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Abstract—In healthcare facilities, indoor localization technol-
ogy has a broad range of applications. Traditional Pedestrian
Dead Reckoning (PDR) and WiFi fingerprint-based methods
each have their limitations. To address these challenges, this
study introduces a multi-source fusion indoor localization sys-
tem that uses a Factor Graph to integrate inertial positioning
algorithms with WiFi fingerprint-based localization. The sys-
tem processes accelerometer and gyroscope data using a data-
driven PDR algorithm. For WiFi localization, considering that
the extensive data collection required is a significant barrier
to the deployment of WiFi-based localization methods, the
proposed approach applies Gaussian process regression tech-
niques to limited WiFi fingerprint data, significantly reducing
initial deployment costs and enhancing accuracy. Finally, the
entire system employs a Factor Graph for the integration
of the data-driven PDR and WiFi fingerprint localization
results. Experimental results show that, compared to using only
inertial or WiFi data for localization, this method significantly
improves localization accuracy. The findings suggest that this
approach could promopt the utilization of indoor localization
technology in healthcare facilities.

Keywords: Indoor Positioning;fingerprint positioning;
Factor Graph; Gaussian Process Regression

1. Introduction

Indoor positioning technology is increasingly finding
applications across a variety of settings from shopping malls
and airports to healthcare facilities. In the healthcare sector,
accurately determining the locations of patients and health-
care professionals is important in the provision of high-
quality medical services. However, conventional Global
Navigation Satellite Systems (GNSS) are typically unavail-
able in indoor settings and, even if occasionally accessible,
they provide highly unreliable positioning information. As
a result, there is a growing need for specialized indoor
positioning solutions in modern healthcare.
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In such healthcare environments, the applications for
indoor positioning are diverse. The quick and accurate
identification of examination rooms or wards is not just a
convenience but a necessity for patients, while healthcare
providers need a reliable system to track locations for ef-
ficient care delivery. Especially for vulnerable populations
like the elderly or those with cognitive impairments, robust
monitoring and precise localization are of utmost importance
[1]. However, achieving high-precision in indoor positioning
systems for healthcare remains a challenging task, owing to
a variety of factors such as cost, infrastructure limitations,
and specific healthcare requirements.

Taking into account the widespread availability and cost-
effectiveness of WiFi in healthcare settings, an integrated
pedestrian indoor positioning system is proposed which
combines an inertial data-driven Pedestrian Dead Reckoning
(DPDR) algorithm with a WiFi Received Signal Strength
Indicator (RSSI) positioning algorithm. The aim is to find a
balanced intersection between accuracy, cost, and usability,
particularly for certain healthcare applications. By enhanc-
ing positioning accuracy, there exists the potential to im-
prove patient experiences, elevate the operational efficiency
of healthcare institutions, and strengthen the capabilities
of medical professionals in patient monitoring and care.
Furthermore, the research contributes to the ongoing de-
velopment of indoor positioning technology, broadening its
applications beyond healthcare into diverse sectors.

The remainder of this paper is structured as follows.
Section 2 provides an overview of related works. In Section
3, we elucidate the methodology of our proposed integration
platform. Section 4 encompasses the presentation of our
experiments and results. Lastly, Section 5 draws the paper
to a conclusion.

2. Related work

In recent years, healthcare and the associated healthcare
facility (HCF) location problems have become noticeably
more critical and important to society [2]. This is par-
ticularly crucial for vulnerable populations, such as the
elderly or individuals with cognitive impairments, where



robust monitoring and precise localization are of paramount
importance. A study conducted by [3] explored various
positioning techniques aimed at improving the accuracy of
activity recognition for the elderly within their homes or in
nursing facilities. Emphasis was placed on the significance
of location information in understanding the contextual envi-
ronment of users, ultimately providing assistance to enhance
their quality of life. However, existing research has been
limited by factors such as accuracy, complex models, limited
coverage, and high costs, making it challenging to establish
a standardized solution.

In current indoor environments, WiFi signals are vir-
tually ubiquitous, sparking significant research interest in
WiFi-based indoor positioning technologies. Of these, WiFi
fingerprint-based localization stands out for its low de-
ployment costs and relatively high positioning accuracy.
However, its accuracy is closely tied to the quality of
WiFi fingerprint databases, which can be labor-intensive
and resource-consuming to create such a detailed and high
quality database.To address this challenge and reduce costs,
numerous researchers have focused on fingerprint augmen-
tation. For instance, one approach [4] involves enhancing
the training of deep learning models by augmenting fin-
gerprint data through the random extraction of Received
Signal Strength (RSS) information from reference points
(RPs). Another approach [5] utilizes a Multivariate Gaus-
sian Process Regression (MGPR) model to predict RSS
values for unexplored locations within multi-story buildings,
thereby generating additional fingerprints. These innovative
strategies aim to enhance the quality and diversity of WiFi
fingerprint data while mitigating the associated resource bur-
den. Despite these advancements in fingerprint augmentation
techniques, challenges remain in achieving localization error
stabilization and trajectory smoothness in WiFi fingerprint-
based systems. The complexities of indoor environments
and the quality of collected data can significantly affect the
performance of localization algorithms. These factors can
introduce inconsistencies and fluctuations in the positioning
results, making them less reliable over time. In practical
scenarios, even with sophisticated augmentation methods,
issues such as unstable error margins and abrupt location
jumps are yet to be fully addressed. Therefore, while these
strategies enhance the quality and density of WiFi fingerprint
data, they do not entirely resolve the inherent limitations of
WiFi fingerprint-based localization.

Another important method for indoor localization is
Pedestrian Dead Reckoning (PDR), which analyzes sensor
data from accelerometers and gyroscopes to estimate the
user’s spatial coordinates. Traditional PDR methods, espe-
cially those involving foot-mounted sensors, rely on distinct
zero-velocity points to truncate errors. However, when these
inertial sensors are positioned on the upper body—a scenario
commonly encountered in healthcare settings—the absence
of such zero-velocity points, along with the presence of
noise, presents challenges for accurate displacement estima-
tion. To tackle these issues, current research predominantly
focuses on data-driven PDR approaches where sensors are
mounted on the upper body. For instance, IONet [6] em-

ploys a neural network model to directly extract coordinate
transformations from Inertial Measurement Units (IMU). In
a similar data-driven vein, RoNIN uses deep neural net-
works to predict human motion velocity, offering a different
approach from IONet, which models the transformation of
inertial sensor data into displacement. Generally speaking,
DPDR techniques that employ deep neural network models
hold a distinct advantage over traditional methods. However,
they also come with limitations. Notably, inertial-based PDR
algorithms are a form of relative positioning that calculates
displacement with respect to a starting point. This approach
is susceptible to accumulating errors, which can become
significant over extended periods of operation.

Both WiFi fingerprint-based and inertial data-based PDR
localization schemes have their limitations. To address these
challenges, this study proposes a hybrid indoor positioning
system that employs a factor graph to integrate inertial
positioning algorithm with WiFi fingerprint algorithm. The
system utilizes inertial sensors, including accelerometers and
gyroscopes, for the implementation of a data-driven PDR
algorithm. When processing WiFi RSSI data, the proposed
method applies Gaussian process regression technique to the
limited WiFi fingerprint data, thereby significantly reducing
initial deployment costs and enhancing accuracy. The factor
graph is employed for the seamless integration of both
inertial and WiFi-based algorithms. Factor Graph Optimiza-
tion (FGO) offers advantages over the widely-used Kalman
filtering for data fusion because it encompasses all histor-
ically observed measurements, which are used in various
navigation systems [7]. This approach aims to enhance the
robustness and stability of the positioning system, thereby
meeting the healthcare requirements for indoor localization
technology.

3. Method

The framework of the proposed factor graph-based in-
door localization approach is presented in Figure 1. This sys-
tem comprises several components: the Data-Driven Pedes-
trian Dead Reckoning algorithm, which processes inputs
from accelerometers and gyroscopes; the WiFi fingerprinting
method that involves training to generate the fingerprint
database and then is augmented via Gaussian Process Re-
gression; the floor detection module that utilizes barometer
clustering and WiFi localization results; and finally, the
fusion algorithm based on the Factor Graph, which consol-
idates the outputs of the aforementioned methods to deliver
accurate and robust indoor localization results.

3.1. Inertial Data-Driven Pedestrian Dead Reckon-
ing Algorithm

For the traditional research of indoor positioning using
inertial sensors, the acceleration data and angular velocity
data collected by inertial sensors are processed. The pro-
cessing formula is shown in equation (1)(2)

a = â+ na (1)



Figure 1. System Framework Diagram

ω = ω̂ + nω (2)

â and ω̂ represent the true values of acceleration and
angular velocity respectively, while na and nω represent
the noise data introduced by the acceleration and gyroscope
respectively. The acceleration and the angular velocity can
be represented as a 3×1 vector respectively, as shown in
equation(3)

a =

ax + na
ay + na
az + na

 ω =

ωx + nω
ωy + nω
ωz + nω

 (3)

The direction cosine matrix Cn
b (t) is used to represent

the transformation of the coordinate system, which is ex-
pressed as equation(4), and can be rotated through Ωb ,
which can be shown as equation(5)

Cn
b (t) = Cn

b (t− 1)Ωb (4)

Ωb =

 0 −ωx − nω ωy + nω
ωz + nω 0 −ωx − nω
−ωy − nω ωx + nω 0

 (5)

Meanwhile, in the discrete time environment, if a small
time step ∆t is given, the update process of the direction
cosine matrix Cn

b (t) can be approximated by the following
equation (6).

Cn
b (t+∆t) ≈ Cn

b (t)(I +Ωb∆t) (6)

Using this process, the direction is transformed into
the navigation frame. At the same time, the position and
speed of the pedestrian can be derived from the following
formula. The velocity can be integrated by equation(7), and
the contribution of gravity to acceleration can be eliminated
by equation(8)

vn(t) = vn(t− 1) + an(t− 1)dt (7)

an(t− 1) = Cn
b (t− 2)ab(t− 1)− gn (8)

Finally, the location information can be obtained by
equation(9) (10).

dn(t) = dn(t− 1) + ∆d. (9)

∆d = vn(t− 1)dt+
1

2
an(t− 1)dt2 (10)

According to the above formula, it can be concluded
that for the traditional PDR method, the errors introduced
by it will accumulate continuously in the integration process,
affecting the calculation accuracy of the navigation position.
Therefore, considering the powerful data processing capabil-
ity of deep neural network, a data-driven scheme is adopted
to replace the traditional PDR integration process, so as to
reduce personnel drift.

Aiming at the problems existing in the traditional inte-
gration process of PDR, we discuss the modeling. First, We
focus on speed.

For velocity, our modeling process can be shown in
equation (11)

vn(t) = vn(t− 1) + ∆v (11)

The speed value of the current moment is equal to
the speed value of the previous moment plus the speed
increment value.

For displacement, from equation(9), our modeling pro-
cess can be shown by equation(12).

∆d = f(X; θ) (12)

θ Represents the parameters used by the model. And
X = [x1, x2, ..., xn] represents all inertial navigation mea-
surements in a time window, where x1 = [a1, w1]

Through the analysis of the above model, it can be seen
that whether the speed or position is modeled, the input data
is sequential, so the neural network can be used for effective
processing. For relatively short walk sequences, Recurrent
Neural Network(RNN) is used to process input sequences
effectively, considering the memory ability of RNN. For
the path with long walking time or complex trajectory,
the feature extraction capability of Convolutional Neural
Network(CNN) can be used to extract the feature values
in the sequence to process the sensor data more effectively.

3.2. WiFi fingerprint positioning with Gaussian
Process Regression

Common WiFi fingerprinting methods impose specific
requirements on the density and quality of the fingerprint
database. Generally, a higher fingerprint density leads to
improved localization accuracy. However, achieving a higher
WiFi fingerprint density necessitates substantial upfront data
collection costs. Consequently, this study employs Gaussian
Process Regression to delineate the spatial relationship be-
tween Access Points (APs) and WiFi fingerprints, thereby
facilitating a certain degree of augmentation to the WiFi
fingerprint database.

Each WiFi fingerprint is represented as a vec-
tor composed of RSS values, denoted as y =
[RSS1, RSS2, . . . , RSSM ], where M is the total number of
detected APs in the entire dataset. Additionally, we define
the position vector for RPs as c = [x, y, z], where x and



y represent coordinates on a two-dimensional plane, and z
represents the height of the floor, all measured in meters.

For all RSS vectors y1, y2, ..., yN in set Y , and
c1, c2, ..., cN in set C, where N denotes the number of
collected fingerprints, the mapping relationship between lo-
cation and RSS vectors is represented by the function f(·):

Y = f(C) + η (13)

The noise η is typically assumed to be independent and
identically distributed Gaussian noise with a mean of zero
and a variance of σ2

n, and can be expressed as η ∼ N(0, σ2
n).

To address this mapping, it is assumed that all RSS vec-
tors within the investigated indoor region follow a multivari-
ate Gaussian process with multiple high-dimensional joint
Gaussian distributions. Gaussian processes are characterized
by the mean function

m(C) = E[f(C)] (14)

and the covariance function

cov(f(ci), f(cj)) = E[(f(ci)−m(ci))(f(cj)−m(cj))]
(15)

describing the relationships among these random variables.
Here, E represents the mathematical expectation. We repre-
sent the Gaussian process as GP(), and f(C)can be defined
as:

f(C) ∼ GP(µ(C), cov(C)) (16)

Furthermore, through the utilization of the kernel trick, the
covariance function does not necessitate the computation of
a complex f(c):

cov(f(ci), f(cj)) = E[(f(ci)−m(ci))(f(cj)−m(cj))]

= k(ci, cj)
(17)

The covariance matrix K can then be expressed as:

K =


k(c1, c1) k(c1, c2) · · · k(c1, cN )
k(c2, c1) k(c2, c2) · · · k(c2, cN )

...
...

. . .
...

k(cN , c1) k(cN , c2) · · · k(cN , cN )

 (18)

As RPs are typically sparsely distributed within indoor
environments, it can be challenging to construct reliable
fingerprints in areas with sparse WiFi signal coverage. To
enhance the fingerprints in these unknown regions, we intro-
duce additional RPs, denoted as C∗ = [C∗

1 , C
∗
2 , . . . , C

∗
N∗ ]T ,

for predicting the corresponding WiFi fingerprints. Here, N∗

represents the number of newly added RPs. According to
the characteristics of Gaussian process regression, the RSS
vectors in the original dataset, denoted as Y, and the RSS
vectors to be inferred, denoted as Y ∗, should also follow
a joint multivariate Gaussian distribution defined by the
following equations:[
Y
Y ∗

]
∼

N
([

m(C)
m(C∗)

]
,

[
K(C,C)N×N K(C,C∗)N×N∗

K(C∗, C)N∗×N K(C∗, C∗)N∗×N∗

])
(19)

The posterior distribution p(y∗|y)can be expressed as:

y∗|y ∼ N (K(C∗, C)K(C∗, C)−1y),

K(C∗, C∗)−K(C∗, C)K(C∗, C)−1K(C,C∗))
(20)

Thus, it is possible to compute the posterior mean and
covariance of the observed RSS vectors to formulate a
predictive model for generating novel RSS vectors at un-
explored RPs..

Furthermore, the kernel function k(ci, cj) plays a pivotal
role in Gaussian processes, capturing the relationships be-
tween RSS vectors and their corresponding RPs. In complex,
large indoor environments, single kernels may not perform
as effectively as composite kernels. Therefore, we choose
to employ a compound kernel function that combines the
Matern and Rational Quadratic (RQ) kernels, which were
demonstrated to perform best in the context of this study as
presented in [8]. The Matern kernel is defined as follows:

kMatern(ci, cj) =

1

Γ(ν)2ν−1

(√
2ν

l
d(ci, cj)

)ν

Kν

(√
2ν

l
d(ci, cj)

)
(21)

Here d(ci, cj) =
√

(ci − cj)T (ci − cj) is the Euclidean
distance; ν represents the smoothness of the function; l is the
length scale; Kν(·) and Γ(·) represent the gamma function
and modified Bessel function.

The rational quadratic kernel can be described as:

kRQ (ci, cj) =

(
1 +

d (ci, cj)
2

2αl2

)−α

(22)

Where α signifies the shape parameter. Therefore, the com-
pound kernel design in our case is structured as follows:

kcompound = µ ∗ kMatern + ν ∗ kRQ (23)

Here, µ and ν are the weighting parameters. All the afore-
mentioned hyperparameters can be optimized by minimizing
the negative log marginal likelihood.

After fingerprint augmentation, the fingerprint matching
algorithm did not exhibit substantial differences. Conse-
quently, for fingerprint matching, we have employed the
WKNN algorithm, known for its ease of implementation
and portability, and have utilized the Euclidean distance as
the metric for inter-fingerprint distance computation.

di =

√√√√ n∑
j=1

(
rssi

′
ij − rssiij

)2
(24)

3.3. Factor Graph-Based Data Fusion

Factor Graph is a graph structure used to represent prob-
abilistic models, particularly well-suited for the factorization
and inference processes within probabilistic graphical mod-
els.

Factor Graphs consist of two types of nodes: variable
nodes and factor nodes. Variable nodes represent optimiza-
tion variables, while factor nodes represent constraint con-
ditions. Factor Graph optimization involves determining a



Figure 2. Factor Graph fusion structure

combination of variable values that satisfy the constraints
specified by all factor nodes. It is a graphical represen-
tation used to address inference problems within proba-
bilistic graphical models, providing a clear depiction of
the dependencies between variables and the composition of
probability factors.

In the process of localization, we often need to estimate
a set of state variables X based on a given set of mea-
surements Z Assuming a Markov model, this conditional
probability density function can be represented using the
formula:

P (X|Z) =
k∏

i=1

P (zi|xi)P (xi|xi−1, ui)

P (zi)
P (x0) (25)

Here,zi represents the measurement results observed at
epoch i (e.g., WiFi measurements), xi represents the system
state at time i, and ui represents control inputs (e.g., PDR
measurements).

The purpose of the Factor Graph framework is to find the
most probable posterior state of the unknown state variables
X given the measurement history. Therefore, the essence of
the localization problem is a Maximum A Posteriori (MAP)
problem.

X̂ = argmaxP (X|Z) = argmax

k∏
i=1

P (zi|xi)P (xi|xi−1, ui)

(26)
In Factor Graph, all of these likelihood and transition

probabilities can be viewed as a factorization of the global
probability:

X̂ = argmax

n∏
j=1

f(xj) (27)

In the example presented in this paper, the factor graph
model can be represented as G = (F,X,E), where X
represents the set of variable nodes (xi ∈ X), depicted
as circles in Figure 2, representing the state information
at various time instances. F represents the set of factor
nodes (fj ∈ F ), denoted by solid points, which are cost
functions capturing the discrepancies between predictive and
measurement information. The core objective of factor graph
fusion is to find the optimal estimate X̂ that minimizes the
error of the cost function f(x).

Each factor simulates a constraint and must incorporate
a measure of uncertainty. The most common model is Gaus-
sian noise:

P (zi|xi) ∝ exp

(
−1

2
∥hi(xi − zi)∥2▽i

)
(28)

P (xi|xi−1) ∝ exp

(
−1

2
∥Φi(xi−1 − xi)∥2Ωi

)
(29)

Here, the function Ωi(·) describes the relationship be-
tween the previous state xi−1 and xi, while the function
hi(·) represents the relationship between state xi and mea-
surement zi. The covariance matrices are denoted by ▽i and
Ωi. By taking the negative logarithm and removing the factor
of 1/2, the problem is transformed into the minimization
of an error function, effectively a nonlinear least-squares
problem:

X̂ = argmin

(
k∑

i=1

∥Φi(xi−1)− xi∥2Ωi
+

k∑
i=1

∥hi(xi)− zi∥2∇i

)
(30)

DPDR factor The DPDR factor is a binary factor asso-
ciated with the states at two adjacent time instances, used
to describe measurements between states. In DPDR, it is
associated with the changes in position and heading between
two time instances.

sDPDR
k =

[
∆Lk

∆ψk

]
(31)

where ∆Lk and ∆ψk denote the change of the position and
heading at epoch k , respectively. Hence, the error function
for the observation values of the DPDR factor, denoted as
eDPDR, is expressed as follows:

eDPDR
k =

[
∥pk − pk−1∥
Ψq

k −Ψq
k−1

]
−
[
∆Lk

∆ψk

]
(32)

Based on the DPDR constraint, the sum of squared errors
can be expressed as follows.

FDPDR(·) =
∑
i

∥eDPDR
k ∥2ΩDPDR

k
(33)

ΩDPDR
k represents the covariance matrix associated with the

DPDR localization performance. This matrix is constant and
is determined based on the accuracy of the data-driven PDR
method. In this paper, the covariance matrix is represented
as follows:

ΩDPDR
k =

[
22 0
0 0.52

]
(34)

WiFi Factor This factor represents the constraint imposed
by the WiFi measurements:∥∥eWiFi

k

∥∥2∑WiFi
k =∥Xk−WiFik∥2∑WiFi

k

(35)

Therefore, based on the two aforementioned cost func-
tions, the non-linear least-squares problem can be formu-
lated as:



X̂ = argmin

(
k∑

i=1

[∥∥eDPDR
i

∥∥2
ΩDPDR

k

+
∥∥eWiFi

i

∥∥2∑2
i WiFi

])
(36)

To address the least-squares problem, considering the fa-
vorable convergence properties of the Levenberg-Marquardt
(LM) algorithm, the LM algorithm is employed to obtain
the optimal solution.

4. Experiment Evaluation

4.1. Dataset

In order to make the experiment more relevant to health-
care facilities,our dataset selection was primarily guided by
the following considerations:

1. Accumulative IMU Errors: Recognizing that errors
in the IMU tend to accumulate over time, we deliberately
selected datasets with longer time durations. This choice
allowed us to better capture the cumulative impact of these
errors.

2. Inhomogeneous WiFi Signals in Large Buildings:
To replicate the non-uniform distribution of WiFi signals
within expansive structures, we focused on datasets collected
within multi-story, large-scale edifices. This approach en-
abled us to offer a more realistic portrayal of the WiFi signal
conditions encountered in practical real-world applications.

3. Complex Indoor Environments: To more effectively
illustrate WiFi signal attenuation, blockages, and multipath
effects in indoor settings, we selected datasets from complex
indoor environments, as opposed to simple and open spaces.

In line with these criteria, we opted for the publicly
available dataset from IPIN2023 Competition [9]. This
dataset was meticulously gathered within the Museum for
Industrial Culture situated in Nuremberg, Germany. The
museum is about 3,500 m2 , has a main Ground Floor (Level
0) and a large open area in the Basement (Level -2). There
is also a small Mezzanine, which we consider as Level -1 in
this dataset. During the data collection phase, two distinct
participants collected all the logfiles and trials for training,
testing and scoring. While both participants adhered to
identical data collection protocols, subtle variations in their
natural poses, smartphone handling techniques, and step
lengths were introduced. The smartphones employed were
the Samsung A5 2017 (SM-A520F running Android 8.0.0)
and the Samsung S7 (SM-G930F also running Android
8.0.0). This selection ensures the diversity and complexity
of the dataset, thus facilitating a comprehensive evaluation
of our system’s performance.

4.2. WiFi fingerprint positioning

In WiFi preprocess work, the primary focus is on the
creation of a fingerprint database. In this process, RSS val-
ues that are not present are set to 110 dB, and access points
(APs) are subjected to filtering. This filtration includes the

Figure 3. Distribution of wifi RPs on different floors

Figure 4. 2D Trajectories of different method

removal of APs with excessively low occurrence frequencies
to ensure the manageability of fingerprint size. Addition-
ally, APs with abnormally high occurrence frequencies are
filtered to maintain the accuracy of the fingerprints. Then
the RSS data is normalized with minmax normalization to
establish the mapping of fingerprints to position coordinates.
After generating the fingerprint database, it can be seen from
the figure 3 that the RP points are relatively sparse and
uneven, so we use the GPR approach mentioned in 3.2 to
augment the fingerprint database, which is mainly realized
with the Gpytorch [10] package.In real-time localization, we
use WKNN to obtain position.



4.3. Data-driven Pedestrian Dead Reckoning

For the DPDR part, it is essential to perform uniform
interpolation on sensor data of varying frequencies, inter-
polating them into a 200Hz data stream. Additionally, the
data needs to be rotated based on the positional information
obtained from smartphone sensors before being input into
the network for further processing.

Since the frequency of each sensor is not consistent,
we are required to interpolate the data during preprocess-
ing, and in this experiment we uniformly interpolate the
data to 200hz.In order to remove the effect of posture
on acceleration, the data needs to be rotated according to
the position information obtained from the smart phone
sensors.For comparison purposes, we use publicly available
algorithms [11].

This study primarily focuses on fusion algorithms, and
hence, the DPDR component employs the RONIN [11]. Dur-
ing data processing, interpolation is applied to sensor data
with varying frequencies. The data is uniformly interpolated
to a standardized frequency of 200Hz. Subsequently, the
data is rotated based on the pose information obtained from
mobile sensors before being fed into the network. The output
comprises velocity, which is further integrated to derive step
length and heading.

Figure 5. 2D Trajectories of different floors and 3D trajectories

4.4. Floor Detection

Our floor detection method mainly based on air pressure
difference between the average air pressure value of the
current sliding window and the initial calibrated air pressure.
Therefore, we need to first cluster and analyze the barometer
data of different floors based on the training data, so as to
obtain the threshold value of the relative difference between
different floors. The average value of the barometric pres-
sure in the sliding window is taken in the detection, and
the floor is switched if the barometric pressure difference
with the initial barometric pressure reaches the threshold,
and the detection is assisted by combining the floor data
obtained from WiFi positioning. This method achieves 100%

Figure 6. Results of the IPIN competition Track 3

correctness among 69 ground truth points provided in the
dataset.

4.5. Evaluation

In the experimental phase, we evaluated the performance
of the system and tested it using the scoring file provided
with the dataset, which was recorded for a total duration
of about 30 minutes of time, covering mainly three floors.
While the system was running, we continuously received
data streams from the sensors and fed them into the net-
work every 0.5 seconds in order to obtain the location
of the DPDRs and then insert them into the factor graph
implemented by GTSAM [12]. When we have WiFi data
available, we generate the current WiFi fingerprint and use
the WKNN algorithm to compare it with the fingerprints
in the fingerprint database to obtain the localization result
of the WiFi fingerprints, and then input this result into the
factor graph. Finally, we extract the results of the factor
graph for analysis.

As shown in the Figure 4, we observe that pure DPDR
performs relatively poorly under long complex trajectories.
In the second half of the trajectory, we notice that the
trajectory deviates significantly from the expected path due
to the cumulative error of heading drift. On the other hand,
pure WiFi localization also shows some challenges in these
cases. Due to the discontinuity of the WiFi signals, we
observe that the WiFi localization data show intermittency
and there are still significant outliers at some of the more
distant WiFi signal points.

When using factor graph fusion, the continuity of DPDR
compensates for the lack of WiFi intermittency while the cu-
mulative error of DPDR is corrected by the WiFi factor, and
the use of historical information by the factor graph makes
the outliers of the WiFi localization results further reduce
the negative impact of the results. In order to present the
experimental results more clearly, we plot the trajectories of



different floors separately in Figure 5. Combining the maps
shows that the fused results also have a better performance
in turning to complex trajectories.

This trajectory dataset consists of 69 ground truth points,
as depicted in the figure. Error calculations based on these
ground truth points are presented in the Figure 7 and TA-
BLE 1. The average errors for pure DPDR and pure WiFi
fingerprint-based localization are 74.44 meters and 9.78
meters respectively. Fusion of both data sources significantly
enhances the localization accuracy, resulting in an average
positioning error of 5.60 meters, with 75% of errors within
6.25 meters. This result won second place in IPIN2023
Competition Track 3.

Figure 7. CDF of WiFi and fusion results

Method RMSE MEDIAN 90th perc 75th perc
FGO 5.60 4.31 7.93 6.25
DPDR 74.44 77.10 98.52 127.98
WiFi 9.78 9.36 15.63 13.42

TABLE 1. ACCURACY OF DIFFERENT POSITIONING METHODS

5. Conclusion

Considering the widespread availability of WiFi in
healthcare facilities, this study explores the method to en-
hance the traditional WiFi fingerprint localization algorithm
by integrating it with a data-driven PDR algorithm. A Factor
Graph serves as the cornerstone for fusing the advantages of
data-driven PDR and WiFi-based methods, thereby address-
ing the inherent weaknesses of WiFi localization. The in-
corporation of Gaussian process regression further augments
the efficiency and accuracy of WiFi fingerprint localization
by reducing initial deployment costs which is always a
barrier to deploy the WIFI localization system. Experimental
results indicate that the proposed approach outperforms
traditional WiFi fingerprint localization algorithm. However,
it should be noted that further research is needed to fully
validate the effectiveness and scalability of this approach.

Overall, this research represents an attempt to enhance the
robustness and efficiency of indoor localization systems,
and it encourages further exploration of the usability of the
technique in healthcare facilities.
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