248 research outputs found

    A survey of online data-driven proactive 5G network optimisation using machine learning

    Get PDF
    In the fifth-generation (5G) mobile networks, proactive network optimisation plays an important role in meeting the exponential traffic growth, more stringent service requirements, and to reduce capitaland operational expenditure. Proactive network optimisation is widely acknowledged as on e of the most promising ways to transform the 5G network based on big data analysis and cloud-fog-edge computing, but there are many challenges. Proactive algorithms will require accurate forecasting of highly contextualised traffic demand and quantifying the uncertainty to drive decision making with performance guarantees. Context in Cyber-Physical-Social Systems (CPSS) is often challenging to uncover, unfolds over time, and even more difficult to quantify and integrate into decision making. The first part of the review focuses on mining and inferring CPSS context from heterogeneous data sources, such as online user-generated-content. It will examine the state-of-the-art methods currently employed to infer location, social behaviour, and traffic demand through a cloud-edge computing framework; combining them to form the input to proactive algorithms. The second part of the review focuses on exploiting and integrating the demand knowledge for a range of proactive optimisation techniques, including the key aspects of load balancing, mobile edge caching, and interference management. In both parts, appropriate state-of-the-art machine learning techniques (including probabilistic uncertainty cascades in proactive optimisation), complexity-performance trade-offs, and demonstrative examples are presented to inspire readers. This survey couples the potential of online big data analytics, cloud-edge computing, statistical machine learning, and proactive network optimisation in a common cross-layer wireless framework. The wider impact of this survey includes better cross-fertilising the academic fields of data analytics, mobile edge computing, AI, CPSS, and wireless communications, as well as informing the industry of the promising potentials in this area

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Transport 2040 : Impact of Technology on Seafarers - The Future of Work

    Get PDF
    https://commons.wmu.se/lib_reports/1091/thumbnail.jp

    Recent advances in low-cost particulate matter sensor: calibration and application

    Get PDF
    Particulate matter (PM) has been monitored routinely due to its negative effects on human health and atmospheric visibility. Standard gravimetric measurements and current commercial instruments for field measurements are still expensive and laborious. The high cost of conventional instruments typically limits the number of monitoring sites, which in turn undermines the accuracy of real-time mapping of sources and hotspots of air pollutants with insufficient spatial resolution. The new trends of PM concentration measurement are personalized portable devices for individual customers and networking of large quantity sensors to meet the demand of Big Data. Therefore, low-cost PM sensors have been studied extensively due to their price advantage and compact size. These sensors have been considered as a good supplement of current monitoring sites for high spatial-temporal PM mapping. However, a large concern is the accuracy of these low-cost PM sensors. Multiple types of low-cost PM sensors and monitors were calibrated against reference instruments. All these units demonstrated high linearity against reference instruments with high R2 values for different types of aerosols over a wide range of concentration levels. The question of whether low-cost PM monitors can be considered as a substituent of conventional instruments was discussed, together with how to qualitatively describe the improvement of data quality due to calibrations. A limitation of these sensors and monitors is that their outputs depended highly on particle composition and size, resulting in as high as 10 times difference in the sensor outputs. Optical characterization of low-cost PM sensors (ensemble measurement) was conducted by combining experimental results with Mie scattering theory. The reasons for their dependence on the PM composition and size distribution were studied. To improve accuracy in estimation of mass concentration, an expression for K as a function of the geometric mean diameter, geometric standard deviation, and refractive index is proposed. To get rid of the influence of the refractive index, we propose a new design of a multi-wavelength sensor with a robust data inversion routine to estimate the PM size distribution and refractive index simultaneously. The utility of the networked system with improved sensitivity was demonstrated by deploying it in a woodworking shop. Data collected by the networked system was utilized to construct spatiotemporal PM concentration distributions using an ordinary Kriging method and an Artificial Neural Network model to elucidate particle generation and ventilation processes. Furthermore, for the outdoor environment, data reported by low-cost sensors were compared against satellite data. The remote sensing data could provide a daily calibration of these low-cost sensors. On the other hand, low-cost PM sensors could provide better accuracy to demonstrate the microenvironment

    Repairing Confident Information Coverage Holes for Big Data Collection in Large-Scale Heterogeneous Wireless Sensor Networks

    No full text

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words
    corecore