
Indoor Navigation for the Visually Impaired: Enhancements 

through Utilisation of the Internet of Things and Deep Learning

Payal Tusharkumar Mahida

A thesis submitted for the degree of

Doctor of Philosophy

School of Computer, Data and Mathematical Sciences 

Western Sydney University

November 2021



Acknowledgements 

My PhD journey has been full of excitement, frustration and satisfaction. I would like to take 

the opportunity to acknowledge the people who have inspired, guided and supported me to 

successfully complete my PhD study. First, I would like to thank Almighty God for his 

kindness, blessings and strength to overcome all the challenges I faced during the journey. 

I would like to express my sincere gratitude to my supervisor, Dr Seyed Shahrestani, for his 

continued support, guidance and motivation throughout my PhD study. He helped me learn how 

to identify and solve research problems. His timely feedback and dedication helped me to 

complete my PhD with high quality. I would also like to extend my gratitude to my co-

supervisor, Dr Hon Cheung, for his valuable feedback and comments. His extensive feedback 

helped me improve my presentation and writing skills. I will always be grateful for his kindness 

and patience. 

I would like to extend my sincere gratitude to Western Sydney University (WSU) for 

identifying and recognising my hard work and granting me the WSU Post Graduate Research 

Award. I would like to thank WSU and Associate Professor Dongmo Zhang for supporting me 

with possible ways to grant allowances for presenting our work at conferences and providing 

other support in research, including English language support. Thanks to Ahmed, Farhad and 

Nabil for sharing valuable tips and materials on time. I would also like to thank Dr Milena for 

her feedback in teaching me academic writing skills and timely feedback. Special thanks to my 

friends and colleagues for their constant motivation and all their possible support to motivate 

me. 

Last, but not least, I would like to thank my loving family. Their unconditional love, support 

and faith helped boost me most of the time. Special thanks to my mother, Jyoti, and father, 

Narendrasinh, for making me who I am today. I am also thankful for my parents-in-law and 

sisters and their family for their love and support. My sisters, Priyanka and Unnati, have always 

supported me and constantly admired my determination. My brother-in-law, Hiren, has 

constantly encouraged me in the learning journey and admired me for the clarity of my work. 

During the long and intense years of my studies, I lost people from my family who shared the 

dreams with me. I would like to honour their memory in this work, especially my brother-in-

law, Rajdeep. 



Thanks to my caring and loving daughter, Priyal, for constantly supporting and motivating me. 

Special thanks to her for helping me in sharing her ideas and views on my writing and helping 

to improve it. Thanks to my daughter, Hiya, for being my best companion, for motivating and 

understanding my situation most of the time, and for growing stronger and smarter by herself. 

Finally, and most importantly, thanks to my husband, Tushar, for his love, support and 

understanding. His moral support enabled me to successfully fulfil my dream. This work would 

not have been possible without his constant love and support. Thank you for being a motivating 

partner. 

I am genuinely grateful to all the amazing people who believed in me and helped me in this 

wonderful journey. This work is dedicated to all of you.  

 

  



Statement of Authentication

To the best of my knowledge, I declare that the work presented in this thesis is original. I hereby 

declare that I have not submitted this material, either in full or in part, for a degree at this or any 

other institution.

Signed: __ On: 26/11/2021

Payal Tusharkumar Mahida



i 

Contents 

List of Tables ............................................................................................................................. v 

List of Figures .......................................................................................................................... vi 

List of Abbreviations ............................................................................................................... ix 

List of Authored Publications ................................................................................................ xi 

Abstract ................................................................................................................................... xii 

Chapter 1 Introduction ............................................................................................................ 1 

1.1. Introduction ..................................................................................................................... 2 

1.2. Motivation ....................................................................................................................... 4 

1.3. Research objectives and questions .................................................................................. 7 

1.3.1. Research objectives .................................................................................................. 7 

1.3.2. Research questions ................................................................................................... 7 

1.4. Research methodology .................................................................................................... 8 

1.5. Contributions ................................................................................................................. 12 

1.6. Thesis structure ............................................................................................................. 14 

Chapter 2 Background and Related Works ........................................................................ 17 

2.1. Overview ....................................................................................................................... 18 

2.2. Introduction ................................................................................................................... 18 

2.3. Indoor navigation systems for visually impaired people .............................................. 22 

2.3.1. Literature review of indoor navigation systems ..................................................... 22 

2.3.2. Building blocks of indoor navigation systems ....................................................... 26 

2.4. Representation of indoor space and pathfinding algorithms ......................................... 27 

2.4.1. Map representation techniques ............................................................................... 28 

2.4.1.1. Grid-based representations ............................................................................. 29 

2.4.1.2. Skeleton-based representations ....................................................................... 30 

2.4.1.3. Visibility graph representation ........................................................................ 30 

2.4.1.4. Tree graph representation ............................................................................... 31 

2.4.2. Indoor pathfinding algorithms ................................................................................ 32 

2.5. Applicability of the Internet of Things .......................................................................... 33 

2.5.1. Internet of Things devices and their characteristics ............................................... 34 



ii 

2.5.1.1. Characteristics of Internet of Things .............................................................. 35 

2.5.2. Reference model of Internet of Things .................................................................. 37 

2.5.2.1. Layer 1: infrastructure layer ........................................................................... 37 

2.5.2.2. Layer 2: network layer .................................................................................... 37 

2.5.2.3. Layer 3: Cloud layer ....................................................................................... 38 

2.5.2.4. Layer 4: real-time analyser ............................................................................. 38 

2.5.2.5. Layer 5: interface layer ................................................................................... 38 

2.6. Indoor wireless positioning technologies ...................................................................... 39 

2.6.1. Infrared radiation .................................................................................................... 40 

2.6.2. Wi-Fi ...................................................................................................................... 41 

2.6.3. Radio frequency identification ............................................................................... 41 

2.6.4. Bluetooth ................................................................................................................ 41 

2.6.5. Zigbee ..................................................................................................................... 42 

2.6.6. Ultra wide band ...................................................................................................... 42 

2.6.7. Ultrasonic ............................................................................................................... 43 

2.7. Background of deep learning system ............................................................................ 44 

2.8. Related works ................................................................................................................ 47 

2.8.1. Related works: indoor pathfinding algorithms ....................................................... 48 

2.8.2. Related works: indoor tracking and positioning approaches ................................. 49 

2.9. Issues and gaps in existing indoor navigation systems ................................................. 52 

2.10. Summary ..................................................................................................................... 53 

Chapter 3 Indoor-Nav: Novel Framework for Visually Impaired Navigation................. 55 

3.1. Overview ....................................................................................................................... 56 

3.2. Introduction ................................................................................................................... 56 

3.3. Proposed framework: Indoor-Nav ................................................................................. 58 

3.3.1. Architecture of Indoor-Nav .................................................................................... 62 

3.3.1.1. Initial indoor map setup .................................................................................. 62 

3.3.1.2. Navigation guide: path estimation .................................................................. 64 

3.3.1.3. Navigation guide: tracking and positioning.................................................... 66 

3.4. Summary ....................................................................................................................... 68 

Chapter 4 Ortho-PATH: Collision-free Pathfinding Algorithm ....................................... 70 

4.1. Overview ....................................................................................................................... 71 

4.2. Introduction ................................................................................................................... 71 





iv 

6.4. Simulation parameters of deep learning-based positioning ........................................ 141 

6.5. Setup of experiments and analysis of results .............................................................. 143 

6.5.1. Setup of experiments ............................................................................................ 143 

6.5.2. Performance metrics and evaluation .................................................................... 144 

6.6. Summary ..................................................................................................................... 151 

Chapter 7 Conclusion and Future Research Directions ................................................... 152 

7.1. Overview ..................................................................................................................... 153 

7.2. Conclusion ................................................................................................................... 153 

7.3. Limitation and future directions .................................................................................. 156 

Bibliography ......................................................................................................................... 159 

 

  



v 

List of Tables 

Table 1.1: Research objectives ................................................................................................... 7 

Table 2.1: Summary and comparison of indoor navigation systems for VI people ................. 25 

Table 2.2: Summary of graph representation techniques ......................................................... 31 

Table 2.3: Summary of positioning enabled wireless technology ........................................... 43 

Table 3.1: Problems and challenges of VI people, with applicable solutions .......................... 57 

Table 4.1: Simulation parameters ............................................................................................. 90 

Table 4.2: Rank analysis of pathfinding algorithm for VI people ........................................... 99 

Table 5.1: Comparison of indoor positioning systems [88] ................................................... 104 

Table 5.2: Sample readings of data collected using Android-based application ................... 110 

Table 5.3: Accelerometer readings in different smartphone positions ................................... 111 

Table 5.4: Root mean squared error (RMSE) for users (u1, u2 and u3) ................................ 129 

Table 6.1: Experimental model with hyperparameter values ................................................. 143 

Table 6.2: Positioning error (in metres) with different optimisers and activation functions . 147 

 

  



vi 

List of Figures 

Figure 1.1: Indoor navigation application providing instructions [15] ...................................... 6 

Figure 1.2: Architecture of Wi-Fi-based location-aware system for pedestrians [17] ............... 9 

Figure 1.3: Research methodology ........................................................................................... 11 

Figure 1.4: Structure of the thesis ............................................................................................ 15 

Figure 2.1: RSNAVI architecture based on RFID context-aware indoor navigation for 

VI people [22] ......................................................................................................... 20 

Figure 2.2: Framework and processes in indoor navigation for VI people .............................. 21 

Figure 2.3: Building blocks of indoor navigation framework .................................................. 26 

Figure 2.4: Local obstacle avoidance in pathfinding algorithm ............................................... 27 

Figure 2.5: Global obstacle avoidance in the pathfinding algorithm ....................................... 28 

Figure 2.6: Graph representation techniques ............................................................................ 29 

Figure 2.7: Graph representation: (a) original map, (b) grid-based graph, (c) skeleton-

based visibility graph and (d) tree graph ................................................................. 30 

Figure 2.8: Classification of pathfinding algorithms ............................................................... 32 

Figure 2.9: IoT schematic showing applications and end-users [59] ....................................... 33 

Figure 2.10: IoT complete definition [60] ............................................................................. 34 

Figure 2.11: Categories of sensors [62] ................................................................................... 36 

Figure 2.12: Sensors in a smartphone [61] ............................................................................... 37 

Figure 2.13: A reference model for the general system for IoT ............................................... 38 

Figure 2.14: Location model of unknown node P(x,y) ............................................................ 39 

Figure 2.16: List of technologies used in indoor navigation systems ...................................... 40 

Figure 2.19: Human vision system ........................................................................................... 44 

Figure 2.20: Overview of a positioning system using a deep learning technique .................... 45 

Figure 2.21: Feedback system in DNN [70] ............................................................................ 45 

Figure 2.22: MLP network structure ........................................................................................ 46 

Figure 3.1: Overall layered structure of Indoor-Nav framework ............................................. 59 

Figure 3.2: IoT devices connected with Cloud in Indoor-Nav ................................................. 61 

Figure 3.3: Components of Indoor-Nav framework................................................................. 63 

Figure 3.4: Representation of OGM ......................................................................................... 64 

Figure 3.5: DynaPATH path estimation for VI people in Indoor-Nav ................................. 65 

Figure 3.6: Deployment of indoor positioning and tracking system in the Cloud ................... 67 



vii 

Figure 3.7: Interaction between the smartphone app and pre-trained model ........................... 68 

Figure 4.1: Fetching obstacle information using IoT device ................................................... 74 

Figure 4.2: Quality of path generated from neighbours: (a) m = 1, (b) m = 2, 4 and 

(c) m = 8, 16 ............................................................................................................ 75 

Figure 4.3: Distance heuristic based on Euclidean and Manhattan techniques ....................... 77 

Figure 4.4: Quality of path generated by (a) Euclidean, (b) diagonal and (c) Manhattan 

heuristic functions ................................................................................................... 81 

Figure 4.5: PRM (a) generation and (b) problems ................................................................... 82 

Figure 4.6: Selection of nodes in RRT algorithm .................................................................... 84 

Figure 4.7: Examples of straight (a) and diagonal (b) jump points [133] ................................ 85 

Figure 4.8: Algorithm with n explored neighbouring nodes by (a) A* and (b) Ortho-

PATH ...................................................................................................................... 87 

Figure 4.9: Path by (a) A* and (b) Ortho-PATH ..................................................................... 88 

Figure 4.10: Path quality in (a) A* and (b) Ortho-PATH ........................................................ 88 

Figure 4.11: Main screen of MATLAB simulation platform ................................................... 90 

 ....... 91 

 ............ 92 

Figure 4.14: Path generated by PRM (in red) with (a) 100 nodes, (b) 300 nodes and 

(c) 500 nodes (blue dots) ......................................................................................... 93 

Figure 4.15: Path generated by RRT ........................................................................................ 94 

Figure 4.16: Path generated by Ortho-PATH with jump points .............................................. 95 

-PATH ................................. 96 

-PATH ................ 97 

-PATH ........................ 98 

-PATH ................................ 98 

Ortho-PATH for VI people ..................................................................................... 99 

Figure 5.1: BVIP approach for indoor tracking of VI user [142] .......................................... 107 

Figure 5.2: (a) Accelerometer axes of smartphone and (b) graphical representation of x-, 

y- and z-axes of accelerometer .............................................................................. 108 

Figure 5.3: Unfiltered vs filtered accelerometer magnitude using low pass filter [142] ....... 112 

Figure 5.4: Gyroscope data for different turns [146] ............................................................. 113 

Figure 5.5: (a) Feature selection and (b) list of extracted features [142] ............................... 113 

Figure 5.6: Proposed adaptive distance estimation algorithm ................................................ 115 



viii 

Figure 5.7: Different thresholds for a user ............................................................................. 116 

Figure 5.8: Representation of adaptive threshold and step length ......................................... 117 

Figure 5.9: Snippet of step detection based on adaptive threshold ........................................ 118 

Figure 5.10: Snippet to calculate distance .............................................................................. 119 

Figure 5.11: Heading inference .............................................................................................. 120 

Figure 5.12: Heading inference with tilt compensation ......................................................... 121 

Figure 5.13: Azimuth degree to direction ........................................................................... 122 

Figure 5.14: Performance of machine learning techniques on gyroscope data ...................... 123 

Figure 5.15: Classification decision tree for turn detection ................................................... 124 

Figure 5.16: Sequence diagram of BVIP technique ............................................................... 125 

Figure 5.17: Flow of fusion algorithm ................................................................................... 128 

Figure 5.18: Heading inference for actual heading vs heading inference method ................. 130 

Figure 5.19: Result of prediction model on gyroscope data .................................................. 131 

Figure 5.20: Screenshot of Android application .................................................................... 131 

Figure 5.21: Position estimation (in blue) vs actual position (in red) .................................... 132 

Figure 6.1: Grid distribution of indoor environment [149] .................................................... 136 

Figure 6.2: Indoor floorplan with top view and trajectory path from IPIN2016 [150] .......... 139 

Figure 6.3: Graphical representation of x, y, z and magnitude of magnetometer readings ... 140 

Figure 6.4: Heatmap of magnitude of magnetic field in each location in the building  

[149] ...................................................................................................................... 141 

Figure 6.5: K-fold cross-validation technique  [149] ............................................................. 142 

Figure 6.6: Experimental platform for the proposed model ................................................... 144 

Figure 6.7: Comparison of (a) positioning error (MAE, MSE and RMSE) and 

(b) accuracy for some layers of the model  [149] ................................................. 146 

Figure 6.8: Prediction error with (a) different optimisers and (b) different activation 

functions  [149] ..................................................................................................... 148 

Figure 6.9: Training and validation (a) loss and (b) accuracy for deep MLP model ............. 149 

Figure 6.10: Best-suited regression-based DNN MLP model  [149] ..................................... 149 

Figure 6.11: Actual (x, y) position based on dataset .............................................................. 150 

 ...................................... 150 

 

  



ix 

List of Abbreviations 

2-D  Two-dimensional 

A-GPS  Assisted Global Positioning System 

AI  Artificial Intelligence 

AOA  Angle of Arrival 

BLE  Bluetooth Low Energy 

BVIP  Blue Dot for Visually Impaired People 

CART  Classification and Regression Tree 

CSI  Channel State Information 

DNN  Deep Neural Network 

ELU  Exponential Linear Unit 

GPRS  General Packet Radio Service 

GPS  Global Positioning System 

INS  Inertial-based Navigation Systems 

IoE  Internet of Everything 

IoT  Internet of Things 

IP  Internet Protocol 

IPIN2016 Indoor Positioning and Indoor Navigation 2016 

IR  Infrared Radiation 

IT  Information Technology 

KNN  K-Nearest Neighbour 

LED  Light-Emitting Diode 

LOS  Line of Sight 

MAE  Mean Absolute Error 

MEMS  Micro-Electromechanical System 

MLP  Multilayer Perceptron 

MSE  Mean Squared Error 

NFC  Near Field Communication 

OGM  Occupancy Grid Map 

OJPS  Orthogonal Jump Point Search 

PCA  Principal Component Analysis 

POI  Point of Interest 



x 

PRM  Probabilistic Roadmap 

QR  Quick Response 

ReLU  Rectified Linear Unit 

RF  Radio Frequency 

RFID  Radio Frequency Identification 

RMSE  Root Mean Square Error 

RNN  Recurrent Neural Network 

RRT  Rapidly Exploring Random Tree 

RSSI  Received Signal Strength Indicator 

SELU  Scaled Exponential Linear Unit 

SVM  Support Vector Machine 

TDOA  Time Difference of Arrival 

TOA  Time of Arrival 

UHF  Ultra High Frequency 

UWB  Ultra Wide Band 

VI  Visually Impaired 

VLC  Visible Light Communication 

WHO  World Health Organization 

Wi-Fi  Wireless Fidelity 

WLAN Wireless Local Area Network 

XML  Extensible Markup Language 

 

  



xi 

List of Authored Publications 

The results and outcomes of the research work in this thesis are published in the following 

papers. 

-Based Positioning of Visually 

10.3390/s20216238. 

P. T. Ma

building for a International Conference on Internet of Things 

Research and Practice (iCIOTRP2019), Sydney, Australia, 2019, pp. 7 12 doi: 

10.1109/iCIOTRP48773.2019.00010. 

International Conference on Sensing Technology, 

Sydney, NSW, Australia, 2019, pp. 198 203 doi: 10.1109/ICST46873.2019.9047704. 

sed Indoor 

International Conference on Machine 

Learning and Data Engineering (iCMLDE), Dec. 2018, Sydney, NSW, Australia, pp. 8 13, 

doi: 10.1109/iCMLDE.2018.00012. 

International Telecommunication 

networks and applications conference (ITNAC 2018), Sydney, NSW, Australia, 2018, pp. 10

13, doi: 10.1109/ATNAC.2018.8615350. 

17th International Symposium on 

Communications and Information Technologies, ISCIT 2017, Cairns, Queensland, Australia, 

vol. 2018-January, pp. 1 6, doi: 10.1109/ISCIT.2017.8261229 doi: 

10.1109/ISCIT.2017.8261229. 

 



xii 

Abstract 

Wayfinding and navigation are essential aspects of independent living that heavily rely on the 

sense of vision. Walking in a complex building requires knowing  exact location to find a 

suitable path to the desired destination, avoiding obstacles and monitoring  orientation and 

movement along the route. People who do not have access to sight-dependent information, such 

as that provided by signage, maps and environmental cues, can encounter challenges in 

achieving these tasks independently. They can rely on assistance from others or maintain their 

independence by using assistive technologies and the resources provided by smart 

environments. 

Several solutions have adapted technological innovations to combat navigation in an indoor 

environment over the last few years. However, there remains a significant lack of a complete 

solution to aid the navigation requirements of visually impaired (VI) people. The use of a single 

technology cannot provide a solution to fulfil all the navigation difficulties faced. A hybrid 

solution using Internet of Things (IoT) devices and deep learning techniques to discern the 

patterns of an indoor environment may help VI people gain confidence to travel independently. 

This thesis aims to improve the independence and enhance the journey of VI people in an indoor 

setting with the proposed framework, using a smartphone. 

The thesis proposes a novel framework, Indoor-Nav, to provide a VI-friendly path to avoid 

obstacles and predict the user s position. The components include Ortho-PATH, Blue Dot for 

VI People (BVIP), and a deep learning-based indoor positioning model. The work establishes 

a novel collision-free pathfinding algorithm, Orth-PATH, to generate a VI-friendly path via 

sensing a grid-based indoor space. Further, to ensure correct movement, with the use of beacons 

and a smartphone, BVIP monitors the movements and relative position of the moving user. In 

dark areas without external devices, the research tests the feasibility of using sensory 

information from a smartphone with a pre-trained regression-based deep learning model to 

predict the user s absolute position. 

The work accomplishes a diverse range of simulations and experiments to confirm the 

performance and effectiveness of the proposed framework and its components. The results 

show that Indoor-Nav is the first type of pathfinding algorithm to provide a novel path to reflect 

the needs of VI people. The approach designs a path alongside walls, avoiding obstacles, and 
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this research benchmarks the approach with other popular pathfinding algorithms. Further, this 

research develops a smartphone-based application to test the trajectories of a moving user in an 

indoor environment. The accuracy of the approach is 99.99%, with accurate turns and 

orientations of the user. The study shows the use of inertial sensors of smartphone data to 

discern the patterns of the surrounding environment and position a user with an error of no more 

than 65 centimetres. 

One of the main requirements of this field is to design a low-cost solution and employ 

technology for those who need it most. As such, self-positioning, safe and VI-friendly paths, 

with audible directions and warnings, are the main aspects of the proposed framework. The 

approaches and framework of the thesis contribute to analysing the capability of IoT 

implementations and deep learning techniques to enhance and improve the indoor journey of 

VI people. In future, the work will be extended to decrease the positioning errors further by 

In addition, future research will test pre-trained models deployed 

in a smartphone application and remove the dependency on internet connectivity. 

Keywords: indoor, navigation, visually impaired, Internet of Things, deep learning, 

pathfinding, positioning, inertial sensor, smartphone  
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1.1. Introduction 

A robust outdoor navigation solution is provided by a Global Positioning System (GPS); 

however, the use of GPS in an indoor environment is not always possible, as the satellite signals 

on which it relies cannot penetrate most walls [1]. Outdoor navigation has additional 

infrastructure aids that assist VI navigators, such as voice announcements on buses, talking 

crosswalks and Braille signs. However, according to Strategy Analytics, people spend 80 to 

90% of their time indoors, including in malls, hospitals and other public buildings [2]. Even 

sighted people find it daunting to navigate complex buildings, such as hospitals, IKEA, and 

malls. According to the World Health Organization (WHO), 265 million people are estimated 

to be VI worldwide; among these, 39 million are blind, and 246 million have a low vision [3]. 

Therefore, VI people may require directional assistance or navigation aids when travelling in a 

complex indoor environment.  

Despite visual maps, individuals face difficulty navigating a new location or room in a complex 

s natural ability to visualise the world and make independent decisions 

is a challenge for VI people. When travelling in a new environment or public building, VI 

people may require directional assistance or some form of navigation aid. The most remarkable 

s life is losing independence with the loss of eyesight. A VI 

person faces challenges in accessing the world in three main areas: the physical world, symbolic 

world and social world [3]. The biggest challenge faced by VI people is interacting with the 

physical world. To interact with the physical world, navigation is a task that is mainly taken for 

granted by sighted people. External cues tell people to move, stop and change directions, yet 

navigation and mobility remain difficult for visually impaired people. 

Knowing a building s landmarks while passing through to a destination can help people feel 

more confident about their route. Even when they are familiar with a particular environment, 

VI people can be unsure if they have passed a landmark on their way to their destination. When 

visiting a public building, VI people require consistent guidance and may need to know their 

location, giving rise to questions like Where am I? Have I passed a landmark on my way to the 

destination? Am I following the right path? These questions relate to different areas of the 

overall problem of indoor navigation. The first question is about knowing their position. The 

latter questions are related to path planning based on maps and knowing the history of 

positions known as the trajectory of the path. Special technologies such as raised line maps 
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(i.e., tactile maps) and signage information in Braille can assist a VI person in a complex 

environment [4]. However, not all VI individuals can read and understand tactile maps [5]. 

Moreover, tactile maps have limitations, including static information about changing 

surroundings, which poses difficulty for the VI person to position themselves [6]. A white cane 

is a luminous physical aid that allows a VI person to scan their surroundings for obstacles within 

a range; however, it fails to identify obstacles outside the range of 1.2 metres. In some cases, 

objects above knee level are not sensed. For example, a user may be unaware of a 

existence, as the cane may pass between the table legs, under the table-top. 

The development of innovative modern technologies, such as the Internet of Things (IoT) and 

artificial intelligence, has created possibilities for providing interactive systems to assist VI 

people in navigating indoor environments independently. The lives of VI people may improve 

when IoT systems have a real-time understanding of conditions, events and movements in the 

physical world. The indoor navigation system to enable independent navigation for VI people 

must track trajectories with knowledge of the VI s position. Implementation of IoT 

devices in an indoor environment will offer a visionary service for disabled communities. IoT 

devices include small items, everyday objects, vehicles, and the like embedded with electronic 

circuitry, providing network connectivity and capabilities to collect and exchange data [7]. The 

IoT allows these objects to be sensed and controlled remotely across existing or new 

infrastructure, creating opportunities for more direct integration with the physical world.  

A complex indoor environment can be transformed into a smart environment, where each of its 

meaningful locations (rooms, doors, stairs and elevators) are connected and can communicate 

with each other. Providing intelligent indoor environments that can make autonomous and 

adaptive decisions will bring revolutionary change to the lives of VI people. The use of indoor 

environment sensor data based on IoT devices is a rising trend to be exploited as a sensing 

service to automate real-time decision making and automated reasoning. Data extracted from 

sensors in such an environment can provide change notifications that can be used to make real-

time decisions [8] and offer context-aware semantic information, including locations.  

For a navigation system, it is crucial to locate the user to enable interaction with the rest of the 

interconnec s location information can provide a wide range of 

other services, such as aiding tourists, finding emergency exits, tracking children in crowded 

places, and assisting police in rescue operations [9]. A novel approach with interactive and 
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smart devices can effectively guide a VI person in a complex indoor environment. An IoT-

based navigation system with audible instructions regarding landmarks and room-level 

accuracy to travel in a new building can allow VI people to move independently in an indoor 

environment. As such, a variety of newly developed technologies and systems have been 

generated and tested [10], yet the designs still suffer from limitations in accuracy, high hardware 

cost, and lack of additivity and security [11]. The indoor environment must be equipped with 

an embedded computing system that senses the surroundings using existing Wireless Fidelity 

(Wi-Fi)-based or new wireless infrastructure. These interconnected IoT devices exchange their 

data with a remote server, where the data can be analysed and processed. The contribution of 

this research is to provide a self-directed, accurate and audio-aided navigational system using 

IoT and deep learning to aid the indoor navigation of VI people. 

1.2. Motivation 

Directional signs or building maps serve as helpful navigational aids, especially for people 

entering a new indoor environment. Despite having navigational aids, a sighted person can lack 

confidence when visiting such a new environment. However, a VI person visiting such an 

indoor environment is usually not provided with equivalent navigational aids. Given the lack 

of such aids, it is challenging to seek destinations independently without asking for the help of 

a sighted person. For a person to follow a route, they must ordinarily have some concept or 

plan. A VI person can learn a route either by guidance from a sighted escort or by audio 

instruction. Further, once the route has been learnt, successful travel requires the individual to: 

 know their position with respect to the location 

 detect and avoid local and global obstacles 

 know the moves to reach the destination 

 know their directions and follow the suggested route 

 detect the entries/exits of doors 

 identify landmarks along the way. 

Some of the current indoor navigation systems for VI people use Braille keyboards for user 

input, but not all VI people can read Braille. The accuracy of the system must be within 

centimetres, as the VI person may be unable to identify the two adjacent doors of a room in a 

mall or building. 
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GPS was developed with outdoor positioning applications in mind, with accuracy requirements 

of 10 to 30 metres [12]. GPS signals in an indoor environment are weak, as standalone GPS 

receivers cannot detect the satellites when indoors. Indoor positioning solutions using assisted 

GPS (A-GPS) are proposed to overcome this problem. However, A-GPS obtains assistance in 

the case of poor signals from cellular networks using mobile by improving the GPS receiver 

sensitivity by approximately 10 dB [13], which is insufficient to achieve indoor positioning 

accuracies of under two metres for VI people. 

Collision-free pathfinding, positioning and knowing route landmarks can be significant 

challenges for VI people in an indoor environment. Despite significant progress in recent years, 

the navigation and pathfinding problem continues to attract research to find an optimal solution 

for VI people [14]. Research shows that selecting the shortest path to reach a goal location is 

greatly emphasised. However, the criteria for selecting a path for a low-vision pedestrian 

include factors apart from the shortest distance. The primary requirement of a pathfinding 

algorithm for VI users is a safe and line-shoring path with turn-by-turn audio instructions, 

supported by clues to highlight landmarks and nearby places. Users must be provided with a 

clear path of travel that avoids local and global obstacles, with minimum diagonal and irregular 

moves.  

In addition, a VI person requires movement instructions, including steps and heading 

information, such as left and right motions. For example, Figure 1.1 displays an indoor 

navigation mobile application that suggests the pedestrian move 148 metres to the left. Such 

instructions can place VI people under pressure, as they have no notion of their surroundings 

or travelled distance [15]. 
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and deep learning algorithms to help a VI person make smart moves independently and build 

self-confidence with accurate route descriptions, path navigational progress, such as passed 

landmarks, and accurate absolute positioning. 

1.3. Research objectives and questions 

The previous section demonstrated that the positioning and navigation of a VI person in an 

indoor environment are challenging and unresolved issues. The problems faced by VI people 

in navigating indoors require appropriate attention. Thus, this thesis aimed to address these 

problems via an innovative smart approach that enhances the indoor journey of VI people by 

providing an independent navigation system that uses advanced technological IoT devices and 

deep learning techniques.  

1.3.1. Research objectives 

The main research goal of the thesis was to use IoT devices and apply deep learning techniques 

to help VI people navigate an indoor environment independently. The research objectives are 

presented in Table 1.1. 

Table 1.1: Research objectives 

RO1: To review the state-of-the-art of indoor navigation for VI people, IoT protocol suite and deep learning 
techniques. 

RO2: To develop an understanding and determine the effects of adapting an appropriate mapping technique for 
suitable IoT devices in the complex indoor infrastructure. 

RO3: To explore indoor collision-free pathfinding algorithms, propose a dynamic and VI-friendly path 
generation mechanism, and measure its effectiveness.  

RO4: To propose and develop an efficient tracking and positioning model to promote independent and 
centimetre-level accurate movements of VI people in an indoor environment.  

RO5: To propose a framework for effective and efficient indoor navigation for VI people to meet their needs. 

1.3.2. Research questions 

It is essential to understand the difficulties faced by VI users when navigating an indoor 

environment. This understanding led to the following primary research questions. 

RQ1: What are the main factors hindering a 

the critical issues to be resolved to create an effective and accurate indoor navigation 

system for a VI person? 



8 

Further, the research objectives led to the following sub-questions: 

RQ2: How can technological advancement, including IoT, help develop a smart 

navigation guide for VI people? 

RQ3: Which type of representation technique for indoor maps should be adopted to 

suit the requirements of VI people? 

RQ4: What are the criteria to be considered to evaluate the optimal pathfinding 

algorithm for a VI person? Which pathfinding algorithm is suitable for VI people to 

navigate in a dynamically changing environment? 

RQ5: ed path be tracked? How 

can smart devices help a VI person self-localise without assistance? 

RQ6: How can indoor positioning accuracy be improved by using hybrid technologies 

for VI people? 

RQ7: What is the best deployment solution of the proposed architecture for indoor 

navigation? 

To answer the identified research questions, a review of existing indoor navigation systems was 

performed. Based on the review results, traditional and existing methods were studied and 

simulated to a certain extent to conclude the limitation and usability of the systems. Further, 

scientific experiments and emulations were performed to address the problems faced by VI 

people in indoor environments related to pathfinding, tracking and positioning. The research 

goal in this thesis was to develop better surroundings for the community with low vision using 

IoT devices and deep learning techniques. The findings of the study will improve the 

independent indoor navigation of VI people. The results will potentially help develop a robust 

and useful mobile-based, low-cost application design with IoT-embedded surroundings. The 

study s contribution is original and in demand, considering the rapid explosion of IoT devices 

and the trend of deep learning-based applications in today s digital world. 

1.4. Research methodology 

The research methodology of this research is a combination of theoretical and experimental 

work and design. This section discusses the research methodology adapted after the review of 
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the underlying needs of the VI people for indoor navigation. The research project sought to 

improve the living standard of VI people by using IoT devices and deep learning techniques. 

Although research has been undertaken on indoor navigation, few systems have been 

specifically designed to consider communities with low vision [16]. The literature shows that 

the indoor location-aware system structure [17] for pedestrians consists of four layers: the 

Wireless Local Area Network (WLAN) interface, localisation layer, tracking and fusion layer, 

and application layer. Figure 1.2 presents an architectural diagram of a location-aware system 

based on Wi-Fi. The indoor map digital information is fed as input to all the layers depicted in 

the figure. We initiated this research by studying existing pedestrian-based navigation systems. 

 

Figure 1.2: Architecture of Wi-Fi-based location-aware system for pedestrians [17] 

There were numerous questions to be researched, so this study is divided into three primary 

stages to head in the best possible direction, as shown in Figure 1.3. Through this organisation 

of stages, the research is divided into smaller components to monitor progress at a granular 

level. The three stages of the research were research study; data collection, evaluation and 

testing; and framework design, implementation and performance. In the first stage, we 

performed a preliminary study to identify the issues faced by VI people while navigating 

indoors. We defined the parameters to consider in the literature review of the existing indoor 

positioning technology and its limitations. 

In the research study, we initiated the study of popular positioning technology and algorithms 

to identify a single/hybrid technology to meet the requirements of VI people. Further, we 

explored the use of IoT and deep learning in indoor navigation to propose a suitable positioning 

technology and solution. The research questions and scope were framed to indicate the direction 
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of the enquiry and focus related to the research. Finally, we reviewed literature papers and 

research on indoor navigation for VI people. Given that not much work has been undertaken 

for VI people, we explored the results and approaches of navigation systems for pedestrians 

indoors. The works related to the research study are presented in Chapters 1 and 2 of the thesis. 

The goal of the second phase is to propose a framework to help a VI person navigate an indoor 

environment accurately. The literature review revealed that the significant challenges in 

navigating indoors are generating an obstacle-free path, tracking and positioning VI people in 

an indoor environment. Therefore, this phase is divided into three significant stages: proposing 

a pathfinding algorithm that can avoid obstacles, a tracking system, and a positioning system 

for VI people.  

Although numerous researches related to pathfinding has been undertaken for indoor 

navigation, very few studies have focused on addressing the needs of VI people. An appropriate 

indoor space representation structure acts as an initial stage for further decisions reflecting the 

needs of pathfinding algorithms for VI people. We investigated the function of existing discrete 

and sampling-based pathfinding algorithms with different indoor space scenarios based on the 

selected representation technique. With the thought, one of the algorithms can be adapted, and 

we initiated the process to relate its function to the needs of VI people. However, given that 

none of them considered the requirements -

to generate a path in an indoor environment for VI people. Further, we compared the 

results with the most popularly used algorithms for the indoor environment. 
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Figure 1.3: Research methodology
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There is a need to track a moving user indoors and update the path as the user moves to 

recalculate the path if the user becomes lost. The accuracy of the tracking system must be within 

centimetres to help a VI person navigate individually for example, to differentiate between 

two adjacent doors in a building. For a walking person, it is essential to know the distance 

travelled, turns taken, and heading of the user moving in an indoor space. With this basic 

understanding, we proposed a combination of the absolute and relative positioning of the user. 

In addition, we investigated whether convenient IoT devices, such as a smartphone or iBeacon 

embedded in the entry/exit could help a VI person navigate individually. Based on experiments 

and emulations, we developed a dynamic fusion algorithm based on inertial sensors the 

accelerometer, gyroscope, and magnetometer of a user.  

To predict the position of the user in an indoor environment and track a user indoors, we studied 

existing methods and algorithms. Appropriate simulations have supported the results, 

emulations, and experiments to check the performance of the work at each stage. The following 

chapters have distributed the literature review with proposed methods with their simulations 

and experiments to enhance the navigation journey of VI people in an indoor environment.  

1.5. Contributions 

The key objective of this thesis is to propose an accurate and robust approach for indoor 

navigation and positioning of a VI person. Although indoor navigation research is actively 

tackling positioning problems from several domains, not much work has been undertaken for 

VI people. The section summarizes the publication outcomes as contribution with 

novel approaches and methods resolving pathfinding, tracking and positioning problems faced 

by VI people in indoor navigation.  

1. Literature review: The preliminary task of the research is to understand the positioning 

that enables wireless technologies and algorithms used in real-world scenarios. A 

comprehensive overview and study of key implementation technologies for localisation 

for VI people is undertaken. This work was published in: 

o P Localization techniques in indoor 

navigation system for visually impaired people 17th International Symposium 

on Communications and Information Technologies (ISCIT), Cairns, Australia Jul. 

2017, pp. 1 6, doi: 10.1109/ISCIT.2017.8261229. 
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2. Novel collision-free pathfinding algorithm: Following the study of existing systems, 

we explored and gathered the requirements for a VI person. For a complete indoor 

navigation solution, an effective digital space representation method is a starting point. 

Therefore, we have explored different techniques for indoor environment representation 

to suit the requirements of VI people. Further, we validated traditional and popular 

pathfinding algorithms to determine their feasibility in meeting the needs of VI people. 

results led us to identify that the design and algorithm needed to consider and focus on 

the critical requirements of a VI person. The contributions of the comparison were 

published in: 

o Comparison of pathfinding 

algorithms for visually impaired people in IoT based smart buildings,

International Telecommunication Networks and Applications Conference (ITNAC), 

Sydney, Australia 2018, pp. 10 3, doi: 10.1109/ATNAC.2018.8615350. 

To address the requirements of VI people in path generation, we developed an Ortho-

PATH novel pathfinding algorithm that uses IoT devices embedded in the interiors of 

the indoor space. Additionally, we proposed a new framework, DynaPATH, to deploy 

grid-based indoor spaces and generate orthogonal, shore-line and VI-friendly paths. The 

contributed research article discussing the novel approach is: 

o P. T. Mahida, DynaPATH: Dynamic learning based 

indoor navigation for VIP in IoT based environments, International Conference 

on Machine Learning and Data Engineering (iCMLDE), Sydney, Australia Dec. 

2018, pp. 8 13, doi: 10.1109/iCMLDE.2018.00012. 

3. Reliable tracking technique: A VI person can follow an obstacle-free path provided 

by the DynaPATH framework. However, tracking the person to ensure they follow the 

correct path is equally important. We proposed a novel Blue Dot for VI People (BVIP) 

framework that combines absolute positioning using beacons and a relative micro-

electromechanical system (MEMS)-based position learning technique. The relative 

positioning is based on the fusion of inertial sensors that track the user with dynamic 

threshold-based distance estimation, with 99.99% of heading and turn detection 

accuracy using a machine learning technique. We proposed and implemented an 
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Android-based tracking application that customis

size. The novel approach was published in: 

o An improved positioning method in 

a smart building for visually impaired user,  International Conference on Internet 

of Things Research and Practice (iCIOTRP2019), Sydney, Australia 2019, pp. 7

12, doi: 10.1109/iCIOTRP48773.2019.00010. 

o P. T. Mahida, S. Indoor positioning framework for 

visually impaired people using Internet of Things, International Conference on 

Sensing Technology, Sydney, Australia 2019, pp. 198 203, 

doi: 10.1109/ICST46873.2019.9047704. 

 

4. Centimetre-level positioning technique: Lack of sufficient external beacons in an 

area, such as a hallway, may generate difficulty in positioning a VI person. Therefore, 

we provided a robust independent inertial guidance tool to position a VI person in an 

indoor environment. To the best of our knowledge, this work is the first to propose and 

recommend regression-based neural training to estimate the position of a VI person 

based on the inertial sensors of a smartphone. We experimented with a deep neural 

network model to predict the position of a VI person as a complementary system to our 

navigation framework using external sensors. The absolute position error on a grid-

based indoor space is approximately 65 centimetres, which is reasonable for VI people. 

The contributed research article that discussed the novel approach was: 

o P. Mahida Deep learning-based positioning of 

visually impaired people in indoor environments, Sensors, vol. 20, no. 21, p. 6238, 

Oct. 2020, doi: 10.3390/s20216238. 

1.6. Thesis structure 

The structure of this thesis is presented in Figure 1.4 and organised as follows. Chapter 2 

presents the design and framework of Indoor-Nav for VI people to enhance and assist their 

indoor journey using IoT devices and a deep learning algorithm. The chapter presents the major 

components of the framework, while the further chapters discuss the implementation and 

experimental evaluation. 
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Chapter 3 discusses the limitations of the reviewed literature related to pathfinding, tracking 

and positioning in an indoor environment for VI people. Further, the chapter provides 

backgrounds on the basic concepts used in this thesis, including indoor navigation systems, 

wireless positioning technologies, IoT and deep learning.

Figure 1.4: Structure of the thesis

Chapter 4 introduces various techniques to represent indoor space and traditional pathfinding 

algorithms. Further, it discusses the limitations of the traditional pathfinding algorithms for a 

VI agent moving in an indoor space. Finally, the chapter proposes a novel pathfinding 

algorithm, Ortho-PATH, which provides VIP-friendly paths that avoid global and local 

obstacles. 

Chapter 5 presents an indoor tracking approach, BVIP, using beacons embedded in building 

locations and a smartphone held by the user. The approach proposes a reliable fusion algorithm 
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that predicts the relative position of the VI user with threshold-based step detection, heading 

detection using an inertial sensor and a machine learning turn detection approach. 

Chapter 6 explores a deep learning-based absolute positioning approach using a smartphone s 

inertial sensor dataset. The deep learning model is trained online and offline on a gathered 

public dataset produced by inertial sensors, including the accelerometer, gyroscope, and 

magnetometer of a smartphone to provide centimetre-level positioning. 

Chapter 7 concludes this thesis, discusses the presented contributions in the context of the 

identified research questions, and offers a stance for ongoing directions for future research.  



_____________________ 
Some parts of the survey work reported in this chapter have previously appeared in:  

ISCIT 2017, Cairns, Queensland, Australia, Jul. 2017, pp. 1 6. 

 

 

 

 

 

 

Chapter 2  

Background and Related Works 

This chapter introduces the significant challenges faced by VI people in navigating a complex 

indoor environment. The chapter illustrates the existing navigation systems provided to the 

community for navigating indoors, including their limitations. The chapter identifies the major 

components of an indoor navigation system from the literature review. It also introduces IoT 

and deep learning techniques applicable to establishing smart environments suitable for 

assisting with navigations by VI people. The chapter discusses the background of various 

wireless positioning technologies, with a comprehensive study of their advantages and 

disadvantages. Further, the chapter presents an in-depth literature review of the indoor 

navigation system components, including pathfinding algorithms, tracking, and positioning. 
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2.1. Overview 

An indoor navigation system provides path-guided information to help users reach their 

destination via determining the precise and accurate position of the user in an enclosed 

structure, such as a building, mall, hospital, or university campus. There is always a need for 

appropriate indoor positioning and pathfinding systems especially a complete solution to 

allow VI people to navigate comfortably and independently. Positioning technology and 

algorithms, tracking a moving user, pathfinding and obstacle detection are the most challenging 

aspects of mobility in indoor navigation, especially for a VI person [1]. This chapter revisits the 

existing indoor navigation solutions for VI people to discuss their implemented strategies and 

limitations. 

Section 2.2 introduces the general requirements of VI people while navigating indoors and 

details RSNAVI an indoor navigation solution. The work highlights the architecture and 

significant components of the navigation system based on the literature review. Section 2.3 

reviews and compares existing indoor navigation systems for VI people. Section 2.4 introduces 

the requirement for an appropriate map representation technique and discusses popular indoor 

collision-free pathfinding algorithms, while Section 2.5 discusses the characteristics, 

applicability, and reference model of IoT. Section 2.6 explores popular indoor positioning 

technologies used primarily in indoor navigation systems. Section 2.7 provides the background 

of the deep learning technique, including the structure and parameters for positioning an indoor 

user. Section 2.8 discusses our intensive research and review of components of indoor 

navigation systems, including positioning, tracking and pathfinding algorithms implemented 

for VI people, as well as their limitations. Section 2.9 discusses issues and gaps in existing 

indoor navigation and the need to provide a solution to meet the navigation requirements of VI 

people. Finally, Section 2.10 summarises the chapter. 

2.2. Introduction 

Existing outdoor navigation and mapping applications use GPS a technology successful in 

navigation and finding locations worldwide within a range of five to 15 metres of accuracy [9]. 

However, a GPS-based outdoor navigation system does not help navigate indoors, given the 

lack of line of sight (LOS). After travelling a long distance, the power of GPS signals is 

relatively low and is compromised further by obstructions between its antenna and the 

transmitting satellite. Also, GPS signals are blocked and reflected by the walls of buildings, 
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increasing the difficulty of locating a user indoors, given the insufficient signal strength inside 

buildings [13]. Multipath effect signals are also reflected and attenuated by noise interference 

from walls and furniture inside buildings [1], [13]. Complex indoor spaces usually have good 

signage or directional maps to find specific locations and indicate directions to move. These 

complex indoor environments include airports, exhibition halls, supermarkets, campuses, car 

parks and other environments [18]. Travelling independently in such a complex environment is 

a challenging task for a VI person. Tactile signs, sign boards, and Braille signs are solutions to 

virtually help VI users realise their position and direction to the destination in a complex indoor 

environment [19]. A VI person without advanced navigational aids performs obstacle detection 

and avoidance using traditional methods, such as a white cane or guide dog, in indoor and 

outdoor environments [20].  

Moreover, providing merely a distance description without enriched information of indoor 

maps is insufficient and might negatively influence the mobility and autonomy of VI users [20]. 

It is necessary to provide indoor location-based navigational services to VI people in such a 

complex environment, considering the rapid growth and technological advancement of IoT 

devices and deep learning. Literature work in this field evaluates beacons, sensors, near field 

communication (NFC), radio frequency identification (RFID) and Wi-Fi as an interface 

providing location information in the indoor environment. These technologies interact with 

physical world entities, collect information, and evaluate and provide location information back 

to the system [21]. Several designs and implementations of connected indoor environments 

based on emerging technology have provided assistive technology to the special-needs 

community. 

Figure 2.1 represents the architecture of the RSNAVI [22], an RFID-based context-aware 

indoor navigation system for VI users. There are three layers to the architecture of RSNAVI: 

sensing, network and application layers [22]. The sensing layer consists of various 

interconnected sensing devices that help identify obstacles in the path of VI people. The layer 

contains RFIDs, passive RFID tags and smartphones to monitor and track obstacles. The lower 

layer collects information about the surroundings and passes it to the middle layer. The middle 

network layer exchanges the information gathered from the sensing layer to Internet-located 

services. The application layer is a Java-based web service to retrieve and process the incoming 

information about the surroundings to the VI person. If a network connection between the 
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control and monitoring gateway does not exist, the system uses SMS-based communication via 

a General Packet Radio Service (GPRS) modem. 

 

Figure 2.1: RSNAVI architecture based on RFID context-aware indoor navigation for 

VI people [22] 

Rosen suggested a position information model, including semantic and geometric information, 

to provide location-based on the dead-reckoning technique [22]. However, the system proposes 

using a multi-parametric optimal route considering the limitation of dead reckoning. The path 

is estimated in two phases a rough and accurate estimate of various parameters, including 

static obstacles, emergencies, landmarks and turns. 
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2.3. Indoor navigation systems for visually impaired people 

Several approaches have sought to develop indoor navigation systems; however, not many 

deployments have been successful. As a result, the number of indoor location solutions reaching 

the market has risen dramatically. However, indoor navigation systems for VI people are 

beyond trials, and the experiment has not yet taken off [24]. Several projects have provided 

solutions to resolve indoor navigation, reflecting installation difficulties, lack of LOS, accuracy 

and interference. Most of these systems, such as BlindSquare [25] and Nearby Explorer [26], 

assist VI people to navigate outdoors using mobile devices and installed IoT assistive 

technology, including beacons, RFID, NFC and Quick Response (QR) codes [25],[26]. Some 

use short-range solutions, whereas others have long-range precision technology, increasing the 

system s cost [11]. An indoor navigation system for VI people has various criteria to consider. 

The primary concerns are accuracy, ease of use, real-time context awareness and obstacle-

avoidance wayfinding mechanisms. Section 2.3.1 provides a literature review of existing indoor 

navigation systems for VI people, including their features and limitations. 

2.3.1. Literature review of indoor navigation systems 

The first indoor navigation system used the infrared radiation (IR) approach [27]. The primary 

use of IR signals is to detect or track objects. IR exists just below the red edge of the visible 

spectrum, which makes this technology less intrusive than those based on visible light [27]. The 

IR-based system has a more extended range yet suffers from interference [28] from florescent 

lights and sunlight [1]. Some authors have proposed navigation systems based on Zigbee and 

Bluetooth [24], [28], [29], [30] to achieve high accuracy, but the radio signals complicate the 

propagation and deteriorate the results. Moreover, Bluetooth devices require 10 to 30 seconds 

per scan. Hence, latency rate and power consumption are unsuitable for real-

time positioning applications [28].  

Nakajima [31] proposed using Visible Light Communication (VLC) and geomagnetic sensors 

to position and localise users in indoor environments. A Panasonic Cloud environment is used 

to infer position information with a geomagnetic correction algorithm. However, the authors 

noted fluctuation in geomagnetic values because of noise and disturbance in the building. In 

addition, the position of the mobile device and floor of the building deteriorated the reliability 

of the solution. SUGAR [11] is an ultra wide band (UWB)-based navigation system that 

provides high accuracy, with a 95% confidence interval. However, the implementation of 
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wayfinding involves a grid-based A* algorithm with high computation complexity, given the 

square cell division of the indoor region. 

Guerrero suggested a micro-

position and movement [32]. The system implements static obstacle detection using an 

Extensible Markup Language (XML)-based tree structure of the room containing the 

corresponding data. However, the experiment and simulation of the system demonstrated that 

the system degrades with multiple users travelling in the environment. PERCEPT is an indoor 

navigation system based on Kiosk and passive RFID tags used for positioning [30]. It is a 

macro-navigation system to assist VI people to travel from one room to another located on 

different floors, based on the shortest path algorithm. However, the reported system does not 

detect any surrounding obstacles in the environment. Further, the author recommended 

improving the system by providing direction information based on steps and user preferences. 

The Path-Guided navigation system presents wall-mounted grid-based IR tags for positioning 

[28]. The author also developed a waist wearable device for VI users that transmits information 

to their smartphones. A vision-based IR technology is used in the system to make it cost-

effective and accurate. RFID tags have received growing interest and demand because of the 

simplicity and low-cost type of small IoT devices. RFID is used in various navigation solutions 

to improve the daily needs and lives of VI people [19], [33], [34]. Saleh proposed an indoor 

navigation aid based on active RFID tags and QR codes for VI and sighted users, respectively 

[19]. The system determines the user's position using eight attenuation power levels and signal 

strength using a smartphone. Emidio proposed an Ultra-High Frequency (UHF) RFID 

technology for long-range detection and tags for positioning the user [35]. The author evaluated 

the user's movement in a scattered environment considering the dynamic nature of indoor 

spaces. Dristi sought to develop an assistive navigation system to assist VI people with high 

accuracy [36], installing ultrasound pilots in the environment to provide accurate positioning. 

However, this system involves a high monetary cost to deploy, and the initial setup restricts its 

applicability to wide-scale implementation, given the cost. Further, lockage and disturbance in 

radio frequency (RF) signals degrade the accuracy of the system in certain dead spots. 

With the growing demand for smartphones, Chen proposed a navigation system based on a 

handheld mobile device and the existing Wi-Fi infrastructure of the building [37]. The 

researcher implemented a clustering algorithm and Kalman filter for the refinement of position 

and movement information. The solution uses Wi-Fi technology with a fingerprinting database. 
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However, it suffers from low performance and high computation requirements. Gallagher 

implemented a sensor fusion based system that runs locally on a mid-range smartphone [38]. It 

relies on a Kalman filter that fuses all the sensors available on the smartphone, including a Wi-

Fi chipset, accelerometer and magnetic sensors. Wi-Fi-based positioning systems have also 

been proposed for navigation systems using the Received Signal Strength Indicator (RSSI) [22] 

[19]. However, because of multipath distortions and power consumption limitations, RSSI-

based navigation systems do not estimate positions with high accuracy. Therefore, Wi-Fi-based 

RSSI signals with fingerprinting techniques are predominantly used for position determination. 

However, the fingerprinting-based navigation technique is highly dependent on training 

procedures and maintenance efforts [37]. Advanced technologies such as UWB and ultrasound 

used in the navigation systems provide centimetre-level accuracy [11], [36]. However, these 

systems use Ubisense sensors and ultrasound tags, which increases the overall cost estimation 

of the system.  

NavCog is a smartphone-based turn-by-turn navigation system for VI users, employing a 

network of Bluetooth low energy (BLE) beacons with an approach of K-nearest neighbour 

(KNN) algorithm [39]. The author claimed that NavCog achieves more precise localisation 

information than GPS- and Wi-Fi-based methods. Participants were less concerned with 

precision yet demanded the application make them aware of missed turns and provided a 

rerouted path to the destination. LowViz [40], AudiblEye and NavVis are some of the latest 

indoor navigation mobile applications for VI people. LowViz is an indoor navigation app 

launched in 2015 that uses various technologies, including inertial sensors, Wi-Fi and BLE 

beacons, to guarantee high accuracy [40]. LowViz uses a combination of positioning 

algorithms, including sensor fusion and post-processing methodology, for data refinement to 

provide high accuracy. However, context-aware real-time pathfinding is not yet included in the 

system.  

Table 2.1 summarises and compares the existing indoor navigation systems based on 

localisation technology and techniques, accuracy, space, wayfinding algorithm, obstacle 

avoidance and cost. It provides an insight positioning technology, distance 

estimation metrics, location estimation, accuracy, space, pathfinding algorithm, obstacle 

avoidance and cost. The table shows the limitations of each technology in meeting the accuracy 

and dynamicity requirements of VI people. 
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Table 2.1: Summary and comparison of indoor navigation systems for VI people 

Ref. Wireless technologies Distance estimation 
metrics 

Location estimation Accuracy Space Pathfinding 
algorithm 

Obstacle 
avoidance 

Cost 

[31] VLC + Wi-Fi + 
Bluetooth 

AOA  Custom algorithm using 
geomagnetic sensor 

1 2 m 3-D  No Low 

[11]  UWB + Wi-Fi TDOA and TOA Custom algorithm based on 
Compass  

20 cm 2-D A* Static High 

[32]  Infrared camera, LEDs 
+ Wi-Fi + Bluetooth 

 Triangulation  15 cm 2-D Shortest path  Static High 

[30]  Bluetooth + passive 
RFID + Wi-Fi 

- -  3-D Shortest path  No Mediu
m 

[22]  Wi-Fi + BLE + passive 
RFID tags 

Inertial sensors 

Dead-reckoning 
technique 

Dead reckoning  4-D Multi-
parametric 
optimisation 

Static Low 

[28] Bluetooth + infrared 
tags 

- Step detection (accelerometer) ±1.6 m 3-D 
algorithm 

Static Low 

[19] Wi-Fi + active RFID + 
QR codes  

RSS, power level Closest tag algorithm High 3-D 
algorithm 

Static Mediu
m 

[41]  UHF RFID tags + Wi-Fi RSS Proximity High 2-D 
algorithm 

Dynamic High 

[42] Smartguide attached 
to cane + RFID + Wi-Fi  

GPS + compass Dead reckoning High 3-D Shortest path   High 

[37]  Wi-Fi  RSS  Fingerprinting, map adaptive 
Kalman filtering 

High 2-D Shortest path No Low 

[28] Ultrasound beacon + 
Wi-Fi + wearable 
computer 

 Triangulation, step and degree 
detection 

22 cm 2-D  Dynamic High 

Note: AOA = angle of arrival, LED = light-emitting diode, TDOA = time difference of arrival, TOA = time of arrival. 



26 

2.3.2. Building blocks of indoor navigation systems 

The literature review related to indoor navigation in Section 2.3.1 explored the direction and 

helped identify the four major components of an indoor navigation system. The study of various 

navigation systems and the process of investigating the building blocks of a robust indoor 

navigation system for a VI person rely on a combination of dynamic mobility and orientation 

skills [43], [44]. Figure 2.3 presents the building blocks of an indoor navigation system for VI 

people. Indoor localisation technology builds the backbone network for the indoor space to 

interact with the connected indoor world. It helps estimate the location of the user and other 

interior objects in the indoor environment. However, automatic positioning is not all about 

navigation systems. Other factors are required, such as indoor data design, considering real-

time changes in the environment. Unlike outdoor space data models, indoors must consider 

geometric, topological, semantic and temporal data, reflecting structure, connectivity and real-

time data in the environment, updated regularly in Cloud services [45]. Based on these 

environmental and obstacle data, the pathfinding algorithm suggests a real-time turn-by-turn 

optimal route from A to B to the user. Speech recognition and audio output services are 

convenient ways for VI users to interact with the system [20]. 

 
Figure 2.3: Building blocks of indoor navigation framework 

From related studies, it is concluded that localisation technology, a positioning algorithm, an 

indoor space and obstacle data model, real-time wayfinding and user interaction are the most 
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significant components of an indoor navigation system. The gaps relevant to each component 

of the navigation system are further discussed in the following sections.

2.4. Representation of indoor space and pathfinding algorithms

Collision-free pathfinding is an essential component of an indoor navigation system that allows 

an agent to find and plan a route from the start location to the goal location, avoiding obstacles 

along the way. One possible obstacle is a -shaped obstacle, as shown in Figure 2.4. An 

efficient pathfinding process should scan a larger area and find the shorter path (blue) rather 

than following the longer path (red). As shown in the figure, the agent can follow a shorter and 

more efficient path by identifying an obstacle from a far distance than the traditional one. Both 

the routes (red and blue) avoid obstacles, but the blue route makes an intelligent move to detect 

an obstacle from a far distance, making this route optimal and efficient.

Figure 2.4: Local obstacle avoidance in pathfinding algorithm

Alongside local obstacles, a pathfinding algorithm must also avoid global obstacles, such as 

blockage of a route because of a wet floor or unavailability of vertical connectors, such as lifts, 

elevators and stairs s and considering the environment in 

selecting a path are prominent features of a pathfinding algorithm. For example, as shown in 

Figure 2.5, a shorter path via a non-working lift can be avoided by employing a pathfinding 

algorithm over a suboptimal path. Such runtime dynamic adaptation in a complex environment 

s them to travel independently.
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Figure 2.5: Global obstacle avoidance in the pathfinding algorithm 

The pathfinding process consists of three main components: representation of an indoor 

environment, a heuristic function, and a pathfinding algorithm using the heuristic function to 

guide the indoor search [46]. The decision to represent indoor maps and obstacles mapping on 

the indoor floor plan is an input to a pathfinding algorithm [47], [48], [49]. 

2.4.1. Map representation techniques 

The indoor navigation process models the indoor space onto a pathfinding graph. The graph 

captures locations including rooms, foyers and corridors as nodes, connecting links as 

distance, states and transitions between them [50]. The map representation techniques of an 

indoor environment are classified into grid graph and skeleton graph representations that can 

be further divided into visibility (roadmap) graph and tree graph representations, as shown in 

Figure 2.6. This thesis studied various graph representation techniques to determine the most 

suitable fit for the work. 
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Figure 2.6: Graph representation techniques 

The grid-based representation technique decomposes the indoor space into uniform cells or 

grids to generate grid-based graphs. The skeleton-based graph representation denotes the indoor 

s spatial structures, including rooms, stairs and corridors, as nodes with their 

connectivity as edges [51]. 

2.4.1.1. Grid-based representations 

The grid-based map representation is a popular way to discretise a map into a search graph [51]. 

Figure 2.7 (a) shows the original plan of an example indoor environment with three obstacles. 

A square grid-based representation in its pictorial form is depicted in Figure 2.7(b). A grid point 

is marked as either traversable/walkable (0) or blocked (1), based on the topology of the map 

[46]. Grids with such binary representation are known as binary occupancy grids [52]. The 

blocked grid point shows the location of the obstacle and accessibility of a VI person through 

space. An indoor map represented as a grid can be assigned a number or probability value to 

each grid point. Different numbers code the traversable and non-traversable locations. Such 

occupancy grids are known as probability occupancy grids [53].  
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      (a)                  (b) 

 
    (c)                                     (d) 

Figure 2.7: Graph representation: (a) original map, (b) grid-based graph, (c) skeleton-

based visibility graph and (d) tree graph 

2.4.1.2. Skeleton-based representations 

The skeleton-based representation technique selects special features of the space configuration 

[54] and reduces the indoor space into a countable set of graph nodes. Skeleton-based 

approaches are further categorised as two types of irregular graphs: visibility (roadmap) graphs 

and tree graphs [54]. Figure 2.7 (c) and (d) show examples of the two categories visibility and 

tree structure graphs of skeleton-based graphs with obstacles. In general, skeleton-based graphs 

generate new nodes around the corners of obstacles to avoid any blockages in the generated 

path. 

2.4.1.3. Visibility graph representation 

A visibility graph is a graph representation technique in which the nodes are visible to each 

other, as shown in Figure 2.7 (c) [53]. Two nodes are visible to each other if a straight-line 

segment joining them does not intersect any obstacle. It generates a graph with vertices 

representing reachable objects and edges representing the movements from one position to 
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another. Unlike grid-based approaches, a visibility graph may not find the shortest path, as the 

nodes represent a coarser representation of finer grid points [51]. However, a visibility graph 

requires less memory to store the map representation of an indoor space [55] and reduce 

computation time [56]. 

2.4.1.4. Tree graph representation 

A visibility graph must generate thousands of connections and nodes to find a path. Unlike 

visibility graphs, a tree representation generates randomised tree data structures requiring fewer 

nodes [57]. A tree representation the rapidly exploring random tree (RRT) is discussed in 

this thesis. Tree representation includes some of the same desirable properties as in roadmap 

representation, but this approach leads to better performance and good behaviour consistency 

[57]. Table 2.2 summarises the properties and performance of the path representation technique, 

as aforementioned. The memory-intensive property refers to memory usage for storing the 

representation of the map. The dynamic environment suggests the suitability of the 

representation technique in a space with moving objects. Optimality represents a vital feature 

to find the shortest path. Representation guarantees to find an optimal solution. Efficient path-

smoothing defines the quality of the process required to be performed on the generated path to 

remove sharp turns or discontinuities in the environment to provide a realistic path. Hence, 

choosing an appropriate representation technique based on the application is the first factor that 

will affect the performance and robustness of a pathfinding algorithm. 

Table 2.2: Summary of graph representation techniques 

Properties Grid representation Roadmap representation Tree representation 

Memory-intensive Yes No No 

Dynamic environment Yes No Yes 

Optimal representation Yes No No 

Representation 
complete 

Yes No Yes 

Efficient path-smoothing Yes No Yes 

The graph search algorithm processes rapidly, with fewer numbers of nodes in the map 

representation. However, the more nodes and the closer the nodes are to each other, the better 

the quality of the path. Grid-based graphs preserve most of the spatial information about the 

dynamic environment collected by the sensors attached to objects in the environment and can 

provide information about the objects  locations and states. Obstacle detection and avoidance 
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sufficiently realistic and human-like for a VI user [46]. Chapter 4 discusses the implementation 

and simulation of a grid-based map embedded with IoT devices to provide collision-free paths 

in an indoor environment for VI people to navigate. 

2.5. Applicability of the Internet of Things 

The recent advancements and convergence of MEMS technology, wireless communications 

and digital electronics have resulted in the development of miniature devices to sense, compute 

and communicate wirelessly over short dis  interconnections 

can help in various applications, including environmental monitoring, infrastructure 

monitoring, traffic monitoring and retail, as shown in Figure 2.9. The figure presents a 

schematic interconnection of IoT objects, where the application domains were chosen based on 

the scale of the effect of the data generated. 

 

Figure 2.9: IoT schematic showing applications and end-users [59] 
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2.5.1. Internet of Things devices and their characteristics 

The term Internet of Things  (IoT) defines interrelated, interconnected objects that can sense, 

collect and transfer data over a wireless network without human intervention [7]. 

in IoT refers to a piece of connected equipment, furniture, solar panel or connected automobile 

embedded with a sensing device that alerts about possible changes in events, including fuel, 

temperature, and fire. The IoT is an extension of Internet connectivity into physical devices and 

everyday objects. The physical devices are embedded with electronic devices, Internet 

connectivity and hardware, including sensors, actuators and RFIDs. These devices 

communicate and transfer data over the Internet and can be controlled and monitored remotely.  

Cisco refers to the IoT as the IoE), with four key components: 

processes and standards, things, the Internet and data as shown in Figure 2.10. The processes 

and standards allow things to connect over the Internet to exchange data using industry 

standards that guarantee interoperability and enable automated processes. The two main 

requirements of IoT are sensing and addressing [60]. Sensing is essential to identify and collect 

critical parameters for analysis while addressing provides Internet Protocol (IP) connectivity to 

identify things. 

 

Figure 2.10: IoT complete definition [60] 

Smart objects are physical objects that contain embedded technology to sense and interact with 

their environments by enabling communications, including sensors and actuators. These smart 

objects are fundamental building blocks of IoT networks. 



35 

2.5.1.1. Characteristics of Internet of Things 

The fundamental characteristics of smart objects in IoT are as follows: 

 Sensing: Each object connected to an IoT network should be capable of sensing the 

environment and generating operational data. 

 Connectivity: Smart objects participating in global information and IoT infrastructure 

must be interconnected to make intelligent decisions from the collected IoT data. 

 Centralised: The IoT is everywhere, so different disconnected and disaggregated data 

streams need to be connected and brought to a central location to perform analysis. 

 Intelligence: The system collects raw sensor data and converts them into a 

contextualised meaning. The collected raw information helps make decisions after being 

converted to intelligent data. 

 Energy: The IoT cannot rely solely on batteries; thus, energy harvesting, power 

efficiency, charging and infrastructure are necessary parts of the IoT design. 

 Security: Securing the endpoint devices and moving data in the IoT networks is essential 

to provide a complete model solution. 

 Coordination: A well-designed user interface will help information technology (IT) and 

non-IT professionals to coordinate and conclude about the occurrences and events 

around them with IoT data. 

This subsection discusses the primary IoT devices used in the thesis, with the general 

architecture of the IoT devices. 

Sensors: A sensor measures some physical quantity and converts the measurement reading into 

a digital representation. Sensors are not limited to human-like sensory data but can measure a 

wide spectrum of rich and diverse measurement data with good precision. Different sensors 

include invasive, non-invasive, active, passive, contact, absolute, and relative [61]. The 

categories of sensors are shown in Figure 2.11, based on the physical phenomenon. 
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Figure 2.11: Categories of sensors [62] 

Factors such as smaller size, form factors and decreasing cost enhance the economic and 

technical feasibility of having an increased density of sensors. Recently, smartphones have 

become commonplace IoT devices with dozens of sensors inside. Figure 2.12 shows the 

different types of sensors in a smartphone, including a camera, pedometer, accelerometer and 

gyroscope. These sensors can be embedded/installed in the infrastructure of a building to collect 

surrounding local data. Chapter 3 discusses the use of RFIDs to identify the dimension and 

location of the interior and furniture in the grid-based space in pathfinding algorithms. Chapter 

4 proposes a solution using smartphones and beacons to monitor the user s movement in an 

indoor environment. Finally, chapter 5 discusses using inertial sensors of a smartphone to 

estimate the user's absolute position using deep learning techniques.  
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Figure 2.12: Sensors in a smartphone [61] 

2.5.2. Reference model of Internet of Things 

The general reference model for a navigation system based on IoT is shown in Figure 2.13. 

There are five layers in the reference model of the IoT, including the sensing layer, network 

layer, Cloud layer, real-time analyser and interaction layer. 

2.5.2.1. Layer 1: infrastructure layer 

The infrastructure layer includes the physical devices, sensors, tags and actuators required to 

sense and measure the local surroundings of the environment. These are IoT devices acting as 

endpoint devices to send and receive information. They may be embedded in the ground or 

other infrastructure to provide access to digital data. To track and monitor these physical 

objects, addressing and identification must occur at the lowest layer of the IoT reference model. 

Each object is given an identity by the sensing layer, including sensors, actuators and tags.  

2.5.2.2. Layer 2: network layer 

The communication technologies depend on the locations and types of IoT devices. However, 

wearables typically communicate via a short-range technology, such as Bluetooth, with a 

nearby collecting device, such as a smartphone. The device may further forward the collected 

data to the infrastructure. Sensors installed in urban fixtures also use a variety of communication 
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2.6.2. Wi-Fi 

Wi-Fi is the common name for the IEEE 802.11 standard. Wireless connectivity is more 

prevalent than ever in everyday life. Each wireless router broadcasts a signal that is received by 

devices in the area [64]. Wi-Fi-based systems have very low costs for implementation, as they 

are part of indoor infrastructure nowadays. Using Wi-Fi-based indoor positioning and 

navigation systems depends on knowing the list of wireless routers available in an area in which 

the system operates. RSSI-based positioning is the most popular WLAN positioning method to 

extract signals in Wi-Fi networks and run on off-the-shelf WLAN hardware [65]. TOA, TDOA 

and AOA positioning mechanisms are not common in WLAN because of the angular 

measurements and time delay complexity [27]. RSSI-based positioning in WLAN positioning 

systems achieves accuracy varying from 3 to 30 metres. 

2.6.3. Radio frequency identification 

RFID-based systems consist of RFID tags and readers [66]. RFID tags can be attached to 

infrastructure and to fixed and moving furniture in a building. The RFID reader detects the 

identification number stored in the RFID tag and then transmits the location information to a 

base station [67]. The tags consist of a microchip that can typically store up to 2 kilobytes of 

data and a radio antenna. Tags emit radio signals that readers receive and vice versa. Both tags 

and readers use predefined radio frequencies and protocols to send and receive data between 

them [27]. There are two types of tags: active and passive. An RFID reader consists of different 

components to connect to a server, including an antenna, transceiver, power supply, processor 

and interface. Given the dynamic nature of the data, it is impossible to write all the information 

at the installation time. Therefore, it is appropriate to have a tag database to address this issue 

[66]. Although different positioning methods can be used with RFID, proximity is the most 

used and senses the presence of RFID tags rather than the exact position [27]. RFID tags add 

speed, accuracy and efficiency and help identify, track and monitor items in a system. 

2.6.4. Bluetooth 

Bluetooth is a wireless communication method used by two devices over short distances. 

Bluetooth is the IEEE 802.15 standard with a gross low and short bit rate range of up to 

10 metres. The maximum distance for Bluetooth communication is up to 100 metres for a class 

1 Bluetooth set [28]. The devices can send a maximum of 3 Mb/s. Thus, implementation and 

deployment can be costly. Bluetooth technology uses proximity and RSS-based methods to 
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estimate unknown distances [27]. Bluetooth beacons are hardware transmitters based BLE 

devices that broadcast their identifiers via Bluetooth to nearby portable devices. The BLE 

beac

use Bluetooth smart low energy radiation to send out the signals to the device, it is essential 

that the mobile device switch their Bluetooth on for interaction with the BLE beacon in the 

range. The maximum range (at a transmission power of +4 dBm) of different beacon hardware 

types is as follows [68]: 

 indoor beacon: 80 metres 

 outdoor beacon: 80 metres 

 pocket beacon: 50 metres 

 keychain beacon: 25 metres 

 long-range beacon: 300 metres. 

2.6.5. Zigbee 

Zigbee is a standard that provides network, security and application support services operating 

on the top of IEEE 802.15.4 [27]. Zigbee is a wireless technology standard that can be regarded 

as a short-distance and low-rate Wireless Personal Area Network. The signal coverage of 

Zigbee in an indoor environment is 20 to 30 metres relatively less than in outdoor 

environments. This technology achieves positioning by coordination and communication with 

neighbouring nodes. Usually, RSSI values are used to estimate the distance between Zigbee 

nodes [65]. 

2.6.6. Ultra wide band 

UWB signals used for positioning have received considerable attention because of their 

prominent feature of providing centimetre-level positioning accuracy [13]. This technology is 

referred to as a base-band, impulse and carrier-free technology [27]. UWB uses a low power 

density, wide bandwidth, which increases the reliability of the technology. The low frequency 

of UWB pulses enables the signal to effectively pass through obstacles, such as walls or objects 

[27]. The high bandwidth offers high data throughput for communication. However, UWB 

hardware is expensive, making it costly for wide-scale use. TOA and TDOA positioning 

methods have higher accuracy than other algorithms, but they require clock synchronisation 

[27]. 
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2.6.7. Ultrasonic 

Ultrasonic is a mechanical, oscillating sound pressure wave with a frequency higher than the 

upper limit of the human hearing range [27]. Ultrasonic devices can be used to detect objects 

and measure distances. Sound tracking is used to achieve centimetre-level accuracy. As a result 

of the strong decay profile of acoustic waves, the sound system is limited to a 10-metre 

operating range if not scaled with additional nodes [6]. This technology is associated with RF 

signals to fulfil the synchronisation requirement, which increases the overall cost of the system 

[69]. The relative distance between the devices can be estimated using TOA measurements of 

estimated by multilateration from three or more ranges to some fixed receivers deployed at 

known locations [65]. 

Table 2.3 summarises all the above-discussed positioning enabled wireless technologies based 

on parameters such as range, accuracy, the requirement of LOS, interference and positioning 

methods.  

Table 2.3: Summary of positioning enabled wireless technology 

Positioning 
technology 

Range Accuracy LOS  Interference Positioning methods 

Infrared Short 1 2 m Yes Yes AOA, proximity 

Wi-Fi Medium 1 5 m No No Proximity, TOA, TDOA, 
RSSI, fingerprinting 

Zigbee Medium (20 30 m) 5 10 m No No RSSI, fingerprinting 

Bluetooth Short 2 5 m Yes Yes RSSI, fingerprinting 

RFID Short (passive) 

Medium (active) 

1 2 m No No RSSI, fingerprinting, TOA, 
proximity 

UWB Long Cm No LOS No TDOA, AOA 

Ultrasonic Long 3 cm 1 m No LOS No TOA, Multilateration 

No single positioning technology can provide accuracy and precision that meets the 

requirements of VI people. Therefore, seamless cooperation among hybrid solutions with 

different technologies may help provide accurate location information for a VI person to 

navigate a complex environment. 
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2.7. Background of deep learning system 

The core concept of any artificial intelligence (AI) system is to perceive the local surroundings 

and take action based on this perception. For humans, vision is only one aspect of perception, 

as people perceive the world through their sight, as shown in Figure 2.19. For example, a room 

with an identifier room number (Administration  231) can be seen by a sighted person who 

interprets and locates the room processing in the brain. 

 

Figure 2.19: Human vision system 

Figure 2.20 presents an overview of the positioning system using an AI-based deep learning 

system with two major components the sensing and interpreting device. A smartphone with 

various sensors can act as a sensing device to mimic human eyes, while the robust deep learning 

algorithm mimics brain function to interpret and classify the location. 
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Figure 2.20: Overview of a positioning system using a deep learning technique 

Deep learning is a specific subfield of machine learning a new take on learning 

representations from data that emphasises learning successive layers of increasingly meaningful 

representations [70]. Contemporary deep neural networks (DNNs) often involve tens or even 

hundreds of successive layers of representations, and all have learnt automatically from 

exposure to training data. DNNs map the input to target mapping via a deep sequence of simple 

data transformations (layers), and this data transformation is learnt by exposure to training data. 

As shown in Figure 2.21, the learning process finds a set of random values as weights of all the 

layers in a network, such that the network correctly maps inputs to the associated target values. 

The loss function of the network uses the prediction value  and the actual target value Y to 

compute the distance score. The optimiser uses the loss score value as a feedback signal to 

adjust the value of the weights. A network with minimal loss is one for which the outputs are 

close to the target values.  

 

Figure 2.21: Feedback system in DNN [70] 

Optimisers are algorithms or methods used to change the attributes of the neural network, such 

as weights and learning rate, to reduce losses. Optimisers are used to solve optimisation 

problems by minimising the function. Various optimisers can be used in different applications, 

including Adam, Adamax, RMSprop and Adaptive Gradient Algorithm (Adagrad). 

Deep learning has attained a level of public attention over the history of AI to solve many 

industry issues. This thesis used a multilayer perceptron (MLP) to position the VI user in an 
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indoor environment with the help of inertial sensors of the smartphone. The MLP is 

characterised as fully connected layers, where each perceptron relates to every other perceptron. 

The MLP model is a class of feedforward artificial networks that define a mapping function, as 

in Equation (2.1) [71]: 

      (2.1) 

where y is the target, w denotes the vector of weights, x is the vector of inputs, b is the bias, and 

 is a non-linear activation function. The activation function converts the sum of input signals 

into an output signal. The activation function determines how the sum of the input signals 

activates and fires the target value. This study implemented Rectified Linear Unit (ReLU), 

Softplus, Exponential Linear Unit (ELU) and Scaled Exponential Linear Unit (SELU) to 

determine the best-suited deep learning model. The work proposed using a regression-based 

training algorithm to generate the MLP weights, mapping the inertial sensor data of a 

smartphone. In this case, the inputs of the MLP correspond to the three-axis inertial sensor 

measurements of a smartphone, and the output layer delivers the coordinates of a point in two-

dimensional (2-D) local space, x and y. Figure 2.22 presents the MLP-based DNN with three 

hidden layers consisting of 128, 64 and 128 neurons. 

 

Figure 2.22: MLP network structure 

An additional batch normalisation layer is introduced to perform optimisation on the input 

layers to mitigate the effect of unstable gradients with the given neural network. The batch 

normalisation layer works by performing a series of operations on the incoming input data [71]. 

The batch normalisation layer is adopted between the hidden layers for equal distribution 
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among the input of hidden layers and faster convergence. The hidden layer weights were 

updated by a reduction in the loss function L, as expressed in Equation (2.2) using the back-

propagation algorithm: 

        (2.2) 

where m represents the number of samples of input features, yi represents the actual coordinates 

of the ith sample, and f(xi) is a function to predict the position from the ith sample of input 

features. The work is implemented in Google a popular open-source deep-

learning library that uses Keras as a high-level application programming interface for its library. 

To train an MLP classifier using TensorFlow, the following parameters must be set: number of 

layers in the network, epoch (number of iterations), a block size of the learning, seed size and 

maximum iteration number. TensorFlow offers various tools for production deployment and 

maintenance, debugging and visualisation, and running models on embedded devices and 

browsers. Keras is ideal for the rapid implementation of deep learning models. Chapter 5 

discusses the implementation and results of a DNN to position a user in an indoor environment. 

The literature review of an indoor navigation system discussed in Section 2.3 did not focus on 

all building blocks. Therefore, the following Section 2.8 discusses and highlights the state-of-

the-art of pathfinding algorithms, tracking and positioning approaches used in existing indoor 

navigation systems about meeting the needs of VI people. 

2.8. Related works 

Pathfinding algorithms are a strong pillar in the context of robot movement or game 

development [46], as indoor navigation systems guide users to move independently from one 

location to another, and the pathfinding approach computes the best path between the goal and 

destination locations. The best path for most users can be described as a combination of criteria, 

such as the fastest or shortest routes. However, a VI user may select a route following a specific 

landmark or a simple path with few turns. Section 2.8.1 discusses the state-of-the-art indoor 

pathfinding algorithms used in an indoor navigation system. The pathfinding algorithms 

generate a path, but the VI person faces difficulty ensuring the directions he takes and moving 

independently. 

A monitoring and tracking technology can help a VI person follow a suggested path to reach 

the destination. Section 2.8.2 presents work related to indoor positioning and tracking in an 
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indoor navigation system. Existing indoor positioning technologies for VI people can be 

categorised as vision-based, non-vision based and IoT device based [14]. However, their 

popularity differs in accuracy due to noise and interference, signal availability, energy 

consumption, installation cost, and high maintenance in the indoor environment [72]. 

Considering these challenges, the performance of indoor location-based services depends on 

the appropriate choice of technology and approach. 

2.8.1. Related works: indoor pathfinding algorithms 

A significant amount of work has been done to develop a navigation system for VI people using 

existing traditional pathfinding algorithms, [37], [73], [74]. Most 

navigation systems  objective is to provide solutions that focus on positioning a user and 

providing an optimal path within the environment [75] usually the shortest path with the 

minimum number of turns. The author emphasises using Dijkstra s algorithm because of its 

optimal capability to find the shortest route  [75]. The author highlights using a personalised 

approach of combining user preference and a smoothening path metric to reduce the jagged 

 [75]. However, the computation time required 

relatively high.  

hm, OPTIPATH, 

algorithm to find an optimal path, considering the minimum number of turns and rerouting the 

path based on obstacles in the environment [58]. It includes a new criterion in the basic 

fewer angular turns between two nodes. A multilayer 

the start to the goal location, with the minimum turns in terms of degree [76]. The door-to-door 

approach is a two-  [77]. The 

two levels are coarse and fine, where the coarse level helps determine a path between rooms, 

and the fine level finds a path between doors in the environment. Using a graph-based model, 

it returns a coarse path that ignores internal obstacles in the environment. However, the quality 

of the path suggested by the algorithm is unsafe for VI users, as it causes sudden changes in 

direction and diagonal movements. 

A microscopic pathfinding algorithm is proposed to avoid static and moving obstacles for VI 

people [78]. The algorithm considers five optimisation parameters length, obstacles, 

landmarks, directions and intersections. The path suggested ensures a VI person follows a path 
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close to walls, even in a narrow passage connecting two walls. SUGAR is a microscopic 

pathfinding algorithm and uses the A* algorithm on a cell-based region in an indoor 

environment [11]. However, the computation complexity of the algorithm increases because of 

the division of the region into cells. Goyal proposed a pathfinding algorithm based on image 

processing that avoids local obstacles captured by the camera [79]. 

The literature suggests that the pathfinding algorithm primarily focuses on determining the 

shortest optimal path. However, a VI person may not mind travelling an additional few metres 

to attain a safe route that avoids obstacles and blockages. Much less effort has been invested in 

improving the quality of the path by considering the safety of users. Frequent changes in 

direction and sudden diagonal movements must be avoided to provide a safe route. Thus, aside 

from a short route, there is a primary need to provide a safe route to VI people that avoids local 

and global obstacles. 

2.8.2. Related works: indoor tracking and positioning approaches 

Conventional studies on pedestrian inertial-based systems focus on step detection using 

accelerometer sensors. Most of the movement tracking algorithms are based on peak detection, 

thresholds and spectral analysis [80].  However, many other approaches have been proposed 

and evaluated based on complexity, computational overhead and real-time usage [81]. Peak 

detection uses the periodic characteristics of the repetitive motion of a moving user. A peak 

detection algorithm extracts the local peak of a step from the normalised measure of an 

accelerometer sensor [82]. A handheld device may predict fake signals of human motion in 

some solutions, which leads to false step counts [83]. Peak detection algorithms are low in 

complexity, yet are limited to specific environments, step modes and device poses [83].  

Spectral analysis-based step detection approaches use the periodic characteristics of the 

normalised acceleration values in the time domain by employing transformation. These 

techniques were not favourable for  application, as the method requires large 

computational loads [80]. Literature review shows a threshold-based approach using gyroscope 

measurements for detecting the stance of a steps  [84]. The stance posture while walking 

can be detected with gyroscope measurements that fall in the threshold range. These approaches 

propose using a single measurements, unlike few other approach using multiple values from 

both the accelerometer and gyroscope measurements [85]. The approach checks the multiple 

threshold values, and a valid step is detected if all thresholds are in the specified range. 
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However, threshold-based detection methods suffer from poor performance in different walking 

styles of users. 

For a VI person, the positioning error needs to be within a few centimetres to locate a user in 

the correct room within a building. The system should also be able to estimate and update the 

location of the moving user rapidly. The literature review of such work focuses on predicting 

accuracy, positioning error and using technologies with minimal resources. Vision-based 

positioning technologies require the receivers and the moving object or person to be in the LOS 

to estimate the position measurements [86]. This category involves a vision-based camera and 

infrared ultrasonic system [87]. Guerrero suggested using a micro-navigation system with an 

infrared camera, Wiimote an augmented white cane to detect 

movement [32]. However, the system requires massive resources and a high computation 

operation to evaluate th .  

Non-vision-based positioning technology includes narrow and wideband wireless RF and 

magnetic field-based technologies [86]. Indoor positioning has been attempted using Wi-Fi, 

infrared, RFID, ultrasound, Bluetooth or a combination of technologies [88], [89]. A radial-

based network, including infrared and RFID, has acceptable localisation error. However, it 

suffers from high cost, requiring additional hardware and offensive calibration processes [87]. 

Ultrasound waves are used to estimate and track the position of a user in ultrasound-based 

systems. However, blockage of the LOS might result in incorrect measurements [90]. SUGAR 

[11] uses multiple UWB tags that achieve a suitable localisation error of up to 38 cm for VI 

people. However, installing the UWB system is expensive, and the positioning is purely based 

on a UWB tag. Nakajima proposed using VLC and geomagnetic sensors to position and localise 

the user in an indoor environment [31]. The system provides localisation errors of up to one to 

two metres, which is insufficient for VI people. 

Several attempts have been made to develop indoor navigation systems; however, not many 

have been successfully deployed. NavCog is a smartphone-based turn-by-turn navigation 

system for blind users using a network of BLE beacons with an approach of KNN algorithm 

[39]. The system achieves precise localisation; however, the solution must reroute the path 

when the user misses the turns. LowViz is the latest mobile application to assist VI people in 

indoor navigation [40]. The system uses a wide range of technologies, including sensors, Wi-

Fi and BLE beacons, to guarantee low localisation error. However, context-aware real-time 

pathfinding is yet to be included in the system, and the app may fail when the signals from 
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external devices fail. Thus, while various newly developed technologies have been generated 

and tested, the designs still suffer from limitations in localisation error, hardware cost, 

availability and lack of additivity. 

Recently, there has been a considerable new interest in indoor localisation techniques, driven 

by the proliferation of smartphones and other mobile devices. Traditional approaches, such as 

Wi-Fi-based fingerprinting or distance-based methods, have low prediction accuracy because 

of shallow learning [91]. To manage the shallow learning problem, DNNs are implemented for 

self-extraction of appropriate low- and high-level features of the given raw data [92], [93], [94]. 

DNN approaches have shown good performance against signal fluctuations, noise effects and 

time-consuming manual tuning [95]. The deep networks dynamically learn from the 

environment by mapping noisy and complex input data to the corresponding output [71]. 

However, t insufficient work has been done to provide 

deep learning-based positioning for VI people. Given the limitations of positioning systems for 

VI people, this thesis indirectly reviewed general positioning techniques using Wi-Fi, inertial 

sensors of smartphones and channel state information (CSI).  

A novel indoor classification approach is proposed with Wi-Fi fingerprints to predict the correct 

floor and locations using a DNN [91]. The positioning system based on deep learning uses 

heterogeneous network data, including Wi-Fi and cellular networks with recurrent neural 

network (RNN) algorithms, with a high average error of 9.19 metres [96]. The positioning error 

is approximately nine metres unsuitable for a low-vision person. Another study applied an 

RNN-based indoor positioning solution [97] to RSS data to exploit the sequential correlation 

of RSS data. The work achieved an average localisation error of 0.75 metres, with 80% of the 

errors below one metre. The positioning system based on the integration of two techniques, 

namely linear discriminate analysis and RSS based MLP provides 99.15% prediction accuracy 

and 0.98-metre positioning error [95]. RSS-based approaches have high variability at a fixed 

position each time. In addition, RSS-based localisation systems have coarse information 

because of multipath channels from different antennas. RSS-based approaches usually have one 

to three metres of localisation error, which is difficult to improve further [98]. 

A localisation technique based on CSI fingerprints collected using a single access point is 

proposed that uses a Principal Component Analysis (PCA) feature extraction technique  [99]. 

The technique provides different positioning errors in different rooms varying from between 

0.6 and 1.08 metres [99]. The work compared two positioning methods, including MLP and 
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convolutional networks implemented on RSS and CSI data  [93]. The observation shows that 

RSSI data could achieve an average 0.92-metre localisation error, with the highest error of nine 

metres. However, the results with CSI data achieved a 0.92-metre positioning error, with 

maximal localisation of 1.92 metres. Besides Wi-Fi network information, the magnetic field 

-constant magnetic field 

[100], [101]. In addition, each building has a unique magnetic field with some local anomalies. 

Thus, the static magnetic field can be used in indoor localisation and navigation systems [34], 

[36]. A recurrent DNN approach applied on magnetic signals in an indoor environment achieves 

a localisation error of 1.062 metres, compared with an average error of 3.14 metres with BLE 

fingerprinting results [102]. 

Despite extensive research to improve the algorithms and technologies discussed in earlier 

sections, some significant issues remain unresolved related to the accuracy, infrastructure 

selection and computational complexity. Many indoor solutions focus on using high computing 

devices. Most positioning systems have focused on solving the underlying issue as a 

classification problem using Wi-Fi signals by providing room-specific information. This thesis 

aimed to mitigate the infrastructure dependency and proposed positioning a VI person using a 

commonly carried and convenient device a smartphone. 

2.9. Issues and gaps in existing indoor navigation systems 

Most navigation solutions are geared to the needs of people with good eyesight. The systems 

designed for low-vision people have limitations in their functionality or features. The following 

are the limitations of positioning and navigation systems in indoor environments: 

 Attenuation of signals and no LOS: A high attenuation level exists in radio signals 

because of various building materials, such as plywood, glass, iron, roofing tiles and 

bricks [7]. Lack of knowledge of a propagation model and no direct LOS might fail to 

provide an exact measure of the wireless device in an indoor environment.  

 Avoiding local and global obstacles in the path: Indoor navigation is challenging for 

VI people, as they must know about and avoid approaching obstacles. Therefore, indoor 

navigation systems for VI people must consider avoiding local and global obstacles, as 

discussed in Section 2.4. 

 VI-friendly paths: People with low vision prefer to walk along a straight route, 

avoiding obstacles, yet most pathfinding and generation approaches focus on the 
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shortest route. There is a demand for pathfinding algorithms that provide the appropriate 

information with straight-line pathways and paths along walls. Designated path 

generation tools help people with a reduced peripheral field find their destination. 

 Indoor position accuracy: Indoor positioning and navigation developments use 

various algorithms and technologies, including IR, ultrasound, magnetic and vision-

based [7]. All approaches have technical shortfalls in coverage range and accuracy. For 

VI users to navigate indoors, centimetre-level accuracy is required to facilitate a small 

framework of indoor spaces to differentiate events such as two adjacent entrances of 

stores and detecting different floor levels. Thus, there is a high demand to improve the 

relative accuracy of navigation systems indoors. 

 Mapping and deployment setup: Choosing an efficient mapping and representation 

technique is essential for developing an effective navigation system for VI users [8]. In 

addition, the deployment setup should take care of IoT devices with their configurations 

and periodic updates and storage in the cloud.  

2.10. Summary 

This chapter has discussed the need for an indoor navigation system and highlighted the issues 

and gaps in existing systems for VI people. This chapter has also discussed the limitations of 

existing indoor navigation systems developed for VI people. Further, the chapter introduced 

IoT devices  characteristics and applicability in indoor navigation systems. The chapter derived 

four major components of indoor navigation systems from an intensive literature review of 

existing systems and understanding the gaps for VI people. The components include map 

representation, collision-free pathfinding algorithms, tracking and positioning approaches, and 

user interfaces for a VI person in indoor environments. 

Moreover, the chapter provided the background of indoor wireless positioning technologies, 

including their coverage and accuracy. It introduced various wireless positioning technologies, 

discussing the expected range, accuracy, requirement for LOS, interference and positioning 

methods. The chapter discussed many positioning approaches that have used wireless signals 

s absolute position in an indoor environment. The work in the thesis adapted 

the deep learning technique to predict the user s position using the measurement of inertial 

signals. Further, this chapter introduced the concept of deep learning and its applicability in an 

indoor navigation system. The chapter studied the literature solutions for positioning and 

tracking an indoor user and discussed their gaps in providing a complete solution for 
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independent navigation. Apart from positioning and tracking, a map representation of the 

indoor environment and providing a collision-free path for VI people are mandatory. The 

chapter discussed the state-of-the-art of map representation techniques and popular pathfinding 

algorithms. Based on the highlighted research in this chapter, the next chapter proposes a novel 

framework to solve the challenges discussed and faced by VI people. The following chapters 

propose and evaluate approaches to remove the existing gaps and provide a robust framework 

for VI people to navigate indoors.  
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Chapter 3  

Indoor-Nav: Novel Framework for 

Visually Impaired Navigation 

This chapter introduces Indoor-Nav a novel framework to provide an end-to-end solution for 

VI people to travel independently in an indoor environment, using IoT and deep learning 

techniques. The chapter discusses and highlights the layers, interaction between devices and 

components of the proposed framework. 
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3.1. Overview 

The field of indoor navigation for VI people has been studied extensively; however, developing 

technology to provide a reliable and accurate solution to meet the needs of VI people remains 

a significant challenge. This chapter presents a general overview of a practical solution that is 

reliable, cost-effective and accurate in guiding VI people to navigate independently in an 

unknown environment. Section 3.2 introduces the significant problems and challenges that the 

thesis aimed to resolve using the proposed framework. Section 3.3 presents the layers and 

components of the framework, with deployment details. Section 3.4 summarises the chapter. 

3.2. Introduction 

Vision loss significantly affects the lives of VI people in most activities that are essential for 

movement and independence especially navigation. Research shows that VI people spend 80 

to 90% of their time inside a building or indoor environment. Thus, given that vision is an 

essential human sense, VI people face unique challenges in navigating an unknown indoor 

environment, such as finding their desired goal location and determining correct paths in an 

unknown indoor environment. Orientation and mobility training programs help VI people learn 

safe, efficient and effective navigation with appropriate travel skills. However, there remain 

issues that make VI people dependent on an individual s guidance while travelling in an 

unknown building.  

Many assistive devices for VI people have been studied and reviewed in the literature. However, 

most remain in an active development stage or do not provide a complete solution to resolve all 

the issues faced by VI people. In addition, some do not meet user needs and expectations, as 

they are too large for a human to hold, uncomfortable to wear, or complicated and costly, as 

discussed in chapter 2. Existing research from the literature review indicates that VI people 

require detailed information about the environment in the range of 5 to 20 metres to navigate 

confidently. Further, they require information about obstacles, specific landmarks, self-

positioning and safe paths to reach the desired location.  

Table 3.1 summarises the significant problems that VI people experience when navigating an 

unfamiliar building. The table presents problems, challenges and solutions with technologies 

based on the literature review.  
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Table 3.1: Problems and challenges of VI people, with applicable solutions 

 Problems and challenges Solution 

1 Information on commercial maps is limited and insufficient for a 
VI person to understand 

Spatial maps with details of 
interiors 

2 Difficulty detecting and avoiding fixed and global obstacles RFIDs, proximity beacon, camera 

3 Commercial tools provide shorter paths with multiple turns and 
are not VI-friendly 

Reliable pathfinding algorithm 

4 No commercial tools have detailed information about landmarks 
and safe routes, considering the needs of a VI person 

Proximity sensors/beacons 

5 Difficulty in knowing orientation and relative position when in 
motion 

Fusion algorithm for tracking user 

6 No appropriate tool to accurately self-position a VI person Accurate and reliable positioning 
technique (cm) 

7 Difficulty interacting and navigating in a crowded place with lack 
of accessibility information 

A handheld assistive device with 
audio interaction 

Challenge#1: People with vision loss usually keep the setup of their home or work 

environments constant to help them locate items and avoid barriers while moving. However, in 

a public building, the only way to know the environment is through using maps. Usually, maps 

are provided as a kiosk or a visual board that guides sighted people to navigate a complex 

building. However, these commercial maps do not provide detailed context-aware information 

readable for a VI person [4]. Therefore, as mentioned in Table 3.1 (#1), dynamic changes in 

complex buildings make navigation tasks difficult for VI people. Thus, maps must include 

spatial information of fixed, moving and temporary obstacle position changes in the indoor 

space for VI people. A possible solution to the limited information on commercial maps is to 

provide spatial maps with details of interiors and changes in the environment.  

Challenge#2: To detect and avoid obstacles in the indoor environment is crucial for VI people, 

as discussed in Table 3.1 (#2). The problems are discussed much in chapter 4 more in detail, 

including illustrations of global and local obstacles. Each object in the indoor space needs to be 

embedded with RFIDs to recognise the interiors and track their location and help VI people 

avoid the obstacles when travelling indoors. The framework proposes using Bluetooth beacons 

devices help VI people to differentiate between two adjacent doors and navigate independently. 

Challenge#3: Further, a noticeable difficulty for VI people discussed in Table 3.1(item #3), as 

observed in the literature review and studies, is that most commercial tools provide a shorter 

route than a safe path for pedestrians to move. The paths provided by most navigation systems 
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consider the shortest route rather than the safest route along walls and with minimum turns. 

Therefore, an appropriate and reliable pathfinding algorithm is proposed to meet the safety 

requirement of VI people. This work focuses on providing a VI-friendly path considering the 

requirements and safety of VI people. The work requires a unique indoor building map, i.e. 

occupancy grid maps (OGMs). Therefore, there is a need for a reliable and VI-friendly 

pathfinding algorithm that helps VI people with obstacle-free and safe paths with minimal turns 

to travel safely on the way, as discussed further in Chapter 4. 

Challenge#4: Identification of entry/exit or doors is required for a VI person to navigate 

indoors independently. Therefore, the work proposes implementing the beacon/proximity 

sensors on specific landmarks, including doors, entry/exit, escalator, and lift. That helps the VI 

people differentiate landmarks, defined as an indoor POI and thereby provide safe routes as 

mentioned in Table (item #4). 

Challenge#5,6: In a complex building, self-positioning and orientation recognition are 

significant challenges for a VI person, as discussed in table 3.1 (item #5, #6). The work proposes 

a fusion tracking algorithm in Chapter 5 that helps a VI person with rerouted routes knowing 

their orientation and position when they get lost. In addition, to overcome problems involved 

with lack of accessibility, a complimentary, independent Android application is proposed in 

Chapter 6 to help a VI person self-learn his/her position holding a smartphone using deep 

learning techniques. 

Challenge 7: Vision loss causes difficulty accessing the physical world (item #7). Thus, an 

effective means of communication and interface for a VI person would include speech and 

audio interactions using handheld devices. Smartphone-based solutions are most likely to be 

accepted because of their comfort and lightweight by VI people. Moreover, the latest 

smartphone comprises various sensors, including an accelerometer, gyroscope, magnetometer 

and more. The inbuilt voice recognition and audio interactions fulfil the need of VI people. 

Therefore, the proposed framework suggests a reliable and accurate positioning fusion 

approach using beacon and smartphone sensor signals to position and track an indoor user.  

3.3. Proposed framework: Indoor-Nav 

This section introduces the Indoor-Nav framework that this thesis proposes to provide users 

with the capabilities to manage their indoor journey without direct human assistance. The 

framework provides a communication platform enabling IoT devices to support and sense the 
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indoor space over the Internet. In addition, it offers users safe paths, tracking and self-

positioning facilities. The design of the framework considers the fact that IoT devices, including 

smartphones, have limited power consumption. Figure 3.1 presents the overall technology 

layers and communication between layers for the framework and its components to perform.

The framework includes four layers: infrastructure, processing, communication and interaction 

layers. The lowest layer acts as the sensing layer to collect information about the indoor space 

to generate a spatial map with information on obstacles and landmarks, using beacon and RFID 

devices. The updated spatial map or grid-based indoor map is converted to OGMs and provided 

to the above processing layer, consisting of storage and processing devices, such as Raspberry 

Pi, a mini processor and a Cloud-based server. This layer calculates safe paths, estimates the 

position and helps track the user. The communication layer includes wireless 

technologies for the device and applications to send/receive data to and fro at a periodic interval. 

Finally, the interaction layer comprises an Android smartphone-based application that interacts 

with the user to instruct and guide VI people while navigating indoors.

Figure 3.1: Overall layered structure of Indoor-Nav framework
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Each of the layers have their own significance. The lowermost sensing layer helps to sense the 

environment using IoT devices and builts the spatial map including information related to the 

landmarks and obstacles in the indoor space. Communication layer sends the sensed 

information to the VI person via  mobile device. An android app is the interaction layer that 

assist the VI person with with voice to know and accordingly act to move in the given indoor 

space.  

Figure 3.2 presents the distributed architecture of devices in the framework. The architecture 

consists of IoT devices, including RFIDs embedded in each obstacle, including fixed and 

rearrangeable furniture, and iBeacons installed on corridors, entry/exit doors and escalators. 

These sensors help identify the proximity information of the barriers or landmarks in the indoor 

space. The signals of inertial sensors, including the accelerometer, gyroscope and 

magnetometer of a smartphone, are collected to sense the trajectories of the moving user [103], 

[104]. Inertial sensors help track indoor users in real-

A gyroscope measures the rate of c

angular velocity. An accelerometer measures the change in gravitational acceleration in an 

embedded device. A magnetometer measures the local magnetic field, consisting of both the 

eld and the magnetic field due to magnetic material surrounding the sensor. 

The raw data of the sensors is collected via a Raspberry Pi RFID reader. Further, they are 

processed in the Cloud using the deep learning technique to predict the absolute positioning of 

the user. The VI user (i.e., the agent) interacts with the system using a smartphone-based 

Android app and receives audio instructions to navigate indoors. 
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Figure 3.2: IoT devices connected with Cloud in Indoor-Nav
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With recent advancements in wireless protocols, sensors and other IoT devices can be 

embedded in building infrastructure. In addition, device connectivity is improved with Cloud 

services, such as Amazon Web Services and Google. The work considers the deploymnent of 

the DNN algorithms on cloud based platforms. Therefore, the connectivity to Internet and cloud 

becomes bottleneck for the framework to be functional. Smartphones and wearables, including 

smartwatches, are common equipment used for human interfacing and are considered end 

devices. The proposed framework may not be functional in absence of any of the components. 

In Future, we may propose the solution limiting the infrastructure and dependencies. The 

framework focuses on connecting VI people and events and help people self-locate and re-route 

if they become lost in a complex building. 

3.3.1. Architecture of Indoor-Nav 

The Indoor-Nav architecture has three major components based on the problems identified by 

the thesis. The components of the framework include initial map setup, navigation guide (path 

estimation) and navigation guide (tracking and positioning), as shown in Figure 3.3. This 

section provides a brief introduction to the components of the architecture. In addition, the 

components, along with experiments and simulations, are discussed in more detail in later 

chapters. The initial map setup detailed presented in the following subsection 3.3.1.1 that takes 

the OGMs as input, and updates them from the RFID information embedded on each object in 

the indoor space [105], [106]. Further, subsection 3.3.1.2 discusses the path estimation 

component that takes the updated OGMs as input to generate a VI-friendly and safe path. The 

third component of the architecture, an Android application that helps a VI person track and 

self-position using fusion algorithm and deep learning techniques, is detailed in subsection 

3.3.1.3. 

3.3.1.1. Initial indoor map setup 

Indoor maps, with their unique properties, such as fixed barriers (including walls, corridors and 

interiors), can be converted into OGMs using robotic sensors with laser and range sensors [107], 

[108], [109]. The conversion of sensor data to OGMs is not part of this thesis this thesis 

assumes that OGMs are provided to the framework. However, this section briefly introduces 

occupancy representation primarily for robot navigation and discretise the indoor environment 

into grids or fixed-size cells [109]. The structure of the distributed space using OGMs gives the 
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Figure 3.4: Representation of OGM 

The black pixel specifies an occupied space, and the white pixel shows the free space. This 

work used a binary occupancy grid to represent the occupied workspace (obstacle) with a true 

value (1) and free workspace with a zero (0). Every cell in the representation is a binary random 

variable that models the occupancy with a 0 or a 1: 

 If cell is occupied: p(mi) = 1 
 If cell is not occupied: p(mi) = 0. 

The indoor maps used for the experiments discussed in Chapters 4, 5 and 6 employ OGMs as 

grid-based maps. 

3.3.1.2. Navigation guide: path estimation 

Figure 3.5 shows the dynamic learning component, DynaPATH, for generating a collision-free 

path for VI people. As shown in the figure, the proposed approach expects each unique area of 

a building such as rooms, stairs, lifts and corridors to be equipped with a sensing layer of 

IoT devices. They are augmented with IoT devices that provide global information about the 

environment via periodic sensing. For instance, a lift or elevator not working can be recorded 

by the sensing layer, and thus the pathway using it can be avoided in navigation for a VI person. 

The numbers in Figure 3.5 denote the sequence of steps of a VI-friendly path. 



65

Figure 3.5: DynaPATH path estimation for VI people in Indoor-Nav

The indoor map with basic structural information, including locations of walls, stairs, elevators, 

is converted in a local OGM as discussed in subsection 3.3.1.1 in Step 1. The step generates the 

basic OGM covering the fixed structure of the building. However, the indoor space has other 

moving obstacles such as furniture, interiors expected to be embedded with the IoT devices. 

The component DynaPATH senses the indoor environment from sensor data received from the 

embedded IoT layer on top of an indoor environment in step 2 to generate the connectivity 

graph using the IoT devices, including RFID and beacons. Later, in step 3, the component 

updates the OGM with the obstacle model by reading the sensing IoT-based layer with the 
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dimensions of the obstacle and updates the basic OGM. Our approach creates an intelligent 

connected graph based on information using a sensing layer and grid map. The obstacle model 

senses the environment periodically and updates the Cloud server in step 4a. The semantic and 

topological information about these nodes is updated to the Cloud server periodically. 

Step 5 provides two inputs, namely 1) the location of landmarks and 2) the grid-based spatial 

map stored in the cloud Server to the pathfinding algorithm to evaluate the collision-free path 

for the VI people. The nodes generated from the connected graph from step 4b acts as jump 

points or walkable points to the pathfinding algorithm, Ortho-PATH, in the given environment. 

Steps 2 and 3 updates the obstacle model if the IoT sensing layer finds any change. The updated 

grid-based spatial map and specific locations as jump nodes serve as inputs to the chosen 

pathfinding algorithm, Ortho-PATH, producing safe and VI-friendly paths for VI people. The 

solution aims to optimise computation time to evaluate a safe path in the indoor environment. 

The DynaPATH demonstrated using Figure 3.5 generates safe route for VI people following 

the dynamicity of the given indoor environment. The suggested path generated in step 6 avoids 

global and local obstacles, with straight moves along the walls (line-shore), making the path 

VI-friendly. 

3.3.1.3. Navigation guide: tracking and positioning 

This component proposes an Android-based application for indoor positioning of a VI person, 

based on inertial sensors of a smartphone and the DNN technique. Our system design is based 

on Lambda architecture and can be used for the real-time analysis of a VI person moving in a 

smart building using the MLP algorithm. 

Figure 3.6 defines the high-level reference architecture used to estimate the location of the 

subject. The system applies a deep learning-based algorithm to detect the position of the VI 

user in the building. The system collects data from the iBeacon and the inertial sensor of the 

smartphone and smartwatch of the subject. The Raspberry Pi collects information about the 

movement of the user. The data collected by the Raspberry Pi is sent in the form of Apache 

AVRO messages to a big data platform created using Apache Kafka. AVRO is an open-source 

data serialisation system that helps with data exchange between systems, programming 

languages and processing frameworks. Kafka is a streaming platform that handles real-time 

data. The data come in the form of AVRO messages and are inserted into the system through 

the Kafka REST server. The Kafka REST server uses an AVRO schema that persists in the 
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Schema Registry server to obtain information from the messages. The data are then processed 

in an implementation of a Lambda architecture.

Figure 3.6: Deployment of indoor positioning and tracking system in the Cloud

Kafka Connect is a server that takes messages from the Kafka topics and inserts them in a 

Cassandra database. In batch processing, all data stored in the database are used as training data 

for the regression DNN algorithm to predict the location estimation of VI people. The DNN 

algorithm used for location estimation is represented as the Lambda function. For stream 

processing, it is unfeasible to retrain the deep learning algorithm each time new streaming data 

enter the system, as this process would take too long compared with the time in which the 

prediction should be made. Considering this time restriction, depending on the size of the 

streaming data, the deep learning algorithms should be retrained at a frequency of several hours.

Figure 3.7 displays the general interactions between the Android-based application residing in 

a smartphone and the Cloud-based pre-trained model established by a deep learning model. The 
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DNN is tested and deployed on the AWS cloud but could be easily deployed on any other 

platforms. The framework proposes a navigation guide tool for positioning a VI user in an 

indoor environment, using a regression-based deep learning model. The smartphone application 

reads the inertial sensor signals, including the accelerometer, gyroscope and magnetometer. 

Some more features are extracted from the raw data by the component and fed as input to the 

DNN model for training to estimate the user's location. The DNN network model trains the 

inertial sensor measurements of the smartphone to estimate the corresponding position of the 

moving VI user in the building. IPIN2016, a public dataset, is used to train and test the proposed 

model. The Android-based smartphone app informs the absolute local position of the user to 

the agent through an audio interface. The implementation and experiments of the DNN, with 

the results, are discussed in Chapter 6.  

 

Figure 3.7: Interaction between the smartphone app and pre-trained model 

3.4. Summary 

The novel integration of IoT with deep learning using an innovative approach has created scope 

for accurate and reliable smart indoor navigation for VI people. This chapter has summarised 

the proposed Indoor-Nav framework for assisting VI people in navigating an indoor 

environment, including its layers, devices and operation. The components of the framework are 

implemented independently, enabling on-demand smart navigation for VI people. A range of 

experiments and simulations will be presented in Chapters 4, 5 and 6 to evaluate the proposed 
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approaches related to pathfinding, tracking and positioning a VI user indoors. The study aims 

to validate and demonstrate the efficiency of the proposed framework, Indoor-Nav, in guiding 

VI people to navigate indoors independently. Chapter 4 demonstrates the effectiveness, 

suitability and limitations of the traditional pathfinding algorithm in estimating paths for VI 

people. It proposes a reliable algorithm, Ortho-PATH, to estimate a VI-friendly and safe path 

for VI people. Chapter 5 presents a fusion tracking algorithm based on an inertial sensor and 

beacon to validate whether the VI person follows the suggested path accurately. Finally, chapter 

6 describes the capability of smartphone inertial sensors to localise an indoor user using deep 

learning techniques and a smartphone to position a VI user. 
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Chapter 4  

Ortho-PATH: Collision-free Pathfinding 

Algorithm 

This chapter presents the collision-free pathfinding algorithms used in indoor spaces embedded 

with IoT devices to allow VI users to navigate the existing infrastructure of a building. The 

work includes experiments and simulations of the most popular pathfinding algorithms with an 

indoor floorplan. The algorithms fail to provide a VI-friendly path that reacts to environmental 

changes. Thus, the work proposes an innovative pathfinding algorithm, Ortho-PATH, to 

overcome the limitations of traditional pathfinding algorithms, with high optimality in 

providing timely responses and improved safety for VI people.  
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4.1. Overview 

This chapter discusses the collision-free pathfinding algorithms used for indoor navigation 

services using IoT devices. With the growing development of IoT, an indoor navigation service 

provides an immediate visionary sense for senior and disabled communities. An indoor 

environment with rooms, doors and corridors, can be converted into a smart environment with 

the help of IoT devices. When communicating with each other, the IoT devices exchange data 

that can help the movement of VI people in indoor environments. However, one of the 

significant challenges in such an interconnected world of IoT devices is providing a reliable 

and safe path for VI people [110]. Thus, this chapter introduces a collision-free pathfinding 

algorithm for VI people. The primary goal of this chapter is to provide an inclusive 

understanding of traditional and popularly used pathfinding algorithms. The chapter highlights 

the drawbacks of traditional pathfinding algorithms for VI people. It identifies the constraints 

of using them in an indoor navigation system for VI people, and proposes a novel pathfinding 

algorithm, Ortho-PATH, to address the constraints. 

Section 4.2 discusses pathfinding algorithms in general, including the difficulties faced in 

avoiding global and local obstacles. Section 4.3 discusses various categories of traditional and 

popular pathfinding algorithms used in indoor environments to suit VI people. Section 4.3.1 

introduces the concept of the heuristic function used in most pathfinding algorithms, while 

Sections 4.3.2 and 4.3.3 discuss traditional and popular pathfinding algorithm categories

discrete and sampling-based pathfinding algorithms. Sections 4.3.2 and 4.3.3 discuss the 

working and pseudocodes of the different PRM and 

RRT algorithms. Section 4.4 describes the innovative algorithm, Ortho-PATH, which 

incorporates features that closely address the needs of VI people, with the theoretical 

background of its application. Section 4.5 discusses the feasibility and applicability of the 

Ortho-PATH pathfinding algorithm over traditional path-planning algorithms, with simulation 

results and evaluations done in MATLAB. Finally, Section 4.6 summarises the chapter. 

4.2. Introduction 

Finding and planning a path is a fundamental component of applications in GPS, indoor 

navigation, video games, robotics, logistics and crowd simulation [46], [111]. Sight is a key 

sense used to find a path, and loss of the visual sense can lead to major problems for VI people 

in finding their way. Researchers have invested effort into helping pedestrians find the optimal 
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and shortest path in public buildings, such as airports, museums and malls [77]. However, very 

few have considered the legibility of pathfinding aids for people with visual impairment [78], 

[112], [113]. Pedestrians have many factors influencing how easily they find their goal location 

in their indoor environment journey. The ability, experience and knowledge of a person about 

the indoor environment help pedestrians determine their way effectively. Indoor navigation is 

a process of taking a precomputed path from a pathfinding algorithm and determining a user s 

movement along the found path, considering the user s limitations [114]. 

location to the target location in an indoor environmental space. Public buildings, such as 

hospitals, are often busy and have various interiors to confuse and obstruct a VI person 

navigating the environment. The interiors and furniture of the building act as obstacles for a VI 

person. While walking towards the goal location, avoiding obstacles is crucial [115]. Therefore, 

a revised definition of a pathfinding algorithm considering users  low vision involves 

constructing a valid collision-free path between start location A to goal location B [116]. An 

adaptive and safe (collision-free) path helps the VI person navigate indoor environments using 

advancements in IoT-based obstacle-sensing technology. There are two main types of obstacles 

in a public building: static and moving. Obstacles whose positions do not move are static 

obstacles, including walls, doors and fixed furniture. Moving obstacles include those whose 

positions and states change with time. Based on the frequency with which objects are moved, 

they can be further categorised as: (1) static landmarks (e.g., avoiding stairs or the route through 

a particular landmark) (2) constantly moving (e.g., people and changes in the interior), (3) 

temporal change (based on time e.g., a door closed during a specific hour or a wet floor). 

Despite significant progress in recent years, the pathfinding problem attracts research to 

produce optimised pathfinding architecture for humans with limited heavy devices to carry, 

unlike robots [76], [117]. Researchers have invested significant effort into providing a path that 

selects the shortest route to the goal location. However, the criteria for selecting a path by a 

pedestrian with visual limitations does not only include distance, but also includes: 

 avoiding local and global obstacles 

 the minimum number of turns 

 the minimum computation time 

 shore-lining paths (along the walls). 
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Any optimal path should meet these path-selection criteria to provide a realistic, human-like, 

adaptable and dynamic indoor environment.  

4.3. Collision-free pathfinding algorithms 

Pathfinding algorithms for the indoor environment must determine an obstacle-free path for VI 

people. Representation of the indoor environment is an important aspect to be considered before 

proposing a pathfinding algorithm. As discussed in section 2.4, the indoor map representation 

data are stored as dense (grid-based) or sparse (skeleton-based) graphs. In other words, the data 

can be represented as a weighted graph to search the goal node from the start node with a 

specific heuristic. In provided simulations, the grid-based dense technique has been used, as 

discussed in Section 2.4. The connectivity of indoor spaces can be represented with a graph that 

captures the relationship between a collection of nodes V and edges E. A network of rooms in 

a building is represented as nodes in the graph. The accessible routes connecting rooms with 

horizontal or vertical connectivity, such as stairs and elevators, act as edges. Each edge E is 

assigned a weight, as the distance between the nodes or an estimation needed to travel along 

the edge. A graph G = (V, E) contains n (n > 2) nodes, named V1, V2 Vn, and edges E1, E2, 

E3 En. The neighbourhood of a node n V is denoted by N(n) and defined by Equation (4.1): 

        (4.1) 

A graph search algorithm starts at node Vstart and attempts to find a path to a goal node Vgoal by 

exploring the neighbouring nodes V via the connecting edges E. A node is unexpanded  if the 

algorithm has not reached it. A node is alive  or open  if it has been reached, yet has at least 

one neighbour not yet reached closed  or dead  when the search algorithm has 

reached it, and so have all its neighbours. 

Among various challenges in implementing indoor navigation for VI people, this research 

sought to answer a few inevitable questions. By performing simulations on traditional 

pathfinding algorithms, this study aimed to answer the following primary questions: 

 How optimal are the current traditional pathfinding algorithms for VI users? 

 Which pathfinding algorithm will provide optimal paths in an indoor navigation system 

for VI people, considering real-time changes in the environment of a building? 
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Figure 4.1 presents the design to fetch obstacle information and feed it as input into the 

pathfinding algorithm, as discussed in Sections 4.3.1 and 4.3.2. 

 

Figure 4.1: Fetching obstacle information using IoT device 

Each interior of the building, including fixed and moving furniture, is embedded with an RFID 

tag. All the obstacles that might hinder a VI person need an RFID tag. Each tag in the area is 

equipped with detailed dimensions of the object. An RFID tag emits RFID signals sent 

continuously and read with a Raspberry Pi Gateway UHF RFID reader. Static and moving 

obstacles can be traced using an RFID reader and then fed into the database system. With 

obstacle information from the database system, the building's indoor floor plan is fed into the 

pathfinding algorithm to generate a VI-friendly path. Further, the pathfinding algorithm 

searches for an optimal path in the indoor space, using a grid-based graph representation 

technique, as discussed in Chapter 2, and the heuristic function, discussed in the following 

section.  

4.3.1. Heuristic functions 

A heuristic  is defined as searching for an optimal path from the start node to the goal node 

[118]. Heuristics are essentially used to guess whether a node being evaluated will lead to the 

goal node. Heuristics help increase  efficiency, as they are inclined to 



75 

limit the number of searched nodes. A heuristic function, h(n), increases the chance of finding 

an optimal path using heuristic information [53]. The function h(n) takes the goal node n as 

input and returns a non-negative real number as an estimate of the cost of the path to reach the 

goal node n from the start node [92]. The function h(n) is an underestimate if h(n) is less than 

or equal to the actual cost of the lowest-cost path to the goal node n. If the heuristic is admissible 

and does not overestimate the cost of the path from the start node to the goal node, then the path 

to node n is guaranteed to be optimal [119]. This function helps guess the most promising 

neighbour of the current node while searching and estimating the search direction with a greater 

chance of leading to the goal node. 

In a grid-based map representation, each straight, horizontal or vertical move from a traversable 

node to one of its neighbours may or may not have a uniform cost. The map representation 

includes non-traversable nodes, such as walls and other obstacles where a path is not allowed 

through the nodes. A was implemented in MATLAB 

to determine the value of the appropriate neighbouring node m. Figure 4.2 (a), (b) and (c) show 

the paths generated for varying numbers of neighbouring nodes, with m = 1, 4 and 8. 

   

(a) (b) (c) 

Figure 4.2: Quality of path generated from m neighbours: (a) m = 1, (b) m = 2, 4 and 

(c) m = 8, 16 

As the number of neighbouring nodes to be explored increases, the generated path s quality 

also increases, with fewer directional changes. However, as the number of neighbouring nodes 

increases, the computation time also increases in finding an optimal path. Therefore, the 

generated route from m = 8 can be considered the base heuristic with less turns that generates 

an optimal path with better quality considering the needs of the VI people, as shown in Figure 

4.2. 
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4.3.1.1. Heuristic functions  

This subsection discusses the distance measurement techniques between the two nodes, 

including Euclidean distance, Chebyshev octile distance, Manhattan distance and diagonal 

distance algorithms [78], [120]. In these experiments, there are eight neighbouring nodes. 

Manhattan distance: 

The Manhattan distance is a standard distance heuristic for a grid-based technique to estimate 

the distance between two nodes in an n-dimensional space, known as L1 distance [117]. The 

distance between two locations using Manhattan distance is the absolute difference between 

these two points in a grid on a horizontal or vertical path. Instead of calculating a straight path 

through two points, Manhattan distance calculates the sum of the absolute difference of its 

horizontal and vertical components. Equations (4.2) and (4.3) calculate the Manhattan distance 

between two nodes, A and B: 

      (4.2) 

       (4.3) 

where  represents the distance between two x-coordinates  of nodes A and B, and 

 represents the distance between two y-coordinates  of nodes A and B. The function 

Manhattan (A, B) denotes the Manhattan distance between A and B. 

Euclidean distance: 

Euclidean distance between two points in Euclidean space is a straight-line distance between 

two points, where an agent may move in any direction. It is the cartesian coordiantes of the 

points using the Pythagorean theorem. The Euclidean distance between the two nodes A and B 

is depicted in Equation (4.4): 

       (4.4) 

where  represents the distance between two x-coordinates  of nodes A and B, and 

 represents the distance between two y-coordinates  of nodes A and B, as shown in 

Equation (4.2). The Euclidean (A, B) is the Euclidean distance between nodes A and B.  
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Figure 4.3 represents the distance between the start and goal locations using Euclidean and 

Manhattan distance in blue and red. Considering the needs of VI people, the Manhattan distance 

is preferred, as it avoids an angular move. VI people tend to avoid making diagonal moves 

between two locations and prefer walking along walls. 

Diagonal move: 

The diagonal move is an eight-way movement heuristic across diagonals when the distance 

between two adjacent points (diagonal and non-diagonal) is the same. Equation (4.5) presents 

the calculation of diagonal move: 

  (4.5) 

where Diagonal (A, B) is the function to calculate diagonal distance between two nodes A and 

B. The distance  represents the cost between two x-coordinates  of nodes A and B, 

and  represents the cost between two y-coordinates  of nodes A and B. For D = 1 

and  = 1, the heuristic distance is known as Chebyshev distance [121]. When D = 1 

and , the heuristic distance is known as octile distance. 

 

Figure 4.3: Distance heuristic based on Euclidean and Manhattan techniques 
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Further in the following section, traditional pathfinding algorithms are discussed, with their 

pseudocodes and simulations. 

4.3.2. Discrete pathfinding algorithm 

Pathfinding is a complicated problem in a continuous domain [116]. However, discrete 

pathfinding algorithms resolve pathfinding issues by converting the continuous configuration 

space into discrete space. The cell decomposition method placed over the configuration space 

marks discrete positions of obstacles and possible path movements. This method generates a 

finite and countable number of states S. There has been significant research on discrete search 

mechanisms, given their importance in robotics, games and navigation [122]. Breadth-first, 

depth-first, best- algorithms are popular and most used in pedestrian 

navigation as discrete search mechanisms [123]. This section discusses the most popular 

algorithms, , as discussed in Section 2.4, and presents the simulation results 

using the algorithms in Section 4.5. 

4.3.2.1. Dij algorithm 

Dijkstra s algorithm is a classic shortest path algorithm between two points, given its 

optimisation capability [75]. Hence, it can be referred to as a breadth-first search algorithm for 

finding the shortest paths 

algorithm searches in the forward direction, the cost is frequently called cost-to-come because 

it represents the minimum cost required to reach the goal node [124]. This work deals with a 

the cost is called cost-to-go because it 

represents the cost of going from the start to the goal node. Algorithm 4.1 displays the 

pseudocode of . 

For graph G with vertices V and edge E, A

a path from the Vstart to Vgoal nodes. The algorithm calculates the cost cj for all nodes and inserts 

the vertices in an empty list, open-list. Based on the available shorter route, the update (vi, cj, 

open-list) function inserts a new vertex vi with the calculated minimum cost ci into the list open-

list for the paths not already in the list. The nodes with minimum cost heuristics are further 

expanded in the algorithm until the goal node is reached. Also, open nodes in a heap are 

reordered (and the search tree adjusted) whenever a cheaper path to the goal is found through a 

recently expanded neighbour. Many navigation systems in indoor environments for VI users 

propose the use of Dijk  [75] [77], [125], [126], [127].  
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4.3.3.1. Probabilistic roadmap algorithm 

The PRM algorithm first constructs a roadmap graph representing a set of collision-free paths, 

and then queries the shortest path connecting a start node to the goal node using the roadmap 

graph [130]. In sampling-based algorithms, the number of samples determines the computation 

complexity to find a feasible path [131]. The PRM algorithm operates by randomly sampling 

the configuration space coordinates, then further mapping them into an obstacle space. In a 

PRM algorithm, the randomly generated sample nodes are referred to as waypoints . The 

waypoints are selected randomly, without any bias or prior knowledge about the map. The 

indoor space with sample nodes of the map is used to build a connectivity graph. The algorithm 

attempts to generate a connectivity graph in the configuration space by connecting to the nearest 

neighbours with some distance d. Figure 4.5 (a) represents the roadmap generation for a given 

sample map with static obstacles. Figure 4.5 (b) illustrates the inefficiency of PRMs in 

generating paths with narrow passages. An algorithm is complete if it terminates in a finite time, 

returns a valid solution if one exists, and is otherwise a failure [130]. Therefore, the PRM is a 

probabilistically complete and suboptimal algorithm. 

  
(a) (b) 

Figure 4.5: PRM (a) generation and (b) problems 

The PRM algorithm is used in multi-query applications consisting of two phases PRM 

generation or pre-processing phase and query phase, as depicted in Algorithm 4.3 (a) and (b) 

[130]. Roadmap generation begins with an empty graph G as depicted in algorithm 4.3 (a). At 

each iteration, a random vertex Vrand is created and added as a vertex to graph G if it is found 

to not collide with any obstacles in the map. 
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4.4. Ortho-PATH: proposed pathfinding algorithm 

Ortho-PATH enhances orthogonal jump point search (OJPS) an efficient pathfinding 

approach implemented on rectangular grids [133]. This work proposes Ortho-PATH, a novel 

pathfinding algorithm to fulfil basic requirements: safety and line-shore paths. It is 

an optimal search algorithm for speeding up the search by selectively expanding only specific 

nodes, known as jump points, on a grid map [110]. This algorithm defines jump nodes as the 

nodes that can be reached in straight lines, suitable for walking in a straight line. As a result, 

the average search time is reduced across all benchmarks in the algorithm [133]. The jump point 

technique expands very few and specific nodes from a grid map, rather than all nodes in the 

path. Figure 4.7 (a) presents the basic idea of straight or diagonal jump point nodes, with node 

x and parent node p(x). The non-dominated neighbour of x lies immediately to the right, unlike 

the A* algorithm, which generates a neighbour node and adds it to the open list. The algorithm 

moves to the right without adding a new node to the open list, and moves in the direction until 

it encounters a node y. The node expansion gradually speeds up by identifying the jump point 

successors in the case of both straight and diagonal moves, as shown in Figure 4.7 (a) and (b). 

(a) (b) 

Figure 4.7: Examples of straight (a) and diagonal (b) jump points [133] 

Rather than searching the nodes at runtime on the grid-based map, the jump point nodes are 

pre-calculated in the Ortho-PATH algorithm. The algorithm s objective is to provide a VI-

friendly path with a reduction in computation time, and remove symmetry by recursively 

jumping over the nodes that can be reached optimally by a path that does not visit the current 

node. The Ortho-PATH does not evaluate jump nodes, as the algorithm pre-calculates [133]. 

Algorithm 4.5 defines the process of identifying jump point successors. The current node is 

represented as x, the start node as Vstart and the goal node as Vgoal, which act as inputs to the 
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users. Case 1 discusses validating the number of nodes explored to find an optimal path from 

the start node to the goal node. Case 2 discusses the safest path for VI users. Finally, case 3 

compares the post-processing time taken by A* and Ortho-PATH to provide appropriate 

instructions based on the evaluation of the path. 

4.4.1. Case 1: relationship of node exploration with computation time 

Figure 4.8 (a) and (b) show the number of nodes explored to generate the route between the 

start and goal node by A* and Ortho-PATH algorithms, respectively. There is a close 

relationship between the number of nodes explored and computation time taken by the 

pathfinding algorithms of A* and Ortho-PATH. The red and green boxes represent the start and 

goal nodes, respectively. The blue nodes represent the neighbouring nodes explored to reach 

the goal node. Based on the results shown in the figures, A* explore 28 nodes, compared with 

only 5 jump nodes with the Ortho-PATH algorithm. 

 

(a) 

 

(b) 

Figure 4.8: Algorithm with n explored neighbouring nodes by (a) A* and (b) Ortho-

PATH 

4.4.2. Case 2: line-shore and safe route versus shorter route 

Figure 4.9 (a) shows the path generated by the A* algorithm, and Figure 4.9 (b) presents the 

path generated by the Ortho-PATH algorithm. The path generated by A* is shorter with directed 

moves. However, Ortho-PATH generates a longer route with a line-shore path. The Ortho-

PATH is not an optimal algorithm, as it develops a longer route, but it is acceptable and safe 

for VI people. It avoids obstacles and provides a line-shore path for VI people to feel more 
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comfortable. Thus, this case scenario depicts the choice of a path with a slightly longer distance 

that is safe and acceptable to VI people. 

  
(a) (b) 

Figure 4.9: Path by (a) A* and (b) Ortho-PATH 

4.4.3. Case 3: path quality 

Figure 4.10 (a) and 4.10 (b) show paths generated by the A* and Ortho-PATH algorithms, 

respectively. Once the path is generated, the user requires audio instructions to follow the path. 

This case disc s audio instruction sample based on the path generated. The 

path quality and steps instruction in the A* algorithm involve angular turns and directions, as 

shown in Figure 4.10 (a). The path suggests moving straight for two steps, then turning 60 

degrees to the left and walking four steps to reach the destination. In contrast, the path generated 

by Ortho-PATH has simple instructions, such as turning left and right, and the number of steps. 

 
(a) 

 
(b) 

Figure 4.10: Path quality in (a) A* and (b) Ortho-PATH 
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As discussed before, the cases and their justifications show that the Ortho-PATH algorithm is 

suitable  indoor navigation. This algorithm usually provides the shortest route. The 

following section discusses the simulation results of all algorithms to check the feasibility of 

the algorithms in an indoor environment. 

4.5. Evaluation and simulation results 

The section discusses the simulation platform and results with performance metrics used to 

verify the analytical modelling and the effectiveness of the pathfinding algorithms discussed in 

Sections 4.3 and 4.4. These sections discuss the simulation platform and results of the 

pathfinding algorithms, including -PATH, for VI people. 

The dimensions of the map and obstacles in the environment used in the simulations are 

assumed to be known to the platform, based on the design discussed in Section 4.3.  

The simulation platform was tested on two floorplans with different designs. One of the floor 

plans included 25 rooms, passages, lifts and stairs. The layout of the floor plan was divided into 

180 grid points, horizontally and vertically. The other floorplan consisted of 10 rooms, one 

conference room and a corridor of 600 grid points, horizontally and vertically. An obstacle-

avoidance mechanism was implemented in each of the algorithms to avoid static obstacles 

presented on the map. Therefore, if an obstacle is in the path of the traversable area, the path is 

prevented by the algorithms. Figure 4.11 presents the main screen of the simulation platform 

developed in MATLAB to simulate different pathfinding algorithms. With the start and goal 

locations, the indoor environment's floor plans are provided as input to the system. Based on 

the selection of obstacles and their location, the path is computed by the selected algorithms. 

There are several criteria to consider to evaluate the performance and feasibility of such 

algorithms in an indoor environment. In this study, different scenarios were explored, varying 

the positions of the obstacles and the start and goal nodes to generate different paths. 



90 

 

Figure 4.11: Main screen of MATLAB simulation platform 

4.5.1. Simulation parameters and metrics 

This section presents the details of the simulation parameters and metrics. The algorithms 

implemented in the simulation parameters included the RT and Ortho-

PATH algorithms in MATLAB version R2016a. The simulations were performed with an 

inbuilt map simplified into a 2-D grid layout. Table 4.1 describes the simulation parameters. 

Table 4.1: Simulation parameters 

Grid layout 180 × 180 (32,400 nodes) 

600 × 300 (180,000 nodes) 

Path finding algorithm Discrete pathfinding (Dijkstra, A*) 

Sampling-based (PRM and RRT, nodes varying 100 to 500, Ortho-PATH) 

Heuristic function Neighbouring nodes = 8 
Manhattan distance 

Performance metrics Quality of path, execution time, path length, traversed nodes and risk 
factor 

Table 4.1 lists two different grid layouts used for the simulation one with 180 × 180 grids 

with 32,400 nodes, and another larger layout of 600 × 600 grids with 180,000 nodes. Manhattan 

distance with eight neighbouring nodes was used as the heuristic function. The pathfinding 

algorithms were compared regarding the quality of the generated path, execution time, path 

length, nodes traversed and risk factor. The research compared the pathfinding algorithms based 

on features such as high-quality and VI-like paths. A high-quality feature included the length 

of the path, execution time and nodes traversed as primary categories. Path length and execution 
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Figure 4.15: Path generated by RRT 

The results from Figure 4.15 demonstrate that the path generated with sampling-based methods 

had many zigzags. Therefore, these methods require post-processing to smooth the path. 

However, once the initial map was ready, it was accessible to re-query and found a path for 

another pair of start and goal nodes. The path generated with the algorithms requires processing 

to guide the agent to follow the suggested route. The post-processing of the path maintains the 

algorithms to produce optimal and quality paths that is, retaining smoothness as required by 

the VI people and suggesting heading and steps mapped along the suggested path. Figure 4.16 

presents the orthogonal path generated by the Ortho-PATH pathfinding algorithm. 
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Figure 4.16: Path generated by Ortho-PATH with jump points 

Figure 4.17 presents a combined picture of the paths generated by the A*, RRT, Dijkstra  and 

Ortho-PATH pathfinding algorithms with the same source and destination. The traditional 

pathfinding algorithms were tested for a different scenario to make sudden angular turns and 

heading changes. With such sudden moves, the algorithms must undergo the burden of either 

pre-processing or post-processing approaches.  











100 

Ortho-
PATH 

1/5 1/5 4/5 2/5 1/5 1.8 ~ 1 

4.6. Summary 

The pathfinding process plays a vital role in generating a navigation path in an indoor 

environment. Proper indoor space representation, better heuristic to reach a goal location, and 

pathfinding algorithm help generate an efficient and optimal path. This chapter has discussed 

the design of the floor plan and the technique used to obtain obstacle information of the indoor 

space. Researchers worldwide are working to improve pathfinding algorithms, yet very few 

have investigated the needs of low-vision people. This chapter has summarised recent progress 

in pathfinding in an indoor environment by discussing discrete and sampling-based algorithms, 

with their results in a simulation platform implemented in MATLAB. Considering the 

limitations of algorithms and requirements of VI people, this work proposed Ortho-PATH a 

novel pathfinding algorithm that provides a safe and shore-line path that avoids obstacles. 

Discrete-based 

find the shortest route; however, it wastes time exploring directions that are not promising or 

goal-oriented. Sampling-based approaches work well for complex environments and high-

dimensional configuration space. Unlike RRT, the PRM algorithm may fail to generate maps 

with narrow gaps, as it does not create nodes in long narrow gaps or between obstacles. This 

failure arises because of incremental construction of the path and eliminating edges, making 

connections with obstacles. As a result of the randomness of the sample points in sampling-

based algorithms, the generated path makes detours that need to be optimised and post-

processed before actual navigation. 

This chapter has summarised recent progress in the field of pathfinding in an indoor 

environment for VI people. It began by discussing the most popularly used pathfinding 

algorithms, and the simulation results of the algorithms demonstrated their strengths and 

weaknesses. Their results were analysed and compared with the needs of VI people, such as 

determining an optimal and safe path with shore-lining. Ortho-PATH outclassed the other 

pathfinding algorithms and generated a more VI-friendly path with only orthogonal moves. The 

trajectory path generated by the Ortho-PATH algorithm gave greater priority to safety, as it did 

not involve any angular movements. The next chapter proposes a novel approach to track and 
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generate the trajectories of a VI person using a handheld smartphone with inertial sensors to 

help guide the indoor journey. 



_______________________  
Some parts of the work reported in this chapter have previously appeared in:  

iCIOTRP2019, Sydney, NSW, Australia, 2019, pp. 7 12. 
P. T. Mahida, S. Shahrestani, and H. C

Int. Conf. Sens. Tech., Sydney, NSW, Australia, 2019, pp. 198 203. 

 

 

 

 

 

 

Chapter 5  

BVIP: Indoor Tracking Technique 

This chapter proposes an indoor tracking framework using a fusion of iBeacon and inertial 

sensors from a smartphone. The chapter discusses and demonstrates the implementation and 

experimental results of the fusion algorithm on the extracted data of a 

customised profile for three different users. The framework and fusion algorithm proposed in 

this chapter ensure that the VI user correctly follows the path provided by the Orth-PATH 

algorithm.  
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5.1. Overview 

This chapter introduces the framework used in the proposed model for tracking a VI person in 

an indoor environment. The IoT has become a backbone for autonomous tracking applications 

that can assist users within IoT-equipped smart buildings. An autonomous and independent 

tracking system must ensure the correct movements of a VI user in a complex indoor 

environment. This chapter introduces the proposed novel framework, BVIP, based on inertial 

sensors mainly the accelerometer, gyroscope and magnetometer of a smartphone and 

iBeacon in a building to help a pedestrian navigate between two locations. Contemporary 

smartphones have several sensors, including an accelerometer, gyroscope, magnetometer, GPS, 

gravity sensor, barometer and ambient light sensor [134]. 

Section 5.2 introduces the applicability and feasibility of using iBeacon and smartphone inertial 

sensors to track a VI user in an indoor environment. Section 5.3 discusses the proposed BVIP 

framework and its components for monitoring a VI user in an indoor environment. Section 5.3.1 

presents the three phases of the proposed BVIP framework. Given the lack of an inertial sensor-

based public dataset mapped with a user s absolute movement positions, an Android-based 

mobile application is developed to extract the data from the inertial sensor when the user is 

moving. Section 5.3.2 discusses the adaptive distance estimation algorithm, heading inference 

and turn detection algorithm applied on the generated dataset for three users. Section 5.4 

demonstrates the emulation results and experiments to evaluate the proposed framework and 

fusion algorithm s performance. The section discusses the experimental results and walking 

trace tests, which show position estimation with 1.5 to 2 metres of mean positioning error. 

Finally, Section 5.5 summarises the chapter. 

5.2. Introduction 

The primary issue unresolved in indoor navigation is the difficulty in accurately estimating a 

moving ocation-aware services have rapidly grown with the increased use of 

IoT devices in smart buildings [123]. Most navigation solutions require a structured 

environment with IoT devices, such as proximity sensors, RFIDs and smartphones [14], [135]. 

These IoT based systems can sense, predict and estimate the surrounding environment and 

communicate to the connected IoT devices over the Internet [7]. As discussed in Chapter 3, this 

study proposes a VI-friendly, safe and obstacle-free path for a VI person [136] with beacons 

placed on doorways. This approach demonstrates that external beacon sensors, when placed 
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near the doors/entrances of a building, can provide a VI-friendly path with the minimum 

number of resource-extensive beacons. However, there is a need for a convenient device that 

can detect the motion of a VI person and overcome the challenge of navigating independently 

between landmarks/points along the provided path. Following a given path and becoming lost 

on the suggested way is common among VI people while traversing a complex building. In 

addition, a VI person may encounter difficulty following a route in an open space, such as a 

large hallway, given the unavailability of external physical devices due to increased 

infrastructure cost and flexibility.  

Nowadays, MEMS technologies have developed energy-efficient and affordable inertial 

measurement systems in many consumer electronic products, including smartwatches, 

smartphones, tablets, gaming systems and wearable sensors. The rapid growth of low-cost and 

energy-efficient MEMS sensors has enabled rapid growth in applications related to fitness, 

emergency fall detection, entertainment and indoor navigation [137]. Indoor tracking is a 

technique to determine the position, velocity and altitude of a moving object with respect to a 

known reference [138]. A recent survey shows that 28% of the works published in IEEE 

International Conference on Indoor Positioning and Indoor Navigation uses inertial sensors for 

positioning and navigation in an indoor environment [139]. Table 5.1 discusses the popular 

technologies used for indoor positioning of VI users with the best factors regarding accuracy, 

coverage and cost. 

Table 5.1: Comparison of indoor positioning systems [88] 

Technology Accuracy Coverage Cost 

Wi-Fi 5 15 m Building Low 

RFID 1 5 m Room High 

IR 5 50 m Room High 

UWB 15 cm Building High 

Bluetooth/iBeacon 30 cm to 5 m Building Low 

Inertial sensor 2 m  Low 

Indoor Positioning systems using Wi-Fi, RFID, IR or UWB technologies require specific 

infrastructure, incurring the increased overall cost. To minimize cost in infrastructure-based 

environments and supporting the increased growth of sensors have boosted research interest in 

developing applications through built-in sensor s function. An inertial-based navigation system 

(INSs) comprises an accelerometer, gyroscope, magnetometer, barometer, and proximity 
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sensors are available in smartphones. However, most INS systems have used an accelerometer 

and gyroscope to monitor spatial position, which is insufficient to locate a mobile user [140]. 

Given the small size and low weight of inertial sensors on a mobile phone, they suffer large 

drifts and inaccuracies with increasing measurement time. The increasingly significant drift in 

the inertial sensor values affects the tracking performance and may generate erroneous 

information [141]. Therefore, there is a need to employ fusion strategies to correct the sensor 

deviations and improve results.Most of the literature uses accelerometer and gyroscope signals 

to estimate position indoors [80]. However, our approach involves a unique fusion of 

gyroscope, accelerometer and magnetometer with an IoT device (iBeacon) to track movement 

indoors.  

The proposed framework suggests deploying the Bluetooth-based iBeacon to generate a smart 

indoor environment to provide absolute position information. MEMS, including accelerometer, 

gyroscope and magnetometer, acts as a relative positioning system in areas where external 

beacon signals are weak. This suggested work combines the absolute beacon positioning and 

relative positioning using adaptive step length, with heading and turns to reduce the drift in 

positioning error. The approach customises the user s profile with their measured step length 

and mode. This process uses adaptive threshold-based step detection to estimate the distance 

travelled by a VI user. Based on each user s evaluated adaptive threshold, the approach 

combines the tracked distance with the user s turns and headings. Based on prior knowledge of 

the initial position, the proposed fusion algorithm can estimate the user s positional status and 

can act as a practical, robust component to track a VI user s movement in an end-to-end indoor 

navigation system. 

5.3. Proposed algorithm for tracking 

This section presents a novel approach, BVIP, which combines learning techniques on MEMS 

and beacon-based positioning to locate a VI user in an indoor environment. The three stages of 

the proposed approach include data pre-processing and feature extraction, learning model and 

fusion algorithm, and position inference. Figure 5.1 displays the BVIP technique for an indoor 

tracking system using IoT devices and smartphone inertial sensors. BVIP integrates relative 

positioning from an inertial sensor in a smartphone and absolute positioning based on optimally 

located beacons/marker points. The BVIP system helps track the primary navigation and 

movement ac s walking movement is a specific type of periodic 

mechanical movement, defined as an individual step initiated with a heading angle followed by 
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different orientations. A user with normal eyesight visualises the path to the destination in their 

brain. The user then follows the visualised path from a start location, with a specific distance 

and heading direction concerning the goal location. Correcting their imaginary vision with 

landmarks, the user steps forward in a particular direction and follows the intermediate 

landmarks/milestones to reach the destination accurately. The proposed approach is similar to 

the concept where optimally positioned marker points serve as landmarks to correct navigation 

errors. 

The technique s three phases comprise data pre-processing and feature extraction, learning 

model and fusion algorithm, and position inference. Data pre-processing and feature extraction 

take input from the three axes of inertial sensors, including the accelerometer, gyroscope  and 

magnetometer of a smartphone, to calibrate and filter it. The first phase extracts and pre-

processes the inertial sensor data of a smartphone and the information from the iBeacon to 

extract the features of the data. The extracted data are passed to the learning model and fusion 

algorithm with beacon information in the second stage. The data are processed to calculate the 

absolute and relative position of the VI user in the second phase. Finally, the third phase 

calculates the estimated position of the user. This study collected and integrated sensor data 

periodically for a constantly moving VI user to estimate their position.
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Figure 5.1: BVIP approach for indoor tracking of VI user [142]
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Figure 5.2 (a) shows the accelerometer axes of a smartphone (x, y and z-axis), and Figure 5.2 

(b) is a graphical representation of the three-axes accelerometer measurements (Ax, Ay and Az). 

The accelerometer is a sensor that measures linear acceleration generated by the movement of 

an object and the change of the velocity holding the sensor. It measures the external force at the 

centre of mass. When the smartphone is at rest, the acceleration force may be the continuous 

force of gravity acting on the device (Ax and Ay). The linear acceleration is measured when the 

attached device is in motion to sense movements or vibrations [143].  

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.2: (a) Accelerometer axes of smartphone and (b) graphical representation of x-, 

y- and z-axes of accelerometer 

MEMS gyroscopes are devices mounted on smartphones and smartwatches that can sense the 

earth s gravity to determine the body's orientation to which they are attached. They generally 



 

109 

use a vibrating mechanical element as a sensing element to detect angular velocity. 

Smartphones have three-axis gyroscopes that deliver rotation values in each of the three axes 

(Gx, Gy and Gz). Rotation values are negative or positive, based on the direction of the rotation. 

The magnetometer is a sensor used to measure the magnetic field s strength and direction in the 

vicinity of the device in three axes (Mx, My and Mz) [144]. In aeronautics, the magnetometer 

can measure the position of an aircraft body, such as an aeroplane or satellite. A marine 

magnetometer detects the position of shipwrecks and other submerged objects. Magnetometers 

have the characteristics of being able to work under severe and limited conditions. Therefore, 

the magnetometer can be used as a digital compass to obtain all four directions (north, south, 

east and west) headings in indoor environments [145]. 

5.3.1. Data pre-processing and feature extraction 

The data pre-processing stage processes data gathered from the three different sensors the 

accelerometer, gyroscope and magnetometer of a smartphone. The raw data are pre-processed 

and fed as input to the next phase of the BVIP indoor navigation system. Feature selection and 

extraction are critical to identify and remove unneeded, irrelevant and redundant features from 

collected inertial sensor data and create an accurate predictive model. This stage helps in the 

selection of information required to incur knowledge from the original filtered signals. To 

estimate the relative position, the client device (a smartphone) continuously sends the sensor 

data to the Cloud device. A systematic step detection algorithm with known orientation and 

heading is required. MEMS sensors help evaluate the relative distance travelled, direction and 

heading of the connected smartphone.  

Given the lack of recordings of accelerometer, gyroscope and magnetometer sensors, this study 

collected data on three different users with different moving styles and speeds. The dataset 

included 50 sets of data for each user, with the three axes of inertial sensor signals. The sample 

values of azimuth, pitch and roll and three-axis accelerometer, magnetometer and gyroscope 

readings are shown in Table 5.2.  
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Table 5.2: Sample readings of data collected using Android-based application 

acc_X acc_Y acc_Z mag_X mag_Y mag_Z Azimuth Pitch Roll gyro_X gyro_Y gyro_Z 

0.656 2.41 9.078 16 14.2 28.2 40.72 14.825 3.992 0.68951 1.05994 0.368591 

0.148 2.602 9.48 16 13.6 28.2 42.962 12.337 4.027 0.02515 0.61026 0.315186 

0.474 2.468 9.202 16.4 13 28.2 37.137 14.982 2.842 0.301697 0.20224 0.336548 

0.052 3.282 9.135 16.4 11.8 28.2 38.238 19.758 0.3 0.04758 0.095764 0.395294 

0.474 2.966 8.8 16.4 11.8 28.2 39.383 16.733 0.947 0.67242 0.406586 0.497833 

0.561 2.487 9.346 16.8 11.8 28.2 44.676 14.876 3.309 1.00674 0.292297 0.479675 

0.589 2.583 10.064 16.8 12.6 28.2 42.278 14.361 1.279 0.93732 0.170532 0.41452 

0.292 2.544 9.997 16.8 13 27.8 42.171 14.272 1.615 0.68951 1.05994 0.368591 

0.11 2.477 9.413 16.8 13 27.8 39.762 15.828 0.237 0.02515 0.61026 0.315186 

0.11 2.707 8.608 16.8 13.9 27.8 37.375 17.446 0.688 0.301697 0.20224 0.336548 

0.215 2.611 8.915 16.8 14.9 27.8 36.179 16.324 1.325 0.04758 0.095764 0.395294 

0.388 2.19 9.537 16.8 15.7 27.8 37.32 14.881 0.369 0.67242 0.406586 0.497833 

0.178 2.295 9.154 16.8 15.7 27.8 38.272 14.067 1.069 1.00674 0.292297 0.479675 

 



 

111 

In most instances, when a device is sitting on a table and not accelerating, the accelerometer 

reads a magnitude of g = 9.81 m/s2. When a device is in free-fall and accelerates towards the 

ground at 9.81 m/ s2, its accelerometer reads a magnitude of 0 m/ s2. Equation (5.1) [137] depicts 

the simplified error model of the acceleration output measurement of the ith axis (where i = x, 

y, z). 

        (5.1) 

where Ai is the acceleration output for the ith axis, ai is the acceleration value applied along the 

ith axis, Si is the scale factor error (usually presented as a polynomial to include the non-linear 

effects), Bf is the zero-offset bias of the measurement, and ni is the random noise.  

Table 5.3 shows a comparison of the three-axis accelerometer data in different positions of the 

Android smartphone. The gravitational acceleration is usually read as g towards earth, given 

the construction of an accelerometer. The ideal values represent the theoretical values expected 

for the A(ti) in each position of an Android smartphone. The real-time values represent our 

reading in their given position. The values indicate that the generated data have noise. 

Table 5.3: Accelerometer readings in different smartphone positions 

Smartphone 
position 

Ax (m/s2) Ay (m/s2) Az (m/s2) 

Ideal 
value 

Real-time 
values 

Ideal 
value 

Real-time 
values 

Ideal 
value 

Real-time 
values 

Up 0 (0.010, 0.115) 9.81 (9.700, 9.899) 0 (0.283, 0.410) 

Down 0 (0.010, 0.115) 9.81 9.700, 9.899) 0 (0.283, 0.410) 

Left 9.81 (9.700, 9.899) 0 (0.010, 0.110) 0 (0.283, 0.410) 

Right 9.81 ( 9.70, 9.899) 0 (0.010, 0.110) 0 (0.283, 0.410) 

Front up 0 (0.010, 0.115) 0 (0.283, 0.410) 9.81 (9.70, 9.899) 

Instead of using the individual measurements of Ax, Ay and Az, the process calculates normalised 

accelerometer Anorm. The advantage of using the Anorm versus any axis is that it is impartial to 

the directions. Equation (5.2) presents the formula 

to evaluate normalised accelerometer Anorm: 

        (5.2) 

where Anorm is the normalised magnitude of accelerometer and Ai is the ith axis of three-axis 

accelerometer. 
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Figure 5.3: Unfiltered vs filtered accelerometer magnitude using low pass filter [142] 

As discussed earlier, the accelerometer measurements suffer from time-varying biases and 

noise. The noise leads to an unreliable measure, known as drift. Therefore, it is not advisable 

to rely on the raw measurements of a smartphone s accelerometer signals. A digital filter can 

remove the high-frequency noise from raw accelerometer data. The Butterworth filter s 

frequency response rolls out the higher frequencies beyond the threshold limit down to zero. 

This study also applied an interactive Fourier filter and zero-phase digital filtering technique to 

remove noise. Figure 5.3 shows the noisy and filtered accelerometer signals over a span of time. 

The blue signal is the original noisy signal, while red, green and black represent the iFilter 

signal applied once and twice, and filtfilt. It shows that the output of filtered signal using iFilter 

(once and twice) introduced delay. Zero-phase filtering using the filtfilt function compensated 

the effect of phase distortion. 

The gyroscope sensor in the smartphone measures the rate of rotation by detecting tiny shifts 

in pulses  timing arriving at a sensor. Figure 5.4 shows the output of gyroscope z-axis data for 

left and right turns. The gyroscope was unstable, as the low angular velocities were not 

registered on the sensor. It would be impossible to verify a gyroscope reading when the 

orientation of the smartphone changed slowly over time. Thus, a fourth-order low pass filter 

was applied to the gyroscope (Gx, Gy and Gz) data to estimate the turns a VI person takes during 

movement.  
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Figure 5.4: Gyroscope data for different turns [146]

To extract important features in the filtered three-axis gyroscope, data were input to the 

MATLAB decision tree-based supervised machine learning algorithm. Accuracy, training time 

and prediction speed were evaluated to predict an important feature for orientation estimation,

as shown in Figure 5.5 (a). The figure depicts the precision of the z-axis measurement of the 

gyroscope, Gz, Section

5.3.2.3 further support this finding. Based on the selected features, advanced features are 

extracted that incurs knowledge and information used in the indoor positioning system, as 

shown in Figure 5.5 (b).

Figure 5.5: (a) Feature selection and (b) list of extracted features [142]
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Figure 5.5 (b) shows the features extracted from inertial sensors to estimate a VI person s indoor 

position. Gyroscope data helped predict the orientation/turns of the user. The direction of the 

user's movement holding a smartphone can be determined via roll, pitch and yaw angles from 

magnetometer data. These angles help predict the device s azimuth angle, knowing the change 

in the device s orientation from the original position. Therefore, advanced features such as 

step size, orientation, standby position, movement, roll, pitch, yaw, heading angle and relative 

turn were extracted to estimate the user s position. The angle at which the user is heading can 

be evaluated using the three-axis magnetometer measurements. Azimuth angle/heading and 

turn were fed as a feature into the step detection algorithm to predict and ensure the user s 

correct movement. 

The extracted features acted as input to the MEMS-based learning model, discussed in the next 

section. First, each user is extracted and maintained as a training phase by recording 

three-axis inertial sensor data based on  walking pattern. The model expected to know 

essential features, such as the standard deviation and mean of the user s step size from the 

accelerometer readings. Based on this activity, the adaptive threshold features were estimated 

to evaluate the user s actual distance, as discussed in Section 5.3.2.1. 

5.3.2. Micro-electromechanical system learning model and evaluation results 

This section discusses an improved positioning technique based on an inertial sensor of a 

smartphone. The fusion algorithm consisted of three phases: adaptive and relative distance 

estimation, heading inference, and turn detection algorithms. 

5.3.2.1. An adaptive distance estimation algorithm 

This subsection proposes an adaptive and relative distance estimation algorithm with a 

s accelerometer sensors. An accelerometer is a sensor that can measure both static 

and dynamic acceleration forces. By measuring dynamic acceleration, the sensor can analyse 

the way the device is moving. To detect the distance travelled, it is necessary to know the steps 

taken by the user. The algorithm adapts to time-varying changes in normalised accelerometer 

data, Anorm, to evaluate steps travelled. Every user has a different walking pattern with varying 

step sizes. The proposed distance estimation algorithm is shown in Figure 5.6. The algorithm 

includes further steps, including adaptive threshold extraction, step decision algorithm, average 

step length estimation, and relative distance estimation. 
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Figure 5.6: Proposed adaptive distance estimation algorithm

Adaptive threshold extraction: Conventional pre-configured fixed threshold-based step 

estimation algorithms may provide accurate results for the same user [80]. However, different 

walking styles may vary in their peak values; therefore, step detection based on peak values 

cannot estimate accurate steps, given varying peak values in different activities. Figure 5.7 

shows various normalised accelerometer threshold reading patterns collected for detecting a 

step phase over some time. The figure shows five thresholds the top, upper, lower, bottom

and adaptive threshold for three steps in the period. The threshold s top and bottom are labelled 

based on the highest and lowest value in the reading. The next step s upper and lower threshold 

values are slig s first step. These thresholds are not standard values,

but represent diversity in the thresholds for a user.
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Step decision algorithm: The adaptive threshold Th(a) for a user is set as an input to the step 

decision algorithm. The algorithm counts the number of times the normalised accelerometer 

readings cross the adaptive threshold Th(a). Figure 5.8 is a pictorial representation of 

normalised accelerometer magnitude Anorm over a short period, with several spikes that have 

changed in the signal measurement, including valid and fake ones. The spike data have different 

peak/maxima and valley/minima values. Each red dot in Figure 5.8 represents a crossing of the 

adaptive threshold Th(a), evaluated based on Equation (5.3) and the actual Anorm values. 

However, three valid spikes cross an adaptive threshold Th(a) for each user. 

 

Figure 5.8: Representation of adaptive threshold and step length 

Given the total number of crossings (thresholdcrossings) for a walking user from an initial starting 

location, the number of steps, n_steps, for each user is equal to the total number of crossings 

divided by two, as depicted in Equation (5.4): 

                           (5.4) 
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5.3.2.2. Heading inference algorithm 

For a low-vision person moving in an unknown indoor environment, it is essential to know 

where they are heading. A magnetometer in a smartphone can measure the earth s magnetic 

field and detect a user s heading. However, it is not easy to know if the device s angle is 

horizontal or vertical, or both, with magnetic field readings. The proposed heading 

measurement approach is based on the fusion of magnetometer and accelerometer to overcome 

this challenge. An accelerometer can measure the static acceleration force to find the angle at 

which the device is tilted with respect to the earth. Therefore, using the fusion of the 

magnetometer and accelerometer reading can provide the user s heading/orientation relative to 

the s orientation. Figure 5.11 represents the local earth magnetic field H, with a fixed 

component Hh 

an approach used to estimate the heading that involves measuring the two orthogonal 

components of the magnetic vector, Hx and Hy. The magnetic compass heading, or yaw, or 

azimuth H angle can be determined from Hx and Hy. 

 

Figure 5.11: Heading inference 

Roll angle ( ) and pitch angle ( ) are defined as rotation angles around the x- and y-axis, 

respectively. The pitch and roll angles in the position of Figure 5.11 

a calibrated magnetic sensor, the heading angle Hangle can be measured using the two 

components Mx and My, where Hx = Mx and Hy = My, as in Equation (5.7): 

       (5.7) 
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Equation (5.7) is valid only if the magnetic sensor embedded in a smartphone is precisely 

levelled. Magnetic sensors work accurately when they are flat and horizontal to the ground 

[145]. Any other positions, such as holding straight or tilted on an angle, make the reading 

inaccurate. This problem occurs because the approach only considers the x- and y-axis of the 

amount of magnetism felt will change based on the alignment of the sensor.

Figure 5.12: Heading inference with tilt compensation

Given that VI users may not hold the smartphone in their hands, the Hx and Hy measured values 

might change. Therefore, additional information about the compass space orientation is 

required. The x- and y-axis of the magnetic sensor alone do not help calculate correct heading 

values in varying device positions. It is essential to know how much the device has tilted, and 

there is a need to integrate the Mz axis measurement and accelerometer. We must know the 

orientation by incorporating the three-axis accelerometer into our heading inference system. 

, as shown in Figure 5.12. Based on 

the three-axis accelerometer values, H s local vector coordinates are converted to a reference 

coordinate to measure the heading. Roll and pitch angles are measured by a three-axis 

measurement of the accelerometer using Equations (5.8) and (5.9):

(5.8)

(5.9)

(5.10)
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(5.11)

where and are the roll and pitch angles, respectively, evaluated from the three axes (Ax, Ay

and Az) of an accelerometer. The values of Hx and Hy are evaluated using Equations (5.8) and 

(5.9) in Equations (5.10) and (5.11). The values of Hx and Hy from Equations (5.10) and (5.11)

are added to Equation (5.12) to estimate heading angle Hangle in a tilted smartphone position:

(5.12)

(5.13)

where is the azimuth angle of the VI person holding the smartphone in any position. Equation 

(5.12) converts the H angle into degrees. Then, Equation (5.13) evaluates the azimuth angle . 

Based on the estimated angle angle at each step are 

measured. Figure 5.13 presents the mapping of the azimuth angle (in degrees) to direction. The 

integration of tilt compensation with accelerometer and magnetometer data can predict a 

moving or steady VI user s accurate heading in an indoor environment.

Figure 5.13: Azimuth degree to direction
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5.3.2.3. Turn detection algorithm

: moving or steady position, steps 

travelled, heading and turn/orientation (if any). Based on the path-planning algorithm [136], the 

algorithm proposes a VIP-friendly path. To track the user indoors if they are following the given 

route, our system depends on determining the change point or the time the user takes a turn. 

The gyroscope sensor in the smartphone is the device that measures the rate of rotation by 

detecting tiny shifts in the timing of pulses arriving at the gyroscope sensor. This process of 

turn determination acts as a validation of the heading measurement presented in Section 5.3.2.2. 

The critical issue in the process is determining landmarks or points at which the user takes a 

turn. Machine learning techniques, including support vector machine (SVM), KNN, linear 

discriminant and classification decision tree methods, were applied to design the prediction 

models. Figure 5.14 presents the accuracy of these machine learning techniques when applied 

to the gyroscope data.

Figure 5.14: Performance of machine learning techniques on gyroscope data

Based on the performance results, a decision tree was applied to build a tree with a set of 

hierarchical decisions to predict orientation, as shown in Figure 5.15. The figure presents the 

rule format generated of the proposed Classification and Regression Tree (CART) decision tree 

algorithm using the Graphviz library. A decision tree in machine learning involves building tree 

nodes and branches to help make hierarchical decisions to generate the result. Each tree has 

nodes representing the unique features, while each link or branch of the tree represents a rule,

and the leaf represents the result or outcome. The decision made by this machine learning 

technique aims to achieve high classification accuracy.
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Figure 5.15: Classification decision tree for turn detection

This model helps understand how the gyroscopes z-axis decides the turn taken by the user 

holding the device. The parameters used to build the model are the maximum depth of the tree,

the minimum number of samples to split and the Gini index. Gini impurity measures how often 

a randomly chosen element from the set would be incorrectly labelled. Supervised learning 

relies on training samples to achieve higher accuracy [147]. For this experiment, 400 samples 

of training data were used. The z-axis of gyroscope data frames the classification tree to detect 

the turns made by the user. The turn estimation algorithm detects all the turns with their 

respective moves (left, right, straight, forward or backward).

5.3.2.4. Fusion algorithm

The primary goal in developing a fusion algorithm is to provide location information and track 

a VI user in an indoor environment. Sections 5.3.2.1, 5.3.2.2 and 5.3.2.3 discussed the algorithm 

individually. As discussed in Section 5.3.1, the proposed system obtains the 

location via iBeacon. The beacons are placed at specific landmark locations, such as the 

entry/exit points of a room, stairs, elevators and landmarks. The beacons are configured before 

deployment to create a network connected to the Cloud server that stores the absolute location 

of the beacons mapped with the unique beacon identification parameter. When in proximity to 

a beacon, the smartphone finds the user's absolute location with respect to the environment. The 

BVIP system deployed on the smartphone, scans and detects Bluetooth signals to locate the

absolute position of the user. This section discusses the absolute positioning and relative 
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positioning-based learning model with the appropriate sequence diagram. The sequence 

diagram describes the flow of messages and the message content between the entity 

(smartphone, Cloud server and database server). Figure 5.16 illustrates the sequence diagram 

of the learning model in this approach. 

 

Figure 5.16: Sequence diagram of BVIP technique 

The learning phase starts with the repeating loop of scanning the iBeacon Bluetooth to estimate 

absolute position with a smartphone. The smartphone also continuously measures the 

reading of the inertial sensors of a smartphone to estimate relative position in situations where 

no beacon signals are available. If the Bluetooth beacon signal is found, the smartphone queries 

the Cloud server for the strongest beacon_id to obtain the absolute location of the moving user. 

The Cloud server queries the database server and returns the local coordinates of the indoor 

space based on the scanned beacon_id. The process of obtaining the absolute location is only 

executed at the start of the navigation or to verify the correct landmarks after a predefined time. 

Later, the fusion algorithm with calibrated MEMS measurements of the smartphone determines 
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determine the distance travelled by the VI user. These values are updated at a regular interval 

for a specific profile and stored in the Cloud. 

The function findInitialHeading() helps find the initial heading angle  of the VI user. As the 

user moves, the method getStepCount() evaluates whether a step event occurred and detects the 

steps moved by the user in the  direction from the filtered accelerometer A readings. It is 

unnecessary for the system to estimate the heading constantly. To be more concrete, the heading 

needs to be calculated whenever the user makes a turn. Steps 4 to 8 are repeated to for each turn 

the user makes to calculate the travelled distance and heading. Whenever the user makes a turn, 

the distance travelled by the user is evaluated. To verify the feasibility of the heading estimation 

method with varying smartphone positions, the heading direction based on the turn taken by the 

user is estimated. The current position of the VI person is estimated by the last known sensor 

location (xa, ya), travelled distance d, i turns with t directions, and  heading angle. The known 

location of the VI user is denoted by (xs, ys). The estimated position Equation (5.14) can be 

modelled as the function of d, h and t. The path-planning algorithm Ortho-PATH [136] 

discussed in section 4.4 suggests orthogonal paths that make either horizontal or vertical 

movements of the user. The proposed system BVIP discussed in this chapter helps to track the 

user whether he/she is moving on the suggested path: 

      (5.14) 

}, and d,  and t represent the distance, azimuth 

angle and turns travelled by the user, respectively.  

Figure 5.17 presents the pictorial flow of Algorithm 5.1 with intermediate positions evaluated 

based on turns taken by the user. The figure represents the floor plan of a building with a beacon 

(red dots) placed at the entrance of each room. The beacons are the visible marker points, as 

represented in the technique. These beacons provide the absolute location of the user with 

respect to the local coordinates. The position (16, 2) in the figure is the start absolute location 

of the user. The living area in the floorplan has no beacons, and the fusion algorithm estimates 

the position of the user with respect to the absolute start location. The intermediate relative 

positions evaluated by the algorithm are marked as (0, +14) and (+7, 0). The relative position 

is the evaluated movement in the respective axis with the respective turns. The turns in the 

algorithm are verified with the estimated heading movement of the user. The proposed 

algorithm ideal movement calculation is represented in the flow of the algorithm. 
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Figure 5.17: Flow of fusion algorithm 

5.4. Emulation, experiments and results 

A thorough performance analysis was conducted in the experiments by comparing the proposed 

system BVIP with commercial products. An app was developed and installed on an Android 

smartphone to evaluate the number of steps travelled in a specific direction by a user. The 

inertial sensor data were collected at the sampling frequency of 20 Hz. The app developed in 

Android creates a .csv file that contains the timestamp and the raw data of the sensors. Walking 

experiments on three participants with different walking styles were conducted, which gathered 

almost 100 sample datasets. Each sub-stage for step detection, heading and turn detection was 

individually tested to evaluate the performance of the individual algorithms and sensors. Then, 

the fusion algorithm was implemented and used to calculate the position of the user.  

The step and distance estimation algorithm discussed in Section 5.3.2.1 was implemented with 

calibrated and filtered accelerometer, gyroscope and magnetometer sensor data. Each 

participant walked by following pre-specified paths that comprised 10, 15, 20, 25, 30, 35, 40, 

45 and 50 steps in a straight line during this experiment. Table 5.4 presents the actual steps and 

average error estimated by the proposed adaptive step detection algorithm for the three 

participants (u1, u2 and u3).  
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Figure 5.18: Heading inference for actual heading vs heading inference method 

Detecting turns plays a vital role in predicting the absolute position of the user. As discussed in 

Section 5.3.2.3, the results of the prediction model of gyroscope data were implemented and 

tested. Figure 5.19 presents the scatter plot of results achieved by applying the decision tree 

prediction model on the gyroscope data. The prediction model was implemented to detect three 

classes: 0 (straight), 1 (left turn) and 2 (right turn). The proposed approach achieved a 

classification accuracy of 99.99%. The approach used in this study provides satisfactory 

performance for detecting turns. 

After implementing and testing the algorithms individually, the fusion algorithm proposed in 

Section 5.3.2.4 to track the walking user was tested. Figure 5.20 displays a screenshot of the 

output of the fusion algorithm in an Android application to demonstrate the working of the 

system with a person holding the smartphone. 
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Figure 5.19: Result of prediction model on gyroscope data 

 

Figure 5.20: Screenshot of Android application 
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Figure 5.21 presents the trajectories of the estimated in blue and actual path in red of the user 

on the given floor plan, with iBeacons at the entry/exit of the doors of each room displayed by 

red dots. 

 

Figure 5.21: Position estimation (in blue) vs actual position (in red) 

Figure 5.21 indicates the traces of a walking user with a smartphone with the newly developed 

Android-based fusion algorithm application installed. The red lines on the floor plan show the 

actual walking movements of the user. The estimated traces of the trajectories evaluated by the 

implemented fusion algorithm are presented in blue. The value of RMSE of the actual and 

estimated position of the user had an error of 1.5 to 2 metres. 

5.5. Summary 

This chapter has proposed a reliable and adaptive approach, BVIP, with a fusion positioning 

algorithm to track the walking movements of a VI person. IoT devices, including smartphones 
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and smartwatches, with lightweight sensors, are a promising low-cost technique and convenient 

device for the long-term continuous tracking of a walking user. The proposed fusion algorithm 

can be implemented in a wearable device, such as a smartwatch or smartphone, to track the 

trajectory movement of the user in an indoor environment. With the path to follow evaluated 

based on the Ortho-PATH pathfinding algorithm, the fusion technique discussed in the chapter 

helps a VI person move independently in an indoor environment without assistance. 

Nowadays, the smartphone has become a convenient IoT device in . This 

chapter has discussed the foundation of working with the inertial sensors  filtration technique, 

including the accelerometer, gyroscope and magnetometer, from a smartphone s raw data. The 

chapter proposed a novel approach, BVIP, for positioning a VI user in an indoor environment 

with beacons as IoT devices at the entrance/exit of any location. The proposed technique 

minimises the use of external sensors travelling between two mark locations and the loss of 

signals in dark areas. The optimised system minimises the number of beacons, as the calibrated 

and filtered inertial sensor data evaluate the user s relative position in the indoor environment. 

For areas such as significant hallways/corridors with no or minimal external positioning 

solutions, this system acts as a visual device to track the VI person in the indoor environment. 

The presented fusion algorithm demonstrates using the smartphone s inertial sensors 

(accelerometer, gyroscope and magnetometer) to determine the user s absolute position. 

Experiments were performed in real-time with an Android-based smartphone application. The 

system integrated the data from the three sensors (accelerometer, gyroscope and magnetometer) 

to position the user. The system was tested for varying behaviours of the user holding the 

device. The overall results illustrated that the mean error of the proposed system was 1.5 to 2 

metres. Although the positioning error is not suitable for VI people but this solution works with 

minimum infrastructure to help VI know his/her direction primarily. The model overcomes the 

major disadvantage of inertial sensors of accuracy deteriorating over increasing measurement 

time. The current system estimates the user inertial sensor readings 

and  absolute position. However, there is a need to improve the coverage in 

case of a lack of signal of external signals from the iBeacon. In the next step, the intention is to 

extend the functionality to estimate the user s position online via the smartphone or Cloud. 
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Chapter 6  

Deep Learning-based Indoor Positioning 

This chapter proposes a regression-based deep learning technique to position a VI user in an 

indoor environment. The chapter presents a grid-based representation of an indoor floor plan 

and relates it to the public dataset, IPIN2016, of a smartphone s inertial sensors. The 

contribution of this chapter is to provide a self-directed, accurate and audio-aided standalone 

positioning system, considering the constraints of a VI person. The deep learning-based 

regression model discussed in the chapter provides a complementary solution using 

smartphones to achieve satisfactory results without external devices. 
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6.1. Overview 

This chapter presents the deep learning-based MLP model to position a VI user in an indoor 

environment. Section 6.2 introduces the concept of absolute positioning and briefly discusses 

the problems faced, with the solution provided in Chapter 5. Further, the section discusses the 

2-D representation of indoor space maps to the multivariate IPIN2016 dataset. Section 6.3 

discusses the usability of the public dataset IPIN2016 to evaluate the 2-D position of an indoor 

user. Section 6.4 examines different versions of the regression-based DNN training and 

parameters for experimentation. It also discusses the deep network structure with the 

hyperparameters used in the experiments. Section 6.5 discusses the experimental platform and 

evaluation results, with Section 6.5.1 presenting the deployment platform with a selection of 

deep network architecture and suitable hyperparameters, considering prediction accuracy and 

localisation error. Section 6.5.2 presents the performance metrics and results of the models. 

Finally, Section 6.6 summarises the chapter, with a discussion of limitations. 

6.2. Introduction 

Accessible location-based information for navigating a complex indoor environment is a 

requirement of every individual [81]. Navigation in complex infrastructures, such as shopping 

malls, airports and hospitals, is aided through the proliferation of visual maps, digital maps and 

kiosks. However, VI people can find it challenging to use such aids effectively. The lack of a 

robust technology hinders the navigation of VI people, given issues regarding layout 

complexity, accessibility, connectivity and temporal changes in the environment [113]. 

Technologies must ease 

as providing suitable indoor positioning, tracking moving users, obstacle avoidance, and 

pathfinding [14]. A variety of wireless technologies are currently available for indoor 

positioning and navigation, relying on Zigbee, RFID, iBeacon, Bluetooth, UWB, magnetic field 

and pedestrian dead reckoning, as discussed in previous Chapter 2, Section 2.2 [14], [148]. 

In previous chapters, we reported on providing solutions for movements of VI people in a smart 

environment using interconnected IoT devices [142]. A robust approach involves using BLE 

beacon sensors in the building to help a VI person navigate indoors. A developed algorithm, 

DynaPATH, generates VI-friendly safe routes to a destination, with considerations such as 

walking along walls and ensuring a straight path with minimum turns. Unlike solutions that 

choose the shortest path [110], DynaPATH proposes a safe path by considering the limitations 
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of VI people [136]. However, VI people may encounter difficulty positioning themselves in an 

open space, such as a large hallway, because of the unavailability of external physical devices 

to provide location information. As a result of the possible loss of external signals, the system 

must maintain the position of VI people when other external devices are out of range. This 

chapter addresses this positioning issue and investigates the use of inertial sensors to provide a 

complementary solution that can be integrated into our work. The main idea behind the work is 

to demonstrate minimum infrastructure usage to aid VI people to overcome the challenge of 

positioning themselves independently between landmarks. 

This section discusses a deep learning approach to position a VI user in a grid-based indoor 

environment, as discussed in Chapter 2. The indoor area is divided into microcells, each of 

which is assigned a unique region/place identifier that acts as a recognition layer. Each room in 

the indoor space is given a room identifier. The vertex of the microcell has 2-D (x, y) local 

coordinates. Figure 6.1 shows a representation of the sample floor plan that has undivided and 

divided areas. The solid black lines represent the walls of the indoor environment, while 

obstacles in the rooms are solid filled rectangles. The indoor space is divided into grids of cells, 

as depicted in the lower part of the figure. The shaded grey rectangle is a unique microcell with 

four vertices. Local coordinates are allocated manually and stored for each vertex in the 

building, resembling the latitude and longitude used in a GPS. 

 

Figure 6.1: Grid distribution of indoor environment [149] 
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In this work, we propose a positioning technique based on mapping the inertial sensor 

measurements of a smartphone into position coordinates, using regression-based training of a 

DNN. The work discusses the results of various experiments to validate the suitability of the 

proposed approach. The experiments used a publicly available dataset containing records that 

resemble the walking and movement data of a VI person, such as walking straight along walls. 

The novelty of this approach stems from the use of regression-based MLP neural network 

training to determine the position of VI people in a building accurately. 

Our contributions in this work aim to achieve the research objective stated in Chapter 1 

(subsection 1.3.1, RO4) to provide a robust independent inertial guidance tool to position a VI 

person in the indoor environment. The work aims to develop an audio assistant app deployed 

on a smartphone to help VI people move independently in a complex building. To the best of 

the first to propose and recommend regression-based 

neural network training for estimating the position of a VI person moving in an indoor 

environment with a smartphone. A DNN model is proposed to predict the position of an indoor 

user as a complementary system to our existing navigation framework using external sensors 

[136], [142]. 

6.3. Characteristics of multivariant IPIN2016 dataset 

Using an appropriate dataset for training and testing the model is an essential step in a DNN. 

Despite many works seeking to solve the indoor localisation issue, there is a lack of public 

datasets with inertial sensor data for a controlled environment. With the limited number of 

datasets, we used the multivariate IPIN2016 dataset [150] in this work to test the proposed 

approach. Although the pedestrian collecting the inertial sensor data was not VI, the user's 

movement had similar steps, including walking along the wall and walking at the same pace. 

As with our design discussed in Chapter 3, the dataset splits the indoor environment into cells 

mapped with the inertial sensor data of a smartphone. This section discusses the dataset with 

usability for a controlled indoor environment for VI people. The dataset has different types of 

movement fingerprints, including magnetic readings from smartphone/smartwatches in the 

divided spaces. Magnetic readings are data captured by the magnetometer, accelerometer and 

gyroscope of a smartphone/smartwatch. The multivariate IPIN2016 dataset has captured the 

records of the moving user in 325 different locations [150]. This dataset includes 36,795 

continuous samples over two scenarios of one hour at 10 Hz, which resulted in 6,500 discrete 

samples in 325 locations.  
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The dataset was created on the first floor of the Institute of Information Science and 

Technologies, inside the Italian National Council building. The dataset covered movements 

over a surface of 185.12 m2. Figure 6.2 depicts the overall map of the building, with the top 

view and trajectory path [150]. The top left corner of the figure is the top view of the floorplan. 

The middle portion of the figure is the highlighted corridor of the given floor. Further, the 

trajectory path followed by the users is shown at the bottom with dots. Each dot in the map 

corresponds to a detection point, and each dot is 0.6 metres from another. The dots represent 

different locations at which two users acquired inertial sensors data on their smart devices. 

Thus, each combination of four dots occupies an area of 0.6 × 0.6 m. Given the fixed size of 

the microcell in the given dataset, our experiments used the same grid size. However, there was 

further scope to observe the effects of different grid sizes on the results.  

The dataset consists of two scenarios with a combination of zigzag and straight-path trajectory 

performed by two different users holding a smartphone to cover the entire target area. The 

walking speed of each user was 0.6 m/s on average. Each sample was collected about every 100 

milliseconds, and the collection time was short. The dataset employs a unique combination of 

Wi-Fi signals and inertial sensor data of smartphones and smartwatches. This study did not 

consider data from the Wi-Fi access points or smartwatch data. During the acquisition, the 

smartphone was kept at chest level, with the screen facing up.  
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Figure 6.2: Indoor floorplan with top view and trajectory path from IPIN2016 [150] 

Each time the user was at a specific location, the device recorded the data as mentioned below 

at each dot location of the indoor space. The recorded data included the following readings at 

each dot, represented as PlaceID with their local coordinates (x, y) at a given timestamp: 

 x-, y- and z-axis values of the accelerometer sensor 

 x-, y- and z-axis values of the magnetometer  

 x-, y- and z-axis values of the gyroscope 

 roll, pitch and azimuth values of the inertial sensor. 

The work focused on the magnetic field signals with the accelerometer and gyroscope of the 

smartphone. Figure 6.3 presents a graphical representation of values from the x-, y- and z-axis 

of the magnetometer. The normalised magnitude Mmag of the magnetometer is calculated by 

Equation (6.1): 

                         (6.1) 
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where Mmag is the normalised magnitude of the magnetometer and Mi is the value of the ith axis 

of the three-axis accelerometer.

Figure 6.3: Graphical representation of x, y, z and magnitude of magnetometer readings

Figure 6.4 displays the magnetic field heatmap of each location on the trajectory of the corridor, 

followed by user 1. The number represented in each cell of the grid on the heatmap is 

normalised, as evaluated in Equation (6.1). The value of the magnitude varied from 21 to 68 

for the given dataset. The indoor magnetic field may be distorted over time locally because of 

the steel-reinforced concrete in the structures. However, the study revealed that the magnetic 

  [151].





142

The distribution of the training and validation data in the experiments was with K = 5 in the K-

fold cross-validation technique. The dataset was equally distributed in five parts, including the 

first 7,359 records as the validation data and the remaining 29,436 records as training data in 

the first iteration. Five iterations were completed over the total samples each time, in which 

7,359 data samples were treated as validation and the remaining as training data.

Figure 6.5: K-fold cross-validation technique [149]

The training data were used in each iteration with fixed hyperparameters. The hyperparameter 

is the higher-level properties of the data model that improves its performance and expresses the 

capacity of the model for learning the data complexity [153]. To improve the performance of 

the model, we involved hyperparameters, including several layers, epochs, mini-batch size, 

activation function, dropout, regularisation and optimisers [154]. The experimental model was 

implemented in Python with Keras and TensorFlow libraries with different settings and

hyperparameters, as listed in Table 6.1.



 

143 

Table 6.1: Experimental model with hyperparameter values 

Parameter Hyperparameter values in proposed deep MLP 

Software and libraries Python, Keras, TensorFlow 

Training data 

Validation data 

29,436 

7,359 

Epochs 60 to 140 

Batch size 20, 40, 60, 80 

Layers with hidden neurons (with batch 
normalisation) 

3 layers 128, 64 and 128 neurons 
5 layers 256, 128, 64 and 128 and 256 neurons 

7 layers 512, 256, 64, 128 and 256 neurons 

Dropout rate 0.2 to 0.8 

Activation  SELU, ELU, Softplus, ReLU 

Optimiser Adam, Adamax, RMSprop, Adagrad 

Loss function MAE, MSE, RMSE 

The experiments were performed with different hyperparameter settings making a different 

version of the MLP model. Further, the training data and labels were tuned to select the final 

model. The training data were tuned with the best hyperparameters and learning algorithms. 

The following section discusses the experimental results of the different settings with the best-

suited hyperparameters. 

6.5. Setup of experiments and analysis of results 

The experimental platform used to test the performance of the proposed neural network is 

presented in Section 6.5.1, and the performance metrics and evaluation results are discussed in 

Section 6.5.2. 

6.5.1. Setup of experiments 

Figure 6.6 presents the experimental platform in estimating the user's position using a deep 

MLP algorithm. 

The experimental platform takes a sequence of inertial sensor recordings as input, including the 

accelerometer, gyroscope and magnetometer readings of the smartphone. The collected inertial 

sensor readings from the smartphone are archived and passed as the training set to build the 

DNN model. The platform continuously updates the model using the archived and stream data 

from a smartphone. Further, the features are extracted and passed to the model for predicting 
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the position. In this work, a sequence of inertial sensor sample values from a dataset including 

those from an accelerometer, gyroscope and magnetometer for a moving user were collected 

and fed as input to the neural network as training data.

Figure 6.6: Experimental platform for the proposed model

We trained the neural network as a regression problem to learn the 2-D location of the user 

based on the input information. After the training, a model was established and could be used 

-time sensor data. To test the performance of the 

model, a test set based on the K-fold technique was used to evaluate the prediction accuracy of 

the proposed model.

6.5.2. Performance metrics and evaluation

The deep learning model was implemented using Python with libraries such as TensorFlow and 

scikit-learn. The performance was measured using the MAE, RMSE and MSE between the 
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process, we applied optimisers, including Adam, Adamax, RMSprop and Adagrad. Table 6.2 

shows the positioning errors for the variously implemented optimisers. For each optimiser, an 

appropriate learning rate was proposed.  

Table 6.2: Positioning error (in metres) with different optimisers and activation 

functions 

Optimiser MAE (m) RMSE (m) MSE (m) 

Adam 0.71 1.30 1.70 

Adamax 0.84 1.35 1.81 

RMSprop 1.04 1.84 3.39 

Adagrad 5.59 3.25 3.62 

Activation MAE (m) RMSE (m) MSE (m) 

ReLU 1.24 2.61 6.84 

Softplus 1.35 2.45 6.01 

ELU 0.92 1.85 3.45 

SELU 0.65 1.29 1.67 

As shown in Figure 6.8 (a), the implementation of the Adam optimiser provided the best 

performance, with an average of 0.71 m MAE error and 95.5% prediction accuracy. Thus, we 

continued keeping the adaptive moment estimation (A  =  = 0.999 and 

 = (10 x ex 8)). The positioning accuracies using activation functions, such as ReLU, 

Softplus, ELU and SELU, are shown in Figure 6.8 (b). All activation functions were performed 

with the Adam optimiser. The results indicated that the SELU activation function outperformed 

the other activation functions, with a positioning error of 0.65 metres and 94.51% prediction 

accuracy. Table 6.2 shows that the minimum positioning error was found with the SELU 

activation function, with 0.65 metres MAE, 1.67 metres MSE and 1.29 metres RMSE. Figure 

6.8 (b) and Table 6.2 show that the SELU activation function outperformed the ReLU, Softplus 

and ELU activation functions. 
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(b)

Figure 6.9: Training and validation (a) loss and (b) accuracy for deep MLP model

Figure 6.10: Best-suited regression-based DNN MLP model  [149]
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Figure 6.10 presents the best-suited regression-based DNN model used for the predictions, 

while Figure 6.11 presents the traces of the actual position (x, y) from the IPIN2016 dataset for 

user 1. Figure 6.12 displays  -suited 

regression MLP model. 

 

Figure 6.11: Actual (x, y) position based on dataset 

 

Figure 6.12:  
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The results demonstrate that the proposed model achieved a considerable prediction accuracy 

of 94.51%, with a 0.65-metre positioning error. The highest positioning error was no higher 

than 0.89 metres. The training time for the given model was approximately 16 seconds and the 

prediction time for a given sample once trained was five milliseconds. Our previous work based 

on an improved positioning algorithm [146] applied to the dataset provided an almost equal 

prediction accuracy of 95%. However, the positioning error was evaluated as 1.5 to 2 metres. 

The work requires an absolute position from additional devices, such as those capable of 

generating beacon signals. As such, the variation of the error is too high compared with the 

proposed model. Moreover, the computation time is almost doubled to 10 to 12 milliseconds. 

6.6. Summary 

This chapter has proposed a novel approach to achieve the positioning of a moving VI person 

as part of an indoor navigation system. The approach was based on feeding the data from the 

inertial sensors of a typical smartphone to a trained MLP, which mapped them into 2-D local 

coordinates of the microcell corresponding to the person's position holding the phone. The 

proposed approach was tested with data from a publicly available multivariant dataset, 

IPIN2016. The dataset contains data from movements that resemble walking by a VI person. 

The performed experiments showed that the proposed approach could achieve positioning 

accuracy close to the step size of a typical user around 0.65 metres.  The achieved accuracy 

for the DNN based approach is without the help of dedicated hardware of the infrastructure in 

the building. Regarding positioning accuracy, it is safe for a VI person to use the system with 

the known positioning error equal to the average step size. The previous Chapter 4 discussed 

the working and efficiency of pathfinding algorithm Orth-PATH, suggesting a reliable and VI-

friendly path to the VI person in an indoor space. Chapter 5 presented a fusion tracking system 

based on IoT devices that helps generate the walking user trajectories. This chapter aims to 

complement our navigation system with the proposed positioning approach to facilitate easy 

and independent indoor positioning and movements of a VI person. 
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Chapter 7  

Conclusion and Future Research 

Directions 

This chapter summarises the research and contributions of the thesis to improve the indoor 

navigation of VI people using IoT and deep learning techniques. It concludes the thesis by 

illustrating the work conducted to answer the research questions and highlights the directions 

of future work in this area. 
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7.1. Overview 

Among essential activities in daily life, travelling safely and independently in different and 

unknown environments is a challenging task for a VI person. This research work proposes a 

safe assistive Android application with features including VI-friendly paths, centimetre level 

absolute positioning and tracking a mobile VI person to travel indoors independently. Section 

7.2 summarises the major research activities undertaken in this thesis, while Section 7.3 

presents limitations, future research directions and concluding remarks. 

7.2. Conclusion 

This doctoral research investigated the usability of current technologies, including IoT and deep 

learning techniques, to facilitate the navigation experience of VI people in an indoor 

environment. VI people may attain assistance to sense environment cues from devices such as 

a white cane to navigate an outdoor environment. However, previous research findings reveal 

that navigation inside buildings with unfamiliar features and barriers discourages the 

independent movement of a VI person. Many navigation systems have proposed solutions to 

mitigate some challenges, such as localisation, pathfinding and landmark detections. However, 

to navigate indoors, VI people require granular context-aware information via turn-by-turn 

directions, providing orientation and mobility features, including centimetre-level positioning 

accuracy. Some existing navigation solutions may require complex infrastructure installations 

or do not provide a complete solution that meets the needs of VI people [22]. This thesis 

addressed many of the challenges faced by VI people in the preceding chapters. 

Chapter 1 defined the context and scope of the research. The chapter situated the research in 

navigation for VI people and using advanced technologies and devices to enhance 

indoor experience. The chapter presented the research objectives and questions, with the 

methodology addressed and applied in the following chapters of the thesis. This chapter 

answered the first part of the primary research question discussed in Section 1.3.2 by discussing 

the difficulties faced by VI people while navigating an indoor environment. The chapter 

discussed the methodology followed to resolve significant gaps in the existing systems to create 

effective and smart navigation. 

Chapter 2 presented the theoretical background with a literature review on indoor navigation 

for VI people. It identified and classified the needs of a VI person travelling in an unknown 
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indoor environment. Further, it discussed the existing indoor navigation systems for VI people, 

highlighting context-aware architecture, such as RSNAVI. Further, it highlighted the 

advantages and disadvantages of the existing navigation systems for VI people. The chapter 

addressed the second half of the primary research question, RQ1, as stated in Section 1.3.2. The 

analysis and study of the literature helped identify and address research gaps, including accurate 

positioning, reliable pathfinding and tracking techniques for VI people. The chapter 

summarised critical issues, such as self-positioning, finding an appropriate path to the 

destination that considers vision limitations, and generating the user trajectory with minimal 

devices to carry. The chapter discussed various map representation techniques and proposed a 

grid-based occupancy map representation for VI people to enhance accessibility. Finally, the 

chapter underlined and discussed the high-level building blocks of an indoor navigation system 

with suitable map representation techniques. 

Chapter 3 discussed the proposed framework, Indoor-Nav, highlighting the scope and major 

problems resolved in the thesis to enhance the indoor journey of VI people. The chapter 

presented the primary components of the proposed framework, including indoor map setup, 

path estimation and tracking and positioning. The chapter explored the possibility of including 

IoT and deep learning techniques with grid-based OGMs in the indoor navigation framework. 

The approach used in the framework addressed the RQ2 and RQ3 initiated in Chapter 1 (Section 

1.3.2) by illustrating the use of IoT and deep learning to develop an intelligent navigation guide 

for VI people. Further, the chapter derived the use of a grid-based occupancy map from the 

study in Chapter 2 to ensure collision-free paths and avoid significant barriers, including fixed 

furniture and other environmental changes in a dynamic environment. All of the simulations 

and experiments assumed the use of OGM for the given indoor space. Finally, the chapter 

discussed the high adaptive learning model used in the thesis to track and position the moving 

user in an indoor environment, proposing the use of IoT devices and deep learning.  

Chapter 4 discussed 

RRT, used in an indoor environment with grid-based indoor maps to target the research gap 

related to path generation. The framework proposed embedding UHF RFID on the interiors and 

obstacles in the environment to display obstacles in the indoor map. The updated OGM grid-

based map is provided as the input to the pathfinding algorithms. is mainly 

used over the expanding grids and provided paths from the source location to all destination 
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oes not explore all possible paths. However, it 

sought a better path by using an admissible heuristic function. 

Nevertheless, in cases where obstructions in the environment increased, the PRM and RRT 

algorithms helped to generate paths more rapidly. However, the paths generated by the PRM 

and RRT pathfinding algorithms were found non-smooth and unfavourable for VI users. The 

popular pathfinding algorithms were compared based on computation time and path quality, 

considering the limitations of low-vision users. Overall, A* provided better results but primarily 

focused on distance. For a VI person, travelling a few metres more is acceptable if it enables a 

safer route. These algorithms may produce routes with less distance to travel, but the path 

quality and obstacles are unsuitable for VI users. The results of this research show there is still 

scope for developing more efficient pathfinding algorithms. Considering the limitations of VI 

people, the chapter proposed a novel pathfinding algorithm, Ortho-PATH, to provide line-

shore, safe paths that avoid obstacles. The algorithm s orthogonal path generation technique 

prioritises safety by providing paths that do not involve any angular movements. This study 

answered RQ4 (Section 1.3.2) concerning essential criteria for a pathfinding algorithm for VI 

agents. It also addressed RQ5 by proposing the Ortho-PATH pathfinding algorithm to provide 

an orthogonal path without the burden of post-processing and having computation time 

approximately the same as A*, the optimal pathfinding algorithm. 

Chapter 5 proposed a framework to use IoT devices and fusion algorithms as a step forward in 

guiding VI users and generating trajectories to help users when lost in an unknown 

environment. The chapter discussed the details of the indoor tracking technique, BVIP, which 

uses a beacon and fusion algorithm that incorporates adaptive learning from inertial sensors, 

including an accelerometer, magnetometer and gyroscope. The dynamic threshold value used 

to evaluate the travelled distance by a moving user considers a user's profile, including step 

length and stance length. Therefore, the proposed fusion algorithm is customised to the 

registered user and is less error-prone. The chapter answered RQ5, suggesting a fusion 

algorithm to track a VI person in a beacon- and RFID-embedded environment. Smartphones 

are currently everyday devices for many users; thus, a smartphone-based application is an 

appropriate choice for tracking a moving user. Experimentation with a smartphone-based 

Android application was employed in several scenarios with three users to demonstrate the 

efficiency of the proposed method and provide accurate trajectories of the users with minimal 

devices. 
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Chapter 6 presented the most remarkable contribution to emerge from the experimentation 

results of the thesis. The idea of deep learning techniques is implemented in smartphone 

applications that emulate human-like sensory organs to extract high-level information and 

discern essential features and patterns of the surrounding environment. These features of deep 

learning hold great promise to fulfil the challenging needs of humans with disabilities. The 

chapter discussed the multivariant public dataset, IPIN2016, used in the experiments, consisting 

of inertial sensor records of a smartphone and smartwatch. This study applied a regression-

based MLP DNN model on the normalised dataset on an indoor map with a fixed grid size of 

0.6 × 0.6 cm. The experimental results of the deep learning model provided performance 

accuracy of 0.65 metres by discerning the pattern of inertial sensor data and providing local 

coordinates of the indoor space. The chapter addresses the research question RQ6 discussed in 

section 1.3.2 of Chapter 1 by proposing a deep learning-based mechanism to self-position a VI 

user. The chapter has also responded to RQ7 with a Cloud-based deployment platform for the 

DNN in an indoor IoT-equipped environment. We also intend to test our approach using a much 

larger and temporal dataset to observe the effect of magnetic intensity variations on prediction 

error. The system enables VI people to know their direction and exact position, recognising 

nearby landmarks. 

The contributions of the thesis, discussed in Section 1.5, have been addressed and verified 

throughout the research. The research goals are achieved by answering the research questions, 

as discussed above. In summary, the thesis contributes to boosting the confidence of VI people 

by enhancing their indoor travel with minimal equipment requirements. 

7.3. Limitation and future directions 

Although this thesis contributes to providing a complementary solution for VI people to 

navigate an indoor environment, this section presents the study limitations and research 

opportunities for future work that this thesis has revealed. 

Deploying infrastructure such as UWB may lead to enhanced accuracy and reduced positioning 

error. However, it can be costly. Our framework proposes use of a smartphone a widely 

accepted device as the thesis proposes a non-vision-based technique that does not require high 

computational technology. The suggested system achieves reasonable accuracy. However, the 

thesis performed unit testing not on VI people but on people pretending to have vision 
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impairment. Thus, the system must be employed with VI people to enable enhanced testing of 

the system. 

This work does not involve the generation of OGMs from the floorplan but assumes that the 

structured OGM of the indoor space is provided as an input mapped with local coordinates of 

the indoor grid space. However, in future, we may seek to automate and resolve this issue.  The 

smartphone-based Android application discussed in Chapter 5 tests two particular scenarios: 

(1) holding the phone in hand and (2) keeping the phone in the pocket. Although the fusion 

algorithm considers the smartphone  various smartphone 

poses. Further, we plan to test the hybrid integrated system with IoT devices and a deep learning 

framework to assist VI people to move freely in the indoor world using minimal devices. The 

proposed approach requires Internet connectivity, as it relies on attaining position estimates 

from the trained model residing in the Cloud. We intend to explore whether this shortcoming 

can be addressed by using pre-trained models in a smartphone application in the future work. 

Finally, the proposed framework executed on a 2-D floor plan entailed the limitation of not 

detecting different building floors. 

The simulation and experimental results discussed in the previous chapters provide a proof-of-

concept of the proposed framework for an indoor navigation system for VI people. However, 

exhaustive integrated testing of the work has not been performed. Hence, the proposed 

framework can be further optimised in certain areas. In this context, some ideas are presented 

below: 

 The grid size in the OGM may affect the positioning error and prediction accuracy. 

Given the limitation of the inertial sensor public dataset mapped local coordinates, the 

work focused on a fixed grid size of 0.6 × 0.6 cm. Further research and investigation of 

an appropriate grid size may result in better and more reliable accuracy than those 

received with the given grid size. 

 The DNN suggested in this work achieves positioning errors that are less than 65 cm. 

However, there is scope to improve the positioning accuracy by implementing the deep 

neural model on the data received from advanced technologies, such as Lidar and UWB. 

Researchers may wish to create public datasets using these technologies to generate and 

test the DNN model. 

 Privacy and security concerns related to the IoT devices proposed in the system must be 

addressed. Given the highly interconnected nature of IoT devices, these devices are 
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prone to attacks, and the attacker can further propagate through the IoT devices. Thus, 

this thesis can be extended to protect user privacy and secure data from being 

compromised.  
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