error occurred with a function call stack below. We report the first

line indicated, except where otherwise noted. Dynamic techniques are

unable to detect unactivated bugs, so we indicate “N/A” for those cases.

� Clang San. Clang also comes with a set of code “sanitizer” tools which

add instrumentation to the code at compile time to detect errors. The

instrumentation then performs checks at runtime to identify various

kinds of memory access and undefined behavior problems. We ran three

passes of Clang with the three relevant sanitizer tools: the AddressSan-

itizer which detects memory errors, the MemorySanitizer which detects

uninitialized reads, and the UndefinedBehaviorSanitizer which detects

undefined behavior. When the sanitizer instrumentation identifies a

problem, it dumps a stack trace similar to Valgrind; we report the first

line indicated.

� HT Line indicates the buggy line as reported by our hybrid tracing

framework. Hybrid tracing is also not applicable for deterministic bugs,

so we indicate “N/A” for those cases.

� Com. Vars indicates if there are variables in common between the HT

Line and the Bug Patch Line(s), indicating a strong hint for a potential

bug fix.

� HT Lat., HH Lat., ER Lat. indicate the error detection latency

for respectively hybrid tracing, hybrid hashing, and the end result

check measured in cycles from non-deterministic bug activation to

detection. For deterministic bugs, hybrid tracing and hybrid hashing

are not applicable, but the end result check still is, although there is

no well-defined non-deterministic bug activation cycle for measuring

5 We found that debugging information generated by GCC was compatible with Valgrind,
while debugging information generated by Clang was not, hence the decision to use GCC
with Valgrind.

49

http://valgrind.org/docs/manual/quick-start.html
http://llvm.org/releases/3.9.0/tools/clang/docs/AddressSanitizer.html
http://llvm.org/releases/3.9.0/tools/clang/docs/AddressSanitizer.html
http://llvm.org/releases/3.9.0/tools/clang/docs/MemorySanitizer.html
http://llvm.org/releases/3.9.0/tools/clang/docs/UndefinedBehaviorSanitizer.html

error detection latency, so we indicate with a “yes” entry if the ERC

is able to detect such bugs. An ERC entry of “hang” means that the

benchmark execution fails to terminate.

We also evaluated our bug benchmarks with the Clang static analyzer [64],

which is another source-code analysis tool for finding bugs in C, C++, and

Objective-C programs. We ran the built-in static analyzer in Clang 3.9 using

the “scan-build” wrapper tool. The Clang static analyzer failed to identify

any of our bugs.6

We make the following observations in these results:

1. Of the 21 real CHStone bugs, 16 are non-deterministic, providing

evidence that the “difficult” bugs that escape into releases/production

tend to be non-deterministic.

2. Six of these bugs are not activated, and the Clang coverage analysis

tool detects 5 of those cases.7

3. No tool dominates the others in bug detection and each has unique

strengths. Using a combination of tools is the best way to detect/localize

bugs.

4. Compiler optimizations can complicate bug detection by making non-

deterministic bugs deterministic (e.g. by statically evaluating undefined

behavior and eliminating it).

5. In most cases, the different tools agree on the bug location although

in a few cases compiler optimizations complicate bug localization by

6 The static analyzer did report a number of warnings about values stored in a variable
that were never read. While this is arguably poor coding style, manual inspection of
each flagged line finds no evidence of the dead store being intended to have some effect.
Furthermore, the current version (free of all known bugs) of each benchmark generates the
same warnings.

The static analyzer also complained about several uninitialized variables being read in
the FCUDA matrix multiply benchmark. These same warnings also showed up in the
reference (free of all known bugs) version. We found these claims to be vague and difficult
to investigate by code inspection and thus resorted to empirical methods. We were able to
eliminate these warnings by initializing several variables at the point of allocation. We then
attempted to verify the claims by initializing those same variables with random data and
observing if any failure occurs (incorrect output, or otherwise). No failure was observed
with random initialization.

7At getbits.c:155 a variable range condition that is never met is required for bug
activation.

50

http://clang-analyzer.llvm.org/scan-build.html

making it difficult to map instructions back to source code locations,

resulting in some localization accuracy loss.

6. In 12 out of 19 cases where hybrid tracing reported a buggy line, the

line had at least one variable in common with the bug patch line (or

was the patch line), indicating a strong hint for a fix.

7. Hybrid tracing error detection latency is 1 cycle or less, average hybrid

hashing error detection latency is 83 cycles (all bug benchmarks have a

signature output interval n = 100), and end result check latency can be

thousands of cycles.

8. We observe negative hybrid tracing error detection latency for two OOB

bugs, meaning that hybrid tracing detects activation conditions the

reported number of cycles before bug activation. In both of these cases,

the hardware version of the benchmark computed an out-of-bounds

address one or more cycles before issuing a load for that address. In

the software version, the corresponding address overflowed beyond the

translation table for the variable it was intended to point to, resulting

in the software-to-hardware translation producing a mismatch before

the undefined memory access even occurred.

51

CHAPTER 6

POST-SILICON VALIDATION: HYBRID
HASHING

As mentioned in Chapter 4, area and bandwidth costs are the primary

constraints when inserting instrumentation for post-silicon validation of ac-

celerators. We call our post-silicon variation of H-QED hybrid hashing since

we reduce the traces of variable values to a running hash value that is used

to generate a low-bandwidth trickle of “signature” bits. The primary goal of

hybrid hashing is to detect electrical bugs. Hybrid hashing can also detect

most of the logic bugs that hybrid tracing can, but we expect hybrid tracing

to catch most (if not all) non-deterministic logic bugs pre-silicon. While both

of our pre-silicon and post-silicon H-QED solutions can be integrated into an

SoC design, we pay special attention to integration post-silicon because of

the limited testing flexibility of physical hardware compared to pre-silicon

testing.

Figure 6.1 shows an SoC-level view of our hybrid hashing enabled acceler-

ators. The SoC typically consists of processor core(s), accelerator(s) (with

hybrid hashing instrumentation in our case), and uncore components. The

inputs and outputs of the accelerators are supplied by the processor cores

inside the SoC. During PSV, the accelerators generate hardware signatures

that are saved in dedicated on-chip memories (Figure 6.1a). These signatures

are then later compared to a reference set of signatures to detect bugs using

a similar software instrumentation pass as hybrid tracing, but modified to

reproduce the running hashing function and signature generation functionality

of the hardware. Section 6.1 discusses the hybrid hashing process in detail,

and Section 6.3 details a proposed methodology for integrating hybrid hashing

into a post-silicon validation run.

52

Figure 6.1: Hybrid hashing instrumented accelerators inside an SoC. (a)
SoC-level view, and (b) block diagram of an instrumented accelerator
showing the accelerator and the signature generator.

Hardware
Software

Bugs from mismatches

Signatures Match?

Software ExecutionHardware Execution

Signatures Signatures

Logic Synthesis
Place and Route

Fabrication

RTL High-Level Synthesis

Hardware
Signature Generation

Circuit

Post-Silicon
Validation Run

Software Compiler

C Front-end

Machine
code

LLVM-IR

Software
Signature Generation

C Source Code

Figure 6.2: Our hybrid hashing framework.

53

6.1 Hybrid Hashing Framework

Our hybrid hashing implementation is illustrated in Figure 6.2. The input

to the framework is a high-level design of a hardware accelerator. Again,

as one would expect from an H-QED variant, there are two branches of

the framework, a hardware branch and a software branch. Like the hybrid

tracing process, the hardware branch has an instrumentation pass integrated

into the HLS engine after scheduling. The software branch also involves a

complementary instrumentation pass that takes as input a probe schedule and

a hardware address map from our hardware instrumentation pass to ensure

that it will produce the same signature stream as the hardware under bug-free

conditions. We use the term “probe” instead of “trace” in the context of post-

silicon validation to avoid confusing our high-level hybrid hashing technique

with the many trace-buffer based approaches that perform cycle-granularity

recording of RTL-level signals. (See Section 3.1.2 for a discussion contrasting

hybrid hashing with trace-buffer techniques.)

Unlike hybrid tracing, our hybrid hashing framework is area cost and

bandwidth constrained, and thus adds some twists to reduce these costs. Our

cost reduction strategies are fourfold:

1. Reduce the initial raw signal probing bandwidth by only tracing key

“non-temporary” variables.

2. Use a hybrid multiplexor and XOR tree reduction logic to drastically

reduce the number of probe bits to a small number with minimum area

cost.

3. Use an LFSR to compute a running hash of this reduced signature.

4. Output a single bit checksum computed from the LFSR state every n

cycles (configurable).

As Figure 6.1b shows, our hybrid hashing framework produces an RTL im-

plementation with integrated hashing instrumentation. This instrumentation

generates a sequence of signature bits during a PSV run. Care must be taken

to ensure that the instrumentation does not cause excessive intrusiveness

during PSV, e.g., by stalling the accelerator or by interfering with its input

and output data traffic. Excessive intrusiveness can prevent activation of

bugs inside the accelerator during PSV. In an effort to minimize intrusiveness,

54

we store hardware signatures in a dedicated on-chip memory with dedicated

communication channels, as shown in Figure 6.1a.1 The costs associated with

this storage are reported in Section 9.2.

As mentioned earlier, the primary goal of hybrid hashing is to detect

electrical bugs as hybrid tracing will detect most logic bugs while electrical

bugs are likely to escape pre-silicon validation due to the difficulty involved in

accurately modeling and predicting the electrical level behavior of a complex

design. The main problem with electrical bug modeling is that accurate

modeling is too slow to be useful. Indeed even the relatively fast RTL-

level simulation process, which does not model electrical bugs, can have

simulation speeds that are several orders of magnitude slower than real-time

for complex designs. With limited modeling capabilities to detect electrical

bugs pre-silicon, post-silicon validation becomes the last line of defense against

electrical bugs escaping to end-user deployment.

While we find that hybrid tracing of hardware signals that are equivalent to

LLVM-IR variables is sufficient to detect any non-deterministic logic bug that

activates in pre-silicon validation with essentially no error detection latency

(see Section 5.5.3 for a demonstration of this with our bug benchmarks),

electrical bugs activated in post-silicon validation can affect almost any

hardware structure in the hardware accelerator, including the state register.

To ensure that electrical bugs are caught quickly and do not make it past the

outputs of the accelerator undetected, we add additional instrumentation to

the state register as well as the accelerator’s input and output ports. The

intuition here is that if we check all accelerator outputs and periodically check

all “non-temporary” bits of the accelerator’s state, then electrical bugs will

have no place to hide.

We now discuss these additions in detail.

6.1.1 Hardware Execution

The hardware execution is an in-situ test of the fabricated accelerator with

embedded hybrid hashing instrumentation through an existing post-silicon

validation testing harness. Similar to the hybrid tracing process, we start

1 It may be possible to minimize signature storage costs (while controlling intrusiveness)
by streaming hardware signatures to off-chip memory using existing debugging ports, such
as JTAG.

55

with an LLVM-IR implementation for the hardware accelerator and perform

instrumentation after scheduling and optimization, but before binding on

an internal hardware IR representation. To reduce the initial raw probing

bandwidth, we only probe variables that are non-temporary. Looking at

the states in the FSM that each variable is live, we define a non-temporary

variable as one that crosses more than one state transition, at least one of

which is a basic block boundary (i.e. the variable is live in more than one

basic block).

Our scheduler prefers to schedule each probe for a variable in its last use

state (last state where it is accessed). The intuition here is to observe the

variable at the last cycle in its lifetime to catch all potential electrical-bug

induced value mutations that could have occurred in earlier cycles before the

value goes into a functional unit where the mutation could be masked. Note

that this contrasts with hybrid tracing instrumentation which targets logic

bugs by observing variable values at the start of their lifetime, right after the

value is generated by some operation, since logic bugs causing variable value

mutations are unlikely. Another goal, however, is to minimize the number of

probe ports carrying these probe signals coming out of the accelerator through

multiplexing. To allocate a minimum number of register probe ports, we use

an algorithm that attempts to create a feasible probe schedule using a single

register probe. We attempt to reschedule probes for variables with the same

use state to predecessor states (where the variable is still live) to produce a

feasible schedule. If scheduling fails, we attempt to schedule again with an

additional probe port and repeat until scheduling succeeds. This algorithm

is similar to our algorithm for scheduling shadow datapath checkpoints in

Chapter 7 (Algorithm 1 on page 74).

After instrumentation, the resulting hardware IR is run through the binding

process to produce a set of shared probe ports for the accelerator’s CDFG

variables. During the RTL generation process of our HLS engine, appropriate

multiplexors are produced for those probe ports. In addition, we add dedicated

probe ports for each accelerator input and output and state machine. As

discussed earlier, these additional ports enable electrical bug detection. Each

probe port outputs a probed value in the states the signal it is probing is live

(i.e. driven to a value that is accessed), zero otherwise to avoid contaminating

the generated signatures with garbage values.

Our HLS engine generates additional RTL for signature generation logic.

56

Listing 6.1: Scheduled Operations (custom IR)

<0x1000> g l o b a l [100 x i32] Z
<0x2000> g l o b a l [100 x i32] B

void bar (i 32 z ptr , i 32 b ptr) {
[0−1] i 32 z = load z p t r

[1] i 32 a = add x , y
[1−2] i 32 b = mul a , z
[2−3] s t o r e b → b ptr
}

As shown in Figure 6.3, signature generation involves a bitwise XOR reduction

of the probe port signals to reduce the number of bits to a small number

with minimum area cost.2 This XOR reducer output is then fed to an LFSR,

which computes a running hash of the reducer output, ensuring that all

probed signal history is captured in this hash, including the cycle timing of

those signals. Periodically, every n cycles (configurable), we output a one-bit

signature from the LFSR.

Assuming that the LFSR has a sufficient number of state bits for the

probability of aliasing inside the LFSR to be negligible, we can compute the

expected time from an error being captured (meaning becoming different

from the error-free value) in the LFSR state to being captured in a signature

bit as follows: After an error is captured in the LFSR state, the average time

until the next signature bit is outputted is n/2. The probability of aliasing in

each signature bit is 1/2 and each alias occurrence costs n cycles of latency.

Thus the expected cycle delay from LFSR error capture to the first signature

bit error capture is

E[sig EDL] =
1

2
n +

∞∑
i=0

i

2i+1
n =

3

2
n (6.1)

Note that the delay distribution decays exponentially, so delays several

times this average are unlikely.

2The probe port multiplexors and XOR reducers can be pipelined as needed with some
number p of additional pipeline registers to meet timing, resulting in p cycles of additional
real-time error detection latency which will add a p cycle delay to a real-time error trigger.
If the signature generation logic is run p cycles behind as well to match the change in the
XOR reducer output timing, this delay will not affect the signatures generated. Thus offline
comparison with reference signatures will have the same result, resulting in an effective
error detection latency overhead of zero.

57

FSM

⨉

b

+

memory
data in

memory
data out

a

LFSR

signaturesmemory
probes

register
probe

state
probe

x y

bb1:0
bb1:2

bb1:0

bb1:1

 state

z enen

b_ptr
z_ptr

memory
address

bb1:0, bb1:2

Figure 6.3: Example hybrid hashing instrumented accelerator with hardware
signature generation. Probe wires are labeled in red with the basic block and
cycle(s) in which they are probed.

Listing 6.2: Software Trace Operations Added

void bar (i 32 z ptr , i 32 b ptr) {
. . .
s o f t w a r e l f s r (1 ⊕ addr convert (z p t r) ⊕ z ⊕ x)
s o f t w a r e l f s r (2 ⊕ y)
s o f t w a r e l f s r (3 ⊕ addr convert (b ptr) ⊕ b)

}

Table 6.1: Probe Schedule

Func. Block Cycle Const Probed vars

bar bb1
0 1 z ptr, z, x
1 2 y
2 3 b ptr, b

58

We illustrate our hardware instrumentation and PSV execution with an

example in Figure 6.3, Listings 6.1–6.2, and Table 6.1. Listing 6.1 provides

an example scheduled hardware IR similar to Listing 5.3 for hybrid tracing.

Table 6.1 is the probe schedule. Note that with one probe port allocated,

both “x” and “y” could not be scheduled in their last use (accessed) cycle,

cycle 1. Thus we rescheduled the probe of “x” for cycle 0. (“z ptr,” “z,”

“b ptr,” and “b” are probed through dedicated memory port probes.)

The probe schedule is similar to the pre-silicon trace schedule in Table 5.3

on page 37, but there are a number of differences. One is that each basic

block in the schedule is broken into cycles which correspond to a state in the

FSM that controls the accelerator. This level of granularity is needed because

the downstream LFSR is sensitive to the cycle the probe values are provided.

Another difference is that there is a fixed constant provided in addition to

the probed variables. This fixed constant is a lumped XOR sum of all of the

values that are fixed in that cycle; in this example, the only constant is the

FSM’s state encoding for that cycle. Finally, no variable IDs are tracked as

variable-value associations are lost in the hashing of all of the probed values.

Figure 6.3 shows the resulting hardware generated by our HLS engine.

Each probe port has a multiplexer associated with it that drives the port

to logic 0 when it is not probed. The select signals of the multiplexer are

derived from the corresponding states annotated in Figure 6.3.

6.1.2 Reference Simulation

As with hybrid tracing, the purpose of reference simulation is to reproduce the

signatures produced by the instrumented hardware under bug-free conditions.

This process is similar to the hybrid tracing variation, with some changes to

the software instrumentation pass.

As with hybrid tracing, the software instrumentation pass takes a hardware

address map and probe schedule as input. Instead of reproducing a trace, the

software instrumentation pass is now tasked with reproducing the hardware’s

signature sequence. In order to do this, the instrumentation pass must

implement the XOR reduction and LFSR in software. We design our hardware

to be software implementation friendly, so the XOR reduction is simply a

software XOR of all of the variables and the constant for a particular state

59

while the LFSR is a small series of bit shifts and XOR operations. The

software instrumentation for our example is shown in Listing 6.2. The LFSR

function also mimics exactly the signature output interval of the hardware

LFSR, enabling the software to generate signatures that match the hardware.

6.2 Binding to Minimize Area

Efficient operator and data register sharing are crucial for minimizing hybrid

hashing area costs. We implemented a binding engine which aggressively

shares operators among instructions and registers among variables, as long

as their lifetimes do not overlap, in order to minimize area costs. However,

such sharing introduces multiplexers. Therefore, we developed heuristics to

optimize mux widths for binding by reusing hardware components, wires,

and corresponding mux inputs that have already been allocated (we call it

zero-cost binding). We use a greedy heuristic to exploit zero cost binding

opportunities. Instructions and variables are bound to hardware components

iteratively. During each iteration for instruction or variable binding, we

choose the binding solution with the lowest area cost. We also attempt to

share existing probe ports at the register outputs through zero cost binding

solutions.

6.3 Integration into PSV Testing

As mentioned at the start of this chapter, the limited testing flexibility of

physical hardware compared to the pre-silicon testing of simulated hardware

necessitates a careful consideration of how an accelerator will be tested as an

integral part of an SoC during a PSV run. To demonstrate the practicality of

our approach, we describe a proposed testing procedure as follows.

During PSV, a sequence of hardware signatures is generated and stored in

on-chip memory. The signatures are then collected at the end of the PSV run.

Note that during the PSV run, the hardware accelerator (and the overall SoC)

operates in its native mode. Bugs inside the accelerator are thus expected to

be activated during the PSV run. Next, the software version is executed on a

processor; strategies to provide the same inputs to the software version as the

60

hardware accelerator are discussed later in this section. The software version

generates a sequence of software signatures during its execution. Bugs may

or may not be activated during the execution of the software version. Hence,

the execution of the software version can be totally decoupled from the PSV

run. For example, the user may choose to execute the software version on

a different hardware platform vs. the PSV run. The sequence of hardware

signatures obtained from the PSV run is compared with the sequence of

software signatures obtained from the execution of the software version; any

mismatch indicates bug detection. Since the execution of the software version

and the subsequent signature comparisons are totally decoupled from the

PSV run, we minimize possible intrusiveness introduced by hybrid hashing.

In order to ensure that the hardware signatures match the software signatures

(under bug-free conditions), we must ensure that the software version receives

the same inputs as the hardware accelerator. This can be accomplished in

several ways. Two examples include:

1. After a test is executed during a PSV run (in native mode), the SoC

may be configured so that the hardware accelerator is disabled and the

software version is swapped in. Next, the same test can be executed

to generate software signatures. Note that this is different from fail-

ure reproduction because we do not require bugs to be activated (or

reproduced) during the second run.

2. After a test is executed during a PSV run (in native mode), the same test

may be run again with the SoC (and the test) configured to capture (and

store) accelerator inputs at pre-defined memory locations. Using these

captured accelerator inputs, the software version can then be executed

either on the embedded processor core of the SoC being validated, or on

some other processors to generate software signatures. Similar to earlier

discussions, we do not require bugs to be activated (or reproduced) after

the first PSV run.

6.4 Real-time Error Detection

As we discussed in Section 5.3, hybrid tracing can be used as a simulation

breakpoint trigger. In a similar vein, hybrid hashing can be used as a

61

trigger to stop hardware execution during a post-silicon validation run when

a bug is detected. This variation of hybrid hashing involves first generating

the reference signature sequence for an accelerator and storing it in the

accelerator’s on-chip signature memory. Instead of writing to the signature

memory, the signature generation logic is configured to read from the signature

memory and perform a realtime signature comparison of the reference and

generated signatures. If a mismatch is found, the signature comparator asserts

a stop trigger, which stops all hardware execution on the SoC and enables

the validation engineer to examine the chip’s state (e.g. by reading out scan

chains). Trace buffers can also be used in conjunction with such a trigger to

provide information about past state (up to and including bug activation if

the error detection latency does not exceed trace buffer capacity).

6.5 Experimental Results

To demonstrate the effectiveness and practicality of hybrid hashing we ran

a series of simulation and FPGA-based emulation experiments to collect

data for area and clock period overheads as well as error detection latencies

and coverage estimates for electrical bugs. We used all 12 benchmarks from

CHStone [54] and 15 benchmarks from the PolyBench [54] benchmark suites.

We used a 16-bit LFSR and outputted a single bit hash of the LFSR state at

a regular interval. We fixed the signature output interval of each benchmark

at 100 cycles or the interval that would result in a 5% signature storage area

cost, whichever interval is larger. At the end of benchmark execution, we

dump the full contents of both the hardware and software LFSRs into the

signature stream to ensure that any late LFSR mismatches are detected.

6.5.1 Area and Delay Costs

To determine the area and delay costs of adding hybrid hashing instru-

mentation to an accelerator, we performed HLS with and without hybrid

hashing. We then performed logic synthesis using Synopsys Design Compiler

2013-12.sp1, mapping to a 45 nm ARM standard cell library, and targeting

maximum clock frequency. The area and clock period overheads for each ac-

celerator core are shown in Figure 6.4. Results show a mean accelerator-level

62

 O
ve

rh
ea

d
(%

)

-10

-5

0

5

10

15

ad
pc

m ae
s

at
ax

bi
cg

bl
ow

fis
h

df
ad

d
df

di
v

df
m

ul
df

sin
do

itg
en

flo
yd

-w
ar

sh
ge

m
m

ge
m

va
r

ge
su

m
m

v
gs

m
jp

eg
m

at
rix

4x
4

m
at

rix
m

ip
s

m
ot

io
n

m
vt

re
g-

de
te

ct sh
a

sy
m

m
sy

r2
k

sy
rk

trm
m

m
ed

ia
n

m
ea

n

baseline experimental signature memory normalized chip-level

clock period area clock period area sig bits bits + end
lfsr dump

SRAM
area

area w/
SRAM

zero
padding

clock
period area area w/

SRAM area area w/
SRAM

adpcm 1.277 92,374 1.30 95,335 219 235 74 95,409 0.000 0.016 0.032 0.033 0.007 0.007

aes 0.688 64,923 0.658 69,430 38 54 17 69,447 0.000 -0.044 0.069 0.070 0.015 0.015

atax 0.892 13,434 0.861 15,027 105 121 38 15,065 0.000 -0.035 0.119 0.121 0.025 0.026

bicg 0.903 13,923 0.829 16,047 66 82 26 16,072 0.000 -0.082 0.153 0.154 0.033 0.033

blowfish 0.597 57,418 0.571 59,295 1,792 1,808 570 59,864 0.000 -0.044 0.033 0.043 0.007 0.009

dfadd 0.749 36,348 0.765 39,058 6 22 7 39,065 0.000 0.021 0.075 0.075 0.016 0.016

dfdiv 0.89 94,928 0.865 100,390 19 35 11 100,401 0.000 -0.028 0.058 0.058 0.012 0.012

dfmul 0.691 49,835 0.695 54,172 2 18 6 54,178 0.000 0.006 0.087 0.087 0.019 0.019

dfsin 0.898 163,386 0.889 178,041 545 561 177 178,218 0.000 -0.010 0.090 0.091 0.019 0.020

doitgen 0.847 16,434 0.850 18,062 2,609 2,625 827 18,888 0.000 0.004 0.099 0.149 0.021 0.032

floyd-warsh 0.701 12,764 0.698 13,775 1,712 1,728 544 14,319 0.000 -0.004 0.079 0.122 0.017 0.026

gemm 0.844 13,830 0.856 15,188 1,457 1,473 464 15,652 0.000 0.014 0.098 0.132 0.021 0.028

gemvar 0.998 18,855 1.031 20,220 161 177 56 20,276 0.000 0.033 0.072 0.075 0.016 0.016

gesummv
0.836 13,230 0.844 14,080 64 80 25 14,105 0.000 0.010 0.064 0.066 0.014 0.014

gsm
1.094 109,914 1.111 113,575 52 68 21 113,597 0.000 0.016 0.033 0.034 0.007 0.007

jpeg
1.199 172,344 1.166 179,705 8,605 8,621 2,716 182,421 0.000 -0.028 0.043 0.058 0.009 0.013

matrix4x4 1.03 65,258 1.017 64,355 34 50 16 64,371 0.000 -0.013 -0.014 -0.014 -0.003 -0.003

matrix 0.801 11,551 0.8 12,860 328 344 108 12,968 0.000 0.015 0.113 0.123 0.024 0.026

mips 0.912 32,586 0.901 33,698 54 70 22 33,720 0.000 -0.012 0.034 0.035 0.007 0.007

motion 0.643 32,979 0.636 36,081 63 79 25 36,106 0.000 -0.011 0.094 0.095 0.020 0.020

mvt 0.875 16,212 0.878 17,757 86 102 32 17,790 0.000 0.003 0.095 0.097 0.021 0.021

reg-detect 0.931 45,131 0.923 44,993 7,164 7,180 2,262 47,255 0.000 -0.009 -0.003 0.047 -0.001 0.010

sha 0.917 54,017 0.970 57,048 2,559 2,575 811 57,859 0.000 0.058 0.056 0.071 0.012 0.015

symm 0.837 16,943 0.842 18,039 751 767 242 18,281 0.000 0.006 0.065 0.079 0.014 0.017

syr2k 0.848 15,183 0.840 16,469 1,795 1,811 570 17,040 0.000 -0.009 0.085 0.122 0.018 0.026

syrk 0.894 13,975 0.899 15,212 1,467 1,483 467 15,680 0.000 0.006 0.089 0.122 0.019 0.026

trmm 0.834 20,312 0.817 22,442 12 28 9 22,451 0.000 -0.020 0.105 0.105 0.023 0.023

median 0.875 32,586 0.856 33,698 161 177 56 33,720 0.000 -0.004 0.075 0.079 0.016 0.017

mean 0.875 46,966 0.871 49,643 1,176 1,192 376 50,018 0.000 -0.005 0.071 0.083 0.015 0.018

Clock period Signature generation area
Signature storage area

�1

Figure 6.4: Hybrid hashing area and performance overheads.

area cost of 8.3%. We observe no clock period overhead on average.

6.5.2 Electrical Bug Effectiveness

In this section, we present a study of timing errors as representative electrical

bugs. To evaluate the effectiveness of H-QED for detecting such electrical

bugs, we injected timing errors into each of our benchmark designs. Such

a process begins with running each benchmark through HLS with hybrid

hashing, feeding the output RTL code to Design Compiler, and compiling for

timing optimization. To identify timing error activations, we use an approach

similar to the “ground truth” method in [65]: for each flip-flop in the logic

netlist, add a duplicate flip-flop connected to the same “D” input, but with

an additional half-cycle delay on the input. This flip-flop’s “Q” output is

left unconnected as it is used only to trigger reports of timing violations

(by a timing simulator) while the original flip-flops maintain the error-free

execution of the benchmark. We ran timing simulations with the modified

netlist and compiled the timing violations reported into a set of (flip-flop,

cycle) pair, referred to as “injection candidates.” We selected a random subset

63

unmasked masked coverage

unactivated undetected detected undetected detected samples ERC H-QED

adpcm 0 2 245 33 220 500 0.494 0.440 0.934

aes 0 2 300 99 99 500 0.604 0.198 0.802

atax 0 0 349 86 65 500 0.698 0.130 0.828

bicg 0 0 324 75 101 500 0.648 0.202 0.850

blowfish 0 1 335 45 119 500 0.672 0.238 0.910

dfadd 0 31 149 145 175 500 0.360 0.350 0.710

dfdiv 0 16 202 168 114 500 0.436 0.228 0.664

dfmul 0 27 129 205 139 500 0.312 0.278 0.590

dfsin 0 1 258 149 92 500 0.518 0.184 0.702

doitgen 0 0 314 18 168 500 0.628 0.336 0.964

floyd-warsh 0 0 255 68 177 500 0.510 0.354 0.864

gemm 0 0 340 13 147 500 0.680 0.294 0.974

gemver 0 0 275 52 173 500 0.550 0.346 0.896

gesummv 0 0 362 14 124 500 0.724 0.248 0.972

gsm 0 2 225 37 236 500 0.454 0.472 0.926

jpeg 0 3 284 59 154 500 0.574 0.308 0.882

matrix 0 0 252 178 70 500 0.504 0.140 0.644

matrix4x4 0 0 391 29 80 500 0.782 0.160 0.942

mips 0 2 173 146 179 500 0.350 0.358 0.708

motion 0 1 80 79 340 500 0.162 0.680 0.842

mvt 0 1 334 19 146 500 0.670 0.292 0.962

reg-detect 0 0 266 50 184 500 0.532 0.368 0.900

sha 0 1 273 58 168 500 0.548 0.336 0.884

symm 0 0 383 15 102 500 0.766 0.204 0.970

syr2k 0 0 314 21 165 500 0.628 0.330 0.958

syrk 0 0 332 17 151 500 0.664 0.302 0.966

trmm 0 1 304 38 157 500 0.610 0.314 0.924

median 0.0 1.0 284.0 52.0 151.0 500.0 0.574 0.302 0.896

mean 0.0 3.4 275.9 71.0 149.8 500.0 0.558 0.300 0.858

C
ov

er
ag

e
(%

)

0

20

40

60

80

100

ad
pc

m ae
s

at
ax

bi
cg

bl
ow

fis
h

df
ad

d
df

di
v

df
m

ul
df

si
n

do
itg

en
flo

yd
-w

ar
sh

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gs
m

jp
eg

m
at

rix
m

at
rix

4x
4

m
ip

s
m

ot
io

n
m

vt
re

g-
de

te
ct sh
a

sy
m

m
sy

r2
k

sy
rk

trm
m

m
ed

ia
n

m
ea

n

End Result Check
H-QED

�1

Figure 6.5: Timing error detection coverage.

H-QED End Result Check

latency coverage latency coverage

1 0.000000 1 0.0000

2 0.002889 2 0.0000

3 0.006222 3 0.0003

4 0.010444 4 0.0003

5 0.013556 5 0.0004

6 0.017037 6 0.0004

7 0.021185 7 0.0007

8 0.024741 8 0.0009

9 0.029111 9 0.0010

10 0.032222 10 0.0012

11 0.036815 11 0.0015

12 0.040148 12 0.0015

13 0.043778 13 0.0016

14 0.046889 14 0.0017

15 0.050148 15 0.0019

16 0.057778 16 0.0023

18 0.065481 18 0.0024

20 0.073037 20 0.0024

22 0.080000 22 0.0030

24 0.086815 24 0.0036

26 0.094074 26 0.0042

28 0.102741 28 0.0044

30 0.109185 30 0.0047

32 0.123630 32 0.0053

36 0.140296 36 0.0059

40 0.155111 40 0.0065

44 0.170296 44 0.0068

48 0.185556 48 0.0070

52 0.202593 52 0.0077

56 0.217704 56 0.0084

60 0.232000 60 0.0090

64 0.263926 64 0.0101

72 0.293556 72 0.0106

80 0.325778 80 0.0115

88 0.358000 88 0.0126

96 0.387704 96 0.0139

 C
ov

er
ag

e
(%

)

0

20

40

60

80

100

Error Detection Latency (cycles)
1 10 100 1k 10k 100k 1M 10M

End Result CheckH-
QE

D

�1

Figure 6.6: Overall timing error coverage as a function of error detection
latency.

of these candidates with size n (we set n = 500) to use in our error injection

experiments. Starting again from the original netlist, we applied another

netlist transform, which inserts XOR gates at the “D” input of flip-flops

corresponding to the selected injection candidates. We added additional logic

to control each XOR gate, enabling error injection at a specific cycle. We

mapped the transformed netlist to an FPGA (Altera Stratix III) for emulation

purposes, and performed n full execution runs for each benchmark, injecting

one error from the selected “injection candidates” during each run (bit flip at

the input of the given flip-flop at the given cycle).

Timing error coverage (the number of errors detected divided by the number

of errors injected) is presented in Figure 6.5, including both masked (errors

64

that do not propagate to accelerator outputs so they are invisible externally)

and unmasked errors (errors that propagate to the primary outputs and

affect accelerator results). Note that the unmasked timing error detection

coverage is 100% with hybrid hashing (i.e., we detect all unmasked errors).

The overall error detection latency distribution is shown in Figure 6.6. We

observed mean timing error detection coverage for hybrid hashing of 85.8%

compared to 55.8% for the end result check, resulting in a 3.1× improvement

(i.e., reduction) in undetected timing errors. We also observed a mean error

detection latency of 705 cycles for hybrid hashing, compared to 124,490 cycles

for end result check, resulting in a 176× improvement (i.e., reduction) in error

detection latency.

65

CHAPTER 7

POST-DEPLOYMENT RESILIENCE:
MODULO-3 SHADOW DATAPATHS

In this chapter, we propose creating a redundant, but smaller “shadow”

datapath based on modulo arithmetic to detect reliability problems in an

HLS design’s main datapath. We automate the creation of this “shadow”

datapath through a series of modulo-3 shadow datapath HLS transformations.

Our main innovations are:

� Intelligent scheduling of intermediate register consistency checks for

maximum coverage with minimum checker allocation

� Support for mixed arithmetic/non-arithmetic data paths

� A register-duplication based checkpointing technique to demonstrate

the error correction potential of our approach

� An FPGA accelerated, fully automated error injection framework using

a gate-netlist transformation to enable accelerated injection for three

fault models

� Error detection latencies three orders of magnitude faster than an end

result check

� Unmasked error detection coverage of 99.42% for an assortment of three

different kinds of fault models

The rest of this chapter is organized as follows: Section 7.1 explains the

method we use to perform our error detection and correction transformations

and Section 7.2 discusses our experimental setup and results.

7.1 Framework

Our approach to protecting a hardware design is a series of modulo-3 shadow

datapath HLS transformations. An overview of how these transformations

66

Front-end (clang+LLVM)

Scheduler (LegUp)

Modulo-3 Transform

Shadow Datapath
Optimization Passes

Binder (in-house)

Verilog RTL

C source code

LLVM-IR

Scheduled CDFG

Scheduled CDFG

Scheduled CDFG

(a) HLS Overview

+

+
+

+ + +

%3

%
3

=

%
3

=

Input
Reducers

Register
Checkers

Output
Checkers

Shadow
Functional
Units

error

error

Shadow
Registers

(b) Modulo-3 Transform

Figure 7.1: Overview of our method. (a) Integration of our reliability
transformations into the high-level synthesis process. (b) Illustration of our
core mod-3 transform. The original datapath is colored black/white and the
shadow datapath is in blue.

fit into the HLS process is illustrated in Figure 7.1a. We use the LegUp

HLS scheduling engine [58] to schedule the original datapath, and perform

binding with our in-house binding engine. Our transformations involve some

additional scheduling steps (see Section 7.1.2). We perform our error detection

transformations after scheduling but before binding to ensure that the latency

of the hardware function does not increase.

Figure 7.1b provides an overview of our basic modulo-3 shadow datapath

transformation. For each input port, we add a mod-3 reducer to compute

the input value mod-3 residue, effectively creating a shadow mod-3 input.

For each arithmetic functional unit (e.g. add, subtract, multiply), we add

a corresponding shadow mod-3 functional unit. For each datapath flip-flop,

we add a corresponding 2-bit flip-flop to store and propagate the mod-3

checksum in a parallel datapath. For each output port, we add a mod-3

checker which consists of a reducer and 2-bit equality comparator, which

67

Table 7.1: Modulo-3 Adder Functional Specification Table

value encoding

0 00
1 01
2 10
U 11

+3 0 1 2 U

0 0 1 2 X
1 1 2 0 X
2 2 0 1 X
U X X X X

Table 7.2: Optimization Results for Shadow Mod-3 Units

Function
32-bit unit naive shadow optimized shadow
area delay area delay area delay

Add 163 1.30 17.6 0.15 9.30 0.08
Multiply 2381 2.05 10.9 0.08 5.75 0.05

then drives shared error ports. The result is that each main computation is

independently performed in mod-3 space, and the two results are checked

for consistency. In the following two subsections, we discuss the design of

these mod-3 functional units and the transformation that inserts them into

high-level synthesized designs.

7.1.1 Modulo-3 Functional Units

Basic Functional Units

Mod-3 functional units represent the types of functional units which operate

in the mod-3 space. Since only two bits are required to encode three possible

values in mod-3 space, a simple approach is to use two representations for

0: 00 and 11, which is the approach taken for previous designs of mod-3

functional units. Our key innovation is to ignore the 11 encoding (we name

it the U value) and optimize it as a don’t care, meaning that there are no

constraints on the output given a U input.

Thus if either input is the U value, then the output does not matter as the

U case will never occur in normal operation. As illustrated in Table 7.1 for

the mod-3 adder, there are nine fixed output cases and seven don’t care output

cases for each two-input mod-3 unit. Through the use of Karnaugh maps, we

optimally exploited these don’t cares to find a low area cost design expressed

as a sum of products. We verified the optimality of our sum of products

68

Table 7.3: Shadow Unit Metrics for Operation with Constant c

Function
c = 0 c = 1 c = 2

area delay area delay area delay
Add c 0 0 0.96 0.02 0.96 0.02

Multiply by c 0 0 0 0 0 0

solution through an exhaustive search of all 47 possible don’t care assignments

(i.e. to check for better solutions involving compound gates). Table 7.2 shows

the effects of our optimization. For logic synthesis, we implemented our

designs in Verilog, used Synopsys Design Compiler 2013-12.sp4 with an ARM

45 nm standard cell library, and optimized for minimum area. We measure

area in square micrometers and delay in nanoseconds.

Constant Functional Units

We also consider an additional class of constant operation units generated by

high-level synthesis, units that have a constant as one input. We can think of

this constant as “baked-in” to the logic of the unit so that structurally the

unit has a single input and a single output. For example, a +10 constant

operation unit takes some value x as input and outputs x + 10.

Table 7.3 shows the cost of the constant operation versions of our mod-3

units. Since we can reduce each constant to its mod-3 residue at compile

time, there are only three versions of each constant unit. We observe that

the operations +0 and ×1 have no area cost since they lower to the identity

function and ×0 lowers to the constant zero for multiplication. As discussed

in Section 7.1.2, such operations are optimized out by our high-level synthesis

optimization passes.

With such functional unit optimizations, our method has an even greater

area-cost advantage over double or triple modular redundancy for arithmetic

datapaths.

Modulo-3 Reducers

Mod-3 reducers are our modulo-3 residue computing units. They are imple-

mented as a tree of dlog n/2e stages of modulo-3 adders where n is the input

width, similar to the tree approach in [48]. An example reducer for n = 16 is

69

+3 +3 +3 +3

+3 +3
+3

16

22 22 2222

2

x

x mod 3

Figure 7.2: Optimized mod-3 reducer topology for a 16-bit unsigned reducer.
Optimized mod-3 adders are colored blue.

Table 7.4: Optimization Results for 32-bit Mod-3 Reducer

Reducer Type
[48] ours

area delay area delay
Unsigned 263 0.62 203 0.46

Signed 267 0.66 207 0.51

illustrated in Figure 7.2. The design works by grouping the input bits into

pairs and effectively constructing a base 22 = 4 representation of the input

value. Since 4n mod 3 = 1 for all n ≥ 0, each base 4 digit has the same weight

in mod-3 space and thus we can compute the mod-3 sum of all of the digits

in a straightforward tree reduction.

Since the first stage adders must take all possible values (0, 1, 2, and 3)

as inputs, we cannot perform don’t care optimizations for those units. But

since we design the first stage adders to normalize their output to be 0, 1,

or 2, all subsequent stages can optimize the fourth (“3” or U) value as a

don’t care. To the best of our knowledge, this optimization was not previously

explored. With this optimization, we observe a 22-23% area cost reduction

and a 23-26% delay reduction compared to [48].

Thus far, we have assumed that the original datapath uses an unsigned

bit encoding for all variables. To modify our reducers to handle a signed

(2s complement) variable, we leverage that the only difference between the

unsigned and signed (2s complement) encodings is the weight of the most

significant bit (MSB). In the unsigned encoding, the MSB has a weight of

70

2n−1 while in the signed encoding, it has a weight of −2n−1 where n is the

number of bits. Without loss of generality, if we assume n is even, then

2n−1 mod 3 = 2 and −2n−1 mod 3 = 1. Since the second most significant bit

always has a weight of 1, the insertion of a half-adder is sufficient to normalize

the two most significant bits for a signed reducer. Table 7.4 shows the small

cost of this extra half-adder.

7.1.2 High-Level Synthesis Transformations

Our HLS transformations, as illustrated in Figure 7.1 on page 67, consist

of a core mod-3 transform that generates the shadow datapath, as well as

some dataflow-level optimization passes on the generated mod-3 logic. Our

transformations operate on a scheduled control/data flow graph.

By leveraging the state machine and data flow graph information available

in this HLS stage, we can perform transformations and optimizations not

possible at the RTL or gate-level stage. In the following subsections, we discuss

how we handle mixed arithmetic-nonarithmetic datapaths, the scheduling of

intermediate register consistency checks for maximum coverage with optimized

sharing, pipelining for deferred shadow datapath scheduling to eliminate clock

period overhead and lower area cost, and binding diversity between the main

and shadow datapaths for improved fault coverage.

Handling Non-Arithmetic Components

HLS generated designs involve non-arithmetic components including state

machine logic, bitwise operations, and comparators that have single bit out-

puts. Each non-arithmetic component is duplicated such that each component

has a redundant counterpart. However, such units have low area overhead.

For example, bitwise operations have very low area cost and shifts by a

constant have zero area cost. We also observe low overheads for duplication

of non-arithmetic units (Area and Delay overheads are mentioned in Table 7.5

on page 79).

There are a number of cases to deal with when we generate shadow connec-

tions for arithmetic and non-arithmetic components, which are illustrated in

Figure 7.3. Connections between two duplicate components and between two

mod-3 components are straightforward: just make connections corresponding

71

(a) non → non

%3

⨉ ⨉

(b) non → arith

+ +

(c) arith → non

+ +

⨉ ⨉

(d) arith → arith

Figure 7.3: Shadow/duplicate connection cases. For each subfigure, the
original graph is on the left and the redundant logic is on the right. For the
redundant logic, nonarithmetic components (“non”) are duplicated with the
duplicates in gray. Arithmetic components (“arith”) are mod-3 shadowed
with the shadows in blue. The unit labeled “%3” is a mod-3 reducer.

to those in the original datapath (Figures 7.3a and 7.3d). We can connect a

duplicate component output (full bit width) to a mod-3 component input (2

bit) through a mod-3 reducer (Figure 7.3b). Connecting a mod-3 component

output to a duplicate component input is not possible since information lost

in the mod-3 reduction cannot be recovered. Thus the duplicate component

input is connected to the same output as the original component (Figure 7.3c).

Making connections this way can leave some mod-3 components with

outputs unconnected, which we call mod-3 sinks. For example, the mod-3

adder in Figure 7.3c may not have a mod-3 component to connect to in its

fanout. Such mod-3 sinks may output an inconsistent mod-3 checksum due

to an error that occurred in the main datapath, but there would be no way to

detect it. Thus we add a mod-3 checker for each mod-3 sink to ensure such

errors are detected.

We deal with constant multiplication by multiples of three in a similar

way since the mod-3 result is always zero (Section 2.2.2). Our optimization

passes will replace such a shadow multiplier with a constant, leaving no pin

to connect its original input to. Thus we treat constant multiplication by a

multiple of three as an additional shadow datapath barrier: if it results in a

72

mod-3 sink then we add a mod-3 checker.

Register Consistency Check Scheduling

Some errors may be masked in the main datapath (and thus masked in the

shadow datapath) before they reach the primary output. Other errors may be

unmasked, but undetected due to aliasing (see Section 2.2.2) that occurs in

the shadow datapath. To maximize our chances of detecting such errors, we

insert checkers on the output of datapath registers, using strategic scheduling

of check operations to share as many mod-3 reducers as possible.

Compared to the rest of the shadow datapath, reducers are expensive

(Compare Tables 7.2 and 7.4). Reducers are scheduled in fixed states for

use at output ports and mod-3 sinks to produce residues for checkers as

well as at input ports to provide shadow inputs (Figure 7.1b). Intermediate

register checkpoints, on the other hand, have flexible scheduling constraints

corresponding to their liveness state machine subgraph.

To exploit this flexibility and minimize reducer allocation, we select register

liveness intervals that are more than one cycle long and that extend across

a basic block boundary (control flow divergence or convergence). For each

liveness interval, we attempt to schedule a checkpoint at each use (read) of

the corresponding SSA variable1 with the constraint that we cannot schedule

more reducers at a state than have been allocated. The intuition behind this

method is that we want to catch errors right before they leave a register to

go through functional units where they may be masked or aliased. If the

checkpoint cannot be scheduled at a state, we attempt to recursively schedule

it at each of the state’s predecessors.

The core recursive algorithm is listed in Algorithm 1. In the event of a

scheduling failure, we allocate an additional reducer and try again until check

scheduling succeeds.

Pipelining for Deferred Shadow Datapath Scheduling

While our mod-3 shadow functional units have low latency (Tables 7.2 and 7.3),

our mod-3 reducers have high latency (Table 7.4). In addition, the insertion

1Single-static assignment variable which is written only once and thus corresponds to
one liveness interval for a variable.

73

Algorithm 1 Core Recursive Scheduling Algorithm

function schedule(var, state)
if (var, state) has not been visited or scheduled then

if reducer count[state] = max reducers then
preds ← state predecessors that var is live in
if preds = ∅ then

increment max reducers
restart scheduling process

end if
for each pred in preds do

schedule(var, pred)
end for

else
schedule check for (var, state)
increment reducer count[state]

end if
end if

end function

of a mod-3 checker on a mod-3 sink’s corresponding main component can

cause severe timing violations if the main component is part of an operation

chain. Even if the timing violations are corrected through gate sizing, the

area cost can be quite large as 1× transistors are replaced with 4× and 8×
transistors to meet timing requirements. Ideally, we want all of the mod-3

components to be mapped to 1× gates for minimum area overhead.

Thus our solution is to insert pipeline flip-flops both in front of and behind

each mod-3 reducer. The shadow datapath schedule is then deferred by two

cycles, adding two cycles of error detection latency in exchange for reduced

area cost.

Shadow Datapath Optimization Passes

Our mod-3 transformation can create no-op identity operations and redundant

components. This superfluousness motivated us to add a shadow datapath

optimization pass to eliminate them as shown in Figure 7.1a which consists

of two components:

1. Constant propagation and identity elimination: A +6 adder

results in the generation of a +0 mod-3 component, which is an identity.

74

A ×6 multiplier evaluates to a constant 0 in mod-3 space, which could

then propagate to other operations and make their result evaluable at

compile time.

2. Redundant component elimination: A ×8 and a ×11 multiplier

both result in the generation of a ×2 mod-3 component. If both

multipliers are connected to the same input, the second ×2 mod-3

component is redundant and can be removed.

Diverse Binding

We perform binding of our optimized and scheduled control and data flow

graph with our in-house binding engine, which creates diverse (different)

binding solutions between the original and duplicate / mod-3 datapaths. Such

diverse binding makes it difficult for control errors and stuck-at faults to affect

both redundant datapaths in the same way. Further state machine checking

is enabled by comparing the state registers of the redundant state machines

and using one state machine to control the main datapath and another one

to control the duplicate and shadow datapaths. Both the shadow datapath

and the duplicate state machine run two cycles behind the main computation,

so synchronization is not an issue. The binding engine’s primary goal is to

maximize sharing where profitable for area cost, minimizing the number of

reducers allocated.

7.1.3 Recovery

To enable error recovery for soft errors, we use a checkpoint and recovery

register transformation, illustrated in Figure 7.4. For each state and datapath

register, we add a duplicate register to store checkpoint data. At regular

intervals (configurable), we assert the “save” signal to take a snapshot of

the state of each datapath and state register in a corresponding duplicate.

Error detection triggers a “restore” signal which recovers the state from the

previously recorded checkpoint, i.e. the cycle where the “save” signal was

asserted.

Our error recovery technique will work for soft errors as long as the error

has not made it into the checkpoint snapshot. A checkpoint is corrupted when

75

data in data out

(a) Original flop

data in
data out

restore

save

0
1

0
1

(b) Transformed flop

Figure 7.4: Flip-flop transformation for soft error recovery.

an error is activated before but detected after the checkpoint. We consider an

error to be masked if it does not affect the primary outputs of the generated

core or the timing of those outputs. Otherwise, it is an unmasked error.

The probability of checkpoint corruption, PCC , is defined as in Equation

(7.1), where l is the unmasked error detection latency, Pl is the probability

of that particular latency (i.e.
∑

l Pl = 1) and CI is the checkpoint interval

(configurable). An error is removed if either it is masked to begin with or

it is unmasked, detected, and successfully recovered by rolling back to an

uncorrupted checkpoint; we formally define the error removal rate as the

number of removed errors divided by number of total errors, as formalized

in Equation (7.2). In this equation, E is the error removal rate; M is

the error masking rate (defined as the number of masked errors divided by

number of total errors); and U is the unmasked error detection rate (defined

as number of unmasked errors detected divided by number of total errors).

An error is detected (ED) in a given cycle if an error occurred in that cycle

and it was detected by our detection logic, as formalized in Equation (7.3),

where Perror stands for the probability of error activation in each cycle and

det stands for total error detection rate given error activation. Avg.rollback

is the number of cycles, on average, that we would rollback on detection

of an error. Since the rollback length distribution is uniform, the average

is approximately half the checkpoint interval (Equation (7.4)). Thus, the

average rollback cycle overhead is the product of the average rollback length

and the probability of an error being detected in a given cycle (Equation

76

(7.5)).

PCC =
∑
l

Pl
min(l,CI)

CI
≤ lavg

CI
(7.1)

E = M + U(1− PCC) (7.2)

ED = Perror × det. (7.3)

Avg. Rollback =
CI∑
r=1

r

CI
=

CI + 1

2
(7.4)

Cycle Overhead = ED× Avg. Rollback (7.5)

7.2 Results and Analysis

7.2.1 Setup

Our experimental setup is illustrated in Figure 7.5. We performed logic

synthesis with Synopsys Design Compiler 2013-12.sp1 with an ARM 45 nm

standard cell library and optimized for maximum clock frequency. We eval-

uated the detection coverage of our approach with error injection enabling

netlist transformations which support stuck-at, transient, and timing errors.

To inject stuck-at faults, the netlist transformation inserts AND (for stuck-

at 0) or OR (for stuck-at 1) gates at randomly selected gate outputs. To inject

transient errors, we insert XOR gates at the “D” inputs of randomly selected

flip-flops. For timing errors, we induce setup time violations by performing

timing simulations with a fast clock to collect flop-cycle pairs where timing

errors are activated while continuing error-free execution with the use of a

razor flip-flop like transformation, similar to the activation detection method

of [65]. Then we pass these flop-cycle pairs as a subset of transient errors to

our error injection enabling netlist transformation.

To accelerate fault effect evaluation, we map the ASIC netlist to an Altera

Stratix III FPGA for emulation. A hardware test driver module mapped to

the FPGA communicates with the host system to facilitate thousands of rapid

(<1 second each) back-to-back full runs of the design under test, injecting

one error from the sample list at a time. As one would expect, stuck-at faults

are activated for the duration of the design execution, while transient errors

77

Reliable High-level
Synthesis

Synopsys Design
Compiler

Timing Error
Activation Simulation

Error Injection Enabling
Netlist Transforms

Altera Quartus Stratix III FPGA

Verilog
RTL

FPGA
Bitfile

Timing
Errors

Technology Mapped Netlist

Technology Mapped Netlist

Error injection results

C source code Area and Delay results

Figure 7.5: Our error detection coverage evaluation framework. Our
“reliability-centric” high-level synthesis process is elaborated in Figure 7.1a.
Our customized steps are highlighted in yellow.

are activated for one cycle.

7.2.2 Results

We used benchmarks from the PolyBench/C 3.2 benchmark suite [66] and

modified the benchmarks to use fixed-point encodings for originally floating-

point encoded values as our transformations currently do not support floating-

point operations. We implemented fixed point arithmetic with C integer

arithmetic operations with shifts for binary point alignment. “Matrix 4 ×
4” is a tiled version of the matrix multiply benchmark that completely

unrolls 4× 4 tiles to explore performance/area tradeoff. We synthesized our

benchmarks using our method (Section 7.1.2) and used our experimental

setup (Section 7.2.1).

To determine the area cost of our error detection approach, we compare

the core area of an unprotected baseline benchmark synthesized without our

mod-3 shadow datapath transformations against our experimental version

synthesized with the mod-3 transforms. Table 7.5 shows the area and clock

period overhead for both the detection logic and estimated overhead (through

characterization of the hardware in Figure 7.4) for the total logic which

includes both detection and recovery. We observe on average an area cost

78

Table 7.5: Area and Clock Period Overhead Results

Benchmark
Baseline Detection Total

area
(µm2)

period
(ns)

area
ov.(%)

period
ov.(%)

area
ov.(%)

period
ov.(%)

Atax 13 434 0.89 28.3 −2.4 52.7 2.0
Bicg 13 923 0.90 27.4 −5.2 57.6 −0.9

Floyd-Warsh 12 764 0.70 26.9 0.3 57.4 5.8
Gemm 13 380 0.84 30.3 1.7 56.4 6.3

Gemver 18 855 1.00 26.8 1.5 55.4 5.4
Gesummv 13 230 0.84 30.0 1.9 57.1 6.6

Matrix 4× 4 65 258 1.03 5.7 8.8 29.5 12.6
Matrix 11 151 0.80 22.1 1.0 55.6 5.9

Mvt 16 212 0.88 40.2 −1.1 67.9 3.3
Symm 16 943 0.84 24.9 2.9 57.2 7.5
Syr2k 15 183 0.85 23.0 1.2 48.9 5.8
Syrk 13 975 0.89 23.1 0.1 48.9 4.5

Median 13 949 0.86 26.8 1.1 56.0 5.8
Mean 18 763 0.87 25.7 0.9 53.7 5.4

of 25.7% for detection and estimate 53.7% for both detection and recovery.

Interestingly, we observe a 5.7% detection area cost for the highly parallelized

“Matrix 4× 4” benchmark, suggesting that lower overheads are achievable in

large high-throughput accelerator designs.

To observe fault coverage, we injected a sampling of 2,000 stuck-at, 10,000

transient, and 10,000 timing errors into each synthesized core. The outcome

of our fault injection experiments is shown in Table 7.6.

For unmasked errors, we observe an average stuck-at fault coverage of

99.1%, soft error coverage of 99.5%, and timing error coverage of 99.6%. To

provide some context, Argus, which we consider to be a state-of-the-art error

detecting microprocessor, can detect 98.0% of transient errors and 98.8% of

stuck-at faults [42].

It is difficult to make a direct comparison with previous HLS work since

high-level synthesis benchmarks with experimental error injection and area

cost are quite limited. For reference, Concurrent Error Detection [40] uses

HLS to fully duplicate each component but attempts to compensate for area

cost through resource sharing and has around 75% area cost for a simple,

fully arithmetic datapath which in theory is not susceptible to aliasing.

Figure 7.6 shows the estimated soft error removal rate and rollback cycle

79

Table 7.6: Fault Coverage

Benchmark
Unmasked (%) Masked (%)

stuck trans. timing stuck trans. timing
Atax 99.7 99.8 99.8 68.6 28.3 65.0
Bicg 98.9 97.1 100 73.9 31.1 57.4

Floyd-Warsh 99.9 100 100 64.8 40.9 73.4
Gemm 98.5 100 100 100 31.8 77.2

Gemver 99.5 99.9 100 78.0 18.8 77.5
Gesummv 99.9 99.3 100 67.6 38.4 56.1

Matrix 4× 4 98.8 98.7 99.5 67.7 48.9 76.5
Matrix 100 100 100 76.1 25.9 54.1

Mvt 96.7 100 100 73.4 17.0 66.9
Symm 99.6 99.0 97.7 76.8 36.4 47.7
Syr2k 99.5 99.7 98.9 73.5 33.5 81.7
Syrk 98.5 100 100 71.4 31.9 73.2

Median 99.5 99.9 100 72.8 31.8 70.0
Mean 99.1 99.5 99.6 72.0 31.9 67.2

overhead for our error recovery method with checkpoint intervals ranging

from 10 to 100 k cycles calculated through Equations (7.1)-(7.5).

The baseline average masking rate of the unmodified designs is 70.2%

(indicated by the lower dotted line), and we achieve an total error removal

rate (indicated by the “Error Removal Rate” curve) arbitrarily close to the

theoretical upper bound (all errors detected are corrected) which is 99.83%

(indicated by the upper dotted line).

We cannot achieve an error removal rate of 100% as we have a small

percentage of undetected, unmasked errors. The four parallel lines represent

0

90

99

99.9

Checkpoint interval (cycles)
1 10 100 1k 10k 100k 1M

unmasked masked

undetected detected undetected detected samples masked detected um-det r-limit

4 2482 5390 2124 10000 0.7514 0.4606 0.2482 0.9996

10-18

10-12

10-6

1

Baseline Rate: 70.2%

Recovery Limit: 99.83%
Perror=10-10

Perror=10-12

Perror=10-14

Perror=10-16
Removal Rate

R
ol

lb
ac

k
C

yc
le

O

ve
rh

ea
d

(lo
g,

ra
tio

)

R
em

ov
al

 R
at

e
(lo

g,
%

)

�18

Figure 7.6: Error removal rate and rollback cycle overhead.

80

C
ov

er
ag

e
(%

)

0
20
40
60
80

100

Error Detection Latency (cycles)
1 10 100 1k 10k 100k 1M

End Result Check

All Errors

Masked Errors

U
nm

as
ke

d
Er

ro
rs

�18

Figure 7.7: Soft error detection latency distribution.

rollback cycle overheads for different soft error rates. For reference, [67]

reports a worst-case error rate of around 10−16 errors / cycle for a space

environment assuming a clock frequency of 1 GHz.

What is interesting to observe is the tradeoff between the error removal rate

and rollback cycle overhead. Larger checkpoint intervals reduce the chance of

checkpoint corruption, resulting in higher error removal rates. At the same

time, large checkpoint intervals result in larger jumps back in time for each

error detection triggered rollback, resulting in larger cycle overheads. To

pick a number, 1000 cycles is a reasonable tradeoff as we are at the point of

diminishing returns for the error removal rate (98.6%).

Figure 7.7 shows the soft error detection latency distribution for unmasked

errors, masked errors and both. “End Result Check” (ERC) is a basic

error detection method involving comparing the benchmark’s output with its

expected output once execution is complete. We observe mean latencies of

8.72, 17.14, 12.75, and 36 2 k cycles for unmasked, masked, both and ERC

respectively, for an error detection latency improvement of 4150× over the

ERC.

81

CHAPTER 8

CHEAPER MODULO FUNCTIONAL
UNITS

While the area cost of our modulo shadow datapaths in Chapter 7 is much

better than traditional modular redundancy approaches, we want to maximize

the applicability of our approach. To this end, we take a dive into gate-level

architectural design for modulo arithmetic functional units. In this chapter,

we create new cost-effective gate-level designs for Mersenne (M(n)) modulo

functional units (see Section 2.2.4 for definition), and show that we cannot only

decrease the cost for modulo-3 shadow datapaths, but also enable practical

scaling to larger shadow datapath widths. To demonstrate the applicability

of our approach for reliability, we use these building blocks to create a

self-checking multiply-accumulate datapath.

8.1 Modulo Functional Units Architecture

The following subsections discuss our gate-level architectures for our modulo

M(n) integer reducers, adders, multipliers, negators, and zero comparator

functional units. All of these functional units work with non-normalized

n-bit encodings (see Section 2.2.6 for definition) for residues modulo M(n).

Furthermore, we provide illustrated examples with specific values of n for

explanatory purposes, but these architectures generalize in a straightforward

manner (except where noted otherwise) to any n ≥ 2 and any input bitwidth

w ≥ 2n.

8.1.1 Reducer

Our reducer functional units compute y = a mod M(n), where a is a w-bit

wide datapath value, and y is an n-bit residue value.

82

2 1
2 1
2 1
2 1

128 64 32 16 8 4 2 1

8-bit unsigned input

2 1

2 1
4 2

2 1

2 1
12 2 1

4 2

2 1
12

2 x FAs

2 x FAs

(a) 8-bit mod-3 reduction strategy

16x

x mod 3

2xFAs

2xFAs 2xFAs

2xFAs 2xFAs

2xFAs

add mod 3

(b) 16-bit mod-3 reducer

Figure 8.1: Wallace-tree like reduction strategy and 16 bit modulo-3 reducer.
In (a), each square represents a bit, and the number in the square is the
weight of that bit. In (b), each “2× FA” box represents a pair of full adders,
one taking three bits of weight 1 as input and one taking three bits of weight
2. Each wire (except the top input bundle) bundles two bits of weights 1 and
2.

Reduction Strategy

To perform this reduction to a residue, our unique approach is a Wallace-tree

like reduction strategy shown in Figure 8.1a. Our reducer starts with a

standard bit sequence representing an integer with bits having weights with

successive powers of two. Using the standard homomorphism from integer

arithmetic to modulo arithmetic (see Section 2.2.1), we can reduce the weights

83

Algorithm 2 Partial Modulo Reduction

procedure reduce(A) . A is a m× n matrix of bits
while |A| ≥ 3 do . |A| is the number of rows in A

G← row triplets selected from A.
L← leftover rows, |L| < 3.
G′ ← G passed through n× FA blocks.
A← {G′, L}.

end while
return A . The result is a 2× n matrix of bits

end procedure

in Equation (2.7) to residues as follows:

y =

(
w−1∑
i=0

2iai

)
mod M(n) (8.1)

=

(
w−1∑
i=0

(2i mod M(n))an

)
mod M(n) (8.2)

=

(
w−1∑
i=0

(2i mod n)an

)
mod M(n) (8.3)

where the last equivalence follows from Equation (2.6).

In other words, the weights on the input bits shown in Figure 8.1a are

reduced to a repeating cycle of successive powers of two, drawn as a 4 × 2

matrix in Figure 8.1a for n = 2 and M(n) = 3. We now feed these bits to

full adder (FA) gates. A full adder takes three bits of weight w as input

and produces two bits as output: one of weight w and another of weight

2w. A FA is a transistor-level optimized cell in a standard cell library that

reduces the number of bits by 1 (3 inputs less 2 outputs), and as we will see

shortly, performs arithmetic amenable to a modulo context. Thus FAs are

ideal technology mapping targets for cost-effective modulo arithmetic.

In the 4× 2 matrix in Figure 8.1a, we can select two groups of 3 bits with

the same weight (highlighted in red) and pass them through full adders. The

result is two bits of weight 2, one bit of weight 1, and one bit of weight 4.

But 4 = 1 (mod 3) (an example of Equation (2.6)), so the output of the FAs

is equivalent to two bits of weight 1 as well as 2. Since we also have two

bits left over from the input, we now have a 3× 2 matrix of bits (lower left

corner of Figure 8.1a). We repeat this process, selecting groups of 3 bits and

84

putting them through FAs until no groups of 3 bits remain. This process is

formalized in Algorithm 2.

Intuitively, it is desirable to perform reductions with entirely full adders

since each FA gate is doing useful work reducing the number of bits by 1. Half

adders (HA) take two bits of the same weight, w, as input and produce two

bits of weights w and 2w and thus do not by themselves reduce the number

of bits.

Architecture

Figure 8.1b provides a block diagram for our Mersenne modulo reducer gate-

level architecture for n = 2 =⇒ M(n) = 3 and input width w = 16. Each

wire (except the top input bundle) corresponds to a bundle for a bit matrix

row in Figure 8.1a if it were to be expanded from an 8-bit input to a 16-bit

input. Three wires representing three rows are connected to corresponding

bundles of FAs (the “2 × FA” blocks) which generate two rows (wires) of

output. Note that, perhaps counterintuitively, the two output wires of each

“2×FA” block in Figure 8.1b represent bundles with all of the different possible

bit weights (i.e. a row of a bit matrix in Figure 8.1a), not a bundle of sum

bits and a bundle of carry bits.

Using the reduction strategy in Algorithm 2, we iteratively process all

of the groups of three wires from the previous stage in parallel by passing

them through “2× FA” blocks until only two wires remain. Note that while

Figure 8.1b provides an example for n = 2 =⇒ M(n) = 3 and input width

w = 16, along with our other functional units in this section, this example

generalizes to any n ≥ 2 and any w ≥ 2n.1 For the final reduction stage, we

use a binary modulo adder, which we discuss next.

8.1.2 Adder

Our gate-level modulo binary adder architecture is shown in Figure 8.2a

for n = 3 =⇒ M = 7. The first stage is a standard ripple-carry adder.

1For w values that are not a multiple of n, we can pad the input with conceptual
constant zero bits until w mod n = 0. Each of those zero bits will be connected to a
different full-adder, so we can recover from most of the padding overhead by optimizing
those full adders with one constant zero bit to half adders.

85

a
b

a + b (mod 7)

FA FA HA

HAHA

(a) adder

a
b

ab (mod 7)

3xFAs

add mod 7
4 2 1

1

2

4

4 2 1

(b) multiplier

a + b = 0

a
b

(c) zero comparator

Figure 8.2: Modulo-7 adder, multiplier, and zero comparator. In (b) bits are
annotated with their weights. Each X represents a 2-input AND gate with
inputs connect on the left, and outputs connected on the right.

The final carry produced by the first stage has weight 2n = 1 (mod M)

by Equation (2.6), so it wraps around as a carry-in to the second stage.

We guarantee under all possible adder input combinations that this carry

circulation will stop before or at the most significant bit in the second stage.

In other words, at most one of the input bits to the MSB adder gate in the

second stage is a 1. We call an adder gate with this input constraint a quarter

adder (QA) and implement it with a 2-input OR gate.

Theorem 1. At most one of the inputs to the quarter adder gate in our

modulo binary adder is 1.

86

Proof. We prove this guarantee by contradiction. Suppose both inputs to the

QA are 1. Then both inputs to each half adder in the second stage must be

1. Then all inputs to each full adder in the first stage must be 1. Then both

outputs of the half adder in the first stage must be 1, which is impossible.

8.1.3 Multiplier

Refer to Figure 8.2b for our modulo binary multiplier architecture for n =

3 =⇒ M = 7. The multiplier is like an array multiplier with a twist: each

combination of input bits is combined with a 2-input AND gate, but bit

weights wrap around modulo M , resulting in a n×n matrix of partial product

bits as shown in the upper part of Figure 8.2b, which also corresponds to the

lower-left corner. For example, the product of the two bits of weight 22 = 4

will have weight 24 = 16 = 21 = 2 (mod 7) by Equation (2.6).

Since the output is a square matrix of bits, we can then apply our reduction

techniques from Section 8.1.1 to reduce them. Figure 8.2b elaborates on the

reduction for a 3× 3 matrix of 9 bits.

8.1.4 Negation and Subtraction

Negation with our encodings of Mersenne modulo numbers is quite simple:

just pass each bit through a NOT gate. Mathematically, this works because

−a = M − a = (2n − 1)−
n−1∑
i=0

2iai (8.4)

=
n−1∑
i=0

2i −
n−1∑
i=0

2iai =
n−1∑
i=0

2i(1− ai) (mod M) (8.5)

These NOT gates can be integrated into gates in upstream or downstream

functional units to effectively eliminate their overhead (e.g., flip-flops with

inverted outputs or NAND gates instead of AND gates in a multiplier array).

Subtraction is implemented as a composition of negation and addition, i.e.

a− b = a + (−b).

87

8.1.5 Zero Comparator

We created a custom architecture for a zero comparator which takes 2n bits as

input and compares the sum of the 2× n matrix of bits with zero, illustrated

in Figure 8.2c for n = 3 =⇒ M = 7. We take 2n bits as input due to the

extra cost of reducing 2n bits to n bits (see Section 8.2.2).

Theorem 2. Our zero comparator architecture illustrated in Figure 8.2c is

correct.

Proof. We start with some special cases: the inputs (−0 + −0) (all ones)

and (0 + 0) (all zeroes) produce the correct output by inspection. For the

remaining cases the only way to get a sum of zero is if a and b are bitwise

complements of each other. Again, we see by inspection that the logic will

output a 1 for this case. If a and b are not bitwise complements, the only

way for the logic to output a 1 is if a = b = ±0, the special cases we already

discussed.

8.2 Quality of Results Comparisons

To evaluate the area and delay of our approach, we implemented our gate-level

designs with a 45 nm ARM standard cell library. Our focus is on minimum

area to minimize cost, so we selected the smallest (1×) standard cell for each

gate type for the modulo functional units. The longer delay of a modulo

shadow datapath simply increases error detection latency by a few cycles,

so this tradeoff is acceptable in return for reduced area cost. We compare

with other techniques compiled with the logic synthesis tool Synopsys Design

Compiler 2016.03-SP5-5 and also map modulo functional units from those

designs to 1× standard cells to enable meaningful comparisons.

8.2.1 Modulo Functional Units

Our first set of comparisons looks at the functional-unit level and compares our

designs for modulo adders, subtractors, reducers, and multipliers to equivalent

designs from Chapter 7. We implement a subtractor with a negation of one

input followed by an adder. In Chapter 7, the adder, subtractor, and multiplier

88

Table 8.1: Functional-Unit Level Results

Functional Unit
Chapter 7 New Design Difference

Area Delay Area Delay Area Delay
m

o
d
-3

adder 8.3 0.09 12.8 0.13 53.7% 42.9%
subtractor 8.3 0.09 14.0 0.15 68.9% 60.4%
multiplier 4.5 0.04 17.8 0.16 299.3% 292.7%

32-bit reducer 177.8 0.73 155.6 0.39 −12.5% −47.1%

m
o
d
-7

adder 55.9 0.32 21.1 0.21 −62.3% −35.8%
subtractor 59.7 0.33 23.0 0.22 −61.6% −32.7%
multiplier 30.0 0.21 47.8 0.30 59.2% 42.3%

32-bit reducer 493.2 1.27 153.6 0.61 −68.8% −52.0%

m
o
d
-1

5 adder 188.0 0.46 29.3 0.27 −84.4% −41.6%
subtractor 192.8 0.53 31.9 0.29 −83.5% −46.0%
multiplier 133.4 0.51 90.4 0.42 −32.2% −16.8%

32-bit reducer 687.6 1.55 151.7 0.53 −77.9% −66.1%

are implemented with lookup tables, while a reducer is implemented as a tree

of modulo adders.

Table 8.1 shows the results of our comparisons. Area is measured in

µm2 while delay is measured in ns. We observe that our reducer designs,

which tend to be the dominant part of shadow datapath costs, provide lower

area and delay than those of Chapter 7. Even for the simplest modulo-3

reducer, we achieve a 12.5% reduction in area and a 47.1% reduction in delay.

Furthermore, this reducer cost is essentially fixed as the modulo base scales

because the number of full adders required is the same as the number of bits

reduced (w − n). Longer delays also increase the need for pipeline flip-flops

which in turn impacts area cost. Our other observation is that as we scale to

larger Mersenne bases, even the adders and subtractors and eventually the

multiplier become less costly than Chapter 7. This is expected due to the

exponential scaling nature of lookup tables in Chapter 7.

8.2.2 Self-Checking Multiply Accumulator

In this section, we demonstrate the applicability of our approach to a self-

checking multiply-accumulator (MAC) illustrated in Figure 8.3a. The shadow

datapath is built from components introduced in Section 8.1: a full reducer

to n bits (Figure 8.1b), a partial reducer to 2n bits (omitting the final binary

adder in Figure 8.1b), a modulo multiplier matrix from Figure 8.2b (with

89

⨉

+

%M %M

%M

= 0

n n

n2

2n

a b c

a ⨉ b + c error

%M

2n

2n

(a) Architecture

A
re

a
O

ve
rh

ea
d

(%
)

0

10

20

30

40

Modular width (bits)

2 3 4 5 6 7 8

8-bit 16-bit 32-bit 64-bit

(b) Area overhead

D
el

ay
 O

ve
rh

ea
d

(M
A

C
 =

 1
)

0.0

0.5

1.0

1.5

2.0

Modular width (bits)

2 3 4 5 6 7 8

8-bit 16-bit 32-bit 64-bit

(c) Error delay

Figure 8.3: Self-checking multiply accumulator architecture and overhead
evaluation. M = 2n − 1.

NAND gates to negate the output), a negation inverter (Section 8.1.4), and

a zero comparator (Figure 8.2c). Note that the reducers are summation

reducers, so they function as adders.

Under error free conditions, the shadow datapath will compute −(a mod

M)(b mod M) and −(c mod M), add it to ab + c from the output, reduce

the result modulo M , and get a result of 0. Computation errors in either the

main or shadow datapath will generate a nonzero result (provided aliasing

does not occur, which in our experience is unlikely for single bit errors).

A key strategy in this design is the avoidance of reduction beyond 2n bits

(except for multiplier inputs) as reduction beyond 2n bits involves the use

90

of half adders which do not directly provide bit reduction while the main

reduction process is mapped entirely to full adders. This strategy is similar

to the carry save technique used in standard binary integer arithmetic design.

We evaluated our MAC architecture by synthesizing the multiply accumu-

late main datapath with Design Compiler targeting minimum delay while

generating 1× gate-level designs for the shadow datapath with gate-level

architectural templates and Algorithm 2. QoR results for different width

datapaths and modulo widths (n) are shown in Figures 8.3b and 8.3c. We

observe 12–18% area overhead for a 32-bit self-checking MAC. We observe

error signal delays of about 2× the delay of the main datapath. As mentioned

at the start of this section, the longer delay of a modulo shadow datapath

simply increases error detection latency by a few cycles, and does not affect

the performance of the main datapath, so this tradeoff is acceptable in return

for reduced area cost.2

2For example, in Chapter 7, we used a pipelining strategy to run the shadow datapath
two cycles behind the main datapath without affecting performance.

91

CHAPTER 9

CROSS-LAYER RESILIENCE SYNERGIES

In this chapter, we take shadow datapaths further by looking for cross-

layer synergies with other techniques for increasing reliability against soft

errors. We consider five different existing reliability improvement techniques:

algorithm based fault tolerance (ABFT) [46,47], error detection by duplicated

instructions (EDDI) [68], modulo-3 shadow datapaths (Chapter 7), parity

checkers at the logic synthesis level [38], and hardened flip-flop standard

cells [36,37]. ABFT, parity, and flip-flop hardening are the techniques that

demonstrated benefit in the CLEAR study [38]. EDDI protects all instructions

and variables through full, fine-grained duplication, and thus provides a

benchmark for maximum coverage through algorithm- or instruction-level

transformation. As discussed in Chapter 7, modulo-3 shadow datapaths is

a high-level synthesis technique that has demonstrated a 175× reliability

improvement at a low cost. We also consider useful combinations of these

techniques with a systematic feed-forward approach: applying higher-level

techniques first and then using lower-level techniques to fill in any reliability

gaps that remain.

To systematically evaluate these representative techniques and their combi-

nations, we developed an automated framework, shown in Figure 9.1, involving

high-level synthesis and full place-and-route physical design with our five

reliability transformations applied in their respective layers. We used an error

injection enabling netlist transformation and FPGA emulation to perform a

grand total of over 400,000 emulated flip-flop error injections across our 12

accelerator designs, one injection per accelerator execution. We also evaluated

runtime and energy overhead through the use of commercial simulation and

power estimation tools.

92

Compile

Schedule

Bind

Accelerator
C Code

Tech Map

Place

Route

High-Level
Synthesis
Front-End

Physical
Design
Back-End

Simulation

Power
Analysis
Timing

Analysis

cycles

fmax

energy

area
Physical Design

Injection
Transform

Altera
Quartus

FPGA det. latency
coverage

ABFT

EDDI

mod-3

 hardening

parity

Reliability
Evaluation

gate
netlist

QoR
Analysis

Figure 9.1: Our cross-layer reliability framework.

9.1 Framework

Figure 9.1 provides an overview of our experimental framework which evaluates

the reliability and quality of results (QoR) of each of our reliability techniques

and combinations for each experimental accelerator design relative to an

unprotected baseline. The hardening and parity techniques are guided by

reliability evaluation for each individual flip-flop after application of the

higher-level techniques; they prioritize protecting the most vulnerable flip-

flops first. There is a feedback loop in the back end since the hardening and

parity techniques modify the physical design through an engineering change

order (ECO) process. We discuss reliability evaluation in Section 9.1.1, our

high-level synthesis “front-end” in Section 9.1.2, and our physical design

“back-end” and QoR analysis in Section 9.1.3. We introduce our reliability

techniques in Section 9.1.4 and discuss techniques for accelerator error recovery

in Section 9.1.5.

9.1.1 Reliability Evaluation

To evaluate the reliability of each of the 12 accelerator designs against flip-flop

soft errors, we start with a gate netlist as shown in Figure 9.1. We then

93

comb.
logic

comb.
logic

inject

Injection Transform

Figure 9.2: Error injection enabling transform.

run the netlist through an error injection enabling transformation which

inserts XOR gates at the “D” input to each flip-flop as shown in Figure 9.2.

One input of each XOR gate is connected to the corresponding original “D”

driving wire, while the other input is connected to an error injection controller,

which enables a bit flip to be injected into a specific flip-flop at a specific

cycle. We map this transformed netlist to an FPGA (Altera Stratix III) and

generate 10,000 random (cycle, flip-flop) pairs for each accelerator design.

Such random error injections at the flip-flop-level have been experimentally

shown to accurately model the behavior of soft errors in actual systems [69].

We then execute the accelerator on the FPGA with the same input 10,000

times, injecting one error from the list each time and recording the results for

all 10,000 runs.

FPGA emulated error injection is critical in order to evaluate large injected

error sample sizes, which in turn is important for accurately estimating the

reliability of a given design against all possible single flip-flop bit flips. In

our experiments, we find that FPGA emulated error injection is on the order

of 1,000-10,000× faster than RTL-level simulation. This speed enables us to

perform all of our experiments (a total of over 400,000 error injection runs

for the baseline and resilient designs) with approximately 40 FPGA-hours

of computation time. Running RTL simulations with the same sample size

would require a large CPU computation cluster.

There are three possible outcomes for each execution: correct, wrong, and

hang. “Correct” means that the accelerator produced the correct output with

the correct timing (output exactly matches a “gold” error-free run). In other

words, the error is masked. “Wrong” means that the accelerator output does

not match the error-free run, typically referred to as Silent Data Corruption

(SDC). “Hang” means that the accelerator was given twice the number of

cycles as the error-free run to finish, but failed to complete execution in that

time. Such hangs can be detected with existing watchdog techniques. We will

94

focus on the “Wrong” outcomes or SDCs as these problems will go undetected

in an unprotected design and are thus the most pernicious effect of soft errors.

We used this reliability evaluation for unprotected baseline designs as well

as experimental designs with various reliability transforms applied. The

experimental accelerator designs may have an additional error output which

indicates that the accelerator has detected the error. If the error is detected,

we consider the accelerator to be protected against the corresponding injection

since it can respond by restarting its execution (see Section 9.1.5). Recording

the cycle count when the error signal is asserted allows us to also measure

the error detection latency for each error that is detected, calculated as the

number of cycles from when the error is injected to when the error signal is

raised.

Some reliability transforms may increase the number of flip-flops or the

accelerator runtime, which proportionally increases the soft error rate per

accelerator execution. Thus we use the following equations for reliability

improvement to model this effect:

SDC impr. =
Runtimebase × Flip-flopsbase

Runtime× Flip-flops
× SDCbase

SDC
(9.1)

SDC =
Wrong, undetected outcomes

Total Errors Injected
(9.2)

where Runtime = Cycles×Frequency. Note that our error injection evaluation

framework cannot emulate hardened flip-flops on an FPGA. Instead we model

such hardening by scaling the wrong, undetected outcome count for just the

hardened flip-flops by dividing by the known soft error rate improvement of

the hardened flip-flop (see Section 9.1.4).

9.1.2 High-Level Synthesis

High-level synthesis enables us to take reliability methods previously applied to

software and retarget them for nonprogrammable custom hardware. Thus, we

start with software specifications for each of our accelerators and our hardware

synthesis process begins with high-level synthesis (HLS) [70], a process for

compiling a software design specification into custom hardware specialized to

execute exactly that software functionality and only that software functionality.

95

To the best of our knowledge, this is the first comprehensive study evaluating

effective software reliability methods as applied to hardware.

For our experiments, we used an in-house HLS engine leveraging the

LegUp [58] compilation process and scheduler, but with a custom binding

and RTL generation engine. As shown in Figure 9.1 the ABFT and EDDI

transforms are performed before HLS; the modulo-3 transform is integrated

into HLS; and the parity and hardening techniques are applied after HLS.

(Section 9.1.4 discusses these transforms individually.)

9.1.3 Physical Design

In order to accurately evaluate the physical design properties (i.e., area,

energy, and clock frequency) of each accelerator, synthesis and place-and-

route (SP&R) is run for each accelerator configuration (both before and after

adding resilience). For the ASIC design flow, accelerators are mapped to using

a commercial 28 nm technology library and SRAM compiler (the latter is used

to generate 2-port SRAM blocks for accelerator output). Synopsys design tools

(Design Compiler, IC Compiler, and Primetime) are used to perform synthesis,

place-and-route, and power analysis. It is crucial to evaluate area, power, and

timing impact post-layout in order to fully capture the impact of physical

design (i.e., impact of wire routing and timing constraints). Energy analysis

is performed by running VCS simulation (to generate accurate application

traces and switching activities for each accelerator) combined with timing

and power information obtained from IC Compiler and Primetime. For the

FPGA design flow, accelerators are mapped to and analyzed using the same

FPGA (Altera Stratix III) platform used for reliability evaluation.

9.1.4 Resilience Techniques

In the following subsections, we elaborate on our experimental resilience

techniques, which span the circuit-level to the algorithm-level. Of particular

interest are the traditionally software- and algorithm-level techniques applied

at the higher levels, since the software transforms in these techniques now

become architecture-level hardware transforms through the use of high-level

synthesis.

96

Table 9.1: Hardened Flip-Flops

Type Soft Error Rate Area Delay Energy
Baseline 1 1 1 1
Light-Hardened
LEAP (LHL)

2.5× 10−1 1.2 1.2 1.3

LEAP-DICE 2× 10−4 2 1 1.8

Flip-Flop Hardening

Hardened flip-flops are flip-flops designed to tolerate radiation induced soft

errors [36,37]. Modifications to the flip-flop circuit and layout can reduce the

probability (by up to three orders of magnitude [37]) that a particle hit will

change the stored flip-flop state. These hardened flip-flops are incorporated

into the standard cell library, such that during synthesis and place-and-route,

existing (unhardened) flip-flops can be remapped and substituted on a one-

to-one basis with their resilient counterpart. It is important to note that the

hardened flip-flop design considered in this thesis (LEAP-DICE) tolerates

both single-event upsets (SEUs) and single-event multiple upsets (SEMUs),

which is not the case for all hardened designs. For instance, in DICE (a

traditional and well-known hardened flip-flop design) [71], a single particle

strike can cause multiple nodes within the DICE cell to flip (i.e., SEMU),

resulting in a state corruption. Applying LEAP layout modifications to

DICE enables the creation of a new hardened flip-flop (LEAP-DICE), the

latter which is tolerant to both SEUs and SEMUs. Compared to a baseline,

unprotected, flip-flop, LEAP-DICE provides a 5,000× reduction in Soft Error

Rate (SER) at 2× area, no delay, and 1.8× energy cost (as demonstrated

with radiation beam experiments conducted by [37]).

Flip-Flop Group Parity Checking

Flip-flop group parity checking is a logic layer technique implemented by

comparing the inputs and outputs for groups of flip-flops [72]. For radiation-

induced soft errors in flip-flops, it is sufficient to implement this checking

by utilizing an XOR-tree to calculate and compare the even-parity of the

inputs (predictor tree) to that of the outputs (checker tree), as shown in

Figure 9.3. In order to maintain the clock period, it may be necessary to add

additional flip-flops to pipeline the parity calculation in the predictor tree

97

predictor

checkercomb.
logic

maintain clock period parity group (4-32 FF size)

Original components
Parity components
Pipeline flip-flops

Figure 9.3: Flip-flop group parity checking (no timing impact).

error%3

%3

%3

Original datapath

Shadow datapath

+

×
×

+3

×3

×3
=

Figure 9.4: Example modulo-3 shadow datapath. Units labeled “%3” are
mod-3 residue generators.

(to prevent disturbing critical paths). Implementation of the predictor and

checker trees is performed via automatic netlist modifications during synthesis

and place-and-route. The same design heuristics described in [38] are used to

enable cost-effective implementations of parity checking that ensure no clock

speed impact and mitigate the impact of SEMUs.

Modulo-3 Shadow Datapaths

Modulo-3 shadow datapath checking, as discussed in detail in Chapter 7, is a

high-level synthesis technique for checking the computation of an arithmetic

datapath involving multiple inputs, outputs, and operations. The technique

works by creating a “shadow datapath” that performs the same computation as

the main datapath, but with modulo-3 residues as illustrated in Figure 9.4. As

there are only three unique values in modulo-3 space: 0, 1, and 2, the shadow

98

datapath is a lightweight version of the main datapath with 2-bit registers and

2-bit operations (such as mod-3 addition and multiplication labeled +3 and

×3 in Figure 9.4). These 2-bit operations are a key advantage of modulo-3

checksums over parity checksums: the ability to perform lightweight checksum

prediction through an entire datapath. In particular, checksum predictions

for addition, subtraction, and multiplication are cheap 2-bit operations for

modulo-3 checksums but are expensive for parity checksums.

Thus, while the parity technique puts each flip-flop needing protection

into a parity group to protect them explicity ; modulo-3 residue generators

and checkers are only needed at inputs and outputs of an arithmetic core,

respectively, to implicitly protect all of the flip-flops in that core. We also

use the high-level synthesis optimizations discussed in Chapter 7 that further

reduce cost through intelligent checkpoint scheduling and binding to share a

minimum allocation of modulo-3 residue generators.

In some parts of a datapath, non-arithmetic components such as bitwise

logic and shifts may be present. We leave flip-flops in these non-arithmetic

parts of the datapath unprotected instead of duplicating them as in Chapter 7.

Similarly, we leave the state machine unprotected. The intuition here is that

downstream parity and flip-flop hardening techniques provide a fine brush to

cover these coverage gaps in a more cost-effective manner.

Instruction Duplication

Error Detection by Duplicated Instructions (EDDI) is a software technique

that detects errors through comparison of redundant execution of instructions

using separate register and memory partitions [8, 68]. Instruction duplication

is implemented using LLVM compiler modifications before high-level synthesis

to automatically transform applications to partition the memory space and

add the duplicated instructions. The transform also inserts consistency checks

between variables and their duplicates, which we pass to a custom check

function. We modify our HLS engine to translate these check function calls

to logic that asserts an output error signal whenever a consistency check fails.

By using a custom check function that generates datapath hardware in our

HLS tailored version of EDDI, we avoid the need for conditional branches

or other control flow instructions to check for errors found in the software

reference transforms in [8, 68].

99

Algorithm Based Fault Tolerance

Algorithm Based Fault Tolerance (ABFT) is an algorithm-layer technique

that can only be applied to specific operations and algorithms to either detect

or detect and correct errors [46, 47, 73, 74]. Fortunately, many accelerators

are particularly amenable to ABFT modifications due to their prevalent use

of matrix operations and other linear computations. For example, a matrix

multiplication algorithm can be modified to add an additional column/row

checksum to each input matrix, which allows for the resulting output check-

sums to be used to detect or correct an error in the output matrix. Note that,

typically, ABFT manifests as software-only modifications (e.g., no hardware

overhead) without additional performance impact in the common case to im-

plement correction (for algorithms in which correction is possible). However,

since ABFT is subsequently mapped into hardware checkers for the purposes

of generating resilient accelerators, accelerator algorithms were modified to

only provide detection capability; thus, saving on additional hardware over-

head that would be required in order to provide correction capability. This

tradeoff is acceptable for hardware accelerators since they can be restarted

when a soft error occurs to effectively correct the error (see Section 9.1.5).

9.1.5 Recovery

To have an end-to-end resilient accelerator, errors need not only be detected

but must also be corrected (i.e., recovered). Since the majority of resilience

techniques (aside from hardened flip-flops, which perform in-place correction

by mitigating the effect of soft errors) have been implemented using detection-

only mechanics, an additional recovery mechanism is required. However, a

beneficial property of accelerators is that they perform fixed-function compu-

tation without external interference (other than to receive input data prior to

computation and to transmit output data at completion). In other words, the

accelerator inputs essentially provide a snapshot of the accelerator state at the

start of execution. As long as the accelerator input memories are protected

(we assume memories are protected by existing coding techniques), this snap-

shot will not be corrupted and a “restore” of this snapshot can be achieved

by resetting the accelerator (using existing reset signal(s)) and triggering

another accelerator start (using existing control signal(s)). Thus, recovery

100

Table 9.2: Average Cost and Benefit Across All 12 Accelerators for
Individual Techniques Relative to Baseline

Tech-
nique

Overhead
SDC

Improv.

Avg. Det.
Latency
(cycles)

Area Energy Freq. Runtime

LEAP-
DICE

0-2.2% 0-8.8% 0% 0% 1-500× n/a

Parity 0-3.8% 0-10.6% 0% 0% 1-500× 2
Mod-3 1.7% 3.5% 0.3% 0% 4.3× 732
EDDI 27.6% 33% 2.8% 42.7% 57.4× 7,399
ABFT 11.9% 23.8% 1.4% 8.5% 22.2× 265,980

is simply a matter of restarting computation once an error is detected (with

only minimal error signal routing cost and negligible performance impact of

re-execution given the rarity of a soft error event). This unique structure of

application-specific accelerators serves as a partition between the accelerator

and the external environment (input, even streaming input, can be stored

until consumed and output can be held until validated), thus making the

recovery mechanism described feasible, reasonable, and sufficient.

9.2 Results and Analysis

We explore and architect resilience for 12 accelerator designs: atax, bicg,

floyd-warshall,1 gemm, gemver, gesummv, matrix, matrix-tiled, mvt,

symm, syr2k, and syrk. These accelerators are derived from software kernels

in the PolyBench benchmark suite [66] involving linear algebra and dynamic

programming. Since these kernels involve heavily nested loops that are com-

putationally intensive, they are good candidates for offloading to accelerators.

Our focus is on the linear algebra kernels since those applications are amenable

to ABFT techniques involving matrix row and column checksums [47]. We

also wrote a simple version of the gemm generalized matrix multiply kernel

that performs only a matrix multiply that we call matrix and implemented

a tiled version called matrix-tiled that performs the computation in 4× 4

tile chunks to improve performance at the cost of area.

1floyd-warshall does not have a corresponding ABFT transform.

101

9.2.1 Individual Techniques

It is important to first understand how individual resilience techniques per-

form standalone (the hardware costs, properties, and resilience improvement

afforded by each technique in isolation). Table 9.2 provides an overview

of the average QoR cost overhead and resilience benefit of each individual

technique when applied to each of the 12 accelerators mapped to the ASIC

platform. Costs and improvement values were generated experimentally using

the physical design and reliability evaluation components of our framework

as described in Section 9.1. Since LEAP-DICE and parity checking can be

selectively applied to flip-flops to achieve tunable resilience improvement, we

report the average cost range and corresponding improvement range. From

Table 9.2, it can be seen that software- and algorithm-level techniques (i.e.,

EDDI and ABFT) do not translate into cost-effective hardware checkers.

In general, although these two techniques provide a high degree of SDC

improvement, the area and energy costs for achieving this improvement is

greater than the cost of protecting every single flip-flop using LEAP-DICE,

for example.

9.2.2 Combined Techniques

With a greater understanding of the properties of individual resilience tech-

niques, we can explore the cross-layer design space and analyze the benefits

attained through interesting combinations of resilience techniques. Tables 9.3–

9.6 present our cross-layer cost-effectiveness results for both the ASIC and

FPGA platforms. Combinations of multiple resilience techniques are com-

pared against the tunable, single-layer solutions (e.g., LEAP-DICE hardening

and parity checking). Single-layer solutions are applied in a selective manner

and guided using cross-layer analysis (error masking and propagation through

the system stack guide implementation decisions).

Similar to [38], cross-layer combinations are created in a top-down fashion

where higher-level techniques (e.g., ABFT, EDDI, and modulo-3) are applied

first before subsequently augmenting resilience with lower-level techniques

(e.g., parity and LEAP-DICE), as needed in order to achieve the desired SDC

improvement. Additionally, selective insertion of parity and LEAP-DICE

utilizes the heuristics found in [38] (e.g., critical path, flip-flop location, and

102

Table 9.3: Average ASIC Cost (area/energy) vs. SDC Improvement for Various Combinations Across 12 Accelerators

Type
SDC Improvement

2× 5× 10× 50× 500×
LEAP-DICE 0.9% / 3.3% 1.2% / 5.0% 1.4% / 5.9% 1.7% / 7.0% 2.2% / 8.8%

Parity checking 1.4% / 4.4% 2.2% / 6.4% 2.6% / 7.3% 3.1% / 8.7% 3.4% / 10.6%
Parity + LEAP-DICE 0.6% / 2.7% 1.0% / 3.9% 1.1% / 5.0% 1.3% / 5.7% 1.7% / 7.4%

Mod-3 + parity + LEAP-DICE 0.7% / 3.6% 2.3% / 4.7% 2.6% / 5.7% 2.9% / 6.5% 3.3% / 8.1%
EDDI + parity + LEAP-DICE 27.6% / 33.0% 27.6% / 33.2% 27.6% / 33.2% 27.6% / 33.4% 28.3% / 34.0%
ABFT + parity + LEAP-DICE 11.9% / 23.8% 12.2% / 24.1% 12.2% / 24.1% 12.3% / 24.2% 12.3% / 24.8%

Table 9.4: ASIC Cost (area/energy) for a 50× SDC Improvement Using Various Combinations Across 12 Accelerators

Benchmark LEAP-DICE Parity P+L Mod3+P+L EDDI+P+L ABFT+P+L
atax 3.1% / 10.7% 8.3% / 16.2% 2.8% / 10.0% 8.4% / 14.7% 33.0% / 37.5% 27.3% / 85.2%
bicg 4.2% / 15.1% 7.5% / 15.7% 3.5% / 10.9% 9.6% / 14.5% 46.7% / 88.9% 11.7% / 19.4%

floyd-warsh 1.0% / 3.7% 1.2% / 3.7% 0.7% / 2.5% 1.5% / 6.1% 18.2% / 54.8% – / –
gemm 0.3% / 3.1% 0.4% / 2.1% 0.3% / 1.6% 0.3% / 1.7% 7.1% / 9.5% 3.7% / 21.2%

gemver 0.2% / 1.5% 0.4% / 1.9% 0.2% / 1.1% 0.4% / 0.7% 27.6% / 15.0% 10.0% / 5.2%
gesummv 4.2% / 10.1% 4.8% / 14.9% 2.6% / 8.9% 2.5% / 9.0% 61.0% / 32.7% 11.5% / 14.1%

matrix 3.3% / 12.2% 6.6% / 17.4% 2.6% / 10.8% 5.4% / 11.1% 27.3% / 42.4% 11.6% / 43.4%
matrix-tiled 0.3% / 1.4% 0.4% / 1.6% 0.2% / 0.9% 0.3% / 1.1% 20.4% / 35.8% 8.2% / 30.1%

mvt 1.1% / 11.5% 2.6% / 12.7% 1.1% / 8.3% 2.5% / 6.5% 56.9% / 37.0% 37.8% / 37.8%
symm 1.1% / 6.6% 2.5% / 8.8% 0.9% / 6.0% 1.6% / 6.2% 14.7% / 24.6% 2.3% / 18.6%
syr2k 0.9% / 3.8% 1.5% / 4.5% 0.9% / 3.8% 1.4% / 3.9% 4.3% / 34.1% 1.3% / 24.8%
syrk 0.5% / 3.9% 1.2% / 4.8% 0.4% / 3.1% 0.8% / 3.6% 15.5% / 32.2% 12.3% / 44.3%

103

Table 9.5: Average FPGA Cost (LUT area/energy) vs. SDC Improvement for Various Combinations Across 12 Accelerators

Type
SDC Improvement

2× 5× 10× 50× 500×
Parity checking 9.2% / 4.1% 16.6% / 8.5% 20.4% / 12.4% 25.6% / 22.3% 27.8% / 20.5%

Modulo-3 + parity 26.7% / 19.2% 31.8% / 21.1% 34.1% / 26.6% 39.3% / 35.2% 43.1% / 38.5%
EDDI + parity 107.3% / 174.7% 107.3% / 174.7% 107.3% / 174.7% 107.5% / 174.3% 107.7% / 167.4%
ABFT + parity 95.0% / 87.7% 99.0% / 94.2% 101.9% / 95.6% 104.7% / 93.7% 106.9% / 97.0%

Table 9.6: FPGA Cost (LUT area/energy) for a 50× SDC Improvement Using Various Combinations Across 12 Accelerators

Benchmark Parity Mod3+Parity EDDI+Parity ABFT+Parity
atax 20.4% / 22.8% 31.6% / 32.0% 120.9% / 143.2% 125.5% / 136.4%
bicg 27.3% / 36.5% 26.3% / 29.2% 85.5% / 162.3% 56.6% / 39.5%

floyd-warsh 25.5% / 29.9% 48.5% / 72.0% 91.9% / 154.2% – / –
gemm 26.4% / 29.4% 28.8% / 35.9% 88.9% / 239.4% 106.3% / 95.3%

gemver 13.9% / 21.5% 41.9% / 38.7% 177.2% / 247.7% 122.2% / 92.1%
gesummv 24.9% / 18.9% 33.4% / 18.3% 81.0% / 147.6% 97.2% / 57.6%

matrix 26.9% / 12.6% 34.6% / 27.2% 48.5% / 82.0% 84.8% / 69.9%
matrix-tiled 30.0% / 19.6% 46.2% / 30.2% 169.4% / 240.3% 23.9% / 12.6%

mvt 20.2% / 17.4% 91.1% / 60.1% 77.1% / 95.3% 220.6% / 189.7%
symm 25.6% / 18.1% 28.2% / 44.5% 115.4% / 255.8% 71.6% / 55.5%
syr2k 34.4% / 20.2% 22.5% / 18.5% 123.4% / 161.3% 104.6% / 100.0%
syrk 31.5% / 20.6% 38.1% / 16.3% 110.4% / 163.1% 138.6% / 181.9%

104

parity group size aware optimization) to ensure the lowest cost technique is

chosen while maintaining design frequency.

Since our cross-layer methodology and framework allows designers to tune

resilience improvement targets that may vary depending on the intended

domain, Tables 9.3 and 9.5 present the average costs for achieving specific

resilience improvements using various combinations when averaged over all

12 accelerators mapped to the ASIC and FPGA platforms respectively. This

average provides an overall picture of the cost-effectiveness of various combina-

tions. Note that flip-flop hardening is not applicable to FPGA programming

as FPGAs are programmable at the logic level and above, not the physical

level.

From Table 9.3 it is clear that, generally, a combination of parity checking

and LEAP-DICE is the most cost-effective for the ASIC platform. This

efficiency is due to the fact that logic parity and LEAP-DICE selectively

protect individual flip-flops, resulting in fine-grained protection of the exact

flip-flops that are most vulnerable (determined via accurate flip-flop-level

error injection described in Section 9.1.1). Additionally, this property of

selective protection also helps explain why protection using LEAP-DICE-only

yields resilient accelerators at roughly 1.5% additional area and energy cost

compared to the cost-effective solution of LEAP-DICE and parity checking.

For the FPGA platform, Table 9.5 shows that parity is the most cost-effective

in general.

It is interesting to note that while techniques like EDDI and ABFT do

provide high degrees of SDC improvement (Table 9.2), even cross-layer combi-

nations involving these techniques do not yield cost-effective solutions. This

is due to the fact that the costs for implementing the necessary hardware

checkers for these techniques dominate. In fact, the area and energy costs for

the checkers alone are more than the cost of implementing an over-designed

resilient accelerator that protects every flip-flop using LEAP-DICE.

One interesting exception is the matrix-tiled benchmark mapped to the

FPGA, where the ABFT + parity dominates the other techniques in area

and energy cost. This benchmark is a matrix-matrix multiply, the canonical

computation for ABFT application, in parallelized 4 × 4 tile chunks. We

find that the high functional-unit resource usage of the benchmark makes the

accelerator large, effectively compensating for the ABFT overheads.

In general, it is very difficult to find a more cost-effective resilience solution

105

than using a combination of parity and LEAP-DICE (or either parity or LEAP-

DICE alone). However, for two specific ASIC hardware accelerators (gemver

and mvt), a combination of modulo-3, parity, and LEAP-DICE was able to

yield marginal energy savings for all resilience improvements when compared

to a combination of parity and LEAP-DICE. For the FPGA platform, we

find four accelerators where mod3+parity has an advantage over parity alone:

bicg, gesummv, syr2k, and syrk. In general, the modulo-3 technique works

well for arithmetic-oriented datapaths with sufficient arithmetic complexity

to compensate for the cost of modulo-3 residue generators on the inputs and

outputs (a 32-bit residue generator occupies about the same area as a 32-bit

adder).

Tables 9.4 and 9.6 provide a detailed expansion for the costs to achieve a

50× SDC improvement with various combinations of techniques for all 12

accelerators studied for the ASIC and FPGA platforms respectively.

106

CHAPTER 10

CONCLUSIONS

In Chapters 4, 5, and 6 we introduced the H-QED technique and its hy-

brid tracing and hybrid hashing variations which utilize HLS principles for

quickly detecting bugs inside hardware accelerators in SoCs in both pre-silicon

debugging and post-silicon validation scenarios. Our results demonstrate

the effectiveness and practicality of H-QED: up to two orders of magnitude

improvement in error detection latency, up to a threefold improvement in

coverage, less than 10% accelerator-level overhead, and negligible performance

overhead. In our pre-silicon hybrid tracing variation, we demonstrate that the

technique can pinpoint the source-code location of logic bug activation and

provide a strong hint for potential bug fixes to the hardware designer. Further-

more, these techniques also discovered previously unknown bugs in the widely

used CHStone HLS benchmark suite. Through hybrid hardware/software

traces and signatures, our techniques minimize intrusiveness during validation.

Thus, the combination of QED and hybrid tracing/hashing provides a sys-

tematic approach to validation of complex SoCs consisting of processor cores,

uncore components, programmable accelerators, and hardware accelerators.

Future directions related to H-QED include:

� Use of H-QED for a wide variety of high-level descriptions beyond C

and C++ (e.g., various domain-specific languages)

� Use of H-QED for programmable accelerators

In our modulo-3 shadow datapath work in Chapter 7 we have designed

and implemented a fully automated high-level synthesis process to create

error-detecting cores capable of detecting an average of 99.42% of unmasked

errors for an assortment of three different kinds of fault models with negligible

delay cost, 25.7% area cost, and a detection latency 4150× faster than an

end result check. We have taken the first step toward the fully automated

107

generation of low area cost, low development cost reliable hardware through

high-level synthesis. We also explored a rollback recovery method for soft

errors with an additional area cost of 28% through which we achieve up to a

175× increase in reliability against soft errors. Future directions related to

this research include:

� Adding support for floating-point operations

� Fixing timing errors through rollback combined with frequency-voltage

scaling

In Chapter 8, we took a dive into the gate-level design of modulo functional

units with the goal of reducing their cost with gate-level architectural opti-

mizations. We introduced new gate-level architectures for Mersenne modulo

functional units targeting shadow datapaths for reliability, including a modulo

reduction algorithm that maps entirely to full adders and new adder and

multiplier designs based on integer counterparts with a wraparound twist.

We compared our functional units to the previous state-of-the-art approach

in Chapter 7, observing a 12.5% reduction in area and a 47.1% reduction

in delay for a 32-bit mod-3 reducer; that our reducer costs, which tend to

dominate shadow datapath costs, do not increase with larger modulo bases;

and that for modulo-15 and above, all of our modulo functional units have

better area and delay then their previous counterparts. We also demonstrated

the practicality of our approach with a self-checking multiply accumulate

design, which has an overhead of only 12% for a 32-bit main datapath and

2-bit modulo-3 shadow datapath. Future directions for this research include:

� Extending support for modulo bases beyond Mersenne numbers

� Support for fixed-point arithmetic

� Gate-level automation through integration into a logic synthesis engine

� Integration into the high-level synthesis approach of Chapter 7

In Chapter 9, we took a step back and looked at the reliability problem

from a cross-layer perspective. We built a first-of-its-kind, comprehensive

framework to explore the problem of designing application specific hardware

accelerators resilient against radiation-induced flip-flop soft errors on both

108

the ASIC and FPGA platforms, considering combinations of five existing

techniques at different levels of abstraction ranging from the circuit-level

to the algorithm-level including modulo-3 shadow datapaths. We applied

algorithm- and instruction-level techniques, which are traditionally applied to

software, to hardware through high-level synthesis. We found that, in general,

a combination of parity checking and LEAP-DICE hardened flip-flops are

the most cost-effective. For some arithmetic-oriented accelerators, adding

modulo-3 shadow datapaths to this combination results in some additional

benefit, even without considering its combinational logic, stuck-at fault, and

timing error protection benefits. We also found that ABFT in the context of

high-level synthesis incurs significant costs due to additional memory bits and

memory accesses required for storing checksum data, which is not a significant

problem in a software context.

109

REFERENCES

[1] K. Campbell, P. Vissa, D. Pan, and D. Chen, “High-level synthesis of
error detecting cores through low-cost modulo-3 shadow datapaths,” in
IEEE/ACM Design Automation Conference, 2015.

[2] K. Campbell, D. Lin, S. Mitra, and D. Chen, “Hybrid quick error
detection (H-QED): Accelerator validation and debug using high-level
synthesis principles,” in IEEE/ACM Design Automation Conference,
2015.

[3] K. Campbell, L. He, L. Yang, S. Gurumani, K. Rupnow, and D. Chen,
“Debugging and verifying SoC designs through effective cross-layer
hardware-software co-simulation,” in IEEE/ACM Design Automation
Conference, 2016.

[4] K. Campbell, E. Cheng, S. Mitra, and D. Chen, “Cost-effective cross-
layer resilience for hardware accelerators,” in SRC TECHCON, 2017, to
appear.

[5] J. Keane and C. H. Kim, “Transistor aging,” IEEE Spectrum, Apr. 2011.

[6] T. Hong, Y. Li, S.-B. Park, D. Muil, D. Lin, Z. A. Kaleql, N. Hakim,
H. Naeimi, D. S. Gardner, and S. Mitra, “QED: Quick error detection
tests for effective post-silicon validation,” in IEEE Intl. Test Conf., 2010,
pp. 1–10.

[7] D. Lin, T. Hong, F. Fallah, N. Hakim, and S. Mitra, “Quick detection of
difficult bugs for effective post-silicon validation,” in IEEE/ACM Design
Automation Conference, 2012, pp. 561–566.

[8] D. Lin, T. Hong, Y. Li, E. S, S. Kumar, F. Fallah, N. Hakim, D. S.
Gardner, and S. Mitra, “Effective post-silicon validation of system-on-
chips using quick error detection,” IEEE Trans. CAD, vol. 33, no. 10,
pp. 1573–1590, Oct. 2014.

[9] D. Lin, Eswaran S., S. Kumar, E. Rentschler, and S. Mitra, “Quick error
detection tests with fast runtimes for effective post-silicon validation and
debug,” in Design, Automation, and Test in Europe, 2015.

110

[10] A. Adir, M. Golubev, S. Landa, A. Nahir, G. Shurek, V. Sokhin, and
A. Ziv, “Threadmill: A post-silicon exerciser for multi-threaded proces-
sors,” in IEEE/ACM Design Automation Conference, 2011.

[11] I. Wagner and V. Bertacco, “Reversi: Post-silicon validation system for
modern microprocessors,” in Intl. Conf. Computer Design, 2008.

[12] X. Feng and A. J. Hu, “Early cutpoint insertion for high-level software
vs. RTL formal combinational equivalence verification,” in IEEE/ACM
Design Automation Conference, 2006, pp. 1063–1068.

[13] M. Fujita, “Equivalence checking between behavioral and RTL descrip-
tions with virtual controllers and datapaths,” ACM Trans. Design Au-
tomation of Electronic Systems, vol. 10, no. 4, pp. 610–626, Oct. 2005.

[14] A. Mathur, M. Fujita, E. Clarke, and P. Urard, “Functional equivalence
verification tools in high-level synthesis flows,” IEEE Design & Test of
Computers, pp. 88–95, 2009.

[15] J. S. Monson and B. Hutchings, “New approaches for in-system de-
bug of behaviorally-synthesized FPGA circuits,” in Intl. Conf. Field
Programmable Logic and Applications, 2014, pp. 1–6.

[16] J. S. Monson and B. L. Hutchings, “Using source-level transformations
to improve high-level synthesis debug and validation on FPGAs,” in
ACM/SIGDA Intl. Symp. Field-Programmable Gate Arrays, 2015, pp.
5–8.

[17] N. Calagar, S. D. Brown, and J. H. Anderson, “Source-level debugging
for FPGA high-level synthesis,” in Intl. Conf. Field Programmable Logic
and Applications, 2014, pp. 1–8.

[18] L. Yang, M. Ikram, S. Gurumani, D. Chen, S. Fahmy, and K. Rupnow,
“JIT trace-based verification for high-level synthesis,” in Intl. Conf. Field
Programmable Technology, 2015.

[19] M. Abramovici, “In-system silicon validation and debug,” IEEE Design
& Test of Computers, vol. 25, no. 3, pp. 216–223, May 2008.

[20] ARM, “CoreSight debug and trace.” [Online]. Available: http:
//www.arm.com/products/system-ip/coresight

[21] S. B. Park, T. Hong, and S. Mitra, “Post-silicon bug localization in
processors using instruction footprint recording and analysis (IFRA),”
IEEE Trans. CAD, pp. 1545–1558, Oct. 2009.

[22] S.-B. Park, A. Bracy, H. Wang, and S. Mitra, “BLoG: Post-silicon bug
localization in processors using bug localization graph,” in IEEE/ACM
Design Automation Conference, 2010, pp. 368–373.

111

http://www.arm.com/products/system-ip/coresight
http://www.arm.com/products/system-ip/coresight

[23] T. Austin, “DIVA: a reliable substrate for deep submicron microarchi-
tecture design,” in Microarchitecture, 1999, pp. 196–207.

[24] D. J. Lu, “Watchdog processors and structural integrity checking,” IEEE
Trans. Computers, vol. 31, no. 7, pp. 681–685, July 1982.

[25] A. Mahmood and E. J. McCluskey, “Concurrent error detection using
watchdog processors – a survey,” IEEE Trans. Computers, vol. 37, no. 2,
pp. 160–174, Feb. 1988.

[26] N. R. Saxena, S. Fernandez-Gomez, W. J. Huang, S. Mitra, S. Y. Yu, and
E. J. McCluskey, “Online testing in adaptive and configurable systems,”
IEEE Design & Test of Computers, vol. 17, no. 1, pp. 29–41, Jan.–Mar.
2000.

[27] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G.
Nowatzyk, “Fingerprinting: Bounding soft-error detection latency and
bandwidth,” in ACM Architectural Support for Programming Languages
and Operating Systems, 2004, pp. 224–234.

[28] E. S. Sogomonyan, A. Morosov, M. Gössel, A. Singh, and J. Rzeha,
“Early error detection in system-on-chip for fault-tolerance and at-speed
debugging,” in IEEE VLSI Test Symp., 2001, pp. 184–189.

[29] R. Karri and A. Orailoglu, “High-level synthesis of fault-secure microar-
chitectures,” in IEEE/ACM Design Automation Conference, 1993, pp.
429–433.

[30] S. Mitra, N. R. Saxena, and E. J. McCluskey, “Fault escapes in duplex
systems,” in IEEE VLSI Test Symp., 2000, pp. 453–458.

[31] N. R. Saxena and E. J. McCluskey, “Dependable adaptive computing
systems,” in IEEE Systems, Man, and Cybernetics Conf., 1998, pp.
2172–2177.

[32] J. G. Tryon, “Quadded logic,” in Redundancy Techniques for Computing
Systems, R. H. Wilcox and W. C. Mann, Eds. Spartan Books, 1962.

[33] J. von Neumann, “Probabilistic logics and synthesis of reliable organisms
from unreliable components,” in Automata Studies, C. Shannon and
J. McCarthy, Eds. Princeton University Press, 1956, pp. 43–98.

[34] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power
pipeline based on circuit-level timing speculation,” in Microarchitecture,
Dec. 2003, pp. 7–18.

112

[35] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner, “Razor: Circuit-level correction of timing errors for
low-power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20, 2004.

[36] H.-H. K. Lee, K. Lilja, M. Bounasser, P. Relangi, I. R. Linscott, U. S.
Inan, and S. Mitra, “LEAP: Layout design through error-aware transistor
positioning for soft-error resilient sequential cell design,” in IEEE Intl.
Reliability Physics Symp., 2010.

[37] K. Lilja, M. Bounasser, S. J. Wen, R. Wong, J. Holst, N. Gaspard,
S. Jagannathan, D. Loveless, and B. Bhuva, “Single-event performance
and layout optimization of flip-flops in a 28-nm bulk technology,” IEEE
Trans. Nuclear Science, 2013.

[38] E. Cheng, S. Mirkhani, L. G. Szafaryn, C. Y. Cher, H. Cho, K. Skadron,
M. R. Stan, K. Lilja, J. A. Abraham, P. Bose, and S. Mitra, “CLEAR:
Cross-layer exploration for architecting resilience - Combining hardware
and software techniques to tolerate soft errors in processor cores,” in
IEEE/ACM Design Automation Conference, 2016.

[39] M. Nicolaidis, “Carry checking/parity prediction adders and ALUs,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 11, no. 1, pp. 121–128,
Feb. 2003.

[40] A. Antola, V. Piuri, and M. Sami, “High-level synthesis of data paths with
concurrent error detection,” in IEEE Symp. Defect and Fault Tolerance
in VLSI Systems, Nov. 1998, pp. 292–300.

[41] K. Wu and R. Karri, “Algorithm level recomputing with allocation
diversity: A register transfer level time redundancy based concurrent
error detection technique,” in Intl. Test Conf., 2001, pp. 221–229.

[42] A. Meixner, M. Bauer, and D. Sorin, “Argus: Low-cost, comprehensive
error detection in simple cores,” in Microarchitecture, Dec. 2007, pp.
210–222.

[43] R. Karri, K. Hogstedt, and A. Orailoglu, “Computer-aided design of
fault-tolerant VLSI systems,” IEEE Design & Test of Computers, vol. 13,
no. 3, pp. 88–96, Fall 1996.

[44] E. P. Kim, “Statistical error compensation for robust digital signal
processing and machine learning,” Ph.D. dissertation, University of
Illinois at Urbana-Champaign, 2014.

[45] S. Tosun, O. Ozturk, N. Mansouri, E. Arvas, M. Kandemir, Y. Xie,
and W.-L. Hung, “An ILP formulation for reliability-oriented high-level
synthesis,” in Intl. Symp. Quality Electronic Design, Mar. 2005, pp.
364–369.

113

[46] G. Bosilcaa, R. Delmasa, J. Dongarraa, and J. Langoub, “Algorithm-
based fault tolerance applied to high performance computing,” Journal
of Parallel and Distributed Computing, 2009.

[47] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Computers, 1984.

[48] S. Piestrak, F. Pedron, and O. Senlieys, “VLSI implementation and
complexity comparison of residue generators modulo 3,” in European
Signal Processing Conference, 1998, pp. 511–514.

[49] S. J. Piestrak, “Design of residue generators and multioperand modular
adders using carry-save adders,” IEEE Trans. Computers, vol. 43, no. 1,
pp. 68–77, 1994.

[50] N. Nedjah and L. M. Mourelle, “Three hardware architectures for the
binary modular exponentiation: Sequential, parallel, and systolic,” IEEE
Trans. Circuits and Systems I: Regular Papers, vol. 53, no. 3, pp. 627–633,
March 2006.

[51] H. S. Warren, Hacker’s Delight. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[52] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”
IEEE Design & Test of Computers, 2009.

[53] K. Rupnow, Y. Liang, Y. Li, and D. Chen, “A study of high-level
synthesis: Promises and challenges,” in IEEE Intl. Conf. ASIC, 2011.

[54] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quan-
titative analysis of the CHStone benchmark program suite for practical
C-based high-level synthesis,” Journal of Information Processing, vol. 17,
2009.

[55] W. Snyder, “Verilator and SystemPerl,” presented at North American
SystemC User’s Group, June 2004.

[56] W. Snyder, “Verilator: Open simulation - growing up,” presented at
Design Verification Club, Bristol, Jan. 2013.

[57] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in Intl. Symp. Code Generation
and Optimization, 2004, pp. 75–86.

[58] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems,” ACM
Trans. Embedded Computing Systems, vol. 13, no. 2, Sep. 2013.

114

[59] A. Papakonstantinou, K. Guraj, J. A. Stratton, D. Chen, J. Cong,
and W.-M. W. Hwu, “Efficient compilation of CUDA kernels for high-
performance computing on FPGAs,” ACM Trans. Embed. Comput. Syst.,
App.-Specific Processors, vol. 13, pp. 25:1–25:26, Sep. 2013.

[60] ISO/IEC 9899:201x - Programming languages - C, International Organi-
zation for Standardization Std., Dec. 2011.

[61] “Clang 3.9 documentation.” [Online]. Available: http://llvm.org/
releases/3.9.0/tools/clang/docs/

[62] “Cppcheck: A tool for static C/C++ code analysis.” [Online]. Available:
http://cppcheck.sourceforge.net

[63] “Valgrind.” [Online]. Available: http://valgrind.org

[64] “Clang static analyzer.” [Online]. Available: http://clang-analyzer.llvm.
org

[65] M. Gao, P. Lisherness, and T. Cheng, “On error modeling of electrical
bugs for post-silicon timing validation,” in IEEE/ACM Asia and South
Pacific Design Automation Conference, 2012, pp. 701–706.

[66] L.-N. Pouchet and T. Yuki, “PolyBench/C 3.2.” [Online]. Available:
http://www.cse.ohio-state.edu/∼pouchet/software/polybench/

[67] A. Bogorad, J. Likar, R. Lombardi, S. Stone, and R. Herschitz, “On-orbit
error rates of RHBD SRAMs: Comparison of calculation techniques and
space environmental models with observed performance,” IEEE Trans.
Nuclear Science, vol. 58, no. 6, pp. 2804–2806, Dec. 2011.

[68] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by dupli-
cated instructions in super-scalar processors,” IEEE Trans. Reliability,
2002.

[69] C. Bottoni, M. Glorieux, J. Daveau, G. Gasiot, F. Abouzeid, S. Clerc,
L. Naviner, and P. Roche, “Heavy ions test result on a 65nm sparc-v8
radiation-hard microprocessor,” in IEEE Intl. Reliability Physics Symp.,
2014.

[70] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, 2011.

[71] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory design
for submicron CMOS technology,” IEEE Trans. Nuclear Science, 1996.

115

http://llvm.org/releases/3.9.0/tools/clang/docs/
http://llvm.org/releases/3.9.0/tools/clang/docs/
http://cppcheck.sourceforge.net
http://valgrind.org
http://clang-analyzer.llvm.org
http://clang-analyzer.llvm.org
http://www.cse.ohio-state.edu/~pouchet/software/polybench/

[72] L. Spainhower and T. A. Gregg, “IBM S/390 parallel enterprise server
G5 fault tolerance: A historical perspective,” IBM Journal of Research
and Development, 1999.

[73] Z. Chen and J. Dongarra, “Numerically stable real number codes based
on random matrices,” in Intl. Conf. Computational Science, 2005.

[74] V. S. S. Nair and J. A. Abraham, “Real-number codes for fault-tolerant
matrix operations on processor arrays,” IEEE Trans. Computers, 1990.

116

	LIST OF ABBREVIATIONS
	CHAPTER 11emIntroduction
	Root Causes for Hardware Failure
	Logic Bugs
	Hot Spots
	Fabrication Defects
	Soft Errors
	Wear Out

	Root Cause Effects
	Timing Errors
	Stuck-at Faults
	Soft Errors
	Logic Bugs

	Error Propagation

	CHAPTER 21emBackground
	Execution Signatures
	Catching Logic Bugs
	Hash Functions

	Modulo Arithmetic
	Properties
	Aliasing
	Modular Base
	Mersenne Numbers
	Binary Representations
	Normalization

	High-Level Synthesis

	CHAPTER 31emRelated Work
	Hybrid Quick Error Detection
	Hybrid Tracing
	Hybrid Hashing

	Modulo Shadow Datapaths
	Low-Level Fault Resilience
	High-Level Error Resilience
	Modulo Arithmetic Functional Units

	Cross-Layer Reliability

	CHAPTER 41emHybrid Quick Error Detection
	Basic Principles
	Hybrid Tracing vs. Hybrid Hashing
	Hybrid Tracing
	Hybrid Hashing

	Effectiveness and Practicality

	CHAPTER 51emPre-Silicon Debug: Hybrid Tracing
	Comparison to Software Debugging
	Hybrid Tracing Framework
	Hardware Simulation
	Reference Simulation
	Trace Comparison and Debugging

	Simulation Breakpoint Trigger
	Bug Example
	Experimental Results
	Intrusiveness
	Simulation Time Costs
	Logic Bug Effectiveness

	CHAPTER 61emPost-Silicon Validation: Hybrid Hashing
	Hybrid Hashing Framework
	Hardware Execution
	Reference Simulation

	Binding to Minimize Area
	Integration into PSV Testing
	Real-time Error Detection
	Experimental Results
	Area and Delay Costs
	Electrical Bug Effectiveness

	CHAPTER 71emPost-Deployment Resilience: Modulo-3 Shadow Datapaths
	Framework
	Modulo-3 Functional Units
	High-Level Synthesis Transformations
	Recovery

	Results and Analysis
	Setup
	Results

	CHAPTER 81emCheaper Modulo Functional Units
	Modulo Functional Units Architecture
	Reducer
	Adder
	Multiplier
	Negation and Subtraction
	Zero Comparator

	Quality of Results Comparisons
	Modulo Functional Units
	Self-Checking Multiply Accumulator

	CHAPTER 91emCross-Layer Resilience Synergies
	Framework
	Reliability Evaluation
	High-Level Synthesis
	Physical Design
	Resilience Techniques
	Recovery

	Results and Analysis
	Individual Techniques
	Combined Techniques

	CHAPTER 101emConclusions
	REFERENCES

