
University of Porto • Faculty of Engineering

Doctoral Thesis

Increasing the Dependability of
Internet-of-Things Systems in the context of

End-User Development Environments

João Pedro Matos Teixeira Dias

Scientific Supervisor:
Hugo Sereno Ferreira, PhD
Assistant Professor

Scientific Co-Supervisor:
João Pascoal Faria, PhD

Associate Professor

In partial fulfillment of requirements for the degree of
Doctor of Philosophy in Informatics Engineering

by the

Doctoral Program in Informatics Engineering (ProDEI)

April 2022

http://www.fe.up.pt
http://jpdias.me
http://www.hugosereno.eu
http://www.hugosereno.eu
http://orcid.org/0000-0003-3825-3954
http://orcid.org/0000-0003-3825-3954

i

© João Pedro Dias, 2022

ii

Increasing the Dependability of
Internet-of-Things Systems in the context of

End-User Development Environments

João Pedro Matos Teixeira Dias

In partial fulfillment of requirements for the degree of
Doctor of Philosophy in Informatics Engineering

by the

Doctoral Program in Informatics Engineering (ProDEI)

Approved by:

President of the Jury:

• PhD Rui Filipe Lima Maranhão de Abreu, Full Professor at the Department of Informatics
Engineering of the Faculdade de Engenharia da Universidade do Porto.

Members:

• PhD Dariusz Mrozek, Associate Professor at the Department of Applied Informatics at Silesian
University of Technology, Poland;

• PhD Pedro Nicolau Faria da Fonseca, Assistant Professor at the Department of Electronics,
Telecommunications and Informatics of Universidade de Aveiro;

• PhD André Monteiro de Oliveira Restivo, Assistant Professor at the Department of Informatics
Engineering of the Faculdade de Engenharia da Universidade do Porto;

• PhD Hugo José Sereno Lopes Ferreira, Assistant Professor at the Department of Informatics
Engineering of the Faculdade de Engenharia da Universidade do Porto (Supervisor).

April 1, 2022

Hugo Sereno Ferreira, PhD

http://jpdias.me

iii

Contact Information

João Pedro Matos Teixeira Dias
Faculdade de Engenharia da Universidade do Porto
Departamento de Engenharia Informática

Rua Dr. Roberto Frias, s/n
4200-465 Porto
Portugal

Email: jpmdias@fe.up.pt
Web: https://jpdias.me

This thesis was typeset on a Lenovo ThinkPad T460s running Manjaro Linux, using the Microsoft Vi-
sual Studio Code editor (with the LATEXWorkshop extension), and the LATEX typesetting system. The style
is based on the Masters/Doctoral Thesis template by Vel and Johannes Böttcher, available under LPPL
v1.3c License. Most of the diagrams were drawn using draw.io and Inkscape, using free for personal use
icon packs and assets, including ones from freepik.com.

“Increasing the Dependability of Internet-of-Things Systems in the context of End-
User Development Environments”
Copyright ©2022 João Pedro Dias.
All rights reserved.

This work was partially funded by the Portuguese Foundation for Science and Technology (FCT), under
the research grant SFRH/BD/144612/2019.

mailto:jpmdias@fe.up.pt
https://jpdias.me
https://draw.io
https://inkscape.org/
https://freepik.com/

iv

“In the new era, thought itself will be transmitted by radio.”

Guglielmo Marconi, Nobel laureate in Physics

v

Abstract
The ubiquitousness of computing, known as Internet-of-Things (IoT), has reshaped theway

people interact with the physical world. However, the scale, distribution — both logical and
geographical —, density, heterogeneity, interdependence, and quality-of-service requirements
of these systems make them complex, posing several challenges from both operational and
development viewpoints.

While there is a consensus that the widely used software engineering practices are inade-
quate for IoT development, they remain the go-to solutions for most practitioners. This aspect
has severely compromised their dependability, centralizing most of the computation of these
(soft) real-time systems in cloud infrastructure. Likewise, as these systems scale in terms of de-
vices and applications, it outreaches existing technical resources to manage and operate them,
becoming of paramount importance, making them as most self-managed as possible while em-
powering the ability of system operators (including end-users) to configure and understand
them — mainly using solutions that do not require high technical expertise, viz. low-code
development solutions — including the configuration of fail-safe measures.

This thesis primary focus is to research how to improve the current status quo on the de-
pendability of IoT. However, this is a manifold endeavor: (1) what are the best practices for de-
veloping IoTdependably, andwhat is their scientific soundness, (2) do the current solutions give
the fundamental building blocks that allow to design and construct dependable systems, and, if
not, what contributions are needed to overcome the existing limitations, and, lastly, (3) giving
that these systems are operated by humans with limited technical expertise, it is required that
their users can use and configure them without compromising their correct operation. As we
set ourselves to tackle these challenges, we claim that:

It is possible to enrich IoT-focused end-user development environments in such a way
that the resulting systems have a higher dependability degree, with the lowest impact on
the know-how of the (end-)users.

As preliminary research, to understand what end-users want to automate and how they
wish to perform such automations, a study was carried to collect automation scenarios. These
scenarios showcased the complexity of the automations that some end-users want to perform
and the interdependencies between different information sources, devices, and persons. It also
supported the view that some of the appliances that end-users want to automate can have ne-
farious effects if a malfunction happens or a misconfiguration is performed.

We followed extensive literature research and experimental process tomine a set of patterns
that can be used to improve IoT systems bymaking themmore dependable, documenting them
as patlets, which summarily describe solutions that address some particular problem within a
specific context. We further studied a subset of these patterns as a self-healing pattern language
that contemplates the use of more than one pattern in tandem to address systems’ operational
concerns autonomically.

Adopting these patterns depends on supporting foundations, which include architectural
and functional aspects of the target systems. A key aspect is that most of the current solutions
do not provide any features to readjust their intrinsic behaviors during runtime — with the

vi

software that runs on edge devices being mostly set on stone, delegating all the computational
needs to cloud-based services. The research on fog and edge computing attempts to mitigate
this by leveraging computational resources across architectural tiers, making the resulting sys-
tems more dependable and improving their scalability. Taking on these foundations, we ex-
plored and asserted the feasibility of using serverless functions in the IoT context, optimizing
the choice of execution contexts according to a priori preferences, constraints, and latencies.

To understand how these paradigms can be leveraged in widely used solutions, we select
the open-source Node-RED solution as the experimental base, given its popularity. It provides
a visual programming interface that increases its target user base across different expertise
levels. Like other available solutions, Node-RED does not provide any feature that allows it to
orchestrate tasks across devices or deal with system parts’ failures, limiting the dependability
of systems built with it. Nonetheless, given its open-source and extensible nature, we proceed
to address some of its limitations. We proceed to evaluate empirically, both in virtual and
physical setups, the feasibility of using Node-RED as an orchestrator, where computational
tasks are allocated to the available resources, and failures are mitigated by re-orchestrating as
devices fail and recover. We also implemented a set of extensions for Node-RED that allows
one to enrich the existing programs (i.e., flows) with self-healing capabilities — allowing the
detection errors of different parts during runtime, and readjust its behavior to keep delivering
correct service by recovering to normal operation, or, at least, maintain its operation within
acceptable Quality-of-Service levels.

As IoT users have different expertise levels, we also attempt to improve the interaction with
these systems in a way that the users can understand what the configured automations are (viz.
inspection), how it is behaving (viz. observability and feedback), and increase their capability
to knowwhat was the possible cause behind certain events (viz. causality). In the first study, we
extended the visual notations and functionalities of Node-RED to improve the development
process using it. We proceed to empirically evaluate the performance of our solution against
a non-modified version of Node-RED, observing statistically significant improvements in the
users’ ability to evolve existing IoT deploys. Lastly, we explored the use of voice assistants as
an alternative way of configuring, understanding, and interacting with IoT-enriched environ-
ments, with a particular focus on the ability of a user to understand the cause behind some
events. We assert the feasibility of our solution by covering all the different automation possi-
bilities that Node-RED supports, with a considerable extension of the interaction possibilities
due to multi-message dialogs support. We proceeded to empirically validate the feasibility of
users using the voice assistant to complete different tasks, and all the users were able to finish
the tasks. While some valid sentences were incorrectly recognized, forcing the user to repeat
their intent, participants expressed a preference for voice interfaces over visual ones in terms
of subjective perception.

These contributions materialize into a core set of building blocks that, in assemble, can be
used to improve the dependability of IoT systems while leveraging abstractions that do not
hinder the (end-)user capability to configure, use, and evolve them. The experimental coun-
terparts of the contributions provide empirical supporting evidence for the plausibility of the
hypothesis.

vii

Resumo
A ubiquidade da computação, conhecida como Internet-of-Things (IoT), tem moldado a

maneira como as pessoas interagem com o mundo físico. No entanto, a escala, distribuição
lógica e geográfica, densidade, heterogeneidade, interdependência, e os requisitos de segurança,
fazem com que estes sistemas sejam complexos, criando vários desafios operacionais e de de-
senvolvimento. Embora exista um consenso alargado de que as práticas de engenharia de soft-
ware amplamente utilizadas são inadequadas para o desenvolvimento de IoT, estas continuam
a ser as soluções mais usadas. Este aspeto tem vindo a comprometer a confiabilidade destes sis-
temas, centralizando a maior parte da computação em infraestruturas cloud. Adicionalmente, a
larga-escala destes sistemas em termos de dispositivos e aplicações supera os recursos técnicos
existentes para a sua gestão e operação, sendo crucial torná-los o mais self-managed possível.
No entanto, tem de ser dada a capacidade aos operadores do sistema (incluindo utilizadores fi-
nais) de configurá-los e entendê-los— principalmente usando soluções que não requerem alto
conhecimento técnico, viz. soluções de desenvolvimento de low-code—incluindo a capacidade
de configuração de medidas de resiliência em caso de falhas.

O foco principal desta dissertação é investigar como melhorar o status quo da confiabili-
dade em sistemas IoT. Este é um esforço multifacetado sendo necessário (1) perceber quais são
as melhores práticas para desenvolver IoT de forma confiável e qual é sua solidez científica,
(2) perceber se as soluções atuais fornecem mecanismos fundamentais que permitem desen-
har e construir sistemas confiáveis, e, se não, que contribuições são necessárias para superar as
limitações existentes e, por último, (3) dado que esses sistemas são operados por humanos com
conhecimento técnico limitado, é necessário que os seus utilizadores sejam capazes de usar e
configurar os sistemas sem comprometer o correto funcionamento dosmesmos. Enquanto nos
propomos a enfrentar os desafios acima mencionados, afirmamos que:

É possível enriquecer os ambientes de desenvolvimento de IoT focados em utilizadores
finais de tal forma que os sistemas resultantes têm um maior grau de confiabilidade,
reduzindo o impacto no know-how destes utilizadores.

Para se melhor entender o que (e como) os utilizadores finais desejam automatizar os seus
sistemas de IoT foi realizado um estudo para reunir cenários de automação, como pesquisa
preliminar. De seguida, uma extensa pesquisa bibliográfica foi realizada de forma a extrair um
conjunto de padrões que podem ser usados para melhorar os sistemas IoT do ponto de vista
da sua confiabilidade. Estes padrões foram documentados em formconfiabilidadea sucinta, ex-
pondo problemas particulares dentro de um contexto específico. As relações de um subcon-
junto desses padrões foram estudadas, resultando numa linguagem de padrão de self-healing,
endereçando as preocupações de confiabilidade em tempo de execução de forma autonómica.

A adoção destes padrões depende de aspetos arquiteturais e funcionais dos sistemas. Um
dos aspetos limitadores é que a maioria dos sistemas e soluções atuais não fornece nenhum
mecanismo para reajustar o comportamento do sistema durante o tempo de execução. Dado
isto, os paradigmas de computação fog e edge foram explorados de forma a aproveitar os re-
cursos computacionais em todas as camadas do sistema, com o objetivo de tornar os sistemas
mais confiáveis e mais escaláveis. Com estas contribuições de base, exploramos e afirmamos a

viii

viabilidade de usar funções serverless no contexto de IoT, otimizando a escolha de contextos
de execução de acordo com preferências, restrições e latências.

Paramelhor entender como é que estes paradigmas podem ser potencializados para soluções
amplamente utilizadas, selecionamos Node-RED como caso de estudo, dado ser um dos sis-
temas de desenvolvimento open-source mais utilizados. Este fornece uma interface de progra-
mação visual que potencia que utilizadores com diferentes níveis de conhecimento técnico o
possam usar. E, tal como outras soluções, o Node-RED não fornece mecanismos para orques-
trar tarefas entre dispositivos nem lidar com falhas de partes do sistema dinamicamente, limi-
tando a confiabilidade dos sistemas construídos.

Começamos por avaliar empiricamente, tanto em configurações virtuais como físicas, a vi-
abilidade de usar o Node-RED como um orquestrador, onde as tarefas computacionais são alo-
cadas para os recursos disponíveis e as falhas de dispositivos sãomitigadas com re-orquestrações.
Também foi desenvolvido um conjunto de extensões para Node-RED que permitem enrique-
cer os programas existentes (flows) com mecanismos de self-healing — permitindo a deteção
de diferentes erros durante o tempo de execução e reajustando o comportamento do sistema
para este manter a sua operação dentro de níveis aceitáveis de Qualidade de Serviço.

Dado que os utilizadores de IoT têm diferentes níveis de conhecimento técnico, tentamos
melhorar a interação com os ambientes de desenvolvimento destes sistemas para que os uti-
lizadores pudessem melhor entender quais são as automações configuradas (viz. inspeção),
como estas se estão a comportar (viz. observabilidade e feedback), e aumentar a sua capaci-
dade de perceber qual foi a possível causa por trás de certos eventos (viz. causalidade). No
primeiro estudo, começamos por estender as notações visuais e as funcionalidades do Node-
RED para que pudéssemos melhorar o processo de desenvolvimento. De seguida avaliamos
empiricamente o desempenho da solução desenvolvida em relação a uma versão doNode-RED
sem modificações, observando melhorias estatisticamente significativas na capacidade dos uti-
lizadores de evoluir sistemas de IoT existentes. Por fim, exploramos o uso de assistentes de voz
comomaneira alternativa de configurar, compreender e interagir com ambientes IoT, focando-
nos particularmente na capacidade de umutilizador perceber a causa por trás de alguns eventos.

Verificamos a viabilidade do uso de sistemas de voz como forma alternativa de desenvolvi-
mento de sistemas IoT, cobrindo todas as diferentes possibilidades de automação que o Node-
RED suporta, com uma extensão considerável das possibilidades de interação devido ao su-
porte de diálogos multimensagem. Passamos a validar a viabilidade dos utilizadores usarem o
assistente de voz para realizar diferentes tarefas, verificando que todos os utilizadores foram
capazes de terminar as tarefas. Enquanto algumas frases válidas foram incorretamente recon-
hecidas pelo mecanismo de reconhecimento de voz, o que forçou alguns participantes a repetir
a sua intenção, os participantes expressaram uma preferência por interfaces de voz preterindo
interfaces visuais em termos de perceção subjetiva.

Essas contribuições materializam-se num conjunto básico de blocos de construção que, em
conjunto, podem ser usados para melhorar a confiabilidade dos sistemas de IoT, ao mesmo
tempo que potencializam a capacidade do utilizador de os configurar, usar e desenvolver sis-
temas deste tipo. As contrapartes experimentais destas contribuições fornecem evidências em-
píricas que sustentam a plausibilidade da hipótese.

ix

Contents
Abstract v
Resumo vii
List of Figures xiii
List of Tables xvi
Algorithms and Code Snippets xvii
Acronyms xviii
Preface xix

1 Introduction 1
1.1 On the Analog and Digital Worlds . 2
1.2 From the Internet-of-Computers to the IoT . 3
1.3 The Role of Automation . 4
1.4 Software Crisis and the Technology Fragmentation 6
1.5 Complexity: Essential versus Accidental . 8
1.6 Towards Dependable Systems . 9
1.7 Motivation and Scenarios . 10
1.8 Emerging Challenges . 14
1.9 Research Goals . 15
1.10 Research Contributions . 17
1.11 How to Read this Document . 18

I Fundamentals 20
2 Background 21

2.1 Internet-of-Things . 21
2.2 Software Architecture Context . 38
2.3 Fault-tolerant Systems . 45
2.4 Autonomic Computing . 51
2.5 Software Development Life-Cycle . 56
2.6 Summary . 63

3 State-of-the-Art 64
3.1 Designing IoT Systems . 65
3.2 Constructing IoT Systems . 68
3.3 Testing IoT Systems . 97
3.4 IoT Cross-Cutting Challenges . 103
3.5 Fault-Tolerant Systems . 107
3.6 Autonomic Computing . 118

x

3.7 Summary . 121

4 End-user Automation Survey 123
4.1 Home Automation User Study . 124
4.2 Methodology . 124
4.3 Scenarios Categories . 125
4.4 Results and Analysis . 127
4.5 Threats to Validity . 130
4.6 Summary . 131

5 Research Statement 132
5.1 Emerging Challenges and Viewpoints . 132
5.2 A Perspective on Node-RED . 135
5.3 Thesis Statement . 136
5.4 Research Questions . 138
5.5 Research Methodology . 140
5.6 Summary . 141

II Pattern Language 143
6 Patterns for Dependable IoT 144

6.1 How To Read These Patterns . 144
6.2 Methodology . 145
6.3 Pattern Language . 146
6.4 Summary . 150

7 Supporting Patterns 151
7.1 Device Registry . 152
7.2 Device Raw Data Collector . 152
7.3 Device Error Data Supervisor . 153
7.4 Predictive Device Monitor . 154
7.5 Testbed . 155
7.6 Simulation-based Testing . 156
7.7 Middleman Update . 157
7.8 Summary . 157

8 Error Detection Patterns 159
8.1 Action Audit . 160
8.2 Suitable Conditions . 161
8.3 Reasonable Values . 161
8.4 Unimpaired Connectivity . 162
8.5 Within Reach . 163
8.6 Component Compliance . 164
8.7 Coherent Readings . 165
8.8 Internal Coherence . 166
8.9 Stable Timing . 167

xi

8.10 Unsurprising Activity . 167
8.11 Timeout . 168
8.12 Conformant Values . 169
8.13 Resource Monitor . 170
8.14 Summary . 170

9 Recovery & Maintenance of Health Patterns 171
9.1 Redundancy . 172
9.2 Diversity . 173
9.3 Runtime Adaption . 173
9.4 Debounce . 174
9.5 Balancing . 175
9.6 Compensate . 176
9.7 Timebox . 176
9.8 Checkpoint . 177
9.9 Reset . 178
9.10 Consensus Among Values . 178
9.11 Circumvent and Isolate . 179
9.12 Flash . 180
9.13 Calibrate . 180
9.14 Rebuild Internal State . 181
9.15 Summary . 182

III Dependable and Autonomic Computing 183
10 Dynamic Allocation of Serverless Functions in IoT 184

10.1 Approach Overview . 185
10.2 Experiments and Results . 193
10.3 Discussion . 197
10.4 Summary . 198

11 Visual IoT Dynamic Orchestration 199
11.1 Approach Overview . 200
11.2 Experiments and Results . 206
11.3 Discussion . 208
11.4 Summary . 217

12 Self-Healing for IoT 218
12.1 Approach Overview . 219
12.2 Experiments and Results . 221
12.3 Discussion . 240
12.4 Summary . 243

IV End-User Development 245
13 Real-time Feedback in Node-RED 246

xii

13.1 Approach Overview . 246
13.2 Experiments and Results . 248
13.3 Discussion . 256
13.4 Summary . 256

14 Conversational Assistant for IoT Automation 258
14.1 Approach Overview . 259
14.2 Experiments and Results . 268
14.3 Discussion . 274
14.4 Summary . 276

15 Conclusions 278
15.1 Research Questions . 278
15.2 Hypothesis Revisited . 281
15.3 Thesis Validation . 282
15.4 Main Outcomes . 283
15.5 Future Work . 285
15.6 Epilogue . 287

References 289
A Publications 321
B Replication Packages 337
C Self-Healing Algorithms 340

xiii

List of Figures

1.1 Progress of automation in telephony. 4
1.2 Self-management continuum. 5
1.3 Fundamental chain of dependability threats. 9
1.4 SmartLab motivational scenario with interconnected sensors and actuators. . . 11
1.5 Smart home motivational scenario. 12
1.6 Conceptual view of a smart city. 13
1.7 High-level overview of the approach detailed in this thesis. 17

2.1 Number of IoT devices per year. 22
2.2 Number of IoT enterprise projects per application domain. 24
2.3 Development hardware boards popularity in the literature. 26
2.4 An overview of the IoT-enabling wireless network protocols. 30
2.5 Lower-layer protocols popularity in the literature. 31
2.6 High-layer protocols popularity in the literature. 36
2.7 Common architectural tiers of IoT systems. 39
2.8 Logical view of the common layers of IoT systems. 40
2.9 The dependability and security tree. 46
2.10 Dissection of the elementary fault classes. 47
2.11 Overview of the service failure modes. 48
2.12 Fault-tolerance techniques. 50
2.13 State transactions of a self-healing system. 54
2.14 Software Development Life Cycle holistic overview. 56
2.15 Real-world, model and program relationship overview. 60
2.16 Basic concepts of model transformation. 60

3.1 Trigger-action rule for turning off the lights when the user leaves the house. . . 68
3.2 IoT development tools popularity on GitHub. 69
3.3 FRASAD Platform-Independent Model visual editor. 71
3.4 ThingML code generation framework. 75
3.5 Node-RED flow for controlling an electric fan. 78
3.6 Coordination between nodes in D-NR. 80
3.7 Partition and assignment of parts of the flow. 81
3.8 FogFlow high level model. 82
3.9 DDFlow architectural components. 83
3.10 Node-RED development UI. 87
3.11 Node-RED event processing model. 88
3.12 Mockup of an alternative node interface in Node-RED. 91

4.1 2D and 3D floor plan of the smart house used for the survey. 124

xiv

4.2 Systematic process used to select the categories of the scenarios. 125
4.3 Number of automation scenarios per category. 127
4.4 Number of scenarios per number of system components in use. 128
4.5 Mentions to specific home parts by the survey participants. 129

5.1 Usage of Node-RED by the user community. 135

6.1 Process of elaboration of patterns and pattern language. 146
6.2 Pattern-map of the self-healing pattern-language. 147
6.3 Pattern mapping of the identified IoT patterns. 148
6.4 Overview of the self-healing pattern language for IoT. 149

8.1 Diagnostic enhancement tree for the Action Audit pattern. 160
8.2 Diagnostic enhancement tree for the Reasonable Values pattern. 162
8.3 Diagnostic enhancement tree for the Unimpaired Connectivity pattern. . . . 163
8.4 Diagnostic enhancement tree for the Within Reach pattern. 164
8.5 Diagnostic enhancement tree for the Internal Coherence pattern. 166
8.6 Diagnostic enhancement tree for the Unsurprising Activity pattern. 168
8.7 Diagnostic enhancement tree for the Timeout pattern. 169
8.8 Diagnostic enhancement tree for the Conformant Values pattern. 169

9.1 Overview of the recovery & maintenance of health patterns and inner-relations. 172

10.1 Overview of the system operation. 186
10.2 Request for the execution of a demanding function. 187
10.3 Request for the execution of a computational light function. 188
10.4 Failed request to execute a function in the cloud. 189
10.5 Response time per request before and after Internet connection drop. 196
10.6 Requests total time throughout the various iterations of the fourth experiment. 197

11.1 High-level overview of the proof of concept. 200
11.2 Summarized firmware component diagram. 201
11.3 Node assignment representative example. 205
11.4 Flow for consensus and fault-tolerance strategies in the first scenario. 206
11.5 Simulated Device Failure measurements. 210
11.6 Physical Device Failure experiment. 211
11.7 Early Device Failure measurements. 212
11.8 Out-of-Memory Issues measurements. 213
11.9 Memory Leak Issues measurements. 214
11.10 Fault injection experiment measurements. 215
11.11Nodes assignment distribution with recurrent failures. 216

12.1 System component diagram, showing the main system parts. 221
12.2 Active heartbeat and flow-control nodes for dealing with a broker failure. 222
12.3 Passive heartbeat and flow-control nodes for dealing with a broker failure 223
12.4 Usage of threshold-check in an actuator-triggering flow. 223

xv

12.5 Usage of the action-audit node in a sensor-actuator trigger scenario 224
12.6 Node-RED flow for dealing with sensor failure. 225
12.7 Failure of sensing device experiment. 226
12.8 Balancing of the validation of NFC cards via a third-party service. 227
12.9 Marble diagram of the messages on the load spike scenario. 228
12.10A flow depicting the runtime management of two Node-RED instances. 228
12.11 Sensor readings timeline with error handling. 229
12.12 Baseline system Node-RED flow. 229
12.13 Expected similarity degree between the different SUT. 230
12.14Node-RED flow with self-healing mechanisms to deal with sensor issues. . . . 231
12.15NOx concentration and alarm status with and without self-healing for S1E1. . 232
12.16NOx concentration and alarm status for S1E2. 233
12.17NOx concentration and alarm status for S1E3. 234
12.18NOx concentration and alarm status with self-healing for S1E4. 236
12.19Node-RED flow with timing-related self-healing nodes. 237
12.20NOx concentration and alarm status for S2E1. 238
12.21Marble diagram of messages for S2E2. 239
12.22NOx concentration and alarm status with self-healing for S2E2. 239
12.23Count of alarm state transitions per experiment. 241
12.24 Proximity of the different experiments to the corresponding baseline. 242

13.1 Flow to turn on the heating system when the temperature drops. 247
13.2 View of a flow with nodered-cauldron features enabled. 247
13.3 An example with a Switch node in nodered-cauldron. 248
13.4 Visualization of the time spent and number of deploys in second control task. . 251
13.5 Visualization of the time spent per experimental task. 252
13.6 Visualization of the number of deploys per experimental task. 253
13.7 Cumulative number of clicks on nodered-cauldron functionalities. 254
13.8 Results of the survey post-test. 255

14.1 Chat with Jarvis by Slack integration. 260
14.2 Jarvis architectural components. 262
14.3 Main entities defined in Jarvis’ Dialogflow project. 263
14.4 Sequence diagram for the parsing and execution of the query turn on the light. . 264
14.5 Base model for the scenarios of the feasibility experiment. 270
14.6 Overview of the performance of Jarvis. 273

xvi

List of Tables

2.1 IoT application domains. 23
2.2 Reference Architectures for the IoT . 43
2.3 Overview of the IoT interoperability enabling models and APIs. 44

3.1 Relevant design patterns literature for IoT. 66
3.2 List of the IoT-related design patterns. 67
3.3 IoT decentralized visual programming approaches and their characteristics. . . 95
3.4 Overview comparison of the available tools on the IoT testing landscape. . . . 101

4.1 Automation scenarios categories and their proprieties. 126

10.1 Stable Internet connection experiment results. 194

11.1 Comparison between the Espressif Systems ESP32 and ESP8266 SoCs. 201
11.2 Solution benchmark with elapsed time measurements. 215

12.1 Self-healing extensions and their map to self-healing patterns. 220
12.2 Count of alarm level state transitions for S1E1. 231
12.3 S1E2 overlap with the base experiment S1E1. 233
12.4 Alarm level state transitions for S1E2. 233
12.5 S1E3 overlap with the base experiment S1E1. 234
12.6 Alarm level state transitions for S1E3. 235
12.7 S1E4 overlap with the base experiment S1E1. 235
12.8 Alarm level state transitions for S1E4. 236
12.9 Alarm level state transitions for S2E1. 238
12.10 S2E2 overlap with the base experiment S2E1. 240
12.11Alarm level state transitions for S2E2. 240

13.1 Time spent and number of deploys in second control task. 251
13.2 Time spent per experimental task. 252
13.3 Number of deploys per experimental task. 253
13.4 Number of correctness verification requests per task. 254
13.5 Total clicks aggregated by experimental task. 255

14.1 Scenario support by different solutions. 269
14.2 Experimental results of the feasibility study of Jarvis. 271

A.1 Co-supervised Master’s thesis at FEUP. 321
A.2 Summary of publications per venue. 322

xvii

Algorithms and Code Snippets

10.1 Weights of the different services using Bayesian UCB. 195
10.2 Local execution of the request as per the defined constraints. 195

11.1 Greedy algorithm for node assignment. 204

C.1 Pseudo-code for the kalman-filter node. 340
C.2 Pseudo-code for the compensate node. 341
C.3 Pseudo-code for the threshold-check node. 341
C.4 Pseudo-code for the replication-voter node with timeout. 342
C.5 Pseudo-code for the replication-voter node without timeout. 342
C.6 Pseudo-code for the flow-control node. 343
C.7 Pseudo-code for the device-registry node. 343
C.8 Pseudo-code for the redundancy-manager node. 344
C.9 Pseudo-code for the checkpoint node. 345
C.10 Pseudo-code for the heartbeat node. 345
C.11 Pseudo-code for the action-audit node. 346
C.12 Pseudo-code for the debounce node. 347
C.13 Pseudo-code for the http-aware node. 348
C.14 Pseudo-code for the resource-monitor node. 348
C.15 Pseudo-code for the balancing node. 349
C.16 Pseudo-code for the timing-check node. 350
C.17 Pseudo-code for the network-aware node. 351
C.18 Pseudo-code for the readings-watcher node. 352

xviii

Acronyms
AAL Ambient Assisted Living

A/C Air conditioning

AC Alternating Current

ADC Analog-to-digital converter

API Application Programming Interface

AWS Amazon Web Services

CD Continuous Deployment

CE Conformitè Europëenne

CEP Complex Event Processing

CI Continuous Integration

CPS Cyber-physical Systems

DC Direct Current

DNS Domain Name System

DSL Domain Specific Language

DSML Domain Specific Modelling Language

FCC Federal Communications Commission

HTTP Hypertext Transfer Protocol

IIoT Industrial Internet-of-Things

I/O input/output

IoT Internet-of-Things

IP Internet Protocol

ISO International Organization for
Standardization

JSON JavaScript Object Notation

MDSE Model-Driven Software Engineering

MQTT Message Queuing Telemetry Transport

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

MTTR Mean Time To Repair

MWS Minimal Working System

N/A Not Applicable or Not Available

NATO North Atlantic Treaty Organization

NFC Near-field communication

NLP Natural Language Processing

OTA Over-the-air

PLC Programmable logic controller

POC Proof of Concept

pub/sub publish–subscribe

QoS Quality-of-Service

REST Representational state transfer

RTOS Real Time Operating System

SBC Single-Board Computer

SDLC Software Development Life-Cycle

SDN Software-defined Networking

SDR Software-defined Radio

SoC System on a Chip

SoS Systems of Systems

SPOF Single point of failure

SSH Secure Shell

SUT System Under Testing

TAP Trigger-Action Programming

TCP Transmission Control Protocol

UI User Interface

URL Uniform Resource Locator

VPL Visual Programming Language

VPS Virtual Private Server

WoT Web of Things

WSN Wireless Sensor Networks

WWW World Wide Web

xix

Preface
This is our world now. . . the world of the electron
and the switch, the beauty of the baud.

The Conscience of a Hacker, The Mentor, 1986

I always had this thing for engineering, what I see as the practical side of science, of designing
and building, of problem-solving, and of hacking. But not so much for informatics and com-
puters, at least in the beginning. The first things that I remember to build were these little toy
houses with construction materials that I borrowed from the near construction site. Building
these little toy houses gave me an enormous feeling of achievement, as I built them with sand
and cement in a way that they could outlive me for far more years. However, things change
quickly, and what was once toy houses is now a little garden.

A few years later, I got my first computer, a Pentium 4, which provided me some hours of
entertainment playing Pinball on Windows XP. However, there was not so much information
available on how it worked nor what it was capable of beyond playing what seemed simple
games. Since the Internet was still not commonly available, the only way to get new stuff for
the computer was using 3.5” floppy diskettes to transfer data from the old Internet-connected
computers that existed, at the time, in the parish council building back to my home computer.
Quickly after, I brokemy computer. After being repaired at some IT store, it took me less than
a month to break it again. But this time I could not tell my parents again, since it was so shortly
after the last time. So the problem arose, how could I fix it? I had recently read something about
formatting the hard drive as a way to get the computer to a clean default state. After finding
the Windows XP CD, I put it in, followed some instructions in scary white letters over blue
screens, and I managed to restore the computer. However, for some reason, there remained
a naggy window saying “This copy of Windows did not pass genuine validation". That scared
me, but after getting to the Internet, I found out that there was some magic register key that
could be changed using the Registry Editor, that would validate Windows andmake the nagging
window go away. And it was. Operating systems, like Windows, are getting every day more
complex and harder to break — and more limited in terms of ownership and modification
ability —, and there are more safeguards and built-in diagnostic and repair tools than ever.

I was a skid back then, at leastmore than I amnow. But I was able to do things rapidly, which
provoked immediate results (even if more perishable than my toy houses). Fast-forwarding,
Windows XP became legacy software, and Internet not only became a commonplace, but it is
no longer a desktop computer only thing, but it is now present in the handled terminals that
we carry in our pockets. With the reduction of the size of computerswith connectivity, it was a
matter of time to have computers everywhere, not only in our pockets but in our watches, in
the coffee machines, in the lightbulbs, . . .

Nevertheless, I know well the constant struggle to get a computer printer to work when
needed, even if it is a product available since the 1930s. Although the amount of investment
and innovation, the problem remains. The question arises, are we— and should we be— ready
to have similar issues with our coffee machine?

xx

I, for one, think that this is not a problem of knowledge. We, as a species, build systems
such as the NASA’s Voyager 1 and Voyager 2 spacecraft that are able to continue working for
more than 40 years straight, being now at an approx. 22.5 billion km away from earth. Even
so, they are not perfect, and malfunctions appear. The difference lies in how the system is pre-
pared to deal with such issues. At the beginning of 2020, an anomaly happened in the Voyager
2 spacecraft, resulting from an unexplained delay in the onboard execution of the maneuver com-
mands inadvertently left two systems that consume relatively high levels of power operating at the
same time. However, soon after, the spacecraft was stable once again thanks to the built-in fault
protection software routine, which turned off the operating science instruments to compensate
the power deficit [NAS20].

The problem with the IoT is a different one, as Sean Smith puts it in the book The Internet
of Risky Things [Smi17]:

If we build this new Internet the way we built the current Internet of Computers (IoC),
we are heading for trouble: humans cannot effectively reason about security when de-
vices become too long-lived, too cheap, too tightly tied to physical life, too invisible and
too many.

I would rewrite the sentence to focus not only on security, but also on safety/dependabil-
ity. IoT systems have been typically built in the same fashion as software-only systems, mostly
disregarding the accumulated knowledge from other fields, such as mission-critical space sys-
tems. Such disregard does not come without motivation, since, as it happens to software-only
systems, IoT devices and appliances are under similar economic forces that make products to
be rushed to market with insufficient testing [Smi17]. Moreover, while the hardware of some
of these devices has, typically, to be certified under the current standards (e.g., European CE
and American FCC marks), this is not common for the software counterparts.

In the same way that the Voyager spacecrafts were built, sharing the same software/hard-
ware inter-dependency nature, these new systemsmust be trustable, potentially capable of out-
living their creators, with automatic built-in ways to avoid — or at least reduce — the impact
that their malfunctions have in the people’s everyday lives. Things should not stop working
because the manufacturing company entered in bankruptcy, nor because their genuine usage
license ended (they are things, not subscription-based software). This implies a mind-shift from
vendors, that instead of trying to make it harder — or impossible — for hackers to build their
own smart home systems (while mining their users’ privacy for profit), should be leveraging
and encourage open standards, interoperability, and repairability on their devices and systems.
This dissertation does not go by any means close as to give answers to all of these issues and
problems, but, by standing on the shoulders of giants, attempts to give some engineering insights
on how to address some of them while being supported by scientific evidence.

Acknowledgments
First and foremost, I am utmost grateful tomy supervisor and friend, Hugo Sereno Ferreira, for
all the mentorship, guidance, endless unusual ideas, discussions, tinkering, and unconditional
support. Without your constant incentives to aim higher and confidence in my capabilities to

xxi

pursue such goals, this work would not be possible. My token of appreciation to my second
supervisor, João Pascoal Faria, whose experience and availability played an essential role in this
work.

To André Restivo that during this thesis became to be like a third supervisor as the shared
authorship in several of the published articles part of this work proves, but also a friend. The
endless discussions, most shared with Hugo, and the countless almost all-nighters revising ar-
ticles and discussing research directions played a crucial role in achieving this work. Your
aesthetic input and skills resulted in some of the most artistic illustrations of this thesis, and
for these reasons and many others, my sincere appreciation.

To Filipa, to whom I am grateful for the patience and efforts to keep me at acceptable sanity
levels through the years, hoping to share with you the years to come. I am also grateful for my
family’s unconditional, unequivocal, and loving support during all this journey.

To all my friends* that supported me through this journey, and had the patience to keep
listening to my constant rants about academia and my research endeavors. A token of appreci-
ation for the ØxOPOSEC Meetup community that allowed me to share the stage with fellow
hackers and tinkers, listening to my ramblings about IoT, and where I found several people
sharing the same curiosity about computing systems, security, and privacy.

To all the others, Professors and students, that collaborate directly or indirectly with me in
this research, being co-authors of at least one publication or related master’s thesis, in alpha-
betic order: Ademar Aguiar, Ana C. R. Paiva, Andreia Rodrigues, André Sousa Lago, Ângelo
Martins, Bruno Lima, Bruno Piedade, Diogo Amaral, Diogo Torres, Duarte Duarte, Duarte
Pinto, Filipe F. Correia, Flávio Couto, Gil Domingues, Guilherme V. Pinto, José Magalhães
Cruz, José Pedro Pinto, José P. Silva, Luís Reis, Margarida Silva, Miguel P. Duarte, Pedro Costa,
Pedro Lourenço, Rosaldo J. F. Rossetti, Rui Nóbrega, Tiago Boldt Sousa, Tiago Fragoso, and
Zafeiris Kokkinogenis.

I also acknowledge the financial and operational support from the Foundation for Science
and Technology (FCT), the Faculty of Engineering of the University of Porto, and INESC TEC.
A special thanks to the Department of Informatics Engineering (DEI) where I have been lec-
turing for the past four years, and to the Professors who have put their confidence and trust
in me to lecture their practical classes, namely, Jorge Alves Silva, José Magalhães Cruz, Ade-
mar Aguiar, and, again, Hugo Sereno Ferreira and André Restivo. A last word of appreciation
to Pedro Miguel Silva, Sandra Reis, and the remaining staff of the department for guiding me
through the kafkaesque bureaucracies of academia.

Feedback
Any feedback on this dissertation, including ideas for future work or collaborations, are wel-
come. Please feel free to find me at http://jpdias.me and contact me via jpmdias@fe.up.pt for
any questions and comments.

*A special thanks to the members of the underground chat groups whose ramblings and conversations about
the most diverse subjects helped to lighten the mood, especially during the SARS-CoV-2 age.

http://jpdias.me
mailto:jpmdias@fe.up.pt

1

1 | Introduction

1.1 On the Analog and Digital Worlds . 2
1.2 From the Internet-of-Computers to the IoT . 3
1.3 The Role of Automation . 4
1.4 Software Crisis and the Technology Fragmentation 6
1.5 Complexity: Essential versus Accidental . 8
1.6 Towards Dependable Systems . 9
1.7 Motivation and Scenarios . 10
1.8 Emerging Challenges . 14
1.9 Research Goals . 15
1.10 Research Contributions . 17
1.11 How to Read this Document . 18

As a mostly direct consequence of the evolution of computing capability versus size, in accor-
dance to Moore’s Law— “the number of transistors in an integrated circuit doubles approximately
every two years” — the creation of ever-smaller computing-able devices has opened doors to
ubiquitous computation, making possible to embedding logic in everyday devices [Pu11]. This
possibility, along with the explosion in networking solutions and protocols way beyond the
traditional TCP/IP stack, boosted the concept of ubiquitous connectivity, making the possi-
bility of having Internet-connected devices at large. This computation and connectivity out-
reach has enabled the so-called Internet-of-Things (IoT), creating a wide range of applica-
tions across industries and domains, posing challenges for both academia and industry, mainly
due to the cross-domain nature of the field, which calls for a need of software-hardware co-
design [Bon08], since pending challenges in both hardware- and software-level research have
the potential to influence the field’s evolution. As some fear a new software crisis [Fit12], others
have been aggravating the knowledge gap between different parts of the IoT ecosystem by cre-
ating an ever-growing fragmentation [Gui16]. This work delves on the challenges and current
practices for IoT development mostly from a software engineering perspective but without
completely disregard the hardware constraints that mold the possibilities of building depend-
able IoT systems are. The presented research contemplates the systematization of widespread
knowledge across domains that influence these systems, empirical insights on how different
development solutions fit the field, and how different strategies— from computation distribu-
tion to autonomic computing — can improve IoT systems.

Chapter 1. Introduction 2

1.1 On the Analog and Digital Worlds
The common definition of a computer is the one of a “programmable electronic device that
can process, store and retrieve data” [ORe16]. The first computers were analog, where data
is represented by physical quantities’ (e.g., electric voltage). Digital computers are based on
binary digits, processing data one step at a time. Their fundamental architecture remained
the same since the work of von Neumann, Eckert, Mauchly, and others on the design of the
Electronic Discrete Variable Automatic Computer (EDVAC), the successor of the Electronic
Numerical Integrator and Computer (ENIAC)1. Moreover, while the original computers were
expensive and filled entire rooms of space, today, as envisioned by Gordon Moore (i.e.,Moore’s
law), computers are smaller, powerful and cheaper [ORe16].

Digital computers consist of two essential parts: hardware, the physical part of themachine,
and software, the set of instructions that specifies what the computer does. The software itself
can be divided into two major classes: system software, which drives the computer hardware
and computer system itself — including operating systems, device drives, and other — and
application software that provides services to the users— e.g., word processing, web browsing,
and others. Typically, both kinds of software are written in high-level programming languages,
which are then later converted to machine code, and are easily replaceable — e.g., upgrade the
operating system version or change the default web browser — thus being more temporary
and malleable.

Nevertheless, as computers get more complex, with hardware that can go from advanced
peripherals to personalized hardware accelerators, the need for specific software that allows
them to have some level of hardware-independence, so-called firmware, which is device-specific
software, arises, typically specified in a low-level language. Firmware is not limited to hardware
counterparts of computers. It can act as a device’s complete operating system, performing all
control, monitoring, and data manipulation functions— e.g., the embedded software that runs
in the PLCs in industrial shop floors. Historically, themost significant difference fromfirmware
to software has been the ability to change it after being programmed into a devices’ non-volatile
memory (e.g., ROM, EPROM, or EEPROM), requiring a higher level of skill, effort, and cost to
do so.

As computers became ubiquitous and the range of applications skyrocketed, especially in
terms of highly-specific constrained devices, it became a common need to replace the firmware
of the devices after being manufactured, e.g., for bug fixing or adding new features. With the
IoT, it became common practice to update the software that is running on, for example, smart
watches or smart lightbulbs.

The empowering of low-cost devices with easy programming features, and high connec-
tivity, resulted in distinguishing features of what has been called firmware became closer to a
regular piece of software, easier to update, with more complexity and fewer restrictions.

As the line between firmware and software became more blurred, the separation between
the analog world and the digital has also shortened. While the software is intangible, its ability
to perform changes in the real world by analog means was limited to some fields of application

1EDVAC major differences to ENIAC was the use of binary arithmetic instead of decimal and its stored-
program computer design.

Chapter 1. Introduction 3

such as robotics and industrial systems. With IoT it became common, and one of its utmost
importance characteristic, that the analog aspects of the real-world — seen and measured in
terms of light, pressure, temperature, proximity, and others—play a direct role on the software
that runs on the devices and vice-versa [Avn19].

The common barrier between hardware and software is also shifting. The birth of
Software-defined Everything (SDE) has been expanding and growing the importance and im-
pact of software, becoming a key and essential part of the technological world [BC15]. The
dissemination of Software-defined Networking (SDN), Software-defined storage (SDS), and
Software-defined data centers (SDDC) as core components of Cloud computing are strong in-
dicators of the Software-defined tendency. Despite this, it is not limited to the scope of Cloud
computing and similar, one can observe that approaches like Software-defined Radio (SDR) are
evidence that even components that have been traditionally implemented in hardware are now
being implemented in software [Tut03].

Developers that want to develop on top of IoT systems need to have a deep knowledge of
layers much closer to the hardware, and even take into account the impact that the real world
has on its operation. Also, similar knowledge is needed due to the software-based everything
tendency and its close relation with the IoT ecosystem.

1.2 From the Internet-of-Computers to the IoT
Nearly five decades have passed since the first public demonstration of the ARPANET2, the
world’s first packet-switched network, that connected more than 30 institutions computers’.
Soon after (1973), with satellite-based radio networks, the need for connecting the ARPANET
with other networks appeared, which lead to the definition of well-established protocols on
how these computer networks should work, namely, the Transport Control Protocol (TCP)
and the Internet Protocol (IP) — also known as the TCP/IP network stack. In the mid-1980s
there were around 2000 hosts on the TCP/IP network [HL96; ORe16].

In the late 1980s, the decision to shut down the ARPANET was made, and the National
Science Foundation (NSF) commenced work on its successor with higher data transfer speeds,
the NSFNET, which later became known as the Internet. The Advanced Network Services
(ANS) not-for-profit company was formed circa 1991, and it replaced the NSFNET with a
new network, the ASNNET, which was a distributive network architecture operated by several
commercial providers [ORe16]. Later, in the 1980s, therewere over 160000 Internet-connected
computers.

A turning point was the invention of the World Wide Web, circa 1990, by Sir Tim Berners-
Leewhile working at the EuropeanOrganization forNuclear Research (CERN), by introducing
the concept of Universal Resource Locator (URL) to access pages formatted in the Hypertext
Markup Language (HTML) over a Hypertext Transfer Protocol (HTTP) on top of the already
existing TCP/IP networks. A client application— browser — allows users to view the HTML
pages and interact with them [ORe16].

2The ARPANET acronym is based on the name of the agency that coordinated the project efforts; namely, the
US Department of Defense founded the Advanced Research Projects Agency (ARPA), nowadays known as Defense
Advanced Research Projects Agency — DARPA.

Chapter 1. Introduction 4

1,200,000

1,000,000

800,000

600,000

400,000

200,000

0

Telephone Patented

|

1 876 1 89 7 1 91 8 1 9 3 9 1 9 6 0 1 98 1
•• • • •

estimated number
of operators needed
with automatic
switching

estimated number
of operators without
the aid of automatic
switching

|||||

Phantom Circuits

Electronic Switching

All-Number Calling

Stroger Machine System

Figure 1.1: AT&T/Bell System’s introduction of automated switching protocols in the
1920s allowed it to meet operational demands without requiring manual op-
erators [Hor01].

The Internet, as of today, corresponds to the vastness of applications and protocols that run
on top of advanced and interconnected computer networks, available 24/7, serving above 4.66
billion users worldwide circa January 2021 [sta22]. Although its reach, the Internet was, histor-
ically, mostlymade of computers and servers, so-called the Internet-of-Computers (IoC) [FF11;
Smi17].

As predicted by Mark Weiser in the early 1990s [Wei02], an era of ubiquitous computing
and connectivity is here, as processors, communications modules and other electronic components
are being increasingly integrated into everyday objects [FF11]. This shifted the world from an IoC
to an Internet-of-Things, which points towards a seamless integration of people and devices to
converge the physical realm with human-made virtual environments [BD16].

The IoT spread quickly, with the first scientific conference in the area happening in
2008 [Flo+08]. In 2009 a dedicated EU Commission action plan presented IoT as a general
evolution of the Internet — “from a network of interconnected computers to a network of
interconnected objects" [Eur09].

1.3 The Role of Automation
IBM, circa 2001, in their report IBM’s Perspective on the State of Information Technol-
ogy, identified the complexity of computing systems as “the single most important challenge fac-
ing the IT industry” [Hor01; GC03]. By creating increasingly powerful computation systems to
automate essential task and processes, systems have become increasingly complex as a byprod-
uct [PD11; Hor01].

Historically, the complexity created by this automation was mainly attained and managed
by human intervention and administration. However, as the number of systems, devices, and

Chapter 1. Introduction 5

Figure 1.2: Self-management continuum as presented by Fink et al. [FF07]. HAL 9000 is
a fictional artificial intelligence character in Arthur C. Clarke’s Space Odyssey
series.

applications keep increasing3, the ability to manage the resulting complexity with traditional
approaches is impracticable, mainly due to the lack of enough skilled personnel in IoT and IT
in general [Mic19; Hor01]. Similarly to what happened around 1920 with the introduction of
the automated switching protocol in telephony (cf. Figure 1.1, p. 4), the introduction of IoT
across domains will, potentially, lead to similar scenarios where most manual tasks will be
automatized, being this automatization already noticeable in industrial scenarios where new
ways of operation are being drafted as a result of the IoT opportunities [LLD18].

Nevertheless, even in a situationwith enough skilled individuals, complexity is outreaching
the human ability tomanage it [Hor01; Smi17]. As Paul Horn stated back in 2001: “As computing
evolves, the overlapping connections, dependencies, and interacting applications call for administra-
tive decision-making and responses faster than any human can deliver. Pinpointing root causes of
failures becomes more difficult while finding ways of increasing system efficiency generates problems
with more variables than any human can hope to solve.” [Hor01].

Automation plays a crucial role in different perspectives. Examples are common, such as
the following: (1) for an end-user of an IoT system, one of the most valuable features is the
ability to automate recurrent tasks that have historically been performed manually (e.g., turn
on the air conditioning (A/C) system when the temperature drops below a given threshold);
(2) for a cloud computing administrator, a key feature is the ability to configure a deployed
system to automatically scale its resources (automatic provisioning) to meet service demands;
and (3) for a developer, every time a new feature is developed the deployment process is au-
tomatized in pipelines that automatically check for code quality, verifications (test automation)
and re-deploy the system with the new feature without downtime (continuous integration and
delivery).

Inspired by the autonomic nervous system of the human body, IBM Research introduced
the autonomic computing initiative [Hor01]. The main focus of autonomic computing is to
progressively make computing systems more self-managed, hiding the intrinsic complexity of
the systems away from operators and other users. Systems should also be capable of adapting
to unpredictable changes in their operational environment while increasing predictability, speed
of response, and reliability of the computing systems [FF07]. Envisioning a pervasive computing
world (i.e., IoT), autonomic computing becomes paramount, allowing the computers in our
environment (from small to large units) to constantly adjust to our needs [FF07].

3“By the end of 2018, there was an estimated 22 thousand million Internet of Things (IoT) connected devices
in use around the world" [Tan18].

Chapter 1. Introduction 6

Fink et al. in their self-management continuum vision circa 2007 (cf. Figure 1.2, p. 5),
present an evolution view from the legacy — mostly static — systems to autonomic comput-
ing while identifying the current systems (Modern OS) as a stepping stone towards an auto-
nomic world. The authors also envision a future, inspired by the HAL 9000 fictional artificial
intelligence figure, with computing systems that can re-program themselves.

1.4 Software Crisis and the Technology Fragmentation
Back in 1958, the statistician John W. Tukey was the first author to publish the term software4,
extolling its importance in a world that was, at the time, taking the first steps away from analog
systems [HKN02]. Soon after, the term software engineeringwas coined by Anthony Oettinger5

and then used as the title of the first conference on software engineering sponsored by NATO’s
Science Committee. The conference that leaned on the issues regarding software’s develop-
ment and delivery witnessed the birth of the phrase software crisis [NR68].

As Prowell et al. states, despite what is known about software engineering, software fails,
and a frequent source of this problem is the use of informal approaches of developing software,
viz [Pro+99]:

The vast majority of the software today is handcrafted by artisans using craft-based
techniques that cannot produce consistent results. These techniques have little in com-
mon with the rigorous, theory-based processes characteristic of other engineering dis-
ciplines. As a result, software failure is a common occurrence, often with substantial
societal and economic consequences. Many software projects collapse under the weight
of the unmastered complexity and never result in usable systems at all.

Over the years, several studies had confirmed the Software Crisis 1.0., establishing that
the first indicators of such crisis arose in the 1960s, with software taking longer to develop,
costing more than estimated, and not working correctly when eventually delivered [Fit12]. As
an example, an IBM study circa 1994 reported that 68% of all software projects overran their
schedules and, also, the initial estimated budget was surpassed in 55% of them all [Mis11].

Although the consecutive CHAOS6 reports [Sta15] do not reveal a significant shift in the
scenario, with a 29% success rate of software projects, challenged rate of 52% and 19% impaired
(canceled) in 2015 (back in 1994 the report pointed out a 16% success rate, 53% challenged and
31% impaired)7. Brian Fitzgerald states that, as of today, we are beyond the Software Crisis 1.0.,
and that the myriad, incremental advances improving software development over the past 50

4John W. Tukey, “The Teaching of Concrete Mathematics”, American Mathematical Monthly 65/1 (1958): 1-9
at 2: “Today the software comprising the carefully planned interpretive routines, compilers, and other aspects of
automative programming are at least as important to the modern electronic calculator as its ’hardware’ of tubes,
transistors, wires, tapes and the like.”

5There is some discussion around who has coined the term software engineering, with some giving such credit
to Margaret Hamilton, lead NASA flight software designer for Apollo missions, circa 1961 [Com17].

6CHAOS acronym stands for Comprehensive Human Appraisal for Originating Software.
7Although the Standish Group findings and methodology have been challenged [EV10], it seems that either

their results are heavily biased, or even a moderate change in the accuracy of the success ratio, e.g., from 29% to
50%, would probably still render the field as in crisis.

Chapter 1. Introduction 7

years have changed our lives for the better [Fit12]. He also states that now software is routinely
developed largely on time, within budget, and within user expectation [Fit12]. Nevertheless,
Brian Fitzgerald points out a new crisis, a Software Crisis 2.0. [Fit12]:

The demand for data from digital natives, coupled with the huge volume of data now
generated through ubiquitous mobile devices, sensors, and applications, has led to a new
software crisis.

On the one hand, resulting from the significant advancements in hardware capability (pro-
cessing power, storage) over the last years, allied with the dramatic reductions in costs, a pro-
liferation of devices was bound to happen, shifting from a world of traditional computers to
an era of ubiquitous computing, with computing-able devices widespread among everyday de-
vices, playing amore profound role on people’s everyday life. Altogetherwith the dissemination
of data-collecting sensors and applications, the result is a heavy push factor towards a new cri-
sis. One can easily associate the birth of the term Internet-of-Things as a direct consequence
of such dissemination. On the other hand, the desire to consume new technology by the digital
natives becomes an enormous pull factor for such a crisis. For Fitzgerald, these are the disrup-
tive factors for the Software Crisis 2.0., since the software engineering field has not seen similar
advances in the last years that can attend to the needs of such landscape [Fit12].

We face a new software crisis. In 1968, computer scientists learned that developing
robust software requires skills, methods, and tools. Today, software and hardware
engineers realize that developing a robust Internet-of-Things also pushes the states
of their art and practice. Recent news illustrates the many problems faced by IoT:
from lack of interoperability to broken updates to massive security attacks.

As we enter an epoch of ubiquitous computing, with computation-able devices being
present anytime and everywhere, mostly due to the push and pull factors aforementioned, we
are also witnessing a widespread fragmentation of the technological solutions in the market.
The co-existence of multiple highly-incompatible technologies and technology stacks leads to
two main implications: it forces the technology users to commit to an entire product ecosys-
tem, as in vendor lock-in and vastly increases the efforts need by software developers to develop
systems that encompass different technologies and technology stacks [Mic19].

Similar to any other paradigm-shift, and, in this case, from the perspective of the software
engineering community, there is no consensus, or standards, on what are the best practices
for developing for IoT systems. Further, it is even noticeable that the creation of standards,
instead of solving the problem, leads to race between competing ones, thus not solving the
original problem and contributing to an even more significant fragmentation8. This leaves
several questions open such as, how to select the more suitable architecture, which are the
more reliable and optimal communications protocols for each scenario, and what are the best
approaches in terms of security and privacy.

8As pointed by Andrew S. Tanenbaum in his book computer networks circa 1981: “The nice thing about
standards is that you have so many to choose from; furthermore, if you do not like any of them, you can just wait
for next year’s model." [Tan02].

Chapter 1. Introduction 8

As envisioned by Fitzgerald circa 2012, recently several authors have been raising aware-
ness to the problems of designing and building software for the IoT, focusing on the complexity
of these systems [KW17] empowered by the lack of standardization [Spi17] and lack of suitable
development methods, languages, and tools [TM17]. While these problems can appear nothing
more than mere troublesome for developers and other technical users that have to design, con-
struct and test these systems, the side effects of building these systems poorly and not-future-
proof lead to several issues with a most direct impact on the comfort, well-being, and safety of
the system’ users, ranging from privacy and security issues to other system malfunctions with
origins in both software and hardware [Smi17].

1.5 Complexity: Essential versus Accidental
Brooks has established the concept of complexity in the context of software development circa
1986 [Bro86]. As he considers that there is no silver bullet to address systems’ complexity, he
also considers that there are two different types of complexity: essential and accidental.

Complexity, resulting from particularities such as heterogeneity, large-scale and awide range
of application scenarios of IoT can be considered as essential complexity, given that it is com-
plexity which the developer must always face from the beginning of developing on or for such
systems, which is inherent and unavoidable. In contrast, accidental complexity appears as a
result of dealing with the essential complexity, viz. a specific approach was chosen to solve a
specific problem. Such complexity arises in computer artifacts, or their development process,
which is non-essential to the problem being solved.

The ever-increasing complexity (both inherent and accidental) of building and managing
software for the IoT landscape leads to the constant creation of solutions by both the industry
and the scientific community, being disseminated by a wide-range of mechanisms (e.g., books,
research papers, web pages and other types of communication media).

From the known problems of software engineering that led to the birth of the term software
crisis until the issue of technological fragmentation, it is noticeable the complexity of the task
that is software development. Furthermore, when considering the details of the IoT paradigm,
new developer-facing challenges appear, such as the need of dealing with heterogeneity and
large-scale inherent to it, plus, on some occasions, the need of having considerations about
lower-level details of hardware systems, it is noticeable the emergent complexity.

This fast-growing knowledge body should be the base for an engineer to choose the best
design for a specific situation, but, as Christopher Alexander pointed out, any specific body of
knowledge is “hard to handle, widespread, diffuse, unorganized, and ever-changing” [AIS77].
Thus, developing software for IoT that is secure, interoperable, modifiable, and scalable be-
comes a challenge since developers are unable to understand which are the best practices and
the most suitable architecture and communication protocols to be used [Dig+19].

Chapter 1. Introduction 9

1.6 Towards Dependable Systems
Avižienis et al. [Avi+04] in their paper Basic Concepts and Taxonomy of Dependable and
Secure Computing circa 2004 introduce dependability as a global concept that subsumes the
attributes of availability, reliability, safety, integrity, confidentiality, andmaintainability9. A de-
pendable system is a system that is able to (1) ‘’deliver service that can justifiably be trusted” and
(2) ‘’avoid service failures that are more frequent or more severe than is acceptable”. The dependabil-
ity of a system is threatened by faults, which can be (1) development faults, (2) physical faults,
and (3) interaction faults.

... Fault Error Failure Fault ...activation propagation causation

Figure 1.3: Fundamental chain of dependability threats. The arrows express a causality re-
lationship between faults, errors, and failures, but they should be interpreted
generically since that, by propagation, several errors can be generated before
the occurrence of a failure [ALR01].

Faults, when activated, lead to errors — errors being the deviations from correct service.
The propagation of errors leads to failures — a failure being the delivery of incorrect service.
This is known as the chain of threats as introduced by Avižienis et al. [ALR01], and is also
known as chain Fault→Error→Failure (cf. Figure 1.3, p. 9) as introduced by Jean-calude
Laprie circa 1992 [Lap92]. Although different fields of study are known to consider different
definitions of what a fault is, error, failure, and their relationships, for the purposes of this
work, we will consider these concepts as they are introduced and defined by Avižienis et al. in
their works [ALR01; Avi+04].

When designing a dependable system, one of the key objectives is to reduce the probability
of a system deviating from delivering the correct service. Fault prevention, tolerance, removal,
and forecasting techniques have been used across application domains to improve system de-
pendability. While these techniques were, historically, applied and based on hardware-only
mechanisms, nowadays, it also includes software-based techniques [Han07]. A particular ex-
ample of the crucial role these techniques play are mission critical systems— e.g., manufactur-
ing floors, aerospace industry, emergency services—whichmalfunction can endanger people’s
well-being and comport significant financial losses.

As the systems’ complexity increases — even originating Systems of Systems [ASD16] —
attaining dependability becomes an ever-more arduous task due to the ongoing increase in the
moving parts of the system — either by design or through their lifecycle. This counterpoints
with hardware-only systems that were mostly set in stone and suffer little to no modifications
(beyondmaintenance ones) through their lifecycle. Further, while historically systemswere de-
ployed, used, and maintained by personnel with specific technical expertise, computer systems
— including IoT ones—are nowadays used by everyonewithout requiring specific knowledge.

Ensuring always correct service becomes unattainable as the system complexity increases,
a fact which led to principles such as graceful degradation— ‘’ability of a system to automatically

9Security is defined as a subset of dependability with a focus on the confidentiality, integrity, and availability
attributes (also known as the CIA triad).

Chapter 1. Introduction 10

decrease its level of performance to compensate for hardware and software faults” [Joh89]— to gain
traction, reducing the impact of non-recoverable (or slow to recover) failures. However, what
services can be degraded or not to best fulfill the user needs and requirements, i.e., Quality-
of-Service, seems to be an open question. Prioritizing services that endanger the well-being
can be consensual, but beyond that, it becomes a user-specific and use-case-specific question;
thus, the one size fits all approach may be unsuitable — even when considering the additional
management efforts and costs it could bring to practitioners.

Among the fault-tolerance approaches that have been used, IBM’s concept of self-healing—
as part of their autonomic computing vision [Hor01]— has been increasingly adopted by both
the research community and industry. One of themain drivers of this adoption is the possibility
of maintaining larger connected computer systems through automation of their management,
i.e., defining autonomic behaviors to maintain or restore a system’s health without (or with
minimal) human intervention.

As IoT systems permeate our physical surroundings with ever-growing complexity, several
authors suggest that automation, including self-healing, is the most viable solution to ensure
minimum levels of QoS [Ang15; DAA16; SHA17; AA19; SBC20]. However, what is the most
suitable balance between the user intents and such automations? Should users be limited in
what they can program their system to do if it compromises the system dependability? As these
questions remain unanswered, in this work, we attempt to aid, inform, and explain how to
improve their system dependability without limiting what they can program or not.

1.7 Motivation and Scenarios
Even though the disseminated prospects of what has been described as an IoT utopia, there is
a widespread discussion on the utopia/dystopia dichotomy of IoT. Some raised concerns fall
within the scope of the noticeable technology fragmentation [Gui16], but also refer to the de-
vices’ numbers andmoving parts, their expected lifetime, their intertwinementwith the physical
life, the influence of the economic forces, and the unprecedented attack surface size [Smi17].

To exemplify and further illustrate some central ideas and concepts of this thesis, let us con-
sider a real-world IoT scenario, a smart lab, partially depicted as a diagram on Figure 1.4 (p. 11).
Briefly, at one end, we have a space filled with several devices with different capabilities, from
sensing features, acting features, or both. Such devices can partially or fully control the space
(e.g., door security, lights) and its environment (e.g., temperature, humidity). At the other end,
the laboratory inhabitants have a set of appliances that allows them to see the home status in-
formation and giving them control over it. An intermediate layer (gateways, routers and other
networking and computing equipment) is responsible for connecting the owner to its home,
anywhere, anytime. Other parts (internal or external services) enrich the system with exter-
nal information (e.g., weather) and intelligent services (e.g., automation shopping and delivery
based on smart-fridge information).

As a motivational example, we can consider the following, only representative, set of
sensing-acting trigger rules that play a role in the space:

Chapter 1. Introduction 11

Actuator Device
Light switch

Actuator Device
Light switch

Sensor Device
Motion and Door
status

Sensor Device
Humidity, Temperature
and Motion

Alarm Device
Buzzer, RGB Light,
Input Button

Sensor Device
Temperature, Humidity,
Air Quality, Lux

Actuator Device
Light switch

Actuator Device
Fan switch

Server
Processing and Storage

Access Point
Wi-Fi, ZigBee, 433Mhz,
and Others

Figure 1.4: SmartLabmotivational scenario with interconnected sensors and actuators.

• When somebody enters the laboratory (door status magnetic sensor), and it is dark (lux
sensor), turn on the lights (light switch actuator);

• If there is poor air quality (air quality sensor), turn on the fans (fan switch actuator).
Depending on the hazardousness of the values read, turn on the alarm (buzzer or RGB
light actuators).

• Depending on the laboratory temperature — e.g., if greater than 35 °C — (temperature
sensor), turn on the fans (fan switch actuator) until the temperature drops— e.g., bellow
30 °C.

Although the smartlab can be considered as a base example of the complexity on IoT sys-
tems, this complexity increases considerably as the number of devices, people, and services,
increases. Consider the smart home depicted in Figure 1.5 (p. 12). When compared with the
smartlab, the number — and heterogeneity — of devices being used is considerably higher,
mostly resulting from the different necessities of the different rooms that are part of it (one can
consider the smartlab as a single room). Likewise, the diversity — and number — of sensing-
acting trigger rules that can be configured in such smart space is considerably higher and, po-
tentially, more complex, opening doors to ever-more hard to understand misconfigurations
and unexpected behaviors.

As things play a role in the environment, dependability becomes a significant concern. The
reliability of the components and the system as a whole can have direct implications on the sys-
tem’s availability, and, thus, the comfort and well-being of its users. There exists a considerable

Chapter 1. Introduction 12

Sensor Device
Humidity and Temperature

Actuator Device
Garage door controller

Third-party Service
Weather Forecast API

Actuator Device
Irrigation controller

Actuator Device
Robot lawn mowerActuator Devices

Smart TV
Sound system contoller

Actuator Device
Heated towel rail switch

Actuator Device
Washing machine and
Dryer controller

Actuator Device
Oven controller

Actuator Devices
Coffee maker controller
Dishwasher controller
Stove controller
Extractor fan controller

Sensor Device
Water temperature

Actuator Devices
Pool cover controller
Water cleaning system
Water heating system

Actuator Device
Robot vacuum cleaner

Sensor Devices
Humidity, Temperature,
Smoke, Air Quality,
Motion

Actuator Devices
Lights controller
Windows and blinds controller
A/C controller

Actuator Device
Door bellActuator Device

Surveillance system
(alarm)

Sensor Device
Garage interior door
status

Sensor Device
Entrance door status
Sensor Device

Actuator Device
Wake-up alarm
Bedside lamp
Smart TV

Actuator Device
Water heating controller

Sensor Device
Surveillance system
(cameras)

Sensor Device

Figure 1.5: Smart homemotivational scenario with interconnected sensors and actuators.

number of reports which sustain such observation, as the ones in The RISKS Digest, moder-
ated by Peter G. Neumann [Neu20]. The roadmap proposed by Ratasich et al. [Rat+19] groups
these and other issues in three categories, namely: security (e.g., eavesdropping, jamming, and
denial of service), dependability (e.g., data corruption, protocol violations, and misusage) and
long-term concerns (e.g., aging and environmental effects and end-of-life — unsupported —
hardware or Software).

Although many authors focus on such concerns (as discussed in Chapter 3, p. 64), the de-
ployment and use of their proposed solutions and approaches in scenarios such as the presented
one (smart home) aremost scarce. Usingmission-critical-grade components that aremore heav-
ily tested and reliable is unpractical due to the increase in cost, development efforts and main-
tenance complexity (e.g., redundant hardware), which increases development time and testing
needs (which can be an issue in time-to-market practitioners’ concerns). Nonetheless, depend-
ability concerns must not be disregarded, and best practices should be adopted to safeguard the
safety and well-being of smart-space users.

Although one can argue that these motivational scenarios, Figure 1.4 (p. 11) and Fig-
ure 1.5 (p. 12), are mostly isolated systems’ without relying on or communicating with any
third-entity (at least at a critical level), this is not so-common, due to the typical IoT systems’
dependency on external services (e.g., in the event of an alarm being triggered the system must
notify the proper authorities and the house owner or validate an individual identity for opening
a smart lock by checking their online profile).

Let us consider a neighborhood of smart homes. The systemwill scale linearly to the number
of houses in it, and, further, considering that we are living among different and co-existing

Chapter 1. Introduction 13

smart spaces interconnected and, sometimes, inter-dependable, the scale will stop increasing
linearly and become closer to exponential growth.

Figure 1.6: Conceptual view of a smart city, showcasing some possible smart, intercon-
nected and inter-dependable parts and services.

Taking the example of a smart city, as conceptually displayed on Figure 1.6 (p. 13), we have to
consider the wide-range of smart components involved in such scenario, from smart homes and
other smart buildings, the smart transportation and smart retail, down to the supporting infras-
tructures like smart grid and smart energy that power everything, from buildings to streetlights.

In these examples, the reader can easily observe a key propriety of an IoT system: large-
scale. From the number of devices that a smart home can have with different purposes, to all the
services needed to collect, analyze and act upon the data, until the consumer appliances that
handle them the control of his home.

The technological fragmentation, resulting from different companies producing different
components for the smart home, each one of them with a different set of supporting services
and consumer appliances [Gui16]. The short life-span in terms of supporting these devices by
the different companies that produce them, creates, beyond the technological fragmentation,
version fragmentation. These elements, combined with the lack of a de-facto standard for the
IoT ecosystem, led to a new key propriety of IoT systems: heterogeneity.

Although heterogeneity and large-scale are the most widespread key challenges of IoT-
based systems, it must be considered that, depending on the use-case, aspects such as real-time,
fault-tolerance, and human-in-the-loop have a crucial impact on the systems. These aspects
have a significant impact on developers approaching IoT systems as a base to develop their
services and applications. Even though the advances in distributed computing, dealing with
large-scale systems is a problem in itself, that, on top of the heterogeneity typical on IoT, also
leads to a complexity that it is not yet fully covered by any known system.

Chapter 1. Introduction 14

1.8 Emerging Challenges
IoT systems share characteristics thatmake themmostly-unique from a complexity perspective
—making their development challenging and resource-consuming— as can be concluded by
analyzing the presented scenarios of the previous section. Several authors have been enumer-
ating what they consider to be the main characteristics, and, although there is a lack of consen-
sus, most of them identify the following: (1) large-scale, as the result of the unprecedented —
and increasing — number of devices and services that made up the systems, distributed both
physically and logically; (2) heterogeneity and lack of interoperability, mostly resulting from
the lack of standards, technology fragmentation and vendor-lock attempts; (3) highly dynamic
and unknown nature of the network topology; (4) need to be mostly end-user-centric; and
(5) real-world intertwinement, since these system’s sense and act upon their physical surround-
ings [Gui16; Smi17; HTI11; UK18a; And+21].

While these characteristics, when combined, result in a complex system, their by-product
points to an even complexer ecosystem. Ensuring these systems security and privacy becomes
challenging as a result of having dozens of smart devices spread among houses and cities while
collecting and processing enormous amounts of data creates an unprecedented attack surface
and raises several concerns regarding the confidentiality and integrity of the data being col-
lected and stored. From a dependability perspective, ensuring the delivery of correct service
when there are too many variables to take into account, e.g., battery life, hardware degradation,
connectivity issues, misconfigurations and de-calibrations. Similarly, other aspects such as the
volume and velocity of data being collected and the real-time needs of some IoT application
scenarios also pose complex challenges that need to be met.

From a technical viewpoint, design, construct, test, deploy, evolve, and maintaining these
systems while tackling the observations mentioned above remains as a mostly unsolved chal-
lenge given that there is no silver-bullet that addresses all the present challenges [Bro86].

As Andrade et al. [And+21] point out, the traditional development approaches are mostly
unsuitable for the IoT domain. As aforementioned, in the first large automations, all the sys-
tem’s lifecycle wasmanaged by a handful of people with specific technical knowledge thatmade
the system as it would be used by end-users (i.e., bottom-up), and the ability of these users to
modify the in-place system logic was very limited or nonexistent. In order words, traditionally,
end-users were expected to interact with applications, wherein users with administrator priv-
ileges and specific technical knowledge configured them by defining the possible interactions
and features.

In modern systems, due to a plethora of constraints (e.g., large-scale) and motivations (e.g.,
user-specific personalizations), an increasing number of features have been introduced that
empower users with limited technical expertise to personalize and, even, program10 their sys-
tems in a way that comply to their specific needs and requirements (i.e., top-down). IoT can
be considered one example of such modern systems, given that these systems are required to

10While the origins of low-code/no-code go as back as the 1980s with the introduction of Rapid Application
Development (RAD) tools as an alternative to text-based development, the lack of technical human resources
and the growing need for applications (e.g., digitalization and digital transformation) have been driving its large
adoption across application domains (so-called end-user development and citizen development) [BRH20; PJ21;
Won+21].

Chapter 1. Introduction 15

be in constant adaptation — e.g., a user defining new behaviors for its smart home — it is not
feasible to go back to the early stages of the development cycle when changes need to be implemented.
Thus, the systems’ users must have the ability to configure and change their system when they
wish to do so, without requiring specific expertise. The underlying system should also ensure
its correct functioning at all times, adapting itself when required.

1.9 Research Goals
The technological and historical context on how IoT is proclaimed to be the next evolution
of the Internet, resulting from the interconnection of objects (things), people, systems, and
information resources at a large scale has been briefly discussed in the previous sections, com-
plemented by a short discussion on the emerging challenges of this evolution of the Internet.

We observe that there exists a wide-spectrum of challenges that need to be tackled and
that most of them will require contributions from different research communities, including
joint-efforts. In this work, we will delve into the mostly unique characteristics that threaten
the dependability of IoT systems and the underlying research challenges, with a special focus
on end-user development environments.

To concretely understand the underlying pending research challenges that (in-)directly in-
fluence the current state of IoT development we start by addressing the following research
question:

RQ1 What are the unique characteristics of IoT systems that make them complex, and how
does such complexity impact the end-user ability to configure their dependable systems?

The review of the state-of-the-art, as well as the carried end-user studies, allows us to grasp
the origins and motivations behind the current complexity of the IoT systems. The end-user
surveys give some insights on what are the most common automations that users’ want to
perform, and, thus, showcasing how the complexity of IoT systems can limit their ability to
configure such automations dependably. This led us to the second research question of this
thesis:

RQ2 Are there recurrent problems concerning the lifecycle of IoT systems, and what are the
prevalent solutions that address them?

Most of the problems faced in the IoT ecosystem are not novel per se, but it is their combi-
nation at large scale that must be tackled. Concerning dependability, IoT has been tormented
by the same problems that have been long solved by other fields of research and industries
(e.g., mission-critical and real-time systems), but the adoption of the solutions created by such
related fields have not been re-thinked and adapted to the IoT scope. By thoughtfully system-
atizing this existing knowledge as patterns, taking into account the particularities of the IoT
system we provide a set of design guidelines that can be used to enhance the dependability of
the system while avoiding reinventing the wheel.

RQ3 What can be improved concerning the IoT systems’ dependability?

Chapter 1. Introduction 16

While the state-of-the-art (RQ1) presents several widely-used techniques and methodolo-
gies to improve a system dependability (e.g., fault-tolerance), there are strategies used in other
research areas (e.g., cloud computing) that are still in their early stages of adoption in IoT, shar-
ing several pending issues that hinder their adoption. The use of the available computing re-
sources in an automated fashion, i.e., distributing computing tasks among computing, has been
leveraged in cloud computing as a way of both distribute system load and avoid single-point-
of-failure (SPOF). Proving such mechanisms in IoT can bring similar advantages. By proving
the systemwith the mechanisms to dynamically allocate computational tasks while adapting to
the environment constraints within widely-used development environments (e.g., visual pro-
gramming environments such as Node-RED), we provide mechanisms to build systems with
improved dependability.

RQ4 How can themechanisms identified in RQ2 be leveraged by the end-users of IoT systems?

Even though most of the dependability problems that are common to IoT can be solved, to
a certain degree, by leveraging existing knowledge, this does not directly address the problem
of having users without specific technical knowledge building their IoT systems dependably.
By providing a set of visual abstractions that can be used in already widespread end-user pro-
gramming solutions, we can both leverage the existing knowledge and provide it as easy-to-use
build-blocks to the end-users.

Even so, most of the existing end-user programming tools are mostly opaque and pro-
vide little-to-no feedback about the running system to their users, which limits their ability to
change (re-program) their system to meet their ever-changing requirements. This led us to our
final research question:

RQ5 How can the end-user’s ability to manage the IoT systems’ lifecycle be improved without
requiring specific expertise nor hindering the systems’ dependability?

By providing mechanisms that aid the end-user to understand the behavior of their IoT
system (e.g., the messages that flow in the system, the configured trigger-action rules or the
cause of some state change) the end-user can more swiftly re-adjust their system and see the
consequence of those changes (i.e., improved visual notations).

Taking into account these research questions, we can now state our research hypothesis as
follows:

H: It is possible to enrich IoT-focused end-user development environments in such a way
that the resulting systems have a higher dependability degree, with the lowest impact on
the know-how of the (end-)users.

As a reference implementation of an IoT-focused end-user development environmentswe will
be using Node-RED, as it is one of the most widely-adopted development environments in
the scope of IoT. By (end-)user we consider all IoT system users that have the minimal set of
knowledge to configure their own systems, giving a special focus to the ones that are used to
visual programming languages (independently of the domain where they use them).

These research goals and their motivation— taking into account the current state of prac-
tice and available literature — is further discussed in detail in Chapter 5 (p. 132).

Chapter 1. Introduction 17

1.10 Research Contributions
In the scope of this thesis, a motivational framing on the software development challenges that
have tormented the software industry for long is presented, contextualizingwith the challenges
posed by this new Internet, which can, potentially, lead to a new software crisis [Fit12].

Internet-of-Things System

Self-Healing
Extensions

Pattern-Language for
Dependable IoT

Systems

Visual
Real-Time Feedback

Conversational
Interface

Use Use

Use

Communication

Communication

Devices
(Actuators and Sensors)

Extends

Devices

Custom
Firmware

Distributed Computing
and Orchestration

Extensions

Node-RED

Figure 1.7: High-level overview of the approach detailed in this thesis.

With this work, we do not aim to provide a silver-bullet for all the challenges of IoT devel-
opment, but to provide valuable, and empirically validated, insights on how to address some of
them. The main contributions to the IoT field of this research can summarize as:

A comprehensive review of state of the art. A thoughtful analysis in both fundamental
concepts, technologies, and development practices that are key for IoT are presented,
discussed, and open challenges summarized. More details in Part I (p. 21).

Patterns and pattern-language. Best practices for designing and developing dependable
IoT systems are described, inspired in both current practices from the field and related
fields. More details in Part II (p. 144).

Dependable and autonomic computing. A compendium of several experiments into
the distribution of computing task in constrained devices and the role of autonomic com-
puting—with a focus on self-healing— in assuring dependability in IoT systems. These
contributions try to meet the quality-of-service demands of end-users while attempting
to empower them to configure their dependable systems. More details in Part III (p. 184).

End-user development. Two studies on the use of visual and voice-based low-code so-
lutions for IoT system development and configuration. These studies focus on enabling
the end-user to build/configure systems that are more dependable while improving the
ability of the user to understand the running systems. More details in Part IV (p. 246).

Chapter 1. Introduction 18

The contributions present in this work, as enumerated, are highlighted in Figure 1.7 (p. 17),
which presents an overviewof the complete approach that satisfies the stated hypothesis. Node-
RED [Ope19b] is the foundation block of our work, and we attempt to minimize the changes to
this component, building the contributions as extensions or extra-modules. The devices were
both off-the-shelf and do-it-yourself ones tailored to our use cases (i.e., SmartLab), with most of
them accepting custom firmwares (i.e., allowing to program the device behavior). No relevant
contributions were done in regards to communications, sensing and actuating.

These contributionswere summarized and published in several venues given the cross-field
nature of IoT research. More details on the publications resulting from this work are presented
in Appendix A (p. 321).

1.11 How to Read this Document
The target audience of this work includes software engineers, designers, architects, developers,
system integrators, power-users, or anyone involved in the conception, design, construction,
maintenance, or evolution of IoT systems. This research (1) gives the fundamental background
knowledge to the reader on the IoT ecosystem, (2) empowers the reader with a set of best
practices that can aid the development of dependable IoT systems, (3) proves insights on how
to develop and integrate these systems — in a dependable and autonomic fashion — while
reducing the required specific technical knowledge. We also target this work at IoT researchers,
especially the ones focused on dependability in IoT, end-user development environments and
dependable autonomic systems, extensively discussing both virtual and physical observations
on the aforementioned contributions.

Due to the cross-domain contributions of this thesis, the remaining of this document is
organized into four parts, which, although related, can be (mostly) read independently. These
parts and their contents are depicted in the following paragraphs.

Part I (p. 21) presents a summary of the key background concepts of this work, an analysis
of the state-of-the-art, the insights of an end-user study, and, finally, it delves on the concrete
research challenges tackled by this work.

• Chapter 2 (p. 21) gives an overview of the key concepts of IoT, the most common archi-
tectures, fault-tolerance systems, autonomic computing, and some core concepts of the
software development lifecycle.

• Chapter 3 (p. 64) provides an extensive analysis of the state-of-the-art regarding IoT
systems design, development, testing. Relevant works in the research fields of fault-
tolerance and autonomic computing are also analyzed.

• Chapter 5 (p. 123) presents some insights on what are the end-user intents of use and
preferences for IoT systems by summarizing the results of a two-part survey on home
automation and low-code approaches.

Chapter 1. Introduction 19

• Chapter 5 (p. 132) discusses the finding of previous chapters, systematizing the emergent
challenges by different viewpoints. It is then presented the goals of this research, elab-
orating on the main hypothesis, the followed methodology and the different validation
steps.

Part II (p. 144) introduces our pattern-language for dependable IoT systems. It presents an
overview of the patterns (cf. Chapter 6, p. 144), followed by enumerating a total of 34 patterns:
7 supporting patterns (cf. Chapter 7, p. 151), 13 error detection patterns (cf. Chapter 8, p. 159),
and 14 recovery and maintenance of health patterns (cf. Chapter 9, p. 171).

Part III (p. 184) presents a three-part work towards more dependable IoT systems by both
ensuring the ability to distribute computing tasks during runtime and provide mechanisms by
which the system can inspect the runtime conditions and adapt as it changes. A first study (cf.
Chapter 10, p. 184) delve into the ability to automatically distribute computation tasks among
the available resources given both operational constraints and runtime conditions. A follow-
up study (cf. Chapter 11, p. 199) delves on how to provide such computational distribution
in existing visual programming systems while leveraging the computational resources of con-
strained devices. Finally, a set of contributions to self-healing IoT systems are provided which
leverage the pattern-language presented in the previous part.

Part IV (p. 246) details two studies on the enhancement of currentmechanisms bywhich the
users’ interact, configure, and build their own IoT systems. The detailed enhancements focus
on giving users low-code development solutions that providemore feedback about the running
system (cf. Chapter 13, p. 246) while improving their overall capability of understanding the
(already defined) system behaviors (cf. Chapter 14, p. 258). The presented contributions lever-
age both visual notations and voice-based interactions to improve the ability of the end-user
to build more capable — and more dependable — IoT systems.

There are often references to programming language’s lexical elements, standard libraries,
framework functions and variables which are identified using typewriter font. References to
pattern names (both from this work or relevant literature) are type-faced in Small Caps. Book
and article titles are type-faced in smallcaps. References and citations appear inside [square
brackets] and are highlighted — when viewing this document on a computer, these will also
act as hyperlinks.

Some contributions of this thesis were supported by one or more master’s degree disserta-
tions, with some being part of one or more published works. These works are duly acknowl-
edged in the first paragraphs of the corresponding chapter in which the correspondingmaster’s
work contributions are presented, and the author diverse contributions to the published work
are presented using the CRediT author statement [AOK19].

20

Part I

Fundamentals

21

2 | Background

2.1 Internet-of-Things . 21
2.2 Software Architecture Context . 38
2.3 Fault-tolerant Systems . 45
2.4 Autonomic Computing . 51
2.5 Software Development Life-Cycle . 56
2.6 Summary . 63

This chapter introduces the IoT concept and its key aspects, the notion of dependability and
fault-tolerance in computing systems, autonomic computing, and patterns. This chapter can
be skipped by experts in these subjects. We revisit the origins of IoT, delving into its main
characteristics, reference architectures, and the paradigms of fog and mist (edge) computing.
The theory of dependable computing is introduced as well as its central notions such as fault-
tolerance. Autonomic computing fundamental view is also introduced, as well as its key ele-
ments. Finally, the notion of Design Patterns and Pattern Language is presented as a source of
systematized knowledge of observable practices to aid the design process of software systems.

2.1 Internet-of-Things
The term Internet-of-Things (IoT) is claimed to be coined by Kevin Ashton1 circa 1999, dur-
ing a presentation about supply-chain management and the use of Radio-Frequency Identifi-
cation (RFID) technology to enable computers to observe, identify and understand the world
(without the limitations of human-provided data), long before anything but computers were
actually connected to the Internet (Internet of Computers) [FF11]. Ashton, by the time, already
presented concerns about the need of standards and their role in the sucess of IoT, suggesting
the need of “a standardized way for computers to understand the real world” [Sch02].

From its birth, a crucial requirement for IoT, beyond ubiquitous computing, was ubiquitous
connectivity. Any computing-able object that is aware of its context and that can communicate
with other entities fall under the umbrella of IoT. Initially, RFID was the dominant technology
behind IoT development, but, as of today, WSN and Bluetooth-enabled devices augmented the
mainstream adoption of the IoT trend [Kev09].

1Citing the author, “I (Kevin Ashton) could be wrong, but I am fairly sure the phrase Internet-of-Things started
life as the title of a presentation I made at Procter & Gamble (P&G) in 1999” [Kev09].

Chapter 2. Background 22

The joint technical committee of the International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC) — ISO/IEC JTC 1 — defined2 IoT
as [ISO14]:

An infrastructure of interconnected objects, people, systems, and information resources
together with intelligent services to allow them to process information about the physical
and the virtual world and react.

of

 d
ev

ic
es

 i
n

 th
ou

sa
nd

 m
ill

io
ns

50

40

30

20

10

 0

50,00

38,60

22,00

Year
203020252018

Figure 2.1: Actual count and estimation of the number of IoT devices per year (from
Statista) [Tan18].

IoT shifts computing from traditional devices (IoC) towards a ubiquitous and pervasive
computing world of systems, and, Systems of Systems (SoS), where heterogeneous and highly-
distributed objects (things) are computing-capable and Internet-connected [ASD16]. The num-
ber of Internet-connected devices under the IoT umbrella is growing (cf. Figure 2.1, p. 22),
expected to reach around 50 thousand million of connected devices by 2030 [Tan18].

From an innovation point-of-view, IoT has been enhancing the interactions among things
and humans, enabling the realization of smart cities, infrastructures, and services for enhancing
the quality of life and utilization of resources. Thus, IoT envisions a new world of connected
devices and humans in which the quality of life is enhanced because of the management of the
city and its infrastructure is less cumbersome, health services are conveniently accessible, and
disaster recovery is more efficient [BD16]. In regard to the fourth industrial revolution, so-
called Industry 4.0, IoT, more specifically known as IIoT, is considered the supporting backbone
of the vision of “a fully describable, manageable, context-sensitive and controllable or self-regulating
manufacturing systems”, making it possible by embedding Internet-powered devices in the pro-
duction systems that are part of the life cycle of a product [LLD18].

From a technical point-of-view, one can consider that a major role of the IoT consists of the
delivery of highly complex knowledge-based and action-oriented applications in real-time. To

2Note that the precise definition of IoT and its relationship/boundaries with the concept of Cyber-physical
Systems (CPS) and less-used terms such as Intelligent Internet-of-Things (IIoT) or Internet-of-Everything (IoE) is
yet an open discussion [Bor+17].

Chapter 2. Background 23

be able to reach such an end, several considerations should be done regarding the full lifecycle
of these systems, from conceptualization to development, from test to deployment andmainte-
nance. These include, but are not limited to, (1) development of scalable architectures, (2) mov-
ing from closed systems to open systems, (3) dealing with privacy and ethical issues (due to data
collection and storage practices), (4) heterogeneity support, (5) data storage, (6) data processing,
decision-making, (7) designing interaction protocols, (8) autonomous management, (9) com-
munication protocols, (10) smart objects and service discovery, (11) programming frameworks
and languages, (12) resource management, (13) data and network management, (14) real-time
needs, (15) power and energy management, (16) governance, and (17) interoperability [BD16].

Despite the ongoing discussion about the concrete definition3 of the IoT, and consequently,
what devices comprise its ecosystem, the total count of connected devices is growing fast4.

2.1.1 Application Domains
IoT has been one of the main drivers of technological innovation in different contexts and
scenarios since it works as the foundation for any smart space. This observation is supported
by the work carried by the Cluster of European Research Projects on the Internet of Things
(CERP-IoT) which has identified numerous application domains for IoT [Sun+10].

Table 2.1: Summary of IoT application domains [Sun+10].

Domain Description Indicative Examples

Industry Activities involving financial or commer-
cial transactions between companies, or-
ganizations and other entities.

Manufacturing, logistics, service sector,
banking, financial governmental author-
ities, intermediaries, etc.

Environment Activities regarding the protection, mon-
itoring, and development of all-natural
resources.

Agriculture & breeding, recycling, envi-
ronmental management services, energy
management, etc.

Society Activities and initiatives regarding the
development and inclusion of societies,
cities, and people.

Governmental services towards cit-
izens and other society structures
(e-participation), e-inclusion (e.g., aging,
disabled people), etc.

TheCERP-IoT report [Sun+10] defines three IoT application domains, as they are described
in Table 2.1 (p. 23). Within these application domains, several fields with open opportunities
are presented such as aerospace and aviation (systems status monitoring, green operations),
automotive (systems status monitoring, vehicle-to-vehicle, and vehicle-to-infrastructure com-
munication), telecommunications, intelligent buildings (automatic energy metering, home au-
tomation, wireless control), healthcare (personal area networks, monitoring of parameters, po-
sitioning, real-time location systems), independent living (wellness, mobility, monitoring of an

3Defining IoT is fuzzy because of breathless hype, including attempts to anticipate demand for devices have yet to
be invented or commercialized [Nor16].

4AmyNordrum states that the exact total number of devices will be somewhere between Gartner’s estimate of 6.4
thousand million (excluding smartphones, tablets, and computers), and IHS Markit’s estimate of 17.6 thousand million
(with all such devices included) by the year of 2020 [Nor16].

Chapter 2. Background 24

elder population), retail, logistics, supply chain management, people and goods transportation,
media, entertainment, and insurance.

0% 5% 10% 15% 20% 25%

Others

Smart Retail

Smart Agriculture

Smart Supply Chain

eHealth

Smart City

Smart Energy/Grid

Smart Car

Smart Building

Industrial IoT

8

4

4

5

6

10

11

12

17

23

% of IoT projects per domain

Figure 2.2: Number of IoT enterprise projects per application domain. Statistics based
upon 1600 public known enterprise IoT projects circa 2018 (not including
consumer-grade IoT projects such as wearables and smart homes) [Scu18].

The IoT Analytics GmbH Report [Scu18] points that the most relevant enterprise-level
IoT segments are Smart City, IIoT, Smart Building, Smart Car, Smart Energy/Grid, eHealth,
Smart Supply Chain, Smart Agriculture, Smart Retail, and their relevance is shown in the chart
on Figure 2.2 (p. 24). However, this report does not count with consumer-level IoT segment
(e.g., wearables and smart homes).

IoT enterprise applications can also be aggregated in three major categories, depending on
their role, namely [BD16]: (1) monitoring and actuating, (2) business process and data analysis,
and (3) information gathering and collaborative consumption.

The IIoT, core technological component of the Industry 4.0 initiative, consists on the adop-
tion of Internet-enabled things with sensing and actuating capabilities as a way to gather data
about production processes, thus enabling companies to detect and resolve problems faster —
resulting in overall money and time savings [BD16]. As an example, in a manufacturing com-
pany, IIoT can be used to efficiently track andmanage the supply chain, perform quality control
and assurance.

Altogether, with the recognized impact that IoT can have on the industry, it is also envi-
sioned the impact that IoT can have on improving the quality of life [BD16]. From a healthcare
perspective, IoT can be a facilitator of data collecting (e.g., heart rate) which enables remote
patient monitoring, viz. ambient assisted living (AAL) [Doh+10]. Further, monitoring hazard
environmental conditions can give data insights for authorities to act accordingly and alert the
population.

Holistically, exploiting the open IoT opportunities and different application domains can
lead to, on the one hand, improve people’s quality of life, and, on the other hand, improve the
industry and the enterprise world.

Chapter 2. Background 25

2.1.2 Sociotechnological Context
The initial vision of IoT— enabled by achieving ubiquitous computation5 and ubiquitous con-
nectivity — has now become a reality. Our mobile phones, our security cameras, our watches,
our fridge, toaster, and coffee machine, all have (micro-)processors more powerful than the
one used to send the first man to the moon [LY02]. They all tend to be (inter-)connected for
sending alerts, transferring new updates, or even downloading new mocha recipes from the
Internet [Kru16]. We continuously push annotated geolocation (collected almost simultane-
ously by the GPSs present in our mobile phone, watch, fitness band, and car) to a multitude
of recipients that consume vast volumes of personal data for the sole purpose of displaying
ads [Aks+18]. Even wired Internet access is becoming obsolete due to faster, cheaper, conve-
nient, and more energy-efficient wireless technologies (4G and 5G) [And+14]. The status quo is
ubiquitous connectivity, available to everyone, everything, every time, everywhere.

From the above examples, one can understandwhy IoT has been promoted andwidely used
as an enabler ofmachine-to-machine, human-to-machine, and human-with-environment interac-
tions [BD16]. IoT has a key role in the scope of human-in-the-loop systems, in which humans
and things operate synergistically and cooperatively. As new applications intimately involve
humans, a range of new opportunities for a broad range of applications, including energyman-
agement and automotive systems, will appear.

Munir et al. categorize these human-in-the-loop applications and systems based on the
controls that they employ: (1) applications where humans directly control the system (e.g.,
switching one room lights on/off), (2) applications where the system passively monitors hu-
mans and takes appropriate actions (e.g., surveillance systems or sleep monitors), and (3) hy-
brid approaches based on the aforementioned (e.g., energy optimization systems that both use
information from sensors and commands from operators) [Mun+13].

However, as pointed out by John Stankovic, several challenges also arise from the human-
in-the-loop: (1) the need for a comprehensive understanding of the complete spectrum of types
of human-in-the-loop controls, (2) the need to extend current identification systems, or other
techniques to derive models of human behaviors and determine how to incorporate human
behavior models into the formal methodology of feedback control [Sta14].

2.1.3 Physical Platforms and Devices
The hardware (e.g., devices, computers) in which IoT systems (or components) live, ranges from
low computing power edge devices (edge tier) to high-performance cloud servers (cloud tier).

Most of the cloud part of IoT systems use software as a service (SaaS), platform as a service
(PaaS), and infrastructure as a service (IaaS) provided by several vendors such as Microsoft
Azure, AmazonWebServices (AmazonAWS) andGoogleCloudPlatform (GCP) [IKK13; KM16;
PK16; Ray16]. These and other providers have been developing new and tailored solutions (i.e.,
computational platforms) to meet the requirements of IoT in terms of cloud resources.

Different surveys on IoT cloud providers identify and compare the different available solu-
tions, including the AWS IoT Platform, Kaa IoT Platform, IBMWatson IoT Platform,Microsoft

5Ubiquitous computing is also known as ubicomp or pervasive computing.

Chapter 2. Background 26

0 0.5 1 1.5 2 2.5

·104

Arduino
Raspberry Pi

ESP8266/ESP32
STM32

micro:bit
Pycom

Particle Photon
Tinker Board
Onion Omega

26,770

23,590

17,827

5,080

564

522

422

199

64

of results

— 2016
2017 — 2021

Figure 2.3: Number of results on Google Scholar for most-known hardware boards.
Query ("<board_name>") AND ("IoT" OR "Internet-of-Things" OR
"Internet of Things") circa November 2021.

Azure IoT Platform, Bosch IoT Suite, Google Cloud IoT, ThingSpeak and ThingWorx. P.P. Ray
survey of 26 different IoT clouds exhaustively compares the available solutions in terms of
suitability and applicability in terms of support for application development, device manage-
ment, system management, heterogeneity management, data management, analytics, deploy-
ment management, monitoring, and visualization [Ray16]. In his work, he points out several
issues across different solutions, namely, standards conformance, heterogeneity adaptation,
context awareness, incentives to the proliferation of vertical silos, issues dealing with things
identities, and lack of considerations for fault-tolerance and energy management.

While different cloud providers favor different protocols (cf. Section 2.1.4, p. 30, and Sec-
tion 25, p. 34), operating systems (e.g., Amazon FreeRTOS andMicrosoftWindows 10 IoT), and
provide different SoftwareDevelopmentKits (SDK), they provide a common set of services thus
reducing the heterogeneity between them (although having different commercial names).

Regarding the lower tiers of the IoT system— devices closer to the physical environment
that they sense and act upon —, namely the fog and edge tiers, the device and platform het-
erogeneity sharply increases. Most of these devices can be placed into three groups which are
presented next, along with some examples of hardware devices that were searched on Google
Scholar for a referencemetric of popularity (i.e., number of results), plotted in Figure 2.3 (p. 26).
The most common device taxonomy is (1) Single-Board Computers, (2) Single-Board Micro-
controllers, and (3) Networking Devices. Most of these devices have several aspects that should
be considered when choosing the most appropriate for a given scenario, such as (1) computing
capabilities, (2) power consumption, and (3) connection range (cf. Figure 2.4, p. 30) [SK17].

Single-Board Computers

Single-Board Computers (SBC) are complete computers built on a single circuit board, with
microprocessor (typically ARM-based), memory, I/O and other features required to have a
fully-functional computer, capable of running a complex operating system such as different

Chapter 2. Background 27

Linux distributions [UHM11]. These devices are typically part of the fog tier (cf. Figure 2.7,
p. 39), but can also be used in the edge tier. Some examples are:

Raspberry Pi One of the most popular SBCs, firstly designed for educational purposes,
has been used for the most diverse purposes, including IoT system. It uses a Broadcom
system on a chip (SoC) and has an integrated ARM-compatible CPU [Fou19b; KGC16;
SA16; PKB15].

Onion Omega Board This SBC has an even smaller size when compared to Raspberry
Pi, uses the MIPS CPU architecture, and has a power-efficiency typical of embedded de-
vices [Cor19; Raj+18].

Asus Tinker Board An ASUS-designed competitor for the Raspberry Pi, has a Rockchip
SoC and an integrated ARM-compatible CPU [Glo19; ZEB18].

The presented list is limited in number it showcases the most common fog tier devices.
Other solutions exist, but, typically, they share similar hardware capabilities and features.

Single-board Microcontrollers

Single-board Microcontrollers are built onto a single printed circuit board providing the min-
imum requirements for computing and control tasks, namely: microprocessor, I/O circuits, a
clock generator, RAM, stored program memory, and any necessary supporting integrated cir-
cuits (ICs). Some of these boards are capable of running operating systems6 such as FreeRTOS
and RIOT [GT15]. These boards, jointly with some communication microchips, are the most
common devices in the lower tier of IoT systems (cf. Figure 2.7, p. 39). The following presented
microcontrollers are some well-known microcontrollers used:

Arduino and Arduino-like boards Boards based on Atmel AVR microcontrollers that
can have some way to communicate such as serial ports, Wi-Fi microchips, or even Sig-
Foxmicrochips, and a set of digital and analog I/O pins that can be used to connect to var-
ious expansion boards (shields), other circuits and sensors and actuators. The boards are
typically programmed using the Arduino language and framework, but they are compat-
ible with other firmwares, and, even, support some real-time operating systems [Ard19b;
Dou12; Ben18].

Particle It is a set of boards and development kits with built-in Wi-Fi, Bluetooth, and/or
cellular connectivity, that can work in a mesh fashion (board versions: Argon, Boron,
Xenon, Photon, Electron). It has an ARM-based processor, runs a customized OS called
Device OS and can be programmed both by a direct serial over the USB connection or
using the Particle’s Cloud IDE [Par19].

6The most common operating systems for these boards and embedded devices are Real Time Operating Sys-
tem, which are intended to serve real-time applications that are required to processing data as it comes in with
minimal delays, running within a deterministic execution pattern.

Chapter 2. Background 28

ESP8266/ESP32 Microcontrollers from Espressif Systems with built-in Wi-Fi and/or
Bluetooth connectivity that has a set of General Purpose input/output pins (GPIOs). The
devices can be programmed using Lua, MicroPython, and C (Arduino) [Esp20; Esp19;
Ben18; Bel17].

BBCmicro:bit An ARM-based board designed by the BBC for educational purposes with
Bluetooth LE connectivity that can be programmed in C, JavaScript or a visual program-
ming language using MakeCode Editor that is similar to Blockly from Google [Fou19a;
CP16].

STM32 boards STM-based set of ARM SoC based boards by STMicroelectronics that are
part of several IoT devices and can be personalized in terms of connectivity, computing
capabilities, and GPIOs [STM19; Lin+13; LZZ14].

Nordic boards Set of boards designed by Nordic Semiconductor that use an ARM SoC
having a special focus on ultra-low power wireless communication capabilities, sup-
porting protocols such as Bluetooth low energy, Bluetooth Mesh, ANT+, 2.4GHz, IEEE
802.15. 4, Thread, Zigbee and LTE-M/NB-IoT. The BBCmicro:bit is an example of such
boards, being based on the Nordic’s nRF52833 SoC [Sem20].

This is not an extensive list, and there are new microcontrollers being designed and cre-
ated nonstop to meet new operational requirements or improve certain features (e.g., power
consumption and computational power).

Networking Devices

Networking Devices appeared because most of the IoT solutions depend on routers or other
kinds of protocol-specific gateways to provide the interconnection of different devices and sys-
tems components, by forwarding data packets between different networks. These are typically
part of the fog tier (cf. Figure 2.7, p. 39). As an example we can consider home automation
solutions that use the ZigBee protocol (e.g., Philips Hue [Pen20]), a specific gateway needs to
connect and control the edge devices.

Due to the increase in the number of features and computing power of these devices, some
of them also act as IoT hubs, connecting to multiple devices and allowing its management in
centralized fashion [Cir+15; Fan+14]. As an example, some routers are capable of running
integration platforms such as Domoticz [TVM19]. TP-Link Kasa Smart Home Router is an ex-
ample of a consumer-level router that also acts as an IoT hub, integrating devices with ZigBee,
Z-Wave, and Wi-Fi connectivity [TP-19].

Summary

The plethora of devices and other physical platforms, (re–)designed and adapted to different
application domains (cf. Table 2.1, p. 23, and Figure 2.2, p. 24), coupled with the fact that
they are being produced and commercialized by different vendors, have resulted in a highly-
fragmented market [Gui16].

Chapter 2. Background 29

Regarding the cloud tier (i.e., servers and other platforms), IoT solutions are being provided
as Everything-as-a-Service (XaaS) [Dua+15]7, where out-of-the-box, service-oriented architec-
tures are offered as a panacea for any application domain. However, the dependability of this
approach can be severely compromised given that centralizing all the systems’ core logic in
the cloud makes it a single point of failure and dependent on an always-on Internet connec-
tion [Kle+19]. Additionally, several authors raised concerns regarding the security and privacy
of such cloud-centric approaches [Kle+19; SMM19].

Another research focus is the concept of Software-defined Everything (SDE), which has
been expanding the importance and impact of software in a previous hardware-only world8,
becoming a vital part of the IoT ecosystem [BC15]. The dissemination of Software-defined
networking (SDN), Software-defined storage (SDS) and software-defined data centres (SDDC)
as core components of Cloud-tier are a reliable indicator of the Software-defined ten-
dency [BC15]. However, this also impacts the lower-tiers of IoT systems reducing the need to
physically upgrade and change hardware to meet new requirements or correct existing flaws.

It is in the lower-tiers of IoT systems (i.e., fog and edge tiers) where the peak of heterogene-
ity is observed, resulting in a vast mix of Single-board Computers (SBC), networking devices,
and embedded/constrained devices. These devices, tailored to the different application do-
mains and working environments, are built with a variety of central processing units (CPUs),
communication radios, and power consumption needs. They also provide different end-user
interactions, and include different sensing and actuating capabilities.

Current research efforts are focused on the development of ever-smaller boards with lower
power needs and built-in power-efficiency strategies9 (e.g., on/off cycles), low-cost and highly-
reliable data transceivers, improved sensing capabilities, and overall more efficient processing
units [Aky+02]. Few, if any of these, would be of help towards the de-fragmentation of the IoT.

2.1.4 Communication Protocols
Networking is a mandatory requirement of IoT devices. Every sensor and actuator device
should be connected anytime, anywhere. However, these devices are limited by design con-
cerning processing power, energy consumption and management, and available connectiv-
ity [Cen+16]. The Wireless Sensor Networks (WSN) research field10 has long been developing
networking solutions that attempt to address these highly stringent constraints. This constant
connectivity is one of the critical building blocks of IoT that suffers the most from the frag-
mentation mentioned earlier. Similarly to what happens in terms of physical platforms and
devices, different vendors are trying to develop their own communication radios, protocols,
and ecosystems leading to an ever-growing heterogeneous network ecosystem, thus increas-
ing its accidental complexity. Ray et al. point out that such a scenario enhances the complexity
among various types of devices through different communication technologies showing the rude be-
havior of the network to be fraudulent, delayed, and non-standardized [Ray18].

7Also known as Anything-as-a-Service (*aaS) depending on the authors [Maa+19].
8As stated by Marc Andreessen circa 2011, “software is eating the world" [And11].
9Including the usage of energy-harvesting mechanisms [GG17].
10It is hard to clearly define a boundary between theWSN and IoT research fields due to their overlap in several

research directions.

Chapter 2. Background 30

Lower-Layers Communication Protocols

Althoughwire-based solutions are still widely used due to their reliability, with one of themost
common ones being Ethernet (e.g., gateways and other fog devices are, typically, connected
via Ethernet to routers or other local network devices), these solutions are limited to physical
installations and limit mobility. Other wired-protocols11 that still play a role in IoT include the
Controller Area Network (CAN) bus protocol which is widely used in the automotive industry,
Modbus which become a de facto standard for industrial PLC communications, and power-line
communication (also known as power-line carrier or PLC) widely used for transmitting data
using AC power lines [AS17].

Wide Area
Network

(WAN)

Neighborhood
Network

(NAN)

Local
Area Network

(LAN)

Personal
Area Network

(PAN)
Proximity

Contact Range
(0-10 meter)

Short Range
(10-100 meter) Short/Medium Range

(100-2000 meter) Medium Range
(5-10 km) Long Range

(up to 100 km)

NFC
RFID

Bluetooth / BLE
ZigBee
Thread
Z-Wave
ANT
EnOcean
Eddystone

WiFi Weightless
JupiterMesh
Wi-SUN

Cellular

Low Power Wide Area

2G/3G/4G/5G/ LTE
WiMAX

LoRaWAN
NB-IoT
SigFox

802.11a/b/n/ac
802.11ah & 802.11p
802.11af (white space)

Figure 2.4: An overview of the IoT-enabling network protocols pointing their fitness to
each spatial scope (i.e., coverage range), namely: Personal Area Network (PAN),
Local AreaNetwork (LAN),NeighborhoodAreaNetwork (NAN) andWideArea
Network (WAN).

Protocols targeting lower-layers (per the OSI model12) have been specifically designed to
address necessities shared by IoT systems. An overview of some of these protocols is given on
Figure 2.4 (p. 30). Some of these are transparent to mechanisms used in higher-layers while
others pose practical limitations or enforce specific strategies. A few of these protocols are the
following:

11While there are several other lower-level wired communication protocols used for establishing communica-
tion between sensors, actuators, andmicrocontrollers— e.g., I2C, JTAG, SPI, RS232, and several other serial-based
communication protocols — these are not of relevance for this work as their complexity impact is, typically, lim-
ited to the embedded systems’ development.

12Open Systems Interconnectionmodel (OSI model) splits network communication protocols into seven layers
— from the physical lower-level layer to the higher-level application layer.

Chapter 2. Background 31

0 1 2 3 4

·104

RFID/NFC
ZigBee

Bluetooth/BLE
5G

Wi-Fi
GPRS/2G/3G

LoRa/LoRaWAN
WiMAX
SigFox

EnOcean
Thread protocol
ANT protocol

37,600

36,900

36,000

35,600

35,000

34,800

20,370

16,070

9,469

1,580

245

167

of results

— 2016
2017 — 2021

Figure 2.5: Number of occurrence of each protocol in the literature gathered using
Google Scholar and the search query <protocol_name> AND ("IoT"
OR "Internet-of-Things" OR "Internet of Things"), where
<protocol_name> is the name of the protocol or a combination of two ver-
sions of it (e.g., Bluetooth OR BLE). Some protocols required the use of the
word protocol in the query to disambiguate the term. Data collected in Novem-
ber of 2021.

RFID Radiofrequency identification is the foundation technology for several solutions that
provides automated wireless identification and tracking capabilities. It is more robust
than the barcode system and consists at least of a reader (interrogator) with a reader
antenna and tags (transponders) which are microchips combined with an antenna in a
compact package. A popularized RFID-based solutions is the high-frequecy Near Field
Communication (NFC) which operates at a close range of about 10 cm or less [Vaz+12].

Bluetooth/BLE Bluetooth13 objective was to replace short-range wired communication,
typically used in point-to-point or star topologies. However, it has a weak security layer.
More recently, Bluetooth low energy (BLE) appeared, providing considerably reduced
power consumption and cost whilemaintaining a similar communication range [Jeo+18].

Eddystone, iBeacon, AltBeacon, and GeoBeacon A set of protocols that uses BLE
to communicate with local beacons14 for exchanging URL, unique identifiers and other
metadata [Ray17]. These can be used to allowing to determine a device physical location,
track customers, or trigger a location-based action on the device such as a check-in on
social media or push notification.

13Bluetooth was introduced in 1994 by telecom vendor Erickson as a wireless communication standard for
interaction between computers and mobile phones [BS01].

14Bluetooth’s beacons are hardware transmitters, which is a class of BLE devices that broadcast their identifier
to nearby portable electronic devices.

Chapter 2. Background 32

LoRa and LoRaWAN LoRa Low Power Wide Area proprietary technology that supports
the use of low power, low data requirements, and long-range operation devices. Lo-
RaWAN defines the communication protocol and system architecture for the network
while the LoRa physical layer enables the long-range communication link [Gou+17]. A
single LoRaWAN gateway can collect data from thousands of nodes deployed kilometers
away [Ade+17].

Weightless The Weightless is an open technology (controlled by the Weightless Special
Interest Group) pointed to low-cost M2M applications that require a wide coverage with
minimal power usage [MZU16].

SigFox SigFox aims to deploy a controlled network dedicated to IoT, much like a cellular
network. A Sigfox certified transmitter must be added to the devices, then the data trans-
mitted by the device is first routed to Sigfox server to scrutinize for integrity and security
of the data, following which, it is routed back to applications IT network [MZU16].

ZigBee A commonwireless networking standard for building sensor networks. It consists
of a packet-based open and global protocol that has been designed to provide a secure
and reliable communication architecture transmitting small data at low power over short
distances [MZU16].

JupiterMesh A proprietary low-power industrial-grade wireless mesh networkwith flex-
ible data rates. It includes authentication, encryption and keymanagement, and advanced
radio layer technologies such as frequency hopping, and multi-band operation [Zig18].

Thread Based upon the IPv6 and 6LoWPAN protocols, Thread is a low-power mesh net-
work protocol. It provides suppliers with the freedom to use proper application layers
according to their application needs [Lan+19].

EnOcean A wireless energy harvesting technology (self-powered) that delivers high data
rate at low energy consumption, adequate for short-range, less data-heavy applications.
Thus, EnOcean-compliant devices employ energy converters that reap power from sur-
roundings by harnessing temperature differences, light energy, and mechanical motion,
requiring no batteries [MZU16].

WiMAX Awireless technology intended for high-speed data communication applications.
It provides a low-cost alternative for cable and data subscriber links while maintaining a
data rate comparable to cable rates and the ability to maintain a dedicated link for each
subscriber [MZU16].

Z-Wave A proprietary protocol promoted by the Z-Wave Alliance that is specifically de-
signed to transmit short messages from the control unit to slave devices at minimal
power consumption, useful for automation in commercial and residential environ-
ments [MZU16].

ANT Proprietary wireless sensor network technology that enables semiconductor radios
operating in the Industrial, Scientific and Medical allocation of the RF spectrum (ISM

Chapter 2. Background 33

band) to communicate by establishing standard rules for co-existence, data representa-
tion, signaling, authentication, and error detection.

Wi-SUN Wireless Smart Utility Network has low power and middle data rate physical layer
specification and support of a bi-directional multi-hop transmission. A typical Wi-SUN
setup consists of two types of wireless stations, i.e., the devices (collect and transmit data)
and the coordinators (control the devices) [Moc+17].

GPRS/2G/3G/4G/5G cellular Using the already-in-place ubiquitous cellular networks
formachine-to-machine communications in the IoT domain has been explored in the last
few years, with several technologies being introduced for cellular IoT networks, such as
Extended Coverage GSM IoT (EC-GSM-IoT), Long Term Evolution -Machine (LTE-M),
Narrowband Internet of Things (NB-IoT) [MZU16; And+19]. The next fifth-generation
(5G), Radio Access technology, is promised to be a key component of the Networked
Society. 5G will support massive numbers of connected devices and meet the real-time,
high-reliability communication needs of mission-critical applications [Gou+17].

NB-IoT A technology, also part of the 5G family, is expected to be the leading IoT over
LTE technology in the next years, focusing on further optimizations on top of the LTE-M
standard, leading to narrowband LTE-M [Gou+17].

Wi-Fi Is one of the most well-established protocols for wirelessly connecting local area
devices, typically used to provide Internet connection to them. It is based on the IEEE
802.11 family of standards and operates in the 2.4GHz and 5GHz bands (Wi-Fi 6E also
uses the 6Ghz band) [Gas05]. Some extensions to the protocol have been proposed,
including the support for mesh networking [Rey+13]. Another related protocol is the
WiMAX one, based on the IEEE 802.16, which focus on providing last mile wireless
broadband access [BC13].

Despite this extensive list of protocols enabling communication between different parts of
the IoT systems across different tiers (viz. Figure 2.7), new protocols are still being designed and
implemented due to limitations imposed by the scope of operation of these systems. As an ex-
ample, most of the presented communication protocols are not suitable for Vehicle-to-Vehicle
Communication (V2V), and several solutions such as vehicle ad hoc networks (VANETs), and
mobile ad-hoc networks (MANETs) have been studied as a solution for such issues [Too+08].

Several works have been focused on using ultrawideband (UWB) as a low energy level for
short-range and high-bandwidth communications, with some commercial-grade devices (e.g.,
mobile phones) already using it for precision locating and tracking purposes [JOJ21]. Some
sub-GHz ISM bands (license-free Industrial, Scientific, and Medical frequency bands) are also
popular amongst IoT, specifically 433MHz, 868MHz, and 915MHz — with more than 5270
works on Google Scholar by November 2021. The data transmitted in these frequencies can
be modulated using a wide range of protocols (e.g., LoRa runs on 433MHz in the USA and
868MHz in Europe) and they are typically low-powered.

Additionally, other wireless protocols, including light-based ones, have been proposed as a
way of mitigating some of the issues (e.g., electromagnetic interference) that affect most of the

Chapter 2. Background 34

protocols above at some degree. Among such initiatives, one can identify Li-Fi (Light-Fidelity),
a derivative of optical wireless communications (OWC) technology, that uses light-emitting
diodes (LED) for transmitting data [TVH14]. Another widely-used light-based communication
technology is infrared (IR), as standardized by the Infrared Data Association (IrDA) in the early
1990s, which has been historically used as a short-range communication protocol solution and
still plays a role in IoT due to its low power consumption [Ran+17; SAA16].

We are still far from a reference (standard) set of protocols a designer can objectively choose
from when developing IoT systems. As can be observed in Figure 2.5 (p. 31), several network
protocols appear recurrently in the literature. While not every protocol can be used for all kinds
of networks, there are some overlapping protocols in terms of range and functioning (e.g., BLE
and ZigBee). They are indistinguishable in terms of popularity, which goes accordingly with
the current fragmentation (i.e., heterogeneity) of the IoT ecosystem.

Higher-Layers Communication Protocols

Some of the most common higher-layers communication protocols (per the OSI model) that
are used in these systems are [Diz+19]:

HTTP Hyper Text Transfer Protocol is one of the most common protocols used in the ap-
plication layer. However, its inherent complexity and verbosity make it an undesirable
candidate for IoT applications [MZU16]. HTTP/2 further reduces the network latency,
compresses the header-field data, and allows parallel data exchanges on the same net-
work. While it is still complex and verbose, it provides advantages regarding bandwidth,
reliability, and messaging mechanisms. Representational State Transfer (REST) architec-
tural style is often used in both [Kar+15].

The third-version of HTTP (HTTP/3 or HTTP-over-QUIC15) improves the current ver-
sion 2 by supporting multiplexing (reducing the impact of packet loss on data transfer
speeds) and lessen the handshake scheme [Bis19], however there is still no references to
the protocols in the context of IoT.

MQTT Message Queue Telemetry Transportwas released by IBM, being primarily designed
for lightweight M2M communications. It is an asynchronous publish-subscribe proto-
col that runs on top of the TCP stack and a typical network configuration consists of a
server and several clients [SM17]. Small modifications on this protocol originated the
Message Queuing Telemetry Transport for Sensor Networks (MQTT-SN) [ST13], MQTT
over WebSockets that leverage the use of MQTT on top of WebSockets [Del+17], and
MQTTw/QUIC which uses QUIC as the transport protocol [KD18].

AMQP Advanced Message Queuing Protocol provides asynchronous publish-subscribe
communication with messaging. Its main advantage is its store-and-forward feature that
ensures reliability even after network disruptions, which is a common issue of IoT net-
works. It also provides flexible routing and transactions support [Nai17a].

15QUIC is a multiplexed and secure general-purpose transport protocol on top of UDP [IT19].

Chapter 2. Background 35

CoAP Constrained Application Protocolwas designed for IoT devices being deployed in low-
power lossy networks, working in a REST-style but using datagrams for data transmis-
sion [MZU16]. CoAP holds various functional characteristics such as multicast support,
small data overhead, Uniform Resource Indicator (URI) support, content-type support,
subscription of a resource, and surfing push notifications [Ray17]. Although it was orig-
inally designed to use UDP as underlying transport protocol, it can be used over TCP,
TLS, and WebSockets.

XMPP Extensible Messaging and Presence Protocol is an open protocol that provides fa-
cilities such as lightweight middleware, instant messaging, real-time communication,
voice/video call, and multi-party chat, and content syndication of XML data [MZU16].
XMPP runs over TCP, and it is suitable for IoT applications due to its publish-subscribe
(asynchronous) and also request/response (synchronous) messaging systems, thus being
extensible and flexible [Kar+15].

DDS Data-Distribution Service is a solution for real-time systems providing a middleware
to help real-time publish-subscribe communications. It differs from centralized publish-
subscribe architectures by using a set of decentralized nodes of clients across a system that
can identify themselves as subscribers or publishers using a localization server [CK16].

STOMP Streaming Text Orientated Messaging Protocol is a simple and easily interoperable
text-based protocol. Due to its simplicity, there is almost no enforcement over a message
semantic, requiring an extra effort in terms of configuration [Mag15].

OMA LwM2M Light-weight Machine-to-Machine is a standard by the Open Mobile Al-
liance that provides an interface between M2M devices and M2M Servers to build an
application-agnostic scheme for management and communication between a variety of
devices. It is built on top of the CoAP protocol [Al-+15].

Matter Formerly Project CHIP (Connected Home over IP) is a protocol under develop-
ment by the Zigbee Alliance (also known as Connectivity Standards Alliance) attempting
to unify the technological diversity in smart home connectivity. It runs on existing tech-
nologies (Ethernet, Wi-Fi, and Thread) by levering the IP protocol stack [All20].

UPnP Universal Plug and Play (UPnP) build on top of the Plug and Play peripheral model
and uses existent protocols (e.g., UDP, HTTP and XML), to enable devices to dynam-
ically join a network (automatically setting all the necessary information, including IP
addresses). UPnP also defines mechanisms for devices to announce themselves and their
capabilities to other UPnP-enabled devices, and automatically retrieving the relevant in-
formation about other compliant devices in the network, without requiring any man-
ual configuration (i.e., zero configuration or zeroconf). Device Profile for Web Services
(DPWS) was introduced as successor of UPnP, but being fully aligned with the vision
of Web Services. It defines a set of requirements that enable secure web-base messag-
ing, discovery, description, and eventing, with a special focus on resource-constrained
devices [Rei13].

Chapter 2. Background 36

0 0.5 1 1.5 2

·104

MQTT
HTTP protocol

CoAP
DDS

AMQP
XMPP

UPnP/DPWS
LwM2M
STOMP

LLAP

21,180

18,780

17,450

6,810

5,330

5,250

4,350

1,418

1,202

376

of results

— 2016
2017 — 2021

Figure 2.6: Number of occurrence of each protocol in the literature gathered using
Google Scholar and the search query <protocol_name> AND ("IoT"
OR "Internet-of-Things" OR "Internet of Things"), where
<protocol_name> is the name of the protocol or a combination of two ver-
sions of it (e.g., Bluetooth OR BLE). Some protocols required the use of the
word protocol in the query to disambiguate the term. Data collected in Novem-
ber of 2021.

Other protocols include the Data-Distribution Service (DDS) and Streaming Text Orien-
tated Messaging Protocol (STOMP). Several studies have been carried to evaluate metrics on
some above-listed protocols, such as power consumption, bandwidth, and latency [Nai17a;
Cen+16; CK16].

A popularity study based on the number of results on the literature (from Google Scholar)
can be found in Figure 2.6, and while there is a considerable amount of results for most pro-
tocols, there is a clear tendency in using MQTT, HTTP, and CoAP. MQTT and CoAP are
lightweight and simple-to-use protocols that were designed for IoT, thus their popularity.
HTTP is one of the long-establish protocols, and its use is common when IoT devices have
the necessary computational resources.

Summary

Research in network protocols keeps growing, mostly focusing on addressing factors such as
fault tolerance, scalability, cost, hardware, mutable topology, environmental conditions, and
power consumption and efficiency [Aky+02]. For example, Gubbi et al. points out that it is
common for the network counterpart of a constrained device to stop working, and thus re-
quiring the network to be self-adapting and allow for multi-path routing, being that these both
aspects are still in their early stages of maturity [Gub+13].

The SDE trend also provides communication solutions such as Software-defined Radios
(SDR) and Software-defined Networks (SDN). This is another evidence that components tra-
ditionally implemented in hardware are now being supplanted by others implemented in soft-
ware, mainly due to their inherent agility (e.g., changing between different communication

Chapter 2. Background 37

frequencies or protocols happens without the need of changing the hardware itself) [BMV17;
Qin+14]. This brings advantages such as (1) addressing heterogeneity better, (2) being (more)
future-proof, and (3) allowing updates for devices that are situated in inaccessible locations.

From a network services perspective (cf. Section 2.2.4, p. 44), there has not been enough in-
vestment towards defining a future standard Service Description Language (SDL) [Dar+15].
Such an effort would improve service development, deployment, and resource integration
among IoT solutions. Besides this much-needed standard, the development, and usage of pow-
erful service discoverymechanisms and object naming services are also crucial to transforming
the resources of physical objects into value-added services [Ray18].

Despite the full range of wireless technologies available, each one fulfills different require-
ments, and each one has a set of advantages and disadvantages (e.g., communication range,
power, and bandwidth needs). However, from a system designer’s point of view, it is hard to
conclude which is the most suitable for a particular scenario or to satisfy a given constraint.
This leads to the age-old question [Al-+17; NAG19] ofwhich technology is the best one for my ap-
plication? Recently, some practitioners have tried to partially answer this question by unifying
some low-power personal area network protocols — including ZigBee and Thread — under
a novel protocol called Matter [All20], thus easing the process of selecting a protocol, in this
specific case, for short-range communications (i.e., smart home).

More open challenges in the communications field include the need for new wireless ad
hoc16 networking techniques (WANET) or mobile ad hoc networks (MANET) [Aky+02; ML15].
Finally, most of the communication protocols currently being used suffer from limitations and
flaws regarding privacy and security, pointing out that there is a need for more research on
such sensible topics (cf. Section 3.4.5, p. 106) [XHL14].

2.1.5 Technology Maturity
A report from Microsoft circa 2019 provides some insights on the challenges faced by practi-
tioners that want to utilize IoT-based products and services, identifying the complexity of the
field and other technical challenges (38%), lack of budget and resources (29%), lack of knowl-
edge (29%), lack of suitable IoT solutions (28%) and security considerations (19%) as driving
issues [Mic19].

Focusing on the complexity of the field and other technical challenges, the wide-range of
application domains and technological advancements that empower IoT makes it depend on
several areas of knowledge, thus inheriting their particularities and challengeswhile also posing
new ones. Inherent particularities such as high-heterogeneity, logical and geographical distri-
bution, human-in-the-loop concerns, real-time needs, and power constraints play a key role
on the design, development, testing, and maintenance of IoT systems, but are also impacted by
other, more common, concerns such as the ones of large-scale systems such as interoperability,
security, and scalability [UK18a].

The lack of maturity of several technologies, architectures, and approaches used in IoT (as
the lack of the maturity of the field by itself), makes it hard to know how these will evolve,

16Ad hoc networks do not rely on pre-existing infrastructures (e.g., routers or access points) [ML15].

Chapter 2. Background 38

survive or suffice in the long run. Both the technological challenges (complexity) and unpre-
dictability of the field makes it hard for practitioners to find workers with the right skills and
experience to embrace IoT17 [Mic19].

Given the high data volume being generated by IoT (e.g., sensor data, operational teleme-
try, and user inputs), plus the variety of objects that make part of it, several issues/requirements
need to be addressed to provide a good QoS. Examples of these are minimizing the latency18,
conserving network bandwidth (since it is not practical to transport vast amounts of data from
thousands of edge devices to the cloud) and increasing local efficiency (e.g., collecting and se-
curing data across a wide geographic area with different environmental conditions may not be
useful) [Han+17; Vas+19].

2.2 Software Architecture Context
Most of the logical architectural concerns of IoT systems are unique to each application domain,
such as application features, classes, and relationships, timing constraints, and states. However,
the physical architecture tends to exhibit more commonalities across different IoT systems as
it is mainly concerned with [Toa18]:

• On which devices do the system’s components live?

• How are the computers and hardware devices connected, and how do they communicate?

• In which software modules, packages, or components (physical containers) is the system di-
vided? And what are the system dependencies?

The physical architecture is, in this way, highly-influenced by the advancements of hard-
ware capabilities, communication features, computational resources, energy management, and
reliability among others.

2.2.1 Architectural Tiers
Traditional IT computing models (e.g., direct connection between end-devices and the cloud19)
do not suffice for the QoS needs of IoT systems. For most of the scenarios, these requirements
are not met due to limitations in bandwidth in last-mile IoT networks, high latency, network
unreliability, and increasing volume of the data being generated, transmitted and, a posteriori,
analyzed [Han+17; Vas+19].

Fog computing has been proposed and used as a way to mitigate some of the challenges
mentioned earlier. The architectural vision coined by Flavio Bonomi and Rodolfo Milito of
Cisco Systems, circa 2015, focuses on distributed datamanagement throughout the IoT system,

17“47% of companies that have adopted IoT report that they do not have enough skilled workers, and 44% do not have
enough available resources to train employees” [Mic19].

18Latency is critical in several scenarios, e.g., milliseconds matter for many types of industrial systems, such as
when you are trying to prevent manufacturing line shutdowns or restore electrical service.

19Approach popularized by the commercialization of Platforms as a Services (PaaS) IoT solutions, also known
as CoT (Cloud of Things) [Vas+19].

Chapter 2. Background 39

Cloud Tier

Fog Tier

Edge Tier
Low

Latency

High
Latency

(Data Centers)

(Embedded Systems
and Sensors)

(Gateways)

Figure 2.7: Typical architectural tiers composition of an Internet-of-Things system. The
upper tiers have more latency and more computational power than the lower
tiers of the stack.

as close to the edge of the network as possible [Han+17]. The National Institute of Standards
and Technology (NIST) states that the fog computing model “facilitates the deployment of dis-
tributed, latency-aware applications and services, and consists of fog nodes residing between
smart end-devices and centralized (cloud) services” [Ior+18].

Fog computing presents several advantages in terms of latency (i.e., real-time interactions
support), local proximity (i.e., contextual location awareness), geographical distribution (i.e., po-
tentially increasing resilience), and battery life improvements. However, some disadvantages
are also identified such as the increase in heterogeneity (i.e., when compared to the homoge-
neousness of cloud computing) and the transience of their permanence in the network (i.e.,
high-dynamic topology due to, e.g., device mobility) [Vas+19; Ior+18; Han+17]. The fog nodes
responsibilities can include data (pre-)processing, hosting middleware and other applications,
and maintain communications between end-devices and the cloud (including external third-
party services) [Vas+19].

Another, complementary, concept, is the one of edge computing (also known as mist com-
puting). While both fog and mist/edge devices are at the edge of the network (on-premises),
their differences reside on the device typology. Fog devices have, typically, more processing
power, have a direct Internet connection, and can act as gateways for other devices. All the
other devices that do not share this features fall under the mist category of devices. These
devices, which are, mostly, the IoT sensors and actuators, have, typically, high computational
constraints and leverage network protocols beyond the typical TCP/IP based ones [Vas+19].

However, as computing capabilities increase, some mist devices have enough computing
capabilities to perform at least low-level analytics and filtering to make fundamental decisions,
allowing for distributing computing tasks among them (making these constrained devicesmore
autonomous and fault tolerant) [Han+17; Vas+19].

Cloud, fog, and edge computing paradigms opened doors to the widespread dissem-
ination of the three-tier architectural hierarchy common in IoT systems, as depicted on

Chapter 2. Background 40

Application Layer
Cloud/Servers/Applications

Network Layer
Routers and Gateways

Perception Layer
Sensors and Actuators (Things)

Figure 2.8: Logical view of the common layers of IoT systems.

Figure 2.7 (p. 39). This architecture is the foundation behind the architectural pattern
Fogxy [STB18] (where these tiers are considered layers) and is observable in diverse IoT sys-
tems [Lin+17].

In the lower level are the IoT devices (i.e., embedded systems and sensors/actuators), the
edge/mist tier devices. After, and close to the edge-devices are the fog nodes which together
make the fog tier. On the top are the data centers, the cloud tier. The applicability of this
architectural hierarchy is visible in enterprise solutions such as the RedHat IoT enterprise ar-
chitecture [Lin+17].

Despite the appearance of the presented concepts of fog and edge computing in several
scientific works and practitioners’ communications, there is still (1) a lack of consensus on
the concrete definitions of what constitutes a fog or edge device and (2) a certain degree of
ambiguity for the concept of both Fog Computing and Edge Computing (as an example, Edge
Computing appears in the Cloud Computing literature as the use of computational resources
geographically-closer to their clients/users). In this work, the presented concepts of fog and
edge will be the ones used.

2.2.2 Architectural Styles
The Internet-of-Things leverages well-known building blocks of several software architectures
in a unified fashion, where smart objects and humans responsible for operating them (if needed)
are capable of universally and ubiquitously communicating with each other. Like almost any
other computational system, IoT ones have an organizational structure, viz. system architec-
ture.

Chapter 2. Background 41

At a high-level view, the architecture of IoT systems has the aforementioned three-tiered
organization, i.e., edge, fog, and cloud (cf. Figure 2.7, p. 39). However, when considering the
specificities of IoT systems, the architecture needs to guarantee flawless operation of its com-
ponents and fuse the physical and virtual realms. For reaching this objective, the architecture
needs to be dependable, adaptable, highly scalable, human-centric, and handle dynamic inter-
actions [BD16].

Some architectures are more suitable for the requirements of several IoT applications, such
as low-power consumption, lightweight data transmission, messaging mechanisms, and relia-
bility.

Regarding the softwaremodules, packages, or components of IoT systems, the architectural
interpretation of its division depends on the abstraction layer being used. Most modern IoT
systems of modest-to-high complexity now tend to follow a Service-Oriented Architecture
(SOA). Notwithstanding, several other architectures are being used for designing these systems,
which can be used both jointly or individually. Amapping survey byMuccini et al. identifies the
following as the most common architectural styles in IoT while mentioning that most systems
use an overlay of one or more styles in their architecture [MM18]. The following presented
some styles resulting from their mapping study with some additional relevant styles.

Layered Systems are built by a combination of several, heterogeneous, parts that interact
between them. The number of layers goes from 3 to 6 across implementations, where the
3-layer architecture has a perception, processing and storage, and application layers and the
6-layer one presents the additional adaptation, network, and business layers [MM18].

Service-Oriented Architecture in which services are provided to other components or
subsystems by using a common communication channel. As such, it is suitable for the
connectivity, interoperability, and integration needs of IoT systems, where sensing and
actuating services are highly distributed by design [ZDC14a; ZDC14b; UK18b; Tei+11].

Microservices Applications that follow a microservices architecture are structured as a
set of services that are, as per Chris Richardson: (1) highly-maintainable and testable,
(2) loosely coupled, (3) independently operable, and (4) organized around business capa-
bilities [Ric17]. In IoT context, this architecture fits the SoS paradigm, adding the ability
to encompass the different components and system parts that can be spread in both log-
ical and geographical terms, while making it possible to assure scalability, extensibility,
fault-tolerance, and scatter of services among tiers [UK18b; KJP15; SLM17; Lu+17].

Event-driven Event-driven Architectures (EDA) focuses on events— significant changes
in the state of the system— and deals with the production, detection, consumption, and
reaction to those events. IoT systems typically are built-on architectures that are already
event-based, such as publish-subscribe (also known as pub/sub)— architecture that states
that producers publish events on an event bus (or message bus) and consumers subscribe to
the events they want to receive from that bus [Eug+03] — and Complex Event Processing
— architecture to combine events from diverse sources, looking for patterns in these event
streams and then typically responding in real-time — which provides aid in dealing with
the ever-growing scale of IoT systems [Che+14; ACN10; ZDC14a; BGT16; STB18].

Chapter 2. Background 42

Broker and Mediator Broker architecture is commonly used for decoupling higher sys-
tem tiers from the underlying tiers, i.e., decoupling applications from the underlying
sensing and actuating devices. A broker is a core component of most of the publish-
subscribe architectures due to the dependency of a middle-man that receives messages
frompublishers and delivers them to different subscribers [Pre+16; Bla+10; CCV12]. Me-
diator architectures, supported by gateways and implemented using bridges and adapters,
assure the communication between the devices and applications and can have responsi-
bilities such as collecting and pre-processing data frommultiple devices, device manage-
ment capabilities, and assuring security and privacy [MZ14; Dav+16].

Client-Server One of the most common architectures on the Internet is that of a client
and a server connected by some protocol such as Representational State Transfer
(REST20) or Simple Object Access Protocol (SOAP) [GIM11; GTW+10; BD16]. Some
IoT systems also use this architecture, and due to the constraints of some devices, new
protocols have been developed as a way to meet this constraint, making them able to use
the client-server architecture such as CoAP [Cas+11; Nai17b].

In their work, Muccini et al. , also lists the Cloud-based style — which refers to the use of
cloud computing as a core part of the system — and Information-Centric Networking (ICN)
style — that focus on making device communication information-centric — however, these
overlap the already presented styles [MM18]. Other but less relevant architectures that also
appear in this context are Peer-to-Peer, Space-based architecture, and Shared Nothing archi-
tecture. However, their repeated usages in the literature are mostly unnoticeable [CSM17;
Bec+19].

2.2.3 Reference Architectures
Reference architectures and models give a bird’s eye view of the whole underlying system;
hence, their advantage over other architectures relies on providing a better and higher level of
abstraction. They provide template solutions for an architecture for a particular domain (in
this case, the IoT domain), hiding specific constraints and implementation details, aiming to
help developers meet the development challenges of the domain [Clo+09].

Several entities are proposing and pushing into the market different reference architec-
tures on how to develop systems that meet IoT characteristics and requirements. Weyrich et al.
[WE16] survey circa 2016 refers that a fast-growing number of initiatives have been working
towards standardized architectures for the IoT domain, aiming to facilitate interoperability be-
tween different solutions, simplify development, and ease implementation. Their work points
out five major IoT reference architectures, namely: Reference Architecture Model Industrie
4.0 (RAMI 4.0), Industrial Internet Reference Architecture (IIRA), Internet of Things— Archi-
tecture (IoT-A), Standard for an Architectural Framework for the Internet of Things (IoT) and
Arrowhead Framework. Also, they note the importance and relevance of initiatives to define
machine-to-machine (M2M) communication standards and other initiatives related to the IoT
domain. Saemaldahr et al. [Sae+21] survey circa 2020 found some other IoT-focused reference

20Also known as RESTful, which is used to describe services that follow a REST architecture.

Chapter 2. Background 43

Table 2.2: Reference Architectures for the IoT [WE16; Sae+21].

Initiative Name Description
Reference Architecture
Model Industrie 4.0
(RAMI 4.0)

A reference architecture for smart factories dedicated to IoT standards,
which started in Germany and today is driven by all major companies
and foundations in the relevant industry sectors.

Industrial Internet
Reference Architecture
(IIRA)

The Industrial Internet Consortium (founded by AT&T, Cisco, General
Electric, IBM, and Intel) has delivered a reference architecture with a
special focus on the industrial application of IoT.

Internet of Things —
Architecture (IoT-A)

The IoT-A delivered a detailed architecture and model from the func-
tional and information perspectives of the IoT system.

Standard for an
Architectural Framework
for IoT

The IEEE P2413 project has a working group on the IoT’s architectural
framework, highlighting protection, security, privacy, and safety issues.

Arrowhead Framework Focus on enabling collaborative automation by open-networked em-
bedded devices. It is a major EU project to deliver best practices for
cooperative automation.

WSO2’s Reference
Architecture

A five-layer architecture with a special focus on modularity, making it
suitable to wide array of use cases. It also suggest a core set of commu-
nication protocols to be used.

IoT Architecture
Reference Model (ARM)

Based on IoT-A, it focuses on presenting a reference organization of the
basic functional components without detailing their interactions. From
an information viewpoint, the core view are virtual entities (i.e., digital
twins).

architectures, including the WSO2’s Reference Architecture and IoT Architecture Reference
Model (ARM). A summary of the hereby enumerated reference architectures for IoT is given
on Table 2.2, detailing their focus and presenting some additional information [WE16; Sae+21].

Some practitioners also present their vendor-specific reference architectures which
are tailored to their services and solutions, including: IBM Internet of Things architec-
ture [IBM21], Azure IoT reference architecture [Azu21], and AWS Architecture Best Practices
for IoT [AWS21].

Aware of the limitations and issues of the current architectures used in IoT, which are re-
flected in these reference architectures, Yaqoob et al. [Yaq+17] enumerates three challenges
that need to be addressed by the next generation of architectures, including (1) resource con-
trol, i.e., devices should be accessible and configurable remotely, (2) energy awareness, e.g., au-
tomatically lowering processing power when system load is low, and (3) interference manage-
ment, i.e., with the number of devices communicating by different manners, mostly of them
radio-based, interference can become a real problem. European Union projects, such as SEN-
SEI [Pre+09], Internet of Things-Architecture (IoT-A) and FIWARE [Pre+16], have been ad-
dressing these challenges from a WSN viewpoint and have been successful in defining some
common grounds [Gub+13].

But Weyrich et al. also conclude — a recurrent topic in this domain — that the scientific
communities and industry leaders need to agree on standards to avoid systems that are crippled
due to their base architecture (including the lack of interoperability, cf. Section 2.2.4, p. 44);

Chapter 2. Background 44

since not even a de facto reference architecture encompassing most kinds of IoT systems across
different application domains was reached so far.

2.2.4 Interoperabilty
Different entities have been working on different standards to ensure a semantic interoperable
Internet-of-Things, establishing a common language that devices can speak between them and
different applications, envisioning a reduction on IoT fragmentation. A summary of the most
known initiatives is given on Table 2.3 [GR19], and the most active ones are analyzed in the
following paragraphs.

Table 2.3: Overview of the IoT interoperability enabling models and APIs.

Name Description
Web of Things
(WoT) [Fra17]

Common data model and API for the Internet-of-Things, with a focus onweb-
based interaction (i.e., Web of Things).

IOTDB [Jan17b] A semantic layer for the IoT, which includes definitions for all the data, to pro-
vide both,formal definitions for all important items and unlimited expandabil-
ity.

Web Thing
Model [TGC17]

A commonmodel to describe the virtual counterpart of physical objects in the
Web of Things.

OGC Sensor-
Things API (Sen-
sorML) [LHK16]

An open, geospatial-enabled and unifiedway to interconnect IoT devices, data,
and applications over the Web.

SENML [Jen+13] The Media Types for Sensor Markup Language is a standard for representing
simple sensor measurements and device parameters.

LsDL [Ray17] The Lemonbeat smart Device Language is a XML-based smart devices encoding
language that is read as Lemonbeat smart Device Language (LsDL).

Web of Things (WoT) A standard data model and API for the Web of Things21. The Web
Thing item provides a vocabulary for describing physical devices connected to theWorld
Wide Web in a machine-readable format with a default JSON encoding. The Web Thing
REST API and Web Thing WebSocket API allow a web client to access the properties of
devices, request the execution of actions, and subscribe to events representing a change
in state. Some fundamental Web Thing Types are provided, and additional types can be
defined using semantic extensions with JSON-LD. Also, the proposal includes details on
Web of Things Gateway Protocol Bindings which proposes non-normative bindings of
the Web Thing API to various existing IoT protocols and a set of Web of Things Inte-
gration Patterns which contains advices on which design patterns can be used for in-
tegrating connected devices with the Web of Things, and where each pattern is most
appropriate [Fra17].

OGC SensorThings API by OGC An open, unified and geospatial-enabled way to intercon-
nect the Internet-of-Things (IoT) devices, data, and applications over the Web purposed

21Web of Things (WoT) was part of the Mozilla WebThings initiative which is now an independent project.

Chapter 2. Background 45

by the Open Geospatial Consortium (OGC). At a high level, the OGC SensorThings API
provides two main functionalities, and a part handles each function. The two parts are
the Sensing part and the Tasking part. The Sensing part provides a standard way to
manage and retrieve observations and metadata from heterogeneous IoT sensor systems
while the Tasking part provides a standard way for parameterizing (i.e., tasking) task-able
IoT devices [LHK16].

IOTDB Things are described by semantically annotating the data associated with the Thing,
being this item built from composition of atomic elements (that cannot be meaningfully
subdivided further) and are extensible (allowing to add in elements from other Seman-
tic ontologies). The things can have many bands of data associated with them (e.g., the
metadata, the actual state) [Jan17b].

There is, however, no consensus on what is the most suitable standard for a particular
scenario, neither exists a commonly accepted standard that ensures semantic interoperability
among IoT systems and applications [TTJ18].

The lack of consensus on interoperability standards is one of the most pressing issues that
IoT faces, influencing all system stakeholders. From an end-user viewpoint, they do not know
for how long the devices that they brought will be supported by the different system parts
(e.g., a light bulb that is no longer supported by the integration gateway). The same happens
from the vendor point-of-view, since designing a system using the latest available standard pro-
posal does not ensure that it will be adopted, or deprecated even before it reaches the market
(which pressures vendors to define their in-house solutions contributing to today’s fragmenta-
tion) [Buj+18].

Noura et al. [NAG19] defines a taxonomy for interoperability in IoT systems, analyzed from
different perspectives: (1) device, (2) network, (3) syntactic, (4) semantic, and (5) platform level.
They conclude that most IoT interoperability proposals focus on a single, specific perspective
rather than embracing different ones. They also propose the use of semantic web technologies
along with inter-working APIs as a good foundation for providing cross-platform interoper-
ability. From the analyzed standards we believe that the one that goes more accordant with
such view is the Mozilla Web Thing proposal.

The future seems gloomy, though, and most authors share the belief that it is not likely that
a common set of standards will emerge in the near future and be universally accepted among
academia, industry, and standardization bodies.

2.3 Fault-tolerant Systems
Because of our present inability to design and create error-free software systems, the software
is hardly perfect. Due to the complexity of the developed systems altogether with the difficulty
of asserting its correctness, software fault-tolerance is and will continue to be an essential con-
cern on software lifecycle [Tor00]. Software faults are the root cause of a high percentage of
operative system failures [Cho97]. The repercussions of such failures highly depend on the
application and the particular characteristics of the fault or faults.

Chapter 2. Background 46

The reflection of Peter Neumann on more than 24 years of the ACM Risks Forum on its
work Computer-Related Risk Futures, points out that even after 4 decades of sharing wis-
dom on how to reduce many risks of computer-related, this wisdom has been largely ignored
in practice [Neu09].

2.3.1 Definition of Dependability
Avižienis et al. work Fundamental Concepts of Dependability defines dependability as a
global concept that encompasses three different parts: (1) the threats to, (2) the attributes of,
and (3) the means by which dependability is attained, which are dissected in the diagram of
Figure 2.9 (p. 46) [ALR01]. Further, Avižienis et al. address security, as it is given by the CIA
triad: confidentiality, integrity, and availability. It is verifiable that security shares some key
attributes of dependability plus confidentiality [ALR01].

Dependability
and Security

Attributes

Availability
Readiness for correct service

Reliability
Continuity of correct service

Safety
Absence of catastrophic consequences on the user(s) and the
environment

Confidentiality
The absence of unauthorized disclosure of information

Integrity
Absence of improper system alterations

Maintainability
Ability to undergo modifications and repairs

Threats

Faults
Absence of improper system alterations

Errors
Absence of improper system alterations

Failures
Absence of improper system alterations

Means

Construction

Fault Prevention
Avoid or prevent the occurrence or introduction
of faults

Fault Tolerance
Avoid service failures in the presence of faults

Validation

Fault Removal
Detect the existence of faults and eliminate them

Fault Forecasting
Estimate the presence of faults and consequences
of failures

Figure 2.9: The dependability and security tree [Avi+04].

Dependability of a computing system is the ability to deliver service that can justifiably be
trusted. A service is dependable if it has the ability to avoid service failures that are more frequent
and more severe than is acceptable [ALR01].

Chapter 2. Background 47

A system is an entity that interacts with other entities and an environment is given by the
array of entities or other systems, that surround a given system. A system and its environment
are separated by a shared frontier, known as the system boundary.

The service delivered by a system is its behavior as it is perceived by its user that interacts
with it at the service interface. The system function is what the system is intended to do. The
user (physical, human) is always part of that system’s environment, being the system the service
provider for the user [Avi+04].

A system is said to be performing correct service when the service implements the system
function, and, when a delivered service deviates from correct service, a system failure event
occurs. The delivery of incorrect service is a system outage [Avi+04].

2.3.2 On Faults, Errors, and Failures
The threats to the dependability of a system are faults, errors, and failures. An overview of the
chain of threats, also known as chain Fault→Error→Failure, is given in Figure 1.3 (p. 9).

A fault can then be described as the the adjudged or hypothesized cause of an error [Kni12].
Faults can be classified according to the behavior of the failed components. Avižienis et al. pro-
posal on fault classification identifies 16 elementary fault classes, dissected on Figure 2.10 (p. 47),
discriminating them in regard to their phase of creation/occurrence, place of origin, phe-
nomenological cause, intent, persistence, and capabilities of the originators. The faults or
their combinations belong to three major partially overlapping groupings, namely: develop-
ment faults, physical faults, and interaction faults.

Faults

Dimension
Hardware

Software

Objective
Malicious

Non-malicious

Intent
Deliberate

Non-deliberate

Capability
Accidental

Incompetence

Persistence
Permanent

Transient

Phenomenological cause
Natural

Human-made

System boundaries
Internal

External

Phase of creation or occurrence
Development

Operational

Figure 2.10: Dissection of the elementary fault classes. Avižienis et al. identified that there
are 31 likely combinations of the 8 elementary classes [Avi+04].

In software scope, the only type of fault possible is a design fault introduced during the
software development phase itself. Software faults are typically known as bugs [Tor00], but a

Chapter 2. Background 48

fault can be a variety of other things, such as, for example, a garbled message received on a
communications channel.

A fault is active when it produces an error, otherwise, it is dormant. An active fault can
be an internal, and previously dormant, that has been activated by the computation process or
environmental conditions, or it can be an external fault. The application of input (the activa-
tion pattern) to a component that causes a dormant fault to become active is defined as fault
activation. Often, internal faults cycle between their dormant and active states [ALR01].

Failures

Domain

Content Failures
The content of the information delivered at the service interface devi-
ates from implementing the system function.

Timing Failures
The time of arrival or the duration of the information delivered at the
service interface deviates from implementing the system function. It
can be classified as either early or late.

Halt Failures
The service is halted, and, as such, the system activity, if there is any, is
no longer perceptible to the users.

Erratic Failures
The service is delivered (not halted), but is erratic.

Detectability

Signalled Failures
The service losses are detected and signaled by a warning signal.

Unsignalled Failures
The service losses are not detected and/or not signaled by a warning
signal.

Consistency

Consistent Failures
The incorrect service is perceived identically by all system users.

Inconsistent Failure (Byzantine failures)
Some or all system users perceive differently incorrect service (some
users may perceive correct service). Byzantine failures include all other
forms of failures.

Consequences

Minor Failures
The harmful consequences are of similar cost to the benefits provided
by correct service delivery.

Catastrophic Failures
The harmful consequences are several orders of magnitude higher than
the benefit provided by correct service delivery.

Figure 2.11: Overview of the service failure modes as defined by Avižienis et al. [Avi+04].

An error is the part of the system state that is liable to lead to a failure. Error propagation
within a given system’s component (internal propagation) is caused by the computation process,
thus, an error is successively transformed into other errors. An error can be in one of two states:
(1) detected if it is indicated by an error message/signal or (2) latent if it is present yet not
detected [ALR01]. Further, when a single fault causes multiple errors they are called multiple
related errors, and, in contrast, if it affects one component only are called single errors [Avi+04].

Failure happens when the system’s behavior deviates from the intended behavior. It is the
result of error propagation to the service interface in a way that unacceptably alters the service

Chapter 2. Background 49

delivered by the system. The different ways in which the deviation is manifested are a system’s
service failure modes. Failures can be classified in terms of domain, detectability, consistency,
and consequences, as it is further analyzed in the diagram of Figure 2.11 (p. 48) [ALR01].

From a system perspective and in what concerns dependability, two software quality mea-
sures are reliability and safety. Reliability, as it is defined by Pressman et al. , is the probability
of failure-free operation of a computer program in a specified environment for a specified period of
time, where the failure-free operation in the context of software is interpreted as compliance
to its requirements [Pre01; Tor00]. A measure of software reliability is theMean Time Between
Failures:

MTBF = MTTF +MTTR (2.1)

Where:

MTTF : is the Mean Time To Failure.
MTTR : is the Mean Time To Repair.

MTTF is the measurement of how long a software item is expected to operate properly
before the occurrence of a failure, and MTTR is the measurement of the maintainability of the
software (i.e., the degree of difficulty in repairing the software after failure).

2.3.3 Design of Fault-Tolerant Systems
For a system to be dependable, mechanisms should be put in place that detect, prevent, react,
and forecast faults. Avižienis et al. in their work Basic concepts and taxonomy of depend-
able and secure computing present fault prevention, fault-tolerance, fault removal, and fault
forecasting as the key concepts to attain dependability and security [Avi+04].

Fault prevention is concerned with the use of design methodologies, techniques, and tech-
nologies aimed at preventing the introduction of faults into the system, specially during design
stages. Further, it is complemented by a process of fault removal that considers the use of tech-
niques like reviews, analyzes, and testing to check an implementation and remove any faults
thereby exposed. Proper use of software engineering during the software development process
must contemplate fault prevention and fault removal.

As there is it hard to guarantee that complex software designs are free of design faults, fault-
tolerance is used as a way improve the confidence that the system continues operational even
when errors and failures ocurr. Fault-tolerance is the use of techniques to enable the continued
delivery of services at an acceptable level of performance and safety after a design fault becomes
active [Tor00]. It is achived by the use of mechanisms for error detection and system recovery
as the diagram of Figure 2.12 (p. 50) exposes, giving an overview of the techniques for achiving
fault-tolerant systems.

Chapter 2. Background 50

Fault-
tolerance

Error Detection
Identifies the presence of
an error.

Concurrent
Happens during normal service delivery.

Preemptive
Happens while normal service delivery is suspended
and checks for latent and dormant faults.

System Recovery
Transforms a system in
an error state into nor-
mal, without detected
errors and with the
faults remove/disabled.

Error Handling
Eliminates errors
from the system state
(alternatives).

Rollback
Brings the system back to a saved
state, prior to error occurrence.

Rollforward
State without detected errors is a
new state.

Compensation
Erroneous state contains enough re-
dundancy to mask the error (nullify-
ing the impact of an error).

Fault Handling
Prevent the reac-
tivation of faults
(sequence of actions).

(1) Diagnosis
Identifies and records the cause(s) of
error(s) location and type.

(2) Isolation
Physical or logical exclusion of faulty
components.

(3) Reconfiguration
Switch tasks among non-failed com-
ponents.

(4) Reinitialization
Checks, updates, and records the
new configuration and updates sys-
tem tables and records.

Figure 2.12: Summary of the fault-tolerance techniques as defined by Avizienis et al.
[Avi+04].

Error detection refers to the set of techniques that are used to identify the presence of
errors in a system. This can be of two kinds: concurrent detection which takes place dur-
ing normal service delivery (e.g., cyclic redundancy checks (CRCs)22 in messages transmitted
through a network) and preemptive detection which takes place while normal service delivery
is suspended (e.g., checks of the consistency of a file system during the booting of an operating
system) [Avi+04].

System recovery is the process of transforming a system state that contains one or more er-
rors and (possibly) faults into a state without detected errors and without faults that can be activated
again, and consists of two different tactics which target different phases of the chain of threats
(cf. Figure 1.3, p. 9), fault handling deals with the activation of faults thus preventing errors (in-
tervenes between fault and error stages of the chain of threats) and error handling (also known
as error processing) deals with the propagation of errors thus preventing failures (intervenes
between error and failure stages of the chain of threats) [Avi+04].

22Technique invented by W. Wesley Peterson in 1961, CRC is a hash function that detects accidental changes
to raw computer data commonly used in digital telecommunications networks and storage devices such as hard
disk drives.

Chapter 2. Background 51

In order to deal with errors, i.e., error handling, there is a set of typically used techniques.
Rollback (i.e., backward recovery), consists in restoring the system back to a previous saved
correct state (e.g., restoring corrupted files from a backup system). Roll-forward (i.e., forward
recovery), consists of replacing an erroneous state by a new state without errors (e.g., overwrit-
ing an erroneous sensor value stored in memory with a new reading). Finally, compensation
consists onmasking faults (fault-masking), being the error concealed from the service delivered
to a user by taking advantage of component redundancy (e.g., having several identical compo-
nents produce a result each and then applying a majority vote on these results) [Avi+04].

Fault handling (i.e., fault treatment) consists of preventing failures by disabling the reac-
tivation of faults. The fault handling process consists of four stages, namely: fault diagno-
sis, fault isolation, reconfiguration, and re-initialization, as described in the diagram of Fig-
ure 2.12 (p. 50). As such, fault handling is similar to the process that a repair person would
do to fix a system (e.g., a car): diagnose what is causing errors, isolate the responsible compo-
nent, reconfigure the system so that it can continue delivering a correct service, and reinitialize
any necessary components. The key difference is that fault handling does not involve a repair
person, nor any other external agent, but is performed by the system.

The measure of the effectiveness of any given fault-tolerance technique is called its cover-
age. In order to reach a higher level of dependability, the fault-tolerance coverage should be
the closest to perfect possible [Avi+04].

2.4 Autonomic Computing
IBM Research, in their efforts to address the problem of complexity, introduced the concept
of autonomic computing as a way of coping with the continuous growth in the complexity of
operating, managing, and integrating computing systems [PD11; GC03]. And, while the origi-
nal manifesto for autonomic computing focused mostly on traditional computing systems, the
same rationale applies for IoT with the factor that in these systems the scale is unprecedented
when compared to any other type of system.

A truly autonomic computing system needs to “know and understand itself”, thus must be
(1) automatic, meaning that they must be capable of controlling their own operations with-
out any manual external intervention, (2) adaptive, meaning that the system should be able to
adapt its operation to cope with temporal and spatial changes in its operational environment
and (3) aware, thus the system must be able to monitor both internal and external operating
conditions to assert if its current operation meets the service goals [Ric04]. Detailing these
three vertices, designing and building systems that are capable of running themselves — self-
governance — requires them to be able to have certain capabilities, namely [GC03; Hor01;
Ric04]:

1. the system needs to know itself — awareness — in terms of components, operational
status, capacity in terms of resources (what are its capabilities and limitations), and in-
terconnections/interdependencies (why and how it is connected to other systems);

Chapter 2. Background 52

2. it must be capable of configure (setup) automatically, and re-configuring—adapt— itself
to under varying, and, sometimes, unpredictable conditions to handle the new system
environmental conditions;

3. it must monitor its constituent parts and act upon such metrics to find and implement
optimizations (feedback control mechanisms that monitor the system parts and take ap-
propriate action), ensuring the achievement of predetermined system goals (fine-tuning);

4. the system must be capable of discovering issues, or potential issues, within the system
while it is running and proactively find ways to address the issue, i.e., , find alternative
ways to attain the system goals or (re-)configuring the system to keep it running while
minimizing system degradation;

5. it must be capable of “detect, identify and protect itself against various types of attacks to
maintain overall system security and integrity” without impacting the delivery of service;

6. the system should have contextual awareness of its surroundings, allowing it to adapt
to changes with or within neighboring systems, converging for the best way of inter-
acting with them. The systems should also be able to describe themselves (e.g., in terms
of features, resources, . . .) and automatically discover other devices or systems in the
environment;

7. the system can not exist in a hermetic environment andmust function in a heterogeneous
world and implement open standards, thus can not be a proprietary solution nor rely
upon proprietary parts/protocols;

8. it should be capable of anticipating the demand on its resources while keeping its com-
plexity hidden, interacting seamlessly with other systems to respond to such demands.

A system that achieve these capabilities acts in accordance to four self-* (self-star) proper-
ties [GC03; Ric04]:

Self-configuring Systems are able to readjust themselves on-the-fly to cope with dynam-
ically changing environments. This includes the ability to dynamically add new features,
software, and hardware parts to a system without disruption of the provided services
(plug-and-play).

Self-healing Ability to automatically discover, diagnose, and react to, or recover from,
failures. Failing components should be identified, and their malfunctions should be
solved without any apparent service disruptions (continuous availability).

Self-optimization Optimize resource utilization to improve the quality of the service.
Such optimization should be carried out seamlessly across heterogeneous systems, pro-
viding a single collection of computing resources that can be managed by a logical work-
load manager, allowing dynamic redistribution of workloads even in unpredictable en-
vironments (increasing flexibility).

Chapter 2. Background 53

Self-protection Anticipating, detecting, identifying, and protecting themselves from at-
tacks. Systems should be able to defend themselves against unauthorized resource access,
be able to manage all user access, and detect, report, and prevent malicious activities as
they occur.

Some authors expand these self-* properties with additional ones such as self-security, self-
adaptation, and self-organization, but these are already encompassed by the original four prop-
erties, being only more specific views of certain sub-properties of them [TMD19].

Most of the self-* properties can leverage a model similar to feedback control loops such
as OODA (observe, orient, decide, act), MAPE or MAPE-K (Monitor, Analyze, Plan and Exe-
cute with a Knowledge base), or cognitive cycle (sensing, analysis, decision, action) [Muc+18;
Sei+19]. Even if having system parts that follow the principles of autonomic computing is a
start, is “the self-governing operation of the entire system, and not just parts of it, that delivers the
ultimate benefit” [Hor01]. The following paragraphs analyze in detail the four above-mentioned
self-* properties.

2.4.1 Self-configuring
Autonomous systems must automatically adapt their configurations to dynamically changing
environments on-the-fly to be considered self-configurable. The self-configuring nature of the
system should encompass all the lifecycle of the system, meaning that the system should be able
to both setup itself and adapt its configurations during its operation (e.g., add or remove features,
software, and hardware) without disrupting the delivery of normal service [GC03; Ric04].

As an example, in a IoT scenario, self-configuring primarily consists of (1) neighbor systems
and service discovery, thus finding available resources and system capabilities, (2) network or-
ganization both in terms of establishing connections (e.g., adjusting protocols and frequencies)
and topology adjustments and (3) resource provisioning (e.g., by request more or fewer re-
sources in the system cloud counterpart to meet operational demands) [ADT13]. Further, the
term orchestration, popularized by cloud computing, focuses on configuring large-scale sys-
tems and, sometimes, complex architectures; doing this orchestration dynamically also falls
under the umbrella of self-configuration [Feh+14].

Self-configuring systems features include the ability to plug-and-play, mostly automatic
configuration wizards, and remote management. Plug-and-play is especially important when
we consider the mobility of certain parts of the network (i.e., high-dynamic network topology),
where the system must (re-)configure itself in the presence or absence of certain devices or
other resources [GC03].

Systems that have this property allow all of these (re-)configurations to happen with min-
imal to no human intervention. This also requires the system to implement dynamic software
configuration techniques alongwith awareness capabilities that allow it to dynamically identify
and document the characteristics of the configurable parts, while guaranteeing that the con-
figuration changes allow the system to comply with the required service levels (i.e., feedback-
loop) [Ric04].

Chapter 2. Background 54

2.4.2 Self-healing
Self-healing is the capability of a system to discover, diagnose, and react to disruptions such as
failures of systems’ parts. This process can be both predictive, using, for example, heuristics to
predict failures and act accordingly (preventive measures), and reactive, act upon the discovery
of a failure [GC03].

Self-healing is already present to some degree for some time in computing systems. As an
example, error checking and correction have been long used to keep data transmission reliable
(e.g., TCP/IP) and redundant storage data recovery capabilities (e.g., RAID). However, the grow-
ing complexity of computing systems makes it hard to diagnose the root cause of a problem
(i.e., root-cause analysis23), even in simple scenarios [Hor01]. But, since the goal of self-healing
is to minimize interruptions and service restoration, there is the need for an action-oriented
approach that determines what immediate actions are required to stabilizing the system and
proceed with the recovery.

Normal
State

Degradation
State

Defective
State

Maintenance of Health

Detection of Error

System Recovery &

Maintenance of Health

Dete
ctio

n of
Failu

re

Failure

Sy
st
em

Re
co
ve
ry

&
M
ai
nt
en
an
ce

of
H
ea
lth

Figure 2.13: State transactions of a self-healing system as defined by Khalil et al. [Kha+19].

Ghosh et al. [Gho+07] describe systems with self-healing capabilities to be those that can
deal with disruptions in their operation by (1) detecting system failures and possibly diagnosing

23Root-cause analysis is the “attempt to systematically examine what did what to whom and to home in on the origin
of the problem” [Hor01].

Chapter 2. Background 55

the root cause of the problem, (2) determining a fix (i.e., maintenance of health), and (3) recover-
ing (even if only to a less capable but safe and healthy state), viz. Figure 2.13 (p. 54). Self-healing
may use models (external or internal) that monitor the system’s behavior (probes), allowing it
to adapt to environmental or operational circumstances. These approaches can be intrusive, if
implemented internally within the system itself, or non-intrusive, if they consider the guarded
system as a complete unit; they are closed-loopwhen they try to avoid all a priori known failure
sources (i.e., all possible states are known before recovery), or open-loop otherwise [PD11]. The
typical recoverymechanisms employed include reconfiguration and replication of components
(hardware and software) and degradation of the QoS [AA19].

2.4.3 Self-optimization
Optimization of available resources to meet service demands is also a key part of comput-
ing systems. The core idea of self-optimization is that these systems are able to continuously
monitor the running system — and its resource usage — to check if the predefined system
goals or performance levels are met while continuously search for opportunities to optimize
resource utilization and tune the system accordingly, automatically, even in unpredictable en-
vironments [Hor01].

Allowing a system to self-optimize requires the use of feedback control mechanisms to
monitor the systemmetrics and take appropriate action, similar to the control theory feedback
loops used in industrial systems24. Another common use of self-optimization is the dynamic
and automatic provision of computing resources common in cloud computing to meet opera-
tional demands [Feh+14].

And, while self-optimization can play a key role in the optimization of resources such as
network load, processor load and storage, and memory, in IoT other metrics come at play than
can also be optimized such as battery/energy consumption (e.g., devices’ sleep and wake-up
cycles) and deciding what is the best frequency/protocol taking into account the surrounding
conditions.

2.4.4 Self-protection
Autonomic systems should self-protect themselves against various types of attacks (both inter-
nal and external) to maintain overall system security and integrity. To do so, the system should
anticipate, detect, identify attacks—which often occur on a daily basis—with diverse origins.
Systems should be able to defend themselves against unauthorized resource access, be able to
manage all user access, detect, report, and prevent malicious activities as they occur, and also
detect security issues on devices and systems and automatically respond to them by following
(pre-)defined mitigation plans [Hor01; GC03].

Self-protection should address all the system aspects of security, including platforms, op-
erating systems, networks, applications, and infrastructure. All the system events should be

24In control systems, a feedback loop (closed-loop control) is used to control the output of a system or device
by feeding back all or some portion of the output back into the system input [Sam16].

Chapter 2. Background 56

Requirment
Analyses Design Construct Test Deploy Maintain

Software Development Life Cycle (SDLC)

Continuous Integration Continuous Delivery

Project Management / Collaboration System Software SCM

Code ReviewDefect Tracking

Coverage Analysis

Static Code Analysis

Unit Testing

Acceptance Testing

Sm
oke Testing

System-level Logging and
Monitoring

App-level Logging and
Monitoring

Regression Testing

Integration Testing

Security Testing

Performance Testing

Build/Package

Binary
Repository

Infrastructure-
as-code SCM

Provisioning

Blue/Green Rollout

Feedback

Figure 2.14: Software Development Life Cycle holistic overview, detailing most common
processes and development stages [Fee16].

continuously recorded to allow both automatic and manual audits to be performed if an in-
dicator of system compromise is detected. Threat levels should also be defined, allowing the
system automatic response to be different in accordancewith the severity of the threat [Mur04].

2.5 Software Development Life-Cycle
Software Development Life-Cycle is a process of building or maintaining software systems.
Typically, it includes various phases, frompreliminary development analysis (e.g., requirements,
architectural design) to post-development software testing and evaluation (e.g., verification and
validation) [Lea+12].

SDLC also encompasses the models and methodologies that the development teams use to
develop software systems, in which the methodologies form the framework for planning and
controlling the entire development process. Currently, there are two principal methodologies
categories, the Traditional Software Development ones (e.g., waterfall) and the AGILE Software
Development ones (e.g., SCRUM) [Lea+12]. Amostly complete view of the phases and tasks that
are part of a SDLC is depicted on Figure 2.14 (p. 56).

The application of the widespread SDLC processes to design, construct, test, deploy and
maintain IoT systems face different challenges than the ones that are faced when developing
traditional software systems, due to the inherent peculiarities of the IoT ecosystem.

Taivalsaari et al. delves into this question and identifies the following as the key challenges
for developing software in the context of IoT [TM17]: (1) multi-device programming (from
tiny devices to cloud servers), (2) the reactive and always-on nature of the system (real-time
and human-in-the-loop), (3) heterogeneity and diversity, (4) the distributed, highly dynamic,

Chapter 2. Background 57

and potentially migratory nature of software and hardware components, and (5) the general
need to write software in a fault-tolerant and defensive manner (from a safety and security
perspective). These challenges, along with the unsuitability of the existing languages and tools,
have a most direct impact on software development and its lifecycle.

Summarly, on the one hand, from a technological viewpoint, there is a considerable amount
of gaps in the software engineering body of knowledge regarding IoT. On the other hand, from
a developers’ viewpoint, there is the need for the developers to have a broader base of knowl-
edge that ranges from large-scale systems to embedded system’s programming.

2.5.1 Patterns
The current body of knowledge on IoT systems’ design is widespread, diffuse, hard to handle,
redundant, ever-changing and sometimes even unorganized as different authors chose different
vocabulary to target the same things (ambiguity). When a single domain reaches this level of
complexity, the possible decisions start increasingly growing beyond the reach of single design-
ers [AIS77]. The purpose of design, as an intentional act of choice, is continuously overwhelmed by
the sheer quantity of available information [Fer11].

Christopher Alexander, circa 1977, was faced with a similar challenge regarding civil archi-
tecture and came up with the idea of patterns— recurrent problems with recurrent solutions
— to capture this widespread knowledge coherently. In his bookAPattern Language, he uses
this concept of a pattern as a way to document the architecture and urban design solutions at
such time25. He further stands that [AIS77]:

Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it the same way twice.

In his research, he further extended the notion of patterns beyond the <problem, forces, solu-
tion> triplet, towards a pattern language, which also considers the relationship between different
patterns in a specific domain.

These concepts were later borrowed by the software engineering community as a way
to capture and share practical knowledge and experience [MD97; Gam+95; Gab96; HW04;
Fow02]. It is widely accepted that a pattern corresponds to a recurrent solution for a specific
problem, that is able to achieve an optimal balance among a set of forces in a specific context,
yet taking into account the consequences of it.

In software engineering the use of patterns ranges from the high-level architectural patterns,
through design patterns until low-level idioms [BMR96]:

• Architectural Patterns express fundamental structural organization schemes for soft-
ware systems, decomposing them into subsystems, along with their responsibilities and
interrelations.

25Alexander had an M.Sc. in Mathematics and was a civil architect, and his theories on patterns emerged from
the observation of cities and buildings.

Chapter 2. Background 58

• Patterns are medium-scale tactical patterns, specified in terms of interactions between
elements of object-oriented design, such as classes, relations, and objects, providing
generic, prescriptive templates to be instantiated in concrete situations. They do not
influence overall system structure but instead define micro-architectures of subsystems
and components.

• Idioms (i.e., coding patterns) are low-level patterns that describe how to implement par-
ticular aspects of components or relationships using the features of a specific program-
ming language.

The knowledge contained in these patterns and pattern languages is a result of a synthesiz-
ing process of systematic analysis and documentation of scattered empirical knowledge, and
has, as of today, a profound impact on the way that developers design, build and manage soft-
ware artifacts.

2.5.2 Development Approaches
While the design activity of the software development lifecycle focuses on reaching suitable
and high-level solutions for a given problem, the construction (also known as implementation)
activity of the lifecycle focuses on actually building— developing— the systems (i.e., create an
executable version of the software [Som10]).

The construction of software systems may involve writing code in one or more high– or
low-level programming languages (at different abstraction levels), or tailoring and adapting
generic, off-the-shelf systems to meet the specific requirements of a given project, organization,
or scenario [Som10].

Visual Programming

Diagrams, and other graphical logic and model representations, have been playing a role in
software development since the appearance of modern digital computers in the 1940s. In the
beginning, diagrams were paper-based aids, used to design and understand the software struc-
ture, but then, the direct use of diagrams as a solution to improve software development tools
as started gaining momentum. This led to the appearance of visual software project manage-
ment tools, visual editors for graphical interface creation, visual tools for software modeling
and engineering, and visual programming languages [Cox07].

A VPL can be defined, as described in theWiley Encyclopedia of Computer Science and Engi-
neering [Cha02], as:

A language in which significant parts of the structure of a program are represented in a
pictorial notation, which may include icons, connecting lines indicating relationships,
motion, color, texture, shading, or any other non-textual device.

Visual programming makes use of an extensive set of icons and diagrams to convey in-
formation and to allow for multi-modal communication and interaction between humans and
computers [Cha02].

Chapter 2. Background 59

VPLs have been explored and used in several domains, including, but not limited to, educa-
tional activities (e.g., learning to program), multimedia, video game development, system design
and development, simulations, automation, data warehousing, and business analytics [Ray17].

In favor of using visual programming, several researchers point out the dramatic reduc-
tions in time and cost when developing with this approach within industry scenarios [Ost02].
Further, the achieved improvements in productivity and reliability were considerably notice-
able [Ost02].

However, visual programming, having several benefits and drawbacks, is not the silver bul-
let for software development; some authors even suggest that the solution for the adoption
of visual notations lies in a hybrid visual-textual approach. Visual notations are more effec-
tive when dealing directly with an application domain (e.g., IoT), and have several drawbacks
when applied to general purposes, especially when dealing with complex control structures
and recursion [EM95]. Further, the developer experience, when using such languages, depends
significantly on its previous programming experience, how quickly they can create and debug
programs, and how easy they can maintain applications over time [MM01].

There is a long-established relationship between models and visual programming, as is
pointed out by the work of Lau-Kee et al. [Lau+91] circa 1991 that mentions the use of data
flow as the computational model underlying the visual programming features of systems such
as the LabVIEW. Such relationship between models and visual programming languages is vis-
ible as of today in systems such as the Executable UML (xtUML or xUML), which are at the
same time a visual notation and a visual programming language [MBF02].

Model-driven Development

A software engineering paradigm that debuted back in 2001 [Bel+03] as an answer to the
growing complexity of system architectures is known as Model-Driven Software Engineer-
ing (MDSE), a subset of Model-Driven Engineering (MDE). Douglas Schmidt [Sch06] points
out that, the growth of complexity in software systems, together with the lack of an integrated
view of the system under development often forces developers to implement sub-optimal solu-
tions that unnecessarily duplicate code, violate key architectural principles, and complicate system
evolution and quality assurance.

The use of (mostly graphical) domain-specific models, allows the different stakeholders to
improve their understanding of the system. Further, the transformation engines provide auto-
matic mechanisms to generate new models from existing models (or to update those models),
thus facilitating the transfer of models between phases of the software development lifecycle,
while ensuring consistency between them [Ams+12].

A key concept associated with MDSE is one of the meta-models. Meta-models are defi-
nitions of the source and target of a model transformation. The elements of the meta-models
are used in the model transformation definition for defining the model transformation, by the
transformation engines [Küs11]. The model transformations can be unidirectional (a source
model is transformed into a target model) or bidirectional (a source model is transformed into
a target model and vice-versa) [Küs11]. Further, model transformations can be, if the source and
targetmodeling language are not the same, exogenous, otherwise are endogenous. An overview
o process of model transformation is given on Figure 2.16 (p. 60).

Chapter 2. Background 60

Code

Analyse and Design

Is abstracted
into

Abstracts
from

View of real
world

Model

Program

Figure 2.15: Real-world, model and program relationship overview [Küs11].

reads writes
Transformation

Engine

Source
Meta-Model

Model
Transformation

Definition

Model
Transformation

Definition

Source Model Target Model

<<instance of>>

refers to refers to

<<instance of>>

Figure 2.16: Basic concepts of model transformation in MDSE [CH06].

Model-driven approaches are considered to have several advantages over traditional ap-
proaches to software development, including the following [Rie+01]:

Shorter time-to-market Users model their domains rather than implement them. A
modeling language like UML is more suitable to express domainmodels than a program-
ming language like Java or Smalltalk;

Increased reuse and fewer bugs The tools hide the details of how themodels are hooked
up into the runtime system, freeing users from knowing intricate details about used
frameworks or system components;

Straightforward system and up-to-date documentation As the design and imple-
mentation are in sync, documentation can be maintained up-to-date, making the system
easier to understand at any point of its life-cycle.

However, the same authors point out that code-generation does not solve all the problems;
identifying as the main drawback the delay between model change and model instance execution.
They continue arguing that generating code from models, compiling the code, shutting down the
existing system, installing and configuring the new system, and starting it up can take from minutes
to hours [Rie+01]. Nonetheless, such a drawback is a common property of typical deployment
and evolution of software systems, not being a particular downside of MDSE.

Chapter 2. Background 61

More recently, work has been carried out under the banner ofmodels@run.time, embracing
the vision of models as an abstraction of a system, and pushing it further, seeking to under-
stand the roles that such models can play at runtime [BBF09]. The idea of having high-level
specifications of, for example, data or routines that are interpreted at runtime is research since
long ago. Examples include the use of meta-data and meta-specification in Aspect-Oriented
Programming (AOP) [Fer11; WLA06; Amo+12].

Blair et al. define models@run.time as a causally connected self-representation of the associ-
ated system that emphasizes the structure, behavior, or goals of the system from a problem space
perspective [BBF09]. System users can use runtime models to support dynamic state monitor-
ing and control of systems during execution, to dynamically observe the runtime behavior, to
understand a behavioral phenomenon, to promote the semantic integration of heterogeneous
software elements on runtime, or even to fix design errors or adopt new design decisions dur-
ing runtime.

The potential support ofmodels@run.time for the evolution of software design can blur the
line between development models (MDSE) and runtime models, thus becoming a live devel-
opment model [Agu+19] that enables dynamic growth and the realization of software designs,
support adaptation decisions by humans or by agents embedded in the system itself or through
combinations of both [BBF09].

Mashup-based Development

The termmashup is vast and widespread. Using as definition the one purposed by Rümpel et al.
[RM12], mashup tools are solutions that allow developers to construct applications and systems
in a component-based fashion (e.g., Widgets) or Web service composition (e.g., REST APIs), i.e.,
building applications bymashing-up existing components. Early examples of mashup tools are
Microsoft Popfly [Lot08] and Yahoo Pipes [Pru07].

According to Maximilien et al. [Max+07], mashup tools are characterized by providing the
following facilities out-of-the-box:

Data mediation by providing mechanisms to convert, transform and combine data from
one or more services (e.g., different APIs) to satisfy the needs of another service.

Process mediation also known as protocol mediation, are essentially choreographing
mechanisms for interconnecting the different services to create a new process. As an
example, process mediation can include invoking different service methods, waiting for
asynchronous messages, and dispatching the needed confirmation messages.

User interface customization which aremechanisms to build interfaces that can display
progress or final process information to the end-user (e.g., build Web-based dashboards
to display information supporting different user interactions).

Typically, mashup solutions are Web-based and provide a visual editor for composing the
different services into an application or system. As such, several mashup tools provide a visual
programming environment that allows the definition of themessage flowbetween components,
viz. nodes (e.g., sensors and actuators, processing units, aggregations, and external Web-based

Chapter 2. Background 62

services). Due to this fact, most of the mashup-based solutions are also visual programming
environments [PC13].

2.5.3 Software and System Testing
Testing is the process of identifying faults (also known as bugs) that push systems into an error
state and can eventually lead to failures [ALR01]. Faults are (mostly) human-related mistakes
that exist in the system, and testing focus on finding them before deploying the system into
production where failures can have nefarious effects.

As the development/deployment barrier can be significantly eroded for IoT, the traditional
separation of these phases may no longer remain suitable, since that for a system to work as
a whole, there exists a dependency on different software and hardware components, modules,
and architectures, produced by many manufacturers and with different working properties.

Testing can be done at different levels, depending on the scope of the test and its objective.
Different test levels [Bei03; Com90] are defined as follows:

Unit Testing Testing of a single hardware or software unit (or groups of related units). It
consists of isolating each part of the system and demonstate that individual pieces work,
at least, in isolation.

Integration Testing Software and hardware components are combined and tested to
check the interaction between them and how they perform together.

System Testing Testing a complete, integrated system to check the system’s compliance
and behavior within the specified requirements.

Acceptance Testing Formal testing is conducted to determine whether a system satisfies
its acceptance criteria and to enable a customer, a user, or other authorized entity to
determine whether to accept the system.

Different methods can be used to test the System Under Testing (SUT), namely, white-box
testing [Ost02], gray-box testing [Lin+04] and black-box testing [Edw01]. These methods are
described as:

White-box Testing The internals of the SUT are all visible and known, and, as such, this
information can be used to create test scenarios. White-box testing is not restricted to
fault detection but is also able to detect error states.

Black-box Testing The SUT internal contents are hidden, and only knowledge about the
system’s or module’s inputs and outputs is known, being closer to real-world use situa-
tions. Black-box testing can only detect failures; the program needs to inspect the code
to find the fault that caused it.

Gray-box Testing Amix of the two previous techniques. Information about the internals
of the SUT is used, but tests are conducted under realistic conditions, where only failures
are detected.

Chapter 2. Background 63

The different types of tests can be carried using different (andmore than one) methodology.
The confidence that a given system will comply with its requirements depends highly on the
number and variety of tests at different levels and leveraging different methodologies.

2.6 Summary
This chapter introduces some key background concepts that are considered relevant knowl-
edge to fully grasp this work. It also attempts to reduce the ambiguity of some terms and con-
cepts by presenting definitions that will be the ones used in this work. Starting by presenting
the main subject — Internet-of-Things — we provide some historical context to IoT and its
core vision, while focusing on its broadly adoption across application domains. We also briefly
analyze the technological context, from both hardware and software perspectives, that facili-
tated and open doors to the ubiquity of IoT, including, but not limited to, the communication
protocols, single board computers, and microcontrollers.

Amostly brief overviewof some software development concepts, including themostwidely
used architectural styles, patterns, software verification and validation techniques, and other
aspects of the software development lifecyle is also presented, while providing some insights
from an IoT system perspective.

The topic of fault-tolerance — both in software and in hardware — is introduced, by pre-
senting the some key works that present and systematize the available knowledge of the field,
defining some of the glossary that is used along this document. Lastly, the concept of autonomic
computing as defined by IBM circa 2004 is presented, including its core vision, proprieties and
self-* aspects.

64

3 | State-of-the-Art

3.1 Designing IoT Systems . 65
3.2 Constructing IoT Systems . 68
3.3 Testing IoT Systems . 97
3.4 IoT Cross-Cutting Challenges . 103
3.5 Fault-Tolerant Systems . 107
3.6 Autonomic Computing . 118
3.7 Summary . 121

Internet-of-Things have been reshaping the way individuals interact with their surroundings,
automatizing manual tasks, and continuously gathering information that allows them to make
data-supported previsions and decisions. As these systems widespread, questions arise on how
to effectively design, construct, test, orchestrate, operate, and manage them at a large scale
while being widely heterogeneous [Dig+19]. Ensuring the systems’ dependability also poses
novel challenges since it requires efforts from both hardware and software communities as
it implies considerations that go beyond the everyday challenges of developing software-only
systems (e.g., mobile and web applications). Although well-known software practices can be
harnessed and adapted to the IoT development challenges, there is still a need to develop new
approaches, environments, and best practices [Lar+17]. Zambonelli et al. [Zam17] goes further
by proposing a novel IoT-oriented software engineering field that brings together the overlapping
engineering areas involved in IoT which eventually could lead to the identification of general
models, methodologies, and tools for developing these systems.

In this chapter, we present the current approaches that play a key role in the lifecycle of
IoT systems, while providing insights on the current efforts on fault-tolerance and autonomic
computing in the context of this type of systems. Along the different sections, we discuss the
current gaps in the body of knowledge while highlighting open research challenges. Summar-
ily, we conclude that there are still several challenges that must be addressed to fulfill the IoT
potential, some of which can, potentially, leverage knowledge from other, and, related, bodies-
of-knowledge, such as cloud computing and mission-critical systems.

Parts of this chapter were published in the works a brief overview of existing tools
for testing the internet-of-things [Dia+18], a review on visual programming for dis-
tributed computation in iot [Sil+21], and designing and constructing internet-of-
things systems: an overview of the ecosystem [DRF22].

Chapter 3. State-of-the-Art 65

3.1 Designing IoT Systems
The design of software systems is the creative activity in which you identify software components
and their relationships based on the system’s requirements (i.e., design is about how to solve a
problem), and the most common outputs of this process are the system’s models and documen-
tation [Som10].

While design encompasses several concerns including hardware considerations, picking the
most suitable protocol and communication standard, as well as architecture considerations,
evolving the current body of knowledge in these regards fall out of the scope of this thesis.
Taking this into consideration, in the following paragraphs a focus will be given on patterns
and pattern-languages in IoT context.

3.1.1 Patterns
Internet-of-Things is a relatively recent field for both academia and industry, resulting in large
amounts of knowledge being created rapidly and disseminated in a variety of formats. The sys-
tem’s designers are tasked to pick and represent the best solutions that cope with the desired
scenario mostly based on empirical evidence, usually captured as standard reference architec-
tures (cf. Section 2.2.2, p. 40) and case studies.

The work by Washizaki et al. attempt to map the landscape of IoT patterns resulted in a
total of 136 patterns scattered among abstraction levels and IoT layers, and the identifiedworks
are included in Table 3.1, but their work does not encompass several works due to the reduced
number of scientific databases considered, while encompassing others that do not focus on
design patterns per se [Was+19; Was+20].

Thus, using as knowledge base the software engineering pattern literature1, we surveyed it
for works specifically concerning IoT or for nearby fields (such as cloud computing) that we
believe share a considerable subset of concerns with our domain. We only considered works
which identify patterns as a primary outcome.

A summary of the analyzed publications is presented in Table 3.1 (p. 66), and the identified
design patterns in the context of IoT systems are listed in Table 3.2 (p. 67). An overview of the
literature shows that various works focusing on patterns for these systems and their lifecycle,
primarily focus on the edge tier, viz. the things themselves. Even though we also found existing
work tackling cloud computing, there is a (somewhat variable-length) gap concerning the IoT-
specific cloud and fog tiers, and on how all of them come together.

This latter fact raises the hypothesis that theremay exist a non-negligible amount of knowl-
edge in other areas of software engineering that is not being researched for IoT. Being aware
of this, could probably help bootstrap well-known software development practices (e.g., con-
tinuous integration, continuous development, isolation/containerization, fuzzing and fault in-
jection) for our target systems, as they share similar, if not equal, characteristics, such as dis-
tributed computing, fault-tolerance, and large-scale systems’ orchestration.

1Patterns and pattern languages are usually published in the PLoP conference series and made available in the
ACM-DL.

Chapter 3. State-of-the-Art 66

Table 3.1: The landscape of relevant literature about design patterns for the Internet-of-
Things, and their relevance for each IoT architectural layer by ranking, from no
relevance () to most relevant (•••).

IoT Tier
Cloud Fog Edge

Io
T
Fo

cu
se
d

IoT Patterns for Device Bootstrapping and Registration [Rei+17a] • • •••
IoT Security Patterns [Luk+17] • •••
Internet of Things Patterns [Rei+16] • •••
Internet of Things Patterns for Devices [Rei+17b] •••
IoT design patterns: Computational constructs to design, build and engi-
neer edge applications [Qan+16]

• •• •••

Design patterns for the industrial Internet of Things [Blo+18] •• •• ••
Patterns for Devices: Powering, Operating, and Sensing [Rei+17c] •••
Fogxy — An Architectural Pattern for Fog Computing [STB18] ••• ••• •••
Cataloging design patterns for Internet of Things artifact integration
[Tka+18]

••• •••

Model-driven development of user interfaces for IoT systems via domain-
specific components and patterns [BUA17]

•• •• •••

An ontology design pattern for IoT device tagging systems [Cha+15] •••

Re
le
va
nt

fo
rI
oT

Cloud Computing Patterns [Feh+14] •••
A Pattern Language For Microservices [Ric17] ••• •
Continuous Integration: Patterns and Anti-Patterns [DGM07] •••
Patterns for Fault Tolerant Software [Han07] •••
Designing Distributed Control Systems: A Pattern Language [Elo+14] •• •• •
Patterns for software orchestration on the cloud [SCF15] •••

The adoption of these existing patterns and practices in a new context should not be taken
lightly. As an example, consider the case of continuous integration/delivery. The typical CI/CD
approach assumes that low-friction tools for delivery exist (e.g., a containerized pipeline) and
that software is made to work in a well-defined set of hardware and/or platform configura-
tions [SAZ17].

3.1.2 Discussion
When taking into account the number of open technological challenges, despite the pattern
mining effort done work by Reinfurt et al. [Rei+17b; Rei+17c; Rei+17a; Rei+16], the num-
ber of captured patterns is still residual. Existing patterns do not encompass the ecosystem
as a whole and are tied to specific architectural tiers and to specific hardware/software per-
spectives. Extensive work should be pursued on the systematization of existing solutions (in
both academia and enterprises). We also believe that fields close to IoT should be studied as
they might be of relevance when considering practices that can be adopted, e.g.,microservices
patterns by Chris Richardson [Ric18], patterns for fault tolerant software by Robert

Chapter 3. State-of-the-Art 67

Table 3.2: List of the IoT-related design patterns. While this list does not encompass all
the patterns presented by the literature (cf. Table 3.1, p. 66), it showcases some
patterns that we consider key for this work.

Concern Pattern

Energy Supply

Mains-Powered Device [Rei+17c]
Lifetime Energy-Limited De-
vice [Rei+17c]
Energy-Harvesting De-
vice [Rei+17c]
Period Energy-Limited De-
vice [Rei+17c]

Operation Mode Always-On Device [Rei+17c]
Normally-Sleeping-
Device [Rei+17c]

Processing Rules Engine [Rei+16]

Sensing Event-Based Sensing [Rei+17c]
Schedule-Based Sens-
ing [Rei+17c]

Bootstrapping
Factory Bootstrap [Rei+17a]
Medium-based Boot-
strap [Rei+17a]
Remote Bootstrap [Rei+17a]

Registration

Device Registry [Rei+17a]
Manual User-Driven Registra-
tion [Rei+17a]
Automatic Client-Driven Regis-
tration [Rei+17a]
Automatic Server-Driven Regis-
tration [Rei+17a]

Concern Pattern

Device Model
Device-Driven Model [Rei+17a]
Predefined Device-Driven
Model [Rei+17a]
Server-Driven Model [Rei+17a]

Security

Trusted Communication Part-
ner [Luk+17]
Outbound-Only Connec-
tion [Luk+17]
Permission Control [Luk+17]
Personal Zone Hub [Luk+17]
Whitelist [Luk+17]
Blacklist [Luk+17]
Remote Lock and Wipe [Rei+16]

Comms.

Delta Update [Rei+17b]
Device Gateway [Rei+16]
Device Shadow [Rei+16]
Device Wakeup Trigger [Rei+16]
Visible Light Communica-
tion [Rei+17b]
Remote Device Manage-
ment [Rei+17b]

Deploy Edge Code Deployment [Qan+16]
Architecture Fogxy [STB18]

Hanmer [Han07], and patterns for software orchestration on the cloud by Boldt et al.
[SCF15].

Looking at the specific case of CI/CD, although one can leverage existing best practices
(including patterns), IoT poses special needs that make the automation of these processes more
expensive and risky; Jim Ruehlin [Rue18] identifies several physical needs and considerations
beyond the software-only world needs: (1) Physical deployment of new sensors, (2) manual de-
ployment of software (which implies the need for more resources and increased costs), (3) sen-
sors or devices that are physically compromised, (4) weather conditions, (5) geographic consid-
erations and constraints, and (6) devices and systems connectivity characteristics and issues.

These factors might hinder the feasibility on delivering new versions in a short regular
schedule when compared to other software systems; which is unfortunate, since the criticality
of fixing security vulnerabilities and bugs in IoT is increasingly paramount [LB16; Bei18].

Ultimately, the existence of enough IoT-specific design patterns and the discovery of re-
lationships between them, has the potential to produce a pattern language that can be shared
and improved among practitioners. Pattern languages would help IoT developers by providing
them with a proper vocabulary, abstractions, and insights into the solutions other developers

Chapter 3. State-of-the-Art 68

have recurrently found.

3.2 Constructing IoT Systems
While the design activity of the software development life-cycle focuses on reaching suitable
and high-level solutions for a given problem, the construction (also known as implementation)
activity of the life-cycle focuses on actually building the systems (i.e., create an executable version
of the software [Som10]). The construction of software systemsmay involve writing code in one
ormore high– or low-level programming languages (at different abstraction levels), or tailoring
and adapting generic, off-the-shelf systems to meet the specific requirements of a given project,
organization, or scenario [Som10].

The heterogeneity and vastness of devices, platforms, and services that are part of IoT re-
quire development approaches that attend to this ecosystem particularities. Traditional pro-
gramming — procedural computer programming — using code editors and integrated devel-
opment solutions has been the go-to solution for developers and other technical individuals.
However, as the heterogeneity of devices keeps increasing, as well as the number of application
scenarios and environments, it became necessary to build abstractions of sensors, actuators,
and whole devices as a way to reduce the complexity of developing and manage IoT systems.
This need for abstractions leads to the birth of several, IoT-focused, model-driven development
solutions as well as mashup-based development tools [PC13].

trigger action

if I leave home then switch off the lights

Figure 3.1: Example of a trigger-action rule for turning off the lights (action) whenever the
user leaves the house (trigger).

With the growing number of non-technical users that use IoT systems, even such solutions
did not suffice, since they required a certain level of technical knowledge thatmost end-users do
not possess. This lead to the birth of several low-code solutions in the field that leverage visual
programming concepts, natural language processing tools, and voice assistants as a way for
the users to configure (viz. program) their own systems. One of the most common strategies
used by these approaches is the use of if-then rules programming solutions (e.g., IFTTT and
Zapier [Hoy15])— also known as Trigger-Action Programming — where rules are defined as
a sequence of trigger-action flows, as exemplified in Figure 3.1 (p. 68) [Rah+17].

An overview of the popularity of some tools used for IoT development is given on Fig-
ure 3.2 (p. 69), disregarding abstraction levels and application focus.

Chapter 3. State-of-the-Art 69

0 2,000 4,000 6,000 8,000 10,000

Wyliodrin

NeoSCADA

ThingML

Ardublock

XOD

PlatformIO

Node-RED

Arduino IDE

3

20

63

369

491

3,500

8,801

9,659

of GitHub stars

Figure 3.2: Number of stars in the GitHub repositories of the open-source IoT-focused de-
velopment tools (circa 2020).

3.2.1 Traditional Development
Most IoT systems result from a combination of already existing technologies and systems
(viz. Systems-of-Systems). As a consequence, there has been for a long time a set of devel-
opment facilities (e.g., programming languages, Integrated Development Environments, and
other toolsets) that empower the construction of components for each tier of IoT systems (cf.
Figure 2.7, p. 39) and the systems as a whole. Some of these tools are vendor-specific and/or
board-specific.

From a programming languages perspective, an IoT Developer Survey carried by the
Eclipse IoT Working Group, AGILE IoT, IEEE, and the Open Mobile Alliance circa 2019 enu-
merates the most common languages for each IoT systems tier, namely (by order of relevance):
(1) C, C++, Java and JavaScript for the edge tier, (2) Java, Python, C++ and C for the fog tier and
(3) Java, JavaScript, Python, and PHP for the cloud tier [Ecl19].

Regarding development environments, it is noticeable that the most popular ones (e.g.,
Eclipse IDE) can be extended and adapted (e.g., via plugins) to encompass the reality of IoT
systems development. However, new tools are developed to deal with the particularities of
each tier (i.e., adapted to the heterogeneity, scale, and specific concerns).

We can identify some tools as reference development environments for IoT development,
such as the following ones:

PlatformIO An IDE for the Internet-of-Things with a particular focus on the program-
ming of edge-tier devices. It has support for more than 650 development boards, and
comes with a built-in library manager, and has a C/C++ Intelligent Code Completion and
Smart Code Linter suitable for embedded devices. It also has debugging features (PIO
Unified Debugger) alongside with testing features (PIO Unit Testing) and support for inte-
gration in local— or cloud-based CI/CD pipelines [Pla19]. PlatformIO can also be used
as a standalone Command Line tool or as a plugin in several code editors and IDE’s (e.g.,
Visual Studio Code and Atom).

Chapter 3. State-of-the-Art 70

Arduino IDE An IDE focusing on the programming of microcontrollers based on the Ar-
duino framework (not to be confused with the Arduino development boards based on
Atmel AVR), commonly found on the edge tier. Includes support for C and C++ pro-
gramming languages and is pre-loaded with several examples and libraries [Ard19b].

NeoSCADA A project from the Eclipse IoT Industry Working Group targeting SCADA
(Supervisory Control and Data Acquisition) systems development. This type of system
is omnipresent in manufacturing and control operations and is now, typically, Internet-
connected. Eclipse NeoSCADA (previously known as OpenSCADA [PCB18]) is not an
out-of-the-box solution for SCADA systems but instead a set of development libraries,
interface applications, mass configuration tools, and other facilities that allow the con-
struction of these systems [IBH19].

There are also several micro-controller-specific development tools including, among oth-
ers, (1) the ESPlorer, an IntegratedDevelopment Environment (IDE) for ESP8266-based boards
using Lua or microPython languages [esp19], (2) Atmel Studio 7, a tool for developing and de-
bugging AVR and SAM microcontroller applications using C/C++ or assembly code [Inc19a],
(3) Pymakr, an IDE extension to code editors to aid the development of IoT edge devices that
run microPython [Pyc21] and (4) Particle IDE, a development environment for Particle’s IoT
boards [Par21].

Additionally, several Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) solu-
tions — both cloud-based and on-premises — have appeared in the last few years as a re-
sponse to the needs of IoT systems development, in a fashion similar to that of other kinds of
software systems. The survey byMineraud et al. identifies 23 different solutions that fit this cat-
egory [Min+16], such as the EvryThng, ThingWorx, and SensorCloud. The same survey points
out several gaps in the existing solutions, mostly resulting from the nonexistent standardization
and lack of cross-platform support [Min+16] (i.e., fragmented ecosystem, no interoperability
between different IoT solutions [Brö+17]). These solutions generally provide a mostly com-
plete programming environment with an out-of-the-box set of Web-based Internet-of-Things,
Software Development Kits (SDKs), libraries for specific hardware boards (i.e., devices), and
dashboards for device and data management.

Most of these solutions, ranging from the PaaS to the board-agnostic IDEs are somewhat
limited in scope, both in terms of the supported devices and/or frameworks and in terms of
system tiers (e.g., tools focused on developing software for micro-controllers disregard the de-
velopments towards other tiers completely).

3.2.2 Model-driven Development
Several works have studied the application of Model-Driven approaches like Domain-Specific
Languages (DSL) and model transformations for providing IoT-focused low-code program-
ming solutions [Ihi+20]. These try to improve the interaction with IoT systems and make the
production of platform-specific code more efficient by abstracting the platforms and allowing
users to design systems at a high-level, most of them focusing on visual abstractions.

Chapter 3. State-of-the-Art 71

Figure 3.3: FRASAD Platform-Independent Model visual editor.

Some of the most known and comprehensive works that focus on model-driven develop-
ment for IoT include the following:

FRASAD FRAmework for Sensor Application Development is a framework for model-
driven IoT system development, based on a node-centric, multi-layered software architec-
ture to hide low-level details and to raise the level of abstraction of developing IoT sys-
tems. Using model transformations, users can visually define the behaviors of the IoT
system, which is then converted into runnable code. The approach uses a DSL and a
rule-based model to describe the final applications and provides a graphical interface
for users to create those rules, according to the DSL. Figure 3.3 (p. 71) shows an exam-
ple of a Platform-Independent Model in the visual interface provided by FRASAD. The
work authors’ evaluated the tool by testing it with novice and intermediate programmers,
through the completion of taskswith various difficulties using the tool developed and two
other tools (TinyOS andContikiOS), and also by testing themodel transformations to see
whether the models generated from the visual programming solution were complete and
correct enough to work correctly. The test results with programmers showed that pro-
grammersweremore successful using FRASAD than using the other two tools, regardless
of their experience. The results of testing themodel transformations showed that the tool
generates complete and correct code in 40% of cases; however, in 41% of cases, the code
needed minor fixes to work, and in 18% of cases, the code was not complete nor correct.
The authors conclude that the results provide evidence that their tool can be a solution
for IoT development. Nevertheless, the solution’s focus is on the programming of sensor
nodes (constrained devices), not on end-user development and configuration of holistic
IoT solutions.

Eterovic et al. proposed a visual DSL for IoT, inspired in UML, aiming to provide non-
technical end-users with a tool simple enough for them to work on their IoT systems and
sufficient complexity for more experienced users to do more complex tasks. However,
the authors state that when used in an IoT context, advancedUML expressions need to be
used, making it too complex for non-technical users. The authors propose a DSL based

Chapter 3. State-of-the-Art 72

on UML, but with some changes to simplify the advanced expressions. To validate the
tool, the authors experimented with different test groups, some with UML experience
and others with no experience, but no group had previous IoT experience. The results
reveal that everyone could complete the experiment with success, and most participants
showed a preference for the DSL. This points out that the developed approach is both
simple in terms of interaction and complete in functionality. However, the authors say
that the measurements made do not provide evidence about usability problems, only
success rate and that the experiment’s taskswere straightforward. Therefore, they believe
that more experiments should be performed to measure other metrics and using more
complex systems and tasks [Ete+15].

Einarsson et al. also applied model transformations in IoT, developing a Domain-
Specific Modeling Language (DSML) that allows users to specify rules that are then used
to generate code for Alexa and SmartThings. The solution uses Text Template Trans-
formation Toolkit (T4)2 to handle the transformations into platform-specific code. The
authors tested the system in a mock cloud service, which allowed them to conclude that
it can handle all Alexa’s skills and some of SmarthThings’, being only limited by the fact
that they were only generating code to work with mock cloud-enabled devices [Ein+17].

Sutherland et al. developed a text-based DSL for programming social interactions for
robots. The authors leverage off-the-shelf modules to build a Python-inspired DSL that
could be integrated with the robot. By doing so, they maintain the existing tools’ capa-
bilities and build a more straightforward interface for non-technical users to also work
on programming robots. With their approach, users can create scripts for robots’ so-
cial interactions parsed and converted into an Abstract Syntax Tree (AST) to be validated
and then consumed by an execution engine that runs on the robots, which results in
the robots performing the scripted action. The authors concluded that the DSL is com-
plete enough to be used for various robots with slight changes and also short enough to
be quickly understood and used as a cheat sheet. However, the tool was not tested by
non-technical users, and the authors mention some potential issues. For example, even
though the DSL is short and straightforward, it is similar to the Python programming
language, and non-programming users may have difficulties understanding some con-
cepts or code structure. The authors also mention that improving debugging features
may help non-technical users since the debugging so far is done by reading logs resulting
from the execution [SM19].

UML4IoT A model-driven UML-based approach for IoT system development. It de-
fines a new UML profile, UML4IoT profile, which automates the generation of an IoT-
compliant layer, IoTwrapper, that allows the full integration of different IoT components
in an IoT system. This wrapper is tailored for IoT manufacturing environments. How-
ever, theUML4IoT profile contains basic key constructs independent of the application domain
so that it can be used in other application domains [TC16].

2T4 is a template-based text generation framework included with Visual Studio that can generate text artifacts
such as code.

Chapter 3. State-of-the-Art 73

MDE4IoT An approach for modeling things as well as their Emergent Configurations3

with a DSML. This approach exploits the use of high-level abstraction and separation
of concerns to manage heterogeneity and complexity of things, enabling collaborative
development, and enforcing reusability of design artifacts. It also provides automation
mechanisms by providing model manipulation features enabling intelligence as runtime
self-adaptation [CS17].

DSL-4-IoT Editor-Designer A visual domain-specific modeling language (VDSML) ap-
proach which allow users to configure their systems by connecting high-level represen-
tations of sensing and actuating devices using a built-in Rules editor. The visual specifi-
cations are used to generate OpenHAB configurations, which work as the target runtime
of the system. They validated the feasibility of their solutions using a testbed with 15
heterogeneous devices, asserting that it performs as expected [Sal+15].

SmartHomeML A Domain-Specific Modeling Language (DSML) that allows users to
specify new skills targeting Alexa and SmartThings. The solution uses a template-based
transformation to handle the generation of platform-specific artifacts. The authors tested
the system using mock cloud devices, concluding it covered all existing Alexa’s skills and
some of SmarthThings’ [Ein+17].

Midgar A DSL, a visual editor, and a runtime (named Midgar) to specify and run IoT ap-
plications. The authors performed a two-staged validation with 21 participants. In the
first stage, they measured the time participants took to interconnect one temperature
sensor to two smartphones (≈162s). In the second stage, they performed a Likert-scale
based survey to assess the subjective perception of the participants regarding the tool,
concluding that respondents generally liked it. The main negative feedback was the lim-
ited development characteristics that the platform presented [Gon+14].

WoX: Web of Topics A conceptual model for IoT development based on the notion of
topics, building block of the event-driven architecture followed by several IoT systems. In
WoX, aWoX Topic is defined by two parts, namely: (1) a discrete semantic feature of interest
(e.g., temperature, humidity, air pressure), and (2) a Uniform Resource Identifier (URI)
based location. A thing (IoT entity) role within a Topic is specified by its technological
and collaborative dimensions, i.e., Topic-Role [Mai+15].

Fluidware The Fluidware conceptual idea is to abstract the different system parts (includ-
ing sensors, actuators, and other system components) as sources, digesters, and target of dis-
tributed flows of contextualized events, maintaining information about the data produced
and manipulated over time. In this solution, developing new services and applications
implies the definition of funnel processes to channel, elaborate, and redirect such flows in
a fully distributed way, i.e., declaration of how these flows consume and produce events
over space and time [Zam+19; For+19].

3Emergent Configurations is defined as the set of things with their functionalities and services that connect and
cooperate temporarily to achieve a goal. [ASD17]

Chapter 3. State-of-the-Art 74

ThingML The Internet of ThingsModelling Language is an approach for IoT systems’ de-
velopment that encompasses a modeling language — DSML — (including state-charts,
an imperative platform-independent action language and IoT-specific constructs), a set of
tools (language editor, model transformations to diagrams, code generation framework),
and a methodology to develop IoT systems and to extend ThingML itself (cf. Figure 3.4,
p. 75). This solution is one of the most comprehensive model-driven approaches and has
a text-based description language. The primary focus is on the development of highly-
distributed and heterogeneous systems by abstracting from the heterogeneous platforms
and devices to model the desired IoT system’s architecture; however, the solution only
provides a design-time specification of the structure (components) and behavior (state
machines), and it is not executable per se. Further, their focus is not on improving the
end-user ability to develop IoT systems but also on technical users. More recent works
attempt to tackle the issue of IoT communications and behavioral modeling replacing
the use of state machines with automatic generation by using machine learning tech-
niques [MRG18].

Durmaz et al. Thiswork presents ametamodel (i.e., modeling language syntax) and a sup-
porting graphical modeling environment tailored for the specifications of Contiki IoT
platform. As a result, this work focus on abstracting the event-driven mechanism and
protothread [Dun+06] architecture of Contiki [Dur+17].

Chen et al. The work presents a runtime model (models@run.time) based approach to IoT
application development. It focuses on two facets, namely: (1)manageability of sensor de-
vices is abstracted as runtime models that are automatically connected with the corresponding
systems and (2) the customized model is constructed according to a personalized application
scenario and the synchronization between the customized model and sensor device runtime
models is ensured through model transformation. Such an approach allows all the applica-
tion logic to be carried out by executing programs on this customized model [Che+15].

Some otherworks propose DSLs to tackle the shortcomings of the current solutions [SN15;
Gom+17; CC20], but only present ideas orminimal proofs-of-concept, without validating their
feasibility nor empirical validationwith users. Amore complete list of other relevantworks can
be found in [SAA21]. Additionally, other less comprehensive approaches, have been developed
as an answer to specific issues, such as the modeling of security and privacy concerns [Nei+14;
Yan+12], and critical-mission systems [Cic+17].

3.2.3 Visual Programming
In the context of IoT systems development, several visual programming languages and ecosys-
tems have been created with the main objective of easing the development process, leveraging
different visual metaphors, and programming paradigms. These languages can be categorized
in being (1) purely visual, (2) hybrid text-visual, (3) programming-by-example, (4) constraint-
oriented, and (5) form-based languages [BD04]. Some of the most common examples are:

Chapter 3. State-of-the-Art 75

Figure 3.4: The ThingML code generation framework. The 10 variation points of the
framework are identified and separated in two groups: the ones responsible for
the generation of code for things and the ones corresponding to the generation
of code for the applications (Configuration) [Har+16].

ArduBlock ArduBlock is purely visual programming, based on the Google/MIT Me-
dia Lab’s Blockly [Fra+13], focused on physical computing devices based on Ar-
duino [Ard19a]. Several similar solutions are available such as Snap4Arduino, Mi-
croblocks, and BlocklyDuino [XP18].

S4A S4A is a modified version of the original Scratch educational programming lan-
guage [Res+09] that targets Arduino-based hardware. It provides purely visual program-
ming, based on the Google/MITMedia Lab’s Blockly [Fra+13], keeps the Scratch original
focus on educational purposes only, and provides an extra feature of recording and play-
back the resulting programming output [CIT19; Ray17].

XOD XOD is a purely visual microcontroller programming platform. It uses a visual lan-
guage to program the devices and then generates native code for the target platform. In
the language, a node is a block that represents either a physical device (e.g., sensors, mo-
tors, or a relay) or an operation (e.g., addition, comparison, or a text concatenation). Each
node has one or more typed inputs that accept values to be processed and outputs that
return results. Creating a link from an output to an input builds a path for data, allow-
ing one node to feed values into another. The development environment also allows the
simulation of the programmed systems before deploying to real hardware [Inc19b].

GraspIO Graphical Smart Program for Inputs and Outputs is purely visual programming,
also inspired on the Google/MIT Media Lab’s Blockly [Fra+13], targeting the Cloudio
hardware shield for Raspberry Pi SBCs. It is most suitable for educational purposes and
offers the ability to build simple IoT and Robotics systems quickly [Ray17].

Chapter 3. State-of-the-Art 76

Wyliodrin Wyliodrin is an online IDE for Linux-based embedded systems (Raspberry Pi,
Intel Galileo) programming. The low-level GPIO-connected components are abstracted
by the use of the Libwyliodrin, which offers an Arduino-like API, and can be programmed
by the use of a hybrid text-visual programming language, in a drag-and-drop fashion. It
also provides a set of dashboards to visualize the data being collected, and a mechanism
to ease the communication between different devices [MR16].

Zenodys Zenodys is a hybrid text-visual programming environment, based on a drag-and-
drop interface, that can construct both the logic and the user interfaces (UI) of IoT appli-
cations. It has built-in debugger features as well as text-based programmingmechanisms,
allowing fine-tuning of the solutions. Solutions designed in Zenodys can be deployed to
both Linux and Windows environments [BV19].

Noodl Noodl is a hybrid text-visual programming environment that allows the creation
of interfaces, and both logic and data flow. Although it does not focus on IoT, it also
covers IoT system programming. It leverages visual notations to define the behavior of
the system, namely, nodes are entities that perform computation, connections interlink the
different nodes, and the resulting logic flows are organized into hierarchies [AB19; Ray17].

DG Solution Builder DG Solution Builder is a purely visual IoT programming language,
and environment, powered by a drag-and-drop interface. It also provides a dashboard
feature capable of displaying the IoT systems data. It is tailored to be used with the Dis-
tributed Services Architecture (DSA) IoT middleware platform that abstracts the inter-
communication, logic, and applications at every layer of the Internet of Things infrastruc-
ture [DGL19; Ray17].

AT&T Flow Designer AT&T IoTPlatformFlow IDE is a cloud development environment
for IoT systems. The visual language allows the creation of prototypes of IoT solutions,
giving the ability to iterate and improve through multiple versions, then deploy the fi-
nal solution. It gives the developer a set of pre-configured nodes that allow easy access
to multiple data sources, cloud services, device profiles, and communication methods.
Inspired by the Node-RED programming environment, it shares the same hybrid visual-
text approach to development [Pro19; Ray17].

Epidosite A programming-by-demonstration system tailored for smartphones leverag-
ing it as a hub for IoT systems automation. Users can express the wanted system logic
by demonstrating the desired behaviors through directly manipulating the correspond-
ing smartphone app for each IoT device. This programming environment also sup-
ports the creation of a highly context-aware application by taking into consideration
the smartphone app usage context and external web services as triggers and data for automa-
tion’s [Li+17].

IFTTT IFTTT is a web and mobile application that leverages the use of a visual pro-
gramming language to develop if-this-do-that rules in a form-based programming fash-
ion [Kub16]. The language provides integration with several third parties. Despite not

Chapter 3. State-of-the-Art 77

being focused on IoT solutions, it provides integration with several IoT products on the
market, allowing the programming of their behavior [IFT19; CDR17]. There are some
other similar solutions in the market, such as Microsoft Flow and Zapier [BBS18].

Blynk Blynk is a mobile application that allows the control of Arduino and Raspberry
Pi devices using a digital dashboard in a program-by-example fashion. It allows the
drag-and-drop of widgets and then configures them using a form-like approach [Inc19c;
BMS16].

While there are other solutions for developing IoT systems employing a visual program-
ming strategy (Node-RED,WoTKit, glue.things, IoT-MAP, IoTMaaS, and the solution proposed
by Yao et al. [YSD15]), these tools also employ mashup strategies to build the system and are
analyzed in detail in Section 3.2.4.

These visual programming languages and environments are mostly tailored for IoT sys-
tems, with some targeting one specific tier (cf. Figure 2.7, p. 39) while others are capable of
connecting different IoT devices, third-parties, and subsystems across tiers. Regarding the
last, these are highly-inter-winded with their visual languages runtime and can be deployed
on Linux-based systems, usually on the fog and cloud IoT tiers. They are also web-centric and
encourage rapid development [BL12a].

Focusing on the tools that leverage a TAP-like fashion (e.g., IFTTT), there are several works
that highlight the issues that users have when configuring and understanding the trigger-action
programs built using such tools [HC15; Ghi+17]. Huang andCakmak in theirwork identify that
ambiguities between trigger types (states and events) and action types (instantaneous, extended,
and sustained actions), lead users to misconstrue and misinterpret their rules (the authors state
that “people create different programs given the same prompt and are still in disagreement in
their interpretations after having created programs themselves") [HC15]. Ghiani et al. mention
similar issues in their work and emphasize that different individuals understand the same con-
cept or metaphor differently, which also increases the proneness to errors and the difficulty to
understand the programmed rules [Ghi+17].

3.2.4 Mashup-based Development
Mashup tools enable rapid prototyping by combining the use of rule-basedmechanisms, graph-
ical composing interfaces, and templates [PC15]. Some of the most relevant examples of
mashup tools specific to IoT systems development are:

Node-RED Node-RED is one of the most widespread visual programming solution tar-
geting IoT systems. It presents a flow-based notion for wiring together hardware de-
vices, APIs, and third-party services, leveraging a visual programming language [Szy+17;
Ope19b]. IBM originally developed it, and its runtime is built on JavaScript. Node-RED
provides a programming canvas through which users can create, edit and delete system
rules and connections in an interface that displays rules and connections as a flow of in-
formation, events, or action by drag-n-drop building blocks (nodes and links) which are
made available through an extensive and extensible node palette, as exemplified in Fig-
ure 3.5 (p. 78). Several entities have merged their solutions with Node-RED providing

Chapter 3. State-of-the-Art 78

Figure 3.5: Example of Node-RED flow, where the status of an electric plug (plug-1)
changes (on/off) accordingly to the current temperature value (switch), pro-
vided by the temperature and humidity sensor (temp-hum-readings).

new services, such as the Sense Tecnic IoT Platform with provides FRED, a cloud-based
Node-RED service [BL16].

WComp It is a three-part middleware designed for ubiquitous systems that provides a
(1) foundational software infrastructure, (2) a service composition architecture, and (3) a
compositional adaptationmechanism designedwith dynamicity and heterogeneity of the
underlying system inmind. Systems are built by composition ofWeb Services (which can
correspond to devices, cloud services, or any other Web Service compliant entity). Their
approach also introduces Aspect of Assembly (AA) as a way to define reactive behaviors
to respond to changes in the system (i.e., self-adaptation) [Tig+09; Fer+12].

WoTKit It is a lightweight Java web application based on a message broker for program-
ming IoT systems that allow the integration, visualization, processing of data from dif-
ferent devices and subsystems. The environment uses a hybrid text-visual language that
allows the connection between different modules using pipes. Visualizations are based on
the concept of widgets that are displayed in a dashboard, allowing rapid visualization of
sensor data [BL12a; BL12b].

glue.things A Node-RED-inspired mashup tool focused on the composition of Web ser-
vices data streams and Web-enabled IoT devices (i.e., Web-of-Things). A special focus is
given on the delivery and management aspects of device data streams, consumer appli-
cations, and their integration within the ecosystem [Kle+14].

IoT-MAP Is a thing service composition platform that dynamically discovers devices, de-
ploys drivers, and provides them in the uniform interface to IoT-App. The IoT-App de-
couples the development of mobile applications from the heterogeneous devices’ speci-
ficity’s by providing an IoT-App API that abstracts the functionalities of various things
(i.e., abstracted service objects) [Heo+15].

IoTMaaS IoT Mashup as a Service is a mashup platform that provides a (1) thing model,
(2) a software model, and (3) a computation resource model. During the mashup pro-
cess, these three components can be tailored to the specificity’s of the system under de-
velopment (e.g., select things, processing software and resource allocation, notification

Chapter 3. State-of-the-Art 79

preferences), while the platform assures interoperability between devices and services
(following the service-oriented architecture principles) [IKK13].

Yao et al. This work presents a web-based solution for connect, monitor, control, mashup,
and visualize devices in an IoT system. Their solution provides a layered framework for
managing the data produced by the devices and to share it, includes a rule-based system to
program the system logic in a context-aware fashion, and exploits the concept of avatars
(i.e., virtual representations of the physical things) [YSD15].

Although more popular (cf. Figure 3.2, p. 69) when comparing with model-based solutions,
most of the mashup tools for IoT disregard the concerns about user interface definition and
customization, focusing on the data and process mediation. Further, some mashup tools pro-
vide extra features such as simulation mechanisms and support for interoperability with other
platforms.

3.2.5 Development of Decentralized IoT Applications
Several of the aforementioned solutions, specifically the visual programming and mashup-
based ones (i.e., low-code), provide a certain level of orchestration features — they connect
together services and devices, allowing their configuration, coordination, and management.
But, in most cases, these solutions go further than that and also perform some level of com-
putation, from data parsing to conditional statements, in a centralized fashion, thus becoming
the Single point of failure of the system.

Only a small fraction of those aims to offer a way for distributing computing tasks among
devices and other computational resources while dealing with the challenges posed by the na-
ture of these resources, especially the highly-dynamic topology of these networks. Thus, as a
way to leverage the existing computational power in edge devices, several proposals have been
drafted, mostly resulting from scientific research — thus being more proofs-of-concept and
not full-fledge ready-to-use solutions. A non-extensive list of the ones found in the literature
is summarized in the following paragraphs.

WoTFlow [BL14], DDF [Noo+19], and subsequent works [Gia+15; GLL18] A set of
extensions to Node-RED focusing on Smart Cities use case. Their goal is to make it more
suitable for developing fog-based applications that are context-dependent on edge de-
vices where they operate. DDF starts by implementing D-NR (Distributed Node-RED),
which contains processes that can run across devices in local networks and servers in
the Cloud. The application, called flow, is built with a visual programming environment,
running in a development server. All the other devices running D-NR subscribe to an
MQTT topic that contains the status of the flow. When a flow is deployed, all devices
running D-NR are notified and subsequently analyze the given flow. Based on a set of
constraints, they decide which nodes they may need to deploy locally and which sub-
flow (parts of a flow) must be shared with other devices. Each device has characteristics,
from its computational resources, such as bandwidth and available storage, to its location.
The developer can insert constraints into the flow by specifying which device a sub-flow

Chapter 3. State-of-the-Art 80

must be deployed in or the computational resources needed. Further, each device must
be inserted manually into the system by a technician.

Figure 3.6: Coordination between nodes in Distributed Node-RED (D-NR) [Gia+15].

Subsequent work focused on support for the Smart Cities domain, including the deploy-
ment of multiple instances of devices running the same sub-flow and the support for
more complex deployment constraints of the application flow [Noo+19]. The developer
can specify requirements for each node on device identification, computing resources
needed (CPU andmemory), and physical location. In addition to these improvements, the
coordination between nodes in the fog was tackled by introducing a coordinator node.
This node is responsible for synchronizing the device’s context with the one given by
the centralized coordinator. In more recent versions of the work support for CPSCN
(Cyber-Physical Social Computing and Networking) was added, thus making it possible
to develop large-scale CPSCN applications [GLL18]. Additionally, to make this possible,
the contextual data and application data were separated so that the application data is
only used for computation activities. The contextual data is used to coordinate the com-
munication between those activities. In Figure 3.6 it is possible to see the four possible
states of a coordinator node: (1) NORMAL, where the node passes the data to its output,
(2) DROP, in which the node does not pass the data to other node and instead drops it,
(3) FETCH_FORWARD, where the node gets the input from an external instance of its sup-
posed input and (4) RECEIVE_REDIRECT in which the node sends the data to an external
instance of its output node.

Szydlo et al. [Sen+19] Work focused on the transformation and decomposition of data

Chapter 3. State-of-the-Art 81

Figure 3.7: Partition and assignment of parts of a Node-RED flow [Sen+19].

flow. Parts of the flow can be translated into executable parts, such as Lua. Their con-
tribution includes data flow transformation concepts, a new portable runtime environ-
ment (uFlow) targeting resource-constrained embedded devices, and its integration with
Node-RED (cf. Figure 3.8, p. 82). Their solution transforms a given data flow by allowing
the developer to choose the computing operations run on the devices. These operations
are implemented using uFlow. The communication between the devices requires a Cloud
layer, without support for peer-to-device communication. The results are promising,
showing a decrease in the number of measurements made by the sensors.

However, there is room for improvement with relation to the automatic decompo-
sition and partitioning of the initial flow, and detecting current conditions in decid-
ing when to move computations between fog and cloud. Later, the authors proposed
FogFlow [Sen+19], which enables the decomposition into heterogeneous IoT environ-
ments according to a chosen decomposition schema. To achieve a certain level of de-
centralization and heterogeneity, they abstract the application definition from its ar-
chitecture and rely on graph representations to provide an unambiguous, well-defined
computation model. The application definition is infrastructure-independent and only
contains data processing logic, and its execution should be possible on different sets of
devices with different capabilities. Several algorithms for flow decomposition are men-
tioned [NAA+18; Gup+17], but none were explored/provided results.

FogFlow by Cheng et al. [Che+17; Che+18b] Proposes a standards-based program-
ming model for Fog Computing and scalable context management. The authors start
by extending the dataflow programming model with hints to facilitate the development
of fog applications. The scalable context management introduces a distributed approach,
which allows overcoming the limits in a centralized context, achieving considerable im-
provements in performance, namely in terms of throughput, response time, and scalabil-
ity.

The FogFlow framework focuses on a Smart City Platform use case, separated into three
modules: (1) Service Management, typically cloud-hosted, (2) Data Processing, present in
cloud and edge devices, and (3) Context Management, which is separated in a device dis-
covery unit hosted in the Cloud and IoT brokers scattered across edge and cloud tiers (cf.
Figure 3.8, p. 82). The approach was later improved to empower infrastructure providers

Chapter 3. State-of-the-Art 82

Figure 3.8: FogFlow high level architectural model [Che+18b].

with an environment that allows them to streamline the construction of decentralized
IoT systems, with increased stability and scalability. Dynamic data representing the IoT
system flows are orchestrated between sensors (sources) and actuators (sinks). An applica-
tion is first designed using the FogFlow Task Designer (a hybrid text and visual environ-
ment), which outputs an abstraction called Service Template. This abstraction contains
details about the resources needed for each part of the system. Once the Service Tem-
plate is defined and inserted, the framework determines how to instantiate it using the
context data available. Each task is associated with an operator, and its assignment is
based on (1) howmany resources are available on each edge node, (2) the location of data
sources, and (3) the prediction of workload. Edge nodes are autonomous since they can
make their own decisions based on their local context without relying on the cloud. As a
downside, the dependency in Docker completely discards constrained devices, requiring
edge devices to run a full-fledge operating system.

DDFlow [Noo+19] Presents another distributed approach by extending Node-RED with
a system runtime that supports dynamic scaling and adaption of application deployments.
The distributed system coordinator maintains the state and assigns tasks to available de-
vices, minimizing end-to-end latency. Dataflow notions of node and wire are expanded,
with a node in DDFlow representing an instantiation of a task deployed in a device, re-
ceiving inputs and generating outputs. Nodes can be constrained in their assignment by
optional parameters, Device, and Region, inserted by the developer. A wire connects two
or more nodes and can have three types: Stream (one-to-one), Broadcast (one-to-many),
and Unite (many-to-one).

In a DDFlow system, each device has a set of capabilities and a list of services that corre-
spond to an implementation of a Node (cf. Figure 3.9, p. 83). The devices communicate
this information through their Device Manager or a proxy if it is a constrained device.
The coordinator is a web server responsible for managing the DDFlow applications. It
is composed of: (1) a visual programming environment where DDFlow application are
built, (2) a Deployment Manager that communicates with the Device Managers of the

Chapter 3. State-of-the-Art 83

Figure 3.9: DDFlow architectural components, representing both the coordinator compo-
nents and the device’s components [Noo+19].

devices, and (3) a Placement Solver, responsible for decomposing and assigning tasks to
the available devices. When an application is deployed, a network topology graph and a
task graph are constructed based on the real-time information retrieved from the devices.
The coordinator proceeds with mapping tasks to devices by minimizing the task graph’s
end-to-end latency of the longest path. Dynamic adaptation is supported by monitoring
the system; if changes in the network are detected, such as the failure or disconnection
of a device, adjustments in the assignment of tasks are made. The coordinator can also
be replicated into many devices to improve the system’s reliability and fault-tolerance.
They also showcase DDFlow recovering from network degradation or device overload,
whereas in a centralized system this would likely cause its (total) failure.

Most of these approaches are only POC and not widely adopted, even if most of them are
based onNode-REDwhich is one of themost common IoT-focused development environment
and runtime. Only a few of the approaches — FogFlow and uFlow — do in fact leverage the
available resources in the edge tier of the system.

3.2.6 End-user Development
There is a considerable amount of literature that focuses on enhancing the interactions between
users and smart spaces, taking advantage of several approaches, such as introducing artificial
intelligence-based solutions (personal assistants) and exploring Natural Language Processing
(NLP). These solutions try to improve the end-users experience on configuring their own IoT
systems, by providing easy-to-use mechanisms to program their systems that require little to
no technical skills. Some of these solutions that focus on providing a graphical interface for the

Chapter 3. State-of-the-Art 84

user to interact with the system have already being presented in § 3.2.3 (p. 74), thus in the fol-
lowing paragraphs, the focus will be on the approaches that leverage other ways of interaction
with the IoT system.

Austerjost et al. [Aus+18] recognized the usefulness of voice assistants in home automation
and developed a system that targets laboratories. Possible applications reported in their paper
include a stepwise reading of standard operating procedures and recipes, recitation of chemical
substance or reaction parameters to control, and readout of laboratory devices and sensors. As
with the other works presented, their voice user interface only allows controlling devices and
reading out specific device data.

Some of the identified approaches that either use NLP or conversational assistants in the
context of IoT systems are the following:

Siri, Alexa, Cortana, and Google Assistant There exist a plethora of conversational as-
sistants in themarket (see [Mit18] and [LQG18] for a comparison of these tools) which are
capable of answering natural language questions. Recently, these assistants have gained
the ability to interact with IoT devices, with Ammari et al. identifying IoT as the third
most common use case of voice assistants [Amm+19]. However, these are general con-
versational assistants and do not focus on providing IoT-focused features. Further, they
are limited in the number of device manufactures and ecosystems they support (relying
in the open-source community for supporting other devices and ecosystems).

Kodali et al. An approach for a home automation system to “increase the comfort and qual-
ity of life”, by developing an Android app that can control and monitor home appliances
usingMQTT, Node-RED, IFTTT,Mongoose OS, andGoogle Assistant. Their limitations
lie in that the flows must have been created first in Node-RED, and the conversational
interface is used to trigger them, ignoring all the management and configuration activi-
ties [Kis+19].

Braines et al. An approach based on Controlled Natural Language (CNL)— natural lan-
guage using only a restricted set of grammar rules and vocabulary — to control a smart
home. Their solution supports (1) direct question/answer exchanges, (2) questions that re-
quire a rationale as response such as “Why is the room cold?” and (3) explicit requests to change
a particular state. The most novel part of their solution is in trying to answer questions
that require a rational response; however, they depend on a pre-defined smart homemodel
that maps all the possible causes to effects [Bra+17].

Rajalakshmi et al. A solution using both Node-RED and Alexa to interact with IoT sys-
tems, which they claim to simplify the interaction between users and IoT systems, but
also manage complex systems. The system proposed by the authors uses Node-RED to
create rules and link devices with each other, allowing the user to create complex rules
while at the same time taking advantage of Alexa, providing a simple way for users to
control their smart devices. This system provides simple interaction with smart homes
through Alexa, and the complexity needed for some use cases through Node-RED. How-
ever, there is no link between the voice control and the visual programming solution,

Chapter 3. State-of-the-Art 85

which means they cannot create these rules using voice commands (being Alexa, the only
way to trigger the Node-RED flows) [RS17].

Kang et al. In their work explores the use of multi-modal interaction within IoT systems
— combining voice and gesture interactions— as a way of addressing the scalability and
expressiveness supported by existing IoT-vendors mobile applications and voice assis-
tants. Although most of the participants who took part in the study responded positively
to many interaction techniques, one of the identified pitfalls was the lack of robustness
of the voice assistant that failed to understand the user commands [Kan+19].

Several other works [Bhe+21; Kim20; KSP20] combine the use of voice assistants with
IFTTT, using the latter to define the system rules. While the primary control mechanism over
the IoT system is voice-based, it is mostly used to trigger the rules specified in the IFTTT plat-
form, thus depending and being limited by the rules’ definition capabilites and syntax of IFTTT.

An empirical study by Ammari et al. [Amm+19] identifies IoT as one of the most common
uses of voices assistants. In their study, users identified as the main drawbacks of the use of
voice assistants (1) the lack of spatial and temporal contextualization and (2) lack of support
for dynamic instructions (macros). Concerning (1), such awareness would allow the assistant to
know where the user is physically at any point in time, thus acting in accordance (e.g., turn on
the lights in the room where the user is located without the need to provide further context).
Regarding point (2), the users point to the need of creatingmacros to simplify their interactions
with the devices (e.g., supporting rules such as when leaving home, turn off all the lights, close the
garage door and reduce the thermostat temperature).

Priest et al. [PDM19] elaborated a list of the commands that Alexa knows how to handle,
classifying them into some categories, such as smart home, search, entertainment, among oth-
ers. From this list, it is noticeable that Alexa cannot perform complex actions on smart home
devices; instead, it can only perform direct actions like turning lights on or off, changing the
lights colors, and adjusting the climate system’s temperature. Similarly, Martin et al. [Mar+19]
gathered Google Assistant’s commands in a list, categorized similarly to the one about Alexa,
being the results similar to the ones about Alexa. Regarding Apple’s assistant, Siri, there is also a
list of the commands it can perform, created by Langley [Lan20b], in which it is possible to see
the similarities to the other two assistants mentioned. These assistants present a way to create
routines (recurring rules); however, it has to be done manually using the mobile application as-
sociated with each assistant, instead of voice commands. To sum up, smart assistants’ current
state does not allow users to create rules for their smart home devices using voice commands.

Clark et al. [CDN16], based on previous work that analyzed natural language for patterns
in smart home programming, stated that the current smart assistants are too simple and work
just as a voice interface for applications that control smart devices. The authors surveyed possi-
ble end-users of IoT systems for smart home applications they would want to see implemented,
based on a list of smart devices and their capabilities. The survey was split into two, one where
the smart home controls were handled by the devices controllers and one where there was arti-
ficial intelligence (AI) agent receiving the user’s commands and managing the controls, similar
to a smart assistant, but without limitations set in terms of capabilities. The survey results re-
veal a difference between both, with responses being typically more correct when an AI agent

Chapter 3. State-of-the-Art 86

helps smart home management. The authors then analyzed the queries given by respondents.
They developed a grammar that could express all those queries, concluding that there were
many similarities in sentence structure, which they believe allows them to convert any natural
language command to an executable program. The authors conclude that current smart assis-
tants are not developed enough to complete complex tasks and reveal that end-users can create
natural language prompts that can be turned into smart home programs.

Other authors studied the applicability of natural language in smart homes, in a more com-
plex fashion than current smart assistants can handle, concluding that end-users can create
programmable rules through natural language, even if there is a basic structure attached to the
rules, with the example of trigger-action programming (cf. Figure 3.1, p. 68), where there is a
basic structure to specify rules. However, they can easily be understood by users, even if they
are inexperienced, as shown by Ur et al. [Ur+14].

Ur et al. [Ur+14] carried three studies to understand how users use TAP on smart home
scenarios. In the first study, they asked 318 workers on Amazon’s Mechanical Turk (MTurk)
to list five things that they would want a smart home system to do, concluding that most of
them fit into four categories, namely: (1) programming, e.g., “automatically turning on the lights
when it is dark outside”; (2) self-regulation, e.g., “adjust the house to my preferred temperature
at all times”; (3) remote control, “hitting a button on my phone to turn on the lights”; and
(4) specialized functionality, e.g., “a breakfast-making machine”. To further check the ability
to model the workers’ intents, they tried to fit them into the TAP model, finding that 62.6%
of the submitted answers fit the model. In a second study [Ur+14], the authors downloaded a
dataset of 67169 recipes (TAP rules) from IFTTT [IFT19], focusing only on the recipes related
to smart home automation, which corresponded to a total of 1107 (2,1%), concluding that 513
recipes (0.8%) use physical devices as triggers and 594 (1.3%) use physical devices as actions. A
third-study required that a sample of 226 MTurk workers complete pre-defined automation
tasks using IFTTT, concluding that 80% or more of the participants successfully implement the
presented automation cases. However, the authors’ study on the diversity and complexity of
the rules that end-users want to configure is too open and vague. There is no common base of
devices to automate nor sample building schematic. Also, there is no dataset provided with the
first study’s collected cases (which limits the use of the gathered data).

Mi et al. [Mi+17] also carried a survey on IFTTT, including an analysis of over 408 ser-
vices (third-party services such as Amazon Alexa), 1490 triggers, 957 actions, 320000 applets.
Although their work is not IoT-focused, they carry an analysis on the IoT-related subset of the
dataset. In their study, they conclude that the majority of the entries by users are trigger-action
ones (e.g., “turn on the light”); thus, the resulting applets are, in their majority, relatively simple,
mostly due to the limited and simple interfaces exposed by most IoT devices. The authors also
add that this is due to “the fact that most tasks (in the smart home context) we want to automate
are indeed simple”. While we agree that the limitations posed by the devices limit what end-
users can program them to do and that the majority of the rules are indeed simple by nature,
as the number of inhabitants and devices increases, the resulting operational context can be
complex to model and reason about [Man+19].

Chapter 3. State-of-the-Art 87

3.2.7 Node-RED in Detail
Node-RED [Ope19b] is one of the most common (low-code) visual programming solutions
(cf. Figure 3.2, p. 69) with a special focus on IoT development4. This solution was identified
and briefly discussed in the previous section as one of the existent mashup tools, but due its
popularity and being open-source, we will analyze it in detail as a way to grasp how this kind
of solutions — i.e., all-in-one development environments and runtime — work.

Node-RED can be used as a standalone development solution and, also, as an optional
extension to other solutions (including Home Assistant [com21], FRED [BL16] and Open-
HAB [Ope21]). Although most Node-RED users’ state that they use it as recreational activity
(i.e., use Node-RED as part of a hobby), there is a considerable part of users that refer its us-
age as part of commercial solutions (e.g., used in products of Hitachi, Siemens, Samsung, and
Particle [OLe20]), or as a component of systems in production (cf. Figure 5.1, p. 135).

Figure 3.10: Annotated Node-RED development web-based user interface.

As an open-source solution it allows us to experiment with without limitations of closed-
source solutions, modifying both its inner works and front-end (the default UI can be seen in
Figure 3.10, p. 87). It is also extensible by design, and anyone can create and publish new nodes,
which can be installed directly within Node-RED UI5.

Although its widespread usage across application domains, it has several limitations and
issues that impact both the end-users interaction and the dependability of systems built using
it. In the following paragraphs an analysis from different perspective will be given highlighting

4Although the tool was initial only focused on IoT development it now claims to be suitable for developing
any category of event-driven application.

5A search on npmjs [npm21], the package manager used by Node-RED, yields a total of 3644 packages for
node-red-contrib (circa 2021). This means that there are at least 3644 community-made nodes available (since
each package can provide more than one node).

Chapter 3. State-of-the-Art 88

somepending challenges of these approaches, showcasing how itmapswith recurring problems
of the IoT ecosystem and other existing development environments.

Technical Perspective

A summarized view on Node-RED was given in § 3.2 (p. 68). We consider Node-RED as
mashup-development tool since it leverages a visual programming language but, as per their
own definition is “a programming tool for wiring together hardware devices, APIs and online
services” [Ope19b]. Node-RED applications are flows, composed by different nodes connected
bywires. Theseflows can be organized into different tabs and can be directly deployedwithin the
programming interface. The Node-RED runtime, which is based on Node.js, can run multiple
flows and enables the direct exchange of messages within a flow, but also provides mechanisms
for indirect inter flow and inter node communication via the global and the flow context (e.g.,
this can be used to maintain a state shared by several nodes without direct message passing).

There are four main types of nodes: (1) input nodes which are sources of events (e.g., new
sensor reading), having no input and at least one output port, (2) output nodes which are sinks,
having no output and at most one input (e.g., post data to a web service), (3) intermediary nodes,
having at most one input and at least one output (e.g., check if a condition is met), and (4) config-
uration nodes, having no inputs nor outputs, which are used to share configuration data across
flows (e.g., MQTT broker configurations).

Nodes
Nodes

(2) emit events
Nodes

Non-blocking
worker threads

Node.js' Event Loop
(single thread)

Node-RED
flows

(1) lookup next
node(s) (5) return results (4) return results

(3) do work

Figure 3.11: Node-RED high-level event processing model [BL14].

The information about a flow is stored in JSON files, which include details about the nodes,
wires, and other relevant meta-data (e.g., positioning of the nodes in the programming canvas).
The JSON files can be used for exporting and importing other flows and to version control
different versions of a flow. An example of a flow was given on Figure 3.5 (p. 78).

The high-level event processing model of Node-RED is depicted in Figure 3.11 (p. 88). The
Node base class (nodes inherit from it) is a subclass of Node.js event APIs EventEmitter. This
class implements an observer design pattern that maintains a subscriber list of all the nodes
connected to it by wires and emits events to them. When a node finishes processing data from
external sources or another node, it calls the methods send() with a JavaScript object. In its
turn, this method calls the EventEmitter emit() method that sends named events to the
subscribed nodes.

When a flow is changed, the developer can choose between a full or partial (only changed
nodes or flow parts) deployment. As the developer deploys the system, all the involved nodes are

Chapter 3. State-of-the-Art 89

reset (calling node.on(’close’,) event) and anymessages received in during deployment are
lost. If a new or changed flow is received by Node-RED’s REST API it is immediately applied
and all the nodes in the changed tab are restarted. It is also possible to restart all the nodes
(calling the close event).

Although Node-RED presents an easy platform to prototype simple systems, its current
implementation has several limitations from our perspective. Concretely, we highlight the fol-
lowing as some main concerns and limitations from a technical viewpoint:

Centralized architecture Node-RED runtime is centralized by default, doing all themes-
saging passing and processing in a single single-threaded runtime6 (i.e., there is only one
event loop that must be shared between all the flows). This poses several limitations and
raise several concerns [OLe20], which include (1) all the processing of every nodemust be
done in a single instance, thus not allowing distributing the computational tasks among
available resources, (2) if one flow has a high-resource usage, it will impact the whole sys-
tem, (3) if there is any issue (fault) with any node or flow, an error can lock up the event
loop, whichwill lead to a system failure, and (4) there is no isolation of execution contexts
(which raises both security and privacy issues). Additionally, there is no focus on having
redundancy (multi-tenancy) with several instances of Node-RED (e.g., mechanisms to
synchronize state across instances);

Separation of concerns The web-based development interface (Node-RED Editor) and
the runtime are highly coupled. This makes it easy for presenting status information
about the runtime directly in the programming interface (i.e., logs and nodes status mes-
sages). However, it makes it harder to interact directlywith the runtime using other inter-
faces, limiting the possibility of using alternative implementations of the programming
canvas (this is typically known as loose coupling). Additionally, only recently (version 1.2)
the support for pluggable message routing was introduced (decoupling from the internal
Node.js messaging routing mechanism);

Multiple inputs AlthoughNode-RED supports several outputs per node, they cannot have
differentiated inputs. This poses a technical difficulty in defining and readjusting the be-
havior of flows both during the design and runtime phases, including the configuration
of test conditions and recovery measures. A strategy followed by some nodes is to force
inputs messages to have a dedicated field in the JavaScript object called parts, with the
node implementing additional logic to check if all required parts are received before pro-
ceeding;

Types and static analysis (structural correctness) Nodes do not have the notion of
types (everything is a JavaScript Object); this allows the user to incorrectly connect two
nodes, where the destination expects a different data type than the one sent by the origin
one. This leads to common (and simple) errors that onlymake themselves noticeable after
deployment of the whole flow, possibly introducing severe inconsistencies in the system.
This can be even harder to detect as some errors may only appear in specific conditions.

6This is how Node.js works by design.

Chapter 3. State-of-the-Art 90

Adding such features would provide foundations for a linter that could inform the devel-
oper over issues in their flows before deploy;

Meta-programming Formal mechanisms of introspection and reification, essential for ef-
fective meta-programming, are nonexistent. This limits the possibility of adjusting flows
in runtime and forces us to rely on external APIs thatwere not designed for this particular
purpose and which might easily break.

Runtime modification There are no mechanisms to change messages at runtime to
check the system’s behavior (e.g., when a temperature sensor emits a reading, it should be
possible to change it). Thus, it is impossible to inject faulty, or rare, messages to verify if
the system reacts as expected;

Testing As the flows increase in complexity, it becomes paramount to assert their cor-
rectness. This is even harder to assert given that there are no mechanisms for runtime
modification. Node-RED lacks of a testing framework within the development environ-
ment which could be used to give insights on the correctness and performance of the
developed flows, but this would imply that should exist some way to distinguish between
development and production environments, requiring, e.g., a secondary runtime which
would act as the test runner.

Although this is not an extensive list of the technical challenges and limitations of Node-
RED, it covers the ones thatmostly impact this work (there is, for instance, somework detailing
severe security issues inNode-RED [Ahm+21]). Some authors have been focusing some of these
limitations, namely the distribution of tasks across devices, and some of these approaches are
further detailed in § 3.2.5 (p. 79).

Node-RED lead developers have already considered some of these limitations [OLe20], in-
cluding the introduction of a testing framework, a flow debugger (introducing breakpoints and
capturing metrics), a flow linter, and (further) decoupling of the UI and the runtime (making
foundations for a distributed Node-RED).

End-User Development Perspective

TheNode-RED interface has three components: (1) Palette, (2)Workspace, and (3) Sidebar. The
Palette contains all the nodes installed and available to use, divided into categories. They can
be used by dragging them into the canvas, and additional features and configurations for each
node are accessible by double-clicking them. The Workspace is where the flows are created and
modified. It is possible to have several flows and sub-flows accessible with the use of tabs7 (cf.
Figure 3.5, p. 78). Lastly, the Sidebar contains information about the nodes, the debug console,
node configuration manager and the context data.

Node-RED presents several challenges for its users (commonly users with limited technical
expertise), specially as the system increases in complexity, thus making it harder to understand
what is happening (system’s behavior). One particular limitation is that Node-RED does not
provide any feedback about the running system to the user during development (e.g., evolution

7Although flows can be organized in tabs, all flows share the same runtime.

Chapter 3. State-of-the-Art 91

TimeoutWatcher

peridiocity

timeout

ok

event

variable

value30 seconds

Event Subscriber

eventSensor X
last event: 10 secs ago

Figure 3.12: Mockup of an alternative node interface in Node-REDwith annotations, labels
and multiple inputs/outputs.

of an existing flow), requiring to deploy the system to see the changes. This makes it difficult
for a user to create new — and modify existing — rules while ensuring that changes do not
break the expected behavior [Hol02].

It also lacks mechanisms to inspect the inner workings of a node, inject or modify messages
during runtime (as aforementioned), or even to verify if connections between nodes will not
raise runtime errors. Its debug capabilities are also inadequate, relying on “log to console” strate-
gies— leading to the proliferation of non-essential debug nodes in the flows. Every change the
user makes to the system, even to add debug nodes, requires a new deployment. Common
mitigation strategies to this problem includes the use of external solutions that provide visu-
alization and monitoring mechanisms that allow understanding how the system is behaving
(making the system observable to a certain degree), mostly through log analysis [Baj17; DS18].

Even given that there is a considerable amount of visual programming solutions for IoT
(even if they are less popular in terms of usage and community thanNode-RED [Ray17; Ihi+20])
they are typically limited in ways similar to Node-RED. We identify and summarize some of
these limitations as the following:

Observability There is no out-of-the-box way to visualize the information that flows
through the system in the development interface. Bypassing this limitation typically
requires resorting to external solutions for monitoring, but information is limited (e.g.,
there is no information about the current data being processed by a given node). Node-
RED has a built-in dashboard for visualizing metrics, but it also runs completely sepa-
rated from the development environment (and requires extra nodes to configure the vi-
sualizations);

Debugging and exploration Besides the provided logging capabilities of Node-RED, us-
ing debug nodes (i.e., log to console), no other debugging technique is available. Thismeans
that breakpoints, node inspection, value history, and other apparatus are absent (both at
runtime or as a capture-replay fashion), severely hindering the developer ability to un-
derstand what went wrong in the internal logic of a node. Additionally, every change in
the system requires its deployment to production, including adding debugging nodes;

Support for labels and annotations Nodes do not visually provide sufficient informa-
tion about their connectors and internal status, making flows harder to construct, debug,
and adapt. Most (if not all) nodes configurations cannot be set or changed by other nodes.

Chapter 3. State-of-the-Art 92

A solution similar to Figure 3.12 (p. 91) seems more useful, not only in presenting this
information but also in terms of flexibility regarding our goals;

Visual notations Node-RED should provide different visual notations (besides simple
boxes with text) which could convey contextual information based on the data that the
node is processing and its datatype;

Auto placing As flows grow in complexity it becomes an arduous task to keep the visual
organization of nodes andwires simple to read and understandable (e.g., overlappingwires
and nodes hinders the reading capability). An automatic flow formatter could readjust and
reordering the flow to make it more understandable.

Some mentioned visual enhancements are depicted in Figure 3.12 (p. 91). Other works, in-
cluding the one by Ancona et al. [Anc+18], attempt to address some of these end-user develop-
ing challenges. Though they are capable of providing real-time information about the running
system, they do not provide any real-time visual feedback in the Node-RED editor. No exist-
ing research, to the best of our knowledge, was found in providing some structural correctness
verification in design time, neither any feature regarding runtimemodification and exploration
in visual development solutions for IoT.

3.2.8 Discussion
Taking into consideration the findings presented in Section 3.2, the next paragraphs match the
pending challenges and issues with published works that delve into the same topics.

Traditional Development Approaches

Most typical solutions used for IoT system development are tightly coupled to a specific tier.
For example, PlatformIO [Pla19] is arguably one of the most complete solutions for embedded
systems development. However, it fails to cover the full spectrum of devices, languages, and
vendor-specific technologies that build up IoT systems.

Other tools, platforms, and approaches have been developed in the last few years to find new
approaches for developing IoT systems. However, a gap analysis on 39 IoT platforms circa 2016
(from PaaS to on-premises solutions) [Min+16] revealed issues regarding (1) the lack of support
for heterogeneous devices, (2) handling different formats and models of device data streams,
(3) lack of proper documentation and tooling, (4) ability to simultaneously target different tiers
(edge, fog, cloud), (5) lack of semantic-based service discovery, (6) on-intuitive construction
mechanisms, and (7) privacy and security.

While most of the traditional development solutions for software-only systems have built-
in — or easy integration — with verification and validation mechanisms, this is not common
in IoT development solutions that typically consist of independent and vendor-specific tools,
which are analyzed and discussed by existing literature, and further discussed in Section 3.3,
p. 97.

Several authors conclude that there is a need to evolve towards a new generation of devel-
opment environments to bring software engineering practices up-to-date [Lar+17] with other

Chapter 3. State-of-the-Art 93

domains: “software developers [need] to realize that IoT development indeed differs from mobile-app
and client-side web application development” and, as such, appropriate tooling is needed to effec-
tively tackle this reality [TM17]. Larrucea et al. [Lar+17] also suggest that there is a need to shift
from traditional development environments to cloud-based ones: “development environments in
the cloud—not for the cloud, but in the cloud— to enable the massively scalable verification and val-
idation techniques (including simulation) that will be needed for most large mission-critical systems
in the IoT”. This idea has been followed by some practitioners that already offer cloud-based
IDEs with built-in validation and verification mechanisms [Pyc21; Par21].

Model, Visual, and Mashup Development

Several development approaches have been suggested as alternative to traditional development
regarding IoT systems, due to the specific constraints and necessities of these systems. More
specifically, several works focuses on improving the abstractions and reducing the technical
knowledge necessary to develop them, as the complexity of these systems keeps increasing.
Most of the presented solutions are not mutually exclusive, being in some cases combined to
improve the development, evolution, and maintenance processes.

Visual Programming Visual programming aims to abstract low-level concepts and details
into high-level logic through the use of visual metaphors (e.g., Programmed Logic Controllers
are typically programmed using visual notations such as Ladder Diagrams) [YF03].

When analyzing the range of visual development solutions available, we can notice that
while most of them target the fog tier, they can also be used in the cloud tier (as most of them
target non-constrained Linux-based systems common to both the fog and cloud tiers) [Ray17;
Ihi+20]. However, it is noticeable that those that target physical devices are particular to the
edge tier and more coupled to specific hardware (primarily due to the direct interaction with
its physical capabilities).

Other typical shortcomings of visual development solutions relate to (1) testing and verifi-
cation procedures, (2) debugging capabilities, (3) scalability, both in terms of components and in
terms of the visual metaphors used, (4) maintainability (e.g., version control), and (5) real-time
feedback to the developer (e.g., most of the time the feedback occurs after deployment) [Ray17;
Ihi+20].

Mashup-based andModel-based To improve the development of IoT systems, bothmodel-
based and mashup-based software development approaches have been pursued (cf. Sec-
tion 3.2.4, p. 77, and Section 3.2.2, p. 70). These allow the abstraction of low-level pro-
gramming details and processes into higher-level representations and constructions that can
be used to manipulate IoT systems [MHF17]. However, these approaches commonly have
limitations and unaddressed challenges, such as not capturing the full software development
life-cycle [MHF17], having large-scale limitations [MHF17], and suffering from leaky abstrac-
tions [Spo04].

Prehofer et al. verify this in their work, suggesting that model-based approaches by them-
selves fall short in attaining the development requirements of IoT systems. The authors also

Chapter 3. State-of-the-Art 94

noticed a need for better tooling to use such approaches in real-world development and that
concepts such as models@run.time — usage of models to manage and monitor the execution
of systems — are not explored (which would ease the process of dealing with large-scale sys-
tems that are very dynamic). They also point out that mashup-based development tools would
benefit from the use of model-based concepts. Although, both approaches have a common
shortcoming: if systems are very dynamic, modelling and mashup tools cannot accurately represent
the system graphically [PC15].

By analyzing the selected tools and their roles, both in academia and in the market, we
observed that two of them share wide popularity (cf. Figure 3.2, p. 69): (1) Node-RED as a
mashup-based tool that also leverages visual programming, and (2) ThingML as a model-based
solution highly inspired in UML. We consider these two approaches as reference implemen-
tations of these two development models (mashup- and model-based), and will analyze and
compare them in detail in the following paragraphs.

Node-RED also has several shortcomings, including the lack of a proper way to debug and
test flows, which becomes essential given that IoT systems are typically large-scale and complex
by nature, being easy to end up with highly-complex flows that are visually hard to understand
and reason. Someworks have been trying to improve some of the development issues of Node-
RED, either by enriching the visual notations or by adding development mechanisms common
to other development solutions, i.e., linting, debugging, and testing8 [Cle+18; Tor+20]. As of
version 2.0, Node-RED added support for linting the visual flows and introduced some new
debugging mechanisms [OLe20].

The shortcomings of mashup-based development solutions, which are shared with other
visual programming approaches, pose a considerable problem regarding scalability — at least
from a developing process perspective — due to limitations in the usage of visual metaphors.
A study by Petre [Pet02] acknowledged that developers think that simply repackaging massive
textual information into amassive graphical representation is not helpful, raising the need of adding
means of reasoning about artifacts too enormous to encompass fully in one view.

Several authors have been trying to improve Node-RED. As an example, Blackstock et al.
[BL14] and Margarida et al. [Sil+20] works include modifications that enable Node-RED to
orchestrate the parts of a given flow in a distributed fashion, i.e., orchestrating tasks between
servers, gateways, and devices collaborating and coordinating actions defined in the same flow.

ThingML as a model-based development environment does in fact fully leverage models as
away to develop IoT systems [Har+16; FM17]. However, to use some of the devices features it is
required to add device-specific code (i.e., leaky abstractions). When comparing toUML, one key
difference is that ThingML’s primary syntax is lexical and not graphical despite visual notations
being the most common approach for Model-Driven Engineering [SK03]. It lacks in covering
the full development life-cycle, due to limitations on software deployment and updates. Also,
the ability to share computational resources and devices among IoT applications, in a reliable
and foreseeable fashion, is not covered.

From the analysis of these two tools, several conclusions can be made that show that both
miss some essential features. Node-RED has a simple to use drag-n-drop visual programming

8As of version 2.0, Node-RED added support for linting the visual flows and introduced some new debugging
mechanisms [OLe20]

Chapter 3. State-of-the-Art 95

interface that can be used as a reference in the domain of IoT, but needs to be extended to em-
brace the necessities of real-time feedback (i.e., development feedback-loop) [Agu+19]. As per
the current state of practice, we agree with Prehofer et al. [PC15] when they state that a model-
based approach can be a suitable abstraction for IoT, as it is already proposed by approaches
such as ThingML. However, it must contemplate other aspects, including the use of features
common to mashup-based approaches.

From Figure 3.2, and taking into account the observations mentioned earlier, we observe
that there is a bigger focus on model-driven solutions, but typically this kind of tools are un-
popular and are at a more experimental development phase than mashup-based solutions.

Development of Decentralized IoT Applications

The approaches that focus on providing ground for programming and orchestrating (decen-
tralized) IoT systems were characterized based on their mentions or support for the following
features and characteristics:

Table 3.3: IoT decentralized visual programming approaches and their characteristics.
Most of the solutions do not provide access to the source code, thus limiting
our analysis.

Tool Leverage edge
devices

Capabilities Open-
source

Computation
decomposition

Runtime
adaptation

DDF [GLL18] Limited9 Yes Yes Limited Yes
uFlow [Sen+19] Yes Limited10 No Limited Limited10

FogFlow [Che+18b] Yes N/A Yes Limited Yes
DDFlow [Noo+19] Limited11 Yes No Limited Yes

Leverage edge devices A decentralized architecture takes advantage of the computa-
tional power of the devices in the network, assigning them tasks. However, some ap-
proaches have limitations on the type of supported devices or only focus on the fog tier
and not edge devices;

Capabilities The orchestrator must know each device’s capabilities so that it can make
informed decisions regarding the decomposition and assignment of tasks;

Open-source The license of software or tool is essential in terms of its usability. Open-
source allows access to the code, making it possible for its analysis, improvement, and
reuse;

Computation decomposition To implement a decentralized architecture, it is important
to decompose the computation of the system into independent and logical tasks that can
be assigned to devices. This is made using algorithms, which can be specified or men-
tioned;

9Assumes all devices run Node-RED (does not apply to constrained devices).
10Communication between devices is made through the cloud (Internet-dependent).
11Assumes all devices have a list of specific services they can provide.

Chapter 3. State-of-the-Art 96

Runtime adaptation A system needs to adapt to runtime changes, such as non-
availability of devices or even network failure. The system notices these events and can
take action to circumvent the problems and keep functioning;

From the analysis of Table 3.3 (p. 95), we can conclude that the current research for visual
programming approaches that leverage the decentralized nature of IoT is incomplete. Most of
the existing solutions have limitations either in their functioning or in the devices they support.
DFF assumes that all devices run Node-RED, limiting the types of devices used to computing
units capable of running some kind of operating system. FogFlow and uFlow are the only ones
that specify how they truly leverage constrained devices, with the transformation of sub-flows
into Lua code. DDFlow assumes that all devices have a list of specific services they can provide
that should match the node assigned to them.

Regarding themethod used to decompose and assign computations to the available devices,
DDFlow describes the process using the longest path algorithm focused on reducing end-to-end
latency between devices. FogFlow and uFlow mention several algorithms that could be used
but do not specify which one was implemented. Both DDF and FogFlow do not specify the
algorithm used besides some constraints, but are the only ones with accessible source code and
an open-source license. All the surveyed approaches claim to have some runtime adaptation
mechanisms to deal with changes in the system, such as device failures.

End-user Development

Popular end-user development environments are based on hybrid (visual-textual) rule-based
programming (if-this-do-that or when-trigger-then-action). However, these kinds of solutions
are not enough to express more sophisticated intents, i.e., the process of expressing rules based
on time, space, and fuzzy conditions make it too complicated for the end-user to attain their
preferences [BV15].

There has been an effort towards conversational assistants and other NLP-based solutions
for users without specific technical expertise to ease their interaction with IoT systems. How-
ever, most of the solutions are limited in some aspects: (1) the lack of standards (and the disre-
gard by the existing ones by practitioners), most of the solutions are limited to certain devices
or ecosystems, (2) the simplicity offered by some solutions limits the users’ ability to configure
more complex12 scenarios and behaviors [He+19], (3) several limitations regarding the test and
analysis of the resulting configuration (users have to manually trigger events to check if their
programmatches their expectations), thus making the systemmore opaque and hard to under-
stand “why” some events happen — causality — and (4) some existing solutions depend on a
first setup by technicians [Ihi+20].

Although there is a considerable amount of research challenges associated with the afore-
mentioned points, there are still issues and challenges that are not being tackled effectively nei-
ther by practitioners nor by the research community. This is a bigger problem since it is hard
to draw a line between the simplicity of end-user development and the ability to configure and
manage complex scenarios without requiring a certain degree of expertise (e.g., power-users).

12As an example, the complexity of managing devices schedules which rises with the number of devices and
the shared conflicting preferences of household members.

Chapter 3. State-of-the-Art 97

3.3 Testing IoT Systems
Focus on testing the different tiers and components that compose an IoT system— from low-
level/hardware specifications to high-level components — is needed to guarantee its perfor-
mance, scalability, reliability, and, security. Yet, it is hard to define a clear boundary between the
low-level and high-level components in IoT since they are strongly connected and dependent.
However, the methods and techniques used for testing these are, typically, similar.

Testing IoT systems is a complex task as these systems depend on: (1) different software
and hardware components, (2) different modules, architectures, and standards, (3) produced
and sold by different manufacturers, and (4) with different working properties. One can also
identify several challenges, for example, the high-heterogeneity, large-scale, dynamic environ-
ment, real-time needs, security and privacy implications, and the difficulties pertaining to test
automation. This makes testing IoT systems especially hard. Moreover, tests have different
needs depending on the target artifact (e.g., network, code, and hardware), and different testing
needs appear in each of the different IoT tiers (cf. Figure 2.7, p. 39):

Edge Testing Concerns the testing of the more low-level parts of the IoT system, like
micro-controllers (e.g., Arduino) and PLCs. Testing approaches like embedded system
testing can be typically used to perform tests on the edge tier, asserting the edge devices
against their specification [Koo11].

Fog Testing Focuses on testing the middle-point tier on IoT systems, normally composed
of gateways. Software testing approaches can be seamlessly applied since the devices
that belong to this tier have, typically, a comfortable amount of computing power and
memory, and run full operating systems (e.g., Linux). Additionally, since this is the
connectivity-enabler tier, connecting the devices and the Internet per se, it should cover
network testing [KK16] and security testing [Zha+14].

Cloud Testing Cloud testing addresses the need to test the unique quality concerns of
the cloud infrastructure, such as massive scalability and dynamic configuration. This
field has open-challenges and issues of its own, being extensively analyzed in the litera-
ture [Bai+11; RTS10].

When considering IoT testing as a cross-cutting concern, there are generally two avenues
that can be found in the literature: (1) testbeds, and (2) emulators/simulators. IoT testbeds
enable cross-cutting testing ranging from lower to higher level tiers. Although almost every
testbed vertically encompasses all the tiers, they are single-domain, focusing on a specific do-
main of application or technological aspect, although there are somemulti-domain testbeds that
combine different technologies into a typical experimental facility. A survey on the currently
active and publicly available physical testbeds is given by Gluhak et al. [Glu+11].

More recently, and not covered by the survey of Gluhak et al. [Glu+11], other testbeds have
appeared (some as successors of previous exiexistingstent ones). One example is FIT IoT-LAB,
a scientific testbed for testing small wireless sensor edge devices, together with heterogeneous
communicating objects, built on large-scale infrastructure, and deployed around six sites in

Chapter 3. State-of-the-Art 98

France with over 2000 sensor nodes. It is the successor of SENSLAB testbed and is part of the
Future Internet of the Things (FIT) platform [IoT19b; Adj+15]. Another example is the Smart-
Santander testbed which is a city-scale experimental research facility that supports the typical
applications and services of a smart city, designed with the purpose of achieving experimental
realism in terms of scale, heterogeneity, dynamic topology (mobility), reliability concerns, and
user support and end-user involvement [San+14].

Emulators attempt to replicate with a high-level of fidelity the inner mechanism of the
target system (e.g., physical devices’ emulation), while simulators only target the externally ob-
servable behavior, but not necessarily the intricate mechanisms of the real system (e.g., smart
city simulation) [SYB04]. Thework pursued by Looga et al. [Loo+12] surveys the existing simu-
lators and emulators, revealing issues on their suitability for testing IoT systems and proposing
a new emulation platform for IoT (e.g., MAMMotH).

3.3.1 Solutions and Approaches
An overview of these solutions, focusing on different tiers and enabling technologies, is listed
below. A comparison of these tools is also depicted in Table 3.4 (p. 101).

PIO Unit Testing PlatformIO testing feature with support for several development
boards and embedded systems [Pla19]. This testing feature is based on the Unity Test
API by ThrowTheSwitch.org [Mik18].

IoTIFY IoTIFY is an application development environment for IoT without any hardware
dependencies. By resorting to device virtualization, it provides a virtual laboratory for
building embedded prototypes, and a network simulation for system scaling and data
generation which can be used for both performance checks and connectivity [IoT19a].

ArduinoUnit ArduinoUnit is a unit testing framework for Arduino libraries. Being a
lightweight library, developers can quickly test their systems in an Arduino board, de-
spite their low amount of resources. However, it is up to the developer to upload the
testing application to the target board, and the results must be interpreted by them, typ-
ically through the use of a serial port monitor [Mur19].

MAMMotH MAMMotH is a large-scale IoT emulator, being able to emulate ten thousand
devices per Virtual Machine (VM), whose architecture presumes three distinct scenarios,
namely: (1) mobile devices connected via GPRS to a base station forming a star topology,
(2) stand-alone wireless sensor networks (WSN) connected to a base station via GPRS,
and (3) constrained devices (e.g., sensors) connect to proxies, which in turn connect to
the backend — a large-scale IoT emulator. To reproduce the communication problems
present in a real IoT environment, the proxy to which the devices are connected simu-
lates a radio link for each node, able to delay and drop messages. Developers can then
use this setup to create experiment scenarios, deploy them on a testbed and monitor the
results [Loo+12].

Chapter 3. State-of-the-Art 99

SimIoT SimIoT is a toolkit to achieve experimentation on dynamic and real-time multi-
user submissions within an IoT scenario. The toolkit is based on SimIC, a system that al-
lowsmodelers to configure a diversity of clouds in terms of data center hosts and software
policies wherein the desired number of users could send single or multiple requests for
computational power, software resources, and duration of VM virtualization [Sot+14].

Cooja Simulator Cooja Simulator is an emulation/simulation platform developed for the
Contiki OS. It is an extensible Java-based simulator able to simulate the network, oper-
ating system, and instruction set. It is also able to emulate the execution of the same
firmware that may be uploaded to physical nodes, instead of simulating it. Cooja al-
lows developers to test their code and systems long before running it on the target hard-
ware [Gro19; BE15].

TOSSIM TOSSIM is a wireless sensor network simulator that was built with the specific
goal to simulate TinyOS devices. Since TinyOS is event-based, it is easily translated into
a simulator engine with discrete events, thus simplifying it and making it more effective.
TOSSIM supports two programming interfaces (Python and C++), and has various lev-
els of simulation, from hardware interrupts to high-level system events, such as packet
arrivals [SIN19; LL03].

iFogSim iFogSim is a Fog Computing Simulator able to simulate edge devices, cloud data
centers, and network links, and performmetrics evaluation on them. With these features,
it allows investigation and comparison of resourcemanagement techniques based onQoS
criteria (e.g., latency, network congestion) [Gup+17; MB19].

MobIoTSim MobIoTSim is a mobile IoT device simulator, developed for Android, de-
signed to help researchers learn IoT device handling without buying real sensors, and to
test and demonstrate IoT applications utilizingmultiple devices. This system can be con-
nected to a gateway service in a cloud, such as IBMBluemix Platform and Azure IoTHub,
to manage the simulated devices and to send back notifications by responding to criti-
cal sensor values. By using this tool, developers can examine the behavior of small IoT
systems, and evaluate IoT cloud applications with a hand-held device [Pfl+16; KPG18].

IOTSim IOTSim is a Cloud simulator built on top of the CloudSim system and designed
to support the testing of IoT Big Data processing, resorting to a MapReduce approach.
By inherently supporting Big Data systems, it facilitates the understanding and analysis
of the impact and performance of IoT systems by researchers and commercial organiza-
tions [Zen+17].

DPWSim DPWSim is a simulation toolkit to support the prototyping and development of
service-oriented and event-driven IoT applications. It aims to support the OASIS stan-
dard Devices Profile for Web Services (DPWS), which, although it enables the use of web
services on smart and resource-constrained devices, also reduces its scope to that of IoT
devices implementing the referred device profile [Han+14].

Chapter 3. State-of-the-Art 100

SimpleIoTSimulator SimpleIoTSimulator is an IoT device simulator that can create test
environments comprised of thousands of sensors on a single computer. It supports
many common IoT protocols and can learn from data of recorded packet exchanges
from real servers and sensors and model the behavior of its simulated devices from such
data [Sim19].

Atomiton IoT Simulator The Atomiton IoT Simulator, built atop Atomiton Stack (a pro-
prietary operating environment for the Internet-of-Things), is a prototyping and testing
framework able to simulate virtual sensors, actuators, and devices with unique behaviors.
It allows prototyping of an IoT solution and tests its scalability by providing the ability to
create boundary test cases, resorting to the simulation of thousands of devices and events
such as network interruptions, device response delays, and peak load [KPG18].

MBTAAS The Model-Based Testing as a Service (MBTAAS) allows systematic testing of
IoT and data platforms. The approach resorts to a combination of model-based testing
(MBT) techniques and service-oriented solutions. The solution has been tested on top
of the FIWARE IoT-enabling platform. Further, the modularity of the solutions allows
integration testing between different IoT platforms [Ahm+16].

CupCarbon CupCarbon is a platform for designing smart-city and IoT Wireless Sensor
Networks (SCI-WSN). It is designed around two simulation environments, namely: one
that models mobile units (e.g., cars) and natural events (e.g., wildfire, gas), and the other
makes discrete event simulation of wireless sensor networks and can take into account
the scenario designed in the previous environment. With the integration of the Open-
StreeMaps framework, and allowing the programming of each node individually, Cup-
Carbon is a useful tool to design, visualize, debug and validate distributed mechanisms
for monitoring and collecting data about the environmental surroundings [Bou16].

EdgeCloudSim EdgeCloudSim is an extension of the cloud simulation solution
CloudSim [Cal+11] adapted for simulating two-tier systems (i.e., cloud servers and on-
premises servers), focusing on the modeling of the system in terms of computational re-
sources and network realistically with load generation and dynamic topology modeling
features. The simulation devices and applications are specified using XML. Further, the
simulation system is built in modules, allowing it to be extended [SOE18; Zai+18].

Fortino et al. An hybrid IoT system modeling and simulation approach based on the
Agent-based Cooperative Smart Object framework (ACOSO framework) [For+13], built
on top of the OMNeT++ discrete event simulator [VH08]. The approach allows model-
ing the IoT system in an agent-based way (multi-agent system), enabling the simulation
and testing of the communication between different devices and other parts of the IoT
system [For+17].

Despite being extensive, this list only presents the most common approaches and solu-
tions. There is an ever-growing number of tools and approaches being designed to test IoT
systems (both as a whole as well as for specific artifacts), most of them being of simulators and
testbeds [Che+18c; JJW18; Glu+11].

Chapter 3. State-of-the-Art 101

Table 3.4: Overview comparison of the available tools on the IoT testing landscape. N/A
symbolizes that there is no information available, or it was not have been found
during our research.

Tool IoT
Tier

Test Level Test Method Testing
Artifact

Prog.
Lang.

Test Env. Test
Runner

Sup.
Platf.

Scope

PIO Unit
Testing

Edge Unit White-box Code C/C++,
Arduino

Device Local,
Remote

15+ Market

IoTIFY All Any White-box N/A N/A Simulator Remote N/A Market
Arduino
Unit

Edge Unit White-box Code Arduino Device Local Arduino Academic,
Market

MAM-
MotH

All Integration,
System

Any Network N/A Emulator Local N/A Academic

Cooja Edge Integration Black-box Network C Emulator Local Contiki
OS

Academic,
Market

TOSSIM Edge Integration Any Appli-
cation,
Network

Python,
C++

Simulator Local TinyOS Academic

SWE
Simulator

Edge System Black-box Appli-
cation,
Network

XML,
Visual

Simulator Local SWE
Standard

Academic

SimIoT Fog Integration,
System

Black-box Any N/A Simulator Local N/A Academic

iFogSim Edge,
Fog

Integration,
System

Grey-box Network Java Simulator Local N/A Academic

MobIoT-
Sim

Fog,
Cloud

Integration,
System

Grey-box Appli-
cation,
Network

N/A Simulator Local N/A Academic

IOTSim Cloud Integration Any Applica-
tion

N/A Simulator N/A N/A Academic

DPWSim Fog,
Cloud

Integration,
System

Any Applica-
tion

WSDL Simulator Local DPWS Academic

SimpleIoT
Simulator

Edge,
Fog

Integration,
System

Any Network N/A Simulator Local N/A Market

Atomiton
IoT
Simulator

All Any Grey-box N/A N/A Simulator Remote N/A Market

MBTAAS All Any Black-box Model OCL Platform N/A N/A Academic
CupCar-
bon

All System Any Network Sen-
Script

Simulator Local N/A Academic

Edge-
Cloud Sim

Edge,
Cloud

System Black-box Model,
Network

XML Simulator Local N/A Academic

Fortino
et al.

Edge System Black-box Network C++ Simulator Local N/A Academic

Some work has been pursued towards hybrid simulation-based testing approaches which
have both simulated and physical parts interacting with the system to capture more realistic
behavior, thus improving the verification of these systems [Bos+19; Bur17].

3.3.2 Discussion
Taking into consideration the findings presented in Section 3.3, the following paragraphs ana-
lyze these findings by matching pending challenges and issues together with several published
works that delve into the same topics.

A comparison of the available tools for testing IoT solutions was given in Table 3.4 (p. 101).
Testing capabilities of each solution were analyzed according to different parameters.

Chapter 3. State-of-the-Art 102

Tools were divided by the tier they focus on, as presented in Figure 2.7 (p. 39). There is a
clear relation between the tier and the artifact being tested. Edge tier tools, such as the Plat-
formIO and ArduinoUnit, typically focus on testing the code that runs on edge devices (e.g., Ar-
duino). However, to test the edge tier, the already available tools from embedded system testing
can be helpful (e.g., UNITY13). Fog and cloud-related tools are typically concerned about net-
work or application testing, disregarding the low-level tests on code but testing at the system
and integration level.

By analyzing the Test Level in which each tool is positioned, we noticed that tools are cover-
ing all levels, from unit testing to acceptance testing, at least partially. Wemust note that although
some tools allow testing all the levels, they do not provide out-of-the-box functionalities to do
so. An example of one of those is the FIT IoT-LAB testbed that provides a large-scale platform
to test applications across different tiers but requires development efforts in, for example, re-
trieving and managing data from testing tasks. In other cases, the tools provide only partial
support for the testing functionalities, e.g., providing functionalities to collect all network logs
and responses but not providing direct insights about that information.

A large part of the available tools focuses on a specific platform, language, or standard,
lacking the support for the heterogeneity of the IoT field. An example of such a tool is DP-
WSim which focuses on the Devices Profile for Web Services (DPWS) standard language and
the TOSSIM simulator for the TinyOS compatible devices. Another problem appears from the
broad range of network communication protocols and IoT-enabling technologies (e.g., refer-
ence architectures) that are now appearing in the market without any standardization, which
leads to the lack of tools to test them in a platform-agnostic fashion. However, some havemany
supported platforms or are open to any implementation requiring extra development efforts.

About the different artifacts that need to be tested, the testing necessities are similar to
those of highly-distributed systems. The artifacts that have more coverage by the available
solutions (e.g., MAMMotH and iFogSim) are the network and communication variables. Some
available tools, such as the MobIoTSim, also provide features to carry application-level testing.
The functionality, usability, and consistency can be tested within a real-world scenario, mostly
disregarding the business logic. Some solutions are also available for code testing edge devices,
such as PlatformIO. However, it is noticeable that there is a lack of tools for testing certain
artifacts such as security and privacy, regulatory testing, and firmware/software upgrades (e.g.,
out-of-the-box continuous integration functionalities).

In the security and privacy scope, there is work being pursued by the OWASP (Open Web
Application Security Project) to help manufacturers, developers, and consumers better understand
the security issues associated with the Internet-of-Things, and to enable users in any context to make
better security decisions when building, deploying, or assessing IoT technologies [Pro17].

Testing environments are another distinguishable aspect of the available testing solutions.
Most of the environments are purely virtual using emulation (e.g., a virtual representation of
an Arduino board) or simulation techniques (e.g., simulation of a smart city or smart house).
However, some efforts have been made in the creation of physical testbeds like the FIT IoT-
LAB. Also, some traditional software testing tools are available (for unit testing purposes) that
mostly rely on physical devices to conduct the testing.

13UNITY by ThrowTheSwitch.org, available at https://www.throwtheswitch.org/unity

https://www.throwtheswitch.org/unity

Chapter 3. State-of-the-Art 103

Another relevant aspect is the maturity stage of the solutions and their openness. Most of
the solutions have been presented in the literature. However, most are purely academic, and
there is no access to their source code or software package. Comparatively, solutions that are
available to be used are scarce, and most of them are closed-source, reducing the possibility
of extending the tool functionalities or improving them using extensions or plug-ins. Some
tools are only available on remote test runners, reducing the ability to test their specificities
and raising privacy concerns.

The key features that differentiate IoT testing needs from those of traditional systems are
the heterogeneity of the objects and the large-scale networks and systems. These factors lead
to an increase in the complexity and difficulty of the testing process, thus increasing the need
for developing new techniques and methodologies to test these kinds of systems similar to the
practices already prevalent in other fields of software engineering (e.g., testing automation, con-
tinuous integration features, fault-injection, and fuzzing). Nonetheless, there is already some
research being conducted on harvesting these existing practices, such as the work by Chen et al.
on fuzzing IoT systems [Che+18a] and testing frameworks such as Izinto [PLF18].

3.4 IoT Cross-Cutting Challenges
IoT poses a set of implications, barriers, and challenges that have a direct or indirect impact on
the development of these systems, including in the design, construction and testing phases.

As long as these gaps and challenges remain unaddressed by the scientific community and
market players, both the agility to make new IoT systems or reaching any IoT utopia (e.g., in-
teroperability between different IoT systems) will continue to be limited.

The following is a compilation of cross-cutting challenges that represent vertical con-
straints and concerns for the software development lifecycle. While research has been done
to meet some of these challenges, mainly by the adoption of novel approaches such as
blockchains [CVD16] and other distributed ledger technologies [Qin+19], Autonomic Comput-
ing [Mur04], Complex Event Processing [Che+14] among others, they do not suffice tomeet the
new requirements created by the particularities of IoT.

3.4.1 Resource Management
A smart city, as an example of a large-scale IoT scenario, shows the importance of efficient
resource management due to the need for robustness, fault-tolerance, scalability, energy effi-
ciency, QoS, and Service-level Agreements (SLA).

IoT can be pictured as a large graph, with numerous nodes with different resource capacity
(computing, storage, connectivity). As a consequence, the selection and provisioning of such
resources have a significant impact on the QoS of the IoT applications [BD16].

Delicato et al. suggest that finding an optimal solution on time, in such large and complex
systems as IoT, is non-trivial; they also give hints on some pending open challenges [DPB17]:

• Which are the proper mechanisms for resource allocation in data stream processing tasks (e.g.,
real-time processing)?

Chapter 3. State-of-the-Art 104

• How to ensure the correct application priority in systems where multiple applications coexist,
with different requirements and criticality levels?

Some authors also point out that context awareness is a crucial requirement for these sys-
tems, allowing them to dynamically adapt to application needs and execution contexts, thus
deciding what data needs to be processed at a given time [DPB17; Per+12].

Besides other challenges mentioned before, there are also challenges regarding resource
modeling, resource allocation, monitoring, and usage estimation that must be addressed to
solve pending issues that affect directly, and/or indirectly, the interoperability and scalability
of these systems (cf. Section 2.2.4, p. 44).

3.4.2 Identification and Discovery
When talking about discovery mechanisms in IoT, two different perspectives need to be con-
sidered. The first is to identify and locate the things (Resource Discovery) in the system, which
can be achieved by storing and indexing meta-data information about each device. The sec-
ond is to discover the target service (Service Discovery) that needs to be invoked for a given
task [BD16]. Sometimes these two perspectives are implemented as a single mechanism.

Any discovery mechanism for IoT must take into account the amount of consumed energy,
latency, and the impact on the end-user experience. Also, the use of centralized and dedi-
cated servers for resource management is not suitable for IoT due to the unfixed and highly-
distributed infrastructure, and to the high-volatility of devices (changing the network topol-
ogy).

There are several challenges in this field as presented by Gubbi et al. [Gub+13], that can be
summed as follows:

• How to deal with the heterogeneous nature of the devices, variable data types, concurrent
operations and the confluence of data from devices?

• What are the suitable approaches for automatic device identification and resource discovery
that encompass the unfixed infrastructure of IoT?

Addressing these challenges is needed to deal with the highly-dynamic topology, distribu-
tion, and heterogeneity of IoT systems.

3.4.3 Identity Management and Authentication
As the number of devices that are part of an IoT systems increases, their correct identification
and authentication within the ecosystem where they operate becomes a challenge.

IoT devices need to be uniquely identified [Kev09; BD16], and solutions such as ucode14 and
Electric Product Code (EPC)15 reduce the complexity of expanding the local environment and
linking it with larger ecosystems [BD16].

14ucode generates 128-bit codes that can be used in active and passive RFID tags.
15EPC creates unique identifiers using a Uniform Resource Identifier (URI) codes.

Chapter 3. State-of-the-Art 105

However, Identity Management (IdM)16 — the process of identifying, authenticating and
authorizing humans or things in a system — is not yet adequately met in networks, with only
a few proposed solutions. Furthermore, Sicari et al. raise some further questions regarding the
identity problem and access control perspective [Sic+15]:

• To manage access control, how could the IoT system deal with the registration of users and
things and the consequent issuance of credentials or certificates by authorities?

• Could the users/things present these credentials/certificates to the IoT system to be allowed to
interact with the other authorized devices?

• Could the definition of specific roles and functions within the IoT context address the issue of
managing authorization processes?

Some solutions have been proposed to address these questions suggesting the use of a sub-
scriber method and a group membership scheme to deal with the access control of heteroge-
neous devices [Sic+15].

From an authentication perspective, a few solutions exist for constrained devices (i.e., most
things). However, there is no common solution or standard to manage the authentication pro-
cess, limiting the interoperability between different systems, mostly due to the diversity of
underlying architectures and environments that use unique authentication approaches. The
development of a common standard is needed to assure a trustworthy environment which en-
sures a secure environment for communication [KS18].

3.4.4 Data Management and Analytics
IoT brought a new vision on collecting information about systems and their surroundings,
through the wide-spreading of sensing capable devices. As a consequence, IoT has become one
of the most significant sources of data, for both individuals and organizations [BD16]. It is
widely accepted that the real power of IoT resides on the value of the data being collected and
analyzed [Ver+11; Mar+17; STH18].

The amount of information generated by some of the sensors that are part of some devices
fits on the view of Big Data since the data being generated is characterized by the so-called
3Vs, namely velocity, volume, and variety. As a result, IoT shares the same needs and challenges
of a typical Big Data scenario. Although, it also adds the need of dealing with variable verac-
ity — which increases the complexity of storing and analyzing the data — to generate useful
insights, leading to possible data overload (too much data without value or the inability to an-
alyze it) [RT17]. Several surveys point to research challenges yet to be attended on the same
subject [STH18; Qin+16], namely:

• How to deal with the distribution of data sources and interoperability between those sources
(complicated by big data variety)?

• How to ensure performance when dealing with the volume and velocity of the data being
collected?

16Also known as Identity and Access Management (IAM).

Chapter 3. State-of-the-Art 106

• How valuable is the knowledge obtained by the analytics process (Analytical Value)?

Several research challenges remain to be addressed in the context of Big Data for IoT (e.g.,
traditional SQL-queried relational database management systems (RDBMSs) are usually un-
suitable for IoT needs out-of-the-box). The problem is even more complex when factors such
as integrity are taken into account, not only because of their impact on the QoS but also for its
security and privacy-related aspects, especially on outsourced data [RT17].

Recently, several advancements appeared as solutions for IoT needs, such as lambda archi-
tectures, stream processing, batch processing, and time-series oriented databases [BD16].

But finally, as Hurlburt et al. points, a more fundamental question must be posed that has
direct implications on privacy (detailed in the next subsection) [HVM12]:

As the IoT becomes ubiquitous, issues of information ownership will become crucial.
Who will own the oceans of data IoT will generate?

Also, by taking into consideration the Open Data17 momentum, questions arise if anyone
should own the data generated at any instance, especially for government-based IoT scenarios
(e.g., Smart Cities).

3.4.5 Security and Privacy
The spreading of IoT usage increased the size of the attack surface that should be taken into
account bymanufacturers, developers, security researchers, and those looking to deploy or im-
plement new IoT applications. Sicari et al. points out that there are eight main categories of
security concerns that must be considered in the IoT landscape, namely: authentication, access
control, confidentiality, privacy, trust, secure middleware, mobile security, and policy enforce-
ment [Sic+15]. The same authors then explore the particularities of each of these concerns and
define several open research questions, from which we highlight the following:

• How heterogeneous devices and users can dynamically interact and agree on the same com-
munication protocols, also ensuring security and privacy?

• What are the suitable trust negotiation mechanisms to handle data stream access control?

• Is it feasible to reuse the traditional security mechanisms (e.g., encryption algorithms), or is it
better to start from new solutions?

• How to guarantee access permission in an environment where not only users but also things
could be authorized to interact with the system (human-to-machine vs. machine-to-machine)?

• What is the suitable privacy model (regulation/standards) and policies that must be followed
when making IoT systems (both in legal and technological aspects)?

17Open Data is the idea that some information (e.g., datasets) should be freely available to everyone to use and
republish as they wish, without restrictions from copyright, patents or other mechanisms of control.

Chapter 3. State-of-the-Art 107

IoT devices typically have significant resource constraints that influence the feasibility of
using standard security mechanisms (e.g., cryptography algorithms need considerable process-
ing capabilities, bandwidth, and energy to provide end-to-end protection). As an example,
the wireless communication channels used by the majority of these devices are vulnerable to
eavesdropping and man-in-the-middle attacks due to the use of non-encrypted communica-
tion protocols [Far+15].

On several occasions, the lack of a security layer on top of IoT applications has been lever-
aged bymalicious parties leading to nefarious consequences. One of the most known examples
was the use of IoT devices to conduct a Distributed Denial of Service (DDoS) attack against the
DNS provider Dyn which supports several relevant Internet platforms and services such as
PayPal, Twitter, and VISA circa 2016 [Fru+18].

The DDoS attack was performed using a botnet of devices already infected with the so-
called Mirai malware. This malware took advantage of the misconfiguration of IoT devices
(default passwords for the telnet or SSH services) to gain shell access [Kol+17; DPC17; Ant+17].

However, there are other examples of vulnerabilities that researchers were able to exploit
successfully. Examples included a flaw in the radio protocol ZigBee that allow attackers to
control smart Philips light bulbs remotely without authorization [Fru+18] and several 0-day
vulnerabilities in commercial IP cameras from vendors such as D-Link and Linksys, which
allowed attackers to be able to do remote code execution on those devices [Ser+18].

The OpenWeb Application Security Project (OWASP) has been working towards reference
documentation on how to tackle the IoT security perspective. As self-described, this project
is designed to help manufacturers, developers, and consumers better understand the security issues
associated with the IoT, and to enable users in any context to make better security decisions when
building, deploying, or assessing IoT technology [Pro17]. However, there are several open issues
with the modeling of the typical security threads, such as physical access to devices [AK14].

IoT is being considered Insecure by Design given the lack of procedures being done to ensure
the security of the devices and their communication [ONe+16].

From a privacy perspective, IoT introduces a whole new degree of concern for consumers.
These concerns are not only due to the ability of these devices to collect personal information
like users’ names and telephone numbers but because these devices can alsomonitor user activ-
ities, understanding their tendencies and preferences as well as their surrounding environment
(e.g., when users are in their houses and what they had for lunch) [Wei+15].

Standardization and regulatory (legal) limitations and gaps are also crucial and need to be
addressed in this field. Rolf H. Weber points out that efforts are being made by different enti-
ties such as the EuropeanUnion Commission, trying to encompass the reality of governance by
multi-stakeholders (results from having different vendors of IoT solutions) and critical issues
such as transparency and non-discriminatory access, accountability, security, and confidential-
ity [Web09].

3.5 Fault-Tolerant Systems
Robert Hanmer in its book Patterns for Fault Tolerant Software defines fault-tolerance
patterns as solution templates for recurring problems of dependable systems. Fault-tolerance

Chapter 3. State-of-the-Art 108

patterns might be suitable for systems that are stateless, stateful or both, are based on observers
and monitors (humans/computers) and work orthogonally to the system’s primary function.

Fault-tolerance patterns are grouped by Hanmer depending on their purpose or on the
phase of the development lifecycle that they fit on, resulting in the following groups of patterns:

Architectural Patterns Patterns that cut across all parts of the system (from an architec-
tural point of view), and, as such, need to be applied in the early stages of system design.

Detection Patterns Patterns which purpose is to detect the presence of root faults, error
states, and failures on the system.

Error Recovery Patterns Patterns that allow a system that entered an error state to con-
tinue delivering its correct service (moving to a new error-free state).

Error Mitigation Patterns Patterns that allow a system to deliver its correct service us-
ing error masking and compensation techniques, without changing the system state.

Fault Treatment Patterns Patterns for preventing the re-occurrence of an error by fault
reparation. Such patterns deal with system verification, diagnosis (location and nature of
faults), and fault correction techniques.

The following subsection approaches each one of these groups, detailing different patterns
as they are presented in the literature. Although the work of Robert Hanmer, patterns fault
tolerant software, circa 2007, being the de-facto pattern language for fault-tolerant system’s
design and development, consisting of a total of 63 patterns, only a selection of those are hereby
analyzed, giving their fitness to the research statement of this thesis. More recent works, in-
cluding the book from Kuhn et al. , reactive design patterns, and the work from Chris
Richardson, microservices patterns, present some novel details and patterns in this area, but
still are closely coupled with the Robert Hanmer works.

3.5.1 Architectural Patterns

Simple Component Pattern

A component shall do only one thing, but do it in full [KHA17].
Derived from the Single Responsibility Principle, if a system performs multiple functions

or the functions it performs are of high complexity, the system must be broken into different
components or modules, each one responsible for a certain task (but entirely).

In the scope of the Simple Component Pattern, we can consider the following patterns
as directly related to it.

Units Of Mitigation (Isolation) Decide during architecture what the units of fault-
tolerance are. Each component (or a set of components) is contained in a unit of mitiga-
tion which contains the errors that can arise for these modules and handle their recovery
process after an error [Han06].

Chapter 3. State-of-the-Art 109

Error Containment Barrier Build barriers into your system so that errors cannot prop-
agate from one part of the system to another. The boundaries of a Unit OfMitigation are
defined by an implementation of an error containment barrier, that disables error propa-
gation [Han06].

Error Kernel Pattern

In a supervision hierarchy18, keep important application state or functionality near the root while
delegating risky operations towards the leaves. Systems are constituted by several modules which
can have different complexities, proneness to failure, and reliability requirements. Thus, some
functions of the systemmust rarely go down, whereas others are necessarily exposed to failure.
The system should be designed in a way that most error-prone modules have been restricted
from having an impact on the core system functions [KHA17].

Redundancy Pattern

Provide redundant capabilities that support quick activation to enable error processing to continue
in parallel with normal execution. It is expected that services have the highest availability (up-
time) possible. The best way to reach such a goal is to reduce the MTTR of the system. As
such, with redundancy, a system can resume its delivery of correct service before errors are
corrected, by using identical copy. Redundancy can be either spatial (replication), temporal, or
informational [Han07].

Human Interaction Patterns

People are the cause of many failures in long-running systems through the inappropriate ac-
tions they sometimes take [Han06]. As such, requiring humans to intervene in system error cor-
rection can lead to procedural errors contributing to even larger system unavailability. How-
ever, when there are skillful operators available, the system should be able to count and rely on
humans to address these errors. As such, two patterns appear:

Minimize Human Interaction Humans make mistakes and are slow; to minimize down-
time the system should take care of itself, without human intervention [Han06].

Maximize Human Participation Design the system to enable knowledgeable operating
personnel to participate positively, toward error detection and error processing [Han07].

Someone in Charge Pattern

All fault-tolerant related activities have some component of the system (someone) that is clearly in
charge and that has the ability to determine correct completion and the responsibility to take action
if it does not complete correctly. If a failure occurs, this component will be sure that the new failure
does not stop the system. Errors can arise even during error processing tasks. When this happens
the systemmight stop all the running tasks, including the error processing jobs. Thus, the need

18In a supervision hierarchy, a supervisor is responsible for starting, stopping and monitoring its child pro-
cesses.

Chapter 3. State-of-the-Art 110

for a component that has higher responsibility and is able to determine correct completion of
tasks and intervene in the case of failure, to avoid new failure that could lead to the stop of the
system [Han07].

Escalation Pattern

When recovery or mitigation is failing, escalate the action to the next more drastic action. In the case
that an attempt to process an error in a given component does not archive the expected results,
additional measures are required to be triggered. Escalation should report to Someone In
Charge [Han06].

Fault Observer Pattern

Some part of the system should know that a fault is present and report it and maybe escalate actions.
If a system delivers correct service even in the case of errors (due to its ability to locate and
automatically correct them), there must be a way of tracking what faults and errors have been
detected and processed, both currently and in the past. Thus, all errors should be reported to
the interested parties [Han06].

Software Update Pattern

The system and its applications must not stop operating, not even to install new software. Even with
the use of good fault prevention through software quality methods, faults will be frequent in
software, especially in their initial releases. As such, the ability to change the software during
its correct service delivery should be built-in from its first release, since that patch’s19 for fault
will be release after the software being deployed [Han07].

3.5.2 Fault Detection Patterns
In the following paragraphs, the body of knowledge about fault detection is presented in the
form of patterns. As aforementioned, although the constant evolution of the field, these pat-
terns document the most widely used tactics in terms of fault-tolerance.

Fault Correlation Pattern

Analyze multiple error indications to identify the actual active fault. In order to be able to identify
which fault is activating, and classify it according to a determined fault category, the unique
signature of an error should be identified. Being able to do so allows the activation of error
processing mechanisms for that specific fault category [Han07].

SystemMonitor Pattern

Some errors will only manifest themselves at a system level. Check for them at this level. To guaran-
tee the correct service deliver there should exist a way for the system to verify that the system

19A patch, sometimes just called a fix, is a small piece of software that is used to correct a problem, usually called
a bug, within a software artifact.

Chapter 3. State-of-the-Art 111

itself or its parts are alive and functioning correctly. A monitor should be put in place that
watches the system behavior and, in case of component malfunctioning, report the occurrence
to the Fault Observer [Han07].

In order to get complete system monitoring, several patterns can be applied, such as the
following:

Heartbeat Send a status report at regular intervals to let other parts of the system know their
status [Han07; KHA17].

Acknowledgment Send a reply message to let a communicating party know that the sender
is alive [Han07].

Watchdog Build a special entity to watch over another to make sure that it is still operating
well [Han07].

Proactive Failure Signal A component can diagnose some failures itself, thus, a compo-
nent is assumed to not have failed until it has sent a failure signal [KHA17].

The system monitor should also consider the Realistic Threshold pattern, defin-
ing different time threshold depending on the task (timeouts). As per the Robert Hanmer
work [Han07], the latencies thresholds should be defined in a way that the monitor will be
informed in a timely enough manner to meet the availability requirement, and yet is the max-
imum possible to avoid false triggers. The following points describe the mechanisms to define
message latency and detection latency threshold values:

Messaging Latency Threshold based upon the worst case communications time
combined with the time required to process one Heartbeatmessage.

Detection Latency Threshold based upon the criticality of the functionality. The
value used should be a multiple of the messaging latency. Use a smaller multiple for
critical or unique tasks and larger for Redundant tasks.

Voting Pattern

When more than one result is available for a computational result or question or task, vote to pick the
correct one. The use of redundancy in space results in multiple answers, thus the need appears
of choosing one answer from the available options by devising a voting strategy [Han07].

The voting strategy can be either (1) exact voting where decision leads to correct result
(or to an uncertainty state alert notification), or (2) inexact voting where the comparison of
answers might lead to multiple correct results (that can be solved by non-adaptive voting, using
boundaries on discrepancyminimumormaximum, or adaptive voting, where results are ranked
based on experience) [Han07].

Maintenance and Exercises Patterns

Some errors can be anticipated and mechanisms put in place to avoid their occurrence (e.g.,
periodically checking data storage systems). Thus, two patterns can be applied:

Chapter 3. State-of-the-Art 112

Routine Maintenance Perform routine, preventive maintenance on the system. Periodi-
cally and automatically perform routine, preventive maintenance to prevent faults from
silently accumulating [Han07].

Routine Exercises Routinely exercise, or execute, the system components that will be re-
quired in an error situation. Make sure that Redundant spare components truly work in
a failover case (identify components that have latent faults), thus guaranteeing they are
available when required [Han07].

Routine Audits Pattern

Check data by a background task to make sure that it is correct. Faulty data can exist in a system
for a long time before it causes errors. As such, mechanisms should be put in place to rou-
tinely check the data in order to find latent faults (usually by using a low priority maintenance
task) [Han07].

One pattern that can be used to detect latent faults is Checksums — add information to
data or messages to verify that they are correct. Detection of incorrect data by storing ag-
gregate information along with the data value, or over the block of data (e.g., parity bits or
hashing) [Han07].

Riding Over Transients Pattern

Sometimes the prudent thing to do is to ignore an error if it is something that might be due to a
transient situation. Transient errors can appear in a system without having long term effects
on it, thus, the System Monitor should check the frequency of occurrence but take no other
action unless it is occurring more than expected [Han07].

A pattern that can be applied to check that an error is transient or intermittent is the Leaky
Bucket Counter. The pattern concrete implementation should keep a counter that is auto-
matically decremented and incremented by each event and/or fault. The exceeding of the pre-
defined upper limit of the bucket identifies a permanent fault.

3.5.3 Error Recovery Patterns
In the following paragraphs, the body of knowledge about error recovery is presented in the
form of patterns. As aforementioned, although the constant evolution of the field, these pat-
terns document the most widely used tactics in terms of fault-tolerance.

Quarantine Pattern

Take steps to isolate and confine a sick element to keep it from corrupting the rest of the system.
When Units Of Mitigation pattern is followed, if an error occurs its propagation is limited
by the barrier, thus quarantining the error [Han07].

Chapter 3. State-of-the-Art 113

Concentrated Recovery Pattern

The system should have as few distractions as possible during error recovery. The system should be
able to focus all resources on recovery activity, thusminimizing the unavailability of the system
or one of its parts [Han07].

Rollback, Roll-Forward and Restart Patterns

When a system enters an error state three approaches can be followed:

Rollback Resume normal execution by moving to a state in the execution path but before the
error occurred. Move the system to an error-free state by returning to a state before the
error occurred [Han06; Han07]. Timing of the checkpoint or last requests decides about
the rollback point to go to.

Roll-Forward Resume normal execution by advancing to a future state that would have been
reached if the error had not occurred. Move the system to an error-free state by advancing
to a future state that does not contain the error [Han07; Han06].

Restart Resume execution by restarting the program from the beginning. Prefer a full com-
ponent restart to internal failure handling. Whenever a component is detected to be faulty,
no attempt is made to repair the damage and, instead, all the component resources are
released, and it is started up again from scratch [Han07; KHA17]. This pattern is also
known as Let-It-Crash.

However, underlying any of these patterns, several considerations should be made, such as
the following ones:

Limit Retries Do not return to the scene of an error without changing something, because the
error might reoccur. In scenarios that faults are deterministic (a latent fault with the same
stimuli leads to fault activation) the propagation of error within itself must be stopped
by limiting retries [Han06].

Checkpoint Save state periodically in a way that allows execution to be resumed with a
consistent state. Avoid loss of important data or results during recovery by saving global
state information, reducing the need to recreate the entire execution from startup to the
point of the saved state. Each process should create a checkpoint at the best time for it to
do it (cf. Individuals Decide Timing) [Han06].

Failover Pattern

Recover by switching to a redundant unit. In the case that the active part of a group of redundant
elements has a fault and restoring of error-free operation in active part did not succeed, the
switch must be made to redundant resources. Consideration about quarantining the faulty
part of the system and establishing someone in charge of dealing with the change of replica
must be taken into account [Han07].

Chapter 3. State-of-the-Art 114

Remote Storage Pattern

Consider Redundancy and other recovery factors when deciding where to place checkpoints. Store
the saved checkpoints in a centrally accessible location, enabling a new processor to access
the saved checkpoint which minimizes the period of unavailability. However, there should be
taken into consideration that there must not be a single point of failure in the system [Han07].

Data Reset Pattern

Restore some data to its initial (or a predetermined) value when it is found incorrect. In order to
recover from an un-reconstructable, uncorrectable data error, the systemmust reset the values
stored to their initial values or reference points [Han07].

3.5.4 Error Mitigation Patterns
In the following paragraphs, the body of knowledge about error mitigation is presented in
the form of patterns. As aforementioned, although the constant evolution of the field, these
patterns document the most widely used tactics in terms of fault-tolerance.

Marked Data Pattern

Mark erroneous data so that others are not corrupted by it. Mark erroneous data values as invalid
and define rules for how to process these values when encountered later to prevent any part
of the system from propagating the error. Basically, the erroneous data should be quarantined,
not allowing the system to use it and, consequently, do not derive any actions from it [Han06;
Han07].

The Circuit Breaker Pattern

Protect services by breaking the connection to their users during prolonged failure conditions. Dif-
ferent parts of the system should be easily disconnected in case of failure, in such a way that
failures do not spread uncontrollably across the whole system. This pattern has been used for
a long time (the 1920s) in electrical engineering [KHA17].

Overload Patterns

A system, while delivering its correct service, handles requests and performs work based upon
those requests. However, depending on a wide variety of factors (cf. Figure 2.10, p. 47), er-
rors can appear on the system, being one of the most common sources of problems the request
overload (i.e., too many requests at a time). Thus, several patterns can be applied to mitigate
the occurrence of errors due to the increase of the system load. Some of them are the follow-
ing [Han07]:

Overload Toolboxes Have separate collections of techniques for dealing with different
kinds of overloads. Handle overload situation with too many requests for the system by
implement dedicated overload treatment for each resource class.

Chapter 3. State-of-the-Art 115

Shed Load Discard some requests for service to offer better service to other requests. Throw
away a minority of requests to serve the majority.

Finish Work In Progress Categorize arriving work as either new work or related to some-
thing that is already in progress. Give priority to work that continues work that is already in
progress work.

Fresh Work Before Stale Giving better service to recent requests enables at least some
requests to get good service. If all requests wait in a queue (cf. Queue For Resources
Pattern) then none of them receives good service.
If the requester gives up, his retry eats up even more resources.

Slow It Down Sometimes the best thing to do when many errors are occurring is to slow
down. Transients might clear and the permanent errors will become evident.

Deferrable Work Make the routine work deferrable.
Under heavy load, prioritize essential tasks, and defer non-essential tasks (e.g., Routine
Maintenance).

Equitable Resource Allocation Divide the resources up equitably between all the re-
questors. Create a pool for similar requests and allocate resources to pools.

Queue For Resources Queue requests for resources in a way that will protect the system.
In order to deal with requests for resources that cannot be handled immediately when
they arrive, these requests should be stored in a queue and be handled later.

Further, some protective controls can be put in place to improve the error mitigation in
case of overload on the system:

Expansive Automatic Controls Protect the system from too much work/traffic by pro-
viding new ways to do the work. Design some system parts for only being used in case of
overload [Han07].

Protective Automatic Controls Protect the system from too much work by restricting
what work is allowed into the system. Shed internal work, shed incoming load, do noth-
ing [Han07].

3.5.5 Fault Treatment Patterns
In the following paragraphs, the body of knowledge about fault treatment is presented in the
form of patterns. As aforementioned, although the constant evolution of the field, these pat-
terns document the most widely used tactics in terms of fault-tolerance.

Chapter 3. State-of-the-Art 116

Let Sleeping Dogs Lie Pattern

Consider the true benefits to the system of correcting the faults versus leaving the fault present.When
a fault is found in the system (by the system itself or its maintainers), the weight of the risks and
costs should be evaluated in regard to the benefits and rewards associated with the correction.
In some situations it is essential to correct the faults with the highest risk of reoccurring or
the highest potential for damage if they do reoccur, and avoid the correction of the faults with
lower risks reducing the potential of introduction of new ones into the system [Han07].

Reintegration Pattern

After making the faults passive, return the repaired component to service. In the eventuality of a
component enters error state, and after the mechanisms for removing/disabling the fault are
activated, the component should be reintegrated into the system. To do so, a predetermined
procedure to reintegrate the corrected component into the system should be followed [Han07].

Reproducible Error Pattern

Activate a fault while monitoring its behavior to determine clues to its nature and potential corrective
treatments. In order to correct the real fault, stimuli on the fault in a controlled manner should
be done to verify that the fault did indeed cause the observed error and that the fault is still
present in the system. The result should be an unexpected behavior of the systemwhen checked
against its specification [Han07].

Fault Correction Patterns

Faults can arise from a system’s implementation or from the system’s misuse by a human coun-
terpart. As such, two patterns on how to correct faults exists, namely [Han07]:

Small Patches Surgically correct an erroneous program part. Evaluate what Software
Update will have the least chance of introducing extraneous faults or bringing in extra
capabilities that are not needed, and is able to patch what is needed.

Revise Procedure After a failure in which people contributed to downtime instead of min-
imized it, revise the procedures that they followed to avoid the problem in the future. When
operating personnel following the system’s predetermined procedures contribute to fail-
ure durations, revise the procedures to avoid repeating the same sequence of errors.

3.5.6 Fault-Tolerance in IoT Systems
IoT and its applicability across different scenarios led to several considerations depending on
their criticality.

The use of IoT in mission-critical scenarios, such as the healthcare or ambient assisted liv-
ing, where connected devices monitor and, even, act, upon data about the health of the patient,

Chapter 3. State-of-the-Art 117

should consider that the system components can not tolerate any type of failure during its mis-
sion time20. In other words, there is zero-tolerance for failures, and, thus, the MTTF for these
components should be strictly greater than the mission time, and the MTTR should be close to
zero during mission time [BD16].

However, there are scenarios where IoT systems can tolerate faults, thus recover from error
states. Here, patterns such as the Restart, Roll-Forward or Rollback can be used to recover
from such states. As an example, if an embedded component on a vehicle fails it can afford to
restart to avoid a catastrophic failure (e.g., an accident). Thus, in such scenarios, the goal is to
make MTTR as small as possible, more than reducing the MTTF [BD16].

Further, in some scenarios, the system can tolerate the erroneous input for some time,
within the user-defined safety limit before getting it fixed (this is commonly known as grace-
ful degradation or, in the automotive literature, as limp mode [Ros+20].). The application of
patterns such as the Riding Over Transients Pattern and Let Sleeping Dogs Lie are ap-
plicable. Further, Small Patch Pattern can be applied to get rid of the fault (if identified).

When in IoT systems, we have to consider that there are three main sources of errors,
namely [BD16]:

• Infrastructure FaultGiven that IoT devices can end up operating in unanticipated sce-
narios, and, as such, some of these scenarios can lead the system to suffer from infras-
tructure failures.

• Interaction Fault IoT is, by nature, highly distributed in terms of devices and applica-
tions and heterogeneous. The need to communicate and share data between the different
entities on the system can lead to operational failures due to several reasons (e.g., network
unreliability).

• Fault Service PlatformMost of the IoT reference architectures propose the existence
of one or more service platforms (hubs) that integrate the different devices and applica-
tions. However, these platforms will rarely be built from scratch, integrating with many
third-party products (heterogeneity) and with several external systems. Thus, even if it is
assumed that these components have been thoroughly tested for their own functionality,
many transient faults can be due to off-the-shelf components.

One of the most used approaches in IoT systems to nullify the impact of a fault is to reduce
the single points of failure in the system [BD16], thus, the application of the Redundancy
Pattern at different levels such as the infrastructure, the network, and in the software.

Further, the use of loosely coupled components, Simple Component Pattern (cf. Units
Of Mitigation Pattern), so that the failure of one component does not bring the entire plat-
form down. Also, the use of built-in graceful degradation mechanisms (fail-safe) in each com-
ponent can make an IoT system survive for longer.

20Mission time is considered to be the time during which the system it is actively working.

Chapter 3. State-of-the-Art 118

3.5.7 Discussion
The need for dependability to have a proper QoS is fundamental to any software system. Fault-
tolerance research has been inter-winded with the need of increasing the system’s uptime, re-
duce response time to the user, while guaranteeing integrity, confidentiality, safety, and easiness
of maintaining such systems during their lifecycle.

The design patterns community has worked for a long on the systematization of the means
by which dependability can be attained, and the extensive work of Robert Hanmer summarizes
these efforts. However, some more recent contributions are also considered, and it is notice-
able that patterns from other fields are being adapted for the new reality of systems, highly
dependent on software instead of hardware-only solutions (i.e., software-defined everything).

3.6 Autonomic Computing
Many components (e.g., devices and services) that are part of the IoT systems make it chal-
leging to deploy manually, setup, manage and maintain each component, thus exceeding the
human ability to manage all connected devices [TMD19]. As a motivational scenario, Internet
of Underwater Things [Dom12], which describes the use of things in under-water environments
is a prime example of a system expensive to maintain due to the remote localization and en-
vironmental factors. Further, Ramakrishnan et al. identify other motivations for autonomic
computing, namely [Ber+13]:

• Increase the performance by deploying heavyweight application components on faster
hardware;

• Reduce the amount of communication and network latencies between distributed com-
ponents;

• Optimize the overall energy consumption of the application components on the different
platforms.

Even with the vision of autonomic computing gaining momentum, current approaches are
limited with issues ranging from dependency on high-computing power units (when edge de-
vices are typically power-constrained), lack of evidence on how such solutions work at large-
scale, and only focus on one or, at most, two, self-* properties, not approaching autonomic
computing from a holistic point-of-view.

Thair et al. identify in their work several challenges and future research direc-
tions [TMD19], which can be mapped to each one of the self-* properties proposed by IBM.
Nonetheless, to achieve the plateau of autonomic computing, all self-* should be conciliated.

Regarding self-configuration, IoT devices and networks should be able to automatically
configure themselves accordingly with high-level policies (e.g., access control). This concerns
not only the configuration of each component individually but also the system as a whole (e.g.,
including network). With the ever-growing number of different protocols and architectures
(ecosystem fragmentation), there is no cross-cutting solution that addresses these problems.
Chatzigiannakis et al. suggest the use of semantic data instead of domain-specific data formats

Chapter 3. State-of-the-Art 119

to express configurations that can be understood by the different IoT things themselves, and,
when a new thing is added to the system, it can question similar devices in the local network
to “deduce their own state, configuration, and purpose" [Cha+12]. Similar solutions should be
developed to reduce the complexity of configuring things by avoiding the manual process.

Self-optimization focuses on improving the performance and efficiency of the IoT system.
The goal is to optimize the usage of computational resources (e.g., optimize energy consump-
tion) and improve response times (i.e., reduce lag), reducing the need to make all the computa-
tion happen in the cloud (being distributed among tiers, i.e., fog and edge) [TMD19; Ber+13].
Self-optimization should enable the optimization of computing tasks post-deployment, tak-
ing into account several time-varying variables [Ber+13]. Self-optimization is, however, not
straightforward, due to the heterogeneity of the devices, highly-specified systems according to
the operational domain, interoperability limitations and dynamic nature of the systems (i.e.,
devices can join and leave the network). Further, considerations need to be made related to the
dependency in centralized orchestrator (single-point-of-failure), which points to the need for
distributing the decision engine among tiers.

Self-healing focuses on automatically detect, diagnostic, and repair software and hardware
issues using recovery and maintenance of health mechanisms. While there is some work done
in the field of Wireless Sensor Networks, it focuses on the network level. In IoT systems, some
authors propose the use of choreographies that, taking into account several parameters (e.g.,
response time), readjust the system automatically to mitigate the issue [Seo+17]. While litera-
ture about fault-tolerance and self-healing in other application domains has been disregarded
for most of the IoT-focused research, existing well-established strategies that have been used
for long to mitigate failures in software and hardware systems can be adapted and used [PD11].

Self-protecting systems should anticipate, detect, identify and protect themselves from at-
tacks (both internal and external). Several works have proposed the use of state-of-the-art se-
curity and privacy methodologies along with known-to-work “classic” solutions to enable this
self propriety. Most work being done focuses on the use of Intrusion Detection Systems (IDS)
that continuously inspect incoming network traffic and take actions when suspicious activity
is detected [PQW10; Pat+11; Vie+19]. However, due to the enormous threat landscape that IoT
systems face (from device compromising to external services security issues) [AH15a], there is
the need to continue researching and to provide new self-protection mechanisms at different
levels of the systems (e.g., remote lock-and-wipe devices [Rei+16]).

3.6.1 Autonomic Computing and IoT
Although both IoT and the concept of automatic computing have been around for a while now,
their application is yet uncommon among deployed computing systems. Nonetheless, several
works are showing the potential of autonomic computing (or some of their self-* properties),
including in high-complex IoT systems.

Athreya et al. in their work suggest that IoT devices should be able to manage themselves
both in terms of configuration (self-configuration) and resource utilization (self-optimization),
proposing a high-level framework for measurement-based learning and adaptation that allows
the system to adapt itself to changing system contexts and application demands (context-aware

Chapter 3. State-of-the-Art 120

adaptation) [ADT13]. They also identify the need for re-programmable interfaces to comply
with changing requirements and the need for energy-awareness, but they do not refer to any
self-healing considerations.

Angarita et al. introduce the concept of responsible objects where IoT things are self-aware
of their context (passage of time, the progress of execution and resource consumption) and
can apply smart self-healing decisions taking into account component transaction properties
(backward recovery and forward recovery features) [Ang15]. Their approach shows limitations
due to the dependency on the transaction properties that implies that the system must be con-
tinuously making checkpoints before and after specific actions. Further, in critical systems,
some decisions are neither retryable nor compensable.

Aktas et al. are among the first to propose the use of self-healing mechanisms in the IoT
context, proposing the use of runtime verificationmechanisms to identify issues on the running
system. To do so, they use a Complex Event Processing (CEP) techniques by applying rule-
based pattern detection on the events generated in real-time [AA19]. Their approach focuses on
the events, caused by the regular system operation, that are non-intrusive, being all messages
processed by a predictive maintenance service. However, their work does not provide any
insight on how to use the outputs of the runtime verificationmechanism to self-heal the system,
just relaying an overview of (possible) problems to human operators.

Savaglio et al. in their work model, the IoT things as agents and treat the IoT system as a
Multi-Agent System (MAS). They suggest that the agent abstraction is suitable to give smartness
and autonomy to each thing in the system, making it possible to realize distributed computa-
tion autonomically, leveraging the different heterogeneous components. They further present
Agent-based COoperating Smart Object (ACOSO) middleware as a way to develop interopera-
ble, autonomic and cognitive IoT systems, validating the resulting system in a simulation envi-
ronment [For+14; SFZ17; For+18]. However, their implementation depends on heavy compu-
tation being done at the thing level, which would not fit most of the low-powered things that
compose IoT systems.

3.6.2 Self-healing for IoT
IoT systems have been primarily identified as a core example of a system that must contemplate
autonomic components [AH15b; Ang15; Ver+11]. These components—which can range from
single devices (e.g., smart locks) to whole systems (e.g., smart homes) — should be capable of
self-management, reducing the need for frequent human operation [Kop11]. This becomes
even more important in critical systems and when devices are deployed in remote (e.g., wildfire
control) or other hard to access areas (e.g., in the user’s home).

Some IoT systems are close-loop systems. These act based on sensorsmeasurements in order
to maintain a predictable output (feedback-loop). Examples are Cyber-Physical Systems (CPS)
and some Industrial IoT systems [Bor+17]. Other systems are open-loop. These take input under
consideration but do not react only based on those inputs (no feedback-loop) [Blo+18]. As a
result, making IoT open-loop (there is no verification that an actuator performed the required
operation) systems resilient is harder than closed-loop ones, due to the lack of feedback.

Chapter 3. State-of-the-Art 121

Nonetheless, any IoT system should be capable of reconfiguring itself to recover from fail-
ures. A self-healing enabled system should be able to detect disruptions, diagnose the failure root
cause and to derive a remedy, and recovering with a sound strategy in a timely fashion (cf. Fig-
ure 2.13, p. 54) [PD11].

The existing approaches for fault-tolerance (and self-healing) typically follow a reactive
methodology where errors are detected and then recovered from, using strategies such as com-
plex event processing, system watchdogs, and supervisors (cf. Device Error Data Supervi-
sor [Ram+17]), or a proactive (also known as preventive) methodology where errors are pre-
dicted and avoided before faults being triggered using machine learning and other predictive
mechanisms (cf. Predictive Device Monitor [Ram+17]). A combination of both can also be
used [PD11].

Athreya et al. [ADT13] suggest devices should be able to manage themselves both in
terms of configuration (self-configuration) and resource usage (self-optimization), proposing a
measurement-based learning and adaptation framework that allows the system to adapt itself
to changing system contexts and application demands. Although their work has some consid-
erations about resilience to failures (e.g., power outages, attacks), it does not address self-healing
concerns.

The concept of responsible objects, introduced by Angarita et al. [Ang15], states that things
should be self-aware of their context (passage of time, the progress of execution and resource
consumption), and apply smart self-healing decisions taking into account component trans-
action properties (backward and forward recovery). Their approach shows limitations, viz.
(1) when applied to time-critical applications, as it is not clear how much time we should wait
for a transaction to finish, (2) some processes, such as those triggered by emergencies, cannot
be compensated, and (3) when is it acceptable to perform checkpoints in a continuously run-
ning system that cannot be rolled-back? It also disregards the typical capability of devices (e.g.,
limited memory, power) that might challenge the implementation of transactions.

As above mentioned, Aktas et al. [AA19] were also among the first to purpose the use of
autonomic computing to detect problems at runtime by using CEP. They, however, do not
address self-healing and only convey a summary of problems or possible problems to human
operators. Leotta et al. [Leo+18] also present runtime verification as a testing approach by
using UML state machine diagrams to specify the system’s expected behavior. However, their
solution depends on the definition of a formal specification of the complete system, which is
unfeasible for highly-dynamic IoT environments (e.g., dynamic network topology).

We could not find any work that focuses on bringing runtime verification mechanisms for
visual programming environments. This is not unexpected, as Leotta et al. [Leo+18] point out
that “software testing (in IoT) has been mostly overlooked so far, both by research and industry,” and
later corroborated by Seeger et al. [SBC20], claiming that most of the research being conducted
in visual programming for IoT has been disregarding failure detection and recovery.

3.7 Summary
In this chapter, an extensive revision of the relevant literature for this work is presented. While
IoT is a relatively recent research topic, it already exists a large body of knowledge regarding

Chapter 3. State-of-the-Art 122

the lifecycle of IoT systems.
An overview of the state-of-the-art on designing IoT is presented, with a specific focus on

patterns of problems and solutions of building this kind of system. The IoT system’s construc-
tion aspects are also revised by introducing the different development environments present
in the literature, their core aspects, advantages, and shortcomings from different perspectives,
use-cases, and user expertise levels.

An analysis of the literature focused on testing IoT systems is also provided, systematically
analyzing the different available solutions while comparing them, since verification and vali-
dation is one of the key aspects to guarantee the dependability of any system, IoT included.

IoT emerges from a combination of several socio-technical aspects, andwhile most of them
fall out of the scope of this work, a brief study on the existent cross-cutting challenges that IoT
faces is provided, as these challenges can have an (in)direct impact on the work carried.

A revision of the current literature around fault-tolerance software/hardware systems is
done. Given that the literature already has several works that systemize the fault-tolerance
knowledge in the form of patterns, we leverage these summarizing works to grasp the most
common problems and solutions used at large while contextualizing them from an IoT per-
spective.

Lastly, a review on the topic of autonomic computing is done, focusing on the works that
leverage autonomic computing concepts, i.e., self-*, for addressing IoT issues and challenges.

123

4 | End-user Automation Survey

4.1 Home Automation User Study . 124
4.2 Methodology . 124
4.3 Scenarios Categories . 125
4.4 Results and Analysis . 127
4.5 Threats to Validity . 130
4.6 Summary . 131

Automating IoT systems, including smart homes, is not without its challenges, especially when
most end-users have little to no technical knowledge [Ghi+17]. The heterogeneity and number
of devices, platforms, and services used in IoT, togetherwith the need for end-users to configure
and automate them, require a different approach. While traditional programming (using code
editors and integrated development environments) has been the go-to solution for developers
and other technical individuals, as the number of IoT application scenarios, environments, and
non-technical users increased, it became necessary to build abstractions of sensors, actuators,
and whole devices, with additional supporting solutions as a way to reduce the complexity of
developing and managing them [BG10; Ghi+17]. This led to the (re)birth of several low-code
programming strategies for end-user development (cf. Section 3.2, p. 68).

While several authors [Ihi+20; Amm+19] state that these low-code solutions for end-user
development still have considerable limitations, they also point out their growth in the variety
and the number of users. Thus, it becomes of paramount importance to understand what end-
users wish to automate, state their intents, and grasp the users’ programming mental models.
Knowing this can provide valuable information to future research, allowing researchers and
industry alike to find and model their systems’ limitations. As far as we could find, there is a
lack on the literature of a systematic study on the concrete rules that users would define for
smart home automation given a base set of devices and a minimal but realistic definition of a
home (i.e., akin to a house floor plan).

Parts of this chapter were partially based on the master thesis work of Danny Soares en-
titled model-to-model mapping of semi-structured specifications to visual program-
ming languages [Soa20] and were published in the work programming iot-spaces: a user-
survey on home automation rules [Soa+21]. The author’s main contributions were on the
formal analysis and data curation, visualization, and writing of the published versions of the
work.

Chapter 4. End-user Automation Survey 124

4.1 Home Automation User Study
Some studies already reflect on the automation rules that end-users program into their
spaces [Ur+14; Amm+19; Mi+17]. However, these studies are limited by the number of de-
vices and ways of interaction that the development tool under study supports (which, in most
cases, is limited to IFTTT online service [IFT19] due to the easy access to the applet dataset).

A survey was envisioned as the most effective way to gather as many automation scenarios
as possible in a timely fashion. The methodology was based on the one presented by Molléri et
al. [MPM20].

We surveyed 20 participants for home automation rules given a standard house model and
a base set of IoT devices. The study intended to gather as many and as varied home automation
scenarios as possible from individuals with different backgrounds and technical know-how
while maintaining a certain level of similarity with real-world scenarios and not limiting their
creativity and resulting automation complexity.

We proceeded to split the gathered scenarios into categories according to a systematic study
of all automation possibilities. This survey also added knowledge on how users typically de-
scribe their home automation scenarios using text, allowing us to understand if different indi-
viduals use different phrases to describe the same scenarios.

4.2 Methodology

Figure 4.1: 2D and 3D floor plan of the smart house used for the survey [Soa20].

To have a pre-defined, common foundation from where the participants could base them-
selves to draft their own automation scenarios, we designed a house floor plan and 2D/3D
models of it, as shown in Figure 4.1 (p. 124). The house has a total of 8 spaces: (a) a garage,
(b) a front patio, (c) a pool, (d) a garden, (e) a living room, (f) a kitchen, (g) one bedroom, and (h) a
bathroom.

Along with the home model, we provide a list of smart devices containing various types of
sensors and actuators for the participants to use. Namely, across all home divisions, there are
the following IoT devices: (1) motion, temperature, humidity, smoke, and air quality sensors,

Chapter 4. End-user Automation Survey 125

ye
s

se
rv
ic
e

none
no
ne

yes service

actuators
se
ns
or
s

immediate

ye
s

se
rv
ic
e

none

no
ne

yes service

actuators

se
ns
or
s

scheduled

ye
s

se
rv
ic
e

none

no
ne

yes service

actuators

se
ns
or
s

recurrent

ye
s

se
rv
ic
e

none

no
ne

yes service

actuators

se
ns
or
s

always

1

2 3

4

5

6 7

8

9 10

11

A

A A

A

Figure 4.2: Systematic process used to select the categories of the scenarios. All immedi-
ate scenarios, even if IoT related, were discarded as they represent actions (a).
Scenarios that are not applicable (×), and scenarios that are not IoT related (◦)
were also discarded. Applicable scenarios (•) were numbered from 1 to 11.

(2) security cameras, (3) controllable lights, (4) controllable windows and blinds, (5) A/C system,
(6) robot vacuum cleaner, and (7) sound system.

The (a) garage has (a.1) controllable outside and inside doors, (a.2) washing machine, and
(a.3) a dryermachine. The (b) front patiohas only a (b.1) controllable entry door. The (c) poolhas a
(c.1) automated pool cover, (c.2) cleaning system, (c.3) water temperature sensor, and (c.4) water
heating system. The (d) garden has a (d.1) water sprinkler system, (d.2) soil moisture sensor, and
(d.3) robot lawnmower. The (e) living room has a (e.1) smart TV. The (f) kitchen has a (f.1) stove,
(f.2) oven, (f.3) exhaust hood, (f.4) dishwasher, and (f.5) coffee machine. The (g) bedroom has
(g.1) a smart TV, and (g.2) controllable bedside lamps. Lastly, the (h) bathroom has a (h.1) heated
towel rack.

We also allowed and instigated participants to include other devices in their home automa-
tion scenarios as long they were available as off-the-shelf (consumer-grade) IoT solutions. No
limitations on the interoperability of the IoT system parts nor in the end-user programming
interface were defined nor presented.

An online form was picked as a data collection method, given the study’s motivation to
gather as many automation scenarios as possible while attempting to reducing any bias on the
respondent population. The form presented the smart home model, i.e., the house floor plan
and the list of available devices. Users had only one open question where they could insert as
many scenarios as they wished to without any limitation in size or form.

The survey was then disseminated among 20 participants with different educational back-
grounds and ages. All the answers were collected in a spreadsheet, anonymized, and the indi-
vidual scenarios identified, allowing further analysis.

4.3 Scenarios Categories
To be able to categorize the participant-submitted scenarios, we first need to concretely define
the ways by which the end-users interact with their smart home systems (i.e., interaction sce-
narios). More specifically filtering the ones which of those can be programmed (i.e., automation
rules), and are, indeed, IoT-related.

We decided to systematically enumerate each possible case— corresponding to a category
— by cataloging them according to three different axes: (1) the type of the sensors involved,

Chapter 4. End-user Automation Survey 126

id prd sns act example

1 sch — yes Tomorrow, at 11pm, turn on the watering system for 10 minutes.
2 sch yes yes In 2 hours, if no one is in the living room, turn the TV off.
3 sch yes ser In 2 hours, if the door is still open, send me an SMS.
4 sch ser yes Tomorrow, at 9am, if the forecast is sunny, turn on the sprinkler.
5 rec — yes When it is 7am, turn on the coffee machine, the hot water system and

kitchen lights.
6 rec yes yes When it is 9am, if the soil moisture is below 60%, turn on the sprinklers.
7 rec yes ser When it is 12pm, if there’s mail in the mailbox, send me an SMS.
8 rec ser yes When it is 9am, if the forecast is sunny, close the office and living room

blinders, and open the room ones.
9 alw yes yes When there is no one in the pool for 10 min., cover the pool and turn off

the water heater.
10 alw yes ser When someone rings the door bell, send me an SMS.
11 alw ser yes When a close windows request is received fromAlexa, close the windows.

Table 4.1: List of scenario categories, which take into account their periodicity (prd)— that
can be scheduled (sch), recurrent (rec), or always (alw) — usage of sensors (sns),
and usage of actuators (act) — that can be none (—), yes (yes), or service (ser).

(2) the type of the actuators, and (3) the periodicity of the rule. For the first two axes, we have
three possibilities, either (a) there is no sensor/actuator involved, (b) there is a sensor/actuator
involved, or (c) the sensor/actuator is actually an external service. For simplicity’s sake, we de-
cided to ignore hybrid cases where local sensors/actuators are combined with external services
as these are just compositions of different types of cases. Regarding the third axis, rule period-
icity, there are four different possible values, (a) it is an instantaneous action (i.e., now), (b) the
rule is scheduled to run in the future, in one or more well-defined occasions (e.g., tomorrow
at 10 am), (c) the rule has a well-defined periodic schedule (e.g., every Wednesday at 9 pm), and
might be subject to a time-frame, and (d) the rule is always active, just waiting for a trigger to
initiate it, and might also be subject to a time-frame.

Having this framework in mind, we started writing sample scenarios for each axis inter-
section (for a total of 3× 3× 4 = 36 possibilities). This exercise enabled us to eliminate some
combinations straight away: (1) we completely eliminated the immediate periodicity as this cat-
egory only contains actions — since we are only looking for rules —, (2) we eliminated any
combination of external sensors (services), and external actuators (services) as these have little
to do with IoT, (3) any combination without an actuator — if nothing happens then there is
little sense in creating a rule for it — was also removed, and (4) we eliminated always-on sce-
narios where there is no sensor to trigger the rule. We ended with 11 different valid scenarios.
This process is depicted in Figure 4.2 (p. 125), and examples for the remaining 11 scenarios
categories can seen in Table 4.1 (p. 126).

Chapter 4. End-user Automation Survey 127

1 2 3 4 5 6 7 8 9 10 11 N/A
0

20

40

60

80

100

9

2 0 1

31

9

0 2

93

14

5
10

Category ID

#
of

sc
en
ar
io
s

Figure 4.3: Number of automation scenarios per category. N/A stands for scenarios that
were too generic, one-time actions or non-categorizable (e.g., hard to under-
stand what the participant wanted to accomplish).

4.4 Results and Analysis
The survey resulted in a total of 177 scenarios. These were grouped into categories accord-
ing to the categories presented in previous section, being the results’ distribution presented
in Figure 4.3 (p. 127). We considered all the submitted entries valid smart home automation
scenarios, and we were able to categorize most of them (≈94.3%) into one of the 11 defined
categories.

With the information collected, the house plan, and devices provided to the participants,
we created a resulting ecosystem that represents the house with all the devices that the par-
ticipants used. This ecosystem is replicated in the representation presented in Figure 1.5 (p. 12),
showing the house plan with all the devices used by the participants. Some respondents also
mentioned using an external weather forecast API and wearables (which are not represented
in the isometric visualization).

The scenarios differ (1) in the granularity of application (e.g., with some of them being spe-
cific to a house part or domestic appliance), (2) in complexity (rules range from direct triggers
to one device to triggers of multiple devices depending on several conditional statements) and
(3) in writing fashion (with most of them being close to a conditional programming logic). It
is noticeable the usage of Boolean operators (in ≈ 29% of the submissions) to trigger several
devices, or to write more complex conditionals (e.g., “If no one is at home for more than 2
hours and the stove is on, turn off the stove.”). There are also scenarios (≈7%) were chaining
of actions was used to state complementary actions, e.g., “When someone enters a room, turn
the lights on. When someone leaves a room, turn the lights off.”. We also notice that most rules
use at least one, and mostly two, components (e.g., one sensor and one actuator), as depicted in
Figure 4.4 (p. 128).

Responses such as “Intensity of lights based on the available natural light”, “Blinds inclination

Chapter 4. End-user Automation Survey 128

1 2 3 4 5 1+
0

20

40

60

80

100

46

90

21

3 3 4

of devices (sensors and actuators)

#
of

sc
en
ar
io
s

Figure 4.4: Number of scenarios per number of system components in use. We consider
each sensor and actuator as a component, even if they are part of the same device
(e.g., an A/C system can have both the capability of measuring and adjusting the
current ecosystem temperature). The 1+ label refers to scenarios that point to
several devices (but at least one).

system based on outside light”, “On schedule turn on the coffee machine” would need modifications
to be closer to a programming-like format to be possible to implement them in usual end-user
programming solutions. For example, these should look more like “When the luminosity in the
living room is below <value>, then increase the light’s intensity by <increment>”, or “When time
is 7:00, then turn on the coffee machine”. These responses (and respective scenarios) are still
valid because the information portrayed is enough to understand their meaning and to which
category they belong. There are also examples of rules that are too generic, e.g., “Shut down all
unnecessary devices”, which would require that the IoT system had some degree of contextual
awareness, and, even, user preferences (e.g., “Turn the heating system on, set to the preferred
temperature, on schedule.”), to be able to execute them (≈27%).

The most common way of specifying scenarios is by using the structure “when condition1,
then action” or “action when condition” (with the recurrent use of “if” instead of “when”). This
is close to the representation commonly used by the widely available TAP services, which also
However, some scenarios are depicted differently, mainly for scheduled actions, such as “action
at time”, or “every day at time, action”. There are also some example of loops, mostly in the form
of “do action until condition”.

Looking at the dataset, we can see that there are home areas more frequently identified. In
contrast, others are almost unseen, as depicted in the chart of Figure 4.5 (p. 129). We consider
direct mentions all the mentions to specific rooms in the submitted scenarios, e.g., garage or
bedroom. All the indirect mentions consist of remarks about certain things that are, typically,
only present in certain rooms, namely: washing machine mentions are part of the garage (by
the given device list); entrance is considered front patio; lawnmower references considered

1For simplicity, we consider a trigger as a specific type of condition.

Chapter 4. End-user Automation Survey 129

fro
nt_
pa
tio

liv
ing
_ro
om

ba
thr
oo
m
po
ol
ga
rag
e

be
dr
oo
m
ga
rde
n

kit
ch
en

0

5

10

15

20

25

1

12

16 17
18 21

5
7

14

9 8 9

5

Indirect Mentions
Direct Mentions

Figure 4.5: The total sum of mentions to specific home parts in the submitted scenarios.
Direct mentions consider situations where the surveyed participants directly
mentioned a given house part. Indirect mentions include references to certain
things that are, typically, only present in certain rooms.

as part of the garden; kitchen includes mentions to the dishwasher, coffee, and oven; alarm
clock, waking up, sleep are all related to the bedroom; and all mentions to shower and toilet
are considered part of the bathroom.

Users also tend to specify similar (or equal) scenarios using different expressions, granu-
larity, and forms. This was expected since the participants’ background (e.g., educational level,
previous experience with IoT, age, and the way of expressing ideas) was homogeneous. As an
example, “Turn the heating system on, set to the preferred temperature, on schedule.”, “Main-
tain room temperature in between a specified permissible range.”, and “Turn on the A/C when
the temperature is higher than a given value.” transmit the same rule — adjusting the house
temperature according to a preference value— in different fashions, either in format or preci-
sion. Approx. 28% of the scenarios mention “turn on” actions, and there are 28 direct mentions
to lights, 23 to water, 21 to blinds, and 20 to temperature.

It is noted the use of pre-conditionals in some scenarios, more specifically, defining some
condition that should be met before enforcing the rule, e.g., “With a solar thermal collector (for
heating water); when the sun is expected during the following hours, turn off traditional water
heating system”. The use of macros that aggregate a set of tasks and sub-rules is also visible, e.g.,
“Holiday mode: when any device is used/triggered notify the owner” and “Garden automation:
stable soil moisture level, temperature stabilization in adverse weather”.

Although integration with external services is only mentioned once, there are several rules
that, when implemented, would depend on some information provider. For example, we can
consider “If the hot water system is based on electricity, heat when electricity is cheaper” would
depend on knowing the market prices of electricity. Further, voice control, e.g., “Voice control

Chapter 4. End-user Automation Survey 130

over coffee machine/blinds/lights/etc.”, is typically accomplished by integrating with a third-
party voice assistant such as Amazon Alexa, Apple Siri, or Google Assistant [Amm+19].

Finally, it is also noticeable that some participants already present some degree of concern
about the failure of the system parts and the use of IoT to detect them, e.g., “Send SMS alert if
faulty freezer/fridge”.

4.5 Threats to Validity
For this survey, we have identified some threats that may affect the validity of the results at-
tained.

We asked participants for home automation scenarios and did not give them any structure
for the phrases, to understand how they would write the scenarios, which resulted in many
scenarios being just a brief description and not specific enough. Perhaps, having requested the
participants to provide more detailed scenarios would have resulted in more concrete scenar-
ios. However, constraining participants to use a specific format or having certain degrees of
detail for the scenario descriptions would not have allowed us to evaluate whether users tend
to follow a pattern or typical structure.

Although we let participants use any off-the-shelf device, we provided them with an initial
list of devices to pick from. This, together with the specified houseplant, might have introduced
a bias into the chosen scenarios.

The sample size for this survey was relatively low size, corresponding to 20 participants.
Having a larger sample could have resulted in more varied scenarios. This could enrich our
analysis and provide more insights into the typical way that users express their automation
rules and what these rules typically consist of.

The level of expertise of the participants could impact the scenarios provided by them,
and, as such data was not collected, we consider it a threat to the conclusions drafted. For ex-
ample, participants with more experience with IoT should provide more complex and realistic
scenarios than participants with no experience in that field. To tackle this threat, we attempted
to choose participants with different levels of expertise with low-coding programming solu-
tions and IoT. This resulted in having scenarios from participants whose experience ranged
from participants who never used or experimented with home automation, to participants that
had already implemented IoT systems and worked with Node-RED extensively.

Even though the participants had different levels of expertise in home automation, the re-
sults reveal little variety in categories for the scenarios. As aforementioned, increasing the
number of participants in the survey would probably, have resulted in more varied scenarios
and more categories. Another possible mechanism to mitigate this threat would be to pro-
vide a wide-range of example automations, but this could induce some bias in the participant’s
answers.

Chapter 4. End-user Automation Survey 131

4.6 Summary
Notwithstanding the global growth in the number of IoT devices across all fields of application,
configuring, programming andmanaging these systems remains a challenge, especially by non-
technical end-users.

Vendor apps designed to help with device configuration and interaction are device/brand
specific, thus not offering the flexibility required by a heterogeneous field which use cases re-
quire interoperability between different devices and systems. This leads to the existence of
low-code programming solutions targeting this need. However, their inherent simplicity limits
the complexity of the automation scenarios that are possible to specify. Other, more advanced
solutions, such as Node-RED, provides the capability to work with multiple devices/brands in
one place. This comes with an extra cost in terms of usability, as these solutions turn out to be
too overwhelming and complicated for most novice users. Smart assistants, which are typically
more user-friendly, are another common alternative to provide comfortable interactions with
IoT systems. But they lack in the ability to provide sufficiently complex interactions, which
prevents users from managing complex systems.

In this chapter we present the results of a survey conducted with the goal of collecting
home automation scenarios, which resulted in 177 scenarios created by 20 participants. We
conclude that the most common pattern used by users to define their automation scenarios
shares a similar structure close to conditional programming — “when condition, then action”,
or “action, when condition”—which is compatible with the trigger-action programmingmodel
used by several market solutions including IFTTT. This shows that it is intuitive for regular
users to describe home automation scenarios in a mostly-structured fashion, easily transposed
to a conditional programming syntax. Besides, the users tend to use (ormention)macros and/or
aliases that represent more than one device (e.g., a group of lights) or more than one action (e.g.,
garden control).

Taking into account the available solutions in the market for end-user programming and
their programming strategies, we can consider that while most of the scenarios could be easily
mapped into TAP rules, the rules that do not follow such model appear as a challenge which is
mostly ignored by existing solutions, especially the ones that focus users without specific tech-
nical knowledge. In this case, voice assistants can become of utmost importance, allowing users
to create automation rules in a conversation, adding complexity by steps instead of specifying
everything in one statement or by a diagram [Amm+19; DLF20].

The full dataset, the 3Dmodel of the house, floor plan, and suggested device list are available
as a replication package (cf. Chapter B, p. 337) to ease the study’s replication and allow further
analysis.

132

5 | Research Statement

5.1 Emerging Challenges and Viewpoints . 132
5.2 A Perspective on Node-RED . 135
5.3 Thesis Statement . 136
5.4 Research Questions . 138
5.5 Research Methodology . 140
5.6 Summary . 141

Building software systems is an arduous task as it can be seen from the CHAOS reports [Sta15]
which states that software projects have a challenged rate of 52%, a 19% impaired (canceled)
status, and only a 29% success rate, circa 2015. Even with Fitzgerald [Fit12] considering that we
are beyond the early software crisis, such reports reveal that even if we are now facing another
software crisis, the crisis leads to the same poor success rates. One can identify complexity as
the main reason behind the problem with developing software [Bro86].

Within the nature of IoT systems, there are several particularities that, although not new
or unique, congregate at a large scale in terms of interconnected devices, people, systems, and
information resources, leading to an ever-increasing complexity that affects developers and
end-users alike. These systems — typically built with heterogeneous parts, mostly resulting
from the integration of different, and, sometimes, already existing, systems (i.e., SoS [Del+13])
— are not only logically distributed but also geographically and, typically, have to deal with
power constraints and real-time needs.

In this chapter, we present the main challenges that drive this thesis taking into account the
analysis of the literature (cf. Chapter 3, p. 64) and the end-user survey (cf. Chapter 5, p. 123),
while discussing the adequate research methodologies and strategies that provide empirical
evidence for our hypothesis.

A preliminary version of this research statement was presented and discussed at the doctoral
symposium on software engineering part of the 2018 11th International Conference on the Qual-
ity of Information and Communications Technology (QUATIC), with the work entitled a reac-
tive and model-based approach for developing internet-of-things systems [DFF18].

5.1 Emerging Challenges and Viewpoints
The scenarios described in § 1.7 (p. 10) showcase some different ways in which IoT plays a
role already or can/will be part of soon, while presenting some different technical challenges
that influence different intervening parties, from end-users to practitioners in a mostly-unique

Chapter 5. Research Statement 133

fashion. Although we could consider some concerns as cross-cutting, the ability of each one of
the different types of users to address them is, most of the time, limited in several ways.

In an end-user perspective, several challenges appear when the user wants to interact with
their system, ranging in complexity accordingly with the number and variety of devices and
other ecosystem constraints (e.g., number of household members). From this viewpoint, and in
the context of this work, we can enumerate the following as some motivational issues:

1. End-users have, typically, limited technical knowledge thus resorting to the vendors’
out-of-the-box tools — that come mentioned in the users’ manual — to configure their
systems. While these tools (ranging frommobile applications toweb dashboards) provide
minimal features that allow one to use their systems, they (1) limit the ability to configure
complex sensing-acting rules thus limiting the ability to satisfy the system users’ neces-
sities if they do not fall in the typical device use cases, (2) lack of ability to verify if the
current configuration performs as expected when a condition is met, and, (3) limitations
in understanding why something happened in the system a posteriori. Further, when the
user attempts to control their system with everyday solutions such as voice assistants,
the available feature-set is even more limited.

2. While it is common to have electronic spares of some kind around the home (e.g., light-
bulbs), it is not so common to have IoT devices spares lying around, because they are,
typically, more expensive and not expected to fail so frequently. However, these devices
and systems can fail due to problemswith hardware parts— communication issues, sen-
sors, and actuators malfunctions— as well as software counterparts — broken updates,
misconfigurations, and security problems. Due to the reliance on single devices of each
kind, the failure of one can render the whole system unusable, only recovering by re-
placing it. Further, as the complexity of the system increases, understanding what the
faulting part was can be a challenge by itself.

3. As the number of devices, integrations, system users, and environment variables in-
creases the ability of the users to reason about the system, the configured automations,
and their side effects weaken (or completely disappears), resulting in poorly configured
and managed systems that can be troublesome, and, in extreme cases, threaten the com-
fort and well-being of the house inhabitants.

4. IoT systems heavily depend on Internet connectivity to proper work. The ability for
these systems to work as expected can be impacted by (1) the Internet service quality,
which varies between locations, and (2) the vendors’ Internet-based services that can have
disruptions themselves or suffer from disruptions due to problems with the providers
they use1. Due to these, end-users can be unable to use their systems at all if the vendors
do not provide alternative ways to interact or minimal service features that work offline.

1In some more extreme cases, the entity (e.g., vendor) behind certain IoT devices can decide to deprecate them
and disable the supporting services (e.g., cloud services), thus making the devices severely limited or, even, unus-
able.

Chapter 5. Research Statement 134

From a perspective of both systems integrators and power-users — individuals that have
enough technical knowledge that allows them not to be limited by the vendors out-of-the-box
solutions — a new set of challenges appear:

5. Similarly to what have, historically, happened to other fields of application such as in-
dustrial automation and systems modeling, there has been a rise in the use of solutions
that leverage high-level abstractions in the scope of IoT as a way of taming the complex-
ity of configuring and managing these systems. Such solutions, although their apparent
usage simplicity, have limitations when (1) have to deal with the heterogeneity of the sys-
tems and devices, limiting their use to a few supported vendors, (2) the abstractions are
leaky [Spo04], thus, in most cases, lower-level errors and configurations require users to
manually intervene in the system, requiring more advanced knowledge manually, (3) do
not provide features to introspect the running system making it hard to impossible to
debug them, and, (4) make the systems more opaque (limit observability) and harder to
test, i.e., one can only observe misconfigurations when the system is running since these
tools lack proper system validation and verification capabilities.

6. Available solutions for configuring and managing IoT systems are typically centralized
— one central unit that orchestrates (i.e., configures and manages), and, in some cases,
processes the data from the different devices and triggers actuators accordingly while
taking into consideration human interaction (e.g., human-in-the-loop). This makes users
unable to leverage the distributed nature of IoT systems, leading to wasting local com-
puting capabilities and making it hard to impossible to adapt the system in the case of
disruptions (e.g., fault of a central computation node).

7. Most IoT systems and the abstractions used to build them mostly disregard system/de-
vice failure situations. The disregard for such scenarios—alongwith the lack of building
blocks to attain these scenarios requirements—makes it hard to impossible for users to
configure their systems to sustain failures within the system or with the 3rd-parties they
rely on.

As a system designer and/or developer, the aforementioned technical challenges and open
issues, ranging from technology fragmentation to lack of standards, are a source of problems
that are being addressed differently by practitioners and research mostly without any consen-
sus, leading to several challenges:

8. The vastness of practitioners, researchers, and organizations putting efforts on both
evolving and standardizing IoT has created an immense body of knowledge, ambigu-
ous concepts and created several competing standards and technologies that become a
major barrier to those who have to pick the best solution (e.g., communication protocols
and system’s architecture) for a specific case or system.

9. As developing IoT systems depends both on hardware and software considerations, those
who design and build these systems need to consider failures on software, but on hard-
ware also.

Chapter 5. Research Statement 135

As there is no silver-bullet that could encompass all of these challenges and many others
that fall out of the scope of this work, we focus our contribution on the systematization of best
practices for design and developing IoT systems dependably from a software engineering per-
spective, while reducing the users’ specific expertise required to configure their own systems,
by improving the existent development environments and by leveraging concepts of autonomic
computing, such as self-healing.

5.2 A Perspective on Node-RED
Node-RED [Ope19b] is one of the most common (low-code) visual programming solutions,
with more than 8800 stars on GitHub (cf. Figure 3.2, p. 69) and ≈4600 mentions in research
artifacts2. It is also open-source and has a special focus on IoT development3.

0% 10% 20% 30% 40% 50% 60% 70% 80%
Personal

Proof-of-Concept

In Production

Commercial

74.6

54.3

35.1

16.1

% of projects

Figure 5.1: Usage of Node-RED by the user community per project maturity stage. Re-
sults gather from 871 surveyed participants where respondents could pick all
answers that applied to them [Ope19a].

Node-RED vast majority of users4, as per Figure 5.1 (p. 135), use it for home automation
purposes (≈75%) and building dashboards (≈48%), there is a considerable number of users that
state that they use it for defining edge device’s logic (≈43%), controlling PLC devices (≈24%),
and gathering and transformdata (extract, transform, and load—ETLworkflows, correspond-
ing to≈7%) [Ope19a]. While this solution was identified and discussed as part of our literature
review (cf. Section 3.2.7, p. 87), given its role in the context of this thesis—whichmostly direct
impacts the work carried — a review on some key challenges and limitations is presented in
the following paragraphs.

From a technical perspective, Node-RED has several limitations in terms of dependability
and computational distribution, mostly due, but not limited, to its centralized architecture.
This architecture results in (1) all the computation being performed in one instance (limiting
computational distribution), (2) computational heavy tasks will impact the performance of the
whole system, and faults in a single flow can lead to system disruption, (3) there is no isolation
of execution contexts which can raise both security and privacy issues. There is also no out-
of-the-box mechanisms for redundancy (multi-tenancy) with several instances of Node-RED.

2Considering a search on Google Scholar with the query ("Node-RED" OR "NodeRED") AND ("IoT" OR
"Internet-of-Things" OR "Internet of Things") circa November 2021.

3Although the tool was initial only focused on IoT development it now claims to be suitable for developing
any category of event-driven application.

4Considering a survey with 868 respondents [Ope19a].

Chapter 5. Research Statement 136

Complementarity, there are some design decisions that pose limitations to the use of Node-
RED, namely: (4) the web-based development interface (Node-RED Editor) is highly-coupled
with the runtime, limiting the use of alternative development interfaces and making it more
difficult to interact directly with the runtime (i.e., lack of an runtime API), (5) there is no support
for multi-inputs per node, making it harder to define and readjust the behavior of flows both
during the design and runtime phases, and (6) there are nomechanisms to ensure the structural
correctness of the developed flows (e.g., types and static analysis) nor to verify if the developed
flows operate as expected (testing).

From an end-user perspective over the Node-RED development environment, there are a
few key missing features that could improve the environment and enhance the end-user inter-
action. Concretely, (1) the system’s internal functioning (e.g., flow of the messages) is opaque,
thus limiting the observability over the system operation, (2) lack of debugmechanisms such as
breakpoints, (3) labels, annotation, and other documentation features are poor, (4) there is no
feature for auto-placing and auto-routing of nodes and resulting flows (making the organiza-
tion of nodes and wires a manual endeavor), and (5) the visual notations are very similar (i.e., all
nodes look the same) making it harder to understand the different functionalities of each node.

Although there is a considerable amount of visual programming solutions and, concretely,
mashup-development tools, for IoT (even if they are less popular in terms of usage and com-
munity) [Ray17; Ihi+20], they are typically limited in ways similar to Node-RED.

5.3 Thesis Statement
As the number of interconnected devices permeating our daily lives increases, their operation
becomes strongly tied to our physical surroundings, regardless of the domain of application.
The unavailability or malfunctioning of these devices and the systems they are part of could
threaten human life, cause environmental damage and significant financial loss, at large scale—
as a mostly direct result of moving from mostly-segregated and mostly-independent systems
to ever-more connected and dependent ones.

Traditional systems typically consider the existence of non-technical users who interact
with interfaces (e.g., applications) behind which users with technical and domain knowledge
configure the underlying system and its features. In this view, when new types of interaction
requirements are found, the design and development teams go through the development life-
cycle (from its early stages) to meet these new user-requested features or modifications.

Applying this development approach in context of IoT systems becomes a challenge due to
several aspects, including: (1) the number of technical human resources does not scale to meet
all the IoT users’ needs — especially when they are user/domain/scenario specific [Mic19];
(2) the tendency for market-solutions to be one-size-fits-all, that do not consider interoper-
ability5 among different vendors and not specific for each niche scenario [Gui16; Aly+19];
(3) the dynamic nature of these systems, where users keep changing their automations and

5Some vendors go further limit the interoperability on purpose to lock users to their ecosystem and products
(i.e., vendor-lock).

Chapter 5. Research Statement 137

adding/removing a device, making developing using traditional approaches too slow and un-
suitable [And+21], and, (4) evolving these systems could imply changes in hardware compo-
nents which would force individuals to buy and upgrade their systems continuously.

Thus, as current approaches do not scale to the dimension of IoT — in number of users,
application domains, and devices—, several solutions have appeared that enable users without
specific expertise to configure and automate their systems without requiring technical knowl-
edge (or reducing this knowledge to a bare minimum)6. Most of these solutions are low-code
development platforms (cf. Section 3.2, p. 68), ranging from visual programming platforms to
text-based automation rules (some even using conversational assistants). However, these so-
lutions typically limit7: (1) what the system users can automate and how these can be carried
out (i.e., vendor-specific apps or limited scope of features and integrations) [Aly+19; MHF17],
(2) have limited features aiding users with limited technical knowledge to understand what is
happening in their systems (i.e., what the automation rules do), and, (3) mostly disregard de-
pendability considerations which lead to a highly fragile ecosystem (e.g., total dependency on
an always-on Internet connection).

Additionally, as systems’ complexity increases, it inevitably results in people becoming
“overwhelmed by the effort to properly control the assembled collection,” [PD11] increasing the prob-
ability of human-induced errors and failures; developing becomes hard, labor-intensive, and
expensive, no matter how low-code the infrastructure is [JEC14].

While most IoT development environments limit the possible configurations and integra-
tions that the userswithout specific technical knowledge can do— thus limiting the complexity
of the system and the possible human-induced errors — we believe that by enriching the sys-
tems with safeguards and feedback mechanisms (similar to debug), one could improve their
ability to configure their systems, including the ability to configure more complex behaviors
(e.g., automation that involves several devices, third-parties, and several users). However, we
also believe that the dependence on end-users without any technical knowledge to define de-
pendable behaviors (and others, such optimizations) is a fallacy since it always require some
degree of technical knowledge.

We consider that a balance is needed between development environments that enable end-
userswithout specific technical expertise to definemore complex automations, and the require-
ment of dependability of the resulting system (given that most of end-users do not possess
the specific knowledge to define mechanisms from scratch for ensuring such dependability).
Several authors have been proposing the adoption of autonomic computing [Hor01; AH15b;
Ang15; Ver+11], as a way of enabling systems to self-adapt to their operational ecosystem and
current context mostly without technical and manual intervention8. Autonomic computing
principles, namely self-healing, can thus be used to improve the system’s dependability with-
out requiring additional know-how from the end-users. Additionally, the autonomic behaviors

6This is a tendency observable in other fields with low-coding application development solutions being a com-
modity [Won+21].

7While these are the concerns that most impact this thesis statement, other considerations, including privacy,
should not be discarded by the research community (cf. Section 3.4, p. 103).

8With the current widespread of IoT systems it is already unfeasible to have (timely) technical human inter-
vention.

Chapter 5. Research Statement 138

built into the systemwould also provide safeguards on the possible end-user configurations and
automation.

Given the aforementioned context, we consider the fundamental research question of this
thesis as:

What mechanisms should be provided to IoT end-users that enable them to build systems
tailored to their own needs without compromising the overall system dependability while
minimizing the additional know-how required?

This question leads us to our main research hypothesis:

H: It is possible to enrich IoT-focused end-user development environments in such a way
that the resulting systems have a higher dependability degree, with the lowest impact on
the know-how of the (end-)users.

As a reference implementation of an IoT-focused end-user development environmentswe will
be using Node-RED, as it is one of the most widely-adopted solutions in this scope.

By enriching IoT-focused end-user development environments, we consider a two-fold en-
deavor: (1) from a technical perspective, the environment should provide the fundamental
building-blocks that allow a user to address dependability concerns in a IoT system, and
(2) from a user’s perspective, the environment should provide abstractions and functionali-
ties that improve the user’s ability to construct, understand, and evolve their own systems —
which include the ability to address their dependability concerns in their specific use case.

By higher dependability degree we consider systems that can manage errors — by either
recovering or neutralize the impact of errors, and, possible, failures—of some of theirworking
counterparts with minimal disruption of normal service, i.e., without impacting the system
users’.

By with the lowest impact on the know-how of the (end-)users, we mean that the resulting
environment should not increase — and, ideally, decrease — the complexity of achieving sys-
tems that perform as the (end-)user requires — even when errors (or, even, failures) occur. By
(end-)users we are considering all IoT system users that have the necessary knowledge to con-
figure their own systems, with a special focus on the ones that want to configure behaviors for
increasing the system dependability.

5.4 Research Questions
With the widespread use of the so-called IoT, new ways to design, construct, deploy, evolve,
and maintain these systems have been created, mostly due to the unfitness or incompleteness
of existing approaches. However, as these approaches appear, they are not silver-bullets, and
we are still far behind a widespread consensus on what are the best practices for designing,
developing, operationalize, and manage reliable IoT systems.

To enable our contribution to the current body of knowledge, we set ourselves to under-
stand what are the mechanisms and approaches that can be leveraged, adapted, or created that
enhance the management of lifecycle IoT system, while providing users with the necessary

Chapter 5. Research Statement 139

mechanisms to make themmore dependable. While a focus is given on providing such to users
with limited technical expertise, the mechanisms should contemplate enhancements to both
end-users and experts.

We consider as the fundamental desideratum of this work to tackle the current com-
plexity of managing the lifecycle of IoT systems in a dependable fashion given their in-
herent characteristics, without disregarding the lack of specific technical expertise of the most
common IoT users. We consider that the lifecycle of an IoT system encompasses the design,
construction, evolution, and maintenance of these systems from both hardware and software
perspectives. While in software-only systems, one can mostly disregard hardware concerns
(e.g., cloud computing), in IoT, hardware specifications and operational modes can directly im-
pact the software that runs both in the devices and in higher layers. Given that, we identified
five (5) Research Questions (RQs) that guide this research, as follows:

RQ1 Considering the unique characteristics of IoT systems thatmakes them complex,
how suitable are the existent solutions for the end-user to develop a dependable
system? What makes IoT systems more complex than software-only systems? What are
the current end-user-focused solutions to develop such systems? Do they provide any
mechanisms regarding system dependability?

RQ2 Are there recurrent problems concerning the lifecycle of IoT systems, and what
are the prevalent solutions that address them? What recurrent problems can we
identify with current approaches? What is the impact of these problems through the
lifecycle of these systems? What are the common solutions and best practices that at-
tempt to address such issues?

RQ3 What can be improved concerning the IoT systems’ dependability? Given the ex-
isting literature on developing dependable systems (RQ1), which aspects have been over-
looked in their application to the IoT domain? How can the widely used IoT computa-
tional architectures be improved towards higher availability?

RQ4 How can the mechanisms identified in RQ2 be leveraged by the end-users of IoT
systems? Do current approaches provide mechanisms to build more dependable sys-
tems? What form would a concrete implementation of such a mechanism take in a way
that empowers end-users (RQ1) to build dependable systems? Is it possible to extend the
existing development environments in a way that satisfies the dependability needs?

RQ5 How can the end-user’s ability to manage the IoT systems’ lifecycle be improved
without requiring specific expertise while promoting the systems’ dependabil-
ity? Given that current end-user development solutions limit their ability to understand
the IoT systems, how can we improve these environments with information about what
is happening (feedback-loop) and why (diagnostic)? How can IoT development environ-
ments be improved to benefit the management of the systems’ lifecycle — without re-
quiring specific technical expertise — while promoting the systems’ dependability?

Chapter 5. Research Statement 140

Answering these questions will provide us with evidence of the falsifiability of the afore-
mentioned hypothesis. The scientific methods and validation approaches that will be used are
presented and discussed in the following sections.

5.5 Research Methodology
As new paradigms emerge, such as IoT, the repercussions spread through the different areas
influenced by its creation. This leads to efforts, more or less coordinated, among different in-
dividuals, teams, and institutions towards its adoption, in order to create new tools, producing
scientific content, improve processes, or generate profits. At the same time, there is a parallel
creation of knowledge by the ones working in evolving the paradigm per se in mostly discon-
nected and diverse fashion. The area of software engineering is one that may be regarded as
inherently coupled with human activity, since as a such paradigm-shift happens, the knowledge
generated around it is directly dependent on the methods by which it was obtained.

In order to assess the practice of software engineering, particularly in field research, ap-
proaches based on reductionism are a complex activity and sometimes unsuitable; thus this
thesis is aligned with a pragmatist view of knowledge acquisition, valuing acquired practical
assets and observations.

This work follows the Engineering research method9 — as defined by Zelkowitz and Wal-
lace based upon the discussion on the Dagstuhl workshop on future directions in software
engineering [ZW98; THP93] — by developing and test a solution to the thesis hypothesis,
concretized by the design and implementation of several proofs of concept which were thor-
oughly validated using the appropriate methods.

Auxiliary methods are used to empirically gather evidence for some parts of this work. An
historical method was used during the literature review, since the knowledge comes from the
analysis of data that already exists [ZW98].

The work pursued on patterns follows an inductive method, where knowledge, as defined
by Kohls and Panke [KP10], results from the observation and analysis of existing cases, being
based on practical experience and not deduced from theories.

A controlled method10, which consists on collecting “multiple instances of an observation for
statistical validity of the results”, was also used along this work, mostly consisting of replicated
experiments, synthetic environment experiments, and simulation experiments [ZW98].

The concrete strategies used to validate, or, at least, improve knowledge about the questions
raised are the ones that seem to be adequate, provided their scientific significance. Essentially,
a mix of different strategies was used, namely:

1. User-studies to grasp the current practices and challenges that end-users face when de-
veloping IoT systems;

9The Engineering method is defined as “Engineers develop and test a solution to a hypothesis. Based on the
results of the test, they improve the solution until it requires no further improvement” [ZW98].

10The controlled method is the most classical approach for experimental design in other scientific fields.

Chapter 5. Research Statement 141

2. Systematization of widespread, diffuse, and organized empirical best practices through
observational and historical methods on both published academic research and
widespread enterprise solutions;

3. Feasibility experiments to measure what are the implications, both beneficial and nega-
tive, of the proposed approaches, by evaluating one (ormore) possible implementation(s);

4. Laboratorial (Quasi-)controlled experiments, both by (1) leveraging physical testbeds and
simulators to carry out replicable experiments and (2) guided experiments with individ-
ual participants to assert both their capacity to carry out predefined tasks and to gather
perception metrics.

Carrying some aforementioned validation steps required a realistic setup to test upon.
While simulations and other kinds of mocks can be used to grasp how the approaches and
implementations would perform in a real-setup, they are limited by their capability to mimic
real-world constraints. A physical testbed was defined, implemented, and deployed in the Soft-
ware Engineering laboratory at the Faculty of Engineering, University of Porto, to attain this
limitation partially. The testbed, so-called SmartLab, is composed of several sensors, actuators,
and data storage and processing units (i.e., servers), resembling a real-world IoT system.

As the goal of the testbed was to test new approaches and ideas, mainly asserting their
feasibility, most of the devices were implemented from scratch, giving control both over the
firmware and the circuitry. Due to the costs involved in adding more devices to the testbed,
it is of small scale11. As the testbed is deployed in the laboratory shared by other individuals,
these users are part of the testbed and interact — directly or indirectly — with it.

As a complement to this do-it-yourself testbed, several out-of-the-shelf devices were ac-
quired, which allows better understanding of their functioning, architecture, limitations, and
other relevant details. This allows us to compare the testbed with commercial solutions con-
tinuously.

5.6 Summary
There are fundamental research questions directly related to the state-of-the-art of IoT systems,
the suitability of current software development best practices to them, and how end-users can
or cannot interact or adapt their systems to their own needs. We acknowledge that these re-
search questions are transversal to several fields of research that are combined in current IoT
systems. Thus, in the scope of this thesis, we focus on tackling the current complexity of cre-
ating dependable IoT systems, from a software engineering perspective, without disregarding
the lack of specific technical expertise of the most common IoT users. To that end we identified
four main goals/questions to drive our research: (1) identify the unique characteristics of these
systems that make them complex and how does that affect the end-user ability to build de-
pendable systems, (2) what are the recurrent problems — and solutions — when dealing with

11For some experiments, larger physical testbeds— in device number—were used, but theywere not deployed
as part of the laboratory.

Chapter 5. Research Statement 142

the dependability of these systems, (3) how can those recurrent solutions be adapted and im-
plemented in widely-used IoT development solutions, specifically low-code ones, and (4) how
can the users without specific technical expertise interaction with these systems be enhanced
in a way that their ability to build and evolve IoT systems is improved, while maintaining or
improve these systems’ dependability.

Valuing acquired practical knowledge, we are set to answer the above goals/questions while
providing empirical evidence that supports those answers. Thus, to validate our claims amix of
different validation methodologies were used, among which are (1) observational and historical
methods for the contributions regarding patterns and pattern languages, (2) feasibility experi-
ments (engineeringmethods) for contributions that depend on various POC and their suitability
to the hypothesis in question, (3) user-studies (empiricalmethods) to validate contributions that
depend on gathering empirical evidence on the end-users perception over a concretization of
a hypothesis, and (4) laboratorial (quasi-)controlled experiments, both using testbeds or simu-
lators, to gather observations for statistical validity.

143

Part II

Pattern Language

144

6 | Patterns for Dependable IoT
6.1 How To Read These Patterns . 144
6.2 Methodology . 145
6.3 Pattern Language . 146
6.4 Summary . 150

IoT as a constantly evolving field across application domains have been lead to a widespread
creation of knowledge in themost various forms. This knowledge, coming from both academia
and industry (and, even, hobbyists), is paramount to the evolution of the field. However, with-
out a proper systematization of this knowledge it becomes an arduous task to understand what
are the best or most suitable practices, architectures or methodologies that applies to a specific
project, concern, or problem. Patterns and pattern-languages have been used for long as a way
of accomplishing such systematization [AIS77; Gam+95]. Initial contributions in the context
of design patterns for IoT were published mainly by Reinfurt et al. [Rei+16; Rei+17b; Rei+17a;
Rei+17c]. The published patterns mostly address the operation mode of IoT systems, including
concerns about energy supply modes, bootstraping (self-configuration), interoperability, com-
munication modes and security controls. These contributions, from Reinfurt et al. and others,
are analyzed and discussed in § 3.1 (p. 65), which, although preliminary and focused only in a
subset of concerns, already unify some of the existing body-of-knownledge.

In this chapter we introduce a pattern-language1 for self-healing on IoT systems. This
pattern-language capture important structures, practices, and techniques that are key competencies
in a given field, but which are not yet widely known, regarding resilience, reliability, and fault-
tolerance for these systems, and from an autonomic computing perspective (i.e., self-awareness
and self-adaptation). The patterns here presented are further detailed in the following chapters.

Parts of this chapter were published in the works a pattern-language for self-healing
internet-of-things systems [Dia+20a], patterns for things that fail [Ram+17], and,
testing and deployment patterns for the internet-of-things [DFS19]. Some parts
also appear as part of the subsequent works visual self-healing modelling for reli-
able internet-of-things systems [Dia+20b] and empowering visual internet-of-things
mashups with self-healing capabilities [DRF21].

6.1 How To Read These Patterns
The patterns presented in the following chapters are described as patlets of problem-solution
pairs instead of the more structured traditional fashion of patterns. Thus, these become more

1A pattern-language is defined as the group of related patterns that can be used together to address a larger
problem/concern, typically forming an hierarchy or network [Han12; Sei17].

Chapter 6. Patterns for Dependable IoT 145

general guidelines of design, providing a small insight on how to improve an IoT system reli-
ability through self-healing, but are not prescriptive implementation solutions, mostly due to
the wide range of application domains, competing standards, and abstraction levels (ranging
from hardware concerns to software issues). Giving concrete implementations of each pattern
would force us to drill down to the specifies of the technologies used (and, even, specific pro-
prietary protocols and solutions), operational context, and users’ capability to interact with the
system. The patterns share the following structure:

Name Ameaningful and easily memorable way to refer to the pattern, ranging from a one
to two words.

Context and Problem Presents conjunction of influencing factors and settings that re-
sult in the manifestation of the problem, giving context to the reader for what were the
problem main driver(s). The context limits the range of action of the solution; i.e., a con-
text change might invalidate the solution. It also presents supporting examples for high-
lighting problem and ends with a formalization of the problem in the form of question.
Readers with experience on the field will often relate the pattern context with previous
or undergoing experiences.

Therefore Presents a succinct solution to the presented problem (i.e., answers the ques-
tion), enumerating some solution strategies.

Rationale Discusses the problem and solution taking into account the pattern forces, pre-
senting both the benefits and liabilities of its usage. It also details some of the solution
strategies and high-level guidelines for its implementation.

Also see Presents related patterns that address similar problems in other contexts or do-
mains of application and enumerates several usages of the pattern in thewild, showcasing
its usage (as per the rule of three).

This synthesised format for presenting patterns appear repeatedly in the literature as a
<problem, forces, solution> triplet (cf. Section 2.5, p. 56).

6.2 Methodology
The patterns here introduced were mined through an enumerative and eliminative inductive
endeavor as presented by Kohls and Panke [KP10]. By enumerative we consider the process
of inferring from a number of observed positive cases the properties of new cases — both by
(1) extrapolation, i.e., if a given design worked several times, it will work in this case as well, and
by (2) generalization, if a given design has worked several times, it will always work in similar
contexts. During the process of extrapolation or generalization we also perform an ultimately
eliminative task as there are no other forces which (in general) influence the observed relations. Even
when new aspects are introduced to the context (which can imply new forces and adjustments),
the essential information captured in the patterns do neither miss critical forces nor contain
forces that only existed as a detail of a specific situation.

Chapter 6. Patterns for Dependable IoT 1462 • N. Seidel

Pattern
Evaluation

Pattern
Identification

Pattern
Writing /
Revising

Building / Revising
Pattern Language

Pattern Language
Evaluation

Release

Fig. 1. Schema on how to process the elaboration of patterns and pattern language

necessarily the case, because patterns from different sources and unrelated pattern languages or cat-
alogues are collected together. Systems that provide access to a set of patterns from one or multiple
pattern languages or catalogues is called pattern repository.

The elaboration of patterns can lead to a pattern language. In such case the elaboration process, as
shown in Fig. 1, is determined by an iterative interplay of writing, evaluating, and revising patterns
and the pattern language. After identifying patterns (”pattern mining”) the iterations takes place on
two levels. The first level is dedicated to shape the patterns. At the beginning they are formulated
as drafts or proto-patterns and evolve through evaluations and revisions to more and more complete
patterns. Typical evaluation methods at that stage are part of the Shepherding and Writers’ Workshops
at *PLoP conferences. Note, that these methods usually encompass several iterations. Although there
is a brought agreement about the appropriateness in the pattern community, these methods are not
sufficient and in many cases not suitable to process and discuss a whole pattern languages in detail.
Instead, additional and alternative methods are required to obtain feedback and orientation on how to
improve a language as a whole.

On the second level of the elaboration process the pattern language is built, evaluated, and revised
iteratively. Possible evaluation methods are subject of this paper. Most of the necessary revisions take
place on the pattern level. That’s why both process levels are connected with each other. On the one
hand, the evaluation results may require a revision of certain patterns. On the other hand, changing or
adding a pattern may change the structure and overall view of the pattern language. As a consequence
the pattern language needs to be evaluated one more time. After successful evaluations on both levels
a new version of the pattern language can be released.

This process emphasises the iterative and incremental nature of interleaving writing and evalua-
tion activities. From the perspective of scientific theory the pattern elaboration process incorporates
parallels to design-science research [Hevner et al. 2004] as well as design based research [Euler 2014;
Kunzmann et al. 2016]. Thinking the way of design-science patterns are considered as viable and rel-
evant artefacts. The utility, quality, and efficacy of an artefact needs to be demonstrated by applying
rigorous evaluation methods. The research and development processes in design based research fol-
lows iterative ”cycles of design, testing, analysis, and redesign” [Euler 2014]. In this view, patterns
act as theory driven prototypes that were derived from literature and experience. In addition to that,
design based research aims to identify principles for generalising the subject matter and research pro-
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Figure 6.1: Spiral process for elaborating patterns and pattern language, fromSeidel [Sei17].

Generally, during the pattern mining process we respect the rule of three [KP10], presenting
at least three independent examples of the application of the pattern, whether them come from
industry or scientific literature.

To provide evidence of the relevance of each mined pattern we followed the framework
proposed by Seidel [Sei17], evaluating each pattern in terms of: (1) completeness — is the de-
scription complete? (2) briefness — does it succinctly presents the context, problem and solution?
(3) validity— is the solution presented valid and sustained by observation? (4) usability— it is easy
to interpret both the problem and solution? (5) feasbility — does it contain enough information to
be implemented? and (6) impact— does it have any relevance for the application domain? The def-
inition of the pattern language followed the same framework. The spiral process of evolution
and iteration over the patterns is depicted in Figure 6.1 (p. 146).

The patterns here presented were peer-reviewed by the software engineering community
through publication in several of the Pattern Languages of Programs (PLoP) series of con-
ferences.

6.3 Pattern Language
The pattern language hereby presented is composed of a total of 34 patterns. These patterns
are grouped into four categories: architectural patterns (4), error detection patterns (13), re-
covery & maintenance of health patterns (14), and integration and deployment patterns (3).
Figure 6.2 (p. 147) maps this pattern groups and the relations between the groups and the IoT
architectural tiers, and the remaining of this section briefly describes each category and its
patterns.

Chapter 6. Patterns for Dependable IoT 147

Cloud Tier

Error Detection
Patterns

Recovery &
Maintenance of
Health Patterns

Edge Tier
Triggers

Search
Root

Cause

Oversees

Oversees

Oversees

Can Inform

Acts Over

Helps

Fog Tier

Acts Over

Acts Over

Supporting
Patterns

Ap
pl

ie
s

to

Figure 6.2: Pattern-map of the self-healing pattern-language and their role across IoT ar-
chitectural tiers.

6.3.1 Supporting Patterns
In this pattern language, we identified patterns regarding observability of IoT systems, namely:
Device Registry2, Device Raw Data Collector, Device Error Data Supervisor, and Pre-
dictive Device Monitor. These patterns provide architectural guidelines for certain parts of
IoT system, in terms of registry, monitoring, supervision and preventive prediction, and are
further described in Chapter 7 (p. 151).

In Figure 6.3 (p. 148) the role of these patterns in a IoT system is depicted. As an answer
to the high-volatility common to IoT systems network, Device Registry enables the existing
of a common registry to all the devices on the network along with their services, allowing the
system to dynamically adjust to the connection and disconnection of devices (keeping track of
the devices’ identification).

All the different parts of the system produce operational logs (either by the devices them-
selves — telemetry — or by external probing). The amount of data produced, along with its
heterogeneity (as the result of the heterogeneity of the devices themselves) creates an enormous
volume of raw data. To keep track of all the data produced by the system parts we defined the
Device Raw Data Collector which address the issue of dealing with such volume and het-
erogeneity of operational data.

As this data is collected, processing it becomes fundamental to make it useful. A common
2 Device Registry was documented at the same time by us and by Reinfurt et al. [Rei+17a].

Chapter 6. Patterns for Dependable IoT 148

Figure 6.3: Pattern mapping of the four different design patterns identified, including their
interactions and relationships.

approaches is to supervise this data in quasi-real-time in order to provide information to op-
erators (or other supervisor system components) about the current operation of the system.
This is defined as Device Error Data Supervisor, and it enables the processing of the data to
trigger errors handling procedures, countermeasures or broadcasting alerts to operators.

Lastly, Predictive Device Monitor enables the processing of raw data not for imme-
diate remedy, but for enabling predictive maintenance based on historical operational data.
Similarly to the previous pattern, this enables the processing of data to trigger errors handling
procedures, countermeasures or broadcasting alerts to operators about events thatmay happen
in the future.

As IoT systems are not set in stone, they require updates to guarantee their normal func-
tioning or the addition of new features. These updates are required to meet the requirements
of the system, thus tested and validated. We, additionally, introduce 3 patterns in this context
that reflect on the inner challenges of both validating and delivering updates (deploy) in IoT
systems, that are further detailed in Chapter 7 (p. 151).

The first stages of development are done in quick and short iterations during which new
features are added and removed until the system (e.g., product) requirements are satisfied. Dur-
ing these iterations, quick feedback is required to assert if the system comply with the require-
ments. Simulated-based Testing pattern enables this by simulating (and/or emulating) the
IoT system’s infrastructure and its inputs/outputs in order to test new (or newer versions) of
the IoT systems.

Later stages of the development (pre-market validation) can required more real-world data
on how the system operates (e.g., capturing unexpected scenarios). Testbed enables the devel-
opers to test their systemswith real devices and end-users interactions that provides an ecosys-
tem to test new (or newer versions) of IoT systems. Testbed and Simulated-based Testing
are complementary patterns in the way they address the issue of validating the system, while
gathering operational feedback, at different stages of development.

When a new software version (e.g., firmware) is ready to be delivery to the already deployed

Chapter 6. Patterns for Dependable IoT 149

Action Audit
Runtime Adaptation

Diversity

Redundancy

Reset

Within Reach

Suitable Conditions

Circumvent and Isolate

Compensate

Timeout

Unimpaired Connectivity

Conformant Values

Calibrate

Consensus Among Values

Component Compliance

Flash

Coherent Readings

Internal Coherence

Rebuild Internal State

Checkpoint and Rollback

Unsurprising Activity

Stable Timing
Timebox

DebounceResource Monitor

Balancing

Error Detection (Probes) Recovery and Maintenance of Health

Figure 6.4: The self-healing pattern language for IoT systems. Each error detection pattern
on the left can identify issues that can be solved by one ormore recovery&main-
tenance of health patterns on the right. Although these mostly direct relations
between the two pattern categories, the error detection patterns can be used to-
gether to enhance diagnosis and recovery & maintenance of health patterns can
also be used together to recover the system to a healthy state (cf. Figure 9.1,
p. 172).

systems, traditional update strategies (to which patterns have already being discussed in the
literature) might not suffice, due to the constraints of these devices (e.g., data transfer rate and
no Internet connectivity). MiddlemanUpdate addresses this by describing the use of amiddle-
man to deliver new software versions to IoT system devices’, that is able to establish a link with
the target device (e.g., using a low-power communication protocol).

Patterns such as the Flash., Reset. and Runtime Adaption. are examples of patterns that
can be complemented by these patterns, specially the Middleman Update, as they can involve
the delivery of validated new software versions (e.g., firmware) to the devices.

6.3.2 Self-Healing Patterns
As IoT systems increase in complexity, keeping track of all the moving parts, their behavior,
and finding and addressing failures becomes paramount. As these systems seamlesslymerge the
physical and virtual realms this becomes a crucial concern, from one perspective how to detect
and discover root causes of problems, and from another, complementary, perspective, how to
enable these systems to autonomously respond and adapt to the operational errors and failures.
Autonomic computing (cf. Section 2.4, p. 51) defines self-heal as the capability of a system to
automatically discover, diagnose, and react to, or recover from, failures. In this section we
present two pattern categories, error detection patterns (13), and recovery & maintenance of
health patterns (14), which totalize 27 patterns.

The patterns described in Chapter 8 (p. 159) — error detection patterns — and Chap-
ter 9 (p. 171) — recovery & maintenance of health patterns — are inter-winded and form

Chapter 6. Patterns for Dependable IoT 150

a pattern-language by themselves. The patterns in this language are presented in Fig-
ure 6.4 (p. 149). The relationships specified in Figure 6.4 (p. 149) are first-degree relations which
point to possible recovery & maintenance of health patterns that address issues identified by
certain error detection patterns. Relationships between the patterns in the same category also
exist, and are illustrated to some extent in the following sections.

We hypothesize that several pattern sequences can exist, combining the patterns that are
part of the language here presented. On the one hand, several error detection patterns are used in
sequence to diagnosing a problem (or improve the knowledge about a problem). On the other
hand, several recovery & maintenance of health patterns can be used in sequence to recover the
system to a healthy state. Further, several recovery & maintenance of health patterns can be used
to maintain the system stable while others (e.g., concurrently) try to recover certain parts of the
malfunctioning system.

Most of these patterns can be used at different layers as per the specification given in Fig-
ure 2.7 (p. 39). As an example, missing sensor data can be compensated at the perception layer,
where the device has some mechanism to fill in the missing values (e.g., average, maximum or
minimum in a timebox) or at the application layer, where, withmore computing capability (e.g.,
cloud), data mining strategies can be used to guess the missing values.

Futhermore, these patterns can both be used at an integration level, where the user is build-
ing the system by “connecting” boxes together and some of these are (or have) self-heal features
(e.g., visual programming) [Dia+20b], or at a device/system design and developing level where
the logic of the devices, gateways, and servers is coded with these patterns in mind.

6.4 Summary
The lack of maturity of most of the IoT products and services make them at the ideal stage for
pattern adoption, since most of these have little to no focus on best practices, specially when
regarding the primary focus of these patterns: dependability and autonomicity. While adopting
a pattern language can force adjustments to a system architecture and development, namely,
in terms of organization, processes, and, even, teams, this pattern language and its patterns
allow for iterative (even only partial) integration of them along the development lifecycle, not
enforcing a disruptive change.

In this chapter an overview on the pattern language and pattern categories was presented.
A total of 34 patterns, part of three different categories, namely: supporting patterns (7), error
detection patterns (13), and, recovery & maintenance of health patterns (14). The patterns can
be used independently or jointly, regardless of the category they are part of, in order to improve
(or at least maintain) the dependability of an IoT system.

The supporting patterns are cross-tier, detailing best practices that can be used at different
levels with the purpose of improving the observability, interoperability, evolution, and testa-
bility of the system as a whole. The error detection patterns go hand by hand with the recovery
& maintenance of health patterns, and can be used to improve the system dependability lever-
aging self-healing strategies.

151

7 | Supporting Patterns

7.1 Device Registry . 152
7.2 Device Raw Data Collector . 152
7.3 Device Error Data Supervisor . 153
7.4 Predictive Device Monitor . 154
7.5 Testbed . 155
7.6 Simulation-based Testing . 156
7.7 Middleman Update . 157
7.8 Summary . 157

As the number of moving parts of a system increases, distributed both logically and geograph-
ically, it becomes a requirement to keep a registry of all of them and their operational status.
The same rationale applies to IoT systems, as an example by the excellence of such scale and
distribution. As the devices and services part of the IoT systems can spread among different
computational tiers, large amounts of operational data need to be properly collected and ana-
lyzed to provide operators with information about the running system. This information can
be used to monitor service disruptions or even make predictions about future needs (e.g., pre-
dictive maintenance).

Furthermore, as a mostly-direct consequence of the increasing number of IoT-enabled do-
mains, malfunctions, and bugs of software and hardware faults can have a significant impact
in the physical world, e.g., in health scenarios, devices, and systems used are becoming increas-
ingly complicated and interconnected, and the mix of manual and machine operations evolved
are ever-growing in complexity, and therefore become a risk [Wiz+11]. It is even argued that
“we may already reach the point where testing as the primary means to gain confidence in a
system is impractical or ineffective” [Wiz+11].

This chapter focuses on these issues, presenting a total of seven patterns. The first set of four
patterns focus onmaintaining track of what happens in an IoT system. These patterns describe
supporting architectural blocks that can be integrated into new or already existing IoT systems,
which can improve the observability over them (e.g., monitoring). The three patterns latter
describe focus on testing and integration on IoT systems. We believe these patterns are strongly
interrelated and may become part of a future pattern language of CI/CD for the Internet-of-
Things, a need that was already identified by the Philips Hue team [Bei18].

This chapter summarizes the contributions present in the works patterns for things
that fail [Ram+17] and testing and deployment patterns for the internet-of-
things [DFS19].

Chapter 7. Supporting Patterns 152

7.1 Device Registry
An IoT implementation mostly consists of a group of devices that form a network. It should
be possible to leverage the visibility of a set of them to provide more complex features (e.g., the
introduction devices whose focus is to process data). Nonetheless, as an administrator of the
network, one is aware that one of the main requirements is scalability. Therefore, the devices
should be Plug & Play [Yan+15]. Regarding security and control over the network, it should
be possible to disconnect the devices from the network if they get hacked, promote mutual
awareness, or, in the opposite case, limit the exposure of the devices among each other.

Therefore, build andmaintain a registrywith all the informa-
tion about the devices in the system, which scales and adapts as
the devices connected to the system can change.

Rationale. Have a single module known and reachable by the whole network of components.
This module may be queried for the address of a specific device (or group of devices) having
a specific set of features. Also, a device joining the network will have to register itself in this
module. In order to leave the network, the procedure is the same. The devices may subscribe
to certain events (e.g., registration of devices with a specific capability), so they make the best
use of the network. It introduces the following advantages: (1) easiness to scale since registra-
tion is made on a single module with some metadata regarding the device capabilities; (2) the
subscription of certain events empowers the network to change itself at runtime; (3) a device
may only be aware of the rest of the network if registered; and (4) there’s a clearer separation
of concerns and more awareness of the network capabilities. We also identify the following
drawbacks: (1) a single point of failure is introduced, since a single module holding the registry
in which the system heavily relies on to properly function; and (2) grouping all the information
of the devices in the network in a single module increases the desirability of attacks to it in
order to retrieve information of the network. Also see: Service Registry [SB08].

7.2 Device Raw Data Collector
Both the raw data collected by the devices and the logs they produce can be the source of a
wealth of information about the status of the system and the functioning of the devices. This
pattern facilitates the compilation of data and logs from the devices in a singular, known loca-
tion, from where it can later be extracted and further processed as edge devices in IoT systems
are constantly reporting data about their functioning. It is therefore important to have an effi-
cient way to store it consistently. The problem arises due to the fact that the devices are spread
geographically, and the information needs to be sent to a remote location due to the limitation
of the devices’ storage. That is, there needs to be a way to receive, collect and distribute raw
data and logs produced by the devices. It may be desired to attach some labels to the data, such

Chapter 7. Supporting Patterns 153

as timestamps. Lastly, the delay between the moment the data is generated, and its storage is
crucial in order to allow real-time monitoring by other entities. Nonetheless, ensuring data
integrity is also a key point, but it is as important to have security and abstraction layers in
order to prevent outsiders from having access to the stored data.

Therefore, use a collector to gather all the operational infor-
mation of the system, collecting raw data produce by the system,
going from device logs to network traffic.

Rationale. Have a centralized collector server responsible for capturing logs and raw data
from every edge device. The collected data can later be used for a variety of purposes such
as error detection (cf. Device Error Data Supervisor), system status analysis, or extracting
information from the data. This collector server may exist locally or be located in the cloud,
but its location needs to be known to every edge device (cf. Device Registry). Each sequence
of raw data or log captured should be stored by the collector along with a reference of which
device it was emitted by. Additional labels may be attached either requested by the device or
by the server. It facilitates the detection of errors in edge devices. Raw data received from the
devices can be used as a source of information for posterior analysis. By having the raw data
stored, a more powerful device, or even a dedicated one, can process it. It is possible to identify
the device from which a sequenced piece of data originates, thus making it possible to analyze
individual devices, the whole system, or parts of it. The server described will need enough disk
space to store a history of the device data and logs. Also see: RawData [DeL98], Centralized
Data [DeL98], Log Aggregator [BW16], Centralized System Logging [BWK13].

7.3 Device Error Data Supervisor
IoT-based systems are typically constituted by many nodes, highly complex and distributed.
This makes the occurrence of errors in edge devices more common due to the inherent hetero-
geneity as well as the wide-range of deployment scenarios where these nodes can coexist. By
collecting information from the data streams associated with the edge devices, such as logs, it
becomes possible to notice errors that occur in the system. The handling and processing of such
errors are fundamental in order to mitigate failures and, consequently, reduce downtimes and
other nefarious effects in the deployed IoT systems. Edge devices in IoT systems are suscepti-
ble to errors which can affect the reliability of the data collected by sensors and influence the
correct functioning of actuator systems. When the errors reported by the devices themselves
or edge-device monitoring systems are not correctly handled and processed, this can lead to
the appearance of malfunctions in the systems, with consequences depending on the criticality
of these systems.

Chapter 7. Supporting Patterns 154

Therefore, use a supervisor to continuously processing data
about the devices’ operation and trigger advisory or correc-
tional actions when required, actions which can include han-
dling errors with existent mechanism, triggering countermeasures,
or broadcasting alerts.

Rationale. Since devices themselves, or even monitoring systems, are capable of reporting in-
formation about their current status and activities, and such data is collected, it is possible to
continuously analyze and process it in order to detect explicit or implicit errors on the data.
Whenever an error occurs, some actions must be taken, as countermeasures, to mitigate or
reduce its impact on the IoT system. To be able to offer Device Error Data Supervisor func-
tionalities, the edge devicesmust be continuously giving feedback about their current function-
ing status. Such information can be given by the devices or by some third-party monitoring
mechanism and can be accomplished by implementing the Device Raw Data Collector. By
analyzing the continuous flow of data, we can detect and process errors, enabling its correct
handling and activating warning mechanisms. Therefore, we can consider certain benefits on
the error data handling, namely, by activating available countermeasures in order tomitigate or
reduce the impact of device failures in IoT systems. Also see: Device Raw Data Collector,
Predictive Device Monitor, Rules Engine [Rei+16], Service Monitor [SB08].

7.4 Predictive Device Monitor
Device maintenance in IoT systems can be considerably costly. The possible geographical dis-
persion and difficult access to the edge components can negatively impact the time required
to repair said components. Thus, it would be advantageous to efficiently, and pre-emptively
estimate the Remaining Useful Life of an edge component. Maintenance on edge devices is an
important operation for improving the hardware endurance over time. Whether it be security
vulnerabilities, software malfunction, or hardware malfunction, such problems are usually not
detected until after they occur, which results in longer unexpected downtime. In that sense, it
would be an improvement to the management of an IoT system to become aware of a possible
issue as soon as possible so that actions can be taken to mitigate it.

Therefore, use predictive failure detection techiniques as away
of predictingwhen and how a device will fail, providing information
to carry maintenance actions to maintain the health of the system.

Rationale. Based on the RawDevice Data Collector, through the use of monitoring opera-
tions like the ones provided by the algorithms ofmachine learning and datamining, analyze the
data in such a way that allows the detection of abnormal entries in the data records associated

Chapter 7. Supporting Patterns 155

with the devices. These kinds of indicators should be known states or data samples that have a
high likelihood of preceding a failure, so the fault prediction will learn the state that precedes
an error with every error that occurs in the system. Upon detection of these indicators, the sys-
tem must be able to warn the user of the likelihood of a malfunction, as well as have a schedule
of predictable device failure. It becomes possible to avoid errors instead of simply repairing
them after their occurrence; thus, unexpected downtime due to hardware or software faults
is decreased. However, the location where the data used for the prediction is stored as well as
the component generating that prediction, is centralized. Further, the use of machine learning
algorithms may produce false results initially, either positive or negative, before the patterns
leading to those errors are learned by the model. Also see: Device Raw Data Monitoring,
AnyCorrectiveAction Stable [SF10].

7.5 Testbed
When developing software for IoT systems, in resemblance to any other software-only system,
there is the need for a testing phase before deploying the system. However, since IoT systems
work in the realm of virtual and real-worlds, this testing phase should be performed in real-
world-like scenarios, representative of the similar real situations where these devices will oper-
ate. Consider a smart home, composed of several actuators and sensors, which can be remotely
and locally controlled by an end-user or another system (e.g., smart assistant). The software that
runs on the connected devices can, like any other system, suffer from bugs resulting from the
development phase that can potentially negatively impact the comfort and well-being of the
end-user.

Therefore, test the system on a physically deployed setup sim-
ilar to or equal to the final deployment environment and observe
abnormal behaviors or failures.

Rationale. Testing IoT systems using the traditional software-only tool, methods, and ap-
proaches do not suffice the needs of testing IoT systems in real-like scenarios. This ismostly due
to the issue of simulating realistic and complete information about the sensors’ data input and
actuators outputs, which limits what can be tested with traditional test methods. The Testbed
introduces the following benefits: (1) the observability inherited from using a testbeds facili-
tate understanding how developers behave and communicate; (2) by having real users interact-
ing with the devices on a daily basis, abnormal behaviors will eventually be identified; (3) sys-
tem responses to real incidents are captured (e.g., power surge). The pattern also introduces
the following limitations: (1) replicating a physical production environment might present an
elevated cost, further increase by the need to maintain and evolve it; (2) the feedback about
the system operation is slow to obtain, given the time needed for the user to naturally interact
with all parts of the system; (3) replicating user behavior requires human intervention, pre-
venting test automation; and (4) it is not possible to replicate all production environments,

Chapter 7. Supporting Patterns 156

preventing the testbed from ensuring that the software will always succeed. Also see: Auto-
mated Tests [DGM07], Don’t Trust Simulations Pattern [Ris98], Device Raw Data Col-
lector [Ram+17].

7.6 Simulation-based Testing
Each device that is typically part of an IoT system is mostly unique since they are designed and
built by several entities, use different communication protocols and standards, and have dif-
ferent responsibilities and features (identified as the technological fragmentation) [Gui16] which
difficult the process of testing such systems. Further, these devices can be scattered geograph-
ically, operating in the most diverse environments. Testing IoT systems become even harder
because the corresponding hardware may not be readily available. Consider an automated
irrigation system. To assert its performance under diverse weather conditions (e.g., different
geographical locations), the system needs to be setup in a multitude of operating scenarios, al-
lowing the developer to capture information about the system’s performance under different
and changing environmental conditions. In these scenarios, the developer depends on the setup
of the system in a real-world setup in order to assert its correct functioning even in the early
stages of development.

Therefore, use software to simulate the deployment scenario,
including its failures. Test the software in the simulator and observe
abnormal behaviors or failures while validating the expected behav-
ior.

Rationale. Using simulation to run the new IoT system, we can test the normal operation of
the system, test extreme cases, and replicate extreme conditions and incidents. We can further
easily tune the test scenario by, for example, scaling the number of devices under testing or in-
troduce or remove devices. Further, we can parallel several testing scenarios and rapidly collect
information about the tests, and return that feedback to the developer. This pattern is more
suitable for too early stages of development since it does not have real-world implications and
allows the collection results quicker. It introduces the following benefits: (1) feedback about
how the system performs is obtained quicker; (2) tuning the test setup is quick andmostly cost-
less; (3) tests can be performed in parallel with different configurations (improving feedback);
(4) tests on edge-cases1 can be easily performed; and (5) hard to reproduce scenarios can be
simulated (e.g., fire). The pattern also introduces the following drawbacks: (1) abnormal in-
teractions are not reproduced in simulations since they are not known at the time of the test
specification (e.g., no human-in-the-loop); and (2) real-world device failures are hard to repro-
duce in simulated setups. Also see: Automated Tests [DGM07], Don’t Trust Simulations
Pattern [Ris98].

1An edge case is a problem or situation that occurs only at an extreme (maximum or minimum) operating
parameter, usually corresponding to an unlikely or weird situation [NBB14].

Chapter 7. Supporting Patterns 157

7.7 Middleman Update
IoT devices have different communication mechanisms which influence the mechanisms and
processes needed to update their running software versions to newer versions. The most com-
mon form of updating edge devices is the use of serial port2, and, in this case, there is a need for
a manual effort to update each device. Consider a smart watch, which is connected to a mobile
phone by Bluetooth and uses an application to interact with it. As such, when a new software
version is available, the smart watch is not capable of connecting directly to the remote update
server, always depending on the middle-man application. This application is responsible for
checking for a new software version and delivering the update to the watch. In this scenario,
the watch is not able to download its own updated software version due to the connectivity
constraints (it does not have a capable Wi-Fi connection to do so).

Therefore, update the running software version of a device by
establishing a connection to amiddle-man that delivers the new
software version from a remote update service.

Rationale. The update process of edge devices becomes a responsibility of the devices closer
to them— fog devices — with higher connectivity facilities and storage. These devices work
as a middle-man which checks for new software versions from the remote update server, and,
checking the edge devices’ software version, delivers the new artifact andmanages their update
procedures. It introduces the following benefits: (1) distribute the responsibility of managing
the edge devices fleet software update procedures from an update service to devices closer to
the edge devices; (2) allows the use of low range and slower data transfer protocols (e.g., Blue-
tooth Low Energy); and (3) having a middle-man device with higher computational resources
than the edge device allows improved verification of the update packages from a security-wise
viewpoint. The pattern also introduces the following drawbacks: (1) dependency on a middle-
man can introduce a new vulnerable point (security-wise) in the update chain; and (2) the update
of edge devices can suffer a delay due to the dynamic topology of the network (e.g., the fog de-
vice can be disconnected from the edge device at the time that the update is made available).
Also see: Edge Code Deployment [Qan+16], Remote Deployment [DGM07], Continuous
Deployment [DGM07], Deployment Manager [SCF15].

7.8 Summary
This chapter introduces seven patterns that can be used in IoT systems to improve architectural
and operational aspects. More concretely, the first four introduced patterns can be used to
improve the observability over the IoT system. These patterns enable the capture and process of

2Serial port refers to an asynchronous communication interface that transmits data one bit at a time, mostly
used for embedded device communication and programming [Axe07].

Chapter 7. Supporting Patterns 158

information about the running system that can be used either by the system administrator or by
the system itself to control the delivery of correct service and, possibly, improve its functioning.

The last three patterns focus on strategies to verify and validate the correct functioning of
the system (compliancewith its specification) and providemechanisms that allow any deviation
to be mitigated even after deployment (i.e., updates and upgrades).

159

8 | Error Detection Patterns

8.1 Action Audit . 160
8.2 Suitable Conditions . 161
8.3 Reasonable Values . 161
8.4 Unimpaired Connectivity . 162
8.5 Within Reach . 163
8.6 Component Compliance . 164
8.7 Coherent Readings . 165
8.8 Internal Coherence . 166
8.9 Stable Timing . 167
8.10 Unsurprising Activity . 167
8.11 Timeout . 168
8.12 Conformant Values . 169
8.13 Resource Monitor . 170
8.14 Summary . 170

Enabling IoT systems with self-healing capabilities require systems capable of detecting errors
and failures. In this work, we consider error detection the process of detecting issues (both er-
rors and failures) on the running system that can make it enter in a degradation state or defective
state. An error can be in one of two states: detected if an error message/signal indicates its pres-
ence, and latent if undetected. Error detection can be threefold: (1) identifying that there exist
an error somewhere in the system, (2) identifying an error root cause, and (3) trigger reactive
measures to recover and maintain the system health [Han14].

The patterns described in the following paragraphs are not recurrent solutions to problems
per se, but recurrent solutions on how to detect different types of operational issues in a system,
mainly focusing on one or more parts of the three-part process of error detection. The appli-
cation of these patterns in a system enables it to provide information, mostly at runtime, to
recovery & maintenance of healthmechanisms (cf. Chapter 9, p. 171). Most of the probe patterns
here presented can be enhanced their diagnostic precision by using other probes, potentially im-
proving the diagnostic of a specific malfunction or unexpected behavior. Nonetheless, each
probe has a well-defined target error; thus, they are sufficient to detect the error they target (but
each can have limitations in finding the root cause).

Parts of this chapter were published in the work a pattern-language for self-healing
internet-of-things systems [Dia+20a] and in the subsequent works visual self-healing
modelling for reliable internet-of-things systems [Dia+20b] and empowering visual
internet-of-things mashups with self-healing capabilities [DRF21].

Chapter 8. Error Detection Patterns 160

8.1 Action Audit
In an empty home, a smoke detector has been activated; two alarms were triggered in response:
one turning on a loud siren, and the other messaging the homeowner. There is a real possibility
of a fire raging on, and time is of the essence. The system automatically attempted to perform
these actions, but sometimes things do not go as planned. Maybe the message never reached
the owner; maybe the siren was broken; maybe both of these things happened. Some actions
are critical, and when they fail, countermeasures must be taken. Comfort, and even well-being,
can depend on the proper functioning of components. How to guarantee that required actions
are triggered when needed?

Therefore, implement amechanism that validates each action.
The siren makes a sound, so it should be audible by a noise sen-
sor. The message can request human acknowledgment via a reply. If
these action checks fail, one can resort to alternate pathways to mit-
igate potential issues, like triggering a light strobe or directly calling
911 (cf. Runtime Adaption, Circumvent And Isolate), or try
resetting the device (cf. Reset).

Action Audit

Component Compliance

Conformant Values

Figure 8.1: Diagnostic enhancement tree for the Action Audit pattern.

Rationale. Smart home applications and their underlying platforms take a fire-and-forget ap-
proach when issuing commands to actuators. The mistake lies in the assumption that every-
thing will work between the triggering of a command and the intended purpose, e.g., the mes-
sage was not corrupted, the communication layer is working, and the hardware is not faulty (cf.
Figure 8.1, p. 160). From a control-theory perspective, IoT systems could learn to benefit from
a closed-loop approach in which, based on observational feedback, commands are not simply
assumed to have worked until the desired effective state is achieved [Ter16; PLF18]. However,
performing such checksmight need additional infrastructure that allows one to probe the effect.
Depending on the nature of the action, this might be accomplished through different hardware
(the noise sensor in our example) by performing a reverse computation to check if the output
matches the input constraints. [Tor00]. Also see: Acknowledgment [Sar02; Han07], Test
Alerts [PLF18], Test Actions [PLF18], Indirect Response Check [RK15], Check Physical
Response [RK15].

Chapter 8. Error Detection Patterns 161

8.2 Suitable Conditions
It is a particularly hot day outside. So hot that one can fry an egg on top of any of their devices.
The outdoor temperature sensors point to an average temperature of 41 °C, but, mysteriously,
despite its A/C unit being blasting cold air for the last two hours, the indoor garage sensor
still points to an abnormally high temperature of 38 °C. Maybe the window is broken, but the
shattering glass sensor did not trigger. On further inspection, the specification of this particular
temperature sensor state that the Recommended Operating Conditions over operating free-air
temperature range goes from−10 °C to 50 °C1. How can the system or its parts became aware
that they can operate correctly?

Therefore, monitor if surrounding conditions are suitable for
device operation, usually known as operation thresholds or recom-
mended operating conditions. If values start getting unacceptable close
limits, there is a likelihood that the device could stop working, or
(even worse), malfunction2. Take preemptive actions to mitigate po-
tential failures (cf. Runtime Adaption, Circumvent And Isolate).

Rationale.Most commercial IntegratedCircuits (i.e., chips) have recommended operating con-
ditions that do not perform well below the water freezing point but go as far as 70 °C. The
reason most IoT systems disregard this problem is that devices are assumed to be placed in-
doors. Nevertheless, this assumption can still be broken in a cascading scenario such as the
one presented above; 70 °C is not unheard of if the device is behind a glass window with sun
shining on it. Checking for environmental constraints is a relatively straightforward process,
and most IoT devices must state their operating conditions in the manuals for FCC or CE
approval [CH11]. The capability of flagging a device in an unreliable state allows mitigation
strategies to be preemptively triggered. However, this depends on having external data sources
(independent, and redundant, sensors or third-party services) that provide the data that allows
one to detect if some device is operating in ideal conditions or not3. Also see: Dependability
requirements [Boa+16], Environment-aware communication protocols [Boa+16].

8.3 Reasonable Values
Things tend to act as expected. Even unexpected events usually present a pattern. An outside
luminosity sensor is expected to follow a curve according to the sun’s position; unless there
are clouds (or a solar eclipse). Temperatures do not drop from 20 °C to 0 °C in the blink of
an eye, and then immediately recover back; there is expected inertia to it. Humidity exhibits
reasonable gradients; unless someone is taking a shower in the bathroom. All these situations
present reasonable patterns of readings one is expecting from sensors. If the readings do not fit
these patterns, then they might be untrustable.

1Recommended Operating Conditions are detailed descriptions of the conditions in which the device performs
as expected is typically documented in the device’s user manual or datasheet.

3Some approximation can always be made if the read values by the device itself, e.g., humidity, are too close to
its the operating limits

Chapter 8. Error Detection Patterns 162

Therefore, consider the reasonableness of the readings before
blindly accepting them as valid values. Use different checks (or a
combination of them) depending on the particular sensor to detect
unreasonable situations. There will always be a degree of confidence
in this assessment, that can vary from suspicious activity (spikes in lu-
minosity), to outright impossibility (readings outside working inter-
vals). Once they are detected, different strategies can be employed to
deal with erroneous values adequately (cf. RuntimeAdaption, Cir-
cumvent And Isolate, Consensus Among Values, Compensate,
Calibrate, Reset).

Reasonable Values

Component Compliance

Suitable Conditions

Figure 8.2: Diagnostic enhancement tree for the Reasonable Values pattern.

Rationale. Something that deviates from what is standard, normal, or expected, is usually
called an anomaly. There is a whole sub-field of computer science and mathematics called
anomaly detection that might employ sophisticated algorithms to search for situations that de-
viate from normality, and the data itself defines what establishes as normal [CBK09]. Notwith-
standing, there are other scenarios where normality is well-known: reading intervals and
physics are two significant information sources. In these scenarios, specific strategies might
be employed to assess the degree of confidence in the values, up to the point of unreasonable-
ness. Once we identify these situations, mitigation techniques might be able to extract a work-
able value by filtering out the noise; otherwise, isolation techniques could flag the devices as
unreliable (cf. Figure 8.2, p. 162). One should note that operating outside the recommended
conditions might lead to unreasonable readings, but the reverse implication is not true. Alias:
Plausible Values. Also see: Test Periodic Readings, Test Triggered Readings [PLF18], Mean and
Variance, Correlation, Gradient and Distance from other readings [Ni+09], Realistic Thresh-
old [Han07], Complex-Event Processing (CEP) [PK19].

8.4 Unimpaired Connectivity
An edge device is attempting to send its reading back to the server (i.e., the message recipient),
but the server is not answering back. Depending on the reading’s importance, the value might
be discarded or saved to be resent later. However, memory is not infinite, and the urgency of
the message might require immediate action. If the failure remains, the device might be forced
to decide a secondary course of action (i.e., Diversity). How to ensure that the different entities
in a system are alive and can communicate with other parts?

Chapter 8. Error Detection Patterns 163

Therefore, start by checking if the infrastructure supports the
intended connectivity by attempting communication to a sec-
ondary target, but through the same connectivity tissue. This
can be done by any system part (e.g., a coordinator trying to access a
device or a device trying to reach a third-party service). If the mes-
sage recipient is on the cloud, ping a different known server on the
Internet can ping another edge device if it is local. If it is concluded
that the communication infrastructure is defective, try resetting it
or using another one (cf. Runtime Adaption, Reset); if you can
communicate with other devices through that same medium, look
for the problem elsewhere (cf. Within Reach).

Unimpaired Connectivity

Suitable Conditions

Figure 8.3: Diagnostic enhancement tree for the Unimpaired Connectivity pattern.

Rationale. A simple diagnostic (ping to a secondary service)might discard a connectivity prob-
lem. Knowing the difference between the two conditions (the message recipient being down,
and the connectivity tissue malfunctioning) might allow the system to take different actions; if
the connectivity is down, one might consider using an alternate radio to find the recipient (e.g.,
GSM, Lora or ZigBee). A typical example would be a fog device that triggers a rule that would
make an alarm go off via a Wi-Fi connection. Additional checks (e.g., Action Audit) reveal
that the order was not fulfilled. Most devices in the local network fail the heartbeat checks, and
attempts to connect to other cloud-based services and edge devices are failing. Switching to a
secondary radio protocol (e.g., 433MHz) might allow the intended goal to be carried (cf. Fig-
ure 8.3, p. 163). Also see: Dead Spots (RF holes) [Ady+04], Locate disconnected client [Ady+04],
Performance Isolation [Ady+04]

8.5 Within Reach
Edge sensors that report frequent reading, such as temperature ones, are usually working con-
tinuously, and the system can readily observe that they exist because of their constant message
throughput. Edge actuators, like alarms, might only actuate in rare circumstances. The rough
confidence that a device will not fail to operate when needed (in this case, disregarding fail-
ures of the device mechanical parts) is directly proportional to how well (and often) previous
communications were successful. How can one know that some system part is available and
responsive when required as it is designed to idle most of the time?

Chapter 8. Error Detection Patterns 164

Therefore, if two devices are going to trade messages infre-
quently, establish a way to increase the confidence in their
communication, forcing them to communicate event if to demon-
strate that they are operational (cf. Runtime Adaption).

Within Reach

Component Compliance

Suitable Conditions

Unsurprising Activity

Figure 8.4: Diagnostic enhancement tree for the Within Reach pattern.

Rationale. There are (broadly speaking) two types of connectivity checks: (1) a deliberate,
scheduled broadcast of connectivity is called a Heartbeat [Han07; Elo+14], and it usually oc-
curs from devices (edge) to servers/nodes (cloud/fog); (2) a point check of connectivity is called
a Ping, and it usually occurs in the opposite direction of a heartbeat, i.e., from the servers/nodes
(cloud/fog) to the (edge) devices (cf. Figure 8.4, p. 164). The first is mostly used to preemptively
capture potential connectivity failures before action is needed (e.g., a failed heartbeat from a
siren might imply the system entering a warning state). The second is mostly used as a di-
agnostic mechanism to find out if the device is out-of-reach or in an abnormal state. Several
mechanisms can be used to meet these alive checks, such as the periodic broadcast of status
messages or push/pull of telemetry data between system parts. However, one must consider
that in low-power solutions (e.g., battery-powered devices), forcing the devices to make them-
selves alivewhen it is not needed can have a drastic impact on their battery-life (i.e., devices that
support deep-sleep will drain more energy due to the more frequent power-cycles). Also see:
Acknowledgment [Han07], Are You Alive [Sar02], I Am Alive [Sar02], NACK [Com+15],
ACK [Com+15].

8.6 Component Compliance
Software is not set in stone, which is themost significant advantage of programmable things and
their ultimate curse. We expect things to behave and perform the same unless physical tearing
and breakdown occur. Nevertheless, the software can also tear and breakdown, both through
usage and time, as well as through malicious intentions or users’ configurations. Devices also
gain new capabilities, have their configurations changed (e.g., Reset), have their vulnerabil-
ities patched, and their bugs fixed via software updates. Moreover, these can happen more
frequently, over-the-air (OTA), and unassisted, with recent advancements. How can we be sure

Chapter 8. Error Detection Patterns 165

that the devices are executing the software they are expected to be running while complying
with the current system configurations (interoperability)?

Therefore, check if a particular device is running what it
should in the way it should, by frequently observing their soft-
ware versions, configurations, firmware hashes, and any other
checksum mechanisms. This check can be carried out by different
system parts (e.g., a gateway that periodically checks the edge devices
versions for updates and checksums for corruptions) or by devices’
self-checks (that can detect modifications at runtime).

Rationale. Several reasons can render devices running unexpected software, namely tampered
devices (detected via integrity checks), newer versions (detected via update checks), known vul-
nerabilities (detected via audit checks) or misconfigurations (detected using different types of
configuration checks [Le+06; SNS15]). Typical recovery actions include factory resets, reboots
(cf. Reset), firmware re-installs, re-configurations, updates and downgrades (cf. Flash). In
some situations, where recovery is not possible, contingency actionsmust be done (cf. Circum-
vent And Isolate). Ensuring the correct use of this pattern depends on having entities (e.g.,
servers) that provide the latest stable software packages along with verification checksums4.
These also should have security standards that enhance the confidence of the checks. Also
see: Firmware Integrity Assurance [Al-+18], Update [Al-+18], OTA upgrade [Gan16] and OTA
downgrade [Gan16], Middleman Update [DFS19], Protocol Version Handshake [Elo+14].

8.7 Coherent Readings
Sometimes, a fact comes to your attention that, although entirely plausible, you know it is
probably wrong. Not because of its absurdity per se, but because you have other evidence con-
tradicting it. Sensors are the same; sometimes, readings might be perfectly fine on their own,
but when confronted with values coming from different sensors, they are not. For example, it
is expected that multiple temperature sensors inside the same environment to report slightly
different values. Still, when one of them communicates a wildly different one, something must
be wrong. How can one ensure that the readings are faithful and that inaccurate/incorrect
readings are flagged as such?

Therefore, compare values from different sources, and check if
they are in accordance so that erroneous readings can be detected
(cf. Redundancy, Diversity, Consensus Among Values). If one
sensor is consistently reporting widely different values, maybe you
should try resetting or calibrate it (cf. Reset, Calibrate), or maybe
just stop trusting it altogether (cf. Circumvent And Isolate).

Rationale. By crosschecking values coming from different sources, we can detect problems
thatmight not be apparent in any otherway. Multiple sourcesmust report approximated values

4Nonetheless, these checks can have some intermediaries, i.e., Middleman Update [DFS19]

Chapter 8. Error Detection Patterns 166

if they are deployed in similar conditions. Even if the sources are entirely different (e.g., humid-
ity and rain detection), inconsistencies can still be inferred (detecting rain, while the humidity
sensor reports a dry environment would be a strange occurrence). Nonetheless, a sensor that
provides unexpected values consistently can point to an abnormal situation, e.g., if a fire starts
in a home division, only the sensor deployed there will be triggered. Alias: Consistent Readings.
Also see: N-Version Programming [CA78; Tor00], Fail-Stop Processor [Sar02], SICO First
And Always [Ada+98].

8.8 Internal Coherence
Actions are being performed in your system; e.g., turning switches on, regulating the A/C and
the windows blinds, activating the irrigation system. . . All these actions lead to changes in the
system, whose state is usually mirrored internally (i.e., instead of continually asking if a switch
is on or off, one usually stores the latest known state). Sometimes, though, devices act on their
own (e.g., due to a reset or human intervention) and change the state without (or failing to)
informing the rest of the system. As an example, consider a light power switch that can be
controlled by (1) manually toggling the switch, (2) a mobile application, and (3) a configured
light-sensing trigger action. Depending on message delays, packet losses, system reboots or,
even misconfigurations, the system can enter an inconsistent state, where it no longer knows
the state of the lights and can lead the user to make incorrect decisions. The problem increases
when there are more configurations beyond a simple on/off state, such as using the same exam-
ple, light colors/temperature. How can we make sure the internal representation of the system
reflects its actual state?

Therefore, perform regular checks of the system’s internal
representation when possible,making sure that it correctly mir-
rors the actual devices’ state. This is specially important after a Re-
set or a Flash and might require the device to Rebuild Internal
State.

Internal Coherence

Action Audit

Component Compliance

Figure 8.5: Diagnostic enhancement tree for the Internal Coherence pattern.

Rationale. The maintenance of an internal representation of the system exists for several pur-
poses, the most common one being performance or to avoid constantly querying a device about
its status. However, this assumption that changes in the system are always successfully reported
(cf. Figure 8.5, p. 166). Any small overlook in reporting can easily create inconsistencies be-
tween the physical setup and its internal representation, which might eventually cascade in the

Chapter 8. Error Detection Patterns 167

decision process leading to a degraded/defective state. Alias: Internal Consistency. Also see:
Device Registry [Ram+17], System Monitor [SK09], Resource Discovery for Fault Detec-
tion [Zho+15].

8.9 Stable Timing
Your devices are continuously talking with each other, sending messages to inform about a
particular value, or asking another device to execute a specific action. However, timing is ev-
erything. Two messages in the wrong order are enough to leave the system in a defective state;
delayed readings can be the difference between taking the appropriate action in time to pre-
vent damage or the information no longer being relevant. How can we detect data that is not
arriving on time, on an irregular basis, or in the wrong order?

Therefore, have mechanisms that can detect if devices are
sending messages at the expected intervals, and taking the ex-
pected time to respond to the messages they are receiving. If they
are not, you can try to reset them (cf. Reset), use other sensors
(cf. Runtime Adaption, Circumvent And Isolate), or mitigate
the problem (cf. Debounce).

Rationale. Timing can be critical in IoT systems, and system degradation might cause devices
to start taking more time to act upon the messages they are receiving. These delays can cause
mischief. Sometimes the time between a reading and a device carrying the appropriate action
can be the difference between preventing a fire or irreparable damage, sometimes two steps in
the reverse order might be the difference between a vital switch staying on or off. Also see:
Data-Driven Synchronization [BGJ17], Bubble Razor [Foj+12], DFix [Li+19].

8.10 Unsurprising Activity
Home is where you know how to set the thermostat just right, and you expect that perfect
temperature to be maintained indefinitely. That should be easy enough, turn the A/C off if it
is too hot, and the heater if it is too cold. At first glance, these two simple rules might seem
obvious enough, but they hide a serious problem. As the temperature fluctuates around that
desired temperature, a futile and power-hungry battle between the heater and A/C rages on,
with each one taking turns trying its best to push the problem into the other’s hands. How can
this type of suspicious activity be detected?

Therefore, check if any device is sending a suspicious number
of messages, as that might indicate severe hardware or logic prob-
lem.

Chapter 8. Error Detection Patterns 168

Unsurprising Activity

Component Compliance

Coherent Readings

Reasonable Values

Internal Coherence

Resource Monitor

Figure 8.6: Diagnostic enhancement tree for the Unsurprising Activity pattern.

Rationale. The inappropriate usage of a device might degrade its lifetime or result in an un-
expected behavior. Such usage can result from a damaged or malicious device or entity that
would continuously ask the device to perform the same operation (cf. Figure 8.6, p. 168). By
monitoring the messages being sent to a device, and establishing a reasonable usage restriction
to it, it would be possible to identify misuse patterns, informing the recovery & maintenance of
health mechanisms in place (e.g., Circumvent And Isolate and Reset). Also see: Black-
list [Rei+16], Whitelist [Rei+16].

8.11 Timeout
You want to trigger an action and be sure that it executes within a given time frame. If it does
not, an error must have occurred. For example, you want to alert a homeowner that they did
not enable his home alarm, despite being out of the house. If the alarm is not enabled within
20 minutes, you want to call him to ensure that they are aware that the alarm is disabled. How
can one be sure that a particular action is executed?

Therefore, keep a timer running since the first action and ob-
serve if a reaction happened, if the timer runs out without the
reaction, an error has occurred. The root cause can range from a
device issue, i.e., Action Audit to a network disruption i.e., Unim-
paired Connectivity, Within Reach.

Rationale. When a device requests an action from another, the time it takes for the action to
be completed might be critical (cf. Figure 8.7, p. 169). If the action fails to complete within
the acceptable time frame, the triggering device should be able to trigger an alternate action.
For that, it should run an internal timer, during which it observes if the action has concluded.
When the timer runs out, if the desired reaction is not observed, an alternate action is triggered,
to which a Timeout can be used as well, working as a maintenance of healthmechanism. Also
see: Limit Retries [Han07; Elo+14].

Chapter 8. Error Detection Patterns 169

Timeout

Component Compliance

Suitable Conditions

Unsurprising Activity

Figure 8.7: Diagnostic enhancement tree for the Timeout pattern.

8.12 Conformant Values
Devices can sometimes have faults in their hardware (and, sometimes, in their software) that can
lead them to behave out of their specification. For example, sensor devices that use percentage
values in their reading can not output negative value nor values above 100%. How canwe assure
that sensors are operating accordingly to their manufacturer specification?

Therefore, check if the device readings are in conformance
with the device reading thresholds, which are stated in the de-
vice specification.

Conformant Values

Coherent Readings

Reasonable Values

Component Compliance

Suitable Conditions

Figure 8.8: Diagnostic enhancement tree for the Conformant Values pattern.

Rationale. Most common hardware present in IoT devices is low-cost and has, typically, a
high-proneness to failure. One of the possible outcomes of failure can be, for example, a sensor
producing values that are not part of their specification (cf. Figure 8.8, p. 169). In such scenarios,
the system should be able to distinguish between valid values or out-of-spec ones, allowing re-
covery &maintenance of healthmeasures to be put in place (e.g., Compensate and Circumvent
And Isolate) Also see: Threshold Check [Tor00], Reasonableness Check [Tor00].

Chapter 8. Error Detection Patterns 170

8.13 Resource Monitor
Entities in IoT system, ranging from low-power devices to powerful servers, have constraints
such as processing power, storage capacity, bandwidth, among others. Spikes in system us-
age can lead to malfunctions and severally impact the QoS. The need appears to oversee the
resources that the system is consuming both in real-time and historically.

Therefore, monitor the system resources at all times, ranging
from battery levels to network operation and resource usage, pro-
viding insights on the system’s bottlenecks and related issues.

Rationale. System need for resources varies during its operation. As an example, a smart home
system can sit mostly idle during the time that the house is empty; however, as inhabitants
arrive home and interact with the system, the resource usage can spike. While most cloud-
based systems can scale resources on-demand, the devices spread around the house (i.e., fog
and edge devices), which are typically resource constrained (e.g., processing power), can easily
provoke issues in the system (such as QoS degradation). Thus, resource monitor can both pro-
vide insights on current issues on the system and on potential issues, allowing them to perform
actions accordingly (e.g., Balancing). Also see: ExternalMonitoring [Sou+18], Resource
Monitoring [Mar05].

8.14 Summary
This chapter introduces a total of 13 error detection patterns, i.e., probes, that focus on checking
the health of the system and its parts. These patterns can be used individually or combined as
a way to better understand the errors found (i.e., root cause analysis). The information and
events collected by the probes can be used by trigger (and inform) recovery and maintenance
of health mechanisms to ensure the delivery of correct service (cf. Chapter 9, p. 171). These
patterns are contextualized within the scope of IoT systems such as smart home, smart farming
and smart cities ones. The relationships between the different probes are presented in the form
of diagrams that appear together with the patterns patlets.

Given the highly heterogeneous nature of IoT systems, which affects both hardware and
software components, the difficulty in adopting these patterns can vary greatly. The adoption
of the supporting patterns introduced in the previous chapter (cf. Chapter 7, p. 151) can ease
the adoption of some of the error detection patterns detailed in this chapter.

171

9 | Recovery & Maintenance of Health
Patterns

9.1 Redundancy . 172
9.2 Diversity . 173
9.3 Runtime Adaption . 173
9.4 Debounce . 174
9.5 Balancing . 175
9.6 Compensate . 176
9.7 Timebox . 176
9.8 Checkpoint . 177
9.9 Reset . 178
9.10 Consensus Among Values . 178
9.11 Circumvent and Isolate . 179
9.12 Flash . 180
9.13 Calibrate . 180
9.14 Rebuild Internal State . 181
9.15 Summary . 182

If errors are detected in a system, enabling the system to self-heal requires recovery & mainte-
nance of healthmechanisms. These mechanisms act per the probes, reacting to the information
reported by them (i.e., if a probe detects an error recovery ormaintenance of health mechanism
should be triggered, avoiding system degradation or, even, recovering from a defective state).

The following paragraphs delve into the patterns that correspond to the common recov-
ery & maintenance of health mechanisms. These mostly rely on the information provided by
the error detection mechanisms described in the previous section; thus, probes and recovery &
maintenance of healthmechanismswork in tandem to enable a system to self-heal. Most of these
patterns can work together to restore the system to a healthy state. As in previous chapters,
smart spaces such as the smart home presented in Chapter 1 (p. 1) are recurrently used as a moti-
vational scenario. The following paragraphs describe the pattern of the recovery &maintenance
of health (right side of the Figure 6.4, p. 149).

Parts of this chapter were published in the work a pattern-language for self-healing
internet-of-things systems [Dia+20a] and in the subsequent works visual self-healing
modelling for reliable internet-of-things systems [Dia+20b] and empowering visual
internet-of-things mashups with self-healing capabilities [DRF21].

Chapter 9. Recovery & Maintenance of Health Patterns 172

Consensus
Among Values

usesDiversity

Redundancy
and / or

Circunvent
and Isolate

Runtime
Adaptation

uses

uses

Balancing

usesuses

Debounce

Timebox
and / or

Reset Flash

Rebuild
Internal State

Checkpoint
& Rollback

Compensate

Calibrate
and / or

may be preceded by

uses

can be
followed by

can be followed by

can be followed by can be followed by

can be followed by

can be followed by
can be followed by

can be followed by

Figure 9.1: The recovery & maintenance of health patterns and their sequences of actions
(service restorations) towards normal state. Some patterns provide the foun-
dations for others (no color), others work as maintenance of health (blue-
colored) and, finally, the remaining work as system recovery mechanisms
(green-colored).

9.1 Redundancy
Things are prone to fail, both in hardware (e.g., power-spikes) and software (e.g., corrupted soft-
ware update). Evenwhen the different system entities reportwhat seems to be reasonable values
(cf. Reasonable Values), there is no assurance that it is the real value, since there is no com-
parison point. In cities, if the air quality control was made by only one sensor, there was no
way to distinguish a strange reading (e.g., due to a broken sensor or by a spike provoked by a
heavy-duty vehicle passing by) if there is no other record to compare with. How can we ensure
that the system provides correct service at all times?

Therefore, use redundant mechanisms to achieve the same
goal, allowing one to both make decisions on which report to be-
lieve in, or to trigger the same action using another way.

Rationale. In more sensitive scenarios, there is a need to deploy redundant units (i.e., redun-
dancy in space) that can report the same measurements or trigger the same actions to make
the system survive to partial failures into account the extra costs. Such redundancy can be
achieved by deploying similar or equal sensing or acting devices, communication channels
(e.g., different radios), processing units (e.g., microservices), third-party services providers (e.g.,
using both Amazon Alexa and Microsoft Cortana), and even different power-sources to sup-
port the running system (e.g., solar and batteries). In sensing scenarios (e.g., environmental) it

Chapter 9. Recovery & Maintenance of Health Patterns 173

can be possible to use redundancy in time which consists on taking several measurements in a
time-window and only report the most correct (e.g., common) reading (i.e., dropping outliers),
viz. Reasonable Values. Also see: Failover [Han07], Remote Storage [Han07], Passive
Replication [Sar02], Semi-Passive Replication [Sar02], Semi-Active Replication [Sar02],
Active Replication [Sar02], Different types of wide-area networks [Ter16], 1+1 Redun-
dancy [Elo+14].

9.2 Diversity
Having multiple components, such as light bulbs, in the same space for the same purpose have
the side-effect of acting as redundant components when one of them fails. However, this is
tightly coupled with the cost of the device; more expensive objects, such as A/C units, are usu-
ally deployed in a minimum-required number in the same environment. How can we improve
the recovering and maintenance of health capabilities in a system where some components are
not redundantly deployed?

Therefore, use different entities to achieve a common goal and
reduce the impact of faulty parts. There are sometimes alternative
ways of achieving a common goal without adding new entities to the
system. During the daytime, a way to compensate a broken light can
be to open the windows’ blinds and let in sunlight. Lowering the
temperature can also be achieved by opening a window instead of
turning on the A/C.

Rationale. Redundancy per se, e.g., triple modular redundancy, is rare in IoT systems due
to the associated costs for mostly non-critical tasks. Nevertheless, alternative (and possibly
already existing) mechanisms can be used to accomplish tasks that are not part of their primary
functions, reducing the systems’ points of failure. Diversity does not need to be applied only to
devices; mechanisms such as communication channels (e.g., Wi-Fi, Bluetooth, 433Mhz) can also
be the target of diversity, mitigating the effects of Unimpaired Connectivity. Nonetheless,
adding diversity to the system will increase its complexity, thus possibly impacting the system’s
overall cost, maintainability, and understandability. Some authors have been proposing the
idea of automatic workarounds to leverage the already existing diversity (and redundancy) on
the system to recover from failures [CGP08]. Also see: Circuit Breaker [KHA17], Design
Diversity [Avi+04], Automatic Workarounds [CGP08], Protocol Switching [RR12].

9.3 Runtime Adaption
Devices typically have different operating modes which are enabled in different setups or oper-
ation conditions. Consider the example of a lightbulb that is connected to the main hub using
ZigBee; if there is no hub present, the bulb can be controlled by a dedicated protocol-specific
remote control. Another example is the case of Wi-Fi-connected smart plugs; the first time that
they are turned on, an Access Point (AP) is created (or a Bluetooth connection) that allows the

Chapter 9. Recovery & Maintenance of Health Patterns 174

user to enter the home Wi-Fi credentials, and then the plug connects itself to the home net-
work. However, after things are configured once, the devices typically do not employ fallback
measures. In the smart plug case, if there are disruptions on the Wi-Fi service, the user will
not be able to access their smart home system, even if changing the smart plug to AP-mode
would temporarily fix the issue. Since IoT systems typically rely on low-cost components that
might be deployed in harsh environments, which increase the likelihood of soft-errors (e.g., in-
termittent erroneous sensing data or issues on communication) [Cha+18], fallback strategies
can be crucial in preserving system operation. How can the system deal with different system
degradation (partial failures) while still providing services to the user?

Therefore, enable the system to adapt during runtime, allow-
ing the system to use different infrastructure seamlessly (physical or
virtual, i.e., Avatar or Digital Twin [Rei+16]) during operation. When
the usual infrastructure recovers to a healthy state, the system must
change back to the usual channels [PD11].

Rationale. There are several devices/services that already have the built-in capabilities to pro-
vide services even when facing some degree of service degradation. However, typically, these
capabilities are not taken advantage in a resilience perspective. The soft-errors can allow the
system to continue operating but can require a certain amount of adaptation to the runtime
conditions. If the device is low on battery, its transmission power (e.g., Wi-Fi) can be impacted.
However, changing to a more low-powered communication protocol can allow the system to
continue operating formore timewithout human intervention. Further, if a device cannot con-
nect to the communication infrastructure, it can create its own AP for giving users the ability
to control or get data from the device. Similarly, if the system depends on a device to report
e.g., environment temperature, if there is a failure in receiving data from that device, the sys-
tem can fall back automatically to a different source (e.g., third-party weather service). Several
solutions employ the concept of Avatar or Digital Twin, virtual representations of devices that,
beyond making the bridge between the virtual and real-worlds, are capable of some adaptation
such as using other physical units in case of detecting errors or simulate the behavior of the real
counterpart if none is available (cf. Compensate). It must be considered that these adaptations
can compromise the system’s capabilities (e.g., data-rate), which may not be viable in certain
scenarios. Alias: Dynamic Binding, Reconfiguration. Also see: Circuit Breaker [KHA17],
Reintegration [Han07], Device Shadow [Rei+16].

9.4 Debounce
Anew temperature sensorwas added to the smart home to improve the control of room temper-
ature (withmore precision than an already existing sensor). However, the cooling system began
to present unpredictable behaviors from time to time. The sensor might have been broken; yet,
replacing it with a new sensor unit did not solve the issue. Further investigation, mostly by
reading the cooling system user manual, showed that the system was trying to collect sensing

Chapter 9. Recovery & Maintenance of Health Patterns 175

data from the sensing device at a rate above its sensing period, which lead the cooling system
to misbehave (since it had no data to decide upon). How can we meet the device operational
constraints without compromise the system operation?

Therefore, filter or aggregate events to meet operational tim-
ing constraints, ensuring that the target device receives (or is able
to collect) data at the expected frequency. Optionally aggregate them
with an average, maximum, minimum, or other strategies to provide
the device’s relevant data.

Rationale. Both sensors and actuators have several operating constraints, such as power sup-
ply, accuracy, and operation range. Among those constraints, there is some that limit howmany
times a device can trigger a certain action, namely, how often readings can be collected from a
sensor, and how many times or with which frequency an actuator can be triggered, namely:
(1) sensing periods and (2) mechanical/electrical life and operation/release time. If a system
does not respect these parameters, in the case of sensors, it can result in undefined behavior (e.g.,
ranging from failures to collect values to collecting random data). In the case of actuators, this
can reduce the life-spawn of devices, or even, having hazard repercussions. However, in most
cases, humans will not notice if the system delays the triggering of a device (or delay the report
of a value) a second or so (e.g., any delay will possibly lead users to keep pressing the ON button
until the lights turn on, cf. Timebox) [Ter16]. Thus, the system must implement mechanisms
that debounce events to meet the system’s operational constraints. While these issues are of-
ten dealt with at system development and testing phases, end-users can be impacted by the
nonexistence of such mechanisms when upgrading their systems. Also see: Queue For Re-
sources [Han07], Request Delay [PD11], Protective Automatic Controls [Han07], Shed
Load [Han07], Slow It Down [Han07].

9.5 Balancing
A street access control sub-system (part of a smart city system) has variable load. While the
system is mostly idle during the night and weekends, during the work-days, the system is at its
usage peak (e.g., due to commuting). During this time, other hardware in the smart city might
be sitting mostly idle. How can we ensure that the system is responsive at all times?

Therefore, distribute software and load between available re-
sources tomeet service demands. Do so by abstracting the under-
lying hardware and distributing the computational units automati-
cally between the available hardware.

Rationale. The processing demands of a system can change rapidly due to peaks in usage
(e.g., access control or increase in the home inhabitants’ activity) or the appearance of heavier

Chapter 9. Recovery & Maintenance of Health Patterns 176

computational tasks (e.g., surveillance video processing). However, even during peaks, there
can exist parts of the system that are idle (or, even, available redundant parts, cf. Redun-
dancy) that can be leveraged to meet the system usage demands during peaks (returning then
to normal operation when they are not further needed, cf. Runtime Adaption). Also see:
ShareThe Load [Han07], Protective AutomaticControls [Han07], OrchestrationMan-
ager [Bol20].

9.6 Compensate
A dehumidifier was brought to eliminate musty odors and prevent the growth of mildew in
the house. However, to avoid having it turned on at all times, an additional humidity sensor
was brought that provides information that allows controlling when and for how long the de-
humidifier is active. However, in several situations, the dehumidifier was not turning on due
to issues with its sensing counterpart (due to, as an example, Unimpaired Connectivity or
Stable Timing). How to ensure that devices perform as expected even when there have some
operational problems in their sensing counterpart?

Therefore, have mechanisms that can compensate missing or
erroneous information, at least during an established period of
time.

Rationale. While the system operation is best when all of its parts are working correctly, the
malfunction of one part (cf. Reasonable Values, Unimpaired Connectivity and Suitable
Conditions) should not jeopardize the entire system. In these scenarios, mechanisms should
be put in place to compensate for the missing information, allowing the system to keep oper-
ating. In the case that there is another source of data that can be used (cf. Runtime Adaption
and Redundancy), they should be adopted. However, when none of these alternatives exists
(or are available), strategies such as using an average of the last measurements can be consid-
ered and used [Avi+04]. However, the confidence in this calculated values lowers as the time
passes by, thus, additionally, considerations about a graceful degradation should be taken (e.g., by
setting and using a default — reference — value) [FSM12]. Also see: Kalman Filter [Lai+19],
Interpolation and Correlation [SMG19; Zho+15], Linear and Non-Linear models [Zho+15].

9.7 Timebox
Having components that are bothmanually controlled on-site and remotely (e.g., using amobile
application) leads the user to expect the same type of behavior in both. However, while operat-
ing devices remotely, several constraints can slow the feedback-loop, such as network lag. This
can lead to the user to keep sending the same request (e.g., turn on the sprinklers) repeatedly
until the application reflects the request (e.g., showing a message informing that the sprinklers

Chapter 9. Recovery & Maintenance of Health Patterns 177

are on). However, this behavior can provoke malfunctions (even failures) in the system. How to
prevent repetitive and similar actions (user or system-induced) in a short period fromdamaging
the system?

Therefore, only process an order in a specific period that re-
spects the system operational constraints, filtering (e.g., dropping)
the remaining requests within the timebox.

Rationale. When a state change request is made, sending the same request repeatedly to the
make the action happen faster does not have real effects (since the system will always take some
time to change to the requested state). However, if this behavior is not controlled, it can com-
promise the system; thus, similar or equal requests made within a pre-defined timebox should
be discarded. Even if the system is required to respond to all the requests (or if the requests are
different), it can only go as quickly as the system operational thresholds (cf. Debounce). Also
see: Limit Retries [Han07], Limit Number Of Retries [RK15].

9.8 Checkpoint
A smart home system can keep information about several aspects, such as lights state (on/off),
presence (detection of motion in the last minutes) and last device activation’s (e.g., vacuum
cleaner robot). However, in the case of a general system restart (by some error or on pur-
pose), the systemwill act as new, changing all devices to default values, thus changing the lights
accordingly, resetting the last time presence was detected, and starting to clean the house again
(e.g., activating the vacuum cleaner robot) even if it was cleaned just before the system restart.
How to avoid the fallback to default values in such cases?

Therefore, preserve the current system state, avoiding the rep-
etition of actions or changing devices states to default values after a
disruptive recovery action.

Rationale. The correct functioning of an IoT system depends on preserving parts (or all) of the
system current state (i.e., checkpoint), enabling the system to restore to the last known state if a
system error or restart/reset happens (cf. Reset). This allows the system to recovery seamlessly
(i.e., rollback), without repeating tasks and/or bothering the user to restore to the most current
configurations. Also see: Checkpoint [Han07], What To Save [Han07], Rollback [Han07],
Roll-forward [Han07], Checkpoint [Elo+14], Snapshot [Elo+14].

Chapter 9. Recovery & Maintenance of Health Patterns 178

9.9 Reset
As the system operates, several faults can happen without triggering an error (i.e., latent faults),
going unnoticed by the users and, even, by the system itself. However, these faults can build
up, leading to system errors and, possibly, system failures. How can we reduce the probability
of errors and failures being triggered as time passes? Further, several issues can appear during
service delivery that can compromise the correct operation of devices (e.g., wrong user inputs,
electromagnetic radiation, or power spikes) that can lead the device to present undefined behav-
ior. How can we restore the device to a healthy state?

Therefore, perform system resets, periodically (e.g., during idle
periods) or when some error is detected, working both as mainte-
nance of health mechanism and, possibly, as a fault removal proce-
dure.

Rationale. Reboot and reset strategies have been used for a long as a way to improve sys-
tems reliability both in terms of software (e.g., application restart [Ter16]) and hardware (e.g.,
hardware watchdog timers) concerns [Cun+02; Abd+17; Aba19]. The continuous system op-
eration can lead to the creation of several latent faults that can be triggered, leading to system
errors and failures. Even if one could argue that with more resilient (e.g., rigorously tested
and verified) software and hardware, the probability of a system entering in an error or fail-
ure state is reduced, IoT systems are known to be built with low-cost components with high
failure rates (e.g., communication issues, sensing imprecision’s) [Cha+18; KC18]. These resets
can be both soft-resets and hard-resets, depending on what they preserve in terms of the de-
vice’s internal state. For example, soft-resets provably will only work for non-permanent faults
(e.g., if a fault is preserved in a checkpoint — cf. Checkpoint—, a hard-reset should be per-
formed). However, depending on the device or system, rebooting/reset the system periodically
can introduce inconsistencies in operation (e.g., system state synchronization) than can nega-
tively impact the system. Further, since reboot/reset can restart all its processes, any dormant
storage corruption can provoke malfunctions. Also see: Routine Maintenance [Han07],
Routine Exercises [Han07], Data Reset [Han07], Roll-forward [Han07].

9.10 Consensus Among Values
Triggering an alarm can have serious consequences, so, commonly, alarm systems rely on sev-
eral and, sometimes, different sensors to keep the environment under check. However, a miss-
configured or malfunction sensor can report some nefarious condition (e.g., CO2 levels) with-
out being correct. How can the system deal with such a report without erroneously triggering
the alarm system?

Chapter 9. Recovery & Maintenance of Health Patterns 179

Therefore, evaluate information from several sources before
taking a decision, increasing the level of confidence on the action
to take, minimizing the likelihood of mistakes.

Rationale. When several sources report data upon which the system acts, all the information
should be considered. In most cases, malfunctions can be easily identified and discarded by
comparing the collected information and only considering the information with which the
majority agrees with (i.e., voting). More advanced mechanisms can be used that also take into
account the trustability of the reported values (cf. Compensate) [Ter16]. Nonetheless, there
can be situations where the majority of the sensors are reporting erroneous values. In such
situations, depending on factors such as the importance of such readings, more sensors can be
added and/or the misreports should be considered and, at least, communicated to the system
owner/administrator. Also see: Voting [Han07; Elo+14], Anomaly Detection [Uki+16].

9.11 Circumvent and Isolate
As the system operates along time parts of it can reach end-of-life (e.g., an A/C which no longer
can achieve the target temperature), having high-failure rates which can impact the overall
system operation and, possibly, threaten the user comfort and well-being. How can the system
deal with failing parts without compromising its correct operation?

Therefore, circumvent and isolate failing parts, by disabling
faulty components and reconfiguring the system to ignore those,
avoiding system-wide disruptions.

Rationale. System parts can have errors and failures, ranging from hardware/software issues
to provokedmalfunctions (both intentional and unintentional) that can impair the system’s op-
eration as awhole. When such problems are detected, and their origin is identified, mechanisms
should be triggered that circumvents and isolate the failing part. Suppose that the A/C unit is
defective. In that case, the system must not rely on it anymore (until there is a repair interven-
tion) and use alternative ways to achieve the same goal, cf. Runtime Adaption (e.g., during
summer, to lower the temperature, opening the home windows can be an acceptable solution).
Also see: Roll-forward [Sar02; Han07], Error Containment Barrier [Han07], Riding
Over Transients [Ada+98; Han07], Leaky Bucket Counter [Ada+98; Han07], Quaran-
tine [Han07], Input Guard [Han06], Output Guard [Han06], Loose Affiliations [Han14],
Circuit Breaker [KHA17], Output Interlocking [RK15].

Chapter 9. Recovery & Maintenance of Health Patterns 180

9.12 Flash
Things can be deployed in remote areas with only periodic maintenance cycles (e.g., every three
months). During this time, the devices are exposed not only to environmental conditions, but
they also can be stolen or modified by an adversary (i.e., user with malicious intent). In such
cases, if the device remains part of the system, it cannot be trusted (since softwaremodifications
could have been performed), cf. Circumvent And Isolate. A Reset is not enough if the
running software modifications were permanent. How to regain control of the device?

Therefore, flash the devicewith a trusted software version, re-
motely (if possible), or by collecting and redeploying the equipment.
This can also be known as factory reset or wipe and reinstall.

Rationale. Most of the low-cost devices that are part of IoT systems are prone to physical
attacks due to the limitations of encryption (mostly resulting from the limited computational
power). When a device shows suspicious activity (cf. Unsurprising Activity), mechanisms
should be triggered to reclaim control of the device, remotely if possible to flash the device
with a trusted software version over-the-air or physically by collecting and redeploying the
device. When recovery is not possible, there should exist a kill switch that erases/destroys
the device, limiting what the attacker can do to the system. Also see: Remote Lock And
Wipe [Rei+16], Blacklist [Rei+16], Whitelist [Rei+16], Bumpless Update [Elo+14], Up-
dateable Software [Elo+14].

9.13 Calibrate
Devices sensors and actuators can deviate from their expected behavior due to decalibrated ele-
ments (both in software and hardware). Typically, decalibration errors are consistent, showing
up every time a newmeasurement/action is taken. Regarding sensors, even if they are designed
to have high-accuracy, the storage, transport, setup of the devices, along with being subject to
heat, cold, shock, humidity, and other nefarious conditions, can lead to sensor1 decalibration.
We can consider, as an example, that most of the sensors require ADC calibration for accurate
readings, and power monitoring chips must be calibrated before being used for measuring the
energy consumption [LD18]. Regarding actuators, as an example, a potentiometer can decali-
brate with its usage and lead to unexpected outcomes. How can we ensure the accuracy of the
data collected by the sensing devices and the actions carried out by actuating devices?

1It is important to note that in a sensing device, the sensor itself is only one component in the measurement
system.

Chapter 9. Recovery & Maintenance of Health Patterns 181

Therefore, (re)calibrate the device tomeet the expected behav-
ior, by remote or in-situ hardware tuning, potentially supported by
cooperating sensors.

Rationale. Several sensing devices have calibration requirements thatmust be realized tomake
the devices properly function. Further, as time goes by, some of these devices can suffer some
decalibration due to several causes, such as usage. As an example, a motion sensor must be
calibrated in terms of trigger-periodicity and detection range. If one or both of these configu-
rations are erroneously done or suffer from some decalibration (e.g., malicious modifications),
it will cause the device to misfunction, Unsurprising Activity, thus a recalibration is needed.
Additionally, we can consider that several communication infrastructure and protocols can
require calibration to work properly in the environments they are deployed to (e.g., find the
right Wi-Fi channel that is less used can improve communication reliability). Also see: Pro-
Cal [LD18], SensorTalk [Lin+19].

9.14 Rebuild Internal State
System internal state (partially or as a whole) can suffer from inconsistencies due to the con-
current nature of the IoT systems (e.g., due to multiple ways of interact with the system parts).
Refer to Internal Coherence for an example on the incoherence that can be introduced by
the concurrent inputs of a light system. How can we restore to a stable and coherent system
state that reflects the real-world system state?

Therefore, rebuild the internal state of the system to comply
with the current system state. Internal Coherence probe can
trigger this. The system can be restored by querying the existing
devices about their state or recover from external state storage.

Rationale. IoT systems are concurrent, with several inputs that can come from a wide range
of origins (e.g., mobile applications, external APIs or physical device triggers— buttons). How-
ever, as the system operates, events (e.g., power-surge) can lead the system to an inconsistent
state. In these cases, a Checkpoint is not enough since the state of different system parts can
be different from the existing checkpoint. Further, there is no need for a Reset. Thus, the
system part can rebuild its internal state by observing the current environment or system state.
Also see: Safe State [Elo+14], Bootstrapper [Elo+14], Start-Up Negotiation [Elo+14].

Chapter 9. Recovery & Maintenance of Health Patterns 182

9.15 Summary
This chapter introduces a total of 14 patterns for recovery and maintenance of health in IoT
systems. From a self-healing perspective, these patterns consist of healing procedures that can
occur (i.e., be triggered) in accordance with the errors detected by the probes presented in the
previous chapter (cf. Chapter 8, p. 159).

While some patterns address cross-cutting issues to almost any other computing system,
these are presented and discussed under the IoT point-of-view, giving this kind of system con-
straints and features. The adoption of some of these patterns can be straightforward if the
system implements some of the patterns introduced in Chapter 7 (p. 151).

183

Part III

Dependable and Autonomic Computing

184

10 | Dynamic Allocation of Serverless
Functions in IoT

10.1 Approach Overview . 185
10.2 Experiments and Results . 193
10.3 Discussion . 197
10.4 Summary . 198

While the majority of the developers in IoT opt for using the cloud for every need, disregard-
ing the computing power that exists locally (cf. Local-First [Raw+18] and NoCloud [Raw+18]),
there exists literature that already tries to leverage the concept of serverless in IoT domain —
which some authors have called as deviceless1 [GND17; ND18; Gus+19] — proposing the of-
floading of computing tasks during runtime horizontally (across devices in the same tier) or
vertically (across devices in different tiers). Gusev et al. [Gus+19] analysis suggests that using
serverless in IoT (deviceless) can bring advantages in terms of energy efficiency, scalability, and
elasticity, and increased fault-tolerance (i.e., opportunistic computing). Due to the nature of
serverless functions, some of them can be executed locally, using the joint processing power
of the multiple IoT devices or leveraging specific device capabilities. The hardship comes with
using this power efficiently, having multiple serverless functions, and knowing where to ex-
ecute each one, locally or remotely. It is not feasible for the developer to manually analyze
performance across the different runtime environments and decide where the function should
be executed, mainly due to the highly volatile nature of this performance (e.g., dependency on
lag and computing power availability).

Given the existing limitations on using serverless in IoT— i.e., dynamically distribute com-
putation tasks and workloads in IoT systems — this chapter explores and defines an architec-
ture for a serverless IoT system, evaluating its feasibility by building a reference POC.

Parts of this chapter were published in work dynamic allocation of serverless func-
tions in iot environments [PDS18], and were partially based on the master thesis work of
Duarte Pinto entitled serverless architectural design for iot systems [Pin18]. The au-
thor’smain contributionswere on the conceptualization and supervision of thework, formal
analysis and data curation, visualization, and writing of the published versions of the work.
1Glikson et al. [GND17] defines deviceless as a new computing paradigm— Deviceless Edge Computing.

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 185

10.1 Approach Overview
Nastic et al. [ND18] in their work summarize what they consider as the main research chal-
lenges of deviceless computing, which include: (1) resource pooling and rapid elasticity, (2) se-
curity across execution environments, (3) automated provisioning and management at scale
due to the dynamic nature, heterogeneity, and distribution of IoT systems, (4) ensuring cor-
rect scheduling on loosely coupled and scarce resources, (5) lack of supporting platforms and
abstractions to develop IoT systems that leverage serverless principles, and (6) governance of
these systems become complex, as computing tasks can be allocated to be executed in contexts
where different regulatory laws are enforced (e.g., different countries).

Given the aforementioned challenges and the limitations of existent serverless solutions,
an approach that fulfills the goal of dynamically distribute computation tasks and workloads
in IoT systems should:

• Have a serverless orchestrator (i.e., handler proxy) in the fog tier — i.e., being part of the
local network— capable of allocating task-execution requests from the different entities
of the system to devices on the different tiers;

• Make use of the local processing power of the available resources regardless of the tier
they are part of;

• Support the existence of multiple IoT devices with different functions (i.e., capabilities),
making them capable of interacting with both the cloud and fog tier to execute different
tasks.

The core block of our approach is the introduction of a proxy between the entity (e.g., de-
vice, mobile application, conversational assistant, or any other systempart) requesting the func-
tion execution and the serverless function. This proxy will analyze each function’s history by
looking at the time taken in past requests and decide of which runtime environment2 should
the request be forwarded to (cf. Figure 10.1, p. 186). The proxy should be able to decide between
the local network of devices and one of the many available servers.

In order to improve fault-tolerance, in case of no Internet connection (or if one of the
servers is not available), in the case of request failure (i.e., no response after some time), the
proxy should fall back to the local network. Thisway, even if the request to execute the function
is forwarded to the server and fails, the function will still be executed locally.

The proxy is situated inside the local network of IoT devices. It will forward the request for
a specific function to a gateway that forwards the function execution to one of the IoT devices
capable of executing the function. The load management, containerization, replication, and
clustering of the serverless functions are not handled by the proxy. However, it still has to be
aware of the serverless functions installed in the local network or other runtime environments.

2Runtime environment is the system where the serverless function will be executed, i.e., local network or one
of the servers available in the cloud

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 186

local network

(2) Example Function
Request

...

OpenFaaS
(A) Execute Funtion

in the Cloud

(B) Execute Function
Locally

London
Server

Frankfurt
Server

Canada
Server

...

(1) Example Third-party
Function RequestThird-party

Application

Datastore

Proxy

Figure 10.1: Overview of the system operation. A function execution request can be made
by: (1) an external third-app (connected locally or over the Internet) or by (2) a
local device on the network. The proxy can allocate the function to run on:
(a) local computational resources, or (b) cloud computing resources.

10.1.1 Motivational Scenarios
The following examples explain the expected results and decision-making process of the result-
ing proposed solution. The decisions taken by the proxy are based only on previous metrics
of the time taken for the runtime environment to execute the function (including network la-
tency).

Forward Function Execution to the Cloud

The scenario in Figure 10.2 (p. 187) exemplifies a situation where the requested serverless func-
tion is hardware intensive, therefore taking too much time to execute locally. Due to the high
processing power of the cloud servers, it is beneficial to forward the execution request to one
of the available cloud servers, even when considering the connection latency. The multiple
available servers will opt for the one that is physically nearest (lower latency).

Forward Function Execution to the Local Network

Contrary to the previous case, the Figure 10.3 (p. 188) portrays a scenario where the requested
serverless function is considerably lightweight, being more beneficial to execute the function
locally and avoid network latency. Despite the difference in power between the two environ-
ments, the previous metrics illustrate that the local environment can satisfy the request more
quickly.

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 187

request heavy function
(e.g., average temperature per month

in the last 10 years)Device

✅ Internet

Intranet

Internet

Proxy

Nearest
Cloud Server

Furthest
Cloud Server

On-premises
Server

Figure 10.2: Request for the execution of a demanding function. The proxy will forward
the request to the cloud because due to the high processing power of the cloud
server, the function will be executed more quickly. The nearest server was
chosen because of latency.

Fallback to Local Network

The Figure 10.4 (p. 189) depicts a scenario where the proxy first tries to forward the request to
one of the cloud servers (because of its better overall performance) but fails in doing so. The
proxy then decides to forward the request to the local network, completing the request. There
are certain situations where it is more favorable for the function to be executed on the cloud,
but it could still be executed locally. Because it is not possible to guarantee an always working
network connection, in these cases, if the connection fails, the proxy will fallback to execute
the function locally, assuring fail redundancy and the reliability of the system.

Manual Forward by Bypassing the Weighting Process

It should also be possible for the developer to bypass the weighting process (the evaluation of
the different runtime environments) and manually choose where to forward the request. This
option should be possible either in the function setup process or as an argument for the function
execution request.

10.1.2 Weighting Runtime Environments
When receiving a request, the proxy will first pick from a list of various runtime environments
— the list must include the local network of devices and one ormore cloud servers—where to
forward the request to execute a given serverless function. The decision is based on previous
metrics of the time taken for the function to execute in the different runtime environments

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 188

request light function
(e.g., average temperature

in the last 10 minutes)Device

Internet

✅ Intranet
Proxy

Cloud
Server

On-premises
Server

Figure 10.3: Request for the execution of a simple, light function. The proxy will forward
the request to be run locally, as there is no benefit in executing the function on
the cloud.

and will aim to choose the fastest one (the one with less time taken). This can be modeled as a
common Exploration vs. Exploitation problem.

Exploration vs. Exploitation is a common decision-making dilemma, where there is the need
to choose between a known good option or taking the risk of trying an unknown option to
finding the best possible result. This is done in away that tries tominimize the total opportunity
loss [Sil20b].

If we had access to all the information about the universe in question, we could either brute-
force or use other smart approaches to achieve the best results. In this situation, the problem
comes from only having incomplete information. In order tomake the best overall decisions, we
need to simultaneously gather enough about the system andkeep the regret value at aminimum.
Exploitation will choose the best-known option to avoid any regret. Exploration will take the
risk of choosing one of the less explored options to gathermore information about the universe
in question, reduce short-term success for long-term success. A good strategy will use both
options, exploration and exploitation, to achieve the best results.

The Multi-Armed Bandit is a known problem that exemplifies the Exploration vs. Exploita-
tion dilemma. The problem places us with multiple slot machines, each with a different reward
probability. Given the setting, the objective is to find the best strategy to achieve the highest long-
term reward [Wen18].

The goal is to maximize the total reward,
∑T

t=1 rt, or in other words, minimize the regret
of not taking the optimal action in every step.

The optimal reward probability θ∗ of the optimal action a∗ is:

θ∗ = Q(a∗) (10.1)

= max
a∈A

Q(a) (10.2)

= max
1≤i≤K

θi (10.3)

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 189

request light function
(e.g., average temperature

in the last 10 minutes)Device

❌Internet (1)

✅ Intranet (2)
Proxy

Cloud
Server

On-premises
Server

Figure 10.4: The request for the function execution to be in the cloud could not be satisfied
(e.g., no Internet connection). The proxy will then forward the request for it to
be executed in the local network.

In the serverless task allocation use case, the decision of which runtime environment to
forward the function must have some weighting process that will assign the weights for each
runtime environment and compare them. This process will gather information about the dif-
ferent runtime environments and then accurately estimate which one is the best choice (less
time took). Therefore, we considered the algorithms presented in the following paragraphs to
handle the weighting process.

Greedy This algorithm only takes into account the average time taken for a given task to
complete in a given running environment. It has no exploration; thus, it directly assigns the
weight as the mean of the time taken by previous runs.

ε-Greedy This algorithmwill choose the best-known action most of the time, but it will also
explore randomly from time to time. The value of an action is given by [Wen18]:

Nt(a) =
t∑

τ=1

1[aτ = a] (10.4)

Q̂t(a) =
1

Nt(a)

t∑
τ=1

rτ1[aτ = a] (10.5)

Where:

1 : is a binary indicator function.
Nt(a) : represents the total number of times that a given action as been selected.

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 190

In this algorithm, we take the best-known action most of the time, â∗t = arg maxa∈A Q̂(a),
or, with a probability of ε, we take a random action. The best-known action will be taken with
a probability of 1− ε.

Upper Confidence Bounds (UCB) Random exploration might not be the best option be-
cause it might lead to trying an action that was previously concluded as bad. One way of avoid-
ing this is to give priority to options with a high degree of uncertainty, actions for which there
is no confident value estimation yet [Wen18].

UCB will translate this potential into a value, the upper confidence bound of the reward
value, Ût(a). The true will be belowQ(a) ≤ Q̂t(a) + Ût(a). Ût(a) will vary with the number
of trials, and a larger sample of trials will result in a smaller Ût(a). With the UCB algorithm,
the next action to take in will be:

aUCBt = arg max
a∈A

Q̂(a) + Û(a)

To estimate the upper confidence bound, if prior knowledge of how the distribution looks
like can be discarded, then it is possible to apply Hoeffding’s Inequality, a theorem that can be
applied to any bounded distribution [Sil20b].

Applying Hoeffding’s Inequality to the rewards of the bandit will result in:

Ut(a) =

√
− log p

2Nt(a)

UCB1 To ensure that the optimal action is taken as t → ∞, p can be reduced with each
trial [Sil20b]. Thus, the UCB1 algorithm replaces p = t−4, which results in:

Ut(a) =

√
2 log t

Nt(a)
(10.6)

at = arg max
a∈A

Q(a) + Ut(a) (10.7)

= arg max
a∈A

Q(a) +

√
2 log t

Nt(a)
(10.8)

Where:

at : is the final weight as calculated by UCB1.

Bayesian UCB The previous method, UCB1, does not make any assumptions about the re-
ward distribution R, only relying on Hoeffding’s Inequality to make an estimation. Knowing
the distribution would allow for closer estimates.

In the Bayesian UCB it is assumed that the reward distribution is Gaussian, Ra(r) =

N(r;µa, σ
2
a). The action that will give the best result is the action that maximizes standard

deviation ofQ(a) [Sil20b]:

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 191

at = arg max
a∈A

µa +
cσa√
N(a)

(10.9)

Where:

c : is an adjustable hyper-parameter.

Bayesian UCB relies on a considerable amount of prior knowledge of the rewards, and for
it to be accurate [Sil20b], otherwise, it would be the best fit.

10.1.3 Implementation Details
The proposed solution is constituted of amain component, the proxy, and an auxiliary package,
the sample_functions, which contains sample functions for validation purposes.

The proxy package is the main package of the POC. It is responsible for (1) receiving the
requests for the execution of a function, (2) the weighting of the environments in which the
functions can run (locally or in the cloud in one of the multiple servers), and (3) the storage
and retrieval of all metrics regarding previous function executions that are used for future
weighting processes.

The developer can define a priori, or in runtime (e.g., device selects) the weighting algo-
rithms will be used for a request as a parameter, but the default algorithm is UCB1. Despite
Bayesian UCB’s improved performance, UCB1 requires no previous knowledge about the en-
vironment; thus, it was picked as the default setting.

The sample_functions component was created to fulfill the validation needs. It contains
the serverless functions whose execution is going to be requested to the proxy package. This
package is purely a sample to simulate and analyze resource-demanding serverless functions
(either light or heavy) and could be replaced by any other set of functions. The functions inside
this package can be executed on the local environment or in one of the cloud servers (remote
environments).

Proxy

The decision of function allocation is based on previous metrics of the time taken for the func-
tion to execute in the different runtime environments. It will aim to choose the fastest one (the
one with less time taken). Nonetheless, it is also possible for the runtime environment to be
manually configured in the request options or when setting up the proxy.

If the proxy chooses to forward the request to the local network, it will just wait for the
function to execute. Alternatively, if the decision is to execute the function in one of the cloud
servers, it will request the cloud server for it to execute the serverless function. Lastly, if the
request is done to a cloud server and fails to complete (e.g., because there is no connection to the
server), there will be an attempt to execute the function in the local network of devices. After
having the response from the function execution, the proxywill answerwith the corresponding
result.

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 192

The proxy communicates through HTTP with the different entities (e.g., devices or cloud
servers) and expects to receive the content as application/json. The main proxy modules
are the following:

• proxy Themain function through which all requests go through first. After receiving the
list of weights associated with the execution of the requested function in each environ-
ment, it will choose the environment with the least weight and forward the execution of
the serverless function to that runtime environment;

• weight_scale This function will analyze all the collected metrics of the requested func-
tion and assign aweight to each runtime environment. It allowsmore than one algorithm
for weight estimation;

• get_duration Retrieves the list of all the collected metrics of a function;

• insert_duration Store the time taken for a function to execute;

• get_overall_stats Function that returns the summarized records of all the collected
metrics for each function in each environment. Useful for analysis and evaluation of the
results.

These provide enough functionality for both allocating tasks as they are requested and to
collect/store information that can be used to (re-)calculate the strategy used in the next function
execution request of the same type.

Sample Functions

A set of sample functions was created to simulate serverless functions with different purposes
and (forcing) different execution times. The functions are aware of the runtime environment
they are being executed on, and it is possible for them that the answer differs according to this.
Here, the different time taken is simulated using a wait and using different values for different
runtime environments.

• func_light A very lightweight function which answers almost instantly; there should
be no difference between executing the function locally or in the cloud other than con-
nection latency;

• func_heavy In this function, there is a wait of 2 seconds if it is executed locally or a wait
of 1 second if it is executed on the cloud. There should be no difference in the time taken
across different cloud servers other than connection latency;

• func_super_heavy Similarly to func_heavy but here the difference in time is bigger.
There is a wait of 4 seconds if the function is executed locally or 2 seconds if the function
is executed in the cloud;

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 193

• func_obese_heavy This function can only be executed in the cloud, and its execution
has been flagged as cloud-only. The proxy will not even try to run the function locally,
and it will always forward the request to the cloud. Because of this, there is no fallback
to run locally.

This base set of sample functions allowed us to simulate our motivational scenarios with
different combinations, allowing us to carry several experiments and observe how our solution
works while dealing with different constraints (e.g., network lag).

10.2 Experiments and Results
In this series of experiments, the setup was configured with three runtime environments: one
local virtual machine running all the functions with Lubuntu 16.04, 2 cores and 1Gb of RAM,
and two cloud servers, one in London and the other in Frankfurt, both hosted in an EC2 in-
stance in AWS3. They are both t2.micro, running Ubuntu 16.04, with one core and 1Gb of RAM.

Both servers were pinged before the test to verify the connection latency. The experiment
was carried in Porto, Portugal (circa 2018), giving the following latency values:

• London (eu-west-2) : 71.153ms

• Frankfurt (eu-central-1) : 52.297ms

This result serves as a basis for these experiments, but other network providers and places
around the same city the tests were performed (Porto) would possibly present different latency
values.

10.2.1 Stable Internet Connection
For this experiment, both cloud servers were up and running and performed 99 iterations of
requests. In each iteration was requested for every single one of the serverless functions in
sample_functions (cf. Section 10.1, p. 185) to be executed. The system does not know the
environment. The main objective of this experiment is to check the feasibility of the scenarios
presented in Section 10.1.1, p. 186, Section 75, p. 186, and Section 77, p. 187.

It is expected that the proxy will forward requests for func_light to be executed locally,
for func_heavy requests to be executed either locally or in the cloud. It will depend on the
impact of the connection latency. However, the connection latency should generally be less
than 1 second (difference in time that takes for the function to execute locally and remotely).
The expected result is for the proxy to choose to forward to one of the cloud servers. The
func_super_heavy is expected to be executed in the cloud most of the time due to the large
difference in time taken, and the function func_obese_heavy should always be executed in the
London server because it is configured that way. Apart from func_obese_heavy, some explo-
ration is expected to occur for each one of the different environments and not only exploita-
tion of the runtime environment that the system considers as the best option. Considering the

3An EC2 instance is a virtual server in Amazon’s Elastic Compute Cloud (EC2) for running applications on
the Amazon Web Services (AWS) infrastructure, https://aws.amazon.com/pt/ec2/instance-types/.

https://aws.amazon.com/pt/ec2/instance-types/

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 194

Table 10.1: Stable Internet connection experiment results.

func_light func_heavy func_super_heavy func_obese_heavy

On-premises avg. time (s) 0.085602 2.111840 4.100240 -
count 94 20 25 -

London avg. time (s) 3.423012 5.741277 6.169448 3.384546
count 3 10 20 99

Frankfurt avg. time (s) 0.336398 1.253591 2.265615 -
count 2 69 54 -

baseline observed latency, and when choosing between servers, the approach should pick the
Frankfurt server because it is the one with less latency (despite being physically further).

It is expected that the proxy will forward requests for func_light to be executed locally,
for func_heavy requests to be executed either locally or in the cloud. It will depend on the
impact of the connection latency. However, the connection latency should generally be less
than 1 second (difference in time that takes for the function to execute locally and remotely).
The expected result is for the proxy to choose to forward to one of the cloud servers. The
func_super_heavy is expected to be executed in the cloud most of the time due to the large
difference in time taken, and the function func_obese_heavy should always be executed in the
London server because it is configured that way. Apart from func_obese_heavy, some explo-
ration is expected to occur for each one of the different environments and not only exploita-
tion of the runtime environment that the system considers as the best option. Considering the
baseline observed latency, and when choosing between servers, the approach should pick the
Frankfurt server because it is the one with less latency (despite being physically further).

The obtained results matched the expected results, as can be observed in Table 10.1 (p. 194).
For func_light, the time taken was so small (less than 1/10 of a second) that proxy immedi-
ately converged in the best option. The results for the execution of the function func_light

translate the results expected for the scenario in Section 75, p. 186.
For func_heavy and func_super_heavy, it kept a ratio of Exploration vs Exploitation of

3/7 and 5/6, respectively, but always choosing the fastest of the cloud servers. The exploration
rate also increases with the execution duration, meaning that the proxy will look for possibly
more fitting options (i.e., in terms of time-to-complete) the longer it takes for a function to
execute. The results for these two functions correspond to the ones expected in the scenario
presented in Section 10.1.1, p. 186.

Also, as expected, func_obese_heavy had a 100% accuracy, thus matching the expected
outcome stated in scenario presented in § 77 (p. 187).

10.2.2 Broken Internet Connection
Both servers were turned off for this experiment, and the Internet connection was cut, leav-
ing the system only operational locally. The system still keeps all the knowledge acquired in
the previous experiment. The aim here is to identify that it is accomplishing the scenario in
§ 76 (p. 187).

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 195

In this experiment, it is expected for the weighting algorithm to suggest executing the
serverless function in one of the cloud servers because it will lead to faster execution. Be-
cause there is no Internet connection, it is expected for the proxy to try to execute the function
remotely, fail, and then fall back to the local runtime environment. In the end, the function
should be executed in the local runtime environment leading to the request being answered
successfully.

1 {

2 status: "success",

3 londonServer: 3.5747403999957266 ,

4 frankfurtServer: 1.1756422708191938 ,

5 local: 2.090245031544607

6 }

Listing 10.1: Weights of the different servers, for the second experience, using the Bayesian
UCB algorithm.

First, the function weight_scale is queried to know which of the runtime environments the
proxy is going to choose (because the proxy chooses the runtime environment with less weight,
knowing the weights allow us to know which option the proxy is going to take). Because there
is more information about the system, the weighting algorithm used was the Bayesian UCB. As
it can be seen in the Listing 10.1 (p. 195), the runtime environment that is going to be chosen
is Frankfurt’s server.

Even though the chosen runtime environment was Frankfurt’s server, because there was no
Internet connection, it had to fall back to execute the function locally to complete the request
successfully, as seen in Listing 10.2 (p. 195). The observed results match the ones expected, and
also, the proxy proceeded as stated in the scenario presented in § 76 (p. 187).

1 {

2 nodeInfo: "61 e20a65b48e",

3 swarm: "local",

4 message: "I was able to achieve this result using HEAVY calculations",

5 status: "The light is ON"

6 }

Listing 10.2: The request was executed locally, as indicated by the key swarm, which is the
swarm (runtime environment) where the function was executed. The local
swarm corresponds to the local network of devices, as configuredwhen setting
up the proxy.

10.2.3 Intermittent Internet Connection
During this experiment, the main purpose is to run a cycle of requests and then turn off the
Internet access in the middle of the cycle to observe how this will affect response times. It
will be run 99 iterations of requests, and in each iteration, it will be requested the execution

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 196

of func_heavy. After 50 requests, the Internet connection will be cut off, leaving the system
only operational locally. The system will keep all the knowledge gathered in the previous ex-
periments. The aim here is to identify that it is accomplishing the scenario in § 76 (p. 187) and
how results vary over time.

In this experiment, it is expected for the weighting algorithm to suggest executing the
serverless function in one of the cloud servers because it will lead to faster execution. Because
of this, the mean total time of the first 50 requests should be smaller. After the 50th request,
because the Internet connectionwas cut off, the proxywill try to execute the function remotely,
fail, then fallback to execute the function locally, resulting in a considerable mean total time.

R
eq

u
es

t
T

ot
al

 T
im

e

6s

5s

4s

3s

2s

1s

Lost Internet
Connection

#50

R equest #

979491888582797673706764615855524946434037343128252219161310741

Figure 10.5: Response time per request before and after Internet connection drop.

The obtained results, illustrated in Figure 10.5 (p. 196), match the expected results. The
mean total time of the request when there was an Internet connection was 1.714666 seconds,
and, at iteration number 50, it jumped to 4.253786 seconds when the Internet connection was
cut off. Despite having no Internet connection, the system could still complete the request, just
with an added delay. The added delay was since it had to try to execute the function remotely
and also because of the increased time it takes to execute the function locally (2 seconds).

10.2.4 Adapting to Network Lag
A series of requests will be performed, and after a while, the Internet connection will be pur-
posely slowed to see how the system reacts in situations of lag and slow connection. It will
be run 249 iterations of requests, and in each iteration, it will be requested the execution of
func_heavy. After 50 requests, the Internet connection will be slowed down (28 Kbps UP, 14
Kbps DOWN), and the system will continue to be asked to execute the functions. The system

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 197

R
eq

u
es

t
T

ot
al

 T
im

e
32s

30s

28s

26s

24s

22s

20s

18s

16s

14s

12s

10s

8s

6s

4s

2s

0s

R equest #

2
4

9

2
4

1

2
3

3

2
2

5

2
1

7

2
0

9

2
0

1

1
9

3

1
8

5

1
7

7

1
6

9

1
6

1

1
5

3

1
4

5

1
3

7

1
2

9

1
2

1

1
1

3

1
0

5

9
7

8
9

8
1

7
3

6
5

5
7

4
9

4
1

3
3

2
5

1
791

Figure 10.6: Requests total time throughout the various iterations of the fourth experiment.

will have none of the knowledge gathered in the previous experiments. The aim here is to iden-
tify that it is accomplishing the scenarios in sections 10.1.1 and 75, and also that it is capable of
adapting to changes in the network.

In this experiment, it is expected that the system goes through three phases: (1) in the first
50 iterations, while the connection to the server is working as expected, the system is supposed
to gather information about the environment and converge to the best option (one of the cloud
servers); (2) the Internet connection is slowed down, and the function’s execution remotely
should take longer than the execution of the function locally. In this phase, the system is sup-
posed to still converge to one of the cloud servers but gradually diminishing the frequency in
which it chooses the cloud serves as the best option. After this phase, the system will enter
the third phase, (3) where the results gathered after the introduction of network lag outweigh
the results gathered in the first phase. Here, the system should start to converge to the local
network as the best option.

10.3 Discussion
The gathered results can be observed in Figure 10.6 (p. 197). As expected, the results for the first
50 iterations are the expected results in a common situation. After introducing network lag,
we start to observe spikes in the total time it takes for the function to be executed. These spikes
refer to the execution of the function remotely. In the first 30/40 requests after the introduction
of network lag (iterations 50 to 90), the frequency of requests that are executed remotely is still
high. The frequency starts to diminish from that point on, and at around iteration 175, the
system chooses the local network more frequently than the cloud servers.

Chapter 10. Dynamic Allocation of Serverless Functions in IoT 198

Nevertheless, it took around 125 iterations (from iteration 50 to iteration 175) for the sys-
tem to adapt. After 50 iterations where the system gathered information that became invalid,
it took the system 250% more iterations to adapt to the new conditions. These results reveal
that although capable of adapting, the system will take a considerable amount of time to adapt
to new conditions.

10.4 Summary
While serverless has been largely adopted in cloud computing, its usage beyond the cloud is
still scarce. However, several authors have been suggesting that serverless across architectural
tiers will play a crucial role towards fulfilling the view of Edge Computing— ‘’enabling IoT and
Edge devices to be seamlessly integrated as application execution infrastructure” [GND17].

The experiments carried showcase the feasibility of using serverless (i.e., deviceless) in IoT-
systems, as it was showcased by the defined experimental scenarios of § 10.1.1 (p. 186). The
developed approach can analyze the knowledge it has acquired over time of the ecosystem per-
formance, optimizing allocation decisions that lead to a faster execution time while exploring
different options that might lead to improved performance. Additionally, the developed solu-
tion can also detect failures in the remote execution of the serverless function and fallback to
executing the function locally, thus improving the request-response success rate.

This chapter summarizes exploratory work towards distributing computing tasks across
devices and computational tiers, foundational supporting block towards orchestrating IoT ap-
plications, as further explored in Chapter 3.2.5 (p. 79).

199

11 | Visual IoTDynamicOrchestration
11.1 Approach Overview . 200
11.2 Experiments and Results . 206
11.3 Discussion . 208
11.4 Summary . 217

Although most IoT systems are of large-scale, they are typically designed and built around
centralized architectures (as most of the existing Web services), where one main component
executes most of the computation on data provided by edge devices (e.g., QNAP QIoT Suite,
Home Assistant, and OpenHAB) [Min+16; BCC18]. We also observe a tendency for centralized
cloud services in cloud-based IoT architectures, mostly due to the advantages of management
and costs (e.g., the economics of scale when building datacenters, automatic backup of all data, and
enforce physical security [WSJ15]). Examples include IoT PaaS such as Amazon Web Services
(AWS) IoT, IBMBluemix, andMicrosoft Azure IoT Suite [PIS17]. These centralized approaches
have several downsides, including: (1) computation capabilities of the edge devices are being
ignored, (2) it introduces a single point of failure, and (3) data is being transferred across bound-
aries. Ideas such as the one of Local-First and NoCloud [Raw+18] have been mostly ignored.

In this chapter, we explore how the computation capabilities of heterogeneous devices ca-
pable of running custom code can be leveraged to improve the resiliency, efficiency, and scal-
ability of IoT systems. For this purpose, a set of (1) extensions and modifications to the Node-
RED system were made, and (2) a MicroPython-based firmware that runs on the edge devices
that can receive, interpret and execute the orchestrator-assigned computational tasks was de-
veloped. The approachwas evaluated in terms of functionality, resilience to hardware/software
errors, and efficiency; by scaling up the number of available devices and computational tasks.
We concluded that the system’s resilience to failures was improved, and, once orchestrated, the
system operated in a distributed fashion (even without the orchestrator’s presence). We ver-
ified that the system scales at least up to 50 devices (affirming its suitableness for most smart
home setups). Additionally, we observed that our approach increases the delay in communi-
cation between nodes, mostly due to changes in the channel (i.e., from a Node-RED in-process
communication to a decentralized Wi-Fi MQTT-based).

Parts of this chapter were published in work entitled visually-defined real-time orches-
tration of IoT systems [Sil+20], and were partially based on the master thesis work of
Margarida Silva entitled orchestration for automatic decentralization in visually-
defined iot [Sil20a]. Further improvements were part of the master thesis work of Pedro
Costa entitled decentralized real-time iot orchestration [Cos21]. The author’s main
contributions were on the development of the software, formal analysis and data curation,
visualization, and writing of the published versions of the work.

Chapter 11. Visual IoT Dynamic Orchestration 200

11.1 Approach Overview
Although the prevalence of centralized architectures in IoT, Edge and Fog Computing have
been suggested to solve some of these limitations by pushing some processing tasks away from
the cloud and into lower-tier devices [MK16]. Nonetheless, most of the issues remain unad-
dressed, as the central instance, if it exists, should orchestrate the system so that the computa-
tional tasks are divided into independent blocks that could then be executed by other devices
instead of running everything in a centralizedway. Node-RED is an example of an open-source
IoT development environment and runtime that follows a centralized view, being the solo event
processing engine for the whole IoT system, according to the user-defined rules and triggers
(cf. Figure 11.4, p. 206) [Ope19b; Ihi+20].

Node-RED	

Orchestrator	Node

Registry	Node

specificationFlow
(nodes)

device	up

IP	and	capabilities

announce assign ping	/	echo

Device	

HTTP	ServerAnnouncer Script

Figure 11.1: High-level overview of the proof of concept implementation.

In this approach for reducing the centralization of computation in IoT systems we leverage
—andmodify—Node-RED to (1) define programs (as flows) and (2) send tasks to other devices
in the network, acting as a system’s orchestrator (cf. Figure 11.1, p. 200). The network devices
make themselves known by announcing their address and capabilities to a particular registry
node. Consequently, Node-RED assigns nodes to devices (taking into account their capabilities)
and communicates each node’s assignment via HTTP. Constrained devices cannot directly run
Node-RED flows, so the orchestrator translates the nodes’ JavaScript code to artifacts that can
be interpreted by these devices.

Twomain componentswere introduced to the palette: (1) theRegistry node, whichmaintains
a list of available devices and their capabilities and, (2) the Orchestrator node, which partitions

Chapter 11. Visual IoT Dynamic Orchestration 201

and assigns computation tasks to the available devices. The capability of generating MicroPy-
thon code for supported nodes was added, and a MicroPython-based firmware was developed
that receives and runs Python code generated by the orchestrator. The centralized Node-RED
built-in node’s communication was also replaced by an MQTT-based one, which is also used
by the developed MicroPython firmware.

11.1.1 Devices Setup

Table 11.1: Comparison between the Espressif Systems ESP32 and ESP8266 SoCs as per
the devices’ datasheet [Esp20; Esp19].

ESP8266 ESP32

MCU Single-core 32bit Dual-Core 32bit
Frequency 80 MHz 160 MHz
SRAM 160kBytes 512kBytes
Flash SPI, 4MBytes SPI, 4MBytes
802.11 b/g/n Wi-Fi Yes Yes
Bluetooth No Yes
Programming Language Lua, Python and C

We consider constrained devices that are capable of running custom code. Among the avail-
able hardware solutions, taking into consideration both costs and features, we picked two IoT
development devices based on the Espressif Systems ESP32 and ESP8266 System On Chip
(SoC), which technical specifications are presented in Table 11.1 (p. 201). The first challenge is
to find a way to take advantage of the constrained devices bymaking them run arbitrary scripts
of code and communicate with other devices. Since both selected devices can runMicroPython
firmware, Python language was used [Bel17]. MicroPython already packs a small-footprint
HTTP server, and packages are available to implement asynchronous operations (uasyncio)
and MQTT publisher-subscriber (i.e., pub/sub) communication (MicroPython-mqtt).

Firmware

/ping

/executeServerscript.py

Announcer

Node-RED

Figure 11.2: Summarized firmware component diagram.

As the devices must receive arbitrary Python scripts (sent by Node-RED) and run them, an
HTTP server was used to receive the Python payloads and save them into the device memory

Chapter 11. Visual IoT Dynamic Orchestration 202

to be executed later. The same HTTP server is used to implement an endpoint that returns the
state of the device and an announcing mechanism (cf. Section 11.1.3, p. 204). These features
were built as an integral part of the firmware that runs on the devices. An overview of the
components of the firmware can be seen in Figure 11.2 (p. 201).

The firmware also includes a Fail-Safe mechanism, safeguarding against several errors
(including Out-of-Memory) that may happen during the device’s lifespan (SRAM usage). This
mechanism resets all running tasks and recovers the HTTP server and communication chan-
nels, being essential due to the high probability of these errors occurring due to the device’s
memory constraints.

11.1.2 Decentralizing Node-RED
Node-RED is centralized by design, taking advantage of events to allow communication be-
tween nodes in a flow. Implementing a decentralized architecture required some changes to
its runtime. These changes consisted mainly of (1) implementing a different communication
channel for node-to-node communication and (2) add code generation features (i.e., JavaScript
to MicroPython).

Node-RED Node-to-Node Communication

Node-RED nodes communicate using events— node.js EventEmitter. The communication is
forward-only, with nodes only sending data to the following nodes in the flow. Output wires are
used to access which nodes a message must be sent to by calling its receive() method. This
method triggers the emit() event, which will be caught by a specific method, implementing its
own logic, in each node. This implementation is local and JavaScript specific, making it hard to
be used in a decentralized architecture where nodeswill be executed outside Node-RED. It was
necessary to implement a way of communicating between nodes external to Node-RED that
could be supported by constrained devices.

As a first proof of concept, Node-RED Node class was modified to use MQTT pub/sub
communication [SM17; Nai17a] instead of in-place communication. Since the modifications
were made at the base class level (from which every node derives from) all the existing nodes
and sub-flows became compatible with this modification without further changes.

In a later improvement, the MQTT communication channel was merged into the nodes
themselves — removing the need for changes in the internals of Node-RED, allowing this ap-
proach to be used on any vanilla Node-RED, and not requiring any changes to it beyond in-
stalling the required nodes [Cos21].

Each node publishes messages to a unique and addressable topic generated at the start of
the flow and subscribed by the next node. This happens for every node except for producer nodes
that only act as publishers and consumer nodes that only act as subscribers. However, a node
to be orchestration-enabled should be modified to comply with the orchestration process and
generate the corresponding MicroPython code (cf. Section 85, p. 203).

Chapter 11. Visual IoT Dynamic Orchestration 203

Code Generation

To orchestrate Node-RED nodes among devices, we need to generateMicroPython-compatible
code from the existing JavaScript (i.e., code generation). It is also necessary to support multiple
nodes in one script; thus, we defined a generalized strategy appropriate for any node type. This
was accomplished by adding specific code generation methods to each orchestration-enabled
node, which provide (1) their functionality and (2) input/output capabilities. Since every flow
communication is now MQTT-based, the only input and output a node can have is its topics.

Code generation happens after the node-device assignment. This generation creates device-
specific code that carries out the tasks assigned to the device (which can correspond to several
nodes), adding some wrapping code that is responsible for subscribing to all input topics of all
nodes, stopping the script’s processes, and forwarding the messages to the respective nodes.

Device- and node-specific code is generated by (1) taking a basic, and generic, Python speci-
fication corresponding to the node functionality, which is then (2) complemented (filling the
gaps) by the parameters passed through the Node-RED programming canvas (node-specific
configurations). The result is valid Python code with specific device definitions (e.g., I/O pin
specification) which can be deployed to the devices.

Custom Nodes

As previously mentioned, all the existing nodes can still be used without modifications.
Nonetheless, for a node to be orchestration-enabled it must bemodified to complywith code gen-
eration needs. Each of these nodes has two available properties: Predicates and Priorities. Similar
to the Kubernetes logic of assigning containers to machines [BT18], the predicates dictate con-
straints that cannot be violated, and priorities are requests that are advisable and recommended
but can be ignored if needed.

As POC, the following nodes were modified (or created) to have a MicroPython represen-
tation:

• if which receives an input and verifies if it complies with all the given rules, returning
true or false;

• and which receives a given number of inputs and verifies if all of them are true or false,
returning the corresponding Boolean;

• temperature-humidity that read the temperature and humidity from a DHT sensor
present in a specific pin;

• fail that raises a MemoryError exception (used for testing purposes);

• nothing that simply redirects the received message in its input to its output;

• mqtt-in and mqtt-out which subscribe and publish to MQTT topics, respectively.

These nodes provide enough base functionality towire simple smart home scenarios and val-
idate our approach. We believe those nodes to be enough to provide the basic functionality that
would allow us to validate the correct function of our POC, and the feasibility of the approach
as a whole.

Chapter 11. Visual IoT Dynamic Orchestration 204

11.1.3 Device Registry
IoT systems are typically built on top of heterogeneous parts, with different capabilities and
resources, and their network can be highly-dynamic (devices can go off/on due to battery levels,
hardware/software failures, and communication issues). Tomaintain a list of available network
devices and their capabilities, we need a Device Registry [Ram+17] inside Node-RED.

When a device becomes available, information about itself is sent to an MQTT topic. This
information contains the device’s IP address, its capabilities, and status (e.g., if the device has
failed before). Node-RED contains a Registry node that listens to the announcements MQTT
topics and saves the devices’ information. If this node is connected to an orchestrator node, each
time a new device appears, a message is sent to the orchestrator to consider the new resources
in the following orchestration.

When a device has an Out-of-Memory error, it triggers a Fail-Safe, where it reboots the
HTTP server, stops running any script and restarts all communications. After this action, the
device announces itself again but with a flag that indicates that it has failed. This way, the
orchestrator node knows that a device is active but not running any code and that it has possibly
failed due to having too many allocated nodes. In that case, it can dynamically adapt and assign
fewer nodes to the device, reducing the chances of causing another Out-of-Memory error.

11.1.4 Computation Orchestration
The requirements to achieve this are two-fold: (1) an orchestrator node should act as coordinator,
which when provided with an available devices list, along with their respective capabilities (cf.
Section 11.1.3, p. 204), should decide which device should execute specific computation nodes
(i.e., Node-RED blocks) and, (2) the orchestration-enabled nodes should provide both Predicates
and Priorities that must be met to assure their correct execution (cf. Section 85, p. 203).

Algorithm 11.1: Greedy algorithm for node assignment.
Input : deviceList, node, α = 0.5, β = 0.4, γ = 0.1
Output : bestDevice

1 onInput
2 electible← {d ∈ deviceList | hasMem ∧ isReady ∧ isCapable}
3 where
4 hasMem← |d.nodes| < |d.lastError.nodes|
5 isReady← d.status = OK
6 isCapable← node.predicates ⊆ d.capabilities
7 return argmax

d∈ electible
fitness(d) = α · overlap+ β · vacancy+ γ · specificity

8 where
9 overlap← |d.capabilities ∩ node.priorities|

|node.priorities|
10 vacancy← (|d.nodes|+ 1)−1

11 specificity← |d.capabilities ∩ node.predicates|
|d.capabilities|

Chapter 11. Visual IoT Dynamic Orchestration 205

The assigning algorithm uses the device’s capabilities and each node’s Predicates and Pri-
orities to assign nodes to devices. With a greedy approach, the algorithm filters the devices
that comply with each node’s predicates and assigns the one having the best fitness (cf. Algo-
rithm11.1, p. 204). The fitness takes into account the number of priorities the device can provide
(α = 0.5), the number of already assigned nodes the device has (β = 0.4), and the specialization
of a device (γ = 0.1) —meaning that a device capable of satisfying priorities not requested by a
given node should be left for a next node that might request them (i.e., need them) in the future.
We decided to opt for these particular values of these hyper-parameters, as they performedwell
in preliminary tests; their optimization is out-of-scope of this work. The goal is to assign each
node to the best possible device, spreading the tasks through all the available devices. An exam-
ple of a possible assignment can be seen in Figure 11.3 (p. 205), where the assignment matches
the nodes’ priorities with the devices’ tags while spreading the nodes over the devices.

Device	1

«dht» «bedroom»

Node	6
Node	10

«dht»

Node	1 Node	4

Node	8 Node	11
«dht»

Node	2 Node	5

«dht» «kitchen» Node	9

Device	2

«dht» «kitchen»

Node	3
«garden»

Node	7

Node	12

Device	2

«outside» «garden»

Figure 11.3: Node assignment representative resulting example after an successfull orches-
tration.

After assigning all nodes to a specific device, a code script is generated for each one (cf.
Section 85, p. 203). Due to the constrainedmemory of the devices, the number of nodes assigned
to a device may exceed their resources. In that case, it will Fail-Safe and return an error to
the assignment request. The orchestrator will receive this information and repeat the process,
assigning fewer nodes to the ones that returned an Out-of-Memory error. If a device does not
return any response, the orchestrator will assume that the device is unavailable and not assign
any node to it.

The orchestrator node can be triggered—proceeding to a system (re)orchestration— by the
following events: (1) start of the system, when there is already a defined flow in the configura-
tion, the assignment start after a period of 3s, to give time for the devices to be registered by the
registry node, (2) deployment of the entire flow using the Node-RED editor or API, (3) appear-
ance of a new device detected by the Registry node, and (4) failure or recovery of a device, which,
working as a complement to the Registry node, is detected using Ping/Echo pattern [SK09]
which periodically pings the devices in the system to assert their operational status.

Chapter 11. Visual IoT Dynamic Orchestration 206

11.2 Experiments and Results
We evaluate our approach in scenarios using both virtual and physical setups. Physical setups
used ESP8266 and ESP32 devices connected to the same Wi-Fi network. Virtual setups used
Docker containers with constrained resources. The experiments were performed in an i5-
6600K at 3.5GHzwith 16GbRAM, Linux-basedOS (kernel 5.6.16), Node-RED1.0.6,Mosquitto
1.6.10, and MicroPython 1.12.

11.2.1 Experimental Scenarios
We defined two experimental scenarios. In ES1, a room has three sensors that provide tem-
perature and humidity readings every minute. There is a virtual sensor that compares these
readings and triggers depending on certain thresholds. An A/C reads it and decides (a) if it
switches on/off, and (b) its operating mode: cool, heat, or dehumidify. The Minimal Working
System consists of (a) one temperature sensor, (b) one humidity sensor, (c) one node capable
of making the decision, and (d) a working communication channel among them. For ES2, the
system has 20 devices that are responsible for propagating an injected message in a long chain
of nodes until it reaches a specific sinkMQTT topic. The goal of ES1 is to isolate the features of
our work with a moderately simple, although realistic, Node-RED flow (cf. Figure 11.4, p. 206).
ES2 aims to measure possible overheads of our solution.

Figure 11.4: Partial flow, which is repeated three times to enable consensus and fault-
tolerance strategies in Experimental Scenario 1 (ES1).

11.2.2 Experimental Tasks
For each one of the experimental scenarios (ES1 and ES2), we defined a set of experimental
tasks, detailed in the next paragraphs.

Experimental Scenario 1 (ES1)

Two sanity checks were performed, namely (ES1-SC1) with virtual devices and (ES1-SC2)
with physical devices. A set of readings and message forwarding tasks were performed with no

Chapter 11. Visual IoT Dynamic Orchestration 207

compensation or any other fault-tolerance strategies. Each sensor only provided environmen-
tal readings to the system. Orchestration is centralized. We expect all roundtrips to take less
than the smallest part that can be resolved (measurement capability estimated to be < 1s). We
then defined a set of (re-)orchestration experiments where the system must allocate computa-
tion tasks among the available resources:

(A) Minimal working system (MWS) is achieved via multiple possible configurations by pro-
voked device failure (fail-stop) using only virtual devices;

(B) MWS is achieved via multiple possible configurations by provoked device failure (fail-
stop) using physical devices;

(C) Inconsistent device behavior, e.g., appearing and disappearing in intervals shorter than
the time needed for orchestrating convergence, possibly impacting the MWS;

(D) With four devices, each with different processing capabilities. During orchestration,
some devices will throw an Out-of-Memory error because they cannot handle all the
processing tasks assigned to them (i.e., the size of the provided script). The orchestrator
should decide to send fewer tasks to these devices and converge to a working solution;

(E) With four devices, some of them exhibit a memory leak from an unknown cause. These
problematic devices stop working with an Out-of-Memory error at a random time. The
orchestrator should assume these devices cannot handle the number of processing tasks
assigned to them and assign them fewer tasks. Since the devices will keep breaking, the
orchestrator should eventually ignore them;

(F) With four devices, there is a device that is sensitive to a particular node. Whenever the
orchestrator assigns this node to that specific device, it throws an Out-of-Memory error.
The orchestrator should eventually converge to a solution where the specific node is not
assigned to that device;

(G) With 50 devices, there is a given probability of a particular device failing in each second.
The downtime can go from 0s to 10s at random. The orchestrator must deal with the
devices’ failure and re-orchestrate. This experiment is considered a stress test, since it
forces constant re-orchestrations.

During these experiments, we should verify that (a) any restrictions (predicates) are en-
forced, by checking every obtained configuration, and (b) that priorities are honored, by
checking that all specified priorities were taken into account, and only violated if necessary.
If specified priorities must be violated, (a) edge devices should be used first, and (b) the level of
decentralization should be maximized by using the most available devices.

Experimental Scenario 2 (ES2)

Regarding ES2, a total of 20 devices were connected in a line topology. A message is sent to the
starting device, whichwill propagate it to its output. All the devices implement this propagation

Chapter 11. Visual IoT Dynamic Orchestration 208

logic, which should result in the initial message reaching the end of the line. The propagation
time is measured, starting when the message is sent and ending when the message reaches the
last node. This scenario was implemented with different experimental configurations, namely:

(A) Non-modified version of Node-RED, using the default node-to-node communication
channel (EventEmitter), with all the nodes sharing the same runtime;

(B) Modified version of Node-RED that uses MQTT as the node-to-node communication
channel, with all the nodes sharing the same runtime;

(C) MQTT-based modified Node-RED, where each node of the flow is assigned to a different
virtual device (i.e., a MicroPython-running Docker instance). The Docker instances and
MQTT broker run in the same host machine;

(D) MQTT-based modified Node-RED, where each node of the flow is assigned to a different
virtual device. The Docker instances are in one host, but the MQTT broker is in another
one. All parts are connected to the same Wi-Fi network;

(E) Each physical device runs a simple script that performs the desired behavior, on top of
a non-modified MicroPython firmware image, communicating over MQTT. Node-RED
is not used, and there is no orchestration being performed;

(F) MQTT-basedmodifiedNode-RED, alongwith themodifiedMicroPython firmware run-
ning on physical devices. Each node is assigned to a different device. The devices com-
municate by MQTT over the same Wi-Fi network.

11.3 Discussion
The results from the experimental tasks are presented, analyzed, and discussed in the follow-
ing paragraphs. Data about the execution is collected and aggregated in Node-RED, based in
telemetry messages from the devices. The payload size corresponds to the size of the payload
sent to the devices from the orchestrator perspective.

11.3.1 Scenario 1 (ES1) Sanity Checks
To assert the correct functioning of the dynamic orchestration approach under normal oper-
ation conditions two sanity checks were defined and run, as detailed in the next paragraphs.
These were mostly to observe if the approach performed similarly in both virtual and physical
devices.

Virtual Devices Sanity Check (ES1-SC1)

This experiment was used to observe the overall approach in a controlled fashion. By using
virtual devices we reduced the chance of hardware failures. The free flash size decreases by
≈150Kb when the device receives a script for executing, i.e., matching the size of the payload.
As the orchestrator assigns the nodes, the corresponding scripts are built and sent to them.

Chapter 11. Visual IoT Dynamic Orchestration 209

The time it takes to deliver the script averaged 0.303 ± 0.165s. All exchanged messages were
captured, which enabled us to check that the system behavior was the expected by (1) spreading
the computation among available resources, and (2) resulting in a system with the expected
functional behavior.

Physical Devices Sanity Check (ES1-SC2)

The previous experiment was repeated using physical devices (four ESP32 devices). The or-
chestrator attributed 9 nodes to each device. The RAM usage in physical devices was smaller
than in virtual devices1. The free flash space was also smaller, as expected. The time to deliver
the script was longer than in the first experiment, averaging 6.776 ± 0.476s. This is mainly
caused by the nodes being in different devices, with the Wi-Fi communication and hardware
specs having a non-negligible impact.

11.3.2 Scenario 1 (ES1) Experimental Tasks
The following paragraphs detail the experiments carried using as reference the Experimental
Scenario 1 (ES1).

Simulated Device Failure (ES1-A)

This experiment evaluates if the system is able to re-orchestrate when a device fails. A set of
virtual devices were turned off one by one until only one was left running. It was expected for
the system to detect when a device became unavailable and to re-orchestrate by assigning nodes
to the remaining devices. In the end, we expected only one device to be running, with all the
nodes assigned to it. Figure 11.5 (p. 210) shows the uptime of the devices, allowing us to identify
the moment each one fails. We can also observe an increase in the payload size and the number
of allocated nodes in the remaining devices each time a device was turned off.

Physical Device Failure (ES1-B)

This experiment repeatsES1-Awith physical devices. The payload size is similar (withminimal
differences due to inner works ofMicroPython in the virtualized versus physical environments)
and number of nodes assigned through the experiment is the same (cf. Figure 11.6, p. 211). How-
ever, we observe that Device 2 (the last remaining active), first fails when receiving the payload
containing the code for all the nodes of the system. This was expected, as its constrainedmemory
cannot handle the full payload. It then enters a Fail-Safe state, reporting an Out-of-Memory
error, and forcing the Orchestrator to assign it fewer nodes.

Early Device Failure (ES1-C)

Similar to ES1-A and ES1-B, this experiment focuses on testing the system’s ability to recover
when devices fail and then recover. In Figure 11.7 (p. 212), we can observeDevice 3 andDevice 4

1Whichmay be due to optimization differences between theDocker-compatible andESP-compatibleMicroPy-
thon firmware, garbage collector runs, and libraries.

Chapter 11. Visual IoT Dynamic Orchestration 210

10

20

30

40

50

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250 300

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1

Time (s)
Dev. 2 Dev. 3 Dev. 4

Payload Size (Kbytes)

Uptime (s)

Number of nodes allocated per device

5 15 25 36 46 56 66 77 87 97 108 118 128 139 144 154 159

5 15 25 38 48 58 68 74 84 94 105 115

5 15 25 36 46 56 66 66 84 94 105 115 125 135 146 156 166 177 187 197 208 218 228 239 244 254 264 275 285 290

5 15 25 36 46 56 66 77

9 9 9 12 12 12 12 18 18 18 18 18

9 9 9 9 12 12 12

9 9 9 9 12 12 12 18 18 18 18 34 34 34 34 34 34 34 34 34 34 34 34 34 34

9 9 9

Figure 11.5: Simulated Device Failure (ES1-A) measurements from the perspective of the
orchestrator.

failing prematurely. The system recovers by assigning the corresponding nodes to other devices.
Device 4 then (1) recovers around 100s, (2) fails again, and (3) recovers. The system disregards
this swift failure and only re-orchestrates the second time Device 4 recovers. During this ex-
periment, Device 3 and Device 4 continue to fail and recover in a predictable pattern, and the
system keeps re-configuring itself. The precise decision heuristic might need further investiga-
tion, as a device that enters a fail/recover loop might introduce continuous re-orchestrations
(essentially an unintended Denial-of-Service).

Out-of-Memory Issues (ES1-D)

The memory constraints of IoT devices can negatively impact the functioning of the sys-
tem by raising out-of-memory errors when writing the received script into the device’s SPI
flash. This experiment assesses how the system recovers and adapts to these conditions. Fig-
ure 11.8 (p. 213) depicts the system behavior due to the constrained memory of Devices 2 and
4. When the first assignment is made, at≈50s, both these devices enter a Fail-Safe state due

Chapter 11. Visual IoT Dynamic Orchestration 211

10

20

30

40

50

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Time (s)
Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (Kbytes)

Uptime (s)

Number of nodes allocated per device

16 26 38 49 55 66 77 87 99 109 115 126 136 147 159 165 176

10 21 26 37 48 59 70 80 86 97 108 119 130 141 146 157 168 179 190 200 207 3 5 16 26 37 48 53

15 26 37 48 59 64 75 86 97 108

10 15 26 37 48

9 9 9 9 9 9 9 12 12 12 12 12 12 18 18

9 9 9 9 9 9 9 12 12 12 12 12 12 18 18 18 18 18

9 9 9 9 9 9 9 12 12

9 9 9

Figure 11.6: Physical Device Failure experiment results (ES1-B) from the perspective of the
orchestrator.

to Out-of-Memory errors. The number of nodes present on these devices are the ones assigned
after they communicate to the orchestrator their limitations. We then turn Device 2 off, and
later on. As it can be observed, once Device 2 stops, nodes are distributed to the other devices,
except for Device 4, which is memory constrained. After the recovery of Device 2, the system
re-orchestrates, and the same number of nodes are assigned to the devices. The fact that De-
vice 4 fails after Device 2 recovered implies that the system repeated the original assignment
decision, ignoring previously known information about memory constraints. This is a known
limitation to be addressed in the future.

Memory Leak Issues (ES1-E)

Besides memory limitations, we also expect the system to be capable of handling unhealthy
devices with memory leaks. Device 2 was modified to always generate an Out-of-Memory

Chapter 11. Visual IoT Dynamic Orchestration 212

10

15

20

25

30

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Time (s)
Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (Kbytes)

Uptime (s)

Number of nodes allocated per device

15 36 56 77 92 113 133 154 175 195 216 236 257 273

15 35 56 77 97 113 133 154 175 195 216 236 257 272

15 36 56 67 10 20 20 41 56 77

15 36 56 5 10 20 20 41 61 77

9 9 18 18 12 12 9 18 18 18 9 9

9 9 18 18 12 12 9 18 12 12 9 9

9 9 9 12 12 9 9

9 12 12 9 12 12 9 9

Figure 11.7: Early Device Failure (ES1-C) measurements from the perspective of the or-
chestrator.

error after a random period. We expected the system to eventually exclude this device during
the assignment process. The Figure 11.9 (p. 214) shows that Device 2 consistently fails after
the first assignment of nodes at≈75s. The number of nodes assigned keeps decreasing until the
device is excluded from consideration. This is currently a simple process, in which the system
will decrease the number of nodes it assigns to a device every time it reports an Out-of-Memory
to the orchestrator. Once the minimum number of nodes reaches zero, the device is excluded
from the assignment process.

Sporadic Fault Injection (ES1-F)

To further assess the resilience of the system, nodes causing errors in specific devices were
deliberately added. We expected for the system to re-orchestrate and converge to a solution

Chapter 11. Visual IoT Dynamic Orchestration 213

0

5

10

15

20

25

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Time (s)
Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (Kbytes)

Uptime (s)

Number of nodes allocated per device

5 15 25 36 46 56 67 77 87 97 108 118 128 133 144 154 164 175 185 190

15 25 35 10 21 31 31 31 31 2 12 22 33 43 53 64 74 74

5 15 25 36 46 56 66 77 87 97 103 115 125 135 146 156 166 177 187 187

5 15 25 38 3 13 23 34 39 49 59 2 13 23 33 44 54 64 74 74

13 13 13 13 13 13 15 13 13 13 13 13 13 13 13 13

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

12 12 12 12 12 12 14 12 12 12 12 12 12 12 12 12

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Dev. 2 fails▷ ◁Dev. 2 recovers

Figure 11.8: Out-of-Memory Issues (ES1-D) measurements from the perspective of the or-
chestrator.

where those specific nodes were assigned to devices not affected by the problem. Neither the
system nor the devices know which specific node/device combinations are causing the faulty
behavior, so this scenario is overall interpreted by the orchestrator as a device problem. As
the first assignment could be correct by sheer chance, we forced a system re-orchestration by
turning off and on all devices in a random order and repeating the process three times. The
Figure 11.10 (p. 215) shows these on/off events at the ≈125s, ≈200s and ≈275s timestamps.
In this case, the devices affected by the faulty nodes were Device 2 and Device 4. The event we
aim to test occurs at ≈300s. As can be seen in Figure 11.10 (p. 215), 10 nodes are assigned to
Device 4. The uptime of Device 4 resets in this small-time period (the next uptime is less than
20s), meaning that an Out-of-Memory occurred and the device entered a Fail-Safe state. The
system updates, allocating the 10 nodes previously assigned toDevice 4 through all the available

Chapter 11. Visual IoT Dynamic Orchestration 214

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Number of nodes allocated per device

5 15 25 36 46 56 66 77 87 97 108 118 128 133 144 154 164 175 185 195 206 216 221

5 15 25 36 46 56 66 2 1 2 10 21 26 36 46 57 67 77 88 98 108 113

5 15 25 36 46 56 66 77 87 97 108 118 128 133 144 154 164 175 185 195 206 216 221

5 15 25 36 46 56 66 77 87

Uptime (s)

97 108 118 128 139 144 154 164 175 185 195 206 216 221

9 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12

8 6 4 1

9 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12

10 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12

Time (s)

Figure 11.9: Nodes’ assignment over time with memory leaks (ES1-E) from the perspective
of the orchestrator.

devices. Since Figure 11.10 (p. 215) shows the data in intervals of 20s, the assignment in De-
vice 4 happens before the assignment present in the other devices. When the system receives
information that Device 4 is available again, it already knows that it has a limitation, so it only
assigns 9 nodes to it. It can be seen that the missing node is assigned to Device 1. Since Device 4
does not enter a Fail-Safe state, the node assigned to Device 1must have been the faulty one.

Recurrent Fault Injection (ES1-G)

To further investigate possible limitations in our current approach, we proceeded to inject con-
stant failures in the available devices. Every second, each device has a p = 5% of becoming
unavailable for 0–10s. During this period, the device becomes unresponsive, announcing itself
only when it recovers. The Figure 11.11 (p. 216) shows that the system is kept continuously
re-orchestrating. But once the majority of devices fail, the system becomes unstable, i.e., the
system keeps trying to allocate nodes across available devices (as it can be seen by the shifting
number of nodes per device), even if the devices are unable to allocate them. It is important
to note that, similar to previous experiments, once a device fails, the number of nodes does not
update to zero. We conclude that devices with the same number of nodes during the total exe-
cution of the system failed early on and continued to fail, stopping the orchestrator assignment.
Despite that at ≈100s, there is a period where all devices are available, the orchestration does
not converge during that time. This is due to the system re-orchestrating whenever a device
becomes available (since each device announces itself individually, each announcement triggers
a new orchestration). This process takes time and results in several failed orchestrations due
to outdated data on the device’s operating status, being also taxing for the devices, causing an
overload of received assignments that will stop the system function as a whole.

Chapter 11. Visual IoT Dynamic Orchestration 215

0 50 100 150 200 250 300 350 400 450

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Uptime (s)

Number of nodes allocated per device

15 36 56 77 97 102 15 36 46 20 41 51 5 25 46 67 82 103 123 144 164 180

15 36 56 77 97 102 25 41 51 15 36 46 5 25 46 67 87 103 123 144 164 180

15 36 56 77 92 20 41 51 15 36 51 5 25 41 61 82 103 123 144 164 180

15 31 53 14 34 40 21 31 2 23 38 1 9 15 35 56 76 97 112 133 148

10 10 10 13 10 10 10 10 10 13 10 10 10 10 10 10 10 10

9 9 9 12 9 9 9 9 9 12 9 9 9 9 9 9 9 9

9 9 12 9 9 9 9 9 12 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 33 10 9 9 9 9 9 9 9 9

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Time (s)

Figure 11.10: Nodes’ assignment over time, from the perspective of the orchestrator, with
fault-injection on the devices (ES1-F).

11.3.3 Scenario 2 (ES2) Experimental Tasks
To benchmark the impact of our approach, we proceeded to incrementally instrument Node-
RED with partial implementations and measure each of them. Our setup consists of a flow
that passes a message through several devices, recording the total round trip. The NOP nodes2

execution consists of only redirecting their input to their output. A message containing only
the current timestamp is inserted into the system by triggering the Inject node, and the same
message is expected to appear in the Node-RED debug console.

Table 11.2: Approach benchmark (ES2) with elapsed time measurements.

Label Min Q1 Q2 Avg Q3 Max

ES2-A 3 8 10 10 13 15
ES2-B 134 353 431 489 711 883
ES2-C 1217 1260 1318 1400 1574 1665
ES2-D 1445 2332 2536 2392 2708 3059
ES2-E 3616 4031 4142 4133 4372 4452
ES2-F 4168 4357 4569 4751 5088 5940

This experiment was run with different configurations (ES2-A to ES2-F) to assert the im-
pact of each modification/module, as described in Section 11.2.2. Each experiment was repli-
cated ten times, and the resulting measurements are shown in Table 11.2 (p. 215).

When the decentralization is applied inside Node-RED (cf. ES2-B), it is possible to see that
the introduction of the MQTT communication (Mosquitto broker) running in the same host

2NOP is an assembly instruction for no-operation (no-op), an operation that does nothing.

Chapter 11. Visual IoT Dynamic Orchestration 216

Figure 11.11: Nodes assignment distribution among available devices over time with re-
current device failures from the perspective of the orchestrator (ES1-G).

causes some latency. The introduction of Dockers running the firmware in the same host as
the Node-RED instance andMQTT causes additional latency (cf. ES2-C), making it possible to
conclude that the MicroPython-based developed firmware also delays the communication. By
repeating the same experiment butwith the broker running in anothermachine (same network)
(cf. ES2-D), it is noticeable that the times are more spread out, and the overall latency of the
system increases. As the Node-RED and the broker run in different machines connected over
Wi-Fi, we conclude that this is the leading cause for the additional delay.

The experiment was repeated in physical devices: (1) by running a simple code in the Mi-
croPython flashed devices and injection of messages directly in the broker (cf. ES2-E), and
(2) by using our approach as a whole, i.e., modified Node-RED and designed firmware (cf. ES2-
F). The results reveal that the use of physical devices produces higher times (as expected) but
that the developed firmware has little impact, visible by the comparison of their results. We
conclude that our approach, including the node-to-node communication change, is slower than

Chapter 11. Visual IoT Dynamic Orchestration 217

the original Node-RED, but it mostly results from the Wi-Fi communications and the base
MicroPython firmware. Also, this modification makes Node-RED more modular, allowing the
other communication mechanisms.

11.4 Summary
This chapter presented both a method and an extension to Node-RED that provides automatic
decentralized orchestration of constrained devices in an IoT network. We proceeded to eval-
uate it through 2 experimental setups, divided into 13 scenarios. We have shown that our ap-
proach is able to provide a decentralized substrate for computation and dynamic adaptation of
the system via self-reconfiguration.

There were three main quality attributes which were targeted as improvement points:
(1) resilience, to which we provide evidence that it is moderately robust, handling device fail-
ures and memory constraints dynamically; (2) elasticity, by showing a moderate-sized IoT sys-
tem functioning in a decentralized fashion with devices being added and removed in runtime;
and (3) efficiency, wherewe investigate the overheads introduced by our approach and conclude
thatmost of them come from the extra latency introduced by the communication channels, and
the proposed firmware has little to no impact.

Some limitations of our approach include: (1) the algorithm used to orchestrate the nodes
among the available resources can fail to find a suitable configuration, (2) there’s room for op-
timizations, e.g., bypassing the communication substrate between nodes assigned to the same
device (although this might hinder observability) and trying to increase the likelihood of such
sets of nodes being assigned to the same device (via static and/or dynamic analysis of the data
flow [Mat+20]), (3) other firmware approaches could be explored beyond MicroPython, and
(4) the (re)orchestration currently redeploys the entire system and does not attempt to take
into consideration a set of minimal changes.

218

12 | Self-Healing for IoT

12.1 Approach Overview . 219
12.2 Experiments and Results . 221
12.3 Discussion . 240
12.4 Summary . 243

As systems’ complexity increases, it inevitably results in people becoming “overwhelmed by the
effort to properly control the assembled collection,” [PD11] increasing the probability of human-
induced errors and failures; and developing becomes challenging, labor-intensive, and expen-
sive [JEC14].

Providing systems with the ability to reconfigure to recover from, or, at least, mitigate the
impact of, failures introduced by faulty parts, misconfigurations, or any other disruption, can
improve the systems’ dependability, even when their complexity increases. Achieving this re-
quires that the running system to be able to inspect itself to identify the faulty components
during its operation (i.e., runtime) without the need for human inspection. In this chapter, we
provide the foundations to enable users to visually model diagnosis and recovery/maintenance
of health mechanisms to improve IoT systems’ reliability, thus enabling them to be self-healing.
These mechanisms have been developed, applied, and tested as extensions that we named Self-
Healing Extensions for Node-RED (SHEN). We validated our approach by executing a set of
scenarios on top of a live, physical setup, called SmartLab. The in-place-based system was first
upgraded with the designed extensions; then, a set of common scenarios was executed, and
the resulting system behavior was observed. Our experiments present supporting evidence to
the feasibility of the approach, showcasing improvements in terms of system reliability and de-
pendability, despite several limitations and challenges that this particular VPL language poses
and which limit the full potential of our approach.

Parts of this chapter were published in the work A Pattern-Language for Self-Healing
Internet-of-Things Systems [Dia+20a] and in the subsequent works Visual Self-Healing
Modelling for Reliable Internet-of-Things Systems [Dia+20b], Empowering Visual
Internet-of-Things Mashups with Self-Healing Capabilities [DRF21], and Evaluation
of IoT Self-healing Mechanisms using Fault-Injection in Message Brokers [Dua+22].
Miguel Duarte carried additional experiments in the context of the Master’s thesis entitled
MQTT Chaos Engineering for Self-Healing IoT Systems [Dua21].

Chapter 12. Self-Healing for IoT 219

12.1 Approach Overview
Node-RED has several limitations regarding the verification of flows — which limits runtime
verification, by not providing out-of-the-box nodes capable of doing these tasks. Thus, we en-
capsulate runtime verification and self-healing mechanisms into a new set of Node-RED nodes.
The following paragraphs detail our approach and implementation, by detailing how certain
nodes correspond to the implementation of one or more of the self-healing pattern presented
in previous chapters (cf. Chapter 6, p. 144).

Regarding runtime verification capabilities, we created nodes that allow inspecting the SUT,
i.e., probing the system (cf. Figure 2.13, p. 54), including the test patterns presented in Pontes
et al. [PLF18] and detailed in § 12.2 (p. 221). Some devices and services (e.g., message brokers,
data stores, third-party services) can only be tested by implementing black-box reachability
checking, such as the new MQTTBrokerTimeout node that asserts if the broker is still alive.

Following the self-healing loop described by Psair et al. [PD11], our detection component is
composed by nodes that allow runtime testing and provide diagnosis information (cf. Figure 2.13,
p. 54), after which the recovery process is accomplished by nodes that implement maintenance
of health and recoverymechanisms.

The list of implemented Node-RED nodes is presented in Table 12.1 (p. 220). These nodes
which can correspond to one ormore self-healing patterns of the presented pattern language (cf.
Chapter 6, p. 144), or even to a specific use case of a general pattern (e.g., kalman-filter node).
Additionally, some nodes do both error detection and recovery (or maintenance of health tasks).
As an example, consider the compensate node: if it is configured in activemode, it checks that
sensor readings are coming at an expected frequency (viz. detection) and compensate missing
values if they do not arrive as expected (viz. maintenace of health); however, if it is configured
in passive mode, an external event (e.g., a message with a pre-defined payload) is required for
the node to emit compensation values.

The compensate node, which corresponds to an implementation of the Compensate pat-
ternwithin theNode-RED boundaries, is a node that provides features in the view ofmaintain-
ing the health of the system, compensating missing values — typically sensing data — using
one of the available compensation strategies (cf. Algorithm C.2, p. 341). When configuring
the system, the user can select the most suitable compensation strategy (e.g., maximum, min-
imum, or average) of the last n (where n > 1) already read values. The user also defines the
expected sensor reading periodicity to be able to detect disruptions1, typically providing some
extra margin to deal with network latency spikes. After deploying a Node-RED flow with this
node connected to a sensor, it will always provide a value, even when the sensor stops pro-
ducing values. Additionally, if of the user’s interest, a confidence formula can be defined, that,
taking into account the number of compensated values and the array of previous readings, can
be used to stop the production of values when the confidence drops below a given threshold.

Some nodes leveragemeta-facilities that allow changing a system’s behavior during runtime.
As Node-RED does not formally provide them, we found a workaround by resorting to its
external REST API from inside our nodes, thus gaining the ability to create, delete and change

1It can be considered that the compensate node leverages Stable Timing pattern within itself.

Chapter 12. Self-Healing for IoT 220

Table 12.1: Self-Healing Extensions and their map to self-healing patterns (cf. Chapter 6,
p. 144). The corresponding algorithms are presented in Appendix C (p. 340).

Node name Description Enabled Patterns

action-
-audit

After a certain event happens, a secondary event that acknowledges
the action is waited for until a pre-defined timeout occurs (cf. Algo-
rithm C.11, p. 346).

Timeout, Action
Audit

balancing Distributes messages among available resources using a Round
Robin, Weighted Round Robin, or Random strategy (cf. Algo-
rithm C.15, p. 349).

Balancing, Redun-
dancy

checkpoint Stores the last input message of a node, replaying it in case of
Node-RED failure, typically with a time-to-live threshold (cf. Al-
gorithm C.9, p. 345) .

Checkpoint

compensate Compensate missing values using pre-defined strategies (e.g., mini-
mum, average or maximum) complying with the expected readings
periodicity. Also provides a confidence level based on the number
of consequent compensations (cf. Algorithm C.2, p. 341).

Compensate

debounce Adjusts periodicity of messages to meet target periodicity require-
ments by operating as a rate-limit with aggregation features (cf. Al-
gorithm C.12, p. 347).

Stable Timing, De-
bounce, Timebox

flow-
-control

Enable/disable flows, allowing to adapt to changes/disruptions in
the system (cf. Algorithm C.6, p. 343).

Circumvent And
Isolate, Runtime
Adaptation

heartbeat Heartbeat that check the alive status of system parts connected over
HTTP and MQTT (cf. Algorithm C.10, p. 345) .

Within Reach,
Timeout, Unim-
paired Connectivity

http-aware Periodically probes the network for running services (i.e., open
ports) in order to find changes, i.e., new or disconnected service (cf.
Algorithm C.13, p. 348).

Within Reach,
Unimpaired Con-
nectivity, Device
Registry

kalman-
filter

Kalman filter [BRH16] uses statistical predictors to reduce the effect
of random noise on measurements (cf. Algorithm C.1, p. 340).

Compensate

network-
aware

Periodically scan of the local network for finding new or discon-
nected devices and hosts (cf. Algorithm C.17, p. 351).

Within Reach,
Unimpaired Con-
nectivity, Device
Registry

redundancy Manage redundant instances ofNode-RED, setting a newmaster in-
stance in the case of disruption of a master instance and reconfigure
in case of recovery (cf. Algorithm C.8, p. 344).

Redundancy

readings-
watcher

Check if sequential sensor readings are meaningful and correct
by checking for minimum changes, maximum changes or stuck-at
anomaly, i.e., same sequential reading (cf. Algorithm C.18, p. 352).

Reasonable Values

replication-
voter

Selects a value (message) taking into account several input messages
(e.g., array of sensor readings), based on a consensus, e.g., majority
(cf. Algorithm C.5, p. 342).

Redundancy, Diver-
sity

resource-
monitor

Checks telemetry data reported by the different system parts against
near-maximum (or near-minimum) thresholds (cf. Algorithm C.14,
p. 348).

Resource Monitor

threshold-
check

Checks if measurements (e.g., sensor readings) are within the op-
erational specifications of the device. Also can be used to check if
the surrounding conditions allow correct device operation (cf. Al-
gorithm C.3, p. 341).

Reasonable Values,
Suitable Conditions

timing-
-check

Checks if the periodicity of incoming messages matches the ex-
pected rate (cf. Algorithm C.16, p. 350).

Unsurprising Activ-
ity

device-
registry

Maintains a registrywithinNode-REDwith all devices in the system
which adapts and triggers events as connected devices change (cf.
Algorithm C.7, p. 343).

Within Reach, De-
vice Registry

Chapter 12. Self-Healing for IoT 221

On-premises
Server

On-premises
Datastore

SN-2

AN-1 SN-1

AN-2

AN-3

SN-3

Third-Party
Services

Control
Dashboard

Broker

AN-4

AN

SN

REST Communication

MQTT Communication

Actuator Node

Sensor Node

Figure 12.1: System component diagram, showing the main system parts, along with the
different devices (actuators and sensors) and the enabling communication pro-
tocols.

the configuration of flows and other nodes. This is exemplified by the flow-control node,
which allows toggling flows on and off, allowing Runtime Adaption.

An example of this is the flow-control node (cf. Algorithm C.6, p. 343). While the node’s
internal algorithm is rather minimal, it allows redefining the behavior of Node-RED at run-
time within itself (meta-programming). Several flows can be defined in a Node-RED instance
that carry rather similar tasks using different strategies or pathways (e.g., turn on the lights
using Wi-Fi or Bluetooth). While it is mostly irrelevant to have two flows carrying the same
task simultaneously — which could, eventually, provoke malfunctions —, having these two
mutually exclusive flows can be useful to fulfill system goals when some disruption happens.
The flow-control node allows, in this sense, to enable or disable particular flows at runtime
(cf. Runtime Adaptation), which can even be running in a different host. Using the same
example, if Wi-Fi is not available, the task of turning on the lights can be carried by another
wireless medium (e.g., 433Mhz).

There are also some self-healing patternswhich do not have a direct representation asNode-
RED nodes, since they depend on specific edge device features and capabilities. As an example, to
implement patterns such as Flash, Reset and Calibrate, the target device should be capable
of receiving and execute instructions that accomplish the expected outcome: for the Flash,
the device should be capable of receiving (e.g., OTA) a new firmware version and update itself;
the Reset also requires that the device is able to receiving and execute a reset instruction
(e.g., rolling back to factory defaults); and the Calibrate most of the time requires human-
interaction to adjust mechanical parts.

12.2 Experiments and Results
Validating new solutions for runtime verification and self-healing requires scenarios represen-
tative of the characteristics, issues, and challenges of real-world IoT environments, such as het-
erogeneity and real-time needs. We carried experiments on SmartLab, an experimental testbed
with four actuators and three sensing devices (each having more than one sensor) deployed

Chapter 12. Self-Healing for IoT 222

in a laboratory (cf. Figure 12.1, p. 221), responsible for a set of user-interaction features. Ad-
ditional experiments were carried using existing IoT system collected data, allowing to carry
experiments considering operation of IoT devices along larger timelines, i.e., using data col-
lected during larger time windows by reducing the time between readings for experimental
purposes.

12.2.1 Scenario-based Experiments
We devised six scenarios to demonstrate the necessity of runtime verification and self-healing
mechanisms. Although these scenarios do not cover all possibilities, we believe them to be
sufficient to illustrate the complexity, challenges, and, in this case, Node-RED limitations and
trade-offs. They also showcase the feasibility of the solution for improving the dependability
of IoT systems.

Unavailability of Message Broker

MQTT is the base of most of our SmartLab communications; thus, it needs a message broker.
Typically, the defined flows are triggered when a new message is received (the flow subscribes
to a specific topic). In this scenario (described in two versions in Figure 12.2, p. 222, and Fig-
ure 12.3, p. 223), the message broker is both the bottleneck and a Single point of failure of the
system; if it fails, the functionality of the system is compromised.

To verify the availability of the broker (i.e., health status), a heartbeat pattern was followed.
Two different strategies can be followed to accomplish this: (1) an active strategy where the
monitoring component (i.e., Node-RED node) probes a system part (e.g., message broker) and
checks for an answer in a timely fashion, or (2) a passive strategy, where the monitored compo-
nent proactively informs (e.g., continuous flow of telemetry data) the monitoring component.

Figure 12.2: Usage of the heartbeat and flow-control nodes for detecting and heal-
ing from a broker failure, for detecting (i.e., Unimpaired Connectivity or
Within Reach) and healing (i.e., Runtime Adaption) a potential unavailabil-
ity of the broker.

In our SmartLab scenario, the two different strategieswere put in place to assert their behav-
ior. In Figure 12.3 (p. 223), a passive strategy was used, taking advantage of the MQTT uptime
telemetry message which is periodically emitted by the message broker2. If the heartbeat

2Mosquitto MQTT broker emits an uptime message with an ≈60 seconds periodicity using the
$SYS/broker/uptime topic.

Chapter 12. Self-Healing for IoT 223

node does not receive a message within the expected periodicity, an error message is emitted
with the same periodicity in the node third output; otherwise, if the message is received, an ok
message is emitted in the second output. Using that information, the Report by Exception

Node-RED built-in node can be used to check for a broker status change and changing, in run-
time, the communication protocol in use — by swapping between two different Node-RED
flows, one that uses MQTT communication, and other that uses HTTP.

Figure 12.3: Usage of the heartbeat and flow-control nodes for detecting and heal-
ing from a broker failure, for detecting (i.e., Unimpaired Connectivity or
Within Reach) and healing (i.e., Runtime Adaption) a potential unavailabil-
ity of the broker.

As an alternative, an active strategy could be followed. In this case, while most the logic and
implementation is similar, the first node output is used to send a ping message, which is then
received by the same node input. This strategy is more suitable for publish-subscribe protocols
in which a common topic can be used for routing the ping messages, but it is also possible to
use in other protocols — depending on the proper implementation of a heartbeat mechanism
by the probed system component.

Out-of-spec Sensor Scenario

SmartLab relies on the readings from different sensors so that it can act according to user-
defined rules. As an example, if smoke is detected, an alarm or another notification mechanism
should be triggered (and possibly trigger some contention mechanism like sprinklers). These

Figure 12.4: Usage of threshold-check in a flow that triggers an actuator if the humidity
is above 80%, but verifies for correct sensor readings beforehand.

Chapter 12. Self-Healing for IoT 224

procedures depend on the timeliness and correctness of readings. Sensormalfunctioning can dis-
play an array of different behaviors, such as outputting out-of-bound or out-of-spec values; these
can lead to wrong decisions and may end up having nefarious effects to the point of impact-
ing the well-being of humans. Several strategies can be used separately or in combination to
detect sensor malfunction. Sensors that provide periodic readings can be verified by analyzing
the expected periodicity. Other errors, such as out-of-bounds and out-of-spec readings require
customized verification and tailored failure conditions. Fortunately, these are usually available;
e.g., the DHT11 temperature/humidity sensor is capable of readings ranging from 0 °C to 50 °C,
and 20% to 80% humidity. Values outside these ranges should be considered erroneous by de-
fault. In this scenario, an isolation strategy is followed; when an out-of-spec problem is detected,
the readings are ignored via the threshold-check node. In the presence of redundant sen-
sors, other readings may still be used by the system; otherwise, all the actuating components
that depend on that sensor cease their activity (cf. Figure 12.4, p. 223).

Lost Action Scenario

The actuators that are deployed in the SmartLab depend on receiving messages to work as ex-
pected, with some of these devices supporting more than one communication protocol and
having different levels of reliability (i.e., the MTTF of some actuators is low, failing to comply
with a request at least one time per day). Given that, in some situations, the devices are not
accessible by the protocol used by default (e.g., MQTT) due to connectivity disruptions, proto-
col bugs, or others, thus becoming inaccessible and eventually causing problematic side-effects
(e.g., cooling fan not turning on temperature increase). In other cases, the device does not trig-
ger — a problem that could cause serious nefarious side-effects (e.g., alarm not triggering). In
these cases, verification can be carried after a certain amount of time, asserting if the request
has been processed by the device, preferentially using an alternative data source (e.g., a sensor
device deployed in the surroundings).

Figure 12.5: Usage of the action-audit to check if the lights turn on (request sent via
MQTT) after a given interval, by checking if the luminosity goes above 70 lux.
If the action is not acknowledged, a recovery action (e.g., sending the command
using another protocol or using a different actuator) can be used.

As a representative scenario consider Figure 12.5 (p. 224). After a state change request
message is sent to an actuator (AN-1) via MQTT, an action-audit node can be used to check
if the action was performed with different degrees of confidence. In this concrete scenario, a
lightbulb should turn on if the luminosity of the space goes below 50 lux. Asserting if this action
was performed is not easy since different factors can influence the luminosity of the space (e.g.,
sunrise). However, having a sensor reporting the current luminosity value to allow us to have

Chapter 12. Self-Healing for IoT 225

some confidence that the action was indeed performed. If no change in the environment was
detected, recovery actions could be triggered. As an example, if the light controlling device
does not turn on the lights, as requested by the MQTT broker, a second request can be made
to the same device, this time using HTTP.

However, even having a action-audit node, the flow incurs some essential complexity,
mostly due to the limitation of Node-RED not supporting more than one input (which would
make it more readable in terms of action/acknowledge). Further, we only want to consider the
value of luminosity as an acknowledgment after an action was requested; thus, an additional,
conditional block was required.

Having diversity on the IoT system allows to perform Runtime Adaption to the system,
improving its capability to meet operational demands. As shown, having things that are capable
of using different protocols allows us to adapt by dynamically switching to the most stable one
given the systems’ conditions (although usually incurring in a trade-off, such as the differences
in energy consumption between MQTT and HTTP).

Sensor Failure Scenario

Figure 12.6: Experiment with failure of the sensing device and Compensatemaintenance
of health pattern, along with Heartbeat Probe.

A sensing node (Sensor Node 1) with a humidity and temperature sensor, connected over
MQTT, producing values each 60 seconds, is connected to the Node-RED flow depict in Fig-
ure 12.6 (p. 225). The sensor is a DHT11, capable of reading temperatures in the range of [0 °C,
50 °C] and humidity in the range [20%, 90%]. The configured flow ensures that:

1. the threshold-check (cf. Algorithm C.3, p. 341), verifies if both readings are within the
expected values for the sensor, dropping values out-of-bounds;

2. the compensate (cf. Algorithm C.2, p. 341) verifies if, at some point, the sensor readings
rate do not match the expected periodicity (i.e., 60 seconds). If not matched, estimation
is done, and a corresponding message is sent at the expected interval: (1) for the temper-
ature, the last reading is re-sent, and (2) for humidity, the mean of the last ten readings
are sent;

Chapter 12. Self-Healing for IoT 226

3. the checkpoint (cf. Algorithm C.3, p. 341) ensures that if there is any disruption that
resets the Node-RED flow (e.g., host reboot), the last message is re-sent (if within the
message Time-to-live configured limit).

Also, in parallel, a passive heartbeat (cf. Algorithm C.10, p. 345) checks if the Sensor Node
1 fails to produce any message within a given interval, triggering an error accordingly.

22.5 ºC
23.0 ºC
23.5 ºC
24.0 ºC
24.5 ºC
25.0 ºC
25.5 ºC
26.0 ºC
26.5 ºC
27.0 ºC
27.5 ºC
28.0 ºC
28.5 ºC
29.0 ºC
29.5 ºC

20%

21%

22%

23%

24%

25%

26%

27%

28%

29%

30%

15
:5

8:
00

15
:5

9:
00

16
:0

0:
00

16
:0

1:
00

16
:0

2:
00

16
:0

3:
00

16
:0

4:
00

16
:0

5:
00

16
:0

6:
00

16
:0

7:
00

16
:0

8:
00

16
:0

9:
00

16
:1

0:
00

16
:1

1:
00

Humidity (%) Temperature (ºC)

 H
EA

R
TB

EA
T

O
K

C
O

N
N

EC
TE

D

H
EA

R
TB

EA
T

FA
IL

D
IS

C
O

N
N

EC
T

Figure 12.7: Experiment with failure of the sensing device and Compensatemaintenance
of health pattern, along with a Heartbeat probe.

As the first experiment, a total failure of a sensing node was replicated by disconnecting
the sensor node from power at a random moment, and this can be seen in Figure 12.7 (p. 226).
It can also be verified that soon after the sensor node being disconnected, the heartbeat fails.
As expected, the compensate node triggers and compensates the missing values using the con-
figured strategies. When the device reconnects, the compensate node stops producing values,
and real readings are used. It is observable that when the device recovers there are two almost
sequential readings, not matching the expected periodicity; this could be further managed —
if required by the receiver node or device — using a debounce node to ensure that values are
always at the same periodicity.

Load Spike Scenario

An access control device with an NFC reader is connected over MQTT to a Node-RED flow
depict in Figure 12.8 (p. 227). The reader is placed at the entry point of the lab and ensures that
every NFC card is validated using an external service, of which there are one primary host and
two additional backup ones to be used in the case of exceptional usage spikes3.

The flow in Figure 12.8 (p. 227) ensures that all the card validation requests happen in the
quickest fashion. This is done by placing a number of self-healing nodes in the flow:

3For this experiment we considered a spike when more than one card is read in a 15-seconds window.

Chapter 12. Self-Healing for IoT 227

Figure 12.8: Balancing the validation of identity cards (NFC) via an external service (e.g.,
HTTP request) when a load spike happens (increase in the number of cards
swiped per unit of time).

1. the timing-check verifies the frequency at which the cards are being swiped in theNFC
reader, categorizing (and splitting) them in accordance: too fast, too slow and normal (using
as reference the 15-second estimated time between readings);

2. the balancing node, which handles readings that are coming as too fast, distributes them
among the available validators, ensuring distribution in accordance to the configured
strategy (e.g., round-robin), thus reducing the load in the primary host.

This behavior is depicted in the marble diagram of Figure 12.9 (p. 228), replicating the
behavior recorded at the testbed.

Redundancy Scenario

Although Redundancy is one of the most common patterns for fault-tolerant systems, hav-
ing an implementation of it within Node-RED allows having recovery behaviors defined in
the form of flows that go beyond simply turning on or off a whole Node-RED runtime in the
traditional redundant unit fashion.

There are two instances of Node-RED running at different hosts, with a common flow that
carries a common task: receiving sensor data from the Sensor-Node-1 over MQTT (with the
same frequency of 1 reading each minute), extract the temperature, asserting the validity of
the data (threshold-check and readings-watcher) and post the data to an external service
(an HTTP endpoint). The flow depicted in Figure 12.10 (p. 228) is deployed in both instances,
running a consensus algorithm5 to define a master in case of failure of the previously defined
master instance.

Both Node-RED instances are running at all times, optimizing the mean time to recovery
(MTTR) after a Node-RED instance crashes6. However, the flow is only active in one of them at
any time (mutually exclusive). When the master instance crashes, an election occurs to devise
a new master (which will work only until the old master instance recovers — if it recovers).

4The rbe (report-by-exception) node is part of the default Node-RED nodes and provides a way to pass a
message only when it differs from the last one. In Node-RED version 2.0 this node is named filter.

5The consensus algorithm implemented selects as the master instance the instance running in the network
machine with the highest last octet of the IP address.

6This is known as active-standby.

Chapter 12. Self-Healing for IoT 228

1NFC Reader 3 4 5

3: Too Fast

2: Too Slow

1: Normal

2 6 7 8 9 10

1 32 4

5 6 7

85

6

7

9 10

Balancer

8

Timing t = 15s

strategy = round-robin

2: Channel

3: Channel

1: Channel

Validator
(Primary)
Validator
(Fallback #1)
Validator
(Fallback #2)

8 9 101 32 4 5

6

7

Figure 12.9: Marble diagram of themessages between the different nodes (outputmessages)
on the flow of the load spike scenario, being the NFC reader the producer of
messages and the validators the final consumers.

Figure 12.10: A flow depicting themanagement of twoNode-RED instances (redundancy),
and adapting the behavior of the system (flow-control) when the master
instance changes4. The redundancy node is configured with a Timeout that
triggers when a redundant instance stops pinging for 15 seconds, triggering a
new election.

In this experiment, a new election occurs every 15 seconds (configuration of the
redundancy node). The default master instance (the one with the highest octet) was turned
off multiple times (randomly). The time was measured between the disconnection of the mas-
ter instance until that the sensor reading flow resumes on the fallback instance (a ping is done
to an external service). A total of 10 measurements were made, and the MTTR of the system
was 13.7s (σ = 1.77s).

As it can be seen in the Figure 12.11 (p. 229), almost all sensor readings reach the external
endpoint, even with the continuous toggling of the master Node-RED instance. During a test

Chapter 12. Self-Healing for IoT 229

Timestamp 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

No Data

Primary

Secondary

Figure 12.11: Sensor readings timeline of a 22-minute window, marking if the measure-
ment was provided by the primary instance (master) or by the secondary in-
stance (fallback). It is also notedwhen there is no data arriving in the expected
time slot.

of 22 minutes (which should result in 22 sensor readings), only one reading was lost.

12.2.2 Fault-Injection Experiments
To ensure that the self-healing — or any other kind of fault-tolerance — mechanisms work
as intended, they must be exercised. In the research field of fault-tolerance, fault-injection has
been used as a technique to intentionally cause errors and failures in systems by introducing
faults and then observing how the system behaves and recovers from them.

To carry fault-injection in IoT systems and see how the self-healing mechanism behave —
i.e., chaos engineering — an open-source and widely used MQTT Broker7 was modified so
that we could easily inject faults into IoT systems. The modifications enabled us to use the
broker as a proxy to intercept and modify messages before being published to a specific topic
and according to user-defined fault-injection rules.

Figure 12.12: Baseline systemNode-RED flow (BL). This systemparses the reading received
from the sensors and sends the respective alarm level as output, filtered by a
report-by-exception node to ensure that values are only emitted when the
current alarm level changes. The topics in this figure are set to those of Sce-
nario 1 but are altered depending on the Scenario being tested.

For validation purposes, we defined four combinations of the System Under Testing repre-
senting all possible combinations of the systemwith andwithout self-healing or fault-injection.
We called these BL (baseline), self-healing (SH), fault-injection (FI), and self-healing with fault-
injection (FI×SH).

If the fault-injection and self-healing mechanisms are working correctly we expect that
(1) the behavior of SH is not very different from BL, since no fault-injection is performed in
either system and self-healing mechanisms should have low impact in a nominal system, (2) the
behavior of FI is very different fromBL, since the base system, without self-healing components
should not be able to recover from injected faults, providing the performed fault-injection is

7AEDES MQTT broker, https://github.com/moscajs/aedes.

https://github.com/moscajs/aedes

Chapter 12. Self-Healing for IoT 230

FI

SH

 ≈

BL

 ≈

SH

 ≠

FI FI⨉SH

Figure 12.13: Expected similarity degree between the different combinations of the SUT.

enough to deviate from nominal operation, and (3) the behavior of SH is similar to that of
FI×SH, showing that the self-healing mechanisms are able to bring a system with injected
faults back into nominal behavior. These relations are depicted in Figure 12.13 (p. 230).

The experiments were done on a standard Linux laptop with Node-RED version 1.3.2, and
the modified AEDESMQTT broker was run on NodeJS version 14.15.5. A replication package
for these experiments is available (cf. Appendix B, p. 337).

Sensor Readings Issues (S1)

In this scenario (S1), we performed four experiments, and in each one, different types of fault-
injection operators were applied to the sensormessages passing through theMQTT broker (i.e.,
simulating sensor malfunctions).

A Node-RED flow, with self-healing mechanisms, was developed to deal with these issues
(SH) as depicted in Figure 12.14 (p. 231). The join and compensate nodes are configured with
a timeout of 6 seconds to have a margin of 1 second in relation to the readings’ periodicity (5
seconds).

Experiment S1E1 In this experiment no fault injection was performed. Only the baseline
system (BL) and the system with added self-healing mechanisms (SH) were considered. This
allows us to compare the behavior of BL with SH in normal operation, and creates a base of
comparison for the remaining experiments (i.e., experiments with fault-injection). This also
provides us a behavioral profile of BL when compared with SH, giving us insights on how
self-healing mechanisms’ operate with no added entropy.

We expect the SUT to remain stable during this experiment, outputting the expected alarm
levels for the sensor readings’ thresholds. Despite the expected similarity in behavior, it is
expected that SH’s alarm level output will be more stable than that of BL. This is due to the
latter not implementing any type of consensus or majority voting and instead simply using the
received values directly as a stream.

Figure 12.15 (p. 232) shows the experiment results forBL and SH. Despite the alarm output
(represented as shaded areas near the horizontal axis) being very similar for both experiment
outputs, stability is higher for SH. This can be observed by the lack of fast alarm state changes
for borderline values for SH, which occur several times for BL (e.g., around 35 to 40 seconds

Chapter 12. Self-Healing for IoT 231

Figure 12.14: Node-RED flow with self-healing mechanisms to deal with issues on sen-
sor readings (SH). This system expands upon BL by introducing self-healing
capabilities via SHEN nodes. It filters extraneous messages that are outside
the expected operating range, compensates for missing values after a certain
timeout, joins messages so that they are considered in groups of 3, consid-
ers majority of values with a minimum consensus of 2 (with a 25% difference
margin), and compensates for readings for which there is no majority with a
mean of the previous readings, besides the basic functionality already imple-
mented by BL.

into the experiment or around 415 to 420 seconds). The cause of this is likely to be BL’s lack of
consensus mechanism, given that this system instead simply considers the most recent reading
in order to determine the alarm state. When the three sensors report in quick succession, if the
values of their readings are near the alarm level thresholds, fluctuations in the alarm level are
expected (which is what happens in the examples above).

S1E1BL ∩ S1E1SH = 97.3% (12.1)

The output similarity is confirmed by the alarm level overlap percentage between these two
outputs, which is 97.3% (cf. Equation 12.1). This is also a good sanity check to confirm that the
addition of self-healing capabilities to the base system does not significantly change the alarm
output status, which means that comparisons for SH between S1E1, and further experiments,
will be meaningful in validating self-healing recovery of injected faults.

Table 12.2: Count of alarm level state transitions for S1E1 baseline (BL) and self-healing
(SH).

BL SH

Off (0) 8 4
Warn (1) 20 13
Danger (2) 11 8

Total 39 25

Chapter 12. Self-Healing for IoT 232

0

100

200

BL

SH

300

400

500
N

O
x

(p
pb

)
Alarm Level

0
1
2

0 100 200 300 400 500
time (s)

Device ID

0
1
2

Figure 12.15: NOx concentration and alarm status with and without self-healing for S1E1.

Table 12.2 (p. 231) supports the previous claim — that SH provides an improvement in
system stability in comparison to BL — due to the lower number of alarm state transitions.
Additionally, this experiment presents evidence that both BL and SH correctly implement the
expected core functionality (triggering the different alarm levels for different sensor reading
thresholds), given that the alarm level at a given point in time corresponds to the sensor read-
ings’ distribution along the thresholds (represented in the mentioned figures by the horizontal
lines).

Experiment S1E2 Considering the baseline (BL) and the self-healing (SH) systems (which
S1E1 shows to be similar in normal operation), we proceed to inject faults on both, obtaining
systems FI (corresponding to the injection of faults in BL) and FI×SH (corresponding to the
injection of faults in SH).

The fault being injected corresponds to an erroneous Device ID 0 sensor’s reading. As
a result, this sensor’s readings are altered to be stuck at the upper operating bound (1000 ppb).
This experiment simulates a fault in which a sensor malfunctions by continuously emitting
readings in its top operating bound.

We expect that this fault-injection will provoke an inconsistent output in FI, especially if
the third sensor is frequently the last to emit its reading, even if only by a slight delay. Due to
relying on a majority of at least two values to decide on the alarm level to emit, we expect that
the self-healing mechanism will be able to deal with the faults injected in FI×SH.

Figure 12.16 (p. 233) shows the experiment results for FI and FI×SH. As expected, the
faults injected (FI) disrupt the normal function of the system, resulting in constant alternation
between alarm states, spendingmost of the experiment’s time in the highest alarm level. Mean-
while, FI×SH successfully recovers from the injected faults, having a near-perfect performance
in comparison to this system’s output for S1E1.

These statements are supported by results presented in Table 12.3 (p. 233), which shows
that the usage of self-healing results similar behavior when faults are injected (FI×SH) or not

Chapter 12. Self-Healing for IoT 233

0
FI

200

400

600

800

1000
N

O
x

(p
pb

)

FIxSH

0 100 200 300 400 500
time (s)

Alarm Level

0
1
2

Device ID

0
1
2

Figure 12.16: NOx concentration and alarm status for S1E2.

Table 12.3: S1E2 overlap (%) with the base experiment S1E1.

BL SH

FI 40.0%
FI×SH 98.1%

(SH), with an overlap of 98.1%. Furthermore, FI has a significantly lower overlap percentage
of 40.0%. Table 12.4 (p. 233) also illustrate these conclusions, in which FI is much more unsta-
ble in comparison to BL, being the total number of state transitions for this experiment 148,
while there were only 39 state transitions for the base experiment. Furthermore, the number
of state transitions with self-healing has increased only marginally, going from 25 in the base
experiment (SH) to 27 in this experiment (FI×SH).

Therefore, S1E2 demonstrates that the original system cannot handle sensor stuck-at is-
sues since the behavior of FI is considerably affected, which validates that the performed fault-
injection was meaningful enough to disturb the system’s regular operation. On the other hand,
FI×SH can recover from the injected faults, having a remarkably similar behavior to SH.

Table 12.4: Alarm level state transitions for S1E2.

FI FI×SH

Off (0) 10 5
Warn (1) 68 14
Danger (2) 70 8

Total 148 27

Chapter 12. Self-Healing for IoT 234

Table 12.5: S1E3 overlap (%) with the base experiment S1E1.

BL SH

FI 76.3%
FI×SH 97.4%

Experiment S1E3 In this experiment, we injected faults in BL and SH to obtain FI and
FI×SH by multiplying 40% of the readings done by Device ID 0 sensor by a random factor
in the range [0.2, 2.2], simulating spikes in sensor readings. The factor is randomized for each
spike occurrence8.

We expect thatFImay output incorrect alarm values (in comparison toBL), especiallywhen
the altered values switch between alarm level thresholds. On the other hand, FI×SH should
be able to handle the spikes since that, even if one of the three sensors outputs a value consid-
erably different from the others, it will be discarded and the other two sensors’ values will be
considered instead — due to the usage of the replication-voter node.

0
FI

FIxSH

100

200

300

400

500

600

N
O

x
(p

pb
)

Alarm Level

0
1
2

0 100 200 300 400 500
time (s)

Device ID

0
1
2

Figure 12.17: NOx concentration and alarm status for S1E3.

Figure 12.17 (p. 234) shows the experiment results for FI and FI×SH. FI has had a good
performance in the presence of the spikes (both when increasing and decreasing the read value),
but there were still several situations in which the sensor reading spike caused the output alarm
level to differ from the expected value in BL. FI×SH has held up to our expectations, handling
almost all the injected faults and operating similarly to SH.

These statements are supported by Table 12.5 (p. 234), which shows that the self-healing
mechanisms make the system perform similarly when fault-injection is (FI×SH) and is not
applied (SH), with a near-perfect overlap of 97.4%, while FI has a lower overlap percentage of
76.3% with BL, showcasing the disruption provoked by the injected spikes.

8This fault is common for sensing devices when they are running out of battery [Ni+09].

Chapter 12. Self-Healing for IoT 235

Table 12.6: Alarm level state transitions for S1E3.

FI FI×SH

Off (0) 8 4
Warn (1) 26 13
Danger (2) 17 8

Total 51 25

Table 12.7: S1E4 overlap (%) with the base experiment S1E1.

BL SH

FI 99.8%
FI×SH 98.7%

Table 12.6 (p. 235) supports the role of the self-healing mechanisms. Despite the difference
not being as remarkable as that of the overlap percentages, it is of note to mention that FI×SH
has the exact same number of alarm level state transitions of SH while the number of state
transitions has increased for FI when compared with BL.

Despite this experiment not causing a variation as significant as that of the behavior of FI in
S1E2, wewere still able to observe amismatch between the behavior of this system between the
base case and this experiment, even if to a lesser extent. This shows that for the system under
study, the spikes faults are less concerning when compared with the stuck-at ones injected in
S1E2, i.e., spikes lead to lower deviations in operationwhen compared to stuck-at. Nevertheless,
due to the decline in the overlap percentage for FI in comparison with BL, we can conclude
that the faults injected were significant enough to affect the system’s correct functioning.

Since FI×SH behaved similarly to SH, we are able to confirm that for this experiment
the presence of self-healing capabilities are beneficial for the system’s correct operation, thus
improving its resilience.

Experiment S1E4 In this experiment, we injected faults in Device ID 0 sensor so that it
has a 20% chance of losing messages9. The system does not receive any of the lost messages, as
these are suppressed before leaving the middleware broker.

We expect that FI may report erroneous alarm values (compared to the base experiment,
S1E1), especially when the missing values are in proximity to the alarm thresholds. FI×SH
should be able to handle the injected faults by compensating the missing values by replaying
the last message in the expected time interval.

Figure 12.18 (p. 236) shows the experiment results for FI and FI×SH. FI is capable of han-
dling the loss of some readings, thus the alarm output is quite similar to BL. FI×SH is also able
to handle the loss of readings, similarly having almost the same behavior as SH.

9This fault may occur when a sensor is disconnected, has an intermittent power supply, or the network is
unstable [Ni+09].

Chapter 12. Self-Healing for IoT 236

0
FI

FIxSH

100

200

300

400

500
N

O
x

(p
pb

)
Alarm Level

0
1
2

0 100 200 300 400 500

Device ID

0
1
2

Figure 12.18: NOx concentration and alarm status for S1E4.

Table 12.8: Alarm level state transitions for S1E4.

FI FI×SH

Off (0) 8 4
Warn (1) 20 13
Danger (2) 11 8

Total 39 25

The similarity in outputs when compared with S1E1 is a direct result of the low probability
of losing one reading. Also, since the values for different sensors in the original dataset are close
to one another, even by increasing the probability of values being suppressed from one sensor
would result in FI outputting the expected alarm values for most of the experiment’s duration.

These statements are supported by Table 12.7 (p. 235), which shows that FI has a similar
behavior to BL, and that FI×SH has a similar behaviour with SH.

The previous observations are further supported by the results presented in Ta-
ble 12.8 (p. 236), which shows that the number of state transitions for both systems are identical
to those that occurred in S1E1.

S1E1BL ∩ S1E4SH = 98.4% (12.2)

This experiment did not cause a significant enough deviation from the base experiment’s
behavior for FI, which is corroborated by the high overlap percentage with BL (cf. Equa-
tion 12.2), as well as the fact that the number and type of alarm state transitions are identical to
those of S1E1 (cf. Table 12.8, p. 236). Thus, we conclude that the used dataset may not be the
best candidate for this type of fault injection. An higher deviation in operation could possibly
be observed if the fault-injection was done to more than one sensor at a time and with higher
probability of losing a message.

Chapter 12. Self-Healing for IoT 237

Timing Issues (S2)

Figure 12.19: Node-RED flow with timing-related self-healing nodes (SH). This system ex-
pands upon S1 by introducing debounce nodes which can filter out extrane-
ous messages based on the expected timing of the system’s regular messages,
besides the functionality already implemented in SH of S1.

In this scenario (S2), the Node-RED flow self-healing mechanisms used in S1was enriched
with nodes that detect and mitigate issues with timings (e.g., readings frequency issues), as de-
picted in Figure 12.19 (p. 237). The join and compensate nodes are configured with a timeout
of 6 seconds to have a margin of 1 second in relation to the readings’ periodicity (5 seconds). A
total of two experiments were conducted for S2.

Experiment S2E1 No faults are injected for this experiment. Similarly to S1E1, the purpose
of this experiment is to confirm that the system’s base functionality is correctly implemented
for both BL and SH, as well as to provide a base experimental output with which to compare
the behavior of the systems in following experiments.

We expect that the systems under observation remain stable during this experiment since
there are no injected faults, correctly outputting the respective alarm levels for the sensor read-
ings’ thresholds. Beyond the similar alarm levels over time, it is also expected that SH’s alarm
level output will be more stable than that of BL. This is due to the latter not implementing any
type of consensus or majority voting and instead simply using the received values directly as a
stream.

Figure 12.20 (p. 238) shows the experiment results for BL and SH. Beyond the expected
similarity in both systems alert levels over time, a slightly higher stability in SH is observable.
This is a direct result of the self-healing mechanisms that filter out alarm state changes for
borderline values, which occur several times for BL (e.g., around 35 to 40 seconds into the ex-
periment or around 415 to 420 seconds). The cause of this is likely to be BL’s lack of consensus
mechanism, given that theBL flow considers only themost recent reading to set the alarm state.
When the three sensors report in quick succession— if the values of their readings are near the
alarm level thresholds — this fluctuation is expected (which is what occurred in the examples
above).

Chapter 12. Self-Healing for IoT 238

0
BL

SH

100

200

300

400

500
N

O
x

(p
pb

)
Alarm Level

0
1
2

0 100 200 300 400 500
time (s)

Device ID

0
1
2

Figure 12.20: NOx concentration and alarm status for S2E1.

S2E1BL ∩ S2E1SH = 97.4% (12.3)

The output similarity is confirmed by the calculated alarm level overlap percentage be-
tween these two outputs, which is 97.4% (cf. Equation 12.3). This is also a good sanity check to
confirm that the addition of self-healing capabilities to the base system does not significantly
change the alarm status output, which means that comparisons for SH, between S2E1 and fur-
ther experiments, will be meaningful in asserting the functioning of self-healing mechanisms.

Table 12.9: Alarm level state transitions for S2E1.

BL SH

Off (0) 8 4
Warn (1) 20 13
Danger (2) 11 8

Total 39 25

Table 12.9 (p. 238) supports the previous claim that SH provides an improvement in system
stability in comparison to BL, as shown by the lower number of alarm state transitions.

S2E1 also provides evidence that both BL and SH correctly implement the expected core
functionality, i.e., triggering the different alarm levels for different sensor reading thresholds,
given that the alarm level at a given point in time corresponds to the sensor readings’ distribu-
tion along the alarm thresholds (represented by the horizontal lines in Figure 12.20, p. 238).

Experiment S2E2 In this experiment, to introduce additional noise into the system, each
message for Device ID 0 is repeated after 6 seconds, as depicted in Figure 12.21 (p. 239). Since

Chapter 12. Self-Healing for IoT 239

B C DA

B C DA A B C

6s

5s

FI / FI⨉SH

BL / SH

t

t

Figure 12.21: Marble diagram of messages for S2E2. The top diagram depicts the regular
flow of messages, while the bottom diagram shows the messages after the
fault injection done for S2E2.

the periodicity of the system’s readings in regular circumstances is of 5 seconds, the repeated
message will be outputted in proximity to the next reading.

We expect that FIwill have an output that is less stable than it was forBL due to the injected
faults. We expect this to be problematic for FI since it does not have any concept of message
timing. On the other hand, FI×SH should be able to cope with the injected faults since the
debounce nodewill filter out the additional messages that come out of the expected frequency,
thus behaving similarly to SH.

0
FI

FIxSH

100

200

300

400

500

N
O

x
(p

pb
)

Alarm Level

0
1
2

0 100 200 300 400 500

Device ID

0
1
2

Figure 12.22: NOx concentration and alarm status with self-healing for S2E2.

FI (cf. Figure 12.22, p. 239) performed significantly better than expected, despite the issues
with messages near the alarm level thresholds, i.e., repeating the previous message would cause
the system to output the previous alarm level once again until it received the followingmessage
and went back to the expected state. This may be caused by the fact that the periodicity of the
sensor readings messages is quite high and thus whenever a fault is injected, it is not in effect
for a long duration.

Chapter 12. Self-Healing for IoT 240

Table 12.10: S2E2 overlap (%) with the base experiment S2E1.

BL SH

FI 83.4%
FI×SH 95.7%

Table 12.11: Alarm level state transitions for S2E2.

FI FI×SH

Off (0) 12 4
Warn (1) 36 13
Danger (2) 25 8

Total 73 25

As expected, FI×SH was able to cope with the injected faults (cf. Figure 12.22, p. 239),
having a near-perfect behavior in comparison to SH.

Table 12.10 (p. 240) shows that SH has a similar behavior to FI×SH, with an overlap of
95.7%, and that BL has a slightly lower overlap percentage of 83.4% to FI.

Despite the high overlap percentages for FI with BL (cf. Table 12.10, p. 240), Ta-
ble 12.11 (p. 240) shows that for S2E2, FI has output nearly two times the amount of alarm
level state transitions in comparison to S2E1.

S2E2 shows that despite the introduction of faults in FI the difference shown by the overlap
percentage to BL is minimal. Despite this, FI×SH has better ability to cope with the injected
faults, operating closer to SH.

FI also performs worse that FI×SH when taking into account the number of alarm level
state transitions (cf. Table 12.11, p. 240). And, while it is not possible to conclude if this ex-
periment caused enough deviation from BL to FI by taking only in consideration the overlap
percentage, the difference in the count of alarm level state transition for FI in comparison to
BL provides evidence that the injected faults has caused issues on the baseline system which
the self-healing system is able to address.

12.3 Discussion
We showed improvements to SmartLab reliability and dependability both by detecting failures
as they are happening and recovering or maintaining the systems’ health. Node-RED does not
provide any out-of-the-box solution for dealing with failing components, nor to dynamically
change the system’s behavior during runtime, which is essential to enable self-healing. After
adding such functionalities via new nodes, users can now leverage these new capabilities. Our
first example scenario shows how it becomes possible to test and recover from a SPOF (ex-
emplified as a message broker failure). The same method could be used to deal with other
SPOFs, including failures of Node-RED itself, with a RedundancyManager node that activates

Chapter 12. Self-Healing for IoT 241

duplicated and inactive flows on a different Node-RED instance (provided one is available). The
second scenario shows how to isolate a system’s component to ensure that its misbehaviors
do not compromise the system as a whole. The last scenario shows how we can now manage
several (redundant) communication protocols as an enabler of self-healingmechanisms and the
importance of continuously asserting the actuators’ outcome.

The fault-injection experiments S1E1, S1E2, S1E3, S2E1, and S2E2 provide empirical ev-
idence that: (1) the self-healing systems (SH) do not deviate too much in behavior from the
baseline system (BL); (2) the faults injected are consequential since there is a deviation on the
baseline system in comparison to the base experiment when no fault is being injected — even
if the deviation is not significative per se; and (3) when the faults injected are consequential, the
self-healing systemswere able to recover from it, conformingwith the normal service, and thus
confirming that the self-healing mechanisms were being exercised and performing as expected.

0

20

40

60

80

100

120

140

160

BL SH SH FI FIxSH FI FIxSH FI FIxSH FI FIxSH

danger warn off

S1E1 S2E1 S1E2 S1E3 S1E4 S2E2

Figure 12.23: Count of alarm state transitions per experiment (the closer FI and FI×SH
are, respectively, to BL and SH, the better).

More concretely, by analyzing the chart on Figure 12.23 (p. 241) we can see the impact that
fault-injection has in a system without any fault-tolerance mechanisms versus a system with
self-healing capabilities. The number of times that the alarm changes state between its three
alert levels is considerably higher in all experiments, with a clear impact in the experiments
S1E2, S1E3, and S2E2, where the number of transitions was more than two times higher than
the expected number of transitions.

While the overlap percentages (cf. Figure 12.24, p. 242) of the different experiments do
not lead to a so direct conclusion for most experiments, we can see that for S1E2 performs
considerably better when self-healing mechanisms are present.

Chapter 12. Self-Healing for IoT 242

BL ∩ FI SH ∩ FIxSH

S1E3S2E2

S1E2

S1E4

100%

75%

50%

25%

0%

Figure 12.24: Comparison of the overlap of the different experiments with and without
self-healing mechanisms to the corresponding baseline (higher percentage is
better).

Additionally, in S1E4 establishes that it is paramount for the behavior of BL to be notice-
ably different when faults are being injected (FI) in comparison to the regular operating cir-
cumstances. This factor made it so that we considered this experiment inconclusive, due to
the low entropy caused in the system. Nevertheless, it showed that it is necessary to find this
stark difference in expected versus observed output for the baseline system to be sure if the
self-healing components are doing any work at all, since a naïve system would already be able
to recover from most of the injected faults.

It is also noticeable that for the created scenarios, due to the used dataset, some types of
fault-injection did not result in much instability. This is due to the fact that all three sensors
output readings with values in close to each other. As such, if one or even two sensors fail,
it is likely that a naïve system (e.g., BL) will still perform as expected, outputting the correct
alarm levels for most cases even in the presence of faults (FI). This is an indicator that further
validation should be performed with other types of datasets and systems, as well as different
types of faults.

Ensuring the dependability of software systems has been the goal of most fault-tolerance
research in the past years [ALR01]. In IoT, ensuring systems are secure, reliable, and compliant
is becoming a paramount concern due to the recent increase in safety-critical applications.
Fault-tolerance becomes more challenging due to several factors, including, but not limited to:
(1) the high heterogeneity of devices, (2) the interaction and limitations of systems deployed in
a physical world, (3) the fragmentation of the field, ranging from the unusually high number
of communication protocols to the different and competing standards, and (4) the intrinsic

Chapter 12. Self-Healing for IoT 243

dependability on hardware thatmight simply fail [Aly+19]. Moreover, in a perfect environment,
every actuator should possess a monitoring sensor capable of verifying its intended end state;
however, real-world cost efficiency might limit its availability to critical components.

The pervasiveness and complexity of IoT have contributed to the rise of visual program-
ming, in particular Node-RED, as the go-to solution. Nevertheless, as it slowly permeates
our lives, it becomes crucial to ensure proper functioning through self-verification and self-
recovery features: self-healing. Although previous work attempted to tackle runtime verifi-
cation and self-healing mechanisms to specific IoT systems, none was found to provide these
features in a visual environment. Previous work also relies heavily on new systems (e.g., rule-
based monitoring services and CEP approaches) without attempting to integrate them into the
existing ecosystem of tools and platforms.

Despite the current Node-RED limitations (cf. Chapter 5, p. 132), it was possible (up to a
certain extent) to fulfill our goals mostly by using its visual notation, as seen in § 12.2 (p. 221). It
should be noted that all implemented strategies fall into the forward error recovery category, i.e.,
“continue from an erroneous state by making selective corrections to the system state” [JZ05].
Exploration of backward error recovery techniques is harder due to the dependency of system
state checkpoints, that needs to capture a mix of device internal states, concurrent communica-
tion protocols messages, and controller state.

To further improve the self-healing capabilities of systems such as the presented SmartLab,
devices should have extra features such as diverse communication channels (e.g., Wi-Fi and
ZigBee), remote management capabilities (e.g., independent watchdogs that allow to gracefully
restore a device), and capability announcement, which would empower dynamic usage of re-
dundant devices. We observe these features are mostly absent from consumer-grade devices,
most probably due to cost efficiency.

12.4 Summary
IoT systems are perhaps one of themost significant examples of heterogeneous architectures in
existence. Different protocols, different application stacks, different integration services, and
different orchestration engines all must come together in a technological solution that allows
both organic growth from end-users, and dealing with security and privacy concerns at un-
precedented levels. The consequence is that the system is required to keep functioning at mini-
mal levels, evenwhen parts of it become non-compliant, faulty, or even under attack. Requiring
the end-user to address these challenges is unrealistic, as most of them are not developers. Even
most system integrators cannot keep up with the pace of release devices, which seldom adhere
to open standards.

We argue that an IoT system that attempts to tackle the presented challenges must be capa-
ble of self-healing. This is not a small feat, asmost of the research being conducted in integration
tools for IoT recurrently disregard failure detection and recovery. We fulfill these desiderata
with SHEN, Self-Healing Extensions for Node-RED. As this popular tool lacks built-in testing
and self-healing capabilities, we use it as a case-study for common failure and recovery scenar-
ios, and (1) suggest how to leveragemeta-programming techniques to allow self-modification of
flows via a custom plugin, (2) explore common self-healing patterns and how they can be solved

Chapter 12. Self-Healing for IoT 244

by such techniques, (3) provide them as reusable nodes for others to incorporate in their systems,
and (4) discuss which challenges remain open and which might need rethinking architectural
and design decisions.

To validate our claims, we added SHEN to the existing SmartLab, and proceed to illustrate
its behavior in different operational scenarios. We conclude that we can improve the system’s
reliability and dependability, both by being able to detect failing conditions, and reacting to
them by self-modification of defined flows. Additionally, we also proceed to carry experiments
with fault-injection to verify that the self-healing mechanism perform as expect when faults
occur.

Fault-injection becomes paramount to ensure that the fault-tolerance mechanisms em-
ployed in a system perform as they are expected in the presence of faults. By instrumenting
an MQTT broker, we enable the injection of faults at the middleware level that allows us to
observe how well the subscribers deal with such faults. In this work, fault-injection allowed
use to check if the self-healing mechanisms configured in the Node-RED system are sufficient
to deal with pre-defined, and expected, faults. The carried experiments showcase that the self-
healing extensions do, indeed, work as expected, with the injected faults causing little to none
impact on the delivery of normal service.

245

Part IV

End-User Development

246

13 | Real-time Feedback in Node-RED

13.1 Approach Overview . 246
13.2 Experiments and Results . 248
13.3 Discussion . 256
13.4 Summary . 256

As the system complexity evolves, understanding what is happening (system’s behavior) be-
comes harder. This affects most of the development tools, including visual-based one’s (cf.
Section 3.2, p. 68), reducing the ability of end-users to understand their system, thus making it
challenging to create and modify existing rules while ensuring that changes do not break the
expected behavior. While in this chapter, as well as in other parts of this thesis, the solution
under analysis is Node-RED (cf. Chapter 5, p. 132), these issues are shared across the visual
programming for IoT landscape.

To mitigate some of the issues that harden the development process in Node-RED, in this
chapter, we propose a set of enhancements to mitigate them (or, at least, reduce their impact).
We proceed to design and implement a POC (named nodered-cauldron), built on top of the
original Node-RED, which fulfills these enhancements. nodered-cauldron allows users to
check the runtime state of the system (i.e., observing input/output of a given node), use de-
bugging mechanisms like breakpoints (i.e., “pause” the incoming messages of a given node, and
understand each message that flows through it), and perform runtime modifications (i.e., inject
and change messages). To empirically assert how and how much these enhancements impact
users’ performance when building, evolving, and maintaining IoT systems, an experimental
phase followed where 20 participants had to carry out a set of tasks in the two different Node-
RED versions (original and enhanced with our POC). The overall results reveal that the added
enhancements improve users’ ability to develop IoT systems and ease the process of under-
standing how the system is behaving.

Parts of this chapter were published in the work real-time feedback in node-red for iot
development: an empirical study [Tor+20], and were partially based on the master thesis
work of Diogo Torres entitled increasing the feedback on iot development in node-
red [Tor20]. The author’s main contributions were on the development of the software, data
curation, visualization, and writing of the published versions of the work.

13.1 Approach Overview
We conceive that there is a set of key features that when added to visual programming en-
vironments improve the development of IoT systems by reducing the development time, the

Chapter 13. Real-time Feedback in Node-RED 247

number of bugs created during development, and overall system maintainability. Consider the
flow in Figure 13.1 (p. 247) as a motivational scenario of the current visual notations used in
Node-RED.

Figure 13.1: Whenever the temperature falls below 22 °C, the heating system must turn on
until the temperature reaches that value.

We modified Node-RED to augment the system’s observability and improve the feedback-
loop between the development environment and its runtime, trying to improve the users’ ability
to build, evolve, and maintain IoT systems.

nodered-cauldron focuses on addressing some identified missing features of Node-RED:
(1)Observability, by providing the ability to present the information which flows through the
nodes using different visual metaphors, (2) Runtime Modification, by allowing the injection
of messages during runtime, and (3) Exploration, by enhancing the debug capabilities through
breakpoints on each node without the need for re-deployments. With our approach, each node
presents each input’s messages; in nodes without any input, the output is presented. Thus, all
the information flowing through all nodes is observable without the need to add new ones (cf.
Figure 13.2, p. 247). Using a Switch node as example, we can observe the added features in
detail (cf. Figure 13.3, p. 248).

Figure 13.2: The flow from Figure 13.1 (p. 247) with the nodered-cauldron’s features,
namely the message plots, and extra debug options.

Leveraging the already existing communication mechanism (between the runtime and UI),
a new topic was added that allows showing the runtime data (i.e., messages between nodes) in the
UI. Using this additional communication channel, we can visualize incomingmessages through
two different plots (if the message’s payload type is a number, it displays a line plot, otherwise,
a scatter plot is displayed). These plots let the user perceive the values received or at what pace

Chapter 13. Real-time Feedback in Node-RED 248

Figure 13.3: An example with a Switch node in nodered-cauldron. On the top right,
there is aDebug Button (1) that allows to expand/collapse the messages’ plot (2)
and the Show More button (3). This Show More button allows visualizing func-
tionalities related to the messages and breakpoint system. For messages, it
shows the current message to process (5) and buttons (4) to access input and
output messages’ history, clear this history, and injecting messages in the cur-
rent node. For the breakpoint system (6), it allows pausing/starting message
processing (queuing the incoming messages) and process each message at a
time by using the step button. This step button also allows the modification of
the current message. The trash button clears the breakpoint’s queue.

they are coming. By allowing this communication to be bidirectional and applying the same
strategy, we can inject messages into the runtime to test a specific system’s behavior.

We also added extra debugging capabilities, such as breakpoints. This allows the user to
“pause” incoming messages for a given node by queuing them. The user can also step forward
onemessage at a time and change its payload. It is also possible to clear all the queuedmessages.
When the node is “unpaused”, the queued messages are released in the “same” frequency that
was received (i.e., the time between the last two messages is calculated, and this value is used
to set the pace). We further enhanced the Debug node with the same message’s visualization
capabilities of the other nodes.

13.2 Experiments and Results
Our goal is to verify if these changes impact the development process. We carried a con-
trolled experiment to compare the performance and behavior of two developer groups [SOJ18;

Chapter 13. Real-time Feedback in Node-RED 249

KMB19]. We hypothesized that these characteristics would improve the ability of users to suc-
cessfully build, evolve, and maintain IoT systems faster, easier, and with fewer errors. Specifi-
cally, we aim to answer the following study-specific research questions (SRQs):

SRQ1 Would users with increased exposure to real-time information about the running system
build and manage it faster?

SRQ2 Providing users with real-time feedback increases their ability to understand and change
existing systems?

SRQ3 Is an IoT visual programming environment able to reduce human-induced errors during
development by providing real-time feedback?

13.2.1 Setup
A set of 3 experimental tasks was defined, namely: (a) debugging, (b) improving, and (c) creat-
ing an IoT system using Node-RED; hence, development experience and basic familiarity with
IoT were required. A preliminary assessment of our procedure was made with two partici-
pants having distinct backgrounds: (1) a casual Node-RED user and (2) a user with no previous
experience in Node-RED.

We made usage of a mix of quasi-experimental with ethnographic research. The popula-
tion was split into two groups, GA and GB, with different treatments: GA used unmodified
Node-RED, and GB used our tool. As there were no guarantees of equal technical expertise
among groups, two Control Tasks (CT) were performed to provide basic familiarity with the
tool. Following these control tasks, three Experimental Tasks (ET) were given to each group,
viz. (a) debug, (b) improve, and (c) create a system from scratch. In these three tasks, GB was
provided with additional documentation regarding the available new features. All tasks were
solved in the same order, with a small-time break between them.

The study sample size was twenty participants, all of them final-year computer science
students with at least basic IoT knowledge but with no Node-RED experience. To avoid par-
ticipants’ overload and at the same time providing a reasonable time to finish all the tasks, the
duration of the experiment was set to 90 minutes, with a 25 minutes timeout per task.

All experiments were conducted in a remote environment1. The needed tools were hosted
in a private virtual server. Video call software was used to communicate and provide access to
the participant’s screen. With this procedure, it was possible to observe and take notes on the
participant’s behavior, clarify some doubts related to the tasks, and verify if a certain outcome
was correct. For both treatments we recorded: (a) the time taken to reach the solution; (b) the
number of deploymentsmade; and (c) the number of verification requests (i.e., every time the user
thought the task was finished). ForGB, the number of clicks in each new functionality was also
recorded.

A post-experimental survey was carried to assess the overall participant’s experience and
to collect improvement suggestions. For this, we resorted to five statements evaluated using a
Likert-scale, three related to existing functionalities in nodered-cauldron, and two regarding

1Due to the COVID-19 pandemic.

Chapter 13. Real-time Feedback in Node-RED 250

future improvements. We slightly adapted some questions tomatch the specificities of different
treatments.

13.2.2 Tasks
To make it possible to run the experiments with equal operating conditions, a sensor/actuator
simulator was developed (having a deterministic behavior) to provide real-time data (continu-
ous flow of messages). This simulator implements mechanisms to validate the correctness of
the experimental outcomes. The CTs were:

CT1 A preliminary task where Node-RED is introduced alongside the process of creating
a simple flow. It shows how tomanually inject messages in a flow (using the Inject node),
parse them with custom JavaScript (using the Function node), and then display them in
the sidebar (using the Debug node);

CT2 A task were data from seismometers must be used to activate an alarm, depending on
the inferred earthquake’s magnitude. This task introduced new nodes and logic (e.g., read
data from sensors, add intermediate logic, send commands to the actuators) to be used in
later tasks.

The first two ETs were both based on a smart farming scenario where a system would au-
tomatically control a strawberry plantation inside a greenhouse. A third task focused on the
development of a simple smart home system:

ET1 A debugging task with a set of rules. The system was capable of keeping the soil at a
certain moist and temperature level. For this, the user was able to control (a) a heating
system, (b) an irrigation mechanism, and (c) automatic windows. These were controlled
by a humidity/temperature sensor. These rules had some bugs related to (a) erroneous
conditions, (b) wrong commands sent to the actuators, and (c) mismatched field access;

ET2 An improvement task, where the user is responsible for adding a new feature to the
current system, by using new devices (both sensors and actuators): (a) the status of the
UV lamps should be adjusted according to weather forecasts, and (b) if the UV lamps are
on, the window should be closed;

ET3 An implementation task, where the usermust create a simple smart home system. Two
different types of rules were given: (a) the lights should turn on when there is movement
in the kitchen, and (b) every day at a given hour, the water heater and the coffee machine
should be turned on (recurrent rule).

13.2.3 Results
We now provide an analysis of the results for both the Control and Experimental Tasks. We
discarded CT1 from the analysis since it was mostly used as a sanity check to assert the correct
functioning of the functionalities introduced.

Chapter 13. Real-time Feedback in Node-RED 251

Control Task

Table 13.1: Time spent and number of deploys in control task 2 (CT2).

Grp N Mean σ Med S-W (ρ) Levene (ρ) t-test (ρ)

Ti
m
e A 10 8:30 2:00 9:09 0.69 0.54 > 0.99

B 10 8:30 2:15 8:54 0.61

D
ep

lo
ys A 10 4.00 1.25 4.00 0.55 0.75 0.87

B 10 3.90 1.37 3.50 0.16

We used CT2 to verify if there was a statistical difference between the two experimental
groups by measuring the time spent and number of deployments required, as presented in Ta-
ble 13.1 (p. 251).

We start with the Levene’s test verifying if both groups are from populations with equal vari-
ances. As the obtained ρ-value is 0.54 for time, and 0.75 for the number of deployments, we cannot
reject the null hypothesis (i.e., both groups present equal variances). A Shapiro-Wilk test verifies
if each of the groups were drawn from populations with a normal distribution. Since the resulting
ρ-value is above the significance level (time: ρ(GA) = 0.69 and ρ(GB) = 0.61; deployments:
ρ(GA) = 0.55 and ρ(GB) = 0.16), we also fail to reject the null hypothesis (i.e., both groups
present a normal distribution in the results). Ergo, we assume that both samples come from
normally distributed populations with equal variances.

We then use a Student’s t-test for assessing the following hypothesis related to time, viz.
H0: both groups needed a similar amount of time to complete the task, and H1: there exists
a significant difference in the average time for each group to complete the task. Concerning
deployments, we assume H0: both groups made a similar amount of deployments to complete
the task, and H1: there exists a difference in the average of deployments made to each group to
complete the task.

(a) Time spent. (b)Number of deploys.

Figure 13.4: Visualization of the time spent and number of deploys in control task 2 (CT2).

Chapter 13. Real-time Feedback in Node-RED 252

We observe that the time spent has a ρ-value=0.997 and the number of deployments has a
ρ-value=0.866, failing to reject H0, and thus be forced to consider that there is no statistical
difference between the two groups, as intended (cf. Figure 13.4, p. 251).

Experimental Tasks

Taking into account the hypothesis as described in the Control Tasks, we present the results of
the Experimental Tasks, together with a qualitative analysis.

Table 13.2: Time spent per experimental task (ET1–3).

Task Grp Mean σ Med t-test (ρ)

ET1 A 12:53 5:34 12:17 0.75
B 12:08 4:33 11:36

ET2 A 8:13 2:10 8:34 0.30 (0.03?)
B 6:57 3:05 5:47

ET3 A 8:34 2:32 8:12 0.47
B 7:49 1:59 8:05

(a) Time spent in ET1. (b) Time spent in ET2. (c) Time spent in ET3.

Figure 13.5: Visualization of the time spent per experimental task (ET1–3).

Time Analyzing the time spent for the three tasks and the results from the t-test (cf. Table 13.2,
p. 252), we were initially unable to reject the null hypothesis for all tasks. We started by conclud-
ing there are no relevant differences between the two groups (cf. Figure 13.5, p. 252). However,
a Grubb’s test for outliers singled out one in ET2, forcing us to discard it (cf. Figure 13.5b,
p. 252), resulting in a ρ?-value of 0.03. This allows us to conclude that the experimental group
does present a statistical difference when adding new features to an existing system concerning
time. Regarding the other tasks, we believe that theymight have not captured a sufficient degree

Chapter 13. Real-time Feedback in Node-RED 253

of difficulty/complexity to evidence substantial differences and/or the sample size was insuffi-
cient. We do consistently observe a lower mean and median for all tasks in the experimental
group.

Table 13.3: Number of deploys per experimental task (ET1–3).

Task Grp Mean σ Med t-test (ρ)

ET1 A 7.90 3.60 7.50
< 0.01

B 3.00 1.05 3.00

ET2 A 4.30 2.11 4.50 0.01
B 2.10 1.29 2.00

ET3 A 4.50 2.07 4.00 0.04
B 2.70 1.49 2.50

(a) Deploys in ET1. (b) Deploys in ET2. (c) Deploys in ET3.

Figure 13.6: Visualization number of deployments per experimental task (ET1–3).

Deployments All experimental tasks present ρ-values lower than the significance level
(0.05). This allows us to reject the null hypothesis and accept there is a significant difference
in the average number of deployments made between the groups, with the experimental per-
forming fewer attempts.

Comparing the mean and median of the number of deployments to reach the solution (cf.
Table 13.3, p. 253), there is a clear tendency for the experimental group to need fewer deploy-
ments — nearly half compared to the control group. This aligns with our initial hypothesis
since every time the user needs to add new debug nodes in the control group; they are forced
to deploy. On the other hand, the experimental group was presented with real-time feedback,
thus decreasing such need.

Verification Requests A verification request occurred every time a participant stated that
their task were completed. The statistical analysis allows us to reject the null hypothesis on

Chapter 13. Real-time Feedback in Node-RED 254

Table 13.4: Number of correctness verification requests per experimental task (ET1–3).

Task Grp Mean σ Med t-test (ρ)

ET1 A 1.50 0.53 1.50 0.33
B 1.80 0.79 2.00

ET2 A 1.50 0.53 1.50 0.05
B 1.10 0.32 1.00

ET3 A 1.80 0.92 1.50 0.04
B 1.10 0.32 1.00

both ET2 and ET3 (cf. Table 13.4, p. 254). Regarding the construction and evolution tasks,
we conclude that there is a significant difference between groups concerning their subjective
perception of task completion, as the experimental group required fewer attempts.

Behavior We observed that the experimental group, especially during ET1, changed their
debugging strategy by focusing on visualizing and understanding the messages in the system
instead of attempting to understand the underlying logic of each node. This was one of the
most notices observations since it represents a change in the participants’ behavior when ap-
proaching their tasks. This finding merits further study before any major conclusions can be
drawn.

Experimental Group Feature Usage Analysis

Figure 13.7: Cumulative number of clicks on nodered-cauldron introduced functionali-
ties.

After aggregating the results for each task (cf. Figure 13.7, p. 254), we conclude that themost
used features innodered-cauldronwere those related to the visualization of themessages, i.e.,

Chapter 13. Real-time Feedback in Node-RED 255

Table 13.5: Total number of clicks aggregated by experimental task (ET1–3).

Task Mean σ Med Min. Max.

ET1 54.60 34.36 43.00 21 130
ET2 17.50 12.64 12.50 1 35
ET3 23.10 15.38 21.00 4 61

Strongly Disagree Disagree Neither Agree Strongly Agree

1 2

5

1

3

2

3

4

2

4

4

8

7

3

3

5

3

S1

Q1

Q2

Q3

Q4

Q5

NODERED - CAULDRON

1

1

1

1

1

2

2

4

5

2

2

2

8

5

2

5

8

8

S1

Q1

Q2

Q3

Q4

Q5

NODE -RED

(a) nodered-cauldron. (b)Node-RED.

Figure 13.8: Results of the survey post-test showcasing the subjective perception of the
study participants’ over the nodered-cauldron introduced features and pos-
sible additional features.

(1) plot, (2) detailed message, and (3) history. In terms of usage by task (cf. Table 13.5, p. 255),
we observe a higher mean and median for ET1, followed by ET3 and then ET2. These results
were expected, since on ET1, participants spent more time in understanding the system, and
consequently, the messages that flow through it. In ET2, the extra features were not used as
much because the participants already understood the system and did not feel the need for
a deeper exploration. ET3 was focused on constructing a new system, which results in the
observed higher values as they attempted to understand the messages’ flow.

Post-test Survey

To evaluate the participants’ experience, we performed a post-test survey composed of six ques-
tions, one (S1) about the general satisfaction of using the solution — Node-RED vanilla and
nodered-cauldron—, and five concerning added or possible to add functionalities (Q1–Q5),
namely, the usefulness of:

Q1 showing the input’s messages on each node;

Q2 showing the plot that shows the messages;

Q3 the breakpoint system;

Q4 having typed connections between nodes;

Q5 having a highlighting mechanism of the path of a message in a flow.

Chapter 13. Real-time Feedback in Node-RED 256

Although only the experimental group (GB) used some new features, we also asked the
control group (GA) if they would like to have had such features. Interestingly, we have found a
proximity between the two groups (cf. Figure 13.8, p. 255). The highest divergence was found
in Q4 and Q5, which referred to unavailable features on both groups (i.e., these were not im-
plemented in nodered-cauldron). This can be explained considering that the experimental
group was exposed to the experience of having real-time feedback during development and
not feeling the need for these extra features. In Q3, the results were similar since, with our
tool, participants ended up not using breakpoints. We conclude that most participants seem to
want the functionalities described in each question. Finally, the results of S1 suggest that the
experimental group had a more enjoyable experiment.

13.3 Discussion
Taking into account the experimental results presented in Section 13.2.3, we now revisit our
research questions:

SRQ1. Would users with increased exposure to real-time information about the running system
build and manage it faster? Both groups spend a similar amount of time in solving the tasks,
with a statistically significant difference observed on improving systems. We also note that the
experimental group presented consistently smaller mean and median values;

SRQ2. Providing users with real-time feedback increases their ability to understand and change
existing systems? According to the number of deployments performed per task together with
the qualitative analysis, we can conclude that in a system with higher feedback, users tend to
perform fewer attempts of deployment, thus pointing that these featuresmake the system easier
to change;

SRQ3. Is an IoT visual programming environment able to reduce human-induced errors dur-
ing development by providing real-time feedback? By analyzing the number of deployments and
attempts, we see a substantial difference where users in the experimental group have less need
to deploy and more confidence in their solution (i.e., they required fewer attempts to achieve
a successful task completion). This can be especially useful in more sensible systems, where
deployments should be kept to a minimum.

Therefore, we conclude that there is significant evidence that an environment with real-
time feedback and improved debug capabilities impacts the ability to build, maintain and im-
prove IoT systems.

13.4 Summary
IoT systems and their application across application domains with different constraints and
responsibilities boosted their heterogeneity and complexity at large. The tremendous gap of
qualified personnel to design, develop and maintain these systems has pushed both industry
and academia to create new ways to develop IoT systems that abstract the system’s complexity
at different degrees. One of those approaches, already used for PLCs, was visual programming.

Chapter 13. Real-time Feedback in Node-RED 257

Among those, Node-RED appeared as one of the most common solutions to develop IoT sys-
tems.

In this chapter, we describe our efforts to overcome some Node-RED development en-
vironment drawbacks by enhancing the existing Node-RED with new features that improve
feedback during development and debugging capabilities. With the goal of asserting how such
features would impact the development of IoT systems, a POCwas developed, and an empirical
evaluation followed with 20 participants. We conclude that the added enhancements improve
the overall development process, with a significant reduction of the number of failed attempts
to deploy the systems without fulfilling its requirements. Further, the overall system develop-
ment time was lower than with the normal Node-RED.

258

14 | Conversational Assistant for IoT
Automation

14.1 Approach Overview . 259
14.2 Experiments and Results . 268
14.3 Discussion . 274
14.4 Summary . 276

As the number of devices and interactions grows, so does the management requirements (and
management complexity) of the system as a whole, as it becomes essential to understand and
modify the way they (co)operate. In the literature, this capability is typically defined as end-
user programming [Fis+04]. Once we discard trained system integrators and developers, two
common approaches emerge, low-code visual programming solutions and conversational as-
sistants [Zar18]. More complete solutions exist, such as Node-RED [Gen+17; Ray17; PC13],
but they also have several limitations and shortcomings, especially for end-users without any
relevant technical expertise (cf. Section 3.2.7, p. 87) [Sei+14]. As an example, consider a Node-
RED system orchestrating a user’s smart home with multiple devices. Even in situations where
there are only a couple of rules defined, it can be challenging to understandwhy a specific event
occurred due to the overwhelming data flow resulting from these. Further, just a small amount
of rules can already lead to a system not possible to visualize in a single screen [JEC14]. The
more rules one adds, the harder it becomes to grasp what the system can do conceptually. Part
of the reason is that these solutions are built to be imperative, not informative; current solutions
mostly lack meta-facilities that enable the user or the system to query itself.

In this chapter, we present an approach to address the problem of managing IoT systems
using a conversational approach towards shortening the existing feature gap between assistants
and visual programming. The approach is concretized in a POC named Jarvis, which was then
evaluated with a user-study.

Parts of this chapter were published in the work conversational interface for managing
non-trivial internet-of-things systems [DLF20] and subsequent work managing non-
trivial internet-of-things systemswith conversational assistants: a prototype anda
feasibility experiment [LDF21]. The chapter was partially based on the master thesis work
of André Lago entitled exploring complex event management in smart-spaces through
a conversation-based approach [Lag18]. The author’s main contributions were on the
formal analysis of the study data, data curation, visualization, and writing of the published
versions of the work.

Chapter 14. Conversational Assistant for IoT Automation 259

14.1 Approach Overview
One of the common, sometimes complementary, alternative to visual programming are con-
versational assistants (also known as voice assistants). There exist a plethora of conversational
assistants in the market, such as Google Assistant, Alexa, Siri, and Cortana (see [Mit18] and
[LQG18] for a comparison of these tools) which are capable of answering natural language
questions. Recently, these assistants have gained the ability to interact with IoT devices, with
Ammari et al. identifying IoT as the third most common use case of voice assistants [Amm+19].

Among the most common features they provide is allowing direct interaction with sens-
ing and actuating devices, which enables the end-user to talk to their light bulbs, thermostats,
sound systems, and even third-party services. The problem with these solutions is that they
are mostly composed of simple commands and queries directly to the smart devices (e.g., “is the
baby monitor on?”, “what is the temperature in the living room?”, or “turn on the coffee machine”).
These limitations mean that although these assistants do provide a comfortable interactionwith
devices, a considerable gap is easily observable regarding their capabilities on managing a sys-
tem as a whole and allowing the definition of rules for how these smart spaces operate. Even
simple rules like “close the windows every day at 8 pm” or “turn on the porch light whenever it rains”
are currently not possible unless one manually defines every single one of them as a capability
via a non-conversational mechanism (other motivational examples can be found in Chapter 5,
p. 123). Furthermore, most assistants are deliberately locked to specific vendor devices, thus
limiting the overall experience and integration.

Although current smart assistants can be beneficial and comfortable to use, they do not have
the completeness of other solutions, e.g., Node-RED.Meanwhile, visual programming solutions
are still far too technical for the common end user.

As far as we could find (cf. Section 3.2, p. 68) there is no solution that would simultaneously
provide: (1) a non-trivial management of an IoT system, (2) be comfortable and easy to use by
a non-technical audience, and (3) improve the user capability to understand how the system is
functioning. By non-trivial we mean that it should be possible to define new rules and modify
them via a conversational approach, achieving a de facto integration of multiple devices, not
just directly interacting with its basic capabilities. The comfort would be for the user not to
have to move or touch a device to get his tasks done (i.e., using voice), or edit a Node-RED
visual flow. As to understanding their system’s functioning, we mean the ability to grasp how
and why something is happening in their smart space. This last point, combined with the other
two, would ideally allow someone to ask why something happens.

14.1.1 Conversational Interaction
We propose the development of a conversational assistant — Jarvis— dedicated to the man-
agement of IoT systems and capable of defining and managing complex system rules while
providing information about the running system.

An example interaction with Jarvis by text messages on Slack can be seen in Fig-
ure 14.1 (p. 260). Jarvis provides users with several features with the aim of covering most
of the interactions a user could have with physical smart spaces. The choice of these specific

Chapter 14. Conversational Assistant for IoT Automation 260

Figure 14.1: Chat with Jarvis by Slack integration.

functionalities was based on the results of the end-user survey presented in Chapter 5 (p. 123)
together with the most common actions one can find in similar works and surveys [Bri+17],
including those identified by [Amm+19] as main drawbacks in voice assistants. Complemen-
tarily, as far as we could find, there are little to no mentions in the literature for causality and
rules queries. We have thus chosen to support the following functionalities:

Direct actions Single direct action that happens instantly, e.g., “Turn on the light” or “What
is the current temperature of the kitchen?”;

Delayed actions Single delayed action that happens after a certain time period, e.g., “Turn
on the light tomorrow at 5 pm.”;

Repeating actions Defines a rule for an action that should be performed every day, e.g.,
“Turn on the light every day at 5 pm.”;

Event-triggered actions Creates an action that is performed upon a certain event, such
as an activity of another device or a change of a device’s status, e.g., “Turn on the light when
the bedroom motion sensor is activated.”;

Causality queries Used when the user wants to know why a certain condition is true or
why a certain action took place, e.g., “Why did the light turn on?”;

Chapter 14. Conversational Assistant for IoT Automation 261

Alias actions Used for the user to create an action/event that associates to a custom
phrase, e.g., “Make an alias for ’party time’.” [system asks what to set the alias for] “Turn on
all lights.”;

Rules query Used to knowwhich rules are defined for a device (allowing themodification
of those rules), e.g., “What rules are defined for the living room light?”;

Cancel command Cancel the last user command. If that was a direct action command,
the action is undone, and, if the command was a rule command, the rule is canceled, e.g.,
“Cancel my last command.”.

Jarvis also uses contextual awareness to improve the user’s experience and make the inter-
action resemble a real human-human interaction. Contextual awareness allows Jarvis to under-
stand the meaning of a user query based on queries issued previously, which can be applied in
many scenarios:

Device specification that is used when the device specified in an action query is unclear
or ambiguous so that the user can specify the device he wants to choose.

User: “Turn on the light.”
Jarvis: “Do you mean the living room light or the bedroom light?”
User: “The bedroom light.”
Jarvis: “Sure, light turned on.”

Updating system rules which context is used to enable following-up of the Rules query
action, allowing to change the presented rules.

User: “What rules are defined for the bedroom light?”
Jarvis: “You told me to turn the bedroom light on every day at 8 AM.”
User: “Okay, change it to 7:50 AM.”
Jarvis: “Sure, rule changed.”

Causality queries which context enables the user to have a dialog to understand the pos-
sible reason why something happens (instead of a single direct answer which could be
not understood by the user). User: “Why did the toaster turn on?”
Jarvis: “You told me to turn it on at 10 AM.”
User: “Okay, change it to 9 AM.”
Jarvis: “Sure, toaster timer was changed.”

It is noticeable that in all the examples above, the second user query would be meaningless
on its own. However, it makes sense when represented along with the previous user query and
Jarvis’ first response. These examples showcase how contextual awareness can make interac-
tions with Jarvis feel more natural, which improves the user’s experience.

To ease the integration with nowadays systems and provide us with a reproducible experi-
mental environment, we integrated the interface with some existing platforms, namely: Google
Assistant [Goo20] and Slack [Sla20]. Integration with other services is also possible, and one
can interact with Jarvis both via voice and text.

Chapter 14. Conversational Assistant for IoT Automation 262

Dialogflow Jarvis Backend
& Databse

RabbitMQ
Message Queue IoT System

Gateway
User Interface

(Alexa, Slack,...)

Figure 14.2: High-level view of Jarvis architectural components.

14.1.2 Implementation Details
The Figure 14.2 (p. 262) presents the high-level software components of Jarvis. Each compo-
nent and corresponding techniques are explained in the following subsections.

Conversational Interface

To develop the conversational interface, we decided to opt for Dialogflow1 as this platform
provides built-in integration with multiple popular frontends and there exists extensive docu-
mentation for this purpose [Jan17a]. In this case, we used (1) the Slack team-communication
tool (cf. Figure 14.1, p. 260), and (2) Google Assistant, so that both text and voice interfaces
were covered. In the case of Google Assistant, the user may use any supported device paired
with their account to communicate with Jarvis, following a known query prefix such as “Hey
Google, talk to Jarvis”. Regardless of which type of interface is used, the result is converted to
strings representing the exact user query and subsequently sent to Dialogflow’s backend (thus
overcoming potential challenges due to Speech Recognition), which are then analyzed using
NLP techniques. Advancement of the existing NLP techniques made available by Dialogflow
falls out-of-the-scope of this work.

Dialogflow Backend

Upon receiving a request, Dialogflow can either produce an automatic response or send the
parsed request to a fulfillment backend. This component is thus responsible for parsing the
incoming strings into a machine understandable format (JSON). There are a few key concepts
that are leveraged in our implementation:

Entity. Things that exist in a specific IoT ecosystem can be represented by different literal
strings; for example, an entity identified by toggleable-device may be represented
by “living room light” or “kitchen light”. Additionally, entities may be represented by other
entities. Dialogflow uses the @ symbol (i.e., @device) for refering to entities, and provides
some system’s defaults;

Intent. An intent represents certain type of user interaction. For instance, an intent named
Turn on/off devicemay be represented by turn the @device on and turn the @device

off. For a request such as “turn the kitchen light on”, Dialogflowunderstands that @device
corresponds to kitchen light and provides that data to the fulfillment backend;

1Dialogflow, https://dialogflow.com/

https://dialogflow.com/

Chapter 14. Conversational Assistant for IoT Automation 263

Figure 14.3: Main entities defined in Jarvis’ Dialogflow project.

Context. Contexts allow intents to depend on previous requests, enabling the creation of
context-aware interactions. This is foundation to support queries such as “cancel that” or
“change it to 8 am”.

Multiple intents, entities, and contextswere defined in Jarvis and themain ones are illustrated
in Figure 14.3 (p. 263). Here we provide in detail one of its intents:

Usage Creates an action that is performed upon a certain event, such as an activity of another
device or a change of a device’s status.

Definition @action:action when @event:event

Example Turn the bedroom light on when the living room light turns off.

With the above definitions, this component takes requests and builds the corresponding
objects containing all actionable information to be sent to the Jarvis backend for further pro-
cessing. For that, Dialogflow generates a JSON object that contains the exact user query, but
also an identifier for the intent type, identifiers for the recognized entities, relevant contextual
metadata and default answers (if any were specified in the Dialogflow configuration UI). This
JSON is sent to the Jarvis backend via an HTTP request, to which Jarvis responds with a JSON
containing the intended response along with other possible data such as contextual metadata.

Chapter 14. Conversational Assistant for IoT Automation 264

Figure 14.4: Sequence diagram for the parsing and execution of the query turn on the light.

Jarvis Backend

For each of the intents defined in Dialogflow, this component provides an equivalent class re-
sponsible for handling that intent, cf. handler classes. Jarvis makes use of a mediator
pattern to deliver each user query to the right handler.

Each handler class provides the same methods to the mediator, the main of each being
a handle method that takes in the user query as represented by Dialogflow’s JSON object.
Similarly, it returns the result object which should be sent to Dialogflow, containing Jarvis’
response.

The handler classes are responsible for (a) parsing the request, (b) validating its request
parameters (e.g., device name or desired action), and (c) generating an appropriate response. An
overview is provided in Figure 14.4 (p. 264). Should the request contain errors, an explanatory
response is returned. When all the parameters are considered valid, but the intended device
is unclear (e.g., user wants to turn on the light; however, there is more than one light that can
be the target of the command), the generated response specifically asks the user for further
clarification in order to gain context.

Chapter 14. Conversational Assistant for IoT Automation 265

In addition to the Dialogflow’s JSON representation of the user query, the Jarvis backend
represents user commands using the command design pattern. This provides a straightforward
way to execute, cancel and undomechanisms, as well as keeping a history of performed actions,
which showcases its usefulness, especially in causality queries.

This internal representation of commandsmakes use of theWebThings API (cf. Section 2.2,
p. 38), API which documents a symbolic representation of multiple devices along with their
capabilities, which is useful for the Jarvis backend to be aware of a device’s capabilities and
features. The use of this representation enables Jarvis to know whether a specific action (e.g.,
turning something on) applies to a particular device (e.g., a light).

Interaction with IoT Devices

For the interaction with the physical IoT, we chose a simple yet functional set of technolo-
gies that would allow us to validate the functionality of the Jarvis backend. We used Rab-
bitMQ [VMw20] as the message queue system since it supports a variety of protocols (such
as AMQP, STOMP, and MQTT), allowing easy communication with devices through simple
path strings (e.g., /house/kitchen). The message queue system provided the necessary infras-
tructure for the Jarvis backend to communicate with the IoT devices — while being agnostic
of their physical location on the network. An alternative setup could require the backend to
know the IP addresses of each individual device, whichwould requiremuchmoremaintenance
if those addresses changed over time.

In order for Jarvis to know which devices exist in the system, how to communicate with
them and what capabilities they have, a Device Registry [Ram+17] was set up, and such infor-
mation was stored using a MongoDB [Mon20] document-based database. This database was
also used to store the history of user queries and executed commands, which allows the system
to provide features such as the causality queries even if it is temporarily shut down.

The direct interaction with the IoT devices was simulated using Python scripts that publish
the devices’ state changes to the message queue, as well as read instructions provided by Jarvis,
applying them to the respective devices.

In the experimental setup we used in the validation of this project, the Jarviswas deployed
in a Virtual Private Server (VPS) being easily accessed from any location.

14.1.3 Interaction Capabilities
Jarvis supports several interactions beyond the ones available on common voice assis-
tants [Amm+19], allowingmulti-stage conversations to describe or define automation scenarios
or even find and analyze the probable cause of certain events. A complete list of the supporting
queries (i.e., interactions) is given in the following paragraphs with supporting examples.

Contextual Awareness

The first example of contextual awareness happens when the user makes a query with an unclear
device. Here, Jarvis sets contextual metadata on the response set to Dialogflow. This metadata

Chapter 14. Conversational Assistant for IoT Automation 266

is then re-sent to Jarvis by Dialogflow on the following user query, which allows Jarvis to
understand interactions such as:

User: “Turn on the light.”
Jarvis: “Do you mean the bedroom light or the kitchen light?”
User: “The second one.”

Because of the contextual metadata set by Jarvis during the second response, when the user
says “The second one.”, Jarvis knows that the user is referring to the “kitchen light”, and therefore
knows that it must continue the initial query and turn on that device.

In the example above, the second user query is assigned by themediator to a specific handler
class which is able to decode the contextual metadata and generate the corresponding user
command.

Period Actions

For most intents, such as direct actions or “why did something happen?” queries, the effects are
immediate. However, period actions, events, and causality queries require a different design ap-
proach so that they can perform actions on the backendwithout the need for a request to trigger
them.

A period action is an intent that must be carried and then undone after a certain period (e.g.,
“turn on the light from 4 pm to 5 pm”). In these scenarios, the Jarvis backend generates a state
machine to differentiate between all the different action status, such as (a) nothing has executed
yet (before 4 pm), (b) only the first action was executed (after 4 pm but before 5 pm), and (c) both
have been executed (after 5 pm). We use a combination of schedulers and threads to guarantee
proper action, and abstract all these details inside the command pattern. The same strategy
applies for rules such as “turn on the light every day at 5 pm”, with the appropriate state machine
and scheduler modifications.

In these examples, the already mentioned command representation becomes useful once
again since it allows the system to manage these period actions easily. For instance, if the user
wishes to change an active rule (e.g., “turn on the light from 4 pm to 6 pm” instead of “turn on
the light from 4 pm to 5 pm”), the Jarvis backend can cancel the active command, create a new
instance with the updated rule and start it immediately. This update of an active command is
itself represented as a command, which also allows the user to revert unintentional changes to
other rules.

External Events

This state-machine mechanism is different for actions that are the result of external events
such as “turn on the kitchen light when the presence sensor is activated”. These are notably dif-
ferent because, although direct actions and period actions depend only on the internal state of
the Jarvis backend, event-bound actions are dependent on analyzing external events such as a
sensor changing its state.

To implement this functionality, we leverage a publish-subscribe approach which orches-
trates multiple unique and identifiable message queues. Each message queue is associated with

Chapter 14. Conversational Assistant for IoT Automation 267

one ormultiple devices, and it serves as a bidirectional communication layer between them and
the Jarvis backend. For instance, when Jarvis wishes to change the state of a certain device, it
publishes a message on the respective queue with a format that identifies the specific device to
change and what that change requires. It is then the responsibility of that device’s controller to
read this message and perform the change. Messages published on these queues also leverage
the Web Things API.

When it comes to events, communication happens in the reverse order. Each time a sen-
sor’s value changes (e.g., a motion sensor is triggered or the temperature changes), that device’s
controller publishes a descriptive message on the message queue. The Jarvis backend then uses
observers that read the message and decide whether any active command is responsible for
handling it. If so, it calls a method on that command that handles the message.

This means that a user query such as “turn on the kitchen light when the presence sensor is
activated” generates a command that knows it must handle changes to the presence sensor,
such that when this happens, this command is called by the observer, causing the light to be
changed accordingly.

Causality Queries

These relate to the user askingwhy something happened (e.g., “why did the light turn on?”). These
are a unique feature of Jarvis which are useful for users not only because they allow them to
remember what are the operation rules of their system, but also because they allow users to
easily change how their system works with nothing but their voice.

To implement them, we augment each command such that each command can determine
whether it can cause a specific condition to be true. For instance, the command “turn on the
light when the presence sensor is activated” knows that a possible consequence of its operation is
the condition “light is turned on”.

With this augmentation, when the user queries Jarvis on why some condition happened,
Jarvis can iterate through the log of recently executed commands and return the latest one
that could have caused the queried condition, providing an informative answer (e.g., “because
you asked me to turn it on at 3:56 pm”).

However, there might exist multiple rules that may have caused the condition to be true,
in which case it is not enough to blame the latest logged command. In order to expand this
functionality to provide more accurate answers, we considered three different approaches:

Return the immediate possible cause This is the currently implemented approach. It
is likely to provide an accurate answer in the sense that the response is always the latest
action that caused the queried event. Nevertheless, this does not necessarily imply that it
is the most relevant cause (e.g., if multiple commands could cause the queried condition,
the first of these was the one that first led to that condition).

Return the first possible cause In some scenarios, multiple rules might have been in-
volved in the change of the current system state, and theymight either be part of a “causal
chain”, or simply overlap in their outcome. It is debatable whether the most relevant ac-
tion in the chain would be the most immediate, the root event, or anything in between.

Chapter 14. Conversational Assistant for IoT Automation 268

However, in the case of overlapping, it seems that the first event to have occurred (in the
sense of sequence) might be the most reasonable to blame— since it is the one that tran-
sited the state — and which was latter “reinforced” by other causes (e.g., if multiple rules
could have caused the light to turn on, only the first of which caused the light’s state to
be changed). Hence, this first rule might be the most relevant answer in some cases.

Use relevance heuristic A relevance heuristic could provide the benefits of both of the
previous approaches, perhaps even providing more probable causes. In a situation where
multiple rules or events could have caused the queried condition, using a heuristic could
provide an answer that was more useful to the user. For instance, if both a period event
and an event action could have caused the condition, a heuristic could consider the event
to be a more relevant condition since it is caused by external interactions rather than the
well-defined mechanisms defined by the user.

Another non-trivial scenario is where the explanation is due to a chain of interconnected
rules. Here, it seems that one can (a) reply with the complete chain of events, (b) reply with the
latest possible cause, or (c) engage in a conversation through which the user can explore the full
chain of events as they deem adequate (e.g., “tell me more about things that are triggered by
rain”). In this work, we opted to use the earliest possible cause for the first scenario, and the
latest for the second; more complex alternatives can be found in [Bra+17; Aga+18].

14.2 Experiments and Results
To understand how Jarvis compares to other systems, we established a baseline based on (1) a
visual programming language, and (2) a conversational interface. Node-REDwas picked among
the available visual programming solution. Google Assistantwas selected for the conversational
interface due to its natural responses2. There are plenty of ways users can interact with it:
(a) the standaloneGoogle apps, (b) built-in integrationwith Android andChromeOS, or (c) with
standalone hardware such as the Google Home. We compare to this baseline according to two
criteria: (1) the number of different features, and (2) their user experience in terms of easiness
of usage and intuitiveness. For the first, we created a list of simulated scenarios to assess the
ability to manage IoT systems. We then performed a feasibility experiment with users to assess
the second criteria.

14.2.1 Simulated Scenarios
A total of 10 simulated tasks was performed with the goal of comparing Jarvis with two solu-
tions available in the market: Node-RED and Google Assistant. The Table 14.1 (p. 269) sum-
marizes the comparison of our prototype to the chosen baseline.

The (1) one-time action refers to a direct trigger of a device, which is possible in both voice
assistants and through the Node-RED interface. The (2) one-time action with unclear device
refers to actions like “turn on the light”withwhich Jarvis asks the user to clarify which device he

2Thework by López et al. [LQG18] compares Alexa, Google Assistant, Siri, and others, and claim that although
“Siri was the most correct device (...) Google Assistant was the one with the most natural responses”.

Chapter 14. Conversational Assistant for IoT Automation 269

Table 14.1: Comparison of the different interaction scenarios supported by Jarvis, Google
Assistant and Node-RED.

Jarvis Google
Assistant Node-RED

One-time action • • •
One-time action w/unclear device • · ·
Delayed action • · •
Period action • · •
Daily repeating action • · •
Daily repeating period action • · •
Cancel last command • · ·
Event rule • · ·
Rules defined for device • · ·
Causality query • · ·

means based through responses such as “do you mean the bedroom or living room light?”. Queries
such as (3) delayed action, (4) period action, (5) daily repeating action and (6) daily repeating period
action are possible to carry using the Jarvis assistant and with the Node-RED solution. The
query (7) cancel the last command refers to the ability to undo the last action or rule creation by
explicitly saying that, andwhile that is possible to be carried on Jarvis, neither Google Assistant
nor Node-RED support this behavior.

In the case of an (8) event rule, the system must support the dynamical creation of trigger-
action rules based on an event (e.g., the trigger of a motion sensor or when a button is clicked),
which is possible using Jarvis, but in Node-RED requires manual changes to the programmed
flows. Query (9) rules defined for device refers to the user performing queries that require intro-
spection, such as “what rules are defined for the bedroom light?”, which Jarvis is capable of, but
this capability is not available in Google Assistant. In Node-RED, this can be accomplished up
to a certain point by visual inspection of the flows, though it has several limitations3. Concern-
ing (10) causality query, the solution should provide a reasonable cause for a given event, which
is only possible in Jarvis.

It is observable that our prototype provides several features that are not present in either the
Google Assistant or Node-RED. Both of these products do a lot more than these features. How-
ever, regarding managing smart systems, the advantage of Jarvis is evident, especially when
compared to the Google Assistant given that the only type of feature it supports are one-time
direct actions [Amm+19]. Our second conclusion is that it is possible to bring some features
currently available in visual programming environments to a conversational interface; the con-
verse (how to bring conversational features to Node-RED), eludes us.

It is essential to mention that both Node-RED and Google Assistant are systems with
broader goals than just automating the management of IoT systems. Node-RED is capable of

3As an example of such limitation is that if more than one device is connected to the samemessage queue it can
be considerably difficult to understand which device produced a particular outcome and thus hard to understand
if a rule was trigger due to a specific device event.

Chapter 14. Conversational Assistant for IoT Automation 270

Living Room
Light System Controller
Motion Sensor

Bedroom
Light System Controller

Figure 14.5: Visualization of the base space model used in the scenarios use for the feasi-
bility experiment.

managing complex rules that connect multiple different systems. For instance, it allows users
to send an automated email any time a tweet with a certain hashtag is published. The Google
Assistant is also capable of many other features, such as listening tomusic or telling users about
their upcoming flight reservations. Jarvis does not aim to provide any of these features, being
tailored to IoT scope.

The comparison between these services and Jarvis on the limited scope of managing an IoT
smart space ismeant as a reinforcement of the value added by Jarvis in this limited scope, rather
than downplaying the overall value and potential of the two systems used as comparisons.

14.2.2 Feasibility Experiment
In order to gain insight into how end users responded to a conversational approach, we per-
formed a feasibility experimentwith 17 participants. Our sample includes 14 participantswith-
out formal technological skills, with ages ranging from 18 to 51. The remaining 3 participants
were students enrolled in the Masters in Informatics Engineering. We made sure that (a) all
participants were familiar with the necessary technologies, such as basic usage of smartphones
and the Internet, and (b) that even non-native English participants had adequate speaking and
understanding skills, given that the prototype of Jarvis was implemented in the English lan-
guage.

Methodology

Each participant was given 5 tasks to be completed using the same scenario with the help of
Jarvis, using Google Assistant as the system interface. The scenario consisted of a smart home
with a living room light, a bedroom light and a living room motion sensor, as depicted in Fig-
ure 14.5 (p. 270):

Task 0 (T0) Control task, Turn on the living room light;

Chapter 14. Conversational Assistant for IoT Automation 271

Task 1 (T1) Turn the living room light on in 5 minutes;

Task 2 (T2) Turn the living room light on when the motion sensor triggers;

Task 3 (T3) Check the current rules defined for the bedroom light, and then make it turn on
every day at 10 pm;

Task 4 (T4) Find out the why the bedroom light turned on. Ask Jarvis why it happened and
decide whether the answer was explanatory.

The only instructions given to participants were that they should talk to the assistant (using
the mobile phone version) in a way that feels the most natural to them to complete the task at
hand. Besides the tasks, participants were also given the list of IoT devices available in the
simulated smart house that they would be attempting to manage through.

Variable Identification

For each of the tasks, we collected (1) whether the participant was able to complete it, (2) the
time to complete them, and (3) the number of unsuccessful queries. This count was made sepa-
rately for (a) queries that were not understood by the assistant’s speech recognition capabilities
(e.g., microphone malfunction, background noise), (b) queries where the user missed the inten-
tion or made a syntactic/semantic error (e.g., “turn up the lighting”), and (c) valid queries that a
human could interpret, but that Jarvis was unable to.

Subjective Perception

After completing the tasks, we introduced a non-conversational alternative (Node-RED), ex-
plaining how all tasks could have been performed using that tool. We inquired the participants
whether they perceived any advantages of Jarvis over such a tool and whether they would pre-
fer Jarvis over non-conversational tools. Finally, the participants were asked if they had any
suggestions to improve Jarvis and the way it handles system management.

Results

Table 14.2: Experimental results (task completion rate, task time and the number of incor-
rect queries), including average and standard deviation.

Time (s) IQ (G.A.) IQ (User) IQ (Jarvis) IQ (Total)

Task Done(%) x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

T0 94% 6.41 1.12 0.24 0.56 0.12 0.33 0.24 0.56 0.59 0.87
T1 94% 7.35 1.46 0.24 0.44 0.25 0.50 0.24 0.56 0.53 0.72
T2 88% 9.94 1.20 0.35 0.70 0.35 0.61 0.53 0.8 1.24 1.15
T3 100% 19.71 1.96 0.24 0.56 0.24 0.44 0.47 0.62 0.94 0.83
T4 94% 8.65 2.32 0.29 0.47 0.29 0.59 0.12 0.33 0.71 0.85

Chapter 14. Conversational Assistant for IoT Automation 272

Table 14.2 compiles the results observed during the study, each row representing a task
given to the participant. Each column means:

Task Identification of the task (T0—T4);

Done Percentage of participants that completed the task successfully;

Time Time in seconds that participants took to complete the task;

IQ (G.A.) Number of occurrences of queries that were incorrect due to the Google Assis-
tant (G.A.) not properly recognizing the user’s speech;

IQ (User) Number of occurrences of queries that were incorrect due to the user not speak-
ing a valid query;

IQ (Jarvis) Number of occurrences of queries that were incorrect due to Jarvis not rec-
ognizing a valid query;

IQ (Total) Total count of invalid queries, i.e., sum of IQ (G.A.), IQ (User) and IQ (Jarvis).

The collected results allow us to discuss how well Jarvis behaves when dealing with end-
user voice entered commands. Further, it allows us to understandwhat is the origin of problems
when commands are not understood by the approach (i.e., either G.A., User, or Jarvis).

14.2.3 Results Analysis
The complexity of the queries increases from T0 to T3 since the queries require more words
or interactions. This is reflected by the corresponding increase in task completion time, as
seen in Figure 14.6a (p. 273). Some of the incorrect queries result from incorrect understand-
ing at the (voice) assistant level, which means the speech recognition failed to translate what
the participants said correctly. Although this does not have implications on the evaluation of
Jarvis, it does indicate that this category of systems might be harder to use due if they are not
multilingual.

Directly comparing the time needed to complete a task towhatwould be needed to perform
it in a visual programming solution such as Node-RED is meaningless; either the task is not
defined, and that would require orders of magnitude longer than what we observe here, or
the task is defined and the times will be obviously similar. Similarly, we also observe a few
instances of incorrect queries due to grammar mistakes or semantically meaningless, cf. IQ
(User), and therefore did not match the sample queries defined in Dialogflow. Nevertheless,
there were grammatically incorrect user queries such as “turn on lights” but which still carries
enough information to understand what the user’s intent is.

We consider as a more serious issue the number of valid sentences that were considered
incorrect queries by Jarvis, cf. IQ (Jarvis), as it can be seen in Figure 14.6b (p. 273). These could
have been caused by either a mispronunciation of a device’s name or a sentence structure that
is unrecognizable by the Dialogflow configuration. This possibly represents the most severe
threat to our proposal, to which we will later dedicate some thoughts on how to mitigate it.

Chapter 14. Conversational Assistant for IoT Automation 273

T0 T1 T2 T3 T4
Task ID

Ti
m

e
(s

)

25

20

15

10

5

0

Page 1

(a) Participant’s task completion time per task.

Task ID
N

um
be

r o
f I

Q
s

0

2

4

6

8

10

12

14

16

18

20

22

T0 T1 T2 T3 T4

Jarvis G. Assistant User

(b)Number of IQs per task and their origin.

Figure 14.6: Overview of the performance of Jarvis, taking into account the task comple-
tion time and number of Incorrect Queries (IQs) of the solution.

Nonetheless, the success rate of all tasks is considerably high (always higher than 88%), which
provides evidence that the system might be intuitive enough to be used without previous in-
struction or formation. These points were reflected by the participants’ subjective perception,
where they claimed Jarvis to be easy to use, intuitive, and comfortable; ultimately, these would
be the deciding factors for end-users to prefer Jarvis over a non-conversational interface.

An additional observation was stated by some users pertaining Jarvis’ answers, particu-
larly those regarding causality queries (T4), where they claimed that if the provided response
were too long, it would become harder to understand it due to the sheer increase of conveyed
information. A possible solution for this problem would be to use a hybrid interface that pro-
vides both visual and audio interactions. However, there could be other approaches, such as an
interactive dialogue that shortens the sentences.

In terms of subjective perception, when participants were inquired about their preference
on visual programming solutions and the used voice interface, Jarvis, all of them pointed to
conversational assistants as their preference, mostly due to its “ease of use”, “commodity” and
“accessibility”. The most often referred downside was the issues with voice recognition (“mar-
gin of error that comes with voice recognition”). The participants mentioned that the main
drawback of visual programming tools is the need to understand more technicalities on how
the devices communicate and which actions (sensing/actuating) they can perform (“knowledge
of how the hardware works”), and referred as the main advantage the large number of integra-
tions that visual tools typically provide which lack in most conversational ones.

Chapter 14. Conversational Assistant for IoT Automation 274

14.2.4 Threats to Validity
Empirical methods seem to be one of the most appropriate techniques for assessing our ap-
proach (as it involves the analysis of human-computer interaction), but it is not without liabil-
ities that might limit the extent to which we can assess our goals. We identify the following
threats:

Natural Language Capabilities where queries like “enable the lights” might neither be
common nor semantically correct, but it still carries enough information so that a hu-
man would understand its intention. The same happens with device identification, such
as when the user says turn on the bedroom lights, and the query fails due to the usage of the
plural form. During our study, we observed many valid queries that did not work due to
them not being covered by the Dialogflow configuration. This can be further addressed
by creating a more extensive list of entities4, and by training the DialogFlow model with
more combinations of those entities;

Coverage error which refers to themismatch between the target population and the frame
population. In this scenario, our target population was (non-technical) end-users, while
the frame population were all users who volunteered to participate;

Sampling errors are also possible, given that our sample is a small subset of the target
population. Repeating the experience would necessarily cover a different sample popu-
lation, and likely attain different results.

We attempt to mitigate these threats by (1) using state-of-art language understanding ser-
vices, and (2) gather as many participants as possible to remove any bias in sample size and
background; however, we acknowledge that experiment with different language understand-
ing services and with a broader population would improve this work validity.

14.3 Discussion
By making a feature comparison, we can observe that Jarvis can implement many features that
current conversational assistants lack, while simultaneously being more user-friendly than the
available alternatives to IoT management (such as visual programming approaches). Overall
Jarvis, or a similar solution, can ease and assist the process of configuring and managing IoT
systems, significantly when the system in question increases in complexity, hindering the ca-
pability of end-users of understanding what is happening or which event lead to a specific
outcome (and, possibly, correct the behavior). As more than one person in a typical household
might use these systems, it becomes useful to understand behaviors that perhaps were defined
by other members and to edit defined behaviors on-the-fly without needing to re-program the
system traditionally.

4The basic definition of an entity is that of a list of possible values, and thus, for more coverage, it should
contain several ways in which certain words can be expressed.

Chapter 14. Conversational Assistant for IoT Automation 275

Although the number of functionalities that Jarvis provides and given the feasibility of
such an approach for IoT configuration and management, we identify the following research
directions that would improve the solution (or any similar approach):

Engaging in longer but fragmented conversations thatwould allowusers to digest in-
formation at their own pace. This could be particularly useful when providing causality
explanations since the user could iteratively explore more about the queried cause only
if they wish to do so;

Support competing interactions as these can create contradictions and/or repetitions
in the system. As the smart home system increases in complexity, originating by the in-
crease of connected and interacting IoT devices (human-to-device and device-to-device)
and the number of interacting people within the household, it becomes harder to avoid
and mitigate overlapping rules or competing interactions. Adding specific capabilities to
deal with more complex scenarios with multiple users and multiple interacting devices
might reduce the complexity of dealing with such scenarios;

Support for priorities and roles as the number of individuals and parties that interact
with the system increases, overriding rules can be introduced that might lead to both
unintended consequences, and pose security and/or safety risk. Researching on how the
system can identify which type of actions a user can request, as well as distinguishing
between those that in tandem might lead to unforeseen consequences, does not seem
trivial;

Exploring different causality-finding algorithms as these might provide more in-
sightful answers. As presented, the current prototype always determines as the cause
of an event the latest possible action that could have caused it; however, we believe that
exploring alternatives such as heuristics that change the approach depending on the type
of logged events might provide more useful answers to users;

Understanding implicit causality relations between different events. For instance, if
there is a light sensor close to a light, Jarvis turning on that light could trigger a change
on that sensor, which the current prototype of Jarviswould not understand as correlated
events. If Jarvis were to have a more semantic understanding of the system, it could
perceive events like these as being related, which could further improve its answers to
causality queries;

Supporting addition or removal of devices to the system. Jarvis currently uses an al-
ready configured database of devices to understand the system it is managing. Adding
the capability to add or remove devices to the system would make Jarvis even more use-
ful, particularly in a scenario where it would be used by end-users in their own spaces.

Boolean operators support in user queries. For example, when defining event rules, it
would be useful to usemultiple conditionswith Boolean (“and”/“or”) operators. An exam-
ple of this feature would be the query “Turn on the bedroom light if the motion sensor is

Chapter 14. Conversational Assistant for IoT Automation 276

activated, and it is after 9 pm”, where both conditions would have to be true to the action
to be executed;

Privacy assurance most solutions, including Jarvis itself, depend on cloud-based NLP
solutions to understand the user intents, which raises several concerns such as if the
devices are always on (always listening), what is the history stored by the service providers
(conversational logs) and how the data is managed (e.g., third-party access) [Amm+19].

Being IoT one of the most common targets of conversational assistants commands, it be-
comes crucial to improve the user interactionwith the devices by voice, mostly because existing
solutions are limited, with the most only supporting direct actions [Amm+19].

14.4 Summary
In this chapter, we presented a conversational interface prototype able to carry several, and
different, management tasks currently not supported by voice assistants, with capabilities that
include: (1) delayed, periodic, and repeating actions, enabling users to perform queries such as
“turn on the light in 5 minutes” and “turn on the light every day at 8 am”; (2) the usage of con-
textual awareness for more natural conversations, allowing interactions that last for multiple
sentences and provide a more intuitive conversation, e.g., “what rules do I have defined for the
living room light?”; (3) event management that allows orchestration of multiples devices that
might not necessarily know that each other exists, e.g., “turn on the light when the motion sensor
is activated”; and (4) causality queries, to improve the users’ understanding on how the current
system operates, e.g., “why did the light turn on?”.

Causality queries, specifically, are of great relevance, given that they are not supported by
either conversational or visual tools. These queries provide an advance in the level of conver-
sational engagement with automated systems, therefore facilitating the management of smart
spaces.

We conducted feasibility experiments with participants that were asked to perform specific
tasks with our system. The overall high success rate shows the feasibility of our approach
since the solution is intuitive enough to be used by people without significant technological
knowledge. It also shows that most challenges lie in the natural language capabilities of the
system, as it is hard to predict for any user queries that have the same intrinsic meaning. We
thus conclude that incorporating recent NLP advances (that were beyond the scope of this
work) would have a high impact in terms of making the systemmore flexible to the many ways
(correct or incorrect) that users articulate the same intentions.

Some of these improvements could even be easily made by implementing adjustments to
the configuration of the Dialogflow tool. As mentioned, user intents are defined in the tool via
sample queries. Therefore, merely diversifying the set of sample queries for each user intent,
which could already be done by analyzing the incorrect queries from our controlled experi-
ments, could provide significant improvements to the system.

All the experiment participants were using Jarvis for the first time when we ran the ex-
periment. As happens with many other kinds of products, each user’s experience could benefit

Chapter 14. Conversational Assistant for IoT Automation 277

from them getting to know the tool and getting more familiar with its features and capabilities.
In other words, it is possible that repeated use of Jarvis would increase the user’s familiarity
and therefore reduce the occurrence of incorrect queries even further.

278

15 | Conclusions

15.1 Research Questions . 278
15.2 Hypothesis Revisited . 281
15.3 Thesis Validation . 282
15.4 Main Outcomes . 283
15.5 Future Work . 285
15.6 Epilogue . 287

The ubiquitous connectivity and computing vision is a close reality primarily due towidespread
connectivity-enabled computing devices in everyday things, known as the Internet-of-Things.

However, developing robust IoT systems pushes state of the art and practice of both soft-
ware and hardware engineers. These systems’ inherent nature and characteristics and the as-
sociated challenges have been associated with a new software crisis like the one of circa 1968.

While this thesis does not attempt to create a silver bullet for IoT development, nor to pro-
vide a guidebook on how to avoid a crisis, we attempt to give insights on how to improve the
current systems design, development, and evolution, towards building dependable IoT systems.

With this work, we contribute to the field of Software Engineering, specifically to the ap-
plication domain of IoT, with (1) a pattern language for dependable IoT systems composed by
a total of 34 patterns, along with corresponding proof of concept implementation of some of
those as extensions for Node-RED, (2) novel approaches for dynamically allocating computing
tasks in IoT networks to improve these systems’ reliability, and (3) a set of experiments on how
to improve — in terms of understanding and observability — the end-user interaction with
such systems. A mix of validation approaches was used for different parts of this thesis accord-
ing to which approach was most suitable for the hypothesis in question. As a direct or indirect
result of this research, we have authored 29 papers for peer-reviewed venues (conferences and
journals), as listed in Appendix A (p. 321).

15.1 Research Questions
Although IoT have been around in the last few years [Kev09], developing these ever-expanding
systems [Tan18] is without challenges. Some have designed these challenges as the entryway
for the next Software Crisis [Fit12]. Even if no crisis is imminent, there is a large consensus
on the existing issues of the lifecycle of IoT systems [Al-+16; TM17; Smi17; Buj+18; Aly+19;
MM21], and the recurrent reports of incidents and other problems resulting from their misop-
eration [ZA19; Neu20; Lan20a].

Chapter 15. Conclusions 279

This work was driven by five main research questions directly related to our hypothesis
with these issues inmind. We present our answer to each one of these questions in the following
paragraphs.

RQ1 What are the unique characteristics of IoT systems that make them complex, and how
does such complexity impact the end-user ability to configure their dependable systems?

As with every piece of software, in IoT systems, there are two kinds of complexity: es-
sential and accidental [Bro86]. Regarding essential complexity, IoT, as a result of a merge of
knowledge and practices of different fields, inherits most of the problems and limitations of
the merged fields. Although the extensive list of essential complexity sources, we name a few
that were most relevant to this work: (1) large-scale, (2) heterogeneity, (3) highly-dynamic net-
works, (4) end-user-centric, (5) real-world blending (cf. Section 2.1, p. 21). Regarding acci-
dental complexity, different vendors and manufacturers have been rushing products to market
(i.e., time-to-market) while mostly disregarding best practices or standards, leading to an ever-
growing technological fragmentation in which vendor-silos flourish. In addition, the recurrent
cloud-only design has been one of the main drivers of dependability issues (e.g., systems stop
working without Internet connectivity).

An IoT end-user has a few solutions that allow the (end-)user to configure the system to
their needs, i.e., end-user development environments (cf. Section 3.2, p. 68). These solutions
take several forms, including, but not limited to, visual programming, vendor-specific apps,
or even voice assistants. These solutions leverage abstractions as a way to simplify the devel-
opment process, but by doing so (1) limit what the end-user can do (or force the end-user to
bypass the used abstractions [Spo04]) and (2) are arduous to use and understand as the com-
plexity of the system increases. By posing such limitations, it becomes impracticable for the
end-user to configure their systems as the number of devices, users, and automation required
increases (cf. Chapter 5, p. 123). Thus, making such systems dependable appears as an even
more significant barrier, given that end-users do not have the means to configure fallback or
recovery automations — even if they wish to — using the available abstractions.

RQ2 Are there recurrent problems concerning the lifecycle of IoT systems, and what are the
prevalent solutions that address them?

Guaranteeing the dependability of an IoT system is a multi-domain research venture that
encompasses concerns from both hardware and software perspectives. Regarding this thesis,
the focus is given on software and the recurrent problems in IoT systems which solutions can
be defined and implemented in software (but faults can originate either in software or hardware
components). We have identified a total of 34 patterns (problem-solution pairs) detailing recur-
ring problems in IoT systems. Of those patterns, seven are considered supporting patterns (cf.
Chapter 7, p. 151), since they address recurring problems on the design and evolution of those
systems; 13 focus on problems of detecting errors on IoT systems during their operation (cf.
Chapter 8, p. 159); and 14 present solutions to common situations on IoT system operation that
either require the system to recover or, at least, to maintain its health (cf. Chapter 9, p. 171).

When the error detection patterns are combined with recovery and maintenance of health
patterns in a system, it can behave autonomically, viz. self-heal, without (or with minimal)
human intervention (cf. Chapter 6, p. 144).

Chapter 15. Conclusions 280

RQ3 What can be improved concerning the IoT systems’ dependability?

Several techniques and methodologies have been used to improve the systems’ dependabil-
ity (e.g., fault-tolerance). While several of these strategies have already been adopted in the IoT
domain by practitioners (RQ1), the adoption ofmechanisms to distribute system load and avoid
single-point-of-failure in IoT scope (as they are used in cloud computing) is only exploratory
and with several pending issues. While there are several reasons for the early stages of devel-
opment of such mechanisms, among them the high heterogeneity of the devices and runtimes,
in this work, we provided evidence for the feasibility of having such mechanisms in the IoT
scope.

By providing the system with the mechanisms dynamically allocate computational tasks
(i.e., serverless) while adapting to runtime constraints, we allow the system to respond to fail-
ures gracefully, e.g., in case of Internet connection disruption, any service that can be run using
local computational resourceswill continue to operatewithminimal disruption (cf. Chapter 10,
p. 184). Complementary, as the number of devices increases, it becomes challenging to manage
all the available resources, automatically adapting to runtime conditions. In cloud computing,
this challenge was addressed by using orchestrators, which, being aware of the available re-
sources, can allocate the computational tasks across resources. In this work, we introduced
the notion of orchestrator on top of a visual programming environment, i.e., Node-RED (cf.
Chapter 11, p. 199). The orchestrator enables users to program their visual flows; however, the
computation of nodes of a given flow can happen in any available computational resource, thus
reducing the reliance on Node-RED. This has the side-effect of improving the system depend-
ability as computational tasks can run in any device with the required capabilities.

RQ4 How can themechanisms identified in RQ2 be leveraged by the end-users of IoT systems?

Allowing end-users to configure their IoT systems has been a widely researched subject,
with both academia and industry proposing different end-user development solutions, lever-
aging some abstraction to reduce the complexity of developing these systems (cf. Section 3.2,
p. 68). Allowing an end-user to use the patterns detailed in Part II (p. 144) implies that the
solution they are using (1) has the built-in mechanisms to support one or more strategies pre-
sented as solutions in the patterns and (2) leverages the same category of abstraction that the
development solution already uses.

We picked Node-RED, a reference visual end-user development solution for IoT devel-
opment, as a base solution for implementing the patterns. We successfully implemented 17
Node-RED nodes, corresponding to one or more strategies detailed as possible solutions on
19 different patterns (cf. Chapter 12, p. 218), thus showcasing the feasibility of adding self-
healing behaviors to existing development solutions. Additional efforts were carried towards
improved runtime adaptation, reducing the always-on system’s dependency on Node-RED,
modifying Node-RED to allocate computing tasks among available resources during runtime.
Although the implementation of these strategies forced us to modify the internal functioning
of Node-RED, its configuration by the end-user can still be done entirely in a visual fashion (cf.
Chapter 11, p. 199).

Chapter 15. Conclusions 281

RQ5 How can the end-user’s ability to manage the IoT systems’ lifecycle be improved without
requiring specific expertise nor hindering the systems’ dependability?

Aware of Node-RED’s limitations in terms of runtime feedback to the end-user and ease of
understanding the configured system at any given point in time, we enriched the visual abstrac-
tions used to improve the inspection of the system. The validation of these modifications with
participants showcases an overall improvement of the development process with (1) a signifi-
cant reduction of the number of failed attempts to deploy the systems and (2) overall reduction
of development time (cf. Chapter 13, p. 246). Lastly, we attempt to improve the users’ ability
to understand the configured automations at a given time (i.e., allowing to adjust the system
as needed) with voice assistants, showcasing the feasibility of using such system to query the
system and, in some cases, understand the causality between events (cf. Chapter 14, p. 258).

15.2 Hypothesis Revisited
The aforementioned Research Questions (RQs) drove this research intending to address our
main hypothesis:

H: It is possible to enrich IoT-focused end-user development environments in such a way
that the resulting systems have a higher dependability degree, with the lowest impact on
the know-how of the (end-)users.

The answers to those same research questions allow us to deconstruct and discuss how we
have addressed the hypothesis:

It is possible to enrich IoT-focused end-user development environments. . . As IoT
systems are mostly used by non-technical users, being these users the ones that configure
the systems to their own needs (e.g., creating automations, adding or removing devices
and defining preferences), we picked end-user development solutions as the target of our
research. Concretely, we base most of our work on Node-RED, a visual programming
solution. Some considerations about the use of voice assistants are also contemplated.

. . . in such a way that the resulting systems have a higher dependability degree . . .
By identifying recurrent problems of IoT systems, and proceeding to carry a system-
atization of available knowledge on how to tackle such problems, we defined a set of
34 patterns that can be used to improve the dependability of IoT systems. A subset of
those patterns can be used in tandem to make the system self-heal. We also asserted the
feasibility of using Node-RED as a visual orchestrator of the system, allowing end-users
to leverage the computational resources available in a visual fashion and with autonomic
adaptation to runtime conditions.

. . .with the lowest impact on the know-how of the (end-)users. Using Node-RED as
a reference end-user development solution, we successfully implemented a subset of the
patterns as extensions to Node-RED that allow users to configure self-healing behaviors,
thus enabling them to enhance their systems’ dependability. We also made someminimal

Chapter 15. Conclusions 282

enhancements to the visual notations of Node-RED, improving the end-users capability
to understand the running system, and asserted the feasibility of using voice assistants as
a supporting tool to visual approaches to improve the users’ understanding of the in-place
automations and the causality of certain events.

The experimental counterparts of the contributions that sustain the presented statements
provide empirical supporting evidence for the plausibility of the hypothesis. In assembling,
the contributions can be used to improve the dependability of IoT systems while leveraging
abstractions that do not compromise the (end-)user capability to configure, use, and evolve
them.

15.3 Thesis Validation
As stated in the Chapter 5 (p. 132), a mixture of different validation methodologies was used
in this work, given their suitability to the different contributions presented. As a consequence,
different parts of this work present threats to the validity of specific contributions.

Nonetheless, we acknowledge a set of transversal concerns to this work that we consider
as common threats to its validity, which are discussed in the following paragraphs.

One of the base concepts explored in this thesis is the one of autonomic computing, stating
that IoT systems should have autonomic proprieties, viz. self-*. However, only self-healing
was explored among the four key self-* proprieties. To have autonomic systems, the four
proprieties– self-healing, self-configuration, self-optimization, and self-protection–mustwork
in tandem. As an example, it is required for the end-user to configure their system proprieties
and devices in a mostly manual form, i.e., the system does not self-configure. Even if all the
proprieties were fulfilled, some parts of the system could require manual intervention during
its lifecycle, e.g., replace a faulty hardware part.

Regarding the contributions around patterns, several arguments in favor of the implicit
validation of patterns were presented, as the result of the systematization of widely available
knowledge, describing solutions that are recurrently used for certain problems, given a set of
constraints (i.e., forces). However, we can only ensure that these patterns present a solution to
which some developers converged but are not necessarily the best solution for a given problem,
given its intricacies. We thrived on finding widely reported solutions (some of them based on
strategieswith empirical validation) and tried to encompass asmany forces as they are crucial in
IoT context. However, it is difficult to ensure that all possible drivers were correctly identified.

The system’s adaptation should be transparent to the end-user, but there are parts of the
proposed approach that require manual — and technical — intervention. Enabling the under-
lying end-user development solution (i.e., Node-RED) to dynamically allocate computational
tasks to available resources (i.e., devices) depends on having a custom firmware running on
these devices compatible with our orchestration mechanism. Having this requires to (1) have
devices compatible with our firmware and (2) manually flash the devices with such firmware1.

1Flashing a custom firmware can be as direct as using the existing device update features, ormore troublesome,
depending on using the device’s hardware debug ports (e.g., serial port).

Chapter 15. Conclusions 283

As addressing this shortcoming as a whole falls out of the scope of this thesis, we ensure that by
having a set of devices running our firmware, they can use this work’s proposal out-of-the-box.

Different contributions were made targeting known shortcomings or issues with IoT sys-
tems, especially regarding these systems’ dependability. Nonetheless, one of the goals of this
thesis was to empower the end-user to leverage these contributions in their own systems to
make themmore dependable. While we focused on bringing these contributions toNode-RED,
which is a visual programming solution, to reduce the users’ need for specific technical exper-
tise, we are aware that there is a knowledge barrier to developing systems with Node-RED that
can limit our target audience. To mitigate this threat, we made improvements to Node-RED
itself and further enhanced the interaction with IoT systems using voice assistants.

Finally, combining the contributions done in improvingNode-RED (including the auxiliary
use of voice assistants) with remaining contributions in IoT systems’ dependability were only
partially done. We consider this a threat as there can be limitations in the integration of the
different contributions. We attempt to mitigate this by using Node-RED as the foundation to
the remaining contributions; however, we did not implement (and, thus, validate) the solution
as a whole.

15.4 Main Outcomes
This thesis contributes to the field of software engineering, and, in particular, to what regards
Internet-of-Things systems development. We identify as the primary outcomes of this work
(1) a comprehensive review of state of the art, (2) a pattern language for dependable IoT sys-
tems, (3) approaches for improving the dependability of IoT systems by both distribution of
computing tasks and the addition of self-healing behaviors, and (4) enhancements to both vi-
sual programming solutions and voice assistants to improve the end-user ability to understand
and evolve the running system. The contributions resulted in a total of 12 publications, and
their abstracts are presented in Appendix A (p. 321). Most of these contributions have replica-
tion packages available, being presented in Appendix B (p. 337).

15.4.1 Review of the State of the Art
In this work, we revisited and summarized the core concepts behind IoT as well as other
key concepts such as fault-tolerance in software systems and autonomic computing in Chap-
ter 2 (p. 21). In Chapter 3 (p. 64), we proceed to identifywhat are the key challenges that IoT face
during most of the parts of its lifecycle, i.e., the challenges and open issues on the design, con-
struction, and test of these systems. Additionally, given that both dependability (fault-tolerance)
and autonomic computing are fundamental concepts of our approach, we delve into the liter-
ature of these fields, giving a focus on works within IoT scope. We acknowledge and discuss
the recurrent problems for developing IoT systems, asked in the first part of RQ1, recogniz-
ing that there are key proprieties of IoT systems that make them not trivial to develop. The
systematization of the knowledge resulting from this review, along with elicitation of pending
challenges and open issues, lead to three conference publications [DFF18; Dia+18; Sil+21].

Chapter 15. Conclusions 284

15.4.2 End-User Survey
Aswe consider end-users one of themain target audiences of this work, we consider it essential
to understand how the end-users use their IoT systems, i.e., smart homes. In Chapter 5 (p. 123)
we present a study of a collection of 177 automation rules provided by end-users, given a smart
home. This gave us solid information about how end-users use their systems, how they wish
to automate them, and the granularity and complexity of such automations. We also found
that there was an inherent intent of some users to define failsafe behaviors in their systems,
showcasing both the lack of trust of 100% correct operation of the IoT systems and efforts to
previse damage to their homes and wellbeing. A preliminary analysis of this survey resulted in
one publication [Soa+21].

15.4.3 Patterns and Pattern Language
Having sufficient experience and knowledge about IoT systems and their nature, including
the common architectures, tools, and practices, we noticed that there was a lack of the best
practices to ensure the dependability of these systems leading us to RQ2. Given that fault-
tolerance and reliability practices are common to both software and hardware engineering,
we proceed to systematize this knowledge from an IoT perspective, given the IoT particular
proprieties (i.e., forces). This resulted in a total of 34 patterns, which corresponded to 3 different
publications [Ram+17; DFS19; Dia+20a].

15.4.4 Autonomic and Dependable IoT
The human unmanageability of IoT systems has led researchers to identify IoT as the prime
example of a system that would favor the application of autonomic computing. Allowing a
system to self-adapt depends on the system implementation itself and the provided features,
leading to RQ3. As an example, for a system to be capable of distributing tasks among available
resources, it must be capable of decomposing the programs in computing tasks and orchestrat-
ing the system as needed (during runtime), taking into account capabilities and constraints. As
a base work on this research venue, we study the possibility of dynamically allocating com-
putational tasks using by defining these tasks as lambda functions (serverless), which could be
allocated to different resources, both on local network or cloud, depending on runtime con-
straints. Given this groundwork, we move to bring such capabilities to Node-RED, allowing
the visual flows to be decomposed into computational tasks that could be dynamically allocated
to available edge devices. Finally, in other to allow the configuration of self-healing behaviors
using the visual flows of Node-RED, we proceed to implement a total of 17 Node-RED nodes,
which correspond to a subset of the patterns part of the self-healing pattern language. These
contributions resulted in 4 publications [PDS18; Dia+20b; Sil+20; DRF21].

15.4.5 End-User Development
Empowering end-users to develop systems more tailored to their needs while ensuring the
underlying system dependability depends on proper development tools and interfaces, leading

Chapter 15. Conclusions 285

us to RQ4. Aware of the limitations of both available visual programming solutions and voice
assistants for developing IoT systems, in Chapter 13 (p. 246) we improved Node-RED with
new visual aids and controls that provide both visual feedback for the end-user and visual
debuggingmechanisms. Additionally, in Chapter 14 (p. 258) we study the use of voice assistants
as a supporting tool for IoT development, introducing voice features that allow the end-user to
understand the causality of certain events as well as what is the system in-place rules at a given
time (allowing for fine-tuning them). These contributions resulted in a total of 2 conference
publications [Tor+20; DLF20], and one journal article [LDF21].

15.5 Future Work
While the contributions presented as part of this thesis attempt to advance the current body of
knowledge regarding software engineering and its application on Internet-of-Things systems,
they also present several shortcomings, identify open issues in the state-of-the-art, and open
new research directions. We present a few of these closely related to the work pursued in the
following paragraphs.

Concerning the contributions to the patterns’ literature (cf. Part II, p. 144), and their ap-
plicability in the IoT domain, we recognize that it would be valuable to assert their adoption
and relevance in the community by distributing a survey among IoT practitioners and devel-
opers. This methodology has already been used in other research fields — e.g., cloud comput-
ing [SFC21] — to empirically study the relevance of certain patterns.

Regarding the contributions to dynamically distributing and orchestrating computing tasks
in IoT systems (cf. Chapter 10, p. 184, and Chapter 11, p. 199), we see that this work did not
address several open issues. While we followed a greedy assignment process, this can have
several shortcomings as the system complexity grows (e.g., increasing number and heterogene-
ity of devices, especially with different memory constraints), and even become unsuitable (e.g.,
not being able to satisfy the system constraints); thus optimization techniques such as the ones
proposed by Skarlat et al. [Ska+17] could improve the current approach. Similarly, while ex-
ploration vs. exploitation techniques were primarily explored, their suitability for large-scale
systems was not further researched. Lastly, while the system keeps re-orchestrating as changes
happen (e.g., devices go offline/online), constantly changing the system allocating reduces its
overall availability, thus the question remains on how to keep the system balanced in terms of
distribution (reducing the load in each device) while minimizing the set of changes (improving
availability).

While the firmware that runs on edge devices was a requirement for carrying out this re-
search (cf. Chapter 11, p. 199) allowing to allocate computational tasks on demand, there was
little to no focus on improving the firmware itself. In this scope, we observe several possible
improvements that can be donewhich can improvememory consumption and reduce the delay
— i.e., time from receiving to execute a task— resulting from a re-orchestration. This includes
the use of alternatives beyond MicroPython, including RTOS or WebAssembly [ZB21].

Regarding the application of autonomic computing in IoT, and, more specifically, self-
healing, to improve the system dependability, there is a considerable amount of patterns (as
described in Chapter 9, p. 171) that were not implemented, thus are only supported by existing

Chapter 15. Conclusions 286

literature. We recognize that most of these patterns would benefit from a reference implemen-
tation (e.g., as Node-RED nodes). Focusing on SHEN, future work includes (1) the extension
of the SHEN palette with more runtime verification and self-healing mechanisms, (2) dealing
with concurrent inputs that can lead to unexpected states (e.g., the system decides to turn on
the lights, and the user manually turns them off), which may result in false assertions by the
runtime verification mechanisms, (3) study what are the reasonable operational states that the
system should converge to in the case of failure (e.g., if the system has to decide between shut-
ting down the smoke alarm or the surveillance system, which one should take prevalence?), and
(4) case studies over various degrees of systems complexity and in different contexts and scales.
We also only consider reactive behaviors as part of this work— trying tomitigate errors as they
occur — but the predictive mechanism can play a crucial role (cf. Predictive Device Mon-
itor), including the usage of machine learning and other artificial intelligence mechanisms to
understand system operational patterns.

We also consider that to fulfill the view of autonomic computing supporting and articu-
lating with other self-* aspects is crucial; this includes self-protection, self-optimization, and self-
configuration [GC03]. As an example, we acknowledge that auto-discovery and configuration
of new devices in the system can improve the system’s dependability, e.g., a new mobile device
can be used as a redundant sensing node while it is connected to the system network.

Lastly, while the end-user interaction with the IoT system is one of the aspects that most
impacts the usage and value of these systems to the end-user (human-in-the-loop), it is also one
of the aspects most disregarded by the practitioners — as it is confirmed by the fragmentation
of IoT solutions and vertical silos created by their controlling applications (cf. Section 3.2, p. 68).
We recognize that the IoT development environments can be improved (while we focused on
Node-RED, the issues identified are shared among several IoT development solutions), bringing
concepts common to the development solutions targeting other kinds of systems (e.g., linters,
static analyzers, and types system)2. Further, while visual notations had a notorious focus dur-
ing this work, we have to ponder that other interaction mechanisms — including voice-based
ones—can have an important role either as a standalone development tool or as a development
supporting tool.

Considering the contributions of this work as a whole, we identify the following some
pending — and mostly unaddressed — questions that can guide future research:

• How to put together all the different contributions into an all-in-one solution for IoT
development? What is the scalability of such a solution, and does it indeed perform better
than existing solutions?

• How to make the proposed solution more transparent to the end-user? This is a concern
since that there are parts of the current approach that require some technical knowledge
(e.g., flash a given device with modified firmware);

• How to automatically suggest and implement modifications to the running system to
improve the system’s overall dependability? Should the end-user have any role in this
process or be transparent?

2Node-RED version 2.0 introduced some of these features [OLe20].

Chapter 15. Conclusions 287

• As the system evolves, new dependability threats can appear. How can the system con-
tinuously check for changes and assert if those changes constitute a threat, automatically
identifying and addressing them (or informing the end-user about them)?

A cross-cutting question that remains is on whether the end-user should be able to per-
formmodifications to the system that compromise its dependability or be limited by design? If
so, to which degree should the system limit these modifications or recommend not performing
them? As these systems embrace autonomic principles, we acknowledge that a balance between
autonomic behaviors and manual adjustments is required and should be further studied.

15.6 Epilogue
As the scope, complexity, and pervasiveness of computer-based and controlled systems continue to
increase dramatically [Pul01], Internet-of-Things appears as the prime example of such. With the
promise of improving the overall quality-of-life and reshaping industry (viz. Industry 4.0), IoT
is here to stay, even with its shortcomings and lingering issues, permeating through building,
cities, manufacturing floors, and, even, human bodies (e.g., wearables, pacemakers and other
implants3). While the dependability of these systems is crucial (i.e., in some cases categorized
as safety-critical), today IoT systems are still far behind the best practices that have been used
in other kinds of systems for long (e.g., aerospace industry [Tor00]).

During the last four years, I have putmy best efforts into understandingwhat has been done
in this regard, deep-diving into the software (and hardware) state-of-the-art, searching for both
open issues and old solutions for new problems. My research endeavors lead me as far as the
first computers, telephony, and the creation of the Internet. Among the realizations of such
endeavor, I took note of a few non-technical ones: (1) we, as a research community, on several
occasions, fail to learn from the past, and keep reinventing the wheel; (2) the constant thrive for
novelty foments the reuse of old ideas under different taxonomy, even without new contribu-
tions per se; and (3) different research fields converge to similar solutions, but collaborations
(or cross-mentions) are scarce.

With this work, we attempted to mitigate these symptoms as well as we could. Instead of
using only simulators and emulators to validate our ideas and contributions, we devoted time
to physical build a laboratory with do-it-yourself devices, gathering knowledge about both the
software and hardware concerning their functioning, limitations, and performance, carried
several experimentswith different radio4 andwired protocols for data exchange and reverse en-
gineered closed-source devices to understand its inner works. We expanded our literature re-
search well beyond software engineering, reading about electronics and others while attempt-
ing to debunk re-branded concepts or dubious taxonomies. These endeavors did not add value
to the thesis per se but allowed to have a better understanding ofwhat are the concrete problems
with IoT, and what contributions could be made to advance the current state-of-the-art of the

3As an example consider the CE approved Bluetooth-enabled biventricular implantable cardiac defibrillator
(ICD) [Abb19].

4Including the successful reception of Slow-Scan Television (SSTV) images from the International Space Sta-
tion (ISS) on the occasion of the 20 years of amateur radio operation on the ISS (December 24-31, 2020).

Chapter 15. Conclusions 288

software that runs these systems which could improve their dependability while leveraging the
wide-range of already available knowledge (i.e., standing on the shoulders of giants).

Nevertheless, in practical terms, to have a thesis, concrete contributions must be made,
which, in academia, typically correspond to publications. But where to publish? Do we strive
for quantity or quality? Looking back and pondering, in the first years, the quantity was vital,
with quality being a minimum requirement but not the main driver (at the bare minimum
only CORE C 5 conference venues were considered). In the last few years, there was a shift to
strive for quality (CORE A/A*), and with it came the rejections. Some of those rejections were
indeed right and fair, and most of the time contained helpful feedback for our work. But, on
other occasions, it was not. The key here is to keep improving, keep trying, and, eventually, get
published.

At last, this is my thesis. An (extensive) summary of more than four years of research that
encompassed so many other contributions that are not in the scope of this document (cf. Ap-
pendix A, p. 321). Completing a Ph.D. is an arduous task. Neither all ideas are good ideas, nor
do all contributions have value. Making science, and understanding what makes for a good hy-
pothesis and how to validate one properly, is not trivial. This is my best attempt, and to those
who are reading this, either as inspiration or as state-of-the-art, I share some Internet wisdom6:
“A good dissertation is a done dissertation. A great dissertation is a published dissertation. A perfect
dissertation is neither.” �

5Computing Research and Education Association of Australasia (CORE) conference ranking, available at http:
//portal.core.edu.au/conf-ranks/.

6Original author unknown, shared on The Ph.D. Lab blog by Kristin Werner, https://www.thephdlab.com/.

http://portal.core.edu.au/conf-ranks/
http://portal.core.edu.au/conf-ranks/
https://www.thephdlab.com/

289

References
[AA19] Mehmet S. Aktas andMerve Astekin. “Provenance aware runtime verification of things for self-healing

Internet of Things applications”. In: Concurrency Computation 31.3 (2019), pp. 1–9 (see pp. 10, 55, 120,
121).

[AB19] "Topplab AB". Noodl Reference Documentation. [Online; accessed 2019]. "Topplab AB", 2019 (see p. 76).

[Aba19] Fardin Abad. “Safety and Security of Cyber-physical Systems”. PhD thesis. University of Illinois, 2019
(see p. 178).

[Abb19] Abbott Media. Abbott Introduces Next-Generation Heart RhythmManagement Devices in Europe, Featur-
ing State-of-the-Art Patient App and Bluetooth Connectivity. 2019 (see p. 287).

[Abd+17] Fardin Abdi et al. “Application and system-level software fault tolerance through full system restarts”.
In: 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS). IEEE. 2017,
pp. 197–206 (see p. 178).

[ACN10] S. Alam, M. M. R. Chowdhury, and J. Noll. “SenaaS: An event-driven sensor virtualization approach
for Internet of Things cloud”. In: 2010 IEEE International Conference on Networked Embedded Systems
for Enterprise Applications. Nov. 2010, pp. 1–6 (see p. 41).

[Ada+98] Michael Adams et al. “Fault-tolerant telecommunication system patterns”. In: The Patterns Handbook:
Techniques, Strategies, and Applications, Cambridge University Press, New York (1998), pp. 189–202 (see
pp. 166, 179).

[Ade+17] Ferran Adelantado et al. “Understanding the Limits of LoRaWAN”. In: IEEE Communications Magazine
55.9 (2017), pp. 34–40. arXiv: 1607.08011 (see p. 32).

[Adj+15] Cedric Adjih et al. “FIT IoT-LAB: A large scale open experimental IoT testbed”. In: IEEE 2nd World
Forum on Internet of Things. IEEE. IEEE, 2015, pp. 459–464 (see p. 98).

[ADT13] Arjun P. Athreya, Bruce DeBruhl, and Patrick Tague. “Designing for self-configuration and self-
adaptation in the Internet of Things”. In: Proceedings of the 9th IEEE International Conference on Col-
laborative Computing: Networking, Applications and Worksharing, COLLABORATECOM 2013 (2013),
pp. 585–592 (see pp. 53, 120, 121).

[Ady+04] Atul Adya et al. “Architecture and Techniques for Diagnosing Faults in IEEE 802.11 Infrastructure
Networks”. In: Proceedings of the 10th Annual International Conference on Mobile Computing and Net-
working. MobiCom ’04. New York, NY, USA: Association for Computing Machinery, 2004, pp. 30–44
(see p. 163).

[Aga+18] Ioannis Agadakos et al. “Butterfly Effect: Causality from Chaos in the IoT”. In: International Workshop
on Security and Privacy for the Internet-of-Things. Apr. 2018 (see p. 268).

[Agu+19] Ademar Aguiar et al. “Live Software Development: Tightening the Feedback Loops”. In: Proceedings of
the Conference Companion of the 3rd International Conference on Art, Science, and Engineering of Pro-
gramming. Programming ’19. Genova, Italy: ACM, 2019, 22:1–22:6 (see pp. 61, 95, 333).

[AH15a] Qazi Mamoon Ashraf and Mohamed Hadi Habaebi. “Autonomic schemes for threat mitigation in In-
ternet of Things”. In: Journal of Network and Computer Applications 49 (2015), pp. 112–127 (see p. 119).

[AH15b] Qazi Mamoon Ashraf and Mohamed Hadi Habaebi. “Introducing autonomy in internet of things”. In:
14th International Conference on Applied Computer and Applied Computational Science (ACACOS’15).
2015 (see pp. 120, 137).

https://arxiv.org/abs/1607.08011

References 290

[Ahm+16] Abbas Ahmad et al. “Model-Based Testing as a Service for IoT Platforms”. In: Leveraging Applica-
tions of Formal Methods, Verification and Validation: Discussion, Dissemination, Applications: 7th Interna-
tional Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part II. Ed. by
Tiziana Margaria and Bernhard Steffen. Cham: Springer International Publishing, 2016, pp. 727–742
(see p. 100).

[Ahm+21] Mohammad M Ahmadpanah et al. “SandTrap: Securing JavaScript-driven Trigger-Action Platforms”.
In: USENIX Security Symposium (USENIX Security 2021). 2021 (see p. 90).

[AIS77] C Alexander, S Ishikawa, and M Silverstein. A Pattern Language. Oxford University Press, 1977 (see
pp. 8, 57, 144).

[AK14] M. Abomhara and G. M. Køien. “Security and privacy in the Internet of Things: Current status and
open issues”. In: 2014 International Conference on Privacy and Security in Mobile Systems (PRISMS).
IEEE, May 2014, pp. 1–8 (see p. 107).

[Aks+18] H. Aksu et al. “Advertising in the IoT Era: Vision and Challenges”. In: IEEE Communications Magazine
56.11 (Nov. 2018), pp. 138–144 (see p. 25).

[Aky+02] I.F. Akyildiz et al. “Wireless sensor networks: a survey”. In: Computer Networks 38.4 (2002), pp. 393–
422 (see pp. 29, 36, 37).

[Al-+15] Ala Al-fuqaha et al. “Internet of Things : A Survey on Enabling”. In: IEEE Communications Surveys
Tutorials 17.4 (2015), pp. 2347–2376 (see p. 35).

[Al-+16] S. A. Al-Qaseemi et al. “IoT architecture challenges and issues: Lack of standardization”. In: 2016 Future
Technologies Conference (FTC). Dec. 2016, pp. 731–738 (see p. 278).

[Al-+17] S. Al-Sarawi et al. “Internet of Things (IoT) communication protocols: Review”. In: 2017 8th Interna-
tional Conference on Information Technology (ICIT). May 2017, pp. 685–690 (see p. 37).

[Al-+18] Alauddin Al-Omary et al. “Survey of hardware-based security support for IoT/CPS systems”. In: KnE
Engineering (2018), pp. 52–70 (see p. 165).

[All20] "Connectivity Standards Alliance (formerly Zigbee Alliance)".Matter (formerly Project CHIP). [Online;
accessed 2021]. 2020 (see pp. 35, 37).

[ALR01] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. “Fundamental Concepts of Dependability”.
In: Technical Report Seriesuniversity of Newcastle Upon Tyne Computing Science 1145.010028 (2001),
pp. 7–12 (see pp. 9, 46, 48, 49, 62, 242).

[Aly+19] M. Aly et al. “Is Fragmentation a Threat to the Success of the Internet of Things?” In: IEEE Internet of
Things Journal 6.1 (Feb. 2019), pp. 472–487 (see pp. 136, 137, 243, 278).

[Ama+19] Diogo Amaral et al. “Live Software Development Environment for Java using Virtual Reality”. In: Pro-
ceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering
— Volume 1: ENASE. INSTICC. SciTePress, 2019, pp. 37–46 (see p. 333).

[Ama+20] Diogo Amaral et al. “Live Software Development Environment using Virtual Reality: a Prototype and
Experiment”. In: Communications in Computer and Information Science 1172 (2020) (see p. 331).

[Amm+19] Tawfiq Ammari et al. “Music, Search, and IoT: How People (Really) Use Voice Assistants”. In: ACM
Transactions in Computer-Human Interaction 26.3 (Apr. 2019) (see pp. 84, 85, 123, 124, 130, 131, 259,
260, 265, 269, 276).

[Amo+12] Mehdi Amoui et al. “Achieving Dynamic Adaptation via Management and Interpretation of Runtime
Models”. In: Journal of Systems and Software 85.12 (Dec. 2012), pp. 2720–2737 (see p. 61).

[Ams+12] Marcel van Amstel et al. Automation in Warehouse Development. Springer, London, 2012, pp. 45–58 (see
p. 59).

[Anc+18] Davide Ancona et al. “Towards runtime monitoring of node.js and its application to the internet of
things”. In: Electronic Proceedings in Theoretical Computer Science, EPTCS. Vol. 264. 2018, pp. 27–42
(see p. 92).

References 291

[And+14] J. G. Andrews et al. “What Will 5G Be?” In: IEEE Journal on Selected Areas in Communications 32.6 (June
2014), pp. 1065–1082 (see p. 25).

[And+19] Pilar Andrés-Maldonado et al. “NB-IoTM2MCommunications in 5GCellular Networks”. PhD thesis.
Universidad de Granada, 2019 (see p. 33).

[And+21] RossanaM.C. Andrade et al. “Multifaceted infrastructure for self-adaptive IoT systems”. In: Information
and Software Technology 132.December 2020 (2021), p. 106505 (see pp. 14, 137).

[And11] Marc Andreessen. “Why software is eating the world”. In:Wall Street Journal 20.2011 (2011), p. C2 (see
p. 29).

[Ang15] Rafael Angarita. “Responsible objects: Towards self-healing internet of things applications”. In: Pro-
ceedings - IEEE International Conference on Autonomic Computing, ICAC 2015 (2015), pp. 307–312 (see
pp. 10, 120, 121, 137).

[Ant+17] Manos Antonakakis et al. “Understanding the mirai botnet”. In: 26th USENIX Security Symposium
(USENIX Security 17). 2017, pp. 1093–1110 (see p. 107).

[AOK19] Liz Allen, Alison O’Connell, and Veronique Kiermer. “How can we ensure visibility and diversity
in research contributions? How the Contributor Role Taxonomy (CRediT) is helping the shift from
authorship to contributorship”. In: Learned Publishing 32.1 (2019), pp. 71–74. eprint: https : / /
onlinelibrary.wiley.com/doi/pdf/10.1002/leap.1210 (see p. 19).

[Ard19a] "ArduBlock". Ardublock: A Graphical Programming Language for Arduino. [Online; accessed 2019]. "Ar-
duBlock", 2019 (see p. 75).

[Ard19b] "Arduino". Arduino. [Online; accessed 2019]. "Arduino Open Source Hardware", 2019 (see pp. 27, 70).

[AS17] Massimo Alioto and Mohsen Shahghasemi. “The Internet of Things on its edge: Trends toward its
tipping point”. In: IEEE Consumer Electronics Magazine 7.1 (2017), pp. 77–87 (see p. 30).

[ASD16] Fahed Alkhabbas, Romina Spalazzese, and Paul Davidsson. “IoT-based Systems of Systems”. In: Pro-
ceedings of the 2nd edition of Swedish Workshop on the Engineering of Systems of Systems (SWESOS 2016)
(2016) (see pp. 9, 22).

[ASD17] F. Alkhabbas, R. Spalazzese, and P. Davidsson. “Architecting Emergent Configurations in the Internet
of Things”. In: 2017 IEEE International Conference on Software Architecture (ICSA). Apr. 2017, pp. 221–
224 (see p. 73).

[Aus+18] Jonas Austerjost et al. “Introducing a virtual assistant to the lab: A voice user interface for the intuitive
control of laboratory instruments”. In: SLAS TECHNOLOGY: Translating Life Sciences Innovation 23.5
(2018), pp. 476–482 (see p. 84).

[Avi+04] Algirdas Avižienis et al. “Basic concepts and taxonomy of dependable and secure computing”. In: IEEE
Transactions on Dependable and Secure Computing 1.1 (2004), pp. 11–33 (see pp. 9, 46–51, 173, 176).

[Avn19] Avnet, Inc. Don’t ignore analog — it’s the secret sauce of IoT. 2019 (see p. 3).

[AWS21] AWS. Architecture Best Practices for IoT. [Online; accessed 2021]. 2021 (see p. 43).

[Axe07] Jan Axelson. Serial Port Complete: The Developer’s Guide. Lakeview Research LLC, 2007 (see p. 157).

[Azu21] Azure. Azure IoT reference architecture. [Online; accessed 2021]. 2021 (see p. 43).

[Bai+11] Xiaoying Bai et al. “Cloud testing tools”. In: Service Oriented System Engineering (SOSE), 2011 IEEE 6th
International Symposium on. IEEE. IEEE, 2011, pp. 1–12 (see p. 97).

[Baj17] M. Bajer. “Building an IoTDataHubwith Elasticsearch, Logstash andKibana”. In: 2017 5th International
Conference on Future Internet of Things and Cloud Workshops (FiCloudW). Aug. 2017, pp. 63–68 (see
p. 91).

[BBF09] Gordon Blair, Nelly Bencomo, and Robert France. “Models@run.time”. In:Computer 42.10 (Oct. 2009),
pp. 22–27 (see p. 61).

https://onlinelibrary.wiley.com/doi/pdf/10.1002/leap.1210
https://onlinelibrary.wiley.com/doi/pdf/10.1002/leap.1210

References 292

[BBS18] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. “If this then what?: Controlling flows in IoT apps”.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. ACM.
2018, pp. 1102–1119 (see p. 77).

[BC13] Sourangsu Banerji and Rahul Singha Chowdhury. “Wi-Fi & WiMAX: A Comparative Study”. In: arXiv
preprint arXiv:1302.2247 (2013) (see p. 33).

[BC15] Ranjit Bawa and Rick Clarck. Software-defined everything. Tech. rep. Deloitte Consulting LLP, 2015 (see
pp. 3, 29).

[BCC18] Nayeon Bak, ByeongMoChang, andKwanghoonChoi. “Smart Block: AVisual Programming Environ-
ment for SmartThings”. In: Proceedings - International Computer Software and Applications Conference.
Vol. 2. 2018, pp. 32–37 (see p. 199).

[BD04] Marat Boshernitsan and Michael Sean Downes. Visual programming languages: A survey. Tech. rep.
December. University of California, Berkeley, 2004 (see p. 74).

[BD16] Rajkumar Buyya and Amir Vahid Dastjerdi. Internet of Things: Principles and Paradigms. Elsevier, 2016
(see pp. 4, 22–25, 41, 42, 103–106, 117).

[BE15] B. Bagula and Zenville Erasmus. “Iot emulation with cooja”. In: ICTP-IoT Workshop. 2015 (see p. 99).

[Bec+19] Christian Becker et al. “Pervasive computingmiddleware: current trends and emerging challenges”. In:
CCF Transactions on Pervasive Computing and Interaction (2019), pp. 1–14 (see p. 42).

[Bei03] Boris Beizer. Software testing techniques. Dreamtech Press, 2003 (see p. 62).

[Bei18] NoudBeijer. “ContinuousDelivery in IoTEnvironments”. In: International Conference on Agile Software
Development. Ed. by Agile Alliance. Agile Alliance, 2018, pp. 1–7 (see pp. 67, 151).

[Bel+03] Mariano Belaunde et al. MDA Guide Version 1.0. 1. Tech. rep. Object Management Group, Inc, 2003
(see p. 59).

[Bel17] Charles Bell.MicroPython for the Internet of Things. Springer, 2017 (see pp. 28, 201).

[Ben18] Antonio Carlos Bento. “IoT: NodeMCU 12e X Arduino Uno, Results of an experimental and compar-
ative survey”. In: International Journal 6.1 (2018) (see pp. 27, 28).

[Ber+13] Arun Kishore Ramakrishnan Berbers et al. “Learning Deployment Trade-offs for Self-Optimization of
Internet of Things Applications”. In: 10th International Conference on Autonomic Computing ({ICAC}
13). 2013, pp. 213–224 (see pp. 118, 119).

[BG10] Luciano Baresi and Carlo Ghezzi. “The Disappearing Boundary betweenDevelopment-Time and Run-
Time”. In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research. FoSER ’10.
Santa Fe, New Mexico, USA: Association for Computing Machinery, 2010, pp. 17–22 (see p. 123).

[BGJ17] Terrell R. Bennett, Nicholas Gans, and Roozbeh Jafari. “Data-Driven Synchronization for Internet-of-
Things Systems”. In: ACM Transactions in Embedded Computing Systems 16.3 (Apr. 2017) (see p. 167).

[BGT16] B. Butzin, F. Golatowski, and D. Timmermann. “Microservices approach for the internet of things”. In:
2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). Sept.
2016, pp. 1–6 (see p. 41).

[Bhe+21] Deva Sai Kumar Bheesetti et al. “A Complete Home Automation Strategy Using Internet of Things”. In:
ICCCE 2020. Ed. by Amit Kumar and StefanMozar. Singapore: Springer Singapore, 2021, pp. 363–373
(see p. 85).

[Bis19] M. Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3). 2019 (see p. 34).

[BL12a] M. Blackstock and R. Lea. “IoT mashups with the WoTKit”. In: 2012 3rd IEEE International Conference
on the Internet of Things. Oct. 2012, pp. 159–166 (see pp. 77, 78).

[BL12b] Michael Blackstock and Rodger Lea. “WoTKit: A Lightweight Toolkit for the Web of Things”. In: Pro-
ceedings of the Third International Workshop on the Web of Things. WOT ’12. New York, NY, USA: ACM,
2012, 3:1–3:6 (see p. 78).

References 293

[BL14] Michael Blackstock and Rodger Lea. “Toward a Distributed Data Flow Platform for the Web of Things
(Distributed Node-RED)”. In: Proceedings of the 5th International Workshop on Web of Things - WoT ’14.
2014, pp. 34–39 (see pp. 79, 88, 94).

[BL16] Michael Blackstock and Rodger Lea. “FRED: A Hosted Data Flow Platform for the IoT”. In: Proceedings
of the 1st International Workshop onMashups of Things and APIs. MOTA ’16. New York, NY, USA: ACM,
2016, 2:1–2:5 (see pp. 78, 87).

[Bla+10] Michael Blackstock et al. “MAGIC Broker 2: An open and extensible platform for the Internet of
Things”. In: 2010 Internet of Things (IOT). IEEE. 2010, pp. 1–8 (see p. 42).

[Blo+18] Gedare Bloom et al. “Design patterns for the industrial Internet of Things”. In: 2018 14th IEEE Inter-
national Workshop on Factory Communication Systems (WFCS). IEEE. IEEE, 2018, pp. 1–10 (see pp. 66,
120).

[BMR96] F. Bushmann, R. Meunier, and H. Rohnert. “Pattern-oriented software architecture: A system of pat-
terns”. In: John Wiley&Sons 1 (1996), p. 476 (see p. 57).

[BMS16] Bharat Bohora, Sunil Maharjan, and Bibek Raj Shrestha. “IoT Based Smart Home Using Blynk Frame-
work”. In: Zerone Scholar 1.1 (2016), pp. 26–30 (see p. 77).

[BMV17] S. Bera, S. Misra, and A. V. Vasilakos. “Software-DefinedNetworking for Internet of Things: A Survey”.
In: IEEE Internet of Things Journal 4.6 (Dec. 2017), pp. 1994–2008 (see p. 37).

[Boa+16] Carlo Alberto Boano et al. “Dependability for the Internet of Things: From dependable networking in
harsh environments to a holistic view on dependability”. English. In: Elektrotechnik und Information-
stechnik 133.7 (Nov. 2016), pp. 304–309 (see p. 161).

[Bol20] Tiago Boldt Sousa. “Engineering Software for the Cloud: A Pattern Language”. PhD thesis. Faculty of
Engineering, University of Porto, 2020 (see p. 176).

[Bon08] Borzoo Bonakdarpour. “Challenges in transformation of existing real-time embedded systems to
cyber-physical systems”. In: ACM SIGBED Review 5.1 (2008), pp. 1–2 (see p. 1).

[Bor+17] Borja Bordel et al. “Cyber–physical systems: Extending pervasive sensing from control theory to the
Internet of Things”. In: Pervasive and Mobile Computing 40 (2017), pp. 156–184 (see pp. 22, 120).

[Bos+19] Stig Bosmans et al. “Testing IoT systems using a hybrid simulation based testing approach”. In: Com-
puting 101.7 (2019), pp. 857–872 (see p. 101).

[Bou16] Ahcène Bounceur. “CupCarbon: A New Platform for Designing and Simulating Smart-City and IoT
Wireless Sensor Networks (SCI-WSN)”. In: Proceedings of the International Conference on Internet of
Things and Cloud Computing (2016), 1:1–1:1 (see p. 100).

[Bra+17] Dave Braines et al. “Conversational homes: a uniform natural language approach for collaboration
among humans and devices”. In: International Journal on Advances in Intelligent Systems 10.3/4 (2017),
pp. 223–237 (see pp. 84, 268).

[BRH16] W. Bulten, A. C. V. Rossum, andW. F. G. Haselager. “Human SLAM, Indoor Localisation of Devices and
Users”. In: 2016 IEEE First International Conference on Internet-of-Things Design and Implementation
(IoTDI). Apr. 2016, pp. 211–222 (see pp. 220, 340).

[BRH20] Tina Beranic, Patrik Rek, and Marjan Heričko. “Adoption and Usability of Low-Code/No-Code De-
velopment Tools”. In: Central European Conference on Information and Intelligent Systems. Faculty of
Organization and Informatics Varazdin. 2020, pp. 97–103 (see p. 14).

[Bri+17] Julia Brich et al. “Exploring End User Programming Needs in Home Automation”. In: ACM Trans.
Comput.-Hum. Interact. 24.2 (Apr. 2017) (see p. 260).

[Brö+17] Arne Bröring et al. “Enabling IoT ecosystems through platform interoperability”. In: IEEE software 34.1
(2017), pp. 54–61 (see p. 70).

References 294

[Bro86] Frederick Phillips Jr. Brooks. “No silver bullet - Essence and Accidents of Software Engineering”. In:
Proceedings of the IFIP Tenth World Computing Conference (1986), pp. 1069–1076 (see pp. 8, 14, 132,
279).

[BS01] Jennifer Bray and Charles F Sturman. Bluetooth 1.1: connect without cables. Pearson Education, 2001
(see p. 31).

[BT18] Brendan Burns and Craig Tracey.Managing Kubernetes: operating Kubernetes clusters in the real world.
O’Reilly Media, 2018 (see p. 203).

[BUA17] Marco Brambilla, Eric Umuhoza, and Roberto Acerbis. “Model-driven development of user interfaces
for IoT systems via domain-specific components and patterns”. In: Journal of Internet Services and Ap-
plications 8.1 (2017), pp. 1–21 (see p. 66).

[Buj+18] Armir Bujari et al. “Standards, Security and Business Models: Key Challenges for the IoT Scenario”. In:
Mobile Networks and Applications 23.1 (Feb. 2018), pp. 147–154 (see pp. 45, 278).

[Bur17] Miroslav Bures. “Framework for Integration Testing of IoT Solutions”. In: 2017 International Confer-
ence on Computational Science and Computational Intelligence (CSCI). IEEE. 2017, pp. 1838–1839 (see
p. 101).

[BV15] Barbara Rita Barricelli and Stefano Valtolina. “Designing for End-User Development in the Internet of
Things”. In: End-User Development: 5th International Symposium, IS-EUD 2015, Madrid, Spain, May 26-
29, 2015. Proceedings. Ed. by Paloma Díaz et al. Cham: Springer International Publishing, 2015, pp. 9–
24 (see p. 96).

[BV19] "Zenodys B.V." Zenodys: Internet of things development platform. [Online; accessed 2019]. "Zenodys B.V.",
2019 (see p. 76).

[BW16] Kyle Brown and BobbyWoolf. “Implementation Patterns forMicroservices Architectures”. In: Proceed-
ings of the 22th Conference on Pattern Languages of Programs. 2016 (see p. 153).

[BWK13] Roland Bijvank, Wiebe Wiersema, and Christian Köppe. “Software Architecture Patterns for System
Administration Support”. In: 20th Conference on Pattern Languages of Programs. PLoP ’13. USA: The
Hillside Group, 2013, 1:1–1:14 (see p. 153).

[CA78] Liming Chen and Algirdas Avizienis. “N-version programming: A fault-tolerance approach to reliabil-
ity of software operation”. In: Proc. 8th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-8). Vol. 1.
1978, pp. 3–9 (see p. 166).

[Cal+11] Rodrigo N Calheiros et al. “CloudSim: a toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms”. In: Software: Practice and experience
41.1 (2011), pp. 23–50 (see p. 100).

[Cas+11] Angelo P Castellani et al. “Web Services for the Internet of Things through CoAP and EXI”. In: 2011
IEEE International Conference on Communications Workshops (ICC). IEEE. 2011, pp. 1–6 (see p. 42).

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A survey”. In: ACM com-
puting surveys (CSUR) 41.3 (2009), pp. 1–58 (see p. 162).

[CC20] D.R. Cacciagrano and R. Culmone. “IRON: Reliable domain specific language for programming IoT
devices”. In: Internet of Things 9 (2020), p. 100020 (see p. 74).

[CCV12] Matteo Collina, Giovanni Emanuele Corazza, and Alessandro Vanelli-Coralli. “Introducing the QEST
broker: Scaling the IoT by bridging MQTT and REST”. In: 2012 IEEE 23rd International Symposium on
Personal, Indoor and Mobile Radio Communications-(PIMRC). IEEE. 2012, pp. 36–41 (see p. 42).

[CDN16] M. Clark, P. Dutta, and M. W. Newman. “Towards a Natural Language Programming Interface for
Smart Homes”. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing: Adjunct. UbiComp 16. New York, NY, USA: Association for Computing Machinery,
2016, pp. 49–52 (see p. 85).

References 295

[CDR17] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. “A high-level approach towards end
user development in the IoT”. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. ACM. 2017, pp. 1546–1552 (see p. 77).

[Cen+16] M. Centenaro et al. “Long-range communications in unlicensed bands: the rising stars in the IoT and
smart city scenarios”. In: IEEE Wireless Communications 23.5 (Oct. 2016), pp. 60–67 (see pp. 29, 36).

[CGP08] Antonio Carzaniga, Alessandra Gorla, and Mauro Pezzè. “Self-Healing by Means of Automatic
Workarounds”. In: Proceedings of the 2008 International Workshop on Software Engineering for Adaptive
and Self-Managing Systems. Seams ’08. New York, NY, USA: Association for Computing Machinery,
2008, pp. 17–24 (see p. 173).

[CH06] KrzysztofCzarnecki and SimonHelsen. “Feature-based Survey ofModel TransformationApproaches”.
In: IBM Systems Journal. Vol. 45. Feb. 2006, pp. 621–645 (see p. 60).

[CH11] Chao Chen and Sumi Helal. “A Device-Centric Approach to a Safer Internet of Things”. In: Proceedings
of the 2011 International Workshop on Networking and Object Memories for the Internet of Things. NoME-
IoT ’11. New York, NY, USA: Association for Computing Machinery, 2011, pp. 1–6 (see p. 161).

[Cha+12] Ioannis Chatzigiannakis et al. “True self-configuration for the IoT”. In: Proceedings of 2012 International
Conference on the Internet of Things, IOT 2012 (2012), pp. 9–15 (see p. 119).

[Cha+15] Victor Charpenay et al. “An ontology design pattern for IoT device tagging systems”. In: Proceedings -
2015 5th International Conference on the Internet of Things, IoT 2015 (2015), pp. 138–145 (see p. 66).

[Cha+18] Tusher Chakraborty et al. “Fall-curve: A novel primitive for IoT Fault detection and isolation”. In:
SenSys 2018 - Proceedings of the 16th Conference on Embedded Networked Sensor Systems (2018), pp. 95–
107 (see pp. 174, 178).

[Cha02] S. Chang. Handbook of Software Engineering and Knowledge Engineering. World Scientific Publishing
Co., 2002 (see p. 58).

[Che+14] Ching YuChen et al. “Complex event processing for the internet of things and its applications”. In: 2014
IEEE International Conference on Automation Science and Engineering (CASE). IEEE. 2014, pp. 1144–
1149 (see pp. 41, 103).

[Che+15] Xing Chen et al. “Runtime model based approach to IoT application development”. In: Frontiers of
Computer Science 9.4 (Aug. 2015), pp. 540–553 (see p. 74).

[Che+17] Bin Cheng et al. “FogFlow: Easy Programming of IoT Services Over Cloud and Edges for Smart Cities”.
In: IEEE Internet of Things Journal PP (Aug. 2017), pp. 1–1 (see p. 81).

[Che+18a] JiongyiChen et al. “IoTFuzzer: DiscoveringMemoryCorruptions in IoTThroughApp-based Fuzzing.”
In: NDSS. 2018, (see p. 103).

[Che+18b] Bin Cheng et al. “FogFlow: Orchestrating IoT services over cloud and edges”. In:NEC Technical Journal
13 (Nov. 2018), pp. 48–53 (see pp. 81, 82, 95).

[Che+18c] M. Chernyshev et al. “Internet of Things (IoT): Research, Simulators, and Testbeds”. In: IEEE Internet
of Things Journal 5.3 (June 2018), pp. 1637–1647 (see p. 100).

[Cho97] Timothy C. K. Chou. “Beyond Fault Tolerance”. In: IEEE Computer 30.4 (1997), pp. 47–49 (see p. 45).

[Cic+17] Federico Ciccozzi et al. “Model-driven engineering for mission-critical iot systems”. In: IEEE software
34.1 (2017), pp. 46–53 (see p. 74).

[Cir+15] Simone Cirani et al. “The IoT hub: A fog node for seamless management of heterogeneous connected
smart objects”. In: 2015 12th Annual IEEE International Conference on Sensing, Communication, and
Networking-Workshops (SECON Workshops). IEEE. 2015, pp. 1–6 (see p. 28).

[CIT19] CITILAB. S4A. [Online; accessed 2019]. Fundació pel Foment de la Societat del Coneixement (CITI-
LAB), 2019 (see p. 75).

References 296

[CK16] Y. Chen and T. Kunz. “Performance evaluation of IoT protocols under a constrained wireless access
network”. In: 2016 International Conference on Selected Topics in Mobile Wireless Networking (MoWNeT).
2016, pp. 1–7 (see pp. 35, 36).

[Cle+18] Diego Clerissi et al. “Towards an Approach for Developing and Testing Node-RED IoT Systems”. In:
EnSEmble 2018. Lake Buena Vista, FL, USA: Association for ComputingMachinery, 2018, pp. 1–8 (see
p. 94).

[Clo+09] Robert Cloutier et al. “The Concept of Reference Architectures”. In: Systems Engineering 14.3 (2009)
(see p. 42).

[Com+15] Alberto Compagno et al. “To NACK or Not to NACK? Negative Acknowledgments in Information-
CentricNetworking”. In: 2015 24th International Conference on Computer Communication andNetworks
(ICCCN) (Aug. 2015) (see p. 164).

[Com17] Computer History Museum.Margaret Hamilton. [Online; accessed Jun. 2018]. 2017 (see p. 6).

[com21] Home Assistant community. Home Assistant. [Online; accessed 2021]. 2021 (see p. 87).

[Com90] C/S2ESC - Software & Systems Engineering Standards Committee. “IEEE Standard Glossary of Soft-
ware EngineeringTerminology”. In: IEEE 610.12-1990 - IEEE StandardGlossary of Software Engineering
Terminology (Dec. 1990), pp. 1–84 (see p. 62).

[Cor19] "Onion Corporation". Onion.io. [Online; accessed 2019]. "Onion Corporation," 2019 (see p. 27).

[Cos21] Pedro Miguel Sousa da Costa. “Decentralized Real-time IoT Orchestration”. MA thesis. Porto: Faculty
of Engineering, University of Porto, 2021 (see pp. 199, 202).

[Cox07] Philip T. Cox. “Visual Programming Languages”. In:Wiley Encyclopedia of Computer Science and Engi-
neering. John Wiley & Sons, Inc., 2007 (see p. 58).

[CP16] Patricia Charlton and Stefan Poslad. “A sharable wearable maker community IoT application”. In: 2016
12th International Conference on Intelligent Environments (IE). IEEE. 2016, pp. 16–23 (see p. 28).

[CS17] Federico Ciccozzi and Romina Spalazzese. “MDE4IoT: Supporting the Internet of Things withModel-
Driven Engineering”. In: Intelligent Distributed Computing X. Ed. by Costin Badica et al. Cham: Springer
International Publishing, 2017, pp. 67–76 (see p. 73).

[CSM17] Pethuru Raj Chelliah, Harihara Subramanian, and Anupama Murali. Architectural Patterns: Uncover
essential patterns in the most indispensable realm of enterprise architecture. Packt Publishing Ltd, 2017
(see p. 42).

[Cun+02] João Carlos Cunha et al. “Reset-driven fault tolerance”. In: European Dependable Computing Conference.
Springer. 2002, pp. 102–120 (see p. 178).

[CVD16] M. Conoscenti, A. Vetrò, and J. C. De Martin. “Blockchain for the Internet of Things: A systematic lit-
erature review”. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications
(AICCSA). Nov. 2016, pp. 1–6 (see p. 103).

[DAA16] Bahadir Dundar, Merve Astekin, and Mehmet S. Aktas. “A Big Data Processing Framework for Self-
Healing Internet of Things Applications”. In: 2016 12th International Conference on Semantics, Knowl-
edge and Grids (SKG). 2016, pp. 62–68 (see p. 10).

[Dar+15] Kashif Dar et al. “A resource oriented integration architecture for the Internet of Things: A business
process perspective”. In: Pervasive and Mobile Computing 20 (2015), pp. 145–159 (see p. 37).

[Dav+16] Nigel Davies et al. “Privacy mediators: Helping IoT cross the chasm”. In: Proceedings of the 17th Inter-
national Workshop on Mobile Computing Systems and Applications. ACM. 2016, pp. 39–44 (see p. 42).

[Del+13] Flavia C. Delicato et al. “Towards an IoT Ecosystem”. In: Proceedings of the First International Workshop
on Software Engineering for Systems-of-Systems. SESoS ’13. ACM, 2013, pp. 25–28 (see p. 132).

[Del+17] Daniele Dell’Aglio et al. “On a Web of Data Streams.” In: DeSemWeb ISWC. 2017, (see p. 34).

References 297

[DeL98] David E DeLano. “Telephony Data Handling Pattern Language”. In: Pattern Languages of Program De-
sign. Vol. 53. 1998 (see p. 153).

[DF17] Joao PedroDias andHugo Sereno Ferreira. “Automating the Extraction of Static Content andDynamic
behavior from e-Commerce Websites”. In: Procedia Computer Science 109 (2017). 8th International
Conference on Ambient Systems, Networks and Technologies, ANT-2017 and the 7th International
Conference on Sustainable Energy Information Technology, SEIT 2017, 16-19 May 2017, Madeira,
Portugal, pp. 297–304 (see p. 336).

[DFF18] João PedroDias, João Pascoal Faria, andHugo Sereno Ferreira. “A Reactive andModel-Based Approach
for Developing Internet-of-Things Systems”. In: 2018 11th International Conference on the Quality of
Information and Communications Technology (QUATIC). Sept. 2018, pp. 276–281 (see pp. 132, 283, 329).

[DFS19] Joao Pedro Dias, Hugo Sereno Ferreira, and Tiago Boldt Sousa. “Testing and Deployment Patterns
for the Internet-of-Things”. In: Proceedings of the 24th European Conference on Pattern Languages of
Programs. EuroPLop ’19. Irsee, Germany: Association for Computing Machinery, 2019 (see pp. 144,
151, 165, 284, 328).

[DGL19] Inc." "DGLogik. IoT Application Platform DGLogik. [Online; accessed 2019]. "DGLogik, Inc.", 2019 (see
p. 76).

[DGM07] Paul M Duvall, Andrew Glover, and Steve Matyas. Continuous integration. Addison-Wesley Profes-
sional, 2007 (see pp. 66, 156, 157).

[Dia+18] João Pedro Dias et al. “A Brief Overview of Existing Tools for Testing the Internet-of-Things”. In: 2018
IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). Apr.
2018, pp. 104–109 (see pp. 64, 283, 330).

[Dia+20a] Joao Pedro Dias et al. “A Pattern-Language for Self-Healing Internet-of-Things Systems”. In: Proceed-
ings of the 25th European Conference on Pattern Languages of Programs. EuroPLop ’20. Irsee, Germany:
Association for Computing Machinery, 2020 (see pp. 144, 159, 171, 218, 284, 326).

[Dia+20b] João Pedro Dias et al. “Visual Self-HealingModelling for Reliable Internet-of-Things Systems”. In: Pro-
ceedings of the 20th International Conference on Computational Science (ICCS). Springer, 2020, pp. 27–36
(see pp. 144, 150, 159, 171, 218, 284, 327).

[Dig+19] SERP4IoT ’19: Proceedings of the 1st International Workshop on Software Engineering Research & Practices
for the Internet of Things. Montreal, Quebec, Canada: IEEE Press, 2019 (see pp. 8, 64).

[Diz+19] Jasenka Dizdarevi et al. “A Survey of Communication Protocols for Internet of Things and Related
Challenges of Fog and Cloud Computing Integration”. In: ACM Computing Surveys 51.6 (Jan. 2019),
116:1–116:29 (see p. 34).

[DLF20] João PedroDias, André Lago, andHugo Sereno Ferreira. “Conversational Interface forManagingNon-
Trivial Internet-of-Things Systems”. In: Proceedings of the 20th International Conference on Computa-
tional Science (ICCS). Springer, 2020, pp. 27–36 (see pp. 131, 258, 285, 327).

[DMF18] João Pedro Dias, ÂngeloMartins, and Hugo Sereno Ferreira. “A Blockchain-based Approach for Access
Control in eHealth Scenarios”. In: Journal of Information Assurance and Security 13 (4 2018), pp. 125–
136 (see p. 332).

[Doh+10] A. Dohr et al. “The Internet of Things for Ambient Assisted Living”. In: Seventh International Conference
on Information Technology: New Generations (2010), pp. 804–809 (see p. 24).

[Dom12] Mari Carmen Domingo. “An overview of the internet of underwater things”. In: Journal of Network
and Computer Applications 35.6 (2012), pp. 1879–1890 (see p. 118).

[Dou12] Charalampos Doukas. Building Internet of Things with the ARDUINO. CreateSpace Independent Pub-
lishing Platform, 2012 (see p. 27).

[DPB17] Flávia C. Delicato, Paulo F. Pires, and Thais Batista. “The Resource Management Challenge in IoT”. In:
Resource Management for Internet of Things. Cham: Springer International Publishing, 2017, pp. 7–18
(see pp. 103, 104).

References 298

[DPC17] João Pedro Dias, José Pedro Pinto, and José Magalhães Cruz. “A Hands-on Approach on Botnets for
Behavior Exploration”. In: Proceedings of the 2nd International Conference on Internet of Things, Big Data
and Security. SCITEPRESS - Science and Technology Publications, 2017, pp. 463–469 (see pp. 107, 335,
336).

[DRF21] Joao Pedro Dias, André Restivo, and Hugo Sereno Ferreira. “Empowering Visual Internet-of-Things
Mashups with Self-Healing Capabilities”. In: 2021 IEEE/ACM 3rd International Workshop on Software
Engineering Research Practices for the Internet of Things (SERP4IoT). 2021 (see pp. 144, 159, 171, 218,
284, 325).

[DRF22] João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. “Designing and Constructing Internet-of-
Things Systems: An Overview of the Ecosystem”. In: Internet of Things (2022) (see pp. 64, 322, 323).

[DS18] S. Dharur and K. Swaminathan. “Efficient surveillance and monitoring using the ELK stack for IoT
powered Smart Buildings”. In: 2018 2nd International Conference on Inventive Systems and Control
(ICISC). Jan. 2018, pp. 700–705 (see p. 91).

[DSM20] João Pedro Dias, Hugo Sereno Ferreira, and Ângelo Martins. “A Blockchain-Based Scheme for Access
Control in e-Health Scenarios”. In: Proceedings of the Tenth International Conference on Soft Computing
and Pattern Recognition (SoCPaR 2018). Ed. by AnaMariaMadureira et al. Cham: Springer International
Publishing, 2020, pp. 238–247 (see p. 334).

[Dua+15] Y. Duan et al. “Everything as a Service (XaaS) on the Cloud: Origins, Current and Future Trends”. In:
2015 IEEE 8th International Conference on Cloud Computing. June 2015, pp. 621–628 (see p. 29).

[Dua+18] Duarte Duarte et al. “Towards a Framework for Agent-Based Simulation of User behavior in E-
Commerce Context”. In: Trends in Cyber-Physical Multi-Agent Systems. The PAAMS Collection - 15th
International Conference, PAAMS 2017. Cham: Springer International Publishing, 2018, pp. 30–38 (see
p. 335).

[Dua+22] Miguel Duarte et al. “Evaluation of IoT Self-healing Mechanisms using Fault-Injection in Message
Brokers”. In: 2022 IEEE/ACM 4th International Workshop on Software Engineering Research Practices
for the Internet of Things (SERP4IoT). 2022 (see pp. 218, 323, 324).

[Dua21] Miguel Pereira Duarte. “MQTT Chaos Engineering for Self-Healing IoT Systems”. MA thesis. Porto:
Faculty of Engineering, University of Porto, 2021 (see p. 218).

[Dun+06] Adam Dunkels et al. “Protothreads: Simplifying Event-driven Programming of Memory-constrained
Embedded Systems”. In: Proceedings of the 4th International Conference on Embedded Networked Sensor
Systems. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 29–42 (see p. 74).

[Dur+17] Caglar Durmaz et al. “Modelling Contiki-Based IoT Systems”. In: 6th Symposium on Languages, Ap-
plications and Technologies (SLATE 2017). Ed. by Ricardo Queirós et al. Vol. 56. OpenAccess Series in
Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017,
5:1–5:13 (see p. 74).

[Ecl19] Eclipse Foundation, Inc. IoT Developer Survey 2019. Tech. rep. Eclipse Foundation, Inc., 2019 (see p. 69).

[Edw01] Stephen H Edwards. “A framework for practical, automated black-box testing of component-based
software”. In: Software Testing, Verification and Reliability 11.2 (2001), pp. 97–111 (see p. 62).

[Ein+17] A. F. Einarsson et al. “SmartHomeML: Towards a Domain-Specific Modeling Language for Creating
Smart Home Applications”. In: 2017 IEEE International Congress on Internet of Things (ICIOT). June
2017, pp. 82–88 (see pp. 72, 73).

[Elo+14] Veli-Pekka Eloranta et al.Designing distributed control systems: A pattern language approach. Wiley Pub-
lishing, 2014 (see pp. 66, 164, 165, 168, 173, 177, 179–181).

[EM95] M. Erwig andB.Meyer. “Heterogeneous visual languages-integrating visual and textual programming”.
In: Proceedings of Symposium on Visual Languages (1995), pp. 318–325 (see p. 59).

References 299

[Esp19] Espressif Systems. ESP8266 Technical Reference Manual. Tech. rep. Shanghai, China: Espressif Systems,
2019 (see pp. 28, 201).

[esp19] esp8266.ru. ESPlorer — Integrated Development Environment (IDE) for ESP8266 developers. [Online;
accessed 2019]. 2019 (see p. 70).

[Esp20] Espressif Systems. ESP32 Technical Reference Manual. Tech. rep. Shanghai, China: Espressif Systems,
2020 (see pp. 28, 201).

[Ete+15] T. Eterovic et al. “An Internet of Things Visual Domain SpecificModeling Language based onUML”. In:
2015 25th International Conference on Information, Communication and Automation Technologies, ICAT
2015 - Proceedings. Oct. 2015 (see p. 72).

[Eug+03] Patrick Th. Eugster et al. “The Many Faces of Publish/Subscribe”. In: ACM Computing Surveys 35.2
(June 2003), pp. 114–131 (see p. 41).

[Eur09] European Economic and Social Committee. Internet of Things — An action plan for Europe. Tech. rep.
European Commission, 2009 (see p. 4).

[EV10] J.L. Eveleens and C. Verhoef. “The rise and fall of the Chaos report figures”. In: IEEE Software 27.1 (Jan.
2010), pp. 30–36 (see p. 6).

[Fan+14] RomanoFantacci et al. “A network architecture solution for efficient IOTWSNbackhauling: challenges
and opportunities”. In: IEEE Wireless Communications 21.4 (2014), pp. 113–119 (see p. 28).

[Far+15] MuhammadUmar Farooq et al. “A critical analysis on the security concerns of internet of things (IoT)”.
In: International Journal of Computer Applications 111.7 (2015) (see p. 107).

[Fee16] Sean Feeney. A Primer on Continuous Delivery. [Online; accessed Jun. 2018]. Feb. 2016 (see p. 56).

[Feh+14] Christoph Fehling et al. Cloud Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer, 2014 (see pp. 53, 55, 66).

[Fer+12] Nicolas Ferry et al. Wcomp, middleware for ubiquitous computing and system focused adaptation. 2012
(see p. 78).

[Fer11] Hugo Sereno Ferreira. “Adaptive Object-Modeling Patterns, Tools and Applications”. PhD thesis. Fac-
ulty of Engineering of the University of Porto, Porto, Portugal, 2011 (see pp. 57, 61).

[FF07] Glenn A Fink and Deborah A Frincke. “Autonomic Computing: Freedom or Threat?” In: ;login: 32.2
(2007), pp. 6–14 (see p. 5).

[FF11] Mattern Friedemann and Christian Floerkemeir. “From the Internet of Computers to the Internet of
Things”. In: From Active Data Management to Event-Based Systems and More (2011), pp. 242–259. arXiv:
9780201398298 (see pp. 4, 21).

[Fis+04] Gerhard Fischer et al. “Meta-design: a manifesto for end-user development”. In:Communications of the
ACM 47.9 (2004), pp. 33–37 (see p. 258).

[Fit12] Brian Fitzgerald. “Software crisis 2.0”. In:Computer 45.4 (2012), pp. 89–91 (see pp. 1, 6, 7, 17, 132, 278).

[Flo+08] Christian Floerkemeier et al. The Internet of Things: First International Conference, IOT 2008, Proceed-
ings. Vol. 4952. Zurich, Switzerland, Jan. 2008 (see p. 4).

[FM17] F. Fleurey and B. Morin. “ThingML: A Generative Approach to Engineer Heterogeneous and Dis-
tributed Systems”. In: 2017 IEEE International Conference on Software Architecture Workshops (ICSAW)
(Apr. 2017), pp. 185–188 (see p. 94).

[Foj+12] M. Fojtik et al. “Bubble Razor: An architecture-independent approach to timing-error detection and
correction”. In: 2012 IEEE International Solid-State Circuits Conference. 2012, pp. 488–490 (see p. 167).

[For+13] Giancarlo Fortino et al. “An agent-based middleware for cooperating smart objects”. In: International
Conference on Practical Applications of Agents andMulti-Agent Systems. Springer. 2013, pp. 387–398 (see
p. 100).

https://arxiv.org/abs/9780201398298

References 300

[For+14] Giancarlo Fortino et al. “Integration of agent-based and Cloud Computing for the smart objects-
oriented IoT”. In: Proceedings of the 2014 IEEE 18th International Conference on Computer Supported
Cooperative Work in Design, CSCWD 2014 (2014), pp. 493–498 (see p. 120).

[For+17] Giancarlo Fortino et al. “Modeling and Simulating Internet-of-Things Systems: A Hybrid Agent-
Oriented Approach”. In: Computing in Science and Engineering 19.5 (2017), pp. 68–76 (see p. 100).

[For+18] Giancarlo Fortino et al. “Agent-oriented cooperative smart objects: From IoT system design to imple-
mentation”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 48.11 (2018), pp. 1949–
1956 (see p. 120).

[For+19] Giancarlo Fortino et al. “Fluidware: An Approach Towards Adaptive and Scalable Programming of the
IoT”. In:Models, Languages, and Tools for Concurrent and Distributed Programming. Vol. 11665. Springer
International Publishing, 2019, pp. 411–427 (see p. 73).

[Fou19a] "Micro:bit Educational Foundation". Micro:bit Educational Foundation. [Online; accessed 2019]. "Mi-
cro:bit Educational Foundation", 2019 (see p. 28).

[Fou19b] "Raspberry Pi Foundation". Raspberry Pi. [Online; accessed 2019]. "Raspberry Pi Foundation", 2019 (see
p. 27).

[Fow02] Martin Fowler. Patterns of enterprise application architecture. Addison-Wesley Longman Publishing Co.,
Inc., 2002 (see p. 57).

[Fra+13] Neil Fraser et al. Blockly: A visual programming editor. [Online; accessed 2019]. Google and the MIT
Media Lab, 2013 (see p. 75).

[Fra17] B. Francis.Web Thing API. Tech. rep. Mozilla, 2017 (see p. 44).

[Fru+18] M. Frustaci et al. “Evaluating Critical Security Issues of the IoTWorld: Present and Future Challenges”.
In: IEEE Internet of Things Journal 5.4 (Aug. 2018), pp. 2483–2495 (see p. 107).

[FSM12] Hugo Sereno Ferreira, Tiago Boldt Sousa, and AngeloMartins. “Scalable Integration ofMultiple Health
SensorData forObservingMedical Patterns”. In:Cooperative Design, Visualization, and Engineering. Ed.
by Yuhua Luo. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 78–84 (see p. 176).

[Gab96] Richard P Gabriel. Patterns of software. Vol. 62. Oxford University Press, 1996 (see p. 57).

[Gam+95] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995, p. 334. eprint: dd (see pp. 57, 144).

[Gan16] P. Ganguly. “Selecting the right IoT cloud platform”. In: 2016 International Conference on Internet of
Things and Applications (IOTA). Jan. 2016, pp. 316–320 (see p. 165).

[Gas05] Matthew Gast. 802.11 wireless networks: the definitive guide. " O’Reilly Media, Inc.", 2005 (see p. 33).

[GC03] Alan G. Ganek and Thomas A. Corbi. “The dawning of the autonomic computing era”. In: IBM Systems
Journal 42.1 (2003), pp. 5–18 (see pp. 4, 51–55, 286).

[Gen+17] Rosella Gennari et al. End-User Development. June. Springer, 2017 (see p. 258).

[GG17] Neha Garg and Ritu Garg. “Energy harvesting in IoT devices: A survey”. In: 2017 International Confer-
ence on Intelligent Sustainable Systems (ICISS). 2017, pp. 127–131 (see p. 29).

[Ghi+17] Giuseppe Ghiani et al. “Personalization of Context-Dependent Applications Through Trigger-Action
Rules”. In: ACM Transactions on Computer-Human Interaction 24.2 (May 2017), pp. 1–33 (see pp. 77,
123).

[Gho+07] Debanjan Ghosh et al. “Self-healing systems— survey and synthesis”. In:Decision Support Systems 42.4
(2007). Decision Support Systems in Emerging Economies, pp. 2164–2185 (see p. 54).

[Gia+15] Nam Ky Giang et al. “Developing IoT applications in the Fog: A Distributed Dataflow approach”. In:
5th International Conference on the Internet of Things. 2015, pp. 155–162 (see pp. 79, 80).

dd

References 301

[GIM11] Dominique Guinard, Iulia Ion, and Simon Mayer. “In search of an internet of things service architec-
ture: REST or WS-*? A developers’ perspective”. In: International Conference on Mobile and Ubiquitous
Systems: Computing, Networking, and Services. Springer. 2011, pp. 326–337 (see p. 42).

[GLL18] N. K. Giang, R. Lea, and V. C. M. Leung. “Exogenous Coordination for Building Fog-Based Cyber
Physical Social Computing and Networking Systems”. In: IEEE Access 6 (2018), pp. 31740–31749 (see
pp. 79, 80, 95).

[Glo19] "ASUS Global". Tinker Board, Single Board Computer. [Online; accessed 2019]. "ASUS Global", 2019 (see
p. 27).

[Glu+11] Alexander Gluhak et al. “A survey on facilities for experimental internet of things research”. In: IEEE
Communications Magazine 49.11 (2011), pp. 58–67 (see pp. 97, 100).

[GND17] Alex Glikson, Stefan Nastic, and SchahramDustdar. “Deviceless edge computing: extending serverless
computing to the edge of the network”. In:Proceedings of the 10th ACM International Systems and Storage
Conference. 2017, pp. 1–1 (see pp. 184, 198).

[Gom+17] Tiago Gomes et al. “A modeling domain-specific language for IoT-enabled operating systems”. In:
IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE. 2017, pp. 3945–
3950 (see p. 74).

[Gon+14] CristianGonzález García et al. “Midgar: Generation of heterogeneous objects interconnecting applica-
tions. A Domain Specific Language proposal for Internet of Things scenarios”. In: Computer Networks
64 (2014), pp. 143–158 (see p. 73).

[Goo20] Google, LLC. Google Assistant, your own personal Google. 2020 (see p. 261).

[Gou+17] Sotirios K. Goudos et al. A Survey of IoT Key Enabling and Future Technologies: 5G, Mobile IoT, Sematic
Web and Applications. Vol. 97. 2. Springer US, 2017, pp. 1645–1675 (see pp. 32, 33).

[GR19] LoveleenGaur andRavi Ramakrishnan. Internet of Things: Approach and Applicability inManufacturing.
CRC Press, June 2019 (see p. 44).

[Gro19] "Autonomous Networks Research Group". Cooja Simulator – Contiki. [Online; accessed 2019]. "Au-
tonomous Networks Research Group", 2019 (see p. 99).

[GT15] Padmini Gaur and Mohit P. Tahiliani. “Operating systems for IoT devices: A critical survey”. In: Pro-
ceedings - 2015 IEEE Region 10 Symposium, TENSYMP 2015 (2015), pp. 33–36 (see p. 27).

[GTW+10] Dominique Guinard, Vlad Trifa, Erik Wilde, et al. “A resource oriented architecture for the Web of
Things.” In: IoT. 2010, pp. 1–8 (see p. 42).

[Gub+13] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural elements, and future di-
rections”. In: Future Generation Computer Systems 29.7 (2013), pp. 1645–1660. arXiv: 1207.0203 (see
pp. 36, 43, 104).

[Gui16] Dominique Guinard. The IoT needs a defrag. [Online; accessed Mar. 2018]. Mar. 2016 (see pp. 1, 10, 13,
14, 28, 136, 156).

[Gup+17] Harshit Gupta et al. “iFogSim: A toolkit for modeling and simulation of resource management tech-
niques in the Internet of Things, Edge and Fog computing environments”. In: Software: Practice and
Experience 47.9 (2017), pp. 1275–1296 (see pp. 81, 99).

[Gus+19] Marjan Gusev et al. “A deviceless edge computing approach for streaming IoT applications”. In: IEEE
Internet Computing 23.1 (2019), pp. 37–45 (see p. 184).

[Han+14] Son N. Han et al. “DPWSim: A simulation toolkit for IoT applications using devices profile for web
services”. In: 2014 IEEEWorld Forum on Internet of Things, WF-IoT 2014 (2014), pp. 544–547 (see p. 99).

[Han+17] David Hanes et al. IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet
of Things. Cisco Press, 2017 (see pp. 38, 39).

[Han06] Robert S. Hanmer. “Error Containment”. In: PLoP ’06 (2006) (see pp. 108–110, 113, 114, 179).

https://arxiv.org/abs/1207.0203

References 302

[Han07] Robert Hanmer. Patterns for Fault Tolerant Software. Wiley Publishing, 2007 (see pp. 9, 66, 67, 109–116,
160, 162, 164, 168, 173–179).

[Han12] Robert S.Hanmer. “PatternMining Patterns”. In:Proceedings of the 19th Conference on Pattern Languages
of Programs. PLoP ’12. Tucson, Arizona: The Hillside Group, 2012 (see p. 144).

[Han14] Robert S. Hanmer. “Patterns for Fault Tolerant Cloud Software”. In: Proceedings of the 21st Conference
on Pattern Languages of Programs. Usa: The Hillside Group, 2014 (see pp. 159, 179).

[Har+16] Nicolas Harrand et al. “ThingML: A Language and Code Generation Framework for Heterogeneous
Targets”. In: Proceedings of the ACM/IEEE 19th Int. Conference on Model Driven Engineering Languages
and Systems. MODELS ’16. New York, NY, USA: ACM, 2016, pp. 125–135 (see pp. 75, 94).

[HC15] Justin Huang andMaya Cakmak. “Supportingmental model accuracy in trigger-action programming”.
In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp 2015) (2015), pp. 215–225 (see p. 77).

[He+19] W. He et al. “When Smart Devices Are Stupid: Negative Experiences Using Home Smart Devices”. In:
2019 IEEE Security and Privacy Workshops (SPW). 2019, pp. 150–155 (see p. 96).

[Heo+15] S. Heo et al. “IoT-MAP: IoT mashup application platform for the flexible IoT ecosystem”. In: 2015 5th
International Conference on the Internet of Things (IOT). Oct. 2015, pp. 163–170 (see p. 78).

[HKN02] Ulf Hashagen, Reinhard Keil-Slawik, and Arthur L. Norberg. History of Computing: Software Issues.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002 (see p. 6).

[HL96] Katie Hafner and Matthew Lyon.Where Wizards Stay Up Late: The Origins of the Internet. 1996. arXiv:
arXiv:1011.1669v3 (see p. 3).

[Hol02] Gerard J. Holzmann. “The logic of bugs”. In: ACM SIGSOFT Symposium on the Foundations of Software
Engineering (2002), pp. 81–87 (see p. 91).

[Hor01] Paul Horn. Autonomic Computing: IBM’s Perspective on the State of Information Technology. Tech. rep.
26. [Online; accessed Nov. 2020]. IBM Corporation, 2001 (see pp. 4, 5, 10, 51, 53–55, 137).

[Hoy15] Matthew B. Hoy. “If This Then That: An Introduction to Automated Task Services”. In: Medical Ref-
erence Services Quarterly 34.1 (2015). PMID: 25611444, pp. 98–103. eprint: https://doi.org/10.
1080/02763869.2015.986796 (see p. 68).

[HTI11] Sara Hachem, Thiago Teixeira, and Valérie Issarny. “Ontologies for the Internet of Things”. In: Proceed-
ings of the 8th Middleware Doctoral Symposium, MDS’11 of the 12th ACM/IFIP/USENIX International
Middleware Conference (2011) (see p. 14).

[HVM12] G. F. Hurlburt, J. Voas, and K. W. Miller. “The Internet of Things: A Reality Check”. In: IT Professional
14.June (2012), pp. 56–59 (see p. 106).

[HW04] Gregor Hohpe and BobbyWoolf. Enterprise integration patterns: Designing, building, and deploying mes-
saging solutions. Addison-Wesley Professional, 2004 (see p. 57).

[IBH19] IBH SYSTEMS GmbH. Eclipse NeoSCADA. 2019 (see p. 70).

[IBM21] IBM. Internet of Things architecture. [Online; accessed 2021]. 2021 (see p. 43).

[IFT19] "IFTTT". IFTTT helps your apps and devices work together. "IFTTT", 2019 (see pp. 77, 86, 124).

[Ihi+20] Felicien Ihirwe et al. “Low-Code Engineering for Internet of Things: A State of Research”. In: Proceed-
ings of the 23rd ACM/IEEE International Conference onModel Driven Engineering Languages and Systems:
Companion Proceedings. MODELS ’20. Virtual Event, Canada: Association for Computing Machinery,
2020 (see pp. 70, 91, 93, 96, 123, 136, 200).

[IKK13] Janggwan Im, Seonghoon Kim, and Daeyoung Kim. “IoT mashup as a service: cloud-based mashup
service for the Internet of things”. In: 2013 IEEE International Conference on Services Computing. IEEE.
2013, pp. 462–469 (see pp. 25, 79).

https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1080/02763869.2015.986796
https://doi.org/10.1080/02763869.2015.986796

References 303

[Inc19a] Microchip Technology Inc. Atmel Studio 7 | Microchip Technology. [Online; accessed 2019]. 2019 (see
p. 70).

[Inc19b] XOD Inc. XOD: A visual programming language for microcontrollers. [Online; accessed 2019]. XOD Inc.,
2019 (see p. 75).

[Inc19c] "Blynk Inc." How Blynk Works. [Online; accessed 2019]. "Blynk Inc.", 2019 (see p. 77).

[Ior+18] Michaela Iorga et al. Fog Computing Conceptual Model. Tech. rep. National Institute of Standards and
Technology (NIST), 2018 (see p. 39).

[IoT19a] "IoTIFY". IoTIFY- Develop full stack IoT Application with virtual device simulation. [Online; accessed
2019]. "IoTIFY", 2019 (see p. 98).

[IoT19b] "FIT IoT-LAB". FIT/IoT-LAB • Very large scale open wireless sensor network testbed. [Online; accessed
2019]. "FIT IoT-LAB", 2019 (see p. 98).

[ISO14] ISO/IEC JTC 1. Internet of Things (IoT) - Preliminary Report. Tech. rep. ISO, 2014 (see p. 22).

[IT19] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and Secure Transport. 2019 (see p. 34).

[Jan17a] Srini Janarthanam. Hands-on chatbots and conversational UI development: Build chatbots and voice user
interfaces with Chatfuel, Dialogflow, Microsoft Bot Framework, Twilio, and Alexa Skills. Packt Publishing
Ltd, 2017 (see p. 262).

[Jan17b] D. Janes. IOTDB. Tech. rep. IOTDB.org, 2017 (see pp. 44, 45).

[JEC14] Patrick Janssen, Halil Erhan, and Kian Wee Chen. “Visual Dataflow Modelling - Some thoughts on
complexity”. In: Proceedings of the 32nd eCAADe Conference. 2014 (see pp. 137, 218, 258).

[Jen+13] C. Jennings et al.Media Types for Sensor Markup Language (SENML). [Online; accessed 19. May 2018].
Apr. 2013 (see p. 44).

[Jeo+18] K. E. Jeon et al. “BLE Beacons for Internet of Things Applications: Survey, Challenges, and Opportu-
nities”. In: IEEE Internet of Things Journal 5.2 (Apr. 2018), pp. 811–828 (see p. 31).

[JJW18] Tobias Jung, Nasser Jazdi, and Michael Weyrich. “A survey on dynamic simulation of automation sys-
tems and components in the Internet of Things”. In: IEEE International Conference on Emerging Tech-
nologies and Factory Automation, ETFA. IEEE, Sept. 2018, pp. 1–4 (see p. 100).

[Joh89] Barry Johnson.Design and Analysis of Fault-tolerant Digital Systems. Addison-Wesley Professional, Feb.
1989, pp. 1–87 (see p. 10).

[JOJ21] Wha Sook Jeon, Hyun Seob Oh, and Dong Geun Jeong. “Decision of Ranging Interval for IEEE 802.15.
4z UWB Ranging Devices”. In: IEEE Internet of Things Journal (2021) (see p. 33).

[JZ05] Weijia Jia and Wanlei Zhou. “Reliability and replication techniques”. In: Distributed Network Systems:
From Concepts to Implementations (2005), pp. 213–254 (see p. 243).

[Kan+19] Runchang Kang et al. “Minuet: Multimodal Interaction with an Internet of Things”. In: Symposium on
Spatial User Interaction. SUI ’19. New Orleans, LA, USA: Association for Computing Machinery, 2019
(see p. 85).

[Kar+15] Vasileios Karagiannis et al. “A Survey on Application Layer Protocols for the Internet of Things”. In:
Transaction on IoT and Cloud Computing 3.1 (2015), pp. 11–17 (see pp. 34, 35).

[KC18] Byungseok Kang and Hyunseung Choo. “An experimental study of a reliable IoT gateway”. In: ICT
Express 4.3 (2018), pp. 130–133 (see p. 178).

[KD18] Puneet Kumar and Behnam Dezfouli. “Implementation and Analysis of QUIC for MQTT”. In: CoRR
abs/1810.07730 (2018) (see p. 34).

[Kev09] Ashton Kevin. “That ’Internet of Things’ Thing”. In: RFID journal (2009) (see pp. 21, 104, 278).

References 304

[KGC16] Megha Koshti, Sanjay Ganorkar, and L Chiari. “IoT Based Health Monitoring System by Using Rasp-
berry Pi and ECG Signal”. In: International Journal of Innovative Research in Science, Engineering and
Technology 5.5 (2016) (see p. 27).

[Kha+19] Kasem Khalil et al. “Self-healing hardware systems: A review”. In: Microelectronics Journal 93.August
(2019), p. 104620 (see p. 54).

[KHA17] Roland Kuhn, Brian Hanafee, and Jamie Allen. Reactive Design Patterns. 2017, p. 360 (see pp. 108, 109,
111, 113, 114, 173, 174, 179).

[Kim20] T. Kim. “Short Research on Voice Control System Based on Artificial Intelligence Assistant”. In: 2020
International Conference on Electronics, Information, and Communication (ICEIC). 2020, pp. 1–2 (see
p. 85).

[Kis+19] R. Kishore Kodali et al. “LowCost Smart Home Automation System using Smart Phone”. In: 2019 IEEE
R10 Humanitarian Technology Conference (R10-HTC)(47129). 2019, pp. 120–125 (see p. 84).

[KJP15] A. Krylovskiy, M. Jahn, and E. Patti. “Designing a Smart City Internet of Things Platform with Mi-
croservice Architecture”. In: 2015 3rd International Conference on Future Internet of Things and Cloud.
Aug. 2015, pp. 25–30 (see p. 41).

[KK16] Ruslan Kirichek and Andrey Koucheryavy. “Internet of Things Laboratory Test Bed”. In:Wireless Com-
munications, Networking and Applications: Proceedings ofWCNA 2014. Ed. byQing-AnZeng.NewDelhi:
Springer India, 2016, pp. 485–494 (see p. 97).

[Kle+14] Robert Kleinfeld et al. “Glue.Things: A Mashup Platform for Wiring the Internet of Things with the
Internet of Services”. In: Proceedings of the 5th International Workshop on Web of Things. WoT ’14. New
York, NY, USA: ACM, 2014, pp. 16–21 (see p. 78).

[Kle+19] Martin Kleppmann et al. “Local-First Software: YouOwnYour Data, in Spite of the Cloud”. In: Proceed-
ings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. Onward! 2019. Athens, Greece: Association for Computing Machinery,
2019, pp. 154–178 (see p. 29).

[KM16] Maninder Jeet Kaur and Piyush Maheshwari. “Building smart cities applications using IoT and cloud-
based architectures”. In: 2016 International Conference on Industrial Informatics and Computer Systems
(CIICS). IEEE. 2016, pp. 1–5 (see p. 25).

[KMB19] Barbara Kitchenham, Lech Madeyski, and Pearl Brereton. “Problems with Statistical Practice in
Human-Centric Software Engineering Experiments”. In: Proceedings of the Evaluation and Assessment
on Software Engineering. EASE ’19. New York, NY, USA: ACM, 2019, pp. 134–143 (see p. 249).

[Kni12] John Knight. Fundamentals of Dependable Computing for Software Engineers. 1st. Chapman&Hall/CRC,
2012 (see p. 47).

[Kol+17] C. Kolias et al. “DDoS in the IoT: Mirai and Other Botnets”. In: Computer 50.7 (2017), pp. 80–84 (see
p. 107).

[Koo11] Philip Koopman. Embedded Software Testing. Carnegie Mellon University, 2011 (see p. 97).

[Kop11] Hermann Kopetz. Real-Time Systems. Real-Time Systems Series. Boston, MA: Springer US, 2011,
pp. 307–323. eprint: 96332259 (see p. 120).

[KP10] Christian Kohls and Stefanie Panke. “Is that true...?” In: Proceedings of the 16th Conference on Pattern
Languages of Programs - PLoP ’09 January (2010), p. 1 (see pp. 140, 145, 146).

[KPG18] A Kertesz, T Pflanzner, and T Gyimothy. “A mobile IoT device simulator for IoT-Fog-Cloud systems”.
In: Journal of Grid Computing 17.3 (Oct. 2018), pp. 529–551 (see pp. 99, 100).

[Kru16] John Krumm. Ubiquitous computing fundamentals. Chapman and Hall/CRC, 2016 (see p. 25).

[KS18] Minhaj Ahmad Khan and Khaled Salah. “IoT security: Review, blockchain solutions, and open chal-
lenges”. In: Future Generation Computer Systems 82 (2018), pp. 395–411 (see p. 105).

96332259

References 305

[KSP20] M. Karthikeyan, T. S. Subashini, and M. S. Prashanth. “Implementation of Home Automation Using
Voice Commands”. In: Data Engineering and Communication Technology. Ed. by K. Srujan Raju et al.
Singapore: Springer Singapore, 2020, pp. 155–162 (see p. 85).

[Kub16] Thomas Kubitza. “Apps for Environments: Running Interoperable Apps in Smart Environments with
the meSchup IoT Platform”. In: International Workshop on Interoperability and Open-Source Solutions.
Springer. 2016, pp. 158–172 (see p. 76).

[Küs11] Jochen Küster. Foundations of Model-Driven Software Engineering. 2011 (see pp. 59, 60).

[KW17] M. Kessentini and M. Wimmer. “Guest Editorial Special Issue on Computational Intelligence for Soft-
ware Engineering and Services Computing”. In: IEEE Transactions on Emerging Topics in Computational
Intelligence 1.3 (June 2017), pp. 143–144 (see p. 8).

[Lag18] André Sousa Lago. “Exploring Complex EventManagement in Smart-Spaces through a Conversation-
Based Approach”. MA thesis. Porto: Faculty of Engineering, University of Porto, 2018 (see p. 258).

[Lai+19] Xiaozheng Lai et al. “IoT Implementation of kalman filter to improve accuracy of air quality monitor-
ing and prediction”. In: Applied Sciences 9.9 (2019), p. 1831 (see p. 176).

[Lan+19] D. Lan et al. “Latency Analysis of Wireless Networks for Proximity Services in Smart Home and Build-
ing Automation: The Case of Thread”. In: IEEE Access 7 (2019), pp. 4856–4867 (see p. 32).

[Lan20a] Marc Langheinrich. “Long Live the IoT”. In: IEEE Pervasive Computing 19.2 (2020), pp. 4–7 (see p. 278).

[Lan20b] H. Langley. The best Siri commands for controlling HomeKit and the Apple HomePod. [Online; accessed
Jan. 2020]. 2020 (see p. 85).

[Lap92] J. C. Laprie. “Dependability: Basic Concepts and Terminology”. In: Dependability: Basic Concepts and
Terminology: In English, French, German, Italian and Japanese. Ed. by J. C. Laprie. Vienna: Springer
Vienna, 1992, pp. 3–245 (see p. 9).

[Lar+17] Xabier Larrucea et al. “Software Engineering for the Internet of Things”. In: IEEE Software 34.1 (2017),
pp. 24–28 (see pp. 64, 92, 93).

[Lau+91] D Lau-Kee et al. “VPL: an active, declarative visual programming system”. In: Proceedings 1991 IEEE
Workshop on Visual Languages (1991), pp. 40–46 (see p. 59).

[LB16] Huichen Lin and Neil W Bergmann. “IoT privacy and security challenges for smart home environ-
ments”. In: Information 7.3 (2016), p. 44 (see p. 67).

[LD18] Chia-Chi Li and Behnam Dezfouli. “ProCal: A Low-Cost and Programmable Calibration Tool for IoT
Devices”. In: Internet of Things – ICIOT 2018. Ed. by Dimitrios Georgakopoulos and Liang-Jie Zhang.
Cham: Springer International Publishing, 2018, pp. 88–105 (see pp. 180, 181).

[LDF21] André Sousa Lago, João Pedro Dias, and Hugo Sereno Ferreira. “Managing non-trivial internet-of-
things systems with conversational assistants: A prototype and a feasibility experiment”. In: Journal of
Computational Science 51 (2021), p. 101324 (see pp. 258, 285, 323).

[Le+06] Franck Le et al. “Minerals: using data mining to detect router misconfigurations”. In: Proceedings of the
2006 SIGCOMM workshop on Mining network data. 2006, pp. 293–298 (see p. 165).

[Lea+12] YuBeng Leau et al. “Software development life cycle AGILE vs traditional approaches”. In: International
Conference on Information and Network Technology. Vol. 37. 1. IACSIT Press, 2012, pp. 162–167 (see
p. 56).

[Leo+18] Maurizio Leotta et al. “Towards a Runtime Verification Approach for Internet of Things Systems”.
In: Proceedings of the International Conference on Web Engineering. Vol. 11153. Springer International
Publishing, 2018, pp. 83–96 (see p. 121).

[LHK16] Steve Liang, Chih-YuanHuang, andTaniaKhalafbeigi.OGCSensorThings API. Tech. rep.OpenGeospa-
tial Consortium, 2016 (see pp. 44, 45).

References 306

[Li+17] Toby Jia-Jun Li et al. “Programming IoT Devices by Demonstration Using Mobile Apps”. In: End-User
Development. Ed. by Simone Barbosa et al. Cham: Springer International Publishing, 2017, pp. 3–17
(see p. 76).

[Li+19] Guangpu Li et al. “DFix: Automatically Fixing Timing Bugs in Distributed Systems”. In: Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. Pldi 2019.
New York, NY, USA: Association for Computing Machinery, 2019, pp. 994–1009 (see p. 167).

[Lin+04] Wang Linzhang et al. “Generating test cases from UML activity diagram based on gray-box method”.
In: Software Engineering Conference, 2004. 11th Asia-Pacific. IEEE. IEEE, 2004, pp. 284–291 (see p. 62).

[Lin+13] Yuanxin Lin et al. “Design and implementation of remote/short-range smart homemonitoring system
based on ZigBee and STM32”. In: Journal of Applied Sciences, Engineering and Technology 5 (2013),
pp. 2792–2798 (see p. 28).

[Lin+17] Jie Lin et al. “A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Pri-
vacy, andApplications”. In: IEEE Internet of Things Journal 4.5 (2017), pp. 1125–1142. arXiv: 1305.0982
(see p. 40).

[Lin+19] Yi-Bing Lin et al. “SensorTalk: An IoT device failure detection and calibration mechanism for smart
farming”. In: Sensors 19.21 (2019), p. 4788 (see p. 181).

[LL03] Philip Levis and Nelson Lee. “Tossim: A simulator for tinyos networks”. In: UC Berkeley, September 24
(2003) (see p. 99).

[LLD18] Yongxin Liao, Eduardo De Freitas Rocha Loures, and Fernando Deschamps. “Industrial Internet of
Things: A Systematic Literature Review and Insights”. In: IEEE Internet of Things Journal 5.6 (2018),
pp. 4515–4525 (see pp. 5, 22).

[Loo+12] Vilen Looga et al. “Mammoth: A massive-scale emulation platform for internet of things”. In: Cloud
Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference on. Vol. 3. IEEE. Oct.
2012, pp. 1235–1239 (see p. 98).

[Lot08] Tony Loton. Introduction to Microsoft Popfly, No Programming Required. Lotontech Limited, 2008 (see
p. 61).

[Lou+19] Pedro Lourenço et al. “CloudCity: A Live Environment for theManagement of Cloud Infrastructures”.
In: Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engi-
neering — Volume 1: ENASE. INSTICC. SciTePress, 2019, pp. 27–36 (see pp. 333, 334).

[Lou+20] Pedro Lourenço et al. “Experimenting with Liveness in Cloud Infrastructure Management”. In: Com-
munications in Computer and Information Science 1172 (2020) (see p. 331).

[LQG18] Gustavo López, Luis Quesada, and Luis A. Guerrero. “Alexa vs. Siri vs. Cortana vs. Google Assistant:
A Comparison of Speech-Based Natural User Interfaces”. In: Advances in Human Factors and Systems
Interaction. Ed. by Isabel L. Nunes. Cham: Springer International Publishing, 2018, pp. 241–250 (see
pp. 84, 259, 268).

[Lu+17] D. Lu et al. “A Secure Microservice Framework for IoT”. In: 2017 IEEE Symposium on Service-Oriented
System Engineering (SOSE). Apr. 2017, pp. 9–18 (see p. 41).

[Luk+17] Daimler AG Lukas Reinfurt et al. “Internet of Things Security Patterns”. In: Conference Proceedings of
the 24rd Conference Pattern Languages of Programs (2017) (see pp. 66, 67).

[LY02] Kalle Lyytinen and Youngjin Yoo. “Ubiquitous computing”. In: Communications of the ACM 45.12
(2002), pp. 63–96 (see p. 25).

[LZZ14] Guohong Li, Wenjing Zhang, and Yi Zhang. “A design of the IOT gateway for agricultural greenhouse”.
In: Sensors & Transducers 172.6 (2014), p. 75 (see p. 28).

[Maa+19] Zakaria Maamar et al. “Towards a seamless coordination of cloud and fog: illustration through the
internet-of-things”. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. ACM.
2019, pp. 2008–2015 (see p. 29).

https://arxiv.org/abs/1305.0982

References 307

[Mag15] L Magnoni. “Modern Messaging for Distributed Sytems”. In: Journal of Physics: Conference Series 608
(May 2015), p. 12038 (see p. 35).

[Mai+15] L. Mainetti et al. “Web of Topics: An IoT-aware model-driven designing approach”. In: 2015 IEEE 2nd
World Forum on Internet of Things (WF-IoT). Dec. 2015, pp. 46–51 (see p. 73).

[Man+19] Marco Manca et al. “Supporting end-user debugging of trigger-action rules for IoT applications”. In:
International Journal of Human-Computer Studies 123 (2019), pp. 56–69 (see p. 86).

[Mar+17] Mohsen Marjani et al. “Big IoT data analytics: architecture, opportunities, and open research chal-
lenges”. In: ieee access 5 (2017), pp. 5247–5261 (see p. 105).

[Mar+19] T. Martin et al. Every Google Assistant command to give your Nest speaker or display. [Online; accessed
January 2020]. 2019 (see p. 85).

[Mar05] Toni Marinucci. “Characterization and Development of Distributed, Adaptive Real-Time Systems”.
PhD thesis. Ohio University, 2005 (see p. 170).

[Mat+20] Tiago Matias et al. “Determining Microservice Boundaries: A Case Study Using Static and Dynamic
Software Analysis”. In: European Conference on Software Architecture. Springer. 2020, pp. 315–332 (see
p. 217).

[Max+07] E Michael Maximilien et al. “A domain-specific language for web apis and services mashups”. In: In-
ternational Conference on Service-Oriented Computing. Springer. 2007, pp. 13–26 (see p. 61).

[MB19] RedowanMahmud andRajkumar Buyya. “Modeling and Simulation of Fog andEdgeComputing Envi-
ronments Using iFogSimToolkit”. In: Fog and Edge Computing. JohnWiley & Sons, Ltd, 2019. Chap. 17,
pp. 433–465 (see p. 99).

[MBF02] Stephen J Mellor, Marc Balcer, and Ivar Foreword By-Jacoboson. Executable UML: A foundation for
model-driven architectures. Addison-Wesley Longman Publishing Co., Inc., 2002 (see p. 59).

[MD97] Gerard Meszaros and Jim Doble. “Pattern Languages of Program Design”. In: (1997). Ed. by Robert C.
Martin, Dirk Riehle, and Frank Buschmann, pp. 529–574 (see p. 57).

[MHF17] Brice Morin, Nicolas Harrand, and Franck Fleurey. “Model-Based Software Engineering to Tame the
IoT Jungle”. In: IEEE Software 34.1 (2017), pp. 30–36 (see pp. 93, 137).

[Mi+17] XianghangMi et al. “An empirical characterization of IFTTT: ecosystem, usage, and performance”. In:
Proceedings of the 2017 Internet Measurement Conference. 2017, pp. 398–404 (see pp. 86, 124).

[Mic19] Microsoft. IoT Signals – Summary of Research Learnings. Tech. rep. Microsoft, 2019 (see pp. 5, 7, 37, 38,
136).

[Mik18] Greg Williams Mike Karlesky Mark VanderVoord. Unity Test API. 2018. url: https://github.com/
ThrowTheSwitch/Unity#unity-test-api (visited on 02/19/2018) (see p. 98).

[Min+16] Julien Mineraud et al. “A gap analysis of Internet-of-Things platforms”. In: Computer Communications
89-90 (2016), pp. 5–16. arXiv: 1502.01181 (see pp. 70, 92, 199).

[Mis11] Jibitesh Mishra. Software Engineering. Pearson Education India, 2011 (see p. 6).

[Mit18] Martin Mitrevski. “Conversational interface challenges”. In: Developing Conversational Interfaces for
iOS. Springer, 2018, pp. 217–228 (see pp. 84, 259).

[MK16] N. Mohan and J. Kangasharju. “Edge-Fog cloud: A distributed cloud for Internet of Things computa-
tions”. In: 2016 Cloudification of the Internet of Things (CIoT). Nov. 2016, pp. 1–6 (see p. 200).

[ML15] MortezaMohammadi Zanjireh andHadi Larijani. “A Survey onCentralised andDistributedClustering
Routing Algorithms forWSNs”. In: IEEE Vehicular Technology Conference. Vol. 2015.May 2015, pp. 1–6
(see p. 37).

[MM01] Timothy F Masterson and RMark Meyer. “Sivil : a True Visual Programming Language for Students”.
In: Journal of Computing in Small Colleges 4.May 2001 (2001), pp. 74–86 (see p. 59).

https://github.com/ThrowTheSwitch/Unity#unity-test-api
https://github.com/ThrowTheSwitch/Unity#unity-test-api
https://arxiv.org/abs/1502.01181

References 308

[MM18] HenryMuccini andMahyar TourchiMoghaddam. IoT Architectural Styles: A Systematic Mapping Study.
Springer International Publishing, 2018, pp. 68–85 (see pp. 41, 42).

[MM21] Amir Makhshari and Ali Mesbah. “IoT Bugs and Development Challenges”. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). 2021, pp. 460–472 (see p. 278).

[Moc+17] Kentaro Mochizuki et al. “Development and field experiment of wide area Wi-SUN system based on
IEEE 802.15.4g”. In: 2016 IEEE 3rd World Forum on Internet of Things, WF-IoT 2016 (2017), pp. 76–81
(see p. 33).

[Mon20] MongoDB, Inc.MongoDB. 2020 (see p. 265).

[MPM20] Jefferson Seide Molléri, Kai Petersen, and Emilia Mendes. “An empirically evaluated checklist for sur-
veys in software engineering”. In: Information and Software Technology 119 (2020), p. 106240 (see
p. 124).

[MR16] R. Matei and A. Radovici. “Remote management system for embedded devices: Wyliodrin”. In: 2016
15th RoEduNet Conference: Networking in Education and Research. Sept. 2016, pp. 1–5 (see p. 76).

[MRG18] Armin Moin, Stephan Rössler, and Stephan Günnemann. “ThingML+: Augmenting Model-Driven
Software Engineering for the Internet of Things with Machine Learning”. In: ArXiv (2018) (see p. 74).

[Muc+18] HenryMuccini et al. “Self-adaptive IoT architectures: An emergency handling case study”. In: Proceed-
ings of the 12th European Conference on Software Architecture: Companion Proceedings. 2018, pp. 1–6 (see
p. 53).

[Mun+13] SirajumMunir et al. “Cyber Physical SystemChallenges forHuman-in-the-LoopControl”. In:Presented
as part of the 8th International Workshop on Feedback Computing. San Jose, CA: USENIX, 2013, pp. 777–
780 (see p. 25).

[Mur04] Richard Murch. Autonomic Computing. IBM Press, 2004 (see pp. 56, 103).

[Mur19] MatthewMurdoch. ArduinoUnit - ArduinoUnit is a unit testing framework for Arduino libraries. [Online;
accessed 2019]. 2019 (see p. 98).

[MZ14] K. Misura andM. Zagar. “Internet of things cloud mediator platform”. In: 2014 37th International Con-
vention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). May
2014, pp. 1052–1056 (see p. 42).

[MZU16] Usama Mehboob, Qasim Zaib, and Chaudhry Usama. Survey of IoT Communication Protocols Tech-
niques, Applications, and Issues. 2016 (see pp. 32–35).

[NAA+18] Mohammed Islam NAAS et al. “A Graph Partitioning-Based Heuristic for Runtime IoT Data Place-
ment Strategies in a Fog Infrastructure”. In: Proceedings of the 33rd Annual ACM Symposium on Applied
Computing. SAC ’18. New York, NY, USA: Association for Computing Machinery, 2018, pp. 767–774
(see p. 81).

[NAG19] Mahda Noura, Mohammed Atiquzzaman, andMartin Gaedke. “Interoperability in Internet of Things:
Taxonomies and Open Challenges”. In:Mobile Networks and Applications 24.3 (June 2019), pp. 796–809
(see pp. 37, 45).

[Nai17a] N. Naik. “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP”.
In: 2017 IEEE International Systems Engineering Symposium (ISSE). Oct. 2017, pp. 1–7 (see pp. 34, 36,
202).

[Nai17b] Nitin Naik. “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and
HTTP”. In: 2017 IEEE international systems engineering symposium (ISSE). IEEE. 2017, pp. 1–7 (see
p. 42).

[NAS20] "NASA/JPL-Caltech". Voyager 2 Returns to Normal Operations. [Online; accessed 2020]. "NASA/JPL-
Caltech", 2020 (see p. xx).

References 309

[NBB14] Agneta Nilsson, Jan Bosch, and Christian Berger. “Visualizing testing activities to support continuous
integration: Amultiple case study”. In: International Conference on Agile Software Development. Springer.
Springer, 2014, pp. 171–186 (see p. 156).

[ND18] StefanNastic and SchahramDustdar. “Towards deviceless edge computing: Challenges, design aspects,
and models for serverless paradigm at the edge”. In: The Essence of Software Engineering. Springer,
Cham, 2018, pp. 121–136 (see pp. 184, 185).

[Nei+14] Ricardo Neisse et al. “A model-based security toolkit for the internet of things”. In: 2014 Ninth Inter-
national Conference on Availability, Reliability and Security. IEEE. 2014, pp. 78–87 (see p. 74).

[Neu09] Peter G. Neumann. “Computer-related risk futures”. In: Proceedings - Annual Computer Security Appli-
cations Conference, ACSAC (2009), pp. 35–40 (see p. 46).

[Neu20] Peter G. Neumann. The RISKS Digest — Forum on Risks to the Public in Computers and Related Systems.
[Online; accessed Nov. 2020]. Nov. 2020 (see pp. 12, 278).

[Ni+09] Kevin Ni et al. “Sensor network data fault types”. In: ACM Transactions on Sensor Networks 5.3 (2009),
pp. 1–29 (see pp. 162, 234, 235).

[Noo+19] Joseph Noor et al. “DDFlow: Visualized declarative programming for heterogeneous IoT networks”.
In: IoTDI 2019 - Proceedings of the 2019 Internet of Things Design and Implementation. IoTDI ’19. New
York, NY, USA: ACM, 2019, pp. 172–177 (see pp. 79, 80, 82, 83, 95).

[Nor16] Amy Nordrum. Popular Internet of Things Forecast of 50 Billion Devices by 2020 Is Outdated. Oct. 2016.
url: https://goo.gl/EnE3td (visited on 12/13/2017) (see p. 23).

[npm21] inc." "npm. NPM. [Online; accessed 2021]. "npm, inc.", 2021 (see p. 87).

[NR68] P. Naur and B. Randell. “Software Engineering: Report of a Conference Sponsored by the NATO Sci-
ence Committee”. In: NATO Software Engineering Conference October 1968 (1968), p. 231 (see p. 6).

[OLe20] Nick O’Leary.What’s next with Node-RED? [Online; accessed 2021]. 2020 (see pp. 87, 89, 90, 94, 286).

[ONe+16] Maire ONeill et al. “Insecurity by design: Todays IoT device security problem”. In: Engineering 2.1
(2016), pp. 48–49 (see p. 107).

[Ope19a] OpenJS Foundation. Node-RED Community Survey. Tech. rep. OpenJS Foundation, 2019 (see p. 135).

[Ope19b] OpenJS Foundation. Node-RED, Flow-based programming for the Internet of Things. [Online; accessed
2019]. 2019 (see pp. 18, 77, 87, 88, 135, 200).

[Ope21] OpenHAB Community and the OpenHAB Foundation e.V. openHAB — empowering the smart home.
[Online; accessed 2021]. 2021 (see p. 87).

[ORe16] Gerard (Cornelius Gerard) O’Regan. Introduction to the history of computing : a computing history primer.
2016, p. 296 (see pp. 2, 3).

[Ost02] Thomas Ostrand. “White-Box Testing”. In: Encyclopedia of Software Engineering (2002) (see pp. 59, 62).

[Par19] "Particle". Particle: Welcome to the Particle Docs. [Online; accessed 2019]. "Particle", 2019 (see p. 27).

[Par21] Inc. Particle Industries. Particle IDE. [Online; accessed 2021]. 2021 (see pp. 70, 93).

[Pat+11] A Patel et al. “Autonomic agent-based self-managed intrusion detection and prevention system”. In:
Proceedings of the South African Information Security Multi-Conference (SAISMC 2010). 2011, pp. 223–
234 (see p. 119).

[PC13] Christian Prehofer and Luca Chiarabini. “From IoTMashups to Model-based IoT”. In:W3CWorkshop
on the Web of Things (2013) (see pp. 62, 68, 258).

[PC15] Christian Prehofer and Luca Chiarabini. “From Internet of things mashups to model-based develop-
ment”. In: Proceedings - International Computer Software and Applications Conference 3 (2015), pp. 499–
504 (see pp. 77, 94, 95).

https://goo.gl/EnE3td

References 310

[PCB18] A. S. Prokhorov,M. A. Chudinov, and S. E. Bondarev. “Control systems software implementation using
open source SCADA-system OpenSCADA”. In: 2018 IEEE Conference of Russian Young Researchers in
Electrical and Electronic Engineering (EIConRus). Jan. 2018, pp. 220–222 (see p. 70).

[PD11] Harald Psaier and Schahram Dustdar. “A survey on self-healing systems: Approaches and systems”. In:
Computing (Vienna/New York) 91.1 (2011), pp. 43–73 (see pp. 4, 51, 55, 119, 121, 137, 174, 175, 218,
219).

[PDC20] Bruno Piedade, Joao Pedro Dias, and Filipe F. Correia. “An Empirical Study on Visual Programming
Docker Compose Configurations”. In: Proceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings. MODELS ’20. Virtual Event,
Canada: Association for Computing Machinery, 2020 (see p. 332).

[PDM19] D. Priest, T. Dyson, and T. Martin. Every Alexa command to give your Amazon Echo smart speaker or
display. [Online; accessed January 2020]. 2019 (see p. 85).

[PDR18] José Pedro Pinto, João PedroDias, andR. J. F. Rossetti. “Growing SmartCities on anOpen-Data-Centric
Cyber-Physical Platform”. In: 2018 IEEE International Smart Cities Conference (ISC2). Sept. 2018, pp. 1–
6 (see pp. 334, 335).

[PDS18] D. Pinto, João Pedro Dias, and Hugo Sereno Ferreira. “Dynamic Allocation of Serverless Functions in
IoTEnvironments”. In: 2018 IEEE 16th International Conference on Embedded andUbiquitous Computing
(EUC). Oct. 2018, pp. 1–8 (see pp. 184, 284, 329).

[PDS20] Guilherme Vieira Pinto, João Pedro Dias, and Hugo Sereno Ferreira. “Blockchain-Based PKI for
Crowdsourced IoT Sensor Information”. In: Proceedings of the Tenth International Conference on Soft
Computing and Pattern Recognition (SoCPaR 2018). Ed. by Ana Maria Madureira et al. Cham: Springer
International Publishing, 2020, pp. 248–257 (see p. 328).

[Pen20] Sheng-lung Peng. Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. Ed. by Sheng-Lung
Peng, Souvik Pal, and Lianfen Huang. Vol. 174. Intelligent Systems Reference Library. Cham: Springer
International Publishing, 2020 (see p. 28).

[Per+12] Charith Perera et al. “Ca4iot: Context awareness for internet of things”. In: 2012 IEEE International
Conference on Green Computing and Communications. IEEE. 2012, pp. 775–782 (see p. 104).

[Pet02] Marian Petre. “Mental imagery, visualisation tools and team work”. In: Proceedings of the Second Pro-
gram Visualization Workshop. June 2002, pp. 3–14 (see p. 94).

[Pfl+16] T. Pflanzner et al. “MobIoTSim: Towards a mobile IoT device simulator”. In: Proceedings - 2016 4th
International Conference on Future Internet of Things and Cloud Workshops, W-FiCloud 2016 (2016),
pp. 21–27 (see p. 99).

[Pin18] Duarte Manuel Ribeiro Pinto. “Serverless architectural design for IoT systems”. MA thesis. Porto: Fac-
ulty of Engineering, University of Porto, 2018 (see p. 184).

[PIS17] P. Patel, M. Intizar Ali, and A. Sheth. “On Using the Intelligent Edge for IoT Analytics”. In: IEEE Intel-
ligent Systems 32.5 (2017), pp. 64–69 (see p. 199).

[PJ21] Vaishali S Phalake and Shashank D Joshi. “Low Code Development Platform for Digital Transforma-
tion”. In: Information and Communication Technology for Competitive Strategies (ICTCS 2020). Springer,
2021, pp. 689–697 (see p. 14).

[PK16] Tamás Pflanzner and Attila Kertész. “A survey of IoT cloud providers”. In: 2016 39th International
Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).
IEEE. 2016, pp. 730–735 (see p. 25).

[PK19] Alexander Power and Gerald Kotonya. “Providing Fault Tolerance via Complex Event Processing and
Machine Learning for IoT Systems”. In: Proceedings of the 9th International Conference on the Internet
of Things. IoT 2019. Bilbao, Spain: Association for Computing Machinery, 2019 (see p. 162).

References 311

[PKB15] Vamsikrishna Patchava, Hari Babu Kandala, and P Ravi Babu. “A smart home automation technique
with raspberry pi using iot”. In: 2015 International Conference on Smart Sensors and Systems (IC-SSS).
IEEE. 2015, pp. 1–4 (see p. 27).

[Pla19] "PlatformIO". PlatformIO: An open source ecosystem for IoT development. [Online; accessed 2019]. "Plat-
formIO", 2019 (see pp. 69, 92, 98).

[PLF18] Pedro Martins Pontes, Bruno Lima, and João Pascoal Faria. “Izinto: a pattern-based IoT testing frame-
work”. In:Companion Proceedings for the ISSTA/ECOOP 2018Workshops. ACM. 2018, pp. 125–131 (see
pp. 103, 160, 162, 219).

[PQW10] Ahmed Patel, Qais Qassim, and Christopher Wills. “A survey of intrusion detection and prevention
systems”. In: Information Management & Computer Security (2010) (see p. 119).

[Pre+09] Mirko Presser et al. “The SENSEI project: Integrating the physical world with the digital world of the
network of the future”. In: IEEE Communications Magazine 47.4 (2009), pp. 1–4 (see p. 43).

[Pre+16] Alexandros Preventis et al. “IoT-A and FIWARE: Bridging the Barriers between the Cloud and IoT
Systems Design and Implementation.” In: CLOSER (2). 2016, pp. 146–153 (see pp. 42, 43).

[Pre01] Roger S. Pressman. Software Engineering: A Practitioner’s Approach. 5th. McGraw-Hill Higher Educa-
tion, 2001 (see p. 49).

[Pro+99] Stacy J. Prowell et al. Cleanroom Software Engineering: Technology and Process. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999 (see p. 6).

[Pro17] Open Web Application Security Project. Tester IoT Security Guidance. 2017. url: https : / / www .
owasp.org/index.php/OWASP_Internet_of_Things_Project (visited on 12/27/2017) (see
pp. 102, 107).

[Pro19] "AT&T Intellectual Property". AT&T Flow – Design and build solutions for the Internet of Things. [Online;
accessed 2019]. "AT&T Intellectual Property", 2019 (see p. 76).

[Pru07] Mark Pruett. Yahoo! pipes. O’Reilly, 2007 (see p. 61).

[Pu11] Calton Pu. “A World of Opportunities: CPS, IOT, and Beyond”. In: Proceedings of the 5th ACM Interna-
tional Conference on Distributed Event-Based System. DEBS ’11. New York, New York, USA: Association
for Computing Machinery, 2011, pp. 229–230 (see p. 1).

[Pul01] Laura L. Pullum. Software Fault Tolerance - Techniques and Implementation. 2001, p. 343 (see p. 287).

[Pyc21] Pycom. Pymakr — IDE plugin for MicroPython. [Online; accessed 2021]. 2021 (see pp. 70, 93).

[Qan+16] Soheil Qanbari et al. “IoT design patterns: Computational constructs to design, build and engineer edge
applications”. In: Proceedings - 2016 IEEE 1st International Conference on Internet-of-Things Design and
Implementation, IoTDI 2016 (2016), pp. 277–282 (see pp. 66, 67, 157).

[Qin+14] Zhijing Qin et al. “A software defined networking architecture for the internet-of-things”. In: 2014
IEEE network operations and management symposium (NOMS). IEEE. 2014, pp. 1–9 (see p. 37).

[Qin+16] Yongrui Qin et al. “When things matter: A survey on data-centric internet of things”. In: Journal of
Network and Computer Applications 64 (2016), pp. 137–153 (see p. 105).

[Qin+19] ZhuQingyi et al. “Applications ofDistributed LedgerTechnologies to the Internet of Things: A Survey”.
In: ACM Computing Surveys 52 (Nov. 2019), pp. 1–34 (see p. 103).

[Rah+17] A. Rahmati et al. “IFTTT vs. Zapier: A Comparative Study of Trigger-Action Programming Frame-
works”. In: ArXiv abs/1709.02788 (2017) (see p. 68).

[Raj+18] B Rajesh et al. “A study on onion omega 2 plus IOT device in weather application”. In: Journal of Ad-
vanced Research in Dynamical and Control Systems 10.3 Special Issue (2018), pp. 196–200 (see p. 27).

[Ram+17] Antonio Ramadas, Gil Domingues, Joao Pedro Dias, Ademar Aguiar, and Hugo Sereno Ferreira. “Pat-
terns for Things that Fail”. In: Proceedings of the 24th Conference on Pattern Languages of Programs. PLoP
’17. ACM - Association for ComputingMachinery, 2017 (see pp. 121, 144, 151, 156, 167, 204, 265, 284,
330).

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project

References 312

[Ran+17] L Paul Jasmine Rani et al. “Dynamic traffic management system using infrared (IR) and Internet of
Things (IoT)”. In: 2017 Third International Conference on Science Technology Engineering &Management
(ICONSTEM). IEEE. 2017, pp. 353–357 (see p. 34).

[Rat+19] D. Ratasich et al. “A Roadmap Toward the Resilient Internet of Things for Cyber-Physical Systems”.
In: IEEE Access 7 (2019), pp. 13260–13283 (see p. 12).

[Raw+18] Reza Rawassizadeh et al. “NoCloud: ExploringNetworkDisconnection throughOn-DeviceData Anal-
ysis”. In: IEEE Pervasive Computing 17 (Mar. 2018) (see pp. 184, 199).

[Ray16] Partha Pratim Ray. “A survey of IoT cloud platforms”. In: Future Computing and Informatics Journal 1.1
(2016), pp. 35–46 (see pp. 25, 26).

[Ray17] Partha Pratim Ray. “A Survey on Visual Programming Languages in Internet of Things”. In: Scientific
Programming 2017 (2017), pp. 1–6 (see pp. 31, 35, 44, 59, 75, 76, 91, 93, 136, 258).

[Ray18] P.P. Ray. “A survey on Internet of Things architectures”. In: Journal of King Saud University - Computer
and Information Sciences 30.3 (2018), pp. 291–319 (see pp. 29, 37).

[Rei+16] Lukas Reinfurt et al. “Internet of things patterns”. In: 21st European Conference on Pattern Languages of
Programs - EuroPlop ’16 (2016), pp. 1–21 (see pp. 66, 67, 119, 144, 154, 168, 174, 180).

[Rei+17a] Lukas Reinfurt et al. “Internet of Things Patterns for Device Bootstrapping and Registration”. In: Pro-
ceedings of the 22nd European Conference on Pattern Languages of Programs. ACM. ACM, 2017, p. 15 (see
pp. 66, 67, 144, 147).

[Rei+17b] Lukas Reinfurt et al. “Internet of things patterns for devices”. In:Ninth international Conferences on Per-
vasive Patterns and Applications (PATTERNS) 2017. EuroPlop16. New York, NY, USA: Xpert Publishing
Services (XPS), 2017, pp. 117–126 (see pp. 66, 67, 144).

[Rei+17c] Lukas Reinfurt et al. “Internet of Things Patterns for Devices: Powering, Operating, and Sensing”. In:
International Journal on Advances in Internet Technology (2017), pp. 106–123 (see pp. 66, 67, 144).

[Rei13] Stefan Reichhard. UPnP and DPWS. Tech. rep. Technical University of Vienna, 2013 (see p. 35).

[Res+09] Mitchel Resnick et al. “Scratch: Programming for all.” In:Communications of ACM 52.11 (2009), pp. 60–
67 (see p. 75).

[Rey+13] Carlos Rey-Moreno et al. “Experiences, challenges and lessons from rolling out a rural WiFi mesh
network”. In: Proceedings of the 3rd ACM Symposium on Computing for Development. 2013, pp. 1–10
(see p. 33).

[Ric04] Richard Murch. Autonomic Computing. Prentice Hall PTR, 2004, p. 336 (see pp. 51–53).

[Ric17] Chris Richardson. A pattern language for microservices.(2017). 2017 (see pp. 41, 66).

[Ric18] Chris Richardson.Microservices Patterns: With examples in Java. Manning, 2018 (see p. 66).

[Rie+01] Dirk Riehle et al. “The architecture of a UML virtual machine”. In: International Conference on Object
Oriented Programming Systems Languages and Applications (OOSPLA) (2001), pp. 327–341 (see p. 60).

[Ris98] Linda Rising. The patterns handbook: Techniques, strategies, and applications. Cambridge University
Press, 1998 (see p. 156).

[RK15] Jari Rauhamäki and Seppo Kuikka. “Patterns for Control System Safety”. In: Proceedings of the 18th
European Conference on Pattern Languages of Program. EuroPLoP ’13. New York, NY, USA: Association
for Computing Machinery, 2015 (see pp. 160, 177, 179).

[RM12] Andreas Rümpel and Klaus Meißner. “Requirements-driven quality modeling and evaluation in web
mashups”. In: 2012 Eighth International Conference on the Quality of Information and Communications
Technology. IEEE. 2012, pp. 319–322 (see p. 61).

[Ros+20] Thomas Rosenstatter et al. “REMIND: A Framework for the Resilient Design of Automotive Systems”.
In: 2020 IEEE Secure Development (SecDev). 2020, pp. 81–95 (see p. 117).

References 313

[RR12] K. Ravindran and M. Rabby. “Protocol-level reconfigurations for infusion of resilience in distributed
network services”. In: 2012 IEEE Network Operations and Management Symposium. 2012, pp. 1207–
1213 (see p. 173).

[RS17] A. Rajalakshmi and H. Shahnasser. “Internet of Things using Node-Red and alexa”. In: 2017 17th Inter-
national Symposium on Communications and Information Technologies (ISCIT) (Sept. 2017), pp. 1–4 (see
p. 85).

[RT17] Biljana L. Risteska Stojkoska and Kire V. Trivodaliev. “A review of Internet of Things for smart home:
Challenges and solutions”. In: Journal of Cleaner Production 140 (2017), pp. 1454–1464 (see pp. 105,
106).

[RTS10] Leah Muthoni Riungu, Ossi Taipale, and Kari Smolander. “Research issues for software testing in the
cloud”. In: Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Con-
ference on. IEEE. IEEE, 2010, pp. 557–564 (see p. 97).

[Rue18] Jim Ruehlin.Continuous delivery and iterative development for Internet of Things projects. 2018 (see p. 67).

[SA16] Rohini Shete and Sushma Agrawal. “IoT based urban climate monitoring using Raspberry Pi”. In: 2016
International Conference on Communication and Signal Processing (ICCSP). IEEE. 2016, pp. 2008–2012
(see p. 27).

[SAA16] Abhimanyu Singh, Pankhuri Aggarwal, and Rahul Arora. “IoT based waste collection system using
infrared sensors”. In: 2016 5th International Conference on Reliability, Infocom Technologies and Opti-
mization (Trends and Future Directions)(ICRITO). IEEE. 2016, pp. 505–509 (see p. 34).

[SAA21] Aymen J Salman,Mohammed Al-Jawad, andWisam Al Tameemi. “Domain-Specific Languages for IoT:
Challenges and Opportunities”. In: IOP Conference Series: Materials Science and Engineering. Vol. 1067.
1. IOP Publishing. 2021, p. 012133 (see p. 74).

[Sae+21] Raghdah Saemaldahr et al. “Reference Architectures for the IoT: A Survey”. In: Innovative Systems for
Intelligent Health Informatics. Ed. by Faisal Saeed, FatheyMohammed, and Abdulaziz Al-Nahari. Cham:
Springer International Publishing, 2021, pp. 635–646 (see pp. 42, 43).

[Sal+15] A. Salihbegovic et al. “Design of a domain specific language and IDE for Internet of things applications”.
In: 2015 38th International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO). 2015, pp. 996–1001 (see p. 73).

[Sam16] Tariq Samad. “Control Systems and the Internet of Things [Technical Activities]”. In: IEEE Control
Systems 36.1 (2016), pp. 13–16 (see p. 55).

[San+14] Luis Sanchez et al. “SmartSantander: IoT experimentation over a smart city testbed”. In: Computer
Networks 61 (2014), pp. 217–238 (see p. 98).

[Sar02] Titos Saridakis. “A Systemof Patterns for Fault Tolerance”. In: Proceedings of 2002 EuroPLoP Conference.
2002 (see pp. 160, 164, 166, 173, 179).

[SAZ17] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. “Continuous Integration, Delivery and De-
ployment: A Systematic Review on Approaches, Tools, Challenges and Practices”. In: IEEE Access 5.Ci
(2017), pp. 3909–3943 (see p. 66).

[SB08] N. Vinod Sarma and Srinivas Rao Bhagavatula. “Freeway Patterns for SOA Systems”. In: Proceedings
of the 15th Conference on Pattern Languages of Programs. PLoP ’08. New York, NY, USA: ACM, 2008,
6:1–6:10 (see pp. 152, 154).

[SBC20] Jan Seeger, Arne Bröring, and Georg Carle. “Optimally Self-Healing IoT Choreographies”. In: ACM
Transactions on Internet Technology 20.3 (July 2020) (see pp. 10, 121).

[SCF15] Tiago Boldt Sousa, Filipe Figueiredo Correia, and Hugo Sereno Ferreira. “Patterns for Software Or-
chestration on the Cloud”. In: Proceedings of the 22nd Conference on Pattern Languages of Programs.
PLoP ’15. USA: The Hillside Group, 2015, 17:1–17:12 (see pp. 66, 67, 157).

[Sch02] C.R. Schoenberger. The internet of things. [Online; accessed Nov. 2020]. 2002 (see p. 21).

References 314

[Sch06] Douglas C Schmidt. “Model-Driven Engineering”. In: IEEE Computer 39.2 (2006), pp. 25–31 (see p. 59).

[Scu18] Padraig Scully. The Top 10 IoT Segments in 2018 – based on 1,600 real IoT projects. [Online; accessed 15
May 2018]. 2018 (see p. 24).

[Sei+14] Ronny Seiger et al. “Modelling Complex and Flexible Processes for Smart Cyber-physical Environ-
ments”. In: Journal of Computational Science 10 (Aug. 2014) (see p. 258).

[Sei+19] Ronny Seiger et al. “Toward a framework for self-adaptive workflows in cyber-physical systems”. In:
Software and Systems Modeling 18.2 (2019), pp. 1117–1134 (see p. 53).

[Sei17] Niels Seidel. “Empirical Evaluation Methods for Pattern Languages: Sketches, Classification, and Net-
work Analysis”. In: EuroPLoP ’17. Irsee, Germany: Association for Computing Machinery, 2017 (see
pp. 144, 146).

[Sem20] "Nordic Semiconductor".Nordic Semiconductor. [Online; accessed 2020]. "Nordic Semiconductor", 2020
(see p. 28).

[Sen+19] Joanna Sendorek et al. “FogFlow - Computation Organization for Heterogeneous Fog Computing En-
vironments”. In: Computational Science – ICCS 2019. Cham: Springer International Publishing, 2019,
pp. 634–647 (see pp. 80, 81, 95).

[Seo+17] Jihye Seo et al. “Optimally Self-Healing IoT Choreographies”. In: International Conference on Architec-
tural Support for Programming Languages and Operating Systems - ASPLOS Part F1271.1 (2017), pp. 91–
104. arXiv: 1907.04611 (see p. 119).

[Ser+18] Y. Seralathan et al. “IoT security vulnerability: A case study of aWeb camera”. In: 2018 20th International
Conference on Advanced Communication Technology (ICACT). IEEE, Feb. 2018, pp. 172–177 (see p. 107).

[SF10] Shivanshu K Singh and Mohamed E Fayad. “The AnyCorrectiveAction stable design pattern”. In: Pro-
ceedings of the 17th Conference on Pattern Languages of Programs. ACM. ACM, 2010, p. 24 (see p. 155).

[SFC21] Tiago Sousa, Hugo Sereno Ferreira, and Filipe Figueiredo Correia. “A Survey on the Adoption of Pat-
terns for Engineering Software for the Cloud”. In: IEEE Transactions on Software Engineering (2021),
pp. 1–1 (see p. 285).

[SFZ17] Claudio Savaglio, Giancarlo Fortino, and Mengchu Zhou. “Towards interoperable, cognitive and au-
tonomic IoT systems: An agent-based approach”. In: 2016 IEEE 3rd World Forum on Internet of Things,
WF-IoT 2016 (2017), pp. 58–63 (see p. 120).

[SHA17] Ronny Seiger, Stefan Herrmann, and Uwe Abmann. “Self-Healing for Distributed Workflows in the
Internet of Things”. In: 2017 IEEE International Conference on Software ArchitectureWorkshops (ICSAW).
2017, pp. 72–79 (see p. 10).

[Sic+15] S. Sicari et al. “Security, privacy and trust in Internet of things: The road ahead”. In:Computer Networks
76 (2015), pp. 146–164. arXiv: 1404.7799 (see pp. 105, 106).

[Sil+20] Margarida Silva et al. “Visually-defined Real-Time Orchestration of IoT Systems”. In: Proceedings of the
17th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services.
MOBIQUITOUS 2020. Online: Association for ComputingMachinery, 2020 (see pp. 94, 199, 284, 325,
326).

[Sil+21] Margarida Silva et al. “A Review on Visual Programming for Distributed Computation in IoT”. In:
Proceedings of the 21st International Conference on Computational Science (ICCS). Springer, 2021 (see
pp. 64, 283, 324).

[Sil20a] Ana Margarida Oliveira Pinheiro da Silva. “Orchestration for Automatic Decentralization in Visually-
defined IoT”. MA thesis. Porto: Faculty of Engineering, University of Porto, 2020 (see p. 199).

[Sil20b] David Silver. Lecture 9: Exploration and Exploitation. 2020 (see pp. 188, 190, 191).

[Sim19] Inc." "SimpleSoft. SimpleSoft’s IoT Simulator for CoAP, MQTT, MQTT-SN, HTTP/REST sensors and
gateways. [Online; accessed 2019]. "SimpleSoft, Inc.", 2019 (see p. 100).

https://arxiv.org/abs/1907.04611
https://arxiv.org/abs/1404.7799

References 315

[SIN19] "Stanford Information Networks Group (SING)". TOSSIM – TinyOS. [Online; accessed 2019]. "Stan-
ford Information Networks Group (SING)", 2019 (see p. 99).

[SK03] S. Sendall and W. Kozaczynski. “Model transformation: the heart and soul of model-driven software
development”. In: IEEE Software 20.5 (Sept. 2003), pp. 42–45 (see p. 94).

[SK09] James Scott and Rick Kazman. Realizing and Refining Architectural Tactics : Availability. Tech. rep. Au-
gust. Software Engineering Institute, 2009 (see pp. 167, 205).

[SK17] Kiran Jot Singh and Divneet Singh Kapoor. “Create Your Own Internet of Things: A survey of IoT
platforms.” In: IEEE Consumer Electronics Magazine 6.2 (2017), pp. 57–68 (see p. 26).

[Ska+17] Olena Skarlat et al. “Towards QoS-Aware Fog Service Placement”. In: 1st IEEE International Conference
on Fog and Edge Computing, ICFEC 2017, Madrid, Spain, May 14-15, 2017. IEEE Computer Society,
2017, pp. 89–96 (see p. 285).

[Sla20] Slack Technologies, Inc. Slack: Where work happens. 2020 (see p. 261).

[SLM17] Long Sun, Yan Li, and Raheel AhmedMemon. “An open IoT framework based onmicroservices archi-
tecture”. In: China Communications 14.2 (2017), pp. 154–162 (see p. 41).

[SM17] Dipa Soni and Ashwin Makwana. “A survey on MQTT: a protocol of internet of things (IoT)”. In:
International Conference On Telecommunication, Power Analysis And Computing Techniques (ICTPACT-
2017). 2017, (see pp. 34, 202).

[SM19] C. J. Sutherland and B. MacDonald. “RoboLang: A Simple Domain Specific Language to Script Robot
Interactions”. In: 2019 16th International Conference on Ubiquitous Robots (UR). 2019, pp. 265–270 (see
p. 72).

[SMG19] Fabio Sartori, Riccardo Melen, and Fabio Giudici. “IoT Data Validation Using Spatial and Temporal
Correlations”. In: Research Conference on Metadata and Semantics Research. Springer. 2019, pp. 77–89
(see p. 176).

[Smi17] Sean Smith. The Internet of Risky Things. O’Reilly Media, Inc., 2017 (see pp. xx, 4, 5, 8, 10, 14, 278).

[SMM19] Eman Shaikh, Iman Mohiuddin, and Ayisha Manzoor. “Internet of Things (IoT): Security and Privacy
Threats”. In: 2019 2nd International Conference on Computer Applications Information Security (ICCAIS).
2019, pp. 1–6 (see p. 29).

[SN15] M. Sneps-Sneppe and D. Namiot. “Onweb-based domain-specific language for Internet of Things”. In:
2015 7th International Congress on UltraModern Telecommunications and Control Systems andWorkshops
(ICUMT). 2015, pp. 287–292 (see p. 74).

[SNS15] Sandra Scott-Hayward, Sriram Natarajan, and Sakir Sezer. “A survey of security in software defined
networks”. In: IEEE Communications Surveys & Tutorials 18.1 (2015), pp. 623–654 (see p. 165).

[Soa+21] Danny Soares et al. “Programming IoT-spaces: A User-Survey on Home Automation Rules”. In: Pro-
ceedings of the 21st International Conference on Computational Science (ICCS). Springer, 2021 (see
pp. 123, 284, 324, 325).

[Soa20] Danny Almeida Soares. “Model-to-Model Mapping of Semi-Structured Specifications to Visual Pro-
gramming Languages”.MA thesis. Porto: Faculty of Engineering, University of Porto, 2020 (see pp. 123,
124).

[SOE18] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. “EdgeCloudSim: An environment for performance
evaluation of edge computing systems”. In: Transactions on Emerging Telecommunications Technologies
29.11 (2018), e3493 (see p. 100).

[SOJ18] Adrian Santos, Markku Oivo, and Natalia Juristo. “Moving Beyond the Mean: Analyzing Variance in
Software Engineering Experiments”. In: Product-Focused Software Process Improvement. Ed. by Marco
Kuhrmann et al. Springer, 2018, pp. 167–181 (see p. 248).

[Som10] Ian Sommerville. Software Engineering. 9th. USA: Addison-Wesley Publishing Company, 2010 (see
pp. 58, 65, 68).

References 316

[Sot+14] Stelios Sotiriadis et al. “Towards simulating the internet of things”. In: IEEE 28th International Confer-
ence on Advanced Information Networking and Applications Workshops (2014), pp. 444–448 (see p. 99).

[Sou+18] Tiago Boldt Sousa et al. “Engineering Software for the Cloud: External Monitoring and Failure Injec-
tion”. In: Proceedings of the 23rd European Conference on Pattern Languages of Programs. 2018, pp. 1–8
(see p. 170).

[Spi17] Diomidis Spinellis. “Software-Engineering the Internet of Things”. In: IEEE Software 34.1 (2017), pp. 4–
6 (see p. 8).

[Spo04] Joel Spolsky. “The law of leaky abstractions”. In: Joel on Software. Springer, 2004, pp. 197–202 (see
pp. 93, 134, 279).

[ST13] Andy Stanford-Clark and Hong Linh Truong. “Mqtt for sensor networks (mqtt-sn) protocol specifica-
tion”. In: International business machines (IBM) Corporation version 1 (2013) (see p. 34).

[Sta14] John A Stankovic. “Research directions for the internet of things”. In: IEEE Internet of Things Journal
1.1 (2014), pp. 3–9 (see p. 25).

[Sta15] Standish Group International. The Chaos Report. Tech. rep. Standish Group International, 2015 (see
pp. 6, 132).

[sta22] statista. Global digital population as of January 2021. Tech. rep. statista, 2022 (see p. 4).

[STB18] Andreas Seitz, Felix Thiele, and Bernd Bruegge. “Fogxy: An Architectural Pattern for Fog Computing”.
In: Proceedings of the 23rd European Conference on Pattern Languages of Programs. Vol. 1. 1. ACM. ACM,
2018, p. 33 (see pp. 40, 41, 66, 67).

[STH18] Eugene Siow, Thanassis Tiropanis, and Wendy Hall. “Analytics for the Internet of Things: A Survey”.
In: ACM Computing Surveys (CSUR) 51.4 (2018) (see p. 105).

[STM19] "STMicroelectronics". STM32 32-bit ArmCortexMCUs. [Online; accessed 2019]. "STMicroelectronics",
2019 (see p. 28).

[Sun+10] H. Sundmaeker et al. Vision and Challenges for Realising the Internet of Things. Tech. rep. European
Commission, 2010 (see p. 23).

[SYB04] Anthony Sulistio, Chee Shin Yeo, and Rajkumar Buyya. “A taxonomy of computer-based simulations
and its mapping to parallel and distributed systems simulation tools”. In: Software: Practice and Expe-
rience 34.7 (2004), pp. 653–673 (see p. 98).

[Szy+17] T. Szydlo et al. “Flow-Based Programming for IoT Leveraging Fog Computing”. In: 2017 IEEE 26th
International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE).
June 2017, pp. 74–79 (see p. 77).

[Tan02] Andrew S Tanenbaum. Computer networks. Pearson Education India, 2002 (see p. 7).

[Tan18] H. Tankovska. Number of internet of things (IoT) connected devices worldwide in 2018, 2025 and 2030.
Tech. rep. Data by Statista. Strategy Analytics, 2018 (see pp. 5, 22, 278).

[TC16] Kleanthis Thramboulidis and Foivos Christoulakis. “UML4IoT–AUML-based approach to exploit IoT
in cyber-physical manufacturing systems”. In: Computers in Industry 82 (2016), pp. 259–272 (see p. 72).

[Tei+11] Thiago Teixeira et al. “Service oriented middleware for the internet of things: a perspective”. In: Euro-
pean Conference on a Service-Based Internet. Springer. 2011, pp. 220–229 (see p. 41).

[Ter16] Doug Terry. “Toward a New Approach to IoT Fault Tolerance”. In: Computer 49.8 (2016), pp. 80–83
(see pp. 160, 173, 175, 178, 179).

[TGC17] V. Trifa, D. Guinard, and D. Carrera.Web of Things. Tech. rep. EVRYTHNG, 2017 (see p. 44).

[THP93] Walter F. Tichy, Nico Habermann, and Lutz Prechelt. “Summary of the Dagstuhl Workshop on Future
Directions in Software Engineering”. In: SIGSOFT Software Engineering Notes 18.1 (Jan. 1993), pp. 35–
48 (see p. 140).

References 317

[Tig+09] Jean-Yves Tigli et al. “WComp middleware for ubiquitous computing: Aspects and composite event-
based Web services”. In: Annals of Telecommunications 64.3 (2009), pp. 197–214 (see p. 78).

[Tka+18] Rafał Tkaczyk et al. “Cataloging design patterns for internet of things artifact integration”. In: 2018
IEEE International Conference on Communications Workshops, ICCWorkshops 2018 - Proceedings (2018),
pp. 1–6 (see p. 66).

[TM17] Antero Taivalsaari and Tommi Mikkonen. “A Roadmap to the Programmable World: Software Chal-
lenges in the IoT Era”. In: IEEE Software 34.1 (2017), pp. 72–80 (see pp. 8, 56, 93, 278).

[TMD19] Mohammad Tahir, Qazi Mamoon Ashraf, and Mohammad Dabbagh. “Towards enabling autonomic
computing in IoT ecosystem”. In: Proceedings - IEEE 17th International Conference on Dependable, Au-
tonomic and Secure Computing, IEEE 17th International Conference on Pervasive Intelligence and Com-
puting, IEEE 5th International Conference on Cloud and Big Data Computing, 4th Cyber Scienc (2019),
pp. 646–651 (see pp. 53, 118, 119).

[Toa18] Ray Toal. Software Architecture. Loyola Marymount University, 2018 (see p. 38).

[Too+08] Y. Toor et al. “Vehicle Ad Hoc networks: applications and related technical issues”. In: IEEE Communi-
cations Surveys Tutorials 10.3 (Mar. 2008), pp. 74–88 (see p. 33).

[Tor+20] D. Torres et al. “Real-time Feedback in Node-RED for IoTDevelopment: An Empirical Study”. In: 2020
IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT).
2020, pp. 1–8 (see pp. 94, 246, 285, 326).

[Tor00] Wilfredo Torres-Pomales. “Software Fault Tolerance: A Tutorial”. In: October (2000). NASA / TM-200-
210616, p. 55 (see pp. 45, 47, 49, 160, 166, 169, 287).

[Tor20] Diogo Luis Rey Torres. “Increasing the feedback on IoT development in Node-RED”.MA thesis. Porto:
Faculty of Engineering, University of Porto, 2020 (see p. 246).

[TP-19] TP-Link Technologies Co., Ltd. Smart Home Router SR20. 2019 (see p. 28).

[TTJ18] Dave Thaler, Hannes Tschofenig, and Jaime Jimenez. Report from the Internet of Things (IoT) Semantic
Interoperability (IOTSI) Workshop 2016. Tech. rep. Internet Engineering Task Force (IETF), 2018 (see
p. 45).

[Tut03] Walter HW Tuttlebee. Software defined radio: enabling technologies. John Wiley & Sons, 2003 (see p. 3).

[TVH14] Dobroslav Tsonev, Stefan Videv, and Harald Haas. “Light fidelity (Li-Fi): towards all-optical network-
ing”. In: Broadband Access Communication Technologies VIII. Vol. 9007. International Society for Optics
and Photonics. 2014, p. 900702 (see p. 34).

[TVM19] G. Tanganelli, C. Vallati, and E.Mingozzi. “Rapid Prototyping of IoT Solutions: A Developer’s Perspec-
tive”. In: IEEE Internet Computing 23.4 (July 2019), pp. 43–52 (see p. 28).

[UHM11] Dieter Uckelmann,MarkHarrison, and FlorianMichahelles.Architecting the internet of things. Springer
Science & Business Media, 2011 (see p. 27).

[UK18a] Itorobong S. Udoh and Gerald Kotonya. “Developing IoT applications: challenges and frameworks”.
In: IET Cyber-Physical Systems: Theory & Applications 3.2 (2018), pp. 65–72 (see pp. 14, 37).

[UK18b] Onoriode Uviase and Gerald Kotonya. “IoT Architectural Framework: Connection and Integration
Framework for IoT Systems”. In: Electronic Proceedings in Theoretical Computer Science 264 (2018),
pp. 1–17 (see p. 41).

[Uki+16] Arijit Ukil et al. “IoT healthcare analytics: The importance of anomaly detection”. In: 2016 IEEE 30th in-
ternational conference on advanced information networking and applications (AINA). IEEE. 2016, pp. 994–
997 (see p. 179).

[Ur+14] B. Ur et al. “Practical trigger-action programming in the smart home”. In:Conference on Human Factors
in Computing Systems - Proceedings (Apr. 2014) (see pp. 86, 124).

References 318

[Vas+19] D. R. Vasconcelos et al. “Cloud, Fog, or Mist in IoT? That is the qestion”. In: ACM Transactions on
Internet Technology 19.2 (2019) (see pp. 38, 39).

[Vaz+12] Mabel Vazquez-Briseno et al. “Using RFID/NFC and QR-code in mobile phones to link the physical
and the digital world”. In: Interactive Multimedia. IntechOpen, 2012, (see p. 31).

[Ver+11] Ovidiu Vermesan et al. “Internet of things strategic research roadmap”. In: Internet of things-global
technological and societal trends 1.2011 (2011), pp. 9–52 (see pp. 105, 120, 137).

[VH08] András Varga and Rudolf Hornig. “An overview of the OMNeT++ simulation environment”. In: Pro-
ceedings of the 1st international conference on Simulation tools and techniques for communications, networks
and systems & workshops. ICST (Institute for Computer Sciences, Social-Informatics and . . . 2008, p. 60
(see p. 100).

[Vie+19] Kleber Vieira et al. “Autonomic intrusion detection and response using big data”. In: IEEE Systems
Journal 14.2 (2019), pp. 1984–1991 (see p. 119).

[VMw20] VMware, Inc. RabbitMQ. 2020 (see p. 265).

[Was+19] Hironori Washizaki et al. “Landscape of iot patterns”. In: Proceedings - 2019 IEEE/ACM 1st Interna-
tional Workshop on Software Engineering Research and Practices for the Internet of Things, SERP4IoT
2019 (2019), pp. 57–60 (see p. 65).

[Was+20] Hironori Washizaki et al. “Landscape of Architecture and Design Patterns for IoT Systems”. In: IEEE
Internet of Things Journal 7.10 (2020), pp. 10091–10101 (see p. 65).

[WE16] Michael Weyrich and Christof Ebert. “Reference architectures for the internet of things”. In: IEEE
Software 33.1 (2016), pp. 112–116 (see pp. 42, 43).

[Web09] Rolf H. Weber. “Internet of things – Need for a new legal environment?” English. In: Computer Law &
Security Review: The International Journal of Technology Law and Practice 25.6 (2009), pp. 522–527 (see
p. 107).

[Wei+15] Bruce D. Weinberg et al. “Internet of Things: Convenience vs. privacy and secrecy”. In: Business Hori-
zons 58.6 (2015). SPECIAL ISSUE: THE MAGIC OF SECRETS, pp. 615–624 (see p. 107).

[Wei02] Mark Weiser. “The computer for the 21st century”. In: IEEE pervasive computing 1.1 (2002), pp. 19–25
(see p. 4).

[Wen18] Lilian Weng. The Multi-Armed Bandit Problem and Its Solutions. 2018 (see pp. 188–190).

[Wiz+11] Theresa Wizemann et al. “Trustworthy medical device software”. In: Public Health Effectiveness of the
FDA 510 (k) Clearance Process: Measuring Postmarket Performance and Other Select Topics: Workshop
Report. National Academies Press (US), 2011 (see p. 151).

[WLA06] León Welicki, Juan Manuel Cueva Lovelle, and Luis Joyanes Aguilar. “Meta-Specification and Cata-
loging of Software Patterns with Domain Specific Languages and Adaptive Object Models.” In: Euro-
PLoP. ACM, 2006, pp. 359–392 (see p. 61).

[Won+21] JasonWong et al.Magic Quadrant for Enterprise Low-Code Application Platforms. [Online; accessedNov.
2021]. Sept. 2021 (see pp. 14, 137).

[WSJ15] R.Want, B. N. Schilit, and S. Jenson. “Enabling the Internet of Things”. In:Computer 48.1 (2015), pp. 28–
35 (see p. 199).

[XHL14] L. D. Xu, W. He, and S. Li. “Internet of Things in Industries: A Survey”. In: IEEE Transactions on Indus-
trial Informatics 10.4 (Nov. 2014), pp. 2233–2243 (see p. 37).

[XP18] Wen Xi and Evan W. Patton. “A Blocks-Based Approach to Internet of Things in MIT App Inventor”.
In: BLOCKS+ 2018 workshop, part of the SPLASH 2018. ACM, 2018, (see p. 75).

[Yan+12] Xue Yang et al. “A multi-layer security model for internet of things”. In: Internet of things. Springer,
2012, pp. 388–393 (see p. 74).

References 319

[Yan+15] Fan Yang et al. “uPnP: Plug and Play Peripherals for the Internet of Things”. In: 10th European Confer-
ence on Computer Systems. EuroSys ’15. New York, NY, USA: ACM, 2015, 25:1–25:14 (see p. 152).

[Yaq+17] I. Yaqoob et al. “Internet of Things Architecture: Recent Advances, Taxonomy, Requirements, andOpen
Challenges”. In: IEEE Wireless Communications 24.3 (June 2017), pp. 10–16 (see p. 43).

[YF03] M Bani Younis and G Frey. “Formalization of Existing PLC Programs: A Survey”. In: Computational
Engineering in Systems Applications 70 (2003) (see p. 93).

[YSD15] Lina Yao, Quan Z. Sheng, and Schahram Dustdar. “Web-based management of the internet of things”.
In: IEEE Internet Computing 19.4 (2015), pp. 60–67 (see pp. 77, 79).

[ZA19] Syed RameemZahra andMohammad Ahsan Chishti. “RansomWare and Internet of Things: ANew Se-
curity Nightmare”. In: 2019 9th International Conference on Cloud Computing, Data Science Engineering
(Confluence). 2019, pp. 551–555 (see p. 278).

[Zai+18] T. A. Zaitoun et al. “Evaluation and Enhancement of the EdgeCloudSim using Poisson Interarrival
time and Load capacity”. In: 2018 8th International Conference on Computer Science and Information
Technology (CSIT). July 2018, pp. 7–12 (see p. 100).

[Zam+19] FrancoZambonelli et al. “Towards Adaptive FlowProgramming for the IoT: The Fluidware Approach”.
In: 2019 IEEE International Conference on Pervasive Computing and CommunicationsWorkshops, PerCom
Workshops 2019 (2019), pp. 549–554 (see p. 73).

[Zam17] Franco Zambonelli. “Key abstractions for IoT-oriented software engineering”. In: IEEE Software 34.1
(2017), pp. 38–45 (see p. 64).

[Zar18] Andrzej Zarzycki. “Strategies for the integration of smart technologies into buildings and construction
assemblies”. In: Proceedings of eCAADe 2018 Conference. 2018, pp. 631–640 (see p. 258).

[ZB21] Koen Zandberg and Emmanuel Baccelli. “Femto-Containers: DevOps on Microcontrollers with
Lightweight Virtualization & Isolation for IoT Software Modules”. working paper or preprint. June
2021 (see p. 285).

[ZDC14a] Y. Zhang, L. Duan, and J. L. Chen. “Event-Driven SOA for IoT Services”. In: 2014 IEEE International
Conference on Services Computing. June 2014, pp. 629–636 (see p. 41).

[ZDC14b] Yang Zhang, Li Duan, and Jun Liang Chen. “Event-driven soa for iot services”. In: 2014 IEEE Interna-
tional Conference on Services Computing. IEEE. 2014, pp. 629–636 (see p. 41).

[ZEB18] TZoranovic, V Erceg, and I Berkovic. “IoT project in agriculture”. In: Proceedings of the 8th International
conference on applied internet and information technologies. Vol. 8. “St Kliment Ohridski” University-
Bitola, Faculty of Information and . . . 2018, pp. 17–21 (see p. 27).

[Zen+17] Xuezhi Zeng et al. “IOTSim: A simulator for analysing IoT applications”. In: Journal of Systems Archi-
tecture 72 (2017), pp. 93–107 (see p. 99).

[Zha+14] Z. K. Zhang et al. “IoT Security: Ongoing Challenges and Research Opportunities”. In: 2014 IEEE 7th
International Conference on Service-Oriented Computing and Applications. Nov. 2014, pp. 230–234 (see
p. 97).

[Zho+15] S. Zhou et al. “Supporting Service Adaptation in Fault Tolerant Internet of Things”. In: 2015 IEEE 8th
International Conference on Service-Oriented Computing and Applications (SOCA). Oct. 2015, pp. 65–72
(see pp. 167, 176).

[Zig18] Alliance Zigbee. JupiterMesh. [Online; accessed May 2018]. May 2018 (see p. 32).

[ZW98] M.V. Zelkowitz and D.R. Wallace. “Experimental models for validating technology”. In: Computer 31.5
(May 1998), pp. 23–31 (see p. 140).

320

Appendices

321

A | Publications

A.1 Publications Resulting from this Research . 322
A.2 Other Publications from the Author . 331

Parts of this dissertation — including ideas, approaches, results, tables, and figures — have
been published in peer-reviewed journals and conference proceedings. The author published
24 peer-reviewed conference papers and 5 peer-reviewed journal articles. The author also su-
pervised 6 students pursuing theirMaster’s degree in Informatics and Computing Engineering,
from Faculdade de Engenharia da Universidade do Porto (FEUP). The Table A.1 (p. 321) iden-
tifies these supervisions.

Table A.1: Co-supervised Master’s thesis at FEUP.

Title Author Year

MQTT Chaos Engineering for Self-Healing IoT Systems Miguel Duarte 2021
Visual Programming Language for Orchestration with Docker Bruno Piedade 2020
Implementing a Multi-Approach Debugging of Industrial IoT Workflows Andreia Rodrigues 2019
Dynamic Allocation of Serverless Functions in IoT Environments Duarte Pinto 2018
Blockchain as a PKI for Ownership Control of IoT Devices Guilherme Pinto 2018
Interoperability In Software Applications For Smart Cities: Towards A Ref-
erence Architecture

José Pedro Pinto 2017

The published works during this thesis work gathered a total of 385 citations, which re-
sulted in a h-index of 13, and an i10-index of 141. Parts of this thesis and parallel research were
published in 20 different venues/journals. A summary of these venues and journals is given in
Table A.2 (p. 322). As a reference, Scimago was considered for journal ranking and CORE for
conference ranking2 — ranking at the time of the most recent submission in each of the given
venues/journals. The next sections detail the publications resulting — authors, venues, and
abstracts — from this research and others from the author.

1Using Google Scholar as a reference metric at the time of writing, in accordance to
https://scholar.google.com/citations?user=NYavJ60AAAAJ.

2In the case of workshops the CORE ranking corresponding to the main venue at the time of publication is
considered.

https://scholar.google.com/citations?user=NYavJ60AAAAJ

Appendix A. Publications 322

Table A.2: Summary of publications per venue, with corresponding ranking. A total of
10 papers were published in Q1/A/A* venues, 6 in CORE B venues, 5 in Q4/C
venues, and the 8 remaining in unranked venues.

Journal (#4) Scimago #

Journal of Computational Science Q1 1
Communications in Computer and Information Science Q4 2
Internet of Things: Engineering Cyber Physical Human Systems — 1
Journal of Information Assurance and Security — 1

Conference Venue (#13) CORE #

Int. Conference on Mobile and Ubiquitous Systems (MobiQuitous) A 1
Int. Conference on Computational Science (ICCS) A 4
Int. Symposium on Distributed Simulation and Real Time Applications (DS-RT) B 1
Conference on Pattern Languages of Programs (PLoP) B 1
Int. Conf. on Evaluation of Novel Software Approaches to Software Engineering (ENASE) B 2
Int. Conference on Embedded and Ubiquitous Computing (EUC) C 1
Int. Conference on the Quality of Information and Communications Technology (QUATIC) C 1
Int. Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS) C 1
European Conference on Pattern Languages of Programs (EuroPLoP) B 2
Int. Conference on Information Assurance and Security (IAS) — 2
Int. Smart Cities Conference (ISC2) — 1
Int. Conference on Ambient Systems, Networks and Technologies (ANT) — 1
Int. Conference on Internet of Things, Big Data and Security (IoTBDS) — 1

Conference Venue—Workshop (#4) CORE #

Int. Conference on Software Engineering (ICSE) A* 2
Int. Conference on Model Driven Engineering Languages and Systems (MODELS) A 1
Int. Conference on Software Testing, Validation and Verification (ICST) A 1
Int. Conference on the Art, Science, and Engineering of Programming (‹Programming›) — 1

A.1 Publications Resulting from this Research

Journal Articles

A.1.1 Designing and Constructing Internet-of-Things Systems: An
Overview of the Ecosystem

João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. “Designing and Constructing
Internet-of-Things Systems: An Overview of the Ecosystem”. In: Internet of Things (2022)

Abstract: The current complexity of IoT systems and devices is a barrier to reach a healthy
ecosystem, mainly due to technological fragmentation and inherent heterogeneity. Meanwhile,
the field has scarcely adopted any engineering practices currently employed in other types of
large-scale systems. Although many researchers and practitioners are aware of the current
state of affairs and strive to address these problems, compromises have been hard to reach,

Appendix A. Publications 323

making them settle for sub-optimal solutions. This paper surveys the current state of the art
in designing and constructing IoT systems from the software engineering perspective, without
overlooking hardware concerns, revealing current trends and research directions [DRF22].

A.1.2 Managing Non-trivial Internet-of-Things Systems with Conver-
sational Assistants: A Prototype and a Feasibility Experiment

André Sousa Lago, João Pedro Dias, and Hugo Sereno Ferreira. “Managing non-trivial
internet-of-things systems with conversational assistants: A prototype and a feasibility ex-
periment”. In: Journal of Computational Science 51 (2021), p. 101324

Abstract: Internet-of-Things has reshaped the way people interact with their surroundings
and automatize the once manual actions. In a smart home, controlling the Internet-connected
lights is as simple as speaking to a nearby conversational assistant. However, specifying inter-
action rules, such as making the lamp turn on at specific times or when someone enters the
space is not a straightforward task. The complexity of doing such increases as the number and
variety of devices increases, along with the number of household members. Thus, managing
such systems becomes a problem, including finding out why something has happened. This
issue lead to the birth of several low-code development solutions that allow users to define
rules to their systems, at the cost of discarding the easiness and accessibility of voice interac-
tion. In this paper we extend the previous published work on Jarvis, a conversational interface
to manage IoT systems that attempts to address these issues by allowing users to specify time-
based rules, use contextual awareness formore natural interactions, provide eventmanagement
and support causality queries. A proof-of-concept is presented, detailing its architecture and
natural language processing capabilities. A feasibility experiment was carried withmostly non-
technical participants, providing evidence that Jarvis is intuitive enough to be used by common
end-users, with participants showcasing an overall preference by conversational assistants over
visual low-code solutions [LDF21].

Conference Publications

A.1.3 Evaluation of IoT Self-healingMechanisms using Fault-Injection
in Message Brokers

Miguel Duarte, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. “Evalua-
tion of IoT Self-healing Mechanisms using Fault-Injection in Message Brokers”. In: 2022
IEEE/ACM 4th International Workshop on Software Engineering Research Practices for the In-
ternet of Things (SERP4IoT). 2022

Abstract: Thewidespread use of Internet-of-Things (IoT) across different application domains
leads to an increased concern regarding their dependability, especially as the number of poten-
tially mission-critical systems becomes considerable. Fault-tolerance has been used to reduce
the impact of faults in systems, and their adoption in IoT is becoming a necessity. This work

Appendix A. Publications 324

focuses on how to exercise fault-tolerance mechanisms by deliberately provoking its malfunc-
tion. We start by describing a proof-of-concept fault-injection add-on to a commonly used
publish/subscribe broker. We then present several experiments mimicking real-world IoT sce-
narios, focusing on injecting faults in systems with (and without) active self-healing mecha-
nisms and comparing their behavior to the baseline without faults. We observe evidence that
fault-injection can be used to (a) exercise in-place fault-tolerance apparatus, and (b) detect when
these mechanisms are not performing nominally, providing insights into enhancing in-place
fault-tolerance techniques [Dua+22].

A.1.4 A Review on Visual Programming for Distributed Computation
in IoT

Margarida Silva, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. “A Review on
Visual Programming for Distributed Computation in IoT”. in: Proceedings of the 21st Inter-
national Conference on Computational Science (ICCS). Springer, 2021

Abstract: Internet-of-Things (IoT) systems are considered one of the most notable examples
of complex, large-scale systems. Some authors have proposed visual programming (VP) ap-
proaches to address part of their inherent complexity. However, in most of these approaches,
the orchestration of devices and system components is still dependent on a centralized unit,
preventing higher degrees of dependability. In this work, we perform a systematic literature
review (SLR) of the current approaches that provide visual and decentralized orchestration to
define and operate IoT systems, reflecting upon a total of 29 proposals. We provide an in-depth
discussion of these works and find out that only four of them attempt to tackle this issue as a
whole, although still leaving a set of open research challenges. Finally, we argue that addressing
these challenges could make IoT systems more fault-tolerant, with an impact on their depend-
ability, performance, and scalability [Sil+21].

A.1.5 Programming IoT-Spaces: A User-Survey on Home Automation
Rules

Danny Soares, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. “Programming
IoT-spaces: A User-Survey on Home Automation Rules”. In: Proceedings of the 21st Interna-
tional Conference on Computational Science (ICCS). Springer, 2021

Abstract: The Internet-of-Things (IoT) has transformed everydaymanual tasks into digital and
automatable ones, giving way to the birth of several end-user development solutions that at-
tempt to ease the task of configuring and automating IoT systemswithout requiring prior tech-
nical knowledge. While some studies reflect on the automation rules that end-users choose to
program into their spaces, they are limited by the number of devices and possible rules that the
tool under study supports. There is a lack of systematic research on (1) the automation rules
that users wish to configure on their homes, (2) the different ways users state their intents,

Appendix A. Publications 325

and (3) the complexity of the rules themselves—without the limitations imposed by specific
IoT devices systems and end-user development tools. This paper surveyed twenty participants
about home automation rules given a standard house model and device’s list, without limiting
their creativity and resulting automation complexity. We analyzed and systematized the col-
lected 177 scenarios into seven different interaction categories, representing themost common
smart home interactions [Soa+21].

A.1.6 Empowering Visual Internet-of-Things Mashups with Self-
Healing Capabilities

Joao Pedro Dias, André Restivo, and Hugo Sereno Ferreira. “Empowering Visual Internet-
of-Things Mashups with Self-Healing Capabilities”. In: 2021 IEEE/ACM 3rd International
Workshop on Software Engineering Research Practices for the Internet of Things (SERP4IoT).
2021

Abstract: Internet-of-Things (IoT) systems have spread among different application domains,
from home automation to industrial manufacturing processes. The rushed development by
competing vendors to meet the market demand of IoT solutions, the lack of interoperability
standards, and the overall lack of a defined set of best practices have resulted in a highly com-
plex, heterogeneous, and frangible ecosystem. Several works have been pushing towards visual
programming solutions to abstract the underlying complexity and help humans reason about
it. As these solutions begin to meet widespread adoption, their building blocks usually do not
consider reliability issues. Node-RED, being one of the most popular tools, also lacks such
mechanisms, either built-in or via extensions. In this work we present SHEN (Self-Healing Ex-
tensions for Node-RED) which provides 17 nodes that collectively enable the implementation
of self-healing strategies within this visual framework. We proceed to demonstrate the feasibil-
ity and effectiveness of the approach using real devices and fault injection techniques [DRF21].

A.1.7 Visually-defined Real-Time Orchestration of IoT Systems

Margarida Silva, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. “Visually-
defined Real-Time Orchestration of IoT Systems”. In: Proceedings of the 17th International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. MOBIQ-
UITOUS 2020. Online: Association for Computing Machinery, 2020

Abstract: In this work, we propose a method for extending Node-RED to allow the automatic
decomposition and partitioning of the system towards higher decentralization. We provide
a custom firmware for constrained devices to expose their resources, as well as new nodes
and modifications in the Node-RED engine that allow automatic orchestration of tasks. The
firmware is responsible for low-level management of health and capabilities, as well as execut-
ing MicroPython scripts on demand. Node-RED then takes advantage of this firmware by (1)
providing a device registry allowing devices to announce themselves, (2) generating MicroPy-
thon code from dynamic analysis of flow and nodes, and (3) automatically (re-)assigning nodes

Appendix A. Publications 326

to devices based on pre-specified properties and priorities. A mechanism to automatically de-
tect abnormal runtime conditions and provide dynamic self-adaptation was also explored. Our
solution was tested using synthetic home automation scenarios, where several experiments
were conducted with both virtual and physical devices. We then exhaustively measured each
scenario to allow further understanding of our proposal and how it impacts the system’s re-
siliency, efficiency, and elasticity [Sil+20].

A.1.8 A Pattern-Language for Self-Healing Internet-of-Things Systems

Joao Pedro Dias, Tiago Boldt Sousa, André Restivo, and Hugo Sereno Ferreira. “A Pattern-
Language for Self-Healing Internet-of-Things Systems”. In: Proceedings of the 25th European
Conference on Pattern Languages of Programs. EuroPLop ’20. Irsee, Germany: Association for
Computing Machinery, 2020

Abstract: Internet-of-Things systems are assemblies of highly-distributed and heterogeneous
parts that, in orchestration, work to provide valuable services to end-users in many scenarios.
These systems depend on the correct operation of sensors, actuators, and third-party services,
and the failure of a single one can hinder the proper functioning of the whole system, mak-
ing error detection and recovery of paramount importance, but often overlooked. By drawing
inspiration from other research areas, such as cloud, embedded, and mission-critical systems,
we present a set of patterns for self-healing IoT systems. We discuss how their implementa-
tion can improve system reliability by providing error detection, error recovery, and health
mechanisms maintenance [Dia+20a].

A.1.9 Real-time Feedback inNode-RED for IoTDevelopment: An Em-
pirical Study

D. Torres, J. P. Dias, A. Restivo, and H. S. Ferreira. “Real-time Feedback in Node-RED for
IoT Development: An Empirical Study”. In: 2020 IEEE/ACM 24th International Symposium
on Distributed Simulation and Real Time Applications (DS-RT). 2020, pp. 1–8

Abstract: The continuous spreading of the Internet-of-Things across application domains,
aided by the continuous growth on the number of devices and systems that are Internet-
connected, created both a rise in the complexity of these systems and made noticeable a lack
of human resources with the expertise to design, develop and maintain them. Recent works
try to mitigate these issues by creating solutions that abstract the complexity of the systems,
such as using visual programming languages. Node-RED, as one of the most common solu-
tions for the visual development IoT systems, stills has several limitations, such as the lack of
observability and inadequate debugging mechanisms. In this work, we address some of these
limitations by enhancing Node-RED with new features that improve the user’s system devel-
opment, debugging, and understanding tasks. We proceed to empirically evaluate the impact
of these enhancements, concluding that, overall, such enhancements reduce the development
time and the number of failed attempts to deploy the system [Tor+20].

Appendix A. Publications 327

A.1.10 Visual Self-Healing Modelling for Reliable Internet-of-Things
Systems

João Pedro Dias, Bruno Lima, João Pascoal Faria, André Restivo, and Hugo Sereno Ferreira.
“Visual Self-Healing Modelling for Reliable Internet-of-Things Systems”. In: Proceedings of
the 20th International Conference on Computational Science (ICCS). Springer, 2020, pp. 27–36

Abstract: Internet-of-Things systems are comprised of highly heterogeneous architectures,
where different protocols, application stacks, integration services, and orchestration engines
co-exist. As they permeate our everyday lives, more of them become safety-critical, increasing
the need formaking them testable and fault-tolerant, withminimal human intervention. In this
paper, we present a set of self-healing extensions for Node-RED, a popular visual program-
ming solution for IoT systems. These extensions add runtime verification mechanisms and
self-healing capabilities via new reusable nodes, some of them leveraging meta-programming
techniques. With them, we were able to implement self-modification of flows, empowering the
systemwith self-monitoring and self-testing capabilities, that search formalfunctions, and take
subsequent actions towards the maintenance of health and recovery. We tested these mecha-
nisms on a set of scenarios using a live physical setup that we called SmartLab. Our results
indicate that this approach can improve a system’s reliability and dependability, both by be-
ing able to detect failing conditions, as well as reacting to them by self-modifying flows, or
triggering countermeasures [Dia+20b].

A.1.11 Conversational Interface for Managing Non-trivial Internet-
of-Things Systems

João PedroDias, André Lago, andHugo Sereno Ferreira. “Conversational Interface forMan-
agingNon-Trivial Internet-of-Things Systems”. In: Proceedings of the 20th International Con-
ference on Computational Science (ICCS). Springer, 2020, pp. 27–36

Abstract: Internet-of-Things has reshaped the way people interact with their surroundings.
In a smart home, controlling the lights is as simple as speaking to a conversational assistant
since everything is now Internet-connected. But despite their pervasiveness, most of the exist-
ing IoT systems provide limited out-of-the-box customization capabilities. Several solutions
try to attain this issue leveraging end-user programming features that allow users to define
rules to their systems, at the cost of discarding the easiness of voice interaction. However, as
the number of devices increases, along with the number of household members, the complex-
ity of managing such systems becomes a problem, including finding out why something has
happened. In this work we present Jarvis, a conversational interface to manage IoT systems
that attempts to address these issues by allowing users to specify time-based rules, use contex-
tual awareness for more natural interactions, provide event management and support causality
queries. A proof-of-concept was used to carry out a quasi-experiment with non-technical par-
ticipants that provides evidence that such approach is intuitive enough to be used by common
end-users [DLF20].

Appendix A. Publications 328

A.1.12 Testing and Deployment Patterns for the Internet-of-Things

Joao Pedro Dias, Hugo Sereno Ferreira, and Tiago Boldt Sousa. “Testing and Deployment
Patterns for the Internet-of-Things”. In: Proceedings of the 24th European Conference on Pat-
tern Languages of Programs. EuroPLop ’19. Irsee, Germany: Association for Computing
Machinery, 2019

Abstract: As with every software, Internet-of-Things (IoT) systems have their own life-cycle,
from conception to construction, deployment, and operation. However, the testing require-
ments from these systems are slightly different due to their inherent coupling with hardware
and human factors. Hence, the procedure of delivering new software versions in a continu-
ous integration/delivery fashion must be adopted. Based on existent solutions (and inspired
in other closely-related domains), we describe two common strategies that developers can use
for testing IoT systems, (1) Testbed and (2) Simulation-based Testing, as well as one recurrent
solution for its deployment (3) Middleman Update [DFS19].

A.1.13 Blockchain-based PKI for Crowdsourced IoT Sensor Informa-
tion

Guilherme Vieira Pinto, João Pedro Dias, and Hugo Sereno Ferreira. “Blockchain-Based PKI
for Crowdsourced IoT Sensor Information”. In: Proceedings of the Tenth International Confer-
ence on Soft Computing and Pattern Recognition (SoCPaR 2018). Ed. by Ana Maria Madureira,
Ajith Abraham, Niketa Gandhi, Catarina Silva, and Mário Antunes. Cham: Springer Inter-
national Publishing, 2020, pp. 248–257

Abstract: The Internet of Things is progressively getting broader, evolving its scope while cre-
ating newmarkets and addingmore to the existing ones. However, both generation and analysis
of large amounts of data, which are integral to this concept, may require the proper protection
and privacy-awareness of some sensitive information. In order to control the access to this
data, allowing devices to verify the reliability of their own interactions with other endpoints
of the network is a crucial step to ensure this required safeness. Through the implementation
of a blockchain-based Public Key Infrastructure connected to the Keybase platform, it is possi-
ble to achieve a simple protocol that binds devices’ public keys to their owner accounts, which
are respectively supported by identity proofs. The records of this blockchain represent digital
signatures performed by this Keybase users on their respective devices’ public keys, claiming
their ownership. Resorting to this distributed and decentralized PKI, any device is able to au-
tonomously verify the entity in control of a certain node of the network and prevent future
interactions with unverified parties [PDS20].

Appendix A. Publications 329

A.1.14 Dynamic Allocation of Serverless Functions in IoT Environ-
ments

D. Pinto, João Pedro Dias, and Hugo Sereno Ferreira. “Dynamic Allocation of Serverless
Functions in IoT Environments”. In: 2018 IEEE 16th International Conference on Embedded
and Ubiquitous Computing (EUC). Oct. 2018, pp. 1–8

Abstract: The IoT area has grown significantly in the last few years and is expected to reach
a gigantic amount of 50 billion devices by 2020. The appearance of serverless architectures,
specifically highlighting FaaS, raises the question of the suitability of using them in IoT envi-
ronments. Combining IoT with a serverless architectural design can effective when trying to
make use of local processing power that exists in a local network of IoT devices and creating
a fog layer that leverages computational capabilities that are closer to the end-user. In this ap-
proach, which is placed between the device and the serverless function, when a device requests
for the execution of a serverless function will decide based on previous metrics of execution
if the serverless function should be executed locally, in the fog layer of a local network of IoT
devices, or if it should be executed remotely, in one of the available cloud servers. Therefore,
this approach allows dynamically allocating functions to the most suitable layer [PDS18].

A.1.15 AReactive andModel-basedApproach forDeveloping Internet-
of-Things Systems

João Pedro Dias, João Pascoal Faria, and Hugo Sereno Ferreira. “A Reactive and Model-
Based Approach for Developing Internet-of-Things Systems”. In: 2018 11th International
Conference on the Quality of Information and Communications Technology (QUATIC). Sept.
2018, pp. 276–281

Abstract: Software has a longstanding association with a state of crisis considering its success
rate. The explosion of Internet-connected devices - Internet-of-Things - adds to the complexity
of software systems. The particular characteristics of these systems, such as its large-scale and
heterogeneity, pose increasingly new challenges. Model-based approaches have been widely
used as a mechanism to abstract low-level programming details and processes. By using such
approaches, and leveraging concepts as reactive design, visual notations, and live programming,
we believe to be able to reduce the complexity of creating, operate/monitor and evolve such
systems. The main objective of this Ph.D. is to delve into the software engineering practices
for developing IoT systems and systems of systems, exploiting models as a suitable abstraction,
expecting to reduce the complexity of managing most of the software development lifecycle
that targets IoT systems and to develop the prototype that will aid on the validation of such
approach [DFF18].

Appendix A. Publications 330

A.1.16 A Brief Overview of Existing Tools for Testing the Internet-of-
Things

João Pedro Dias, F. Couto, A. C. R. Paiva, and Hugo Sereno Ferreira. “A Brief Overview of
Existing Tools for Testing the Internet-of-Things”. In: 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). Apr. 2018, pp. 104–109

Abstract: Systems are error-prone. Big systems have lots of errors. The Internet-of-Things
poses us one of the biggest and widespread systems, where errors directly impact people’s lives.
Testing and validating is how one deals with errors; but testing and validating a planetary-scale,
heterogeneous, and evergrowing ecosystem has its own challenges and idiosyncrasies. As of
today, the solutions available for testing these systems are insufficient and fragmentary. In this
paper we provide an overview on test approaches, tools and methodologies for the Internet-
of-Things, its software and its devices. Our conclusion is that we are still lagging behind on
the best practices and lessons learned from the Software Engineering community in the past
decades [Dia+18].

A.1.17 Patterns for Things that Fail

Antonio Ramadas, Gil Domingues, Joao Pedro Dias, Ademar Aguiar, and Hugo Sereno Fer-
reira. “Patterns for Things that Fail”. In: Proceedings of the 24th Conference on Pattern Lan-
guages of Programs. PLoP ’17. ACM - Association for Computing Machinery, 2017

Abstract: Internet of Things is a paradigm that empowers the Internet-connected heteroge-
neous devices alongsidewith their capabilities to sense the physical world and act on it. Internet
of Things has a wide range of application in a variety of areas and contexts, such as smart spaces
like smart homes and smart cities. These systems have to deal with device-related problems,
such as heterogeneity, fault-tolerance, privacy and security. This paper addresses some patterns
about some recurring problems when designing and implementing Internet of Things systems.
More concretely, the patterns address how to deal with highly-changeable, error-prone and
failing devices and their networks. Device Registry demonstrates how to deal with devices
that can change over time. Device Raw Data Collector explains how to check the health of
heterogeneous devices by a constant collection of raw device data. Device Error Data Super-
visor shows how to leverage the continuous data-flow coming from devices to enable error
detection and, consequently, processing and handling those errors. Lastly, Predictive Device
Monitor show how to pro-actively predict devices operation behavior enabling maintenance
actions [Ram+17].

Appendix A. Publications 331

A.2 Other Publications from the Author

Journal Articles

A.2.1 Experimenting with Liveness in Cloud Infrastructure Manage-
ment

Pedro Lourenço, João PedroDias, Ademar Aguiar, Hugo Sereno Ferreira, and André Restivo.
“Experimenting with Liveness in Cloud Infrastructure Management”. In: Communications
in Computer and Information Science 1172 (2020)

Abstract: Cloud computing has been playing a significant role in the provisioning of services
over the Internet since its birth. However, developers still face several challenges limiting its full
potential. The difficulties are mostly due to the large, ever-growing, and ever-changing catalog
of services offered by cloud providers. As a consequence, developers must deal with different
cloud services in their systems; each managed almost individually and continually growing in
complexity. This heterogeneity may limit the view developers have over their system archi-
tectures and make the task of managing these resources more complex. This work explores
the use of liveness as a way to shorten the feedback loop between developers and their systems
in an interactive and immersive way, as they develop and integrate cloud-based systems. The
designed approach allows real-time visualization of cloud infrastructures using a visual city
metaphor. To assert the viability of this approach, the authors conceived a proof-of-concept
and carried on experiments with developers to assess its feasibility [Lou+20].

A.2.2 Live Software Development Environment using Virtual Reality:
a Prototype and Experiment

Diogo Amaral, Gil Domingues, João Pedro Dias, Hugo Sereno Ferreira, Ademar Aguiar, Rui
Nóbrega, and Filipe Figueiredo Correia. “Live Software Development Environment using
Virtual Reality: a Prototype and Experiment”. In: Communications in Computer and Infor-
mation Science 1172 (2020)

Abstract: Successful software systems tend to grow considerably, ending up suffering from es-
sential complexity, and very hard to understand as a whole. Software visualization techniques
have been explored as one approach to ease software understanding. This work presents a
novel approach and environment for software development that explores the use of liveness
and virtual reality (VR) as a way to shorten the feedback loop between developers and their
software systems in an interactive and immersive way. As a proof-of-concept, the authors de-
veloped a prototype that uses a visual city metaphor and allows developers to visit and dive
into the system, in a live way. To assess the usability and viability of the approach, the authors
carried on experiments to evaluate the effectiveness of the approach, and how to best support
a live approach for software development [Ama+20].

Appendix A. Publications 332

A.2.3 ABlockchain-basedApproach for Access Control in eHealth Sce-
narios

João Pedro Dias, ÂngeloMartins, and Hugo Sereno Ferreira. “A Blockchain-based Approach
for Access Control in eHealth Scenarios”. In: Journal of Information Assurance and Security
13 (4 2018), pp. 125–136

Access control is a crucial part of a system’s secu-rity, restrictingwhat actions users can perform
on resources.Therefore, access control is a core component when dealing witheHealth data
and resources, discriminating which is availablefor a certain party. We consider that current
systems that at-tempt to assure the share of policies between facilities are proneto system’s
and network’s faults and do not assure the integri-ty of policies life-cycle. By approaching this
problem with ablockchain where the operations are stored as transactions, wecan ensure that
the different facilities have knowledge about allthe parts that can act over the eHealth resources
while main-taining integrity, auditability, and authenticity [DMF18].

Conference Publications

A.2.4 An empirical study on visual programming docker compose
configurations

Bruno Piedade, Joao Pedro Dias, and Filipe F. Correia. “An Empirical Study on Visual Pro-
grammingDocker Compose Configurations”. In: Proceedings of the 23rd ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems: Companion Proceed-
ings. MODELS ’20. Virtual Event, Canada: Association for Computing Machinery, 2020

Abstract: Infrastructure-as-Code tools, such as Docker and Docker Compose, play a crucial
role in the development and orchestration of cloud-native and at-scale software. However, as
IaC relies mostly on the development of text-only specifications, these are prone to miscon-
figurations and hard to debug. Several works suggest the use of models as a way to abstract
their complexity, and some point to the use of visual metaphors. Yet, few empirical studies ex-
ist in this domain. We propose a visual programming notation and environment for specifying
Docker Compose configurations and proceed to empirically validate its merits when compared
with the standard text-only specification. The goal of this work is to produce evidence of the
impact that visual approaches may have on the development of IaC. We observe that the use of
our solution reduced the development time and error proneness, primarily for configurations
definition activities. We also observed a preference for the approach in terms of ease of use, a
positive sentiment of its usefulness and intention to use [PDC20].

A.2.5 Live Software Development: Tightening the Feedback Loops

Appendix A. Publications 333

Ademar Aguiar, André Restivo, Filipe Figueiredo Correia, Hugo Sereno Ferreira, and Joao
PedroDias. “Live SoftwareDevelopment: Tightening the FeedbackLoops”. In: Proceedings of
the Conference Companion of the 3rd International Conference on Art, Science, and Engineering
of Programming. Programming ’19. Genova, Italy: ACM, 2019, 22:1–22:6

Abstract: Live Programming is an idea pioneered by programming environments from the
earliest days of computing, such as those for Lisp and Smalltalk. One thing they had in common
is liveness: an always accessible evaluation and nearly instantaneous feedback, usually focused
on coding activities. In this paper, we argue for Live Software Development (LiveSD), bringing
liveness to software development activities beyond coding, tomake software easier to visualize,
simpler to understand, and faster to evolve. Multiple challenges may vary with the activity and
application domain. Research on this topic needs to consider the more important liveness gaps
in software development, which representations and abstractions better support developers,
and which tools are needed to support it [Agu+19].

A.2.6 Live Software Development Environment for Java using Virtual
Reality

Diogo Amaral, Gil Domingues, João Pedro Dias, Hugo Sereno Ferreira, Ademar Aguiar, and
Rui Nóbrega. “Live Software Development Environment for Java using Virtual Reality”. In:
Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software
Engineering — Volume 1: ENASE. INSTICC. SciTePress, 2019, pp. 37–46

Abstract: Any software system that has a considerable growing number of features will suf-
fer from essential complexity, which makes the understanding of the software artifacts in-
creasingly costly and time-consuming. A common approach for reducing the software un-
derstanding complexity is to use software visualizations techniques. There are already several
approaches for visualizing software, as well as for extracting the information needed for those
visualizations. This paper presents a novel approach to tackle the software complexity, delving
into the common approaches for extracting information about software artifacts and com-
mon software visualization metaphors, allowing users to dive into the software system in a
live way using virtual reality (VR). Experiments were carried out in order to validate the cor-
rect extraction of metadata from the software artifact and the corresponding VR visualization.
With this work, we intend to present a starting point towards a Live Software Development
approach [Ama+19].

A.2.7 CloudCity: A Live Environment for the Management of Cloud
Infrastructures

Pedro Lourenço, João Pedro Dias, Ademar Aguiar, and Hugo Sereno Ferreira. “CloudCity:
A Live Environment for the Management of Cloud Infrastructures”. In: Proceedings of the
14th International Conference on Evaluation of Novel Approaches to Software Engineering —
Volume 1: ENASE. INSTICC. SciTePress, 2019, pp. 27–36

Appendix A. Publications 334

Abstract: Cloud computing has emerged as the de facto approach for providing services over
the Internet. Although having increased popularity, challenges arise in themanagement of such
environments, especially when the cloud service providers are constantly evolving their ser-
vices and technology stack in order to maintain position in a demanding market. This usually
leads to a combination of different services, each onemanaged individually, not providing a big
picture of the architecture. In essence, the end state will be too many resources under manage-
ment in an overwhelming heterogeneous environment. An infrastructure that has considerable
growthwill not be able to avoid its increasing complexity. Thus, this papers introduces liveness
as an attempt to increase the feedback-loop to the developer in themanagement of cloud archi-
tectures. This aims to ease the process of developing and integrating cloud-based systems, by
giving the possibility to understand the system and manage it in an inte ractive and immersive
experience, thus perceiving how the infrastructure reacts to change. This approach allows the
real-time visualization of a cloud infrastructure composed of a set of Amazon Web Services
resources, using visual city metaphors [Lou+19].

A.2.8 A Blockchain-based Scheme for Access Control in e-Health Sce-
narios

João Pedro Dias, Hugo Sereno Ferreira, and Ângelo Martins. “A Blockchain-Based Scheme
for Access Control in e-Health Scenarios”. In: Proceedings of the Tenth International Confer-
ence on Soft Computing and Pattern Recognition (SoCPaR 2018). Ed. by Ana Maria Madureira,
Ajith Abraham, Niketa Gandhi, Catarina Silva, and Mário Antunes. Cham: Springer Inter-
national Publishing, 2020, pp. 238–247

Abstract: Access control is a crucial part of a system’s security, restricting what actions users
can perform on resources. Therefore, access control is a core component when dealing with
e-Health data and resources, discriminating which is available for a certain party. We consider
that current systems that attempt to assure the share of policies between facilities are mostly
centralized, being prone to system’s and network’s faults and do not assure the integrity of
policies lifecycle. Using a blockchain as store system for access policies we are able to ensure
that the different entities have knowledge about the policies in placewhilemaintaining a record
of all permission requests, thus assuring integrity, auditability and authenticity [DSM20].

A.2.9 Growing Smart Cities on an Open-Data-Centric Cyber-Physical
Platform

José Pedro Pinto, João Pedro Dias, and R. J. F. Rossetti. “Growing Smart Cities on an Open-
Data-Centric Cyber-Physical Platform”. In: 2018 IEEE International Smart Cities Conference
(ISC2). Sept. 2018, pp. 1–6

Abstract: Considering an environment that consists of several services, applications and plat-
forms, each present entity produces a certain amount of data. With so many sources of data,

Appendix A. Publications 335

there are a number of things bound to exist: different formats of information, redundancy and
no consistent standards of information. In environments as these, the collaboration between
different entities creates an opportunity for innovation, where data interoperability allows for
the re-use of information, the possibility of different services taking advantage of other third-
party sources and the development of new businesses from existing information. This, how-
ever, is only possible if there is some sort of interoperability between the data, a way for it to be
transmitted from entity to entity, always with the possibility of creating value with Its manipu-
lation and consumption. This paper exposes the work done in the development of a platform
focused on data, looking into its forms of representation and how to solve the problems caused
by the ever existing necessity of data interoperability between systems. The possibility for
maintaining and creating Open Data Ecosystems is also analysed in the scope of the proposed
platform [PDR18].

A.2.10 Towards a Framework for Agent-based Simulation of User be-
havior in E-Commerce Context

DuarteDuarte, Hugo Sereno Ferreira, João PedroDias, andZafeiris Kokkinogenis. “Towards
a Framework for Agent-Based Simulation of User behavior in E-Commerce Context”. In:
Trends in Cyber-Physical Multi-Agent Systems. The PAAMS Collection - 15th International
Conference, PAAMS 2017. Cham: Springer International Publishing, 2018, pp. 30–38

Abstract: In order to increase sales and profits, it is common that e-commerce website own-
ers resort to severalmarketing and advertising techniques, attempting to influence user actions.
Summarizing and analysing user behavior is a complex task since it is hard to extrapolate pat-
terns that never occurred before and the causality aspects of the system are not usually taken
into consideration. There has been studies about characterizing user behavior and interac-
tions in e-commerce websites that could be used to improve this process. This paper presents
an agent-based framework for simulatingmodels of user behavior created through datamining
processes within an e-commerce context. The purpose of framework is to study the reaction
of user to stimuli that influence their actions while navigating the website. Furthermore a scal-
ability analysis is performed on a case-study [Dua+18].

A.2.11 A Hands-on Approach on Botnets for Behavior Exploration

João Pedro Dias, José Pedro Pinto, and JoséMagalhães Cruz. “A Hands-on Approach on Bot-
nets for Behavior Exploration”. In: Proceedings of the 2nd International Conference on Internet
of Things, Big Data and Security. SCITEPRESS - Science and Technology Publications, 2017,
pp. 463–469

Abstract: A botnet consists of a network of computers that run a special software that allows
a third-party to remotely control them. This characteristic presents a major issue regarding

Appendix A. Publications 336

security in the Internet. Although common malicious software infect the network with al-
most immediate visible consequences, there are cases where that software acts stealthy with-
out direct visible effects on the host machine. This is the normal case of botnets. However,
not always the bot software is created and used for illicit purposes. There is a need for fur-
ther exploring the concepts behind botnets and network security. For this purpose, this paper
presents and discusses an educational tool that consists of an open-source botnet software kit
with built-in functionalities. The tool enables anyone with some computer technical knowl-
edge, to experiment and find out how botnets work and can be changed and adapted to a variety
of useful applications, such as introducing and exemplifying security and distributed systems’
concepts [DPC17].

A.2.12 Automating the Extraction of Static Content and Dynamic be-
havior from e-Commerce Websites

Joao Pedro Dias and Hugo Sereno Ferreira. “Automating the Extraction of Static Content
and Dynamic behavior from e-Commerce Websites”. In: Procedia Computer Science 109
(2017). 8th International Conference on Ambient Systems, Networks and Technologies,
ANT-2017 and the 7th International Conference on Sustainable Energy Information Tech-
nology, SEIT 2017, 16-19 May 2017, Madeira, Portugal, pp. 297–304

Abstract: E-commerce website owners rely heavily on analysing and summarising the be-
havior of costumers, making efforts to influence user actions and optimize success metrics.
Machine learning and data mining techniques have been applied in this field, greatly influ-
encing the Internet marketing activities. When faced with a new e-commerce website, the
data scientist starts a process of collecting real-time and historical data about it, analysing and
transforming this data in order to get a grasp into the website and its users. Data scientists
commonly resort to tracking domain-specific events, requiring code modification of the web
pages. This paper proposes an alternative approach to retrieve information from a given e-
commerce website, collecting data from the site’s structure, retrieving semantic information
in predefined locations and analysing user’s access logs, thus enabling the development of ac-
curate models for predicting users’ future behavior. This is accomplished by the application
of a web mining process, comprehending the site’s structure, content and usage in a pipeline,
resulting in a web graph of the website, complemented with a categorization of each page and
the website’s archetypical user profiles [DF17].

337

B | Replication Packages

B.1 Home Automation Survey . 337
B.2 Self-Healing Extensions for Node-RED . 337
B.3 Real-Time Feedback on Node-RED . 338
B.4 Jarvis Voice Assistant . 338
B.5 Node-RED Distributed Orchestration . 338
B.6 Serverless for IoT Tasks . 338
B.7 Fault-injection on Publisher/Subscriber IoT Systems 339

A replication package containing both the source code and experimental materials for several
parts of this thesis is available as open-source as listed.

B.1 Home Automation Survey
Replication package of the home automation survey carried in min-2020 with 20 participants,
as discussed in Chapter 5 (p. 123). It contains the raw collected data of the 177 submitted
scenarios, alongwith the list of devices, house 2D/3Dmodels, and processed data (e.g., isometric
representation of the house).

Zenodo https://doi.org/10.5281/zenodo.4531395

B.2 Self-Healing Extensions for Node-RED
A collection of nodes (extensions) for making Node-REDmore resilient by adding self-healing
capabilities. It contains the source code of 17 nodes, along with supporting documentation.
The corresponding work is presented and discussed in Chapter 12 (p. 218).

GitHub https://github.com/jpdias/node-red-contrib-self-healing

NPM https://www.npmjs.com/package/node-red-contrib-self-healing

Zenodo https://doi.org/10.5281/zenodo.4448164

https://doi.org/10.5281/zenodo.4531395
https://github.com/jpdias/node-red-contrib-self-healing
https://www.npmjs.com/package/node-red-contrib-self-healing
https://doi.org/10.5281/zenodo.4448164

Appendix B. Replication Packages 338

B.3 Real-Time Feedback on Node-RED
Capacitating Agile Users with Live Debugging Resources On Node-RED (CAULDRON) is a
modified version of Node-RED, as discussed in Chapter 13 (p. 246). The package contains both
the source code and supporting documentation.

GitHub https://github.com/SIGNEXT/Node-RED-CAULDRON

Zenodo http://doi.org/10.5281/zenodo.5724488

B.4 Jarvis Voice Assistant
Package with the source code and supporting documentation for setting up and running Jarvis,
a chat-bot (conversational assistant) for interaction with Internet-of-Things systems. The cor-
responding work is presented and discussed in Chapter 14 (p. 258).

GitHub https://github.com/andrelago13/jarvis/

Zenodo http://doi.org/10.5281/zenodo.3741953

B.5 Node-RED Distributed Orchestration
Decentralized Computation extensions for Node-RED is a set of nodes that allow to distribute
flows nodes across available computational resources in the network. It is accompanied by an
Espressif ESP-compatible MicroPython firmware which is compatible with the orchestration
procedure and is able to run the generated Python scripts. The corresponding work is pre-
sented and discussed in Chapter 11 (p. 199).

GitHub https://github.com/SIGNEXT/node-red-contrib-decentralized-computation

NPM https://www.npmjs.com/package/node-red-contrib-decentralized-computation

Zenodo https://doi.org/10.5281/zenodo.5724435

B.6 Serverless for IoT Tasks
Replication package for serverless computing across tiers of an IoT system. It contains the
source code, supporting documentation, and usage examples. The corresponding work is pre-
sented and discussed in Chapter 10 (p. 184).

GitHub https://github.com/jpdias/serverless-iot/

Zenodo https://doi.org/10.5281/zenodo.5724372

https://github.com/SIGNEXT/Node-RED-CAULDRON
http://doi.org/10.5281/zenodo.5724488
https://github.com/andrelago13/jarvis/
http://doi.org/10.5281/zenodo.3741953
https://github.com/SIGNEXT/node-red-contrib-decentralized-computation
https://www.npmjs.com/package/node-red-contrib-decentralized-computation
https://doi.org/10.5281/zenodo.5724435
https://github.com/jpdias/serverless-iot/
https://doi.org/10.5281/zenodo.5724372

Appendix B. Replication Packages 339

B.7 Fault-injection on Publisher/Subscriber IoT Systems
Replication package for fault-injection on publisher/subscriber IoT systems. It contains the
source code, supporting documentation, usage examples and experimental data. The corre-
sponding work is presented and discussed in Chapter 12 (p. 218).

GitHub https://github.com/SIGNEXT/instrumentable-aedes

Zenodo https://doi.org/10.5281/zenodo.5724429

https://github.com/SIGNEXT/instrumentable-aedes
https://doi.org/10.5281/zenodo.5724429

340

C | Self-Healing Algorithms

This appendix contains some extra algorithms that correspond to implementations of the self-
healing patterns presented in Chapter 6 (p. 144).

Algorithm C.1: Pseudo-code for the kalman-filter node.
Input : sensorReading
Output : sensorReading
/* The present algorithm is a simplification of the Kalman Filter which assumes that the state vector

equals 1, control vector equals 0 and measurement vector equals 1 as per the work of Bulten et al.
[BRH16]. */

1 init
2 config: {
3 R: R>0, // noise power desirable
4 Q: R>0, // noise power estimated
5 }
6 covariance: R,
7 measurement: R

8 onInput
9 if not measurement then
10 covariance← Q
11 measurement← sensorReading
12 else
13 uncertainty← covariance + R
14 kalmanGain← uncertainty

uncertainty+Q
15 measurement← kalmanGain× sensorReading
16 covariance← uncertainty - (kalmanGain× uncertainty)
17 returnmeasurement

Appendix C. Self-Healing Algorithms 341

Algorithm C.2: Pseudo-code for the compensate node.
Input : reading
Output : reading

1 init
2 config: {
3 historySize: Z>1

4 interval: R>0

5 strategy← s ∈ {avg, max, min, last, nil, . . .}
6 }
7 timer← newTimer(config.interval)
8 sensorHistory← []

9 onInput
10 if |sensorHistory| ≥ config.historySize then
11 delete(sensorHistory0)

12 sensorHistory← sensorHistory++ reading
13 timer.start() // (Re)start timer
14 return reading

15 onTimeout
16 reading← config.strategy(readingHist)
17 if |sensorHistory| ≥ config.historySize then
18 delete(sensorHistory0)

19 sensorHistory← sensorHistory++ reading
20 timer.start()
21 return reading

Algorithm C.3: Pseudo-code for the threshold-check node.
Input : reading
Output : 〈reading, error〉 // egress ignores ‘_’ messages

1 init
2 config: {
3 lowThreshold: R
4 highThreshold: R
5 inv lowThreshold≤ highThreshold
6 }

7 onInput
8 if reading ∈ [config.lowThreshold, config.highThreshold] then
9 return 〈reading, _〉

10 else
11 return 〈_, error〉

Appendix C. Self-Healing Algorithms 342

Algorithm C.4: Pseudo-code for the replication-voter node with timeout.
Input : sensorReading
Output : 〈sensorReading, error〉

1 init
2 config {minConsensus: Z>0}
3 timer← newTimer(interval: R>0)
4 sensorReads← []

5 onInput
6 sensorReads← sensorReads++ sensorReading
7 if not timer.started() then
8 timer.start()

9 onTimeout
10 h(x)←

∑
v∈sensorReads[v = x] // occurrences of x

11 〈majority, voters〉 ← 〈argmaxx h(x),maxx h(x)〉
12 sensorReads← []
13 if voters ≥ config.minConsensus then
14 return 〈majority,Nil〉
15 else
16 return 〈Nil, error〉

Algorithm C.5: Pseudo-code for the replication-voter node without timeout.
Input : sensorReading
Output : 〈sensorReading, error〉

1 init
2 config: {
3 numberOfReadings: Z>0

4 minConsensus: Z>0

5 }
6 sensorReads← []

7 onInput
8 sensorReads← sensorReads++ sensorReading
9 if config.numberOfReadings == |sensorReads| then
10 h(x)←

∑
v∈sensorReads[v = x] // occurrences of x

11 〈majority, voters〉 ← 〈argmaxx h(x),maxx h(x)〉
12 sensorReads← []
13 if voters ≥ config.minConsensus then
14 return 〈majority,Nil〉
15 else
16 return 〈Nil, error〉

Appendix C. Self-Healing Algorithms 343

Algorithm C.6: Pseudo-code for the flow-control node.
Input : 〈flowID, statusBool〉
Output : 〈success, error〉

1 init
2 config: {
3 ip: ipAddress
4 port: [1 . . . 65535]
5 }
6 httpObj← 〈config.ip, config.port〉 // can be localhost
7 flowConfig: JSONObject

8 onInput
9 flowConfig← httpObj.get("/flow/flowID")
10 flowConfig.disabled← not statusBool
11 httpCode← httpObj.put("/flow/flowID", flowConfig)
12 if httpCode = "200 OK" then
13 return 〈success,Nil〉
14 else
15 return 〈Nil, error〉

Algorithm C.7: Pseudo-code for the device-registry node.
Input : _
Output : deviceList
/* Maintains a registry of all devices in the network with a last seen timestamp. Obs are

observations with extra info if available, e.g., manufacturer. */

1 init
2 devices: {id→ 〈ip, lastSeen, obs〉}

3 onInput
4 lastSeen← time.now()
5 id← md5(ip, obs)
6 devices← devices ++ id→ 〈ip, lastSeen, obs〉
7 return devices

Appendix C. Self-Healing Algorithms 344

Algorithm C.8: Pseudo-code for the redundancy-manager node.
Input : pingMsg
Output : 〈pingMsg, hosts, selfIsMaster〉

1 init
2 config: {pingInterval: Z>0

3 timeout: R>0}
4 myIP← OS.getIpAddress()
5 timer← newTimer(config.pingInterval)
6 selfIsMaster← false
7 hostRegistry: {
8 host: ipAddress→{
9 master: boolean,
10 lastSeen: timestamp
11 }
12 }
13 broadcast←{master← selfIsMaster, // first host announcement
14 hostIP←myIP }
15 return 〈broadcast, _, _ 〉

16 onInput
17 if not pingMsg.hostIP = myIP then
18 hostRegistry ∪ { pingMsg.hostIP→{
19 master← pingMsg.master,
20 lastSeen← time.now() } }
21 if not timer.started() then
22 timer.start()

23 onTimeout
24 hosts← hostRegistry.keys() if |hosts| = 0 and not selfIsMaster then
25 selfIsMaster← true
26 else
27 forall host in hosts do
28 if hostRegistryhost.lastSeen - time.now() ≥ config.timeout then
29 hostRegistry \ host
30 if hostRegistry[host].master then
31 hostIp← getIpWithMaxLastOctect(hosts)
32 selfIsMaster← hostIp = myIp

33 pingMsg←{
34 master← selfIsMaster, // host alive message
35 hostIP←myIP }
36 return 〈pingMsg, hosts, selfIsMaster 〉

Appendix C. Self-Healing Algorithms 345

Algorithm C.9: Pseudo-code for the checkpoint node.
Input :message
Output :message

1 init
2 config: {timeToLive: R>0}
3 store: {timestamp, lastMessage}
4 timestamp← store.timestamp or nil
5 lastMessage← store.lastMessage or nil
6 if lastMessage 6= nil then
7 aliveTime← time.now()− store.timestamp
8 if aliveTime ≤ config.timeToLive then
9 retained← lastMessage
10 lastMessage← nil
11 return retained

12 onInput
13 store.timestamp← time.now() // store is persistent
14 store.lastMessage←message
15 returnmessage

Algorithm C.10: Pseudo-code for the heartbeat node.
Input :message
Output : 〈ping, ok, error〉 // egress ignores ‘_’ messages

1 init
2 config: {
3 ping: message
4 ok: message
5 error: message
6 mode←m ∈ { passive, active }
7 timeout: R>0

8 }
9 timer← newTimer(config.timeout)

10 onInput
11 timer.restart()
12 if config.mode = passive then
13 return 〈_, config.ok, _〉
14 if config.mode = active then
15 return 〈config.ping, config.ok, _〉

16 onTimeout
17 timer.restart()
18 return 〈_, _, config.error〉

Appendix C. Self-Healing Algorithms 346

Algorithm C.11: Pseudo-code for the action-audit node.
Input :message ∈ { action, acknowledgment }
Output : 〈ok, timeout, error〉 // egress ignores ‘_’ messages
/* Acknowledging an actuator correct operation depends on recieving a confirmation from an

independent source, such as a sensor. The action is confirmed when an acknowledgment message
arrives within the defined timeout window. Assumes that acknowledgments occur in the same
order as actions. */

1 init
2 config: {
3 timeout: R>0

4 }
5 actionQueue: queue〈message, timer〉

6 onInput
7 if message is action then
8 timer← newTimer(config.timeout)
9 actionQueue.push({message, timer})

10 if message is acknowledgment then
11 if |actionQueue| = 0 then
12 return 〈_, _, error〉
13 else
14 actionQueue.dequeue()
15 return 〈ok, _, _〉

16 onTimeout
17 message← timedOutMessage
18 actionQueue.remove(message)
19 return 〈_, timeout, _〉

Appendix C. Self-Healing Algorithms 347

Algorithm C.12: Pseudo-code for the debounce node.
Input :message
Output : 〈message, delayed〉

1 init
2 config: {
3 minInterval: R>1, // minimal interval between messages (sec.)
4 strategy: s ∈ { discard, first, last, allByOrder },
5 }
6 timer← newTimer(interval: R>0)
7 lastMsgTimestamp: timestamp
8 pendingMessages: message[]

9 onInput
10 currentTimestamp← time.now()
11 if (currentTimestamp - lastMsgTimestamp ≥ minInterval and |pendingMessages| = 0) or not

lastMsgTimestamp then
12 lastMsgTimestamp← currentTimestamp
13 return 〈message, _〉
14 if currentTimestamp − lastMsgTimestamp ≤ minInterval then
15 if config.strategy 6= discard then
16 if not timer then
17 timer← newTimer(config.minInterval)

18 pendingMessages← pendingMessages++message

19 return 〈_, message〉

20 onTimeout
21 if config.strategy = allByOrder then
22 message← pendingMessages0
23 delete(pendingMessages0)
24 if |pendingMessages| > 0 then
25 timer← newTimer(config.minInterval)

26 return 〈message, _〉
27 if config.strategy = last then
28 message← pendingMessages.pop()
29 delete(pendingMessages)
30 return 〈message, _〉
31 if config.strategy = first then
32 message← pendingMessages0
33 delete(pendingMessages)
34 return 〈message, _〉

Appendix C. Self-Healing Algorithms 348

Algorithm C.13: Pseudo-code for the http-aware node.
Input : _
Output : 〈ip, port〉[]

1 init
2 config: {
3 ipRange: ipRange, // e.g., 192.168.0.124
4 ports: p[]⊂ {80,443,8080},
5 scanInterval: R>0

6 }
7 timer← newTimer(config.scanInterval)
8 services: 〈ip, port〉[]

9 onInput
10 timer.stop()
11 services← []
12 forall ip in ipRange do
13 forall port in ports do
14 httpObj← 〈ip, port〉
15 httpCode← httpObj.get("/")
16 if httpCode = "200 OK" then
17 servicesFound.push(〈ip, port〉)

18 timer.restart()
19 return 〈services〉

20 onTimeout
21 trigger onInput

Algorithm C.14: Pseudo-code for the resource-monitor node.
Input :message
Output : 〈processorAlert, memoryAlert, storageAlert, batteryAlert〉

1 init
2 config: {
3 maxProcessorUsage: {x : 0 ≤ x ≤ 100},
4 maxMemoryUsage: {x : 0 ≤ x ≤ 100},
5 maxStorageUsage: {x : 0 ≤ x ≤ 100},
6 minBattery: {x : 0 ≤ x ≤ 100},
7 }

8 onInput
9 processorAlert←message.processor > maxProcessorUsage
10 memoryAlert←message.memory > maxMemoryUsage
11 storageAlert←message.storage > maxStorageUsage
12 minBattery←message.battery < minBattery
13 return 〈processorAlert, memoryAlert, storageAlert, batteryAlert〉

Appendix C. Self-Healing Algorithms 349

Algorithm C.15: Pseudo-code for the balancing node.
Input :message
Output : 〈out0, . . . , outconfig.numberOfOutputs〉

1 init
2 config:{
3 numberOfOutputs: R>1,
4 strategy: s ∈ { roundRobin, weightedRoundRobin, random},
5 weights: R>1[]
6 }
7 lastOutputUsed← nil
8 inv |weights|= config.numberOfOutputs

9 onInput
10 if strategy = random then
11 outIndex = random(1,config.numberOfOutputs)
12 return 〈 . . . , messageoutIndex, . . .〉
13 if strategy = roundRobin then
14 outIndex = (lastOutputUsed + 1) mod config.numberOfOutputs
15 lastOutputUsed = outIndex
16 return 〈 . . . , messageoutIndex, . . .〉
17 if strategy = weightedRoundRobin then
18 outIndex =

sortOutputsByWeights(weights)(lastOutputUsed+1)modconfig.numberOfOutputs
lastOutputUsed = outIndex

19 return 〈 . . . , messageoutIndex, . . .〉

Appendix C. Self-Healing Algorithms 350

Algorithm C.16: Pseudo-code for the timing-check node.
Input :message
Output : 〈normal,tooSlow,tooFast〉

1 init
2 config: {
3 messageInterval: R>0,
4 margin: R>0,
5 historySize: R>0,
6 }
7 msgHistory: []
8 lastMsgTimestamp: R>0

9 inv |msgHistory| ≤ config.historySize

10 onInput
11 message.timestamp← time.now()
12 if |msgHistory| ≥ config.historySize then
13 delete(msgHistory0)

14 msgHistory←msgHistory ++ message
15 if not lastMsgTimestamp then
16 return 〈message, _, _〉
17 else
18 averageInterval←

∑config.historySize
i=1 msgHistoryi.timestamp

config.historySize
19 if averageInterval > messageInterval + margin then
20 return 〈_, message, _〉
21 if averageInterval < messageInterval - margin then
22 return 〈_, _, message〉
23 return 〈message, _, _〉

Appendix C. Self-Healing Algorithms 351

Algorithm C.17: Pseudo-code for the network-aware node.
Input : _
Output : devices

1 init
2 config: {
3 ipRange: ipRange, // e.g., 192.168.0.124
4 scanInterval: R>0

5 }
6 timer← newTimer(config.scanInterval)
7 devices← []: {
8 ip: ipAddress,
9 manufacturer: string,
10 timestamp: timestamp
11 }

12 onInput
13 devices← []
14 timer.stop()
15 arpTable← OS.getArpTable()
16 forall entry in arpTable do
17 deviceEntry←{
18 ip: entry.ip,
19 manufacturer: manufacturerFromMAC(entry.mac),
20 timestamp: time.now()
21 }
22 devices← devices ++ deviceEntry

23 timer.restart()
24 return devices

25 onTimeout
26 trigger onInput

Appendix C. Self-Healing Algorithms 352

Algorithm C.18: Pseudo-code for the readings-watcher node.
Input : sensorReading
Output : 〈okReading,errorReading〉

1 init
2 config: {
3 minChange: {x : x ∈ R0 ∧ x ≥ 0}
4 maxChange: {x : x ∈ R0 ∧ x ≥ 0}
5 stuckCounter: {x : x ∈ R0 ∧ x ≥ 0}
6 }
7 sensorHistory← []
8 inv |sensorHistory|= stuckCounter

9 onInput
10 if |sensorHistory| = 0 then
11 sensorHistory← sensorHistory ++ sensorReading
12 return 〈sensorReading, _〉
13 change← |sensorHistory0-sensorReading|
14 if minChange and change ≤ minChange then
15 return 〈_, sensorReading〉
16 if maxChange and change ≥ maxChange then
17 return 〈_, sensorReading〉
18 if stuckCounter and |sensorHistory| = stuckCounter then
19 if ∨ x, y ∈ sensorHistory | x = y then
20 return 〈_, sensorReading〉
21 if |sensorHistory| ≥ config.historySize then
22 delete(sensorHistory0)

23 sensorHistory← sensorHistory ++ sensorReading

24 return 〈sensorReading, _〉

	Cover
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Algorithms and Code Snippets
	Acronyms
	Preface
	Introduction
	On the Analog and Digital Worlds
	From the Internet-of-Computers to the IoT
	The Role of Automation
	Software Crisis and the Technology Fragmentation
	Complexity: Essential versus Accidental
	Towards Dependable Systems
	Motivation and Scenarios
	Emerging Challenges
	Research Goals
	Research Contributions
	How to Read this Document

	I Fundamentals
	Background
	Internet-of-Things
	Software Architecture Context
	Fault-tolerant Systems
	Autonomic Computing
	Software Development Life-Cycle
	Summary

	State-of-the-Art
	Designing IoT Systems
	Constructing IoT Systems
	Testing IoT Systems
	IoT Cross-Cutting Challenges
	Fault-Tolerant Systems
	Autonomic Computing
	Summary

	End-user Automation Survey
	Home Automation User Study
	Methodology
	Scenarios Categories
	Results and Analysis
	Threats to Validity
	Summary

	Research Statement
	Emerging Challenges and Viewpoints
	A Perspective on Node-RED
	Thesis Statement
	Research Questions
	Research Methodology
	Summary

	II Pattern Language
	Patterns for Dependable IoT
	How To Read These Patterns
	Methodology
	Pattern Language
	Summary

	Supporting Patterns
	Device Registry
	Device Raw Data Collector
	Device Error Data Supervisor
	Predictive Device Monitor
	Testbed
	Simulation-based Testing
	Middleman Update
	Summary

	Error Detection Patterns
	Action Audit
	Suitable Conditions
	Reasonable Values
	Unimpaired Connectivity
	Within Reach
	Component Compliance
	Coherent Readings
	Internal Coherence
	Stable Timing
	Unsurprising Activity
	Timeout
	Conformant Values
	Resource Monitor
	Summary

	Recovery & Maintenance of Health Patterns
	Redundancy
	Diversity
	Runtime Adaption
	Debounce
	Balancing
	Compensate
	Timebox
	Checkpoint
	Reset
	Consensus Among Values
	Circumvent and Isolate
	Flash
	Calibrate
	Rebuild Internal State
	Summary

	III Dependable and Autonomic Computing
	Dynamic Allocation of Serverless Functions in IoT
	Approach Overview
	Experiments and Results
	Discussion
	Summary

	Visual IoT Dynamic Orchestration
	Approach Overview
	Experiments and Results
	Discussion
	Summary

	Self-Healing for IoT
	Approach Overview
	Experiments and Results
	Discussion
	Summary

	IV End-User Development
	Real-time Feedback in Node-RED
	Approach Overview
	Experiments and Results
	Discussion
	Summary

	Conversational Assistant for IoT Automation
	Approach Overview
	Experiments and Results
	Discussion
	Summary

	Conclusions
	Research Questions
	Hypothesis Revisited
	Thesis Validation
	Main Outcomes
	Future Work
	Epilogue

	References
	Appendices
	Publications
	Publications Resulting from this Research
	Other Publications from the Author

	Replication Packages
	Home Automation Survey
	Self-Healing Extensions for Node-RED
	Real-Time Feedback on Node-RED
	Jarvis Voice Assistant
	Node-RED Distributed Orchestration
	Serverless for IoT Tasks
	Fault-injection on Publisher/Subscriber IoT Systems

	Self-Healing Algorithms

