5,207 research outputs found

    3D Indoor Positioning in 5G networks

    Get PDF
    Over the past two decades, the challenge of accurately positioning objects or users indoors, especially in areas where Global Navigation Satellite Systems (GNSS) are not available, has been a significant focus for the research community. With the rise of 5G IoT networks, the quest for precise 3D positioning in various industries has driven researchers to explore various machine learning-based positioning techniques. Within this context, researchers are leveraging a mix of existing and emerging wireless communication technologies such as cellular, Wi-Fi, Bluetooth, Zigbee, Visible Light Communication (VLC), etc., as well as integrating any available useful data to enhance the speed and accuracy of indoor positioning. Methods for indoor positioning involve combining various parameters such as received signal strength (RSS), time of flight (TOF), time of arrival (TOA), time difference of arrival (TDOA), direction of arrival (DOA) and more. Among these, fingerprint-based positioning stands out as a popular technique in Real Time Localisation Systems (RTLS) due to its simplicity and cost-effectiveness. Positioning systems based on fingerprint maps or other relevant methods find applications in diverse scenarios, including malls for indoor navigation and geo-marketing, hospitals for monitoring patients, doctors, and critical equipment, logistics for asset tracking and optimising storage spaces, and homes for providing Ambient Assisted Living (AAL) services. A significant challenge facing all indoor positioning systems is the objective evaluation of their performance. This challenge is compounded by the coexistence of heterogeneous technologies and the rapid advancement of computation. There is a vast potential for information fusion to be explored. These observations have led to the motivation behind our work. As a result, two novel algorithms and a framework are introduced in this thesis

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Positioning as Service for 5G IoT Networks

    Get PDF
    Big Data and Artificial Intelligence are new tech- nologies to improve indoor localization. It focuses on the use of machine learning probabilistic algorithms to extract, model and analyse live and historical signal data obtained from several sources. In this respect, the data generated by 5G network and the Internet of Things is quintessential for precise indoor positioning in complex building environments. In this paper, we present a new architecture for assets and personnel location management in 5G network with an emphasis on vertical sectors in smart cities. Moreover, we explain how Big Data and Machine learning can be used to offer positioning as service. Additionally, we implement a new deep learning model for 3D positioning using the proposed architecture. The performance of the proposed model is compared against other Machine Learning algorithms

    Human activity mining in multi-occupancy contexts based on nearby interaction under a fuzzy approach

    Get PDF
    Multioccupation encompasses real-life environments in which people interact in the same common space. Recognizing activities in this context for each inhabitant has been challenging and complex. This work presents a fuzzy knowledge-based system for mining human activities in multi-occupancy contexts based on nearby interaction based on the Ultra-wideband. First, interest zone spatial location is modelled using a straightforward fuzzy logic approach, enabling discriminating short-term event interactions. Second, linguistic protoforms use fuzzy rules to describe long-term events for mining human activities in a multi-occupancy context. A data set with multimodal sensors has been collected and labelled to exhibit the application of the approach. The results show an encouraging performance (0.9 precision) in the discrimination of multiple occupations

    Intelligent GNSS Positioning using 3D Mapping and Context Detection for Better Accuracy in Dense Urban Environments

    Get PDF
    Conventional GNSS positioning in dense urban areas can exhibit errors of tens of meters due to blockage and reflection of signals by the surrounding buildings. Here, we present a full implementation of the intelligent urban positioning (IUP) 3D-mapping-aided (3DMA) GNSS concept. This combines conventional ranging-based GNSS positioning enhanced by 3D mapping with the GNSS shadow-matching technique. Shadow matching determines position by comparing the measured signal availability with that predicted over a grid of candidate positions using 3D mapping. Thus, IUP uses both pseudo-range and signal-to-noise measurements to determine position. All algorithms incorporate terrain-height aiding and use measurements from a single epoch in time. Two different 3DMA ranging algorithms are presented, one based on least-squares estimation and the other based on computing the likelihoods of a grid of candidate position hypotheses. The likelihood-based ranging algorithm uses the same candidate position hypotheses as shadow matching and makes different assumptions about which signals are direct line-of-sight (LOS) and non-line-of-sight (NLOS) at each candidate position. Two different methods for integrating likelihood-based 3DMA ranging with shadow matching are also compared. In the position-domain approach, separate ranging and shadow-matching position solutions are computed, then averaged using direction-dependent weighting. In the hypothesis-domain approach, the candidate position scores from the ranging and shadow matching algorithms are combined prior to extracting a joint position solution. Test data was recorded using a u-blox EVK M8T consumer-grade GNSS receiver and a HTC Nexus 9 tablet at 28 locations across two districts of London. The City of London is a traditional dense urban environment, while Canary Wharf is a modern environment. The Nexus 9 tablet data was recorded using the Android Nougat GNSS receiver interface and is representative of future smartphones. Best results were obtained using the likelihood-based 3DMA ranging algorithm and hypothesis-based integration with shadow matching. With the u-blox receiver, the single-epoch RMS horizontal (i.e., 2D) error across all sites was 4.0 m, compared to 28.2 m for conventional positioning, a factor of 7.1 improvement. Using the Nexus tablet, the intelligent urban positioning RMS error was 7.0 m, compared to 32.7 m for conventional GNSS positioning, a factor of 4.7 improvement. An analysis of processing and data requirements shows that intelligent urban positioning is practical to implement in real-time on a mobile device or a server. Navigation and positioning is inherently dependent on the context, which comprises both the operating environment and the behaviour of the host vehicle or user. No single technique is capable of providing reliable and accurate positioning in all contexts. In order to operate reliably across different contexts, a multi-sensor navigation system is required to detect its operating context and reconfigure the techniques accordingly. Specifically, 3DMA GNSS should be selected when the user is in a dense urban environment, not indoors or in an open environment. Algorithms for detecting indoor and outdoor context using GNSS measurements and a hidden Markov model are described and demonstrated

    Indoor navigation for the visually impaired : enhancements through utilisation of the Internet of Things and deep learning

    Get PDF
    Wayfinding and navigation are essential aspects of independent living that heavily rely on the sense of vision. Walking in a complex building requires knowing exact location to find a suitable path to the desired destination, avoiding obstacles and monitoring orientation and movement along the route. People who do not have access to sight-dependent information, such as that provided by signage, maps and environmental cues, can encounter challenges in achieving these tasks independently. They can rely on assistance from others or maintain their independence by using assistive technologies and the resources provided by smart environments. Several solutions have adapted technological innovations to combat navigation in an indoor environment over the last few years. However, there remains a significant lack of a complete solution to aid the navigation requirements of visually impaired (VI) people. The use of a single technology cannot provide a solution to fulfil all the navigation difficulties faced. A hybrid solution using Internet of Things (IoT) devices and deep learning techniques to discern the patterns of an indoor environment may help VI people gain confidence to travel independently. This thesis aims to improve the independence and enhance the journey of VI people in an indoor setting with the proposed framework, using a smartphone. The thesis proposes a novel framework, Indoor-Nav, to provide a VI-friendly path to avoid obstacles and predict the user s position. The components include Ortho-PATH, Blue Dot for VI People (BVIP), and a deep learning-based indoor positioning model. The work establishes a novel collision-free pathfinding algorithm, Orth-PATH, to generate a VI-friendly path via sensing a grid-based indoor space. Further, to ensure correct movement, with the use of beacons and a smartphone, BVIP monitors the movements and relative position of the moving user. In dark areas without external devices, the research tests the feasibility of using sensory information from a smartphone with a pre-trained regression-based deep learning model to predict the user s absolute position. The work accomplishes a diverse range of simulations and experiments to confirm the performance and effectiveness of the proposed framework and its components. The results show that Indoor-Nav is the first type of pathfinding algorithm to provide a novel path to reflect the needs of VI people. The approach designs a path alongside walls, avoiding obstacles, and this research benchmarks the approach with other popular pathfinding algorithms. Further, this research develops a smartphone-based application to test the trajectories of a moving user in an indoor environment

    A Factor Graph Based Indoor Localization Approach for Healthcare

    Get PDF
    In healthcare facilities, indoor localization technology has a broad range of applications. Traditional Pedestrian Dead Reckoning (PDR) and WiFi fingerprint-based methods each have their limitations. To address these challenges, this study introduces a multi-source fusion indoor localization system that uses a Factor Graph to integrate inertial positioning algorithms with WiFi fingerprint-based localization. The system processes accelerometer and gyroscope data using a data-driven PDR algorithm. For WiFi localization, considering that the extensive data collection required is a significant barrier to the deployment of WiFi-based localization methods, the proposed approach applies Gaussian process regression techniques to limited WiFi fingerprint data, significantly reducing initial deployment costs and enhancing accuracy. Finally, the entire system employs a Factor Graph for the integration of the data-driven PDR and WiFi fingerprint localization results. Experimental results show that, compared to using only inertial or WiFi data for localization, this method significantly improves localization accuracy. The findings suggest that this approach could prompt the utilization of indoor localization technology in healthcare facilities.<br/

    An IoT based Virtual Coaching System (VSC) for Assisting Activities of Daily Life

    Get PDF
    Nowadays aging of the population is becoming one of the main concerns of theworld. It is estimated that the number of people aged over 65 will increase from 461million to 2 billion in 2050. This substantial increment in the elderly population willhave significant consequences in the social and health care system. Therefore, in thecontext of Ambient Intelligence (AmI), the Ambient Assisted Living (AAL) has beenemerging as a new research area to address problems related to the aging of the population. AAL technologies based on embedded devices have demonstrated to be effectivein alleviating the social- and health-care issues related to the continuous growing of theaverage age of the population. Many smart applications, devices and systems have beendeveloped to monitor the health status of elderly, substitute them in the accomplishment of activities of the daily life (especially in presence of some impairment or disability),alert their caregivers in case of necessity and help them in recognizing risky situations.Such assistive technologies basically rely on the communication and interaction be-tween body sensors, smart environments and smart devices. However, in such contextless effort has been spent in designing smart solutions for empowering and supportingthe self-efficacy of people with neurodegenerative diseases and elderly in general. Thisthesis fills in the gap by presenting a low-cost, non intrusive, and ubiquitous VirtualCoaching System (VCS) to support people in the acquisition of new behaviors (e.g.,taking pills, drinking water, finding the right key, avoiding motor blocks) necessary tocope with needs derived from a change in their health status and a degradation of theircognitive capabilities as they age. VCS is based on the concept of extended mind intro-duced by Clark and Chalmers in 1998. They proposed the idea that objects within theenvironment function as a part of the mind. In my revisiting of the concept of extendedmind, the VCS is composed of a set of smart objects that exploit the Internet of Things(IoT) technology and machine learning-based algorithms, in order to identify the needsof the users and react accordingly. In particular, the system exploits smart tags to trans-form objects commonly used by people (e.g., pillbox, bottle of water, keys) into smartobjects, it monitors their usage according to their needs, and it incrementally guidesthem in the acquisition of new behaviors related to their needs. To implement VCS, thisthesis explores different research directions and challenges. First of all, it addresses thedefinition of a ubiquitous, non-invasive and low-cost indoor monitoring architecture byexploiting the IoT paradigm. Secondly, it deals with the necessity of developing solu-tions for implementing coaching actions and consequently monitoring human activitiesby analyzing the interaction between people and smart objects. Finally, it focuses on the design of low-cost localization systems for indoor environment, since knowing theposition of a person provides VCS with essential information to acquire information onperformed activities and to prevent risky situations. In the end, the outcomes of theseresearch directions have been integrated into a healthcare application scenario to imple-ment a wearable system that prevents freezing of gait in people affected by Parkinson\u2019sDisease

    Discussion on application of artificial intelligence robot in fire prevention and rescue

    Get PDF
    With the development of science and technology and the progress of society, fi re has become a common and serious disaster. The traditional means of fi re prevention and rescue in some cases have a certain degree of limitations, therefore, the application of artifi cial intelligence robot in fire prevention and rescue has attracted much attention. Artificial intelligence robot has the ability of autonomous perception, decision-making and execution, which can eff ectively deal with fi re accidents and provide new solutions for fi re prevention and control. The purpose of this paper is to systematically discuss the application of artifi cial intelligence robot in fi re prevention and rescue, analyze the robot’s perception ability, decision-making ability and execution effect in the fire scene, and put forward the methods and suggestions to solve the relevant problems. Its signifi cance is to provide new ideas and technical support for fi re prevention and control work, improve the effi ciency and safety of fi re prevention and rescue

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things
    • …
    corecore