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Particulate matter (PM) has been monitored routinely due to its negative effects on human 

health and atmospheric visibility. Standard gravimetric measurements and current 

commercial instruments for field measurements are still expensive and laborious. The high 

cost of conventional instruments typically limits the number of monitoring sites, which in 

turn undermines the accuracy of real-time mapping of sources and hotspots of air pollutants 

with insufficient spatial resolution. The new trends of PM concentration measurement are 

personalized portable devices for individual customers and networking of large quantity 

sensors to meet the demand of Big Data. Therefore, low-cost PM sensors have been studied 

extensively due to their price advantage and compact size. These sensors have been 

considered as a good supplement of current monitoring sites for high spatial-temporal PM 

mapping. However, a large concern is the accuracy of these low-cost PM sensors.  
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Multiple types of low-cost PM sensors and monitors were calibrated against reference 

instruments. All these units demonstrated high linearity against reference instruments with 

high R2 values for different types of aerosols over a wide range of concentration levels. The 

question of whether low-cost PM monitors can be considered as a substituent of conventional 

instruments was discussed, together with how to qualitatively describe the improvement of 

data quality due to calibrations. A limitation of these sensors and monitors is that their 

outputs depended highly on particle composition and size, resulting in as high as 10 times 

difference in the sensor outputs. 

Optical characterization of low-cost PM sensors (ensemble measurement) was conducted by 

combining experimental results with Mie scattering theory. The reasons for their dependence 

on the PM composition and size distribution were studied. To improve accuracy in estimation 

of mass concentration, an expression for K as a function of the geometric mean diameter, 

geometric standard deviation, and refractive index is proposed. To get rid of the influence of 

the refractive index, we propose a new design of a multi-wavelength sensor with a robust data 

inversion routine to estimate the PM size distribution and refractive index simultaneously.  

The utility of the networked system with improved sensitivity was demonstrated by 

deploying it in a woodworking shop. Data collected by the networked system was utilized to 

construct spatiotemporal PM concentration distributions using an ordinary Kriging method 

and an Artificial Neural Network model to elucidate particle generation and ventilation 

processes. Furthermore, for the outdoor environment, data reported by low-cost sensors were 
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compared against satellite data. The remote sensing data could provide a daily calibration of 

these low-cost sensors. On the other hand, low-cost PM sensors could provide a better 

accuracy to demonstrate the microenvironment. 
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Chapter 1: Introduction: Calibration and 

Applications of Low-cost Particle Sensors – 

a Review of Recent Advances 
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1.1 Introduction 

New designs for low-cost particulate matter (PM) sensors, new commercial products, and an 

accompanying number of new publications all show the trending interest in this top. The 

deployment of low-cost PM sensor networks, together with their pros and cons, has also been 

discussed in recent works1-3. Compared to conventional particulate matter (PM) monitoring 

techniques, the price advantage and minimal maintenance of low-cost PM sensors make them 

a promising supplement to current monitoring methods. They can enhance the spatiotemporal 

resolution of pollution mapping, improving the accuracy of personal exposure estimation and 

validation of the PM transport models. Estimating personal PM exposure accurately can 

benefit epidemiologic studies by identifying the adverse health effects of PM. Improving and 

understanding PM transport models can effectively control and even prevent pollution events. 

These promising applications explain the recent extensive studies of low-cost PM sensors. As 

shown in Figure 1, publications related to low-cost air quality sensors were almost nil before 

2011, but have steadily increased since then.  
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Figure 1.1 (a) The number of papers published each year related to “low-cost air quality 

sensors”. Data from Web of Science Core Collection 1900 – 2019. 

 

Studies related to low-cost sensors basically focus on their calibration and application. The 

calibration studies evaluate sensors’ performance by comparing them with reference 

instruments, while the application studies focus on pollution mapping and personal exposure 

estimation. Several reviewers have summarized studies related to low-cost PM sensors4-7. 

Kumar et al. (2015) generally explained the motivations for the rising topic, and reviewed 

concerns of the reliability, sensitivity, selectivity, and durability of low-cost sensors4. Rai et 

al. (2017) concretely summarized literature on the performance of several different types of 

low-cost PM sensors, and also analyzed possible environmental factors and aerosol properties 

that could bias their performance5. Morawska et al. (2018) analyzed 17 large on-going funded 

research studies on low-cost PM sensors, and summarized the major concerns regarding 

sensor calibration and application6. Synder et al. (2013) highlighted that low-cost sensors can 
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improve existing air pollution monitoring capabilities and inspire innovative applications7. 

Several other reviews illustrate the current limitations and future of low-cost air quality 

sensors8-10.  

In this chapter, we further review the studies of low-cost PM sensors, and focus in detail on 

their working principles, calibration methods, calibration metrics, and application scenarios. 

The working principles of several low-cost PM sensors are demonstrated, using schematics 

from previous studies. Sensors measuring PM with other techniques are also briefly 

discussed. Calibration methods and metrics are summarized and compared. Calibration 

methods and tools include regression or correlation, the non-parametric Wilcoxon signed-

rank test, the ranking method, the Bayesian information criterion, average slope and 

individual slope methods, and the machine learning method. Calibration metrics, parameters 

for evaluating the performance of low-cost PM sensors, include the limit of detection (LOD), 

the correlation coefficient of linear regression, bias and precision, the coefficient of variation 

(CV), and the detection efficiency. Finally, innovative applications of low-cost PM sensors in 

field measurements or personal exposure estimation are discussed. We also introduce several 

spatial analysis methods with corresponding cases, illustrating the use of the coefficient of 

divergence (COD), land use regression, and several spatial interpolation methods. One thing 

worth noting is that the term “low-cost PM sensor” generally refers to the both electrical 

sensing modules (e.g., popular models from Sharp, Shinyei, Samyoung, Oneair, and 

Plantower), together with low-cost PM monitors based on sensing modules. To make the 

sensing module functional, circuit board design, programming, and calibration are necessary 
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to establish the relationship between electrical signals (current, voltage, or pulse width) and 

PM concentrations. For low-cost PM monitors, electrical sensing modules have been 

integrated with data acquisition and storage systems before being distributed to users, and 

they have been calibrated and tested. Compared to the PM sensing module alone, the 

assembled monitors’ prices are higher, but these monitors are advertised with enhanced data 

quality and stability due to improved algorithms and advanced factory calibration. 

Occasionally, these monitors have even been chosen as reference instruments to calibrate 

low-cost sensors. For convenience, here we still use the general term “low-cost PM sensors” 

for both sensing modules and low-cost PM monitors.  

 

1.2 The working principles of low-cost PM sensors 

Low-cost PM sensors, operating on basic optical principles, determine the PM concentration 

level by measuring the intensity of light scattered by particles. Basically, there are two types 

of these sensors, nephelometer type sensors and optical particle counter (OPC) type sensors. 

In a nephelometer type sensor, particles pass through the sensing volume almost 

simultaneously in a cloud, and the particle concentration is determined by the total scattered 

light intensity registered by a photodetector. In an OPC type sensor, when a single particle 

passes the sensing volume, the scattered light generates a pulse on the photodetector. The 

number and the intensity of pulses are proportional to PM’s number concentration and size, 

respectively. The working principles of several popular types of low-cost PM sensors are 
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shown in Figure 2. Only the Plantower sensors in Figure 2(g) and Figure 2(h) are OPC type 

sensors; the rest are nephelometer type sensors. Apart from the commercial designs shown in 

Figure 2, several studies have proposed new designs for low-cost PM sensors, focusing on 

eliminating the effect of the particles’ refractive index or enhancing the sensors’ accuracy11-

14. 

Low-cost optical PM sensors that light scattering techniques are often considered capable of 

measuring only particles larger than 0.3 μm. This conclusion is accurate for OPC type 

sensors, since the pulse signal generated by a very small particle will be buried in the noise. 

But for nephelometer type sensors, although individual small particles cannot generate 

intensive signals, if their number concentration is high enough, they can still generate a 

detectable response, since the totally scattered light intensity is also related to the number 

concentration.  
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Figure 1.2 Working principles of (a) Shinyei PPD42NS, (b) Samyoung DSM501A, (c) Sharp 

GP2Y1010AU0F, (d) NovafitnessSDS011, (e) Winsen ZH03A, (f) Honeywell HPMA115S0-

X, (g) Plantower PMS3003, (h) Plantower PMS5003, and (i) Oneair CP-15-A4. The figures 

are from the following studies – (a-c): Wang et al. (2015), (d-f): Hapidin et al. (2019), (g): 

Kelly et al. (2017), (h): Sayahi et al. (2019), and (i): Liu et al. (2017). The light sources in (a-

c) and (i) are light emitting diode (LED), and (d-h) are lasers. 

 

Apart from optical sensors, other types of low-cost PM sensors are receiving attention. Intra 

et al. (2013) presented a design based on unipolar corona charging and electrostatic detection 

of charged particles15. Volckens et al. (2016) designed a time-integrated filter sampler with 

an ultrasonic piezoelectric pump to drive flow, together with a cyclone to select particles of a 

certain size range16. Surface acoustic wave sensors can detect PM concentration by 
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measuring the resonant frequency change after particles deposit on the sensing area, which 

interferes with the propagation of acoustic waves2, 17-19. Budde et al. (2013) designed an add-

on PM detector component for smart phones, using the flashlight and camera as the light 

source and photo detector20. Snik et al. (2014) also designed an attachable component that 

assists smart phones for aerosol optical thickness measurement21. Du et al. (2018) designed a 

PM sensor based on a CMOS (complementary metal oxide semiconductor) imager and an 

electrostatic particle collector22. A similar design was also reported by Carminati et al. 

(2017)23. Yang et al. (2018) synthesized a layer of polypyrrole sensing nanofilm on a 

photonic crystal fiber24. Particles deposited on the sensing nanofilm change its refractive 

index, indicating a PM concentration level change24. The feasibility of using photonic and 

microelectromechanical resonators for detecting particles or viruses has also been 

discussed25. Recently, a piezoelectric microelectromechanical resonator, together with a low-

cost circuit, was proposed as a new low-cost PM sensor26. A quartz crystal microbalance 

(QCM) has been used to measure PM mass concentration, based on the frequency shift 

caused by particle deposition, and miniaturized devices based on QCM have been developed 

recently27, 28. 

Although these new innovative designs have an intriguing future, low-cost PM sensors 

operating on optical principles are still the dominant type, for several reasons. First, optical 

sensors are easy to use with a lower price compared to other type of sensors. Second, theories 

of the interactions between light and particles are maturely developed. At the same time, 

many research-grade PM measurement instruments are also based on optical principles, and 
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researchers are familiar with these instruments. Therefore, it is easy for them to shift from 

using conventional instruments to low-cost PM sensors operating on a similar principle. To 

prove the reliability and stability of the innovative designs, further effort is still needed. 

Third, their cost and fabrication procedures are also concerns. For some innovative design, 

although the sensing unit is low-cost, the signal processing and detection components are 

expensive. In summary, nephelometer type and OPC type designs still are the most widely 

used because they are compact, easily integrated with other systems, operate on familiar 

principles, and are conveniently deployed.  

  

1.3 Calibration methods overview 

Laboratory calibrations and field calibrations are the foundations of low-cost PM sensors’ 

applications29-35. In a laboratory calibration, environmental factors and aerosol properties can 

be controlled. Environmental factors include the temperature, relative humidity, and 

ventilation rate. For aerosols, ultrafine particles can be generated from atomizers, and 

micron-sized particles can be generated from dust dispensers. A few studies have also used 

common residential or industrial PM sources (e.g., cookstoves and cigarettes) to mimic 

practical situations in laboratories. Salt particles, sucrose particles, cigarette emissions, 

welding fumes, and Arizona road dust have been used in laboratory calibrations. The size 

distribution and composition of aerosols can be controlled fairly well in laboratory 

experiments, which benefits the analysis of low-cost PM sensors’ dependence on these 
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variables. Sensors’ response highly depend on PM sources and size distributions, therefore, 

choosing an appropriate PM source during calibration will enhance the accuracy in later 

deployment. For ambient application, Arizona road dust (ARD) can be a good choice. 

Incense particles can be chosen for sensors planning to deploy for biomass burning 

measurement. The choice of PM sources can change with the application requirements. 

Common reference instruments include research-grade instruments (e.g., scanning mobility 

particle sizer (SMPS), aerodynamic particle sizer (APS), and GRIMM dust monitor) and 

portable instruments (e.g., TSI SidePak and TSI PTrak). When choosing reference 

instruments, federal reference/equivalent methods and best available techniques should be the 

first choice. Other standards, for example the availability and convenience, also need to be 

taken into consideration.  

Field calibration focuses more on the performance of low-cost PM sensors under 

uncontrolled and dynamic environments, and can be conducted in residential or outdoor 

environments. In a residential environment, the sensors’ responses to routine PM emission 

events (e.g., cookstove emissions, woodworking shop operations, and incense burning) can 

be studied. Outdoor calibration focuses on agreement between low-cost PM sensors and 

federal reference methods, including the gravimetric method, the β-attenuation analyzer, and 

the tapered element oscillating microbalance (TEOM). Outdoor emissions, especially urban 

traffic emissions, have been characterized in several studies. In field calibrations, the PM 

composition and concentration levels can be highly dynamic. Thus, the time domain is 

usually longer than in laboratory calibrations in order to collect enough data over a whole 
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concentration range. Although the performance of low-cost PM sensors in field calibration 

may not be as good as that in laboratory calibration, the results from field calibrations are 

closer to the real situation, and field calibration is a good method to examine the reliability, 

durability, and longevity of low-cost PM sensors.  

Here we first discuss several calibration methods that have been used in previous studies, 

including linear regression or correlation, the reduced major axis method, Bayesian 

information criterion, non-parametric Wilcoxon signed-rank test, the average slope and 

individual slope method, and machine learning method. Then, methods to correct sensors’ 

performance for the effects of temperature and relative humidity are briefly discussed. 

Linear regression is the most common method for calibrating low-cost PM sensors. The 

sensors’ outputs are plotted against the outputs from reference instruments, and a fitted 

equation is used to optimize the accuracy of the sensors’ outputs. The correlation coefficient, 

R, is a statistic measuring the degree or strength of linear correlation. In different studies on 

evaluating sensors’ performance, R is referred as the r coefficient, Pearson’s product-moment 

r, or Pearson’s correlation coefficient. R values, typically given with two decimal places, 

range from -1 for a strong negative correlation, through 0 for a no or a weak correlation, to +1 

for a strong positive correlation. The value of R2 is re-scaled to 0 to 1, describing purely the 

strength of the correlation. Several authors have explained that combining the hypothesis test 

(p-value significance test) with the r or R2 value is a more rigorous method for judging the 

relationship between two variables36-38. 
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If not otherwise specified, linear regression or correlation is usually based on the least 

squares method. The reduced major axis method, in addition to the least squares method was 

used in several studies, to calculate the correlation coefficient, slope, and intercept30, 32. The 

assumption of the least squares method is that the independent variables are measured 

accurately39, 40. Therefore, if we are calibrating low-cost sensors against a reference 

instrument and are very confident about the results from the reference instrument, the least 

squares method is appropriate. However, in situations where the accuracy of the reference 

instrument is underdetermined, or when comparing a low-cost sensor against another low-

cost sensor, the reduced major axis method is more applicable, because it considers the 

measurement error of both the dependent and independent variables40, 41. 

To improve sensors’ performance by including more variables in the model, for example, 

relative humidity and temperature, linear correlation or regression may not be adequate. Gao 

et al. (2015) used both the Bayesian information criterion (BIC) and the standard error of 

regression to evaluate fitted models that included temperature and humidity as variables42. 

The BIC method can prevent overfitting by introducing a penalty term that reflects the 

number of free parameters in the model43-46. The standard error of regression, also known as 

the standard error of the estimation, evaluates the difference between observed and model-

predicted values. For complicated models, increasing the number of free parameters, for 

example, by including more variables or fitting with higher orders, will reduce the standard 

error of regression. However, it will also lower the BIC number due to the penalty term47. By 
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combining these two methods, an optimal predictive model can be selected with minimal 

discrepancy from the observations, without overfitting.  

The Non-parametric Wilcoxon signed-rank test was used by Zikova et al. (2017) in their 

evaluation of the performance of Speck sensors48. This method, also known as Mann-

Whitney U test or Mann-Whitney-Wilcoxon test, can be used to examine whether the sensor 

data and the reference instrument data are from the same population. If they are from a same 

population, then the quality of the sensor is satisfactory and it can be a replacement for the 

reference instrument. Unlike the majority of statistical methods (e.g., student’s t-test), which 

require the assumption of a normal distribution, the Wilcoxon signed-rank test is intuitive, 

simple, and does not require assumptions about the distribution of the data49, 50. However, it 

only qualitatively demonstrates whether a hypothesis can hold, and is inadequate to quantify 

the magnitude of any effect. Another rank order analysis method was used by L. R. Crilley 

for evaluating the variability of 14 Alphasense OPC-N2s over a period of time51. The PM 

measurements were ordered from the highest to the lowest, after being normalized to the 

median concentration at the start of the analysis. Compared to pair-wise correlation, this 

method can show the dynamics of the variation, such as offset, as a function of time. The 

offset drift, or the temporal consistency of each sensor, can also be demonstrated by this 

method. Ideally, sensors initially reporting higher PM concentrations than peer sensors are 

supposed to also report higher concentration at the end of the measurement period, 

representing no drift or the same degree of drift. 
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The average slope and individual slope method was used to guide the deployment of a low-

cost sensor network in a heavy-manufacturing site, for convenience in calibrating multiple 

sensors52. A large concern in the deployment of low-cost sensors is their unpredictable data 

quality. Repeated calibration has been recommended to enhance the data quality, however, it 

is time consuming and inconvenient for tens of sensors in a field deployment. The study 

mentioned above used the average slope method to select sensors with similar slopes in the 

calibration stage. Then, in the field deployment, the reference instrument was collocated with 

only several of the selected sensors, and a universal field calibration factor was applied to all 

the selected sensors.  

Machine learning, as a popular concept in computer science, has also been used for sensor 

calibration. A feedforward Neural Network has been used in the calibration of the Plantower 

PMS700353. An artificial neural network has been used to predict the PM distribution in a 

woodworking shop54. Zimmerman et al. (2018) compared three calibration methods, 

including laboratory univariate linear regression, empirical multiple linear regression, and 

machine-learning method (random forest) to calibrate different gas sensors, and these 

methods should be considered in the calibration of low-cost PM sensors55.  

The influence of temperature and relative humidity on the performance of low-cost PM 

sensors have been studied in field and lab studies. Some studies have indicated that the 

influence of temperature was a negligible effect on sensors’ performance30, 56. Several other 

studies have concluded that high RH may bias the performance of low-cost PM sensors in 
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both laboratory calibration and field evaluation57, 58. However, still other studies, especially in 

field evaluations, indicate that the influence of relative humidity is negligible59. There have 

been attempts to eliminate the influence of relative humidity and temperature by including 

empirical equations, fitted equations, or hygroscopic growth factors in a more complicated 

model to calibrate low-cost PM sensors42, 60-65. Compared to research grade instruments, low-

cost PM sensors lack temperature and humidity control components, and thus changes of 

shape, size, phase (solid to liquid or liquid to solid), and optical properties of particles under 

high relative humidity may bias their performance66, 67. The influence of relative humidity has 

been extensively studied by atmospheric scientists68-70. The influence of relative humidity 

also depends on particles’ surface properties and compositions, which may explain why, in 

several field studies, the relative humidity did not show a significant influence on sensors’ 

performance66. Further study is needed to explore in detail how environmental factors can 

influence the sensors’ performance and how to correct such bias.     

As mentioned above, researchers have tried several different calibration methods to improve 

the performance of low-cost PM sensors. It has been very controversial whether all studies 

should follow the same calibration methods to calibrate different kinds of sensors, so that the 

results from different reports can be comparable. However, a concern here is that such a 

standard guideline might discourage exploring and applying new statistical methods for 

sensor calibration. In addition, other issues arise. First, current OPC type sensors and 

nephelometer type sensors follow the same procedures for calibration. Considering the 

differences in their working principles and measurement metrics, the calibration methods 
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may need re-evaluation and modification. Second, the criterion for calibrating low-cost 

sensing modules (solely electrical component) and low-cost PM monitors (calibrated and 

tested before being distributed to users) is worth further discussion. For low-cost sensing 

modules, the focus of calibration is whether good linearity can be established; however, for 

low-cost PM monitors, agreement with reference instruments might be more important. For 

sensing modules, calibration is necessary to establish the relationship between electrical 

signals with PM2.5. For low-cost PM monitors, since they already report PM2.5, the bias and 

deviation should be the focuses, instead of correlation. Therefore, it is necessary to 

distinguish between sensing modules and low-cost PM monitors, since their calibration 

metrics and methods are inherently different. 

 

1.4 Calibration metrics 

Calibration metrics are parameter whose values are calculated from the calibration 

procedures used to evaluate the performance of low-cost PM sensors. For example, the 

correlation coefficient from linear regression is a common parameter to evaluate the linearity 

of low-cost PM sensors. Similar metrics include the limit of detection (LOD), the bias and 

precision, and the coefficient of variation (COV).  

The R2 value, from linear regression, is a primary parameter to evaluate the linearity of low-

cost PM sensors. Details related to linear regression have been mentioned in the last section. 

The R2 values of low-cost PM sensors from previous studies, as summarized by Rai et al. 

(2017), are presented in Figure 3. In the literature, R2 values are reported for different PM 
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sources under various test environments. The maximum and the minimum R2 values for 

several types of low-cost PM personal monitors are summarized in Figure 4. The major 

components of several of low-cost PM monitors in Figure 4 are sensing modules mentioned 

in Figure 3. For example, the major component of the AirAsure is the Sharp 

GP2Y1010AU0F, and the major component of the PurpleAir is the Plantower PMS series 

low-cost sensing module. Since the tests in Figure 3 and Figure 4 were not conducted 

following the same methodology and guidelines, the reported R2 values could vary with 

different test conditions, and results may not be directly comparable. However, the trend is 

basically the same: the R2 value from the laboratory calibration (R2 > 0.6) is better than that 

from field calibration (R2 > 0.4).  
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Figure 1.3 The R2 values of low-cost PM sensors, summarized by Rai et al. (2017).  

 

 

Figure 1.4 Reported R2 values of low-cost PM personal monitors. The data are from the 

following studies – (a) Manikonda et al. (2016), (b) Wang et al. (2015), (c) Feinberg et al. 

(2018), (d) Sousan et al. (2017), (e) Jiao et al. (2016), (f) Mukherjee et al. (2017), (g) Sousan 

et al. (2016), (h) Gillooly et al. (2019), (i) Crilley et al. (2018), (j) Steinle et al. (2015), (k) 

Semple et al. (2015), (l) Sousan et al. (2016), (m) Semple et al. (2013), (n) Jovašević-

Stojanović et al. (2015), (o) Han et al. (2017), (p) Franken et al. (2019), (q) Moreno-Range et 

al. (2018), (r) Sayahi et al. (2019), (s) Malings et al. (2018), (t) Malings et al. (2018), (u) 

Zikova et al. (2017), and (v) Zikova et al. (2017).  
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The limit of detection (LOD) is the lowest detectable concentration that significantly stands 

out from the background noise. Low-cost PM sensors are considered to report reliable and 

meaningful data, only when the concentration exceeds the LOD. Equation (1.1) for 

calculating the LOD is given below, where k and σblk represent the slope from the fitted 

model and the standard deviation of low-cost PM sensors under a particle-free background30, 

71. Knowing the LOD before deployment is necessary to produce reliable data, especially for 

atmospheric measurement. However, LOD is for reference only and should not limit the 

application of low-cost PM sensors. According to the requirements of different applications, 

LOD is not the lower the better.  

     (1.1) 

Equation (1.2a) shows the bias defined by the National Institute for Occupational Safety and 

Health (NIOSH), where CLS and Crf represent the concentrations measured by low-cost 

sensors and reference instruments33, 72, 73. NIOSH bias, also known as the percent difference, 

evaluates the percent of error of low-cost sensors’ output compared to reference instruments. 

Zikova et al. (2017) and Sousan et al. (2018) have used this method to evaluate the 

performance of Speck monitors and Sharp sensors respectively48, 52. Kelly et al. (2019), used 

a similar definition, referred to as the normalized residual, to evaluate Plantower sensors59. 

The EPA specifies the bias of low-cost PM sensors by Equation (1.2b), which given the 

average of the percent difference in k different measurements72. Both NIOSH bias and EPA 

bias have been recommended to be within ± 10%. 
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     (1.2a) 

   (1.2b) 

The measurement precision parameter reflects the stability and repeatability of low-cost PM 

sensors at a certain concentration level. There are several different definitions of 

measurement precision. For evaluating the repeatability and stability of low-cost PM sensors 

for a fixed concentration level Long et al. (2016) defined measurement precision, as shown in 

Equation (1.3a), where P1, P2, and P3 represent three individual measurements of low-cost 

PM sensors for the same concentration level74. Manikonda et al. (2016), Zikova et al. (2017), 

and Zamora et al. (2019) used a similar definition of precision that involved the difference 

and mean of the sensor’s and reference instruments’ outputs, as shown in Equation (1.3b and 

1.3c)48, 61, 75. Manikonda et al. (2016) used the normalized root mean square error to quantify 

the difference of paired data, as shown in Equation (1.3b)75. In the equation, n is the number 

of data pairs in a period of measurement, and Pi and Ci represent the paired data from two 

low-cost PM sensors. Zikova et al. (2017) and Zamora et al. (2019) used the same definition 

(Equation (1.3c)) and referred to the method as “unbiased variance estimate” and “relative 

precision error” respectively in their papers48, 61. Compared to Equation (1.3a), Equations 

(1.3b and 1.3c) might be more practical for calibration since they do not require a fixed 

concentration level, and they consider the precision values with respect to concentration 

levels by normalizing them to average measurement results.  

      (1.3a) 
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    (1.3b) 

     (1.3c) 

The coefficient of variation (CV), another parameter for evaluating the precision of low-cost 

PM sensors, is defined by Equation (1.4), where σ and μ represent the standard deviation and 

the mean of measurements. CV measures the degree of variation, indicating the dispersion of 

data points around the mean value. Sousan et al. (2016) and Zamora et al. (2018) have used 

this parameter to evaluate the performance of the Alphasense OPC-N2 and Plantower PMS 

A003 respectively33, 61, and several other studies have also used CV to evaluate different 

types of sensors76. A CV value of less than 10% is considered to be a satisfactory 

performance. 

      (1.4) 

Apart from the parameters mentioned above, other statistical measures can be used to 

evaluate the performance of low-cost sensors. Examples include, the median, mean, mode, 

the 25th and 75th percentile51, and the mean relative standard deviation57. All these statistical 

measures quantify the accuracy and repeatability of low-cost sensors from different 

perspectives. However, current studies and guidelines have limitations. First, the criterion for 

“good” performance is vague. In the methods mentioned above, only reference values for CV 

and bias are given by NIOSH and EPA. More criteria are needed, for example, in what range 

the reference value of R2 can be called a “good” PM sensor. Several guidebooks discuss 
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standard procedures and guidelines to calibrate low-cost sensors, led by the EPA and air 

quality sensor performance evaluation center (AQ-SPEC), and we expect more discussion on 

this subject77-79. Second, the performance of low-cost PM sensors varies with the particle size 

distribution, composition, and testing environment, which makes the results from different 

reports difficult to compare. A guideline for specifying test conditions would be helpful in the 

field. Third, several different parameters are reported by low-cost PM sensors, including the 

number concentration, mass concentration, and size distribution. Sensors reporting number 

concentration and mass concentration have been evaluated by the statistical methods 

mentioned in this section, however, there are limited options for quantifying the accuracy of 

the size distribution data. Normally, the size distributions from low-cost PM monitors are 

plotted together with those from reference monitors. Also, sometimes, detection efficiency 

has been calculated to quantify the performance. More discussion is needed to evaluate size 

distribution measurements from different perspectives. 

 

1.5 Applications 

The superiority of low-cost PM sensors, their price advantage, portable size, and moderate 

accuracy have made them a good supplement to current monitoring stations. Several studies 

have shown that spatial variation cannot be neglected, even over a kilometer scale80, 81, and 

such small-scale heterogeneity is important for accurately quantifying the personal exposure 

level82. Here we present several examples of field deployment of low-cost PM sensors, 
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together with related spatial analysis methods. An important topic in sensor deployment is 

using interpolation method to predict the PM concentration at locations without 

measurements, known as pollution mapping. Common interpolation methods were also 

discussed in this section. 

Low-cost PM sensors have been innovatively applied in industrial or daily life. Low-cost 

sensors have been used to examine the relationship between different sources and PM 

concentration levels83. Dylos sensors were used to evaluate the pesticide off-target drift of 

agricultural tower sprayers84. A Novafitness sensor was used to evaluate the emissions of a 

surface filter85. Other than estimating personal exposure86 and mapping pollution 

distribution87, applications also include characterizing households emissions88, 89, cigarette 

emissions90, and industrial factory emissions54, 91. Low-cost PM sensors can also contribute to 

the construction of smart cities that provide personal exposure estimation with better 

accuracy92-94.  

Apart from deploying fixed sensors to enhance spatial resolution, several studies have 

involved mobile sensing nodes. When combined with a data logging system (e.g., on a 

microSD card) or position logging system (e.g., GPS), low-cost sensors can be used to refine 

the assessment of personal exposure20, 95-99.  At indoor scale, an ultrasonic indoor positioning 

system has been used to position mobile low-cost PM sensors for indoor exposure 

estimation100. These sensors have also been integrated with unmanned aerial vehicles (e.g., 
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drones) for outdoor vertical measurement101, 102. Furthermore, a low-cost robot, carrying a 

low-cost PM sensor has been tested for remote sampling or autonomous sampling [Abhay].   

The coefficient of divergence (COD), defined by Equation (1.5), quantifies the level of 

heterogeneity between two places, where xi, j and xi, k are the ith measurement at location j and 

k respectively103. Normally, a COD value smaller than 0.2 represents no significant difference 

between the measurements at two different locations, indicating homogeneity. COD values 

larger than 0.2 represents increasing heterogeneity103, 104. Zikova et al. (2017) and Saha et al. 

(2019) had used this method to examine, respectively, the PM distribution with 25 Speck 

monitors in New York and 32 RAMP (real-time, affordable, multi-pollutant) monitors in 

Pittsburg respectively48, 81. Reece et al. (2018) also used this method in a field campaign in 

Puerto Rico to analyze spatiotemporal distribution of PM2.5 and NO2.
76 Using the COD of 

different species, Saha et al. (2019) found that ultrafine particles and PM2.5 respectively 

demonstrated higher and lower heterogeneity81.  

   (1.5) 

Different types of interpolation methods have been used for indoor and outdoor pollution 

mapping employing low-cost sensors. Zikova et al. (2017) used the inverse squared-distance 

weighing interpolation (IDW) to predict outdoor PM distribution with 25 Speck monitors48. 

Li et al. (2018) mapped the spatiotemporal PM distribution in a woodworking shop with 8 

Sharp GP2Y sensors by Kriging interpolation and an artificial neural network method54. In 

two consecutive studies, Rajasegarar et al. (2014) used a Bayesian maximum entropy (BEM) 
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method to map the PM distribution in a garage and city of Melbourne, Australia, with GP2Y 

sensors.105, 106 There are around 30-40 types spatial interpolation methods, have been 

deployed in environmental studies, and several reviews have made high-quality summaries 

explaining the differences among these methods and how to quantify the accuracy of the 

interpolation results107-110. The major differences among various types of interpolation 

methods is the weight assigned to measured data for predicting the concentration at 

unsampled locations. Methods used to assess the accuracy of the measurement can also be 

used to optimize sampling locations.  

Land use regression (LUR) is another important method used to interpret the results from 

low-cost PM sensors111. LUR also uses data at sampled locations to predict the PM values at 

unsampled locations. However, a major difference that distinguishes LUR from other 

interpolation methods is the involvement of additional predictor variables, for example, land 

use, traffic, population density, physical geography, and meteorology. Including these 

additional predictor variables shows that the PM concentration is not only a function of the 

location. Another large difference between the spatial interpolation methods discussed above 

and the LUR is the restriction of measured datasets. For Kriging interpolation, the highest PM 

concentration belongs the measured datasets. However, for LUR, the highest PM 

concentration may not be the highest measured value, because the results are influenced by 

multiple variables.  
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Several questions demand further attention. First, the differences between indoor and outdoor 

pollution mapping need to be highlighted. Indoor pollution events are highly dynamic, and 

can change within several seconds due to complicated ventilation conditions. How to adjust 

the sampling locations and intervals to meet the requirements of indoor and outdoor pollution 

mapping needs further exploration. A second question is related to the strategy of 

measurement. The majority of monitoring stations are heterogeneously located, concentrated 

in and around metropolitan areas or industrial areas. The question of how this sparseness may 

undermine the accuracy of pollution mapping should be answered in future studies. 

Optimizing the locations of low-cost PM sensors is another potential topic related to the 

efficiency and effectiveness of measurements. The third question is how best to connect the 

pollution mapping results with studies in other fields. The pollution mapping results from 

conventional methods have already been used in epidemiologic studies. Low-cost PM sensors 

can indeed provide data with better spatiotemporal resolution; however, the reliability and 

accuracy of the data remain as concerns.  

 

1.6 Challenges 

We have summarized the methods and metrics used in previous studies to evaluate the 

performance of low-cost PM sensors. These methods can demonstrate the advantages and 

limitations of each type of sensor. Characterizing these sensors thoroughly will benefit their 

deployment in field studies. Low-cost PM sensors have demonstrated acceptable accuracy 
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and stability in the calibration and characterization, which demonstrates great potentials in 

various applications for mapping pollution distribution and quantifying personal exposure. 

However, here are several challenges that may still a concern in current studies. 

First, previous studies have concluded the parameters that may bias sensors’ performance, 

leading to overestimating or underestimating in mass concentrations. We have also 

mentioned in the previous section, environmental parameters (e.g., relative humidity and 

temperature) and PM properties (e.g., size distribution and optical properties) may all 

challenge the accuracy of the low-cost PM sensors. Either establishing models with more 

parameters or improving sensor structures can achieve a better accuracy. Several studies 

mentioned above have built different models to correct the bias caused by relative humidity 

and temperature. However, a big concern is whether the models are universal, applicable to 

all or most of the scenarios. To establish a universal model, more fundamental studies are 

needed. At the same time, there are limited studies of improving sensors’ structure for better 

performance. Therefore, how to improve sensors’ performance for an accurate estimation of 

PM mass concentration needs further effort.  

Second, the LOD was not always reported in literature as correlation coefficients. However, 

they are vital for judging whether a specific type of sensors is appropriate for deployment. 

Further lower the LOD with either advancing algorithms or sensor structure improvement 

will benefit sensors’ deployment in field measurement. The cut-off size for OPC type sensors 

is approximately 300 nm, which does not include ultrafine particles yet. Furthermore, ultra-
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fine particles have showed a stronger mobility and have demonstrated a more heterogeneous 

distribution than larger particles. Therefore, lower the cut-off size for both OPC type and 

nephelometer type PM sensors is necessary and practical. 

Third, although the cost and maintenance of a single PM sensor is low, maintaining a sensor 

network will be a different story. Although the maintenance requirement for low-cost PM 

sensors is lower compared to conventional methods, but still cannot be ignored. Identifying 

malfunctioning sensors and repairing them will be difficult for a sensor network with more 

than a hundred units. How to enhance the stability and robustness of low-cost PM sensors to 

realize zero-effort maintenance will benefit field applications. 

 Fourth, the data from low-cost sensors have been used for pollution mapping and exposure 

estimation. A few studies have also used robot and drone with low-cost PM sensors to realize 

autonomous measurement. Some attempts have been made to combine low-cost PM sensor 

with remote sensing or ground measurement112. More studies are expected to explore the 

possibilities of using sensor data in different applications and different scenarios. 
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Chapter 2: Laboratory evaluation and 

calibration of three low-cost particle 

sensors for particulate matter measurement 
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J., & Biswas, P. (2015). Laboratory evaluation and calibration of three low-cost particle 
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Abstract 

Particle sensors offer significant advantages of compact size and low cost, and have recently 

drawn great attention for usage as portable monitors measuring particulate matter mass 

concentrations. However, most sensor systems have not been thoroughly evaluated with 

standardized calibration protocols, and their data quality is not well documented. In this 

work, three low-cost particle sensors based on light scattering (Shinyei PPD42NS, Samyoung 

DSM501A, and Sharp GP2Y1010AU0F) were evaluated by calibration methods adapted 

from the US EPA 2013 Air Sensor Workshop recommendations. With a SidePak (TSI Inc.), a 

scanning mobility particle sizer (TSI Inc.), and an AirAssureTM PM2.5 Indoor Air Quality 

Monitor (TSI Inc.) which itself relies on a GP2Y1010AU0F sensor as reference instruments, 

six performance aspects were examined: linearity of response, precision of measurement, 

limit of detection, dependence on particle composition, dependence on particle size, and 

relative humidity and temperature influences. This work found that: a)  All three sensors 

demonstrated high linearity against SidePak measured concentrations, with R2 values higher 

than 0.8914 in the particle concentration range of 0 to 1000 μg/m3, and the linearity depended 

on the studied range of particle concentrations;  b) The standard deviations of the sensors 

varied from 15 to 90 μg/m3 for a concentration range of 0 to 1000 μg/m3;  c) The outputs of 

all three sensors depended highly on particle composition and size, resulting in as high as 10 

times difference in the sensor outputs; and d) Humidity affected the sensor response.  This 

paper provides further recommendations for applications of the three tested sensors.  
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2.1 Introduction 

Particulate matter (PM) is an important parameter in determining air quality, affecting 

visibility (Guo et al., 2014), human health (Biswas and Wu, 2005; Karlsson et al., 2009), and 

global climate (Stocker et al., 2013). The size of PM is closely related to the inhalation and 

deposition properties of particles in the human respiratory system (Phalen et al., 1991). PM 

concentration can be quantified as PM10, PM2.5, or PM1, according to the mass concentrations 

of particles below the aerodynamic sizes of 10 μm, 2.5 μm, and 1 μm, respectively. The US 

EPA-approved instruments for measuring PM concentrations include impactors, cyclones, 

tapered element oscillating microbalances (TEOM), and beta attenuation monitors (BAM) 

(EPA, 2013). Other instruments, such as the DustTrak™ and SidePak™ (TSI Inc.) use light 

scattering to obtain particle mass concentrations, while scanning mobility particle sizers 

(SMPS) (Knutson and Whitby, 1975; Wang and Flagan, 1990) and aerodynamic particle sizer 

(APS) derive particle mass concentrations from measured particle size distributions.  

Temporal and spatial PM aggregate concentrations may vary significantly in a region. The 

PM concentrations provided by a single monitoring site may not accurately represent the 

particle concentrations around people distributed in its vicinity, who may be concerned about 

the health effects of PM exposure. In recent years, this concern has become especially acute 

in developing countries that are industrializing (Huang et al., 2014; Cao et al., 2013; Tiwari et 

al., 2013). To keep the citizens updated on air quality information through additional sources, 

the US embassy and consulates have started to measure and post the real-time PM 

concentrations in these countries. However, the embassy websites also emphasize that, 
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“citywide analysis cannot be done, on data from a single machine (US Embassy, 2015).” In 

order to obtain accurate PM concentrations with good resolution, a high density of 

measurement sites is required, and the cost associated with the conventional instruments 

mentioned above makes this impractical. Based on techniques first developed for smoke 

detectors decades ago (Mulholland and Liu, 1980), portable PM monitors have become 

popular in recent years (Hagler et al., 2014), driven by their remarkably low price and the 

emerging need for real-time “big data” reporting of local air quality (Chong and Kumar, 

2003; Leavey et al., 2015). These particle sensors can be used in locating pollution hotspots 

or generating coarse 3-D maps of PM concentrations (Rajasegarar et al., 2014). In a broader 

sense, the usage of low-cost particle sensors also raises social awareness of air quality.  

Particle sensors using light scattering are cheaper and more compact than sensors using the 

single particle counting method or other mechanical methods, and hence have drawn more 

attention from researchers in recent years (Weekly et al., 2013; Holstius et al., 2014;). A light 

scattering PM sensor is typically composed of an infrared emitting diode (IRED), a 

phototransistor (PT), and focusing lenses. While passing through the sensor, particles scatter 

light, and the intensity of the light received by the phototransistor is directly correlated with 

the concentration of particles. The light scattering of particles falls into different regimes 

(Friedlander, 2000), and the Rayleigh regime and Mie regime are often encountered for 

particles in micrometer size or smaller. Compared to sensors using single particle counting 

techniques, light scattering PM sensors measures the optical properties of the particles as an 
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ensemble. This feature greatly reduces the cost and size of the sensors; however, at the same 

time, it limits their measurement accuracy (Holstius et al., 2014; Gao et al., 2015).  

Three models of light scattering particle sensors, the PPD42NS (Shinyei Inc.), DSM501A 

(Samyoung Inc.), and GP2Y1010AU0F (Sharp Inc.) are currently available to customers as 

single modules, which are simple to assemble, install, and use. Each sensor has been 

evaluated separately in previous work, and a qualitative match was observed between their 

outputs and the total mass concentrations obtained by established instruments (Nafis, 2012; 

Gao et al., 2015; Holstius et al., 2014; Olivares et al., 2012; Weekly et al., 2013). Further 

experiments were conducted on deploying the particle sensors for correlation with gas 

sensors (Olivares et al., 2012), monitoring occupancy in public space (Weekly et al., 2013), 

and measuring particle concentrations in field tests (Gao et al., 2015; Holstius et al., 2014).  

The PPD42NS sensor and GP2Y1010AU0F sensor have also been packaged in 

commercialized particle monitors, such as the AirAssure PM2.5 Indoor Air Quality Monitor 

(TSI Inc.), which was tested in this study, the Air BoxTM (Haier Inc.), and the Pervasive Air-

Quality Monitor (PAM, Air-Scientific). To fulfill the need for smaller, cheaper, and more 

accurate particle monitors, other sensors have also been designed (Litton et al., 2004; 

Chowdhury et al., 2007), calibrated (Edwards et al., 2006), and applied in field studies 

(Chowdhury et al., 2007; Sahu et al., 2011).  

Up until now, no parallel comparison among these sensors has been conducted. At the same 

time, the lack of studies using a standard protocol assessing the particle sensors has hindered 
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a comprehensive understanding of their performance. Several calibration protocols have been 

designed and used to calibrate air quality sensors (Spinelle et al., 2013; Long et al., 2014). 

The 2013 US EPA Air Sensor Workshop recommended seven parameters to be investigated 

upon the receipt of a new air quality sensor device from its developer or manufacturer: (1) 

Linearity of response, (2) Precision of measurements, (3) Limit of detection, (4) 

Concentration resolution, (5) Response time, (6) Interference equivalents, and (7) Relative 

humidity (RH) and temperature influences. Among these parameters, concentration 

resolution is reflected in the precision of measurements, as introduced in the EPA workshop 

summary (Long et al., 2014). For particle sensors using light scattering method, the light 

transfer time in the sensors can be ignored, and their response time is mainly determined by 

the electron transport time in the circuits, which can also be neglected. The interference 

equivalent does not need to be considered, since, unlike gas sensors, for which equivalent 

species can cause similar responses, particle sensors are affected by concentrations and 

properties of particles only. Particle composition critically affects the performance of light 

scattering sensors. Light scattering depends on the refractive indices of materials, while the 

light absorption of materials may also affect the intensity of light received by the 

phototransistor. The size of particles also directly influences the light scattering coefficient 

and absorption coefficient. Previous analyses indicated that particle mass concentrations 

determined by nephelometry, which is also based on light scattering, have an irreducible 

uncertainty of approximately ± 30 to 40%, which is directly attributable to the natural 

variability of PM2.5 aerosol parameters, including particle concentration, particle refractive 
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index, particle size, and particle morphology (Molenar, 2005). Therefore, for evaluating light 

scattering particle sensors, the original EPA list of seven parameters was altered. 

Concentration resolution, response time, and interference equivalents were dropped, and 

particle composition and size dependence were added.  

In this study, the performance of three low-cost light scattering particle sensors was 

compared for the first time against commonly used instruments in air quality research, a 

SidePak and a SMPS. The laboratory evaluation and calibration used a revised protocol 

provided by the EPA 2013 Air Sensor Workshop to obtain a comprehensive understanding of 

sensor performance.  
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2.2 Calibration platform 

A calibration platform was built for testing the performance of the sensors. Detailed 

descriptions of the sensors, the reference instruments, the chamber, and the operating 

principles for the measurement are as follows.  

 

2.2.1 Particle sensors and reference instrument 

 

Figure 2.1 Dimensions, geometries and schematic diagrams of the sensors evaluated in this 

work. The sensors in the figure do not represent actual sizes. In the schematic diagrams 

shown in the third row, PT, IRED, and R stand for phototransistor, infrared emitting diode, 

and thermal resistor, respectively. 
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Table 2.1 Specifications of the tested sensors.  

Model PPD42NS DSM501A GP2Y1010AU0F 

Abbreviation used in this work PPD DSM GP2Y 

Dimension W×H×D (mm) 59×45×22 59×45×20 46×30×18 

Detectable PM size range  ~1 μm  ~1 μm N/A 

Operation voltage 5±0.5 V 5±0.5 V 5±0.5 V 

Current consumption <90mA <90mA <20mA 

Maximum detectable concentration 28000 #/L 1400 μg /L 500 μg/m3 

Operation temperature 0 ~ +45 oC -10 ~ +65 oC -10 ~ +65 oC 

Operation humidity <95% <95% N/A 

Sensitivity N/A N/A 0.35-0.65V/(100μg/m3) 

Output signal 
Pulse width 

modulation 

Pulse width 

modulation 
Analog output 

Cost (USD) ~$ 15.9 ~$ 13.8 ~$ 10.0 

 

The Shinyei PPD42NS, Samyoung DSM501A, and Sharp GP2Y1010AU0F sensors were 

evaluated in this work. For simplification, the three sensors are named “PPD”, “DSM”, and 

“GP2Y” in the following, respectively. The geometries, schematic diagrams, and 

specifications of the three sensors are displayed in Figure 2.1 and Table 2.1. The PPD and 

DSM sensors share a similar geometry. Both use thermal resistors to generate heat so that 

natural convection creates an updraft of particles that flow through the light scattering region. 

The GP2Y sensor is smaller than the PPD and DSM sensors. Unlike the PPD and DSM 

sensors which are self-aspirated through the application of thermal resistors, the GP2Y sensor 

relies on a hole through the center of the body to allow for the convection of particles. The 

orientation of the GP2Y sensor is therefore different from the other two types of sensors, as 

discussed in the next section. Also, the GP2Y sensors with and without regulated external 
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convection may respond differently under the same particle concentrations. All the tested 

particle sensors use IREDs for light generation, and commonly used IREDs generate light 

with wavelengths between 870 to 980 nm (Schubert, 2005).  

The PPD and DSM sensors were controlled by a LabVIEW program through a data 

acquisition system (NI 6008, National Instruments Inc.). Both sensors output modulated 

pulses, whose Lo Pulse Occupancy (LPO, percentage of time during which the sensors output 

a low voltage in a total sampling time of 30 seconds) was directly correlated with the particle 

concentrations. Due to the need for an external high frequency square wave to trigger the 

diode in the sensor, the GP2Y sensor was connected to a programmed Arduino data 

acquisition board (UNO Rev 3, Arduino Inc.). The particle concentration for the GP2Y was 

represented by the magnitude of the output voltage.   While the GP2Y has a finer time 

resolution for data collection, to be consistent with the PPD and DSM which have a sampling 

resolution of 30 s, the data for all three sensors were collected by the computer every 30 

seconds.  

A SidePak Personal Aerosol Monitor AM510 (TSI Inc.), a scanning mobility particle sizer 

(SMPS, TSI Inc.), and an AirAssure PM2.5 Indoor Air Quality Monitor (TSI Inc.) were used 

to provide reference measurement results to evaluate the performance of the sensors. Like the 

sensors, the SidePak also uses light scattering, while the flow of particles is regulated by a 

small built-in vacuum pump. A user-defined calibration factor was used to compensate for 

differences in the particulate materials’ refractive indices. In the experiments, the calibration 
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factor of the SidePak was set to 1.0, because the study mainly focused on the linearity and 

precision of the measurements, while the calibration factor could be added in data processing.  

The SMPS uses a differential mobility analyzer (DMA) to classify particles as a function of 

electrical mobility size, and a condensation particle counter (CPC) to measure particle 

concentrations. A continuous particle size distribution function is obtained through data 

inversion, which relates particle concentration to the charging efficiency of the neutralizer, 

the detection efficiency of the CPC, and the transfer function of the DMA (Stolzenburg and 

McMurry, 2008). The mass concentration is then calculated through the integration of the 

product of the size distribution function and particle mass of each size. If the particles follow 

lognormal distributions, the method of moments is a simple approach to calculate the mass 

concentrations (Hinds, 1982), as elaborated in Section 4.4.  

The AirAssure PM2.5 Indoor Air Quality Monitor utilizes a Sharp GP2Y sensor and regulates 

the flow through the sensor via a fan attached at one side of the sensor, so that particles pass 

through the sensor by convective flow instead of random diffusion. A specialized algorithm 

averages the particle concentrations over a period time to provide more accurate results. In 

order to study the effect of these modifications to the sensor prototype, a comparison between 

the GP2Y sensors without convective flow and the AirAssure monitor was conducted, 

focusing on the linearity of response and the precision of measurements. 
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2.2.2 Chamber for particle measurement 

 

Figure 2.2 (a) Schematic diagram of the chamber for particle measurement and the 

arrangement of particle sensors. There are two ports on each vertical side of the chamber. The 

upper four ports were used for passing the electrical leads. The lower four ports allowed for 

particle sampling, including testing the sensor performance, where two ports were used by 

the SidePak and the SMPS; and testing the uniformity of the particle distribution, where all 

the four ports were used by the SidePak (Figure 2.2b). During the experiments, the unused 

ports were plugged. The AirAssure monitor (marked with a dashed box) was placed in the 

chamber only when comparing the performance with the GP2Y sensors without convective 

flow. (b) Particle mass concentrations measured from the four sides of the chamber.  The 

results indicate that particles were uniformly distributed.   
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The evaluation of the particle sensors was conducted in a custom-built acrylic glass chamber 

with dimensions of 58×58×28 cm (Figure 2.2a). The edges of the chamber were sealed with 

rubber strips to prevent the leakage of particles and provide a uniform distribution of 

particles. Ports with a uniform diameter of 5 mm were drilled on the walls of the chamber to 

allow for sampling and passing electrical leads. During the experiments, the unused ports 

were snugly plugged. Generated particles were introduced into the center of the chamber via 

a stainless-steel tube. One sensor of each type was taped to each vertical side of the chamber, 

and the three tested sensors were attached as closely as possible to minimize the spatial 

differences in particle concentrations, although the concentration variance in the chamber was 

found to be small (Figure 2.2b). The PPD and DSM sensors were fixed with their backs 

facing the chamber wall, so that a vertical updraft of the particles could be generated. The 

GP2Y sensors were placed with the front panel facing the bottom of the chamber so that 

particles could pass through the hole in its center. In this study, due to the relatively large size 

of the test chamber and the limited air exchange rates, forced convection through mixing fans 

created an uneven distribution of particles. To maintain a uniform particle concentration at 

the four sides of the chamber walls, generated particles were transported mainly by random 

diffusion. As indicated in Figure 2.2b, the difference in particle concentrations at the four 

sides of the chamber was within 15%. This variation in particle concentration might result in 

different outputs of the four sensors of each type, but it was not the major reason for the 

deviation of the response of some sensors, as discussed in Section 4.1. The SidePak and 

SMPS were outside the chamber, and particle streams were sampled via tubes located 2 cm 
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below the sensors on two side walls of the chamber, at flow rates of 0.7 lpm and 0.3 lpm, 

respectively. The AirAssure monitor was not placed in the chamber until when conducting 

the comparison with the GP2Y sensors without regulated flows. Note that the convective 

flow regulated by the fan inside the AirAssure monitor might disturb the uniform distribution 

of particles in the chamber, possibly lead to some error in data analysis.  

In the experiments, test particles were introduced into the chamber till the SidePak gave a 

mass concentration reading of around 5 mg/m3, which is above the upper limit of the tested 

sensors as found in Section 4.1. The particle flow was discontinued and the system was 

allowed to equilibrate so that a uniform distribution of particle concentration and size 

distribution was obtained in the chamber. Due to particle precipitation and wall loss, the 

concentration of particles inside the chamber dropped gradually. Simultaneous measurements 

with the sensors, the SidePak, and the SMPS started when the mass concentration given by 

the SidePak was below 1 mg/m3, which is slightly above the typical PM concentrations in 

highly polluted cities (Guo et al., 2014; Tiwari et al., 2013; Zhao et al., 2013). The whole 

process took approximately 2.5 hr (Figure 2.2b), which was close to the gravitational 

precipitation time for a 1 μm (aerodynamic size) particle to drop from the top to the bottom of 

the chamber (~ 2.4 hr). Hence, the evaluation results of the particle sensors were 

representative for PM1 measurements.  
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2.3 Assessment aspects 

Table 2.2 Experimental plan for the evaluation and calibration of the particle sensors PPD, 

DSM and GP2Y. 

Test # Assessment aspect Source of Particles Reference Instruments 

1 Linearity of response Incense burning SidePak, AirAssure 

2 Concentration resolution Incense burning SidePak, AirAssure 

3 Limit of Detection  Incense burning SidePak 

4 Dependence on composition Atomized NaCl, sucrose, and 

NH4NO3 particles 

SidePak, SMPS 

5 Sensitivity to particle size Atomized PSL spheres with 300, 

600, 900 nm 

SidePak, SMPS 

6 RH and temperature 

influence 

Atomized NaCl particles SidePak, SMPS 

 

Six aspects of the sensor performance were studied in order to comprehensively understand 

their characteristics. Table 2 shows a brief summary of the experimental plan.  

 

2.3.1 Linearity of response 

The linearity of response was assessed using the least squares regression and Reduced Major 

Axis (RMA) regression after plotting the outputs of the sensors against the SidePak measured 

particle mass concentrations. Particles were generated by burning incense (Sandalum 

Agarbathi Cones, Cycle Brand), which is reported to be an important source of indoor aerosol 

in certain countries (Cheng, et al., 1995). The size distributions of the incense-generated 

particles as a function of time are displayed in Figure A1.1 in the supplemental information. 

Averaged outputs from the sensors on four sides of the chamber were used to evaluate their 
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linearity. In the study, the particle mass concentrations measured by the SidePak were used as 

the independent variable, while the sensor outputs were reported as the dependent variables. 

Due to the existing uncertainty of the SidePak measured particle concentrations, the least 

squares regression may not be an adequate method to evaluate linearity. The RMA regression 

is specifically formulated to consider the errors in both the dependent and independent 

variables (Sokal and Rohlf, 1981; McDonald, 2009). Linear correlations, together with R2 

values, via the RMA regression and least squares regression were calculated. The RMA 

regression analysis was conducted with software designed by Bohonak and Linde (2004).  

 

2.3.2 Precision of measurements 

The precision of the sensors was represented by their accuracy and repeatability of their 

measurements. The accuracy means the closeness between the measured results and the 

actual results, while the repeatability means the spread of the measured values (Petrozzi, 

2012). Due to the lack of a universal calibration curve for the three tested sensors, the linear 

correlations derived as described in Section 3.1 were used to evaluate sensor accuracy. 

Therefore, the accuracies of the sensors with less linearity became lower. At the same time, 

the accuracies of all three particle sensors became dependent on the accuracy of the SidePak, 

which does not necessarily provide the actual particle concentration due to instrument errors 

and the missing of the calibration factors. The repeatability of the sensors was evaluated by 

the variation of sensor outputs at similar particle concentrations. In the experiments, due to 
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the difficulty in maintaining the particle concentrations at a constant level, different batches 

of measurements with the particle sensors were conducted, so that a series of sensor outputs 

was obtained corresponding to the same SidePak reported particle mass concentrations. The 

linear correlation derived in Section 4.1 was then applied to convert sensor outputs to particle 

concentrations. The standard deviations ( ) and the standard deviations relative to the 

SidePak measured particle concentrations were then calculated to evaluate the precision of 

measurements.  

 

2.3.3 Limit of detection  

The limit of detection (LOD) is defined as the lowest limit which deviates significantly from 

the signal obtained from blank measurements. Similar quantifications of detection limits also 

exist, such as the limit of determination, limit of quantitation (LOQ), and limit of blank. 

(Petrozzi, 2012). In this study, the LOD was obtained with the widely used Kaiser (1956) 

method,    

kLOD blk /3 ,         [1] 

where blk  is the standard deviation at blank conditions maintained by filling the chamber 

with air cleaned by HEPA filters. k  is the slope of the fitted line obtained from linearity 

experiments described Section 4.1. Values of coefficients other than 3 before kblk /  were 

also used for other quantifications of detection limits: for example, the limit of determination 
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uses 6, and the LOQ uses 10. The blk  was calculated based on a measurement time of 60 

min, meaning that 120 samples have been collected for each of the sensors.   

 

2.3.4 Dependence on particle composition  

A sensor’s performance depends on particle composition, since light scattering is influenced 

by the refractive index. This study used three types of particles, produced by atomizing NaCl, 

sucrose (C12H22O11), and NH4NO3 aqueous solutions. To exclude the effect of particle size on 

the performance of the particle sensors, the concentrations of the solutions were controlled to 

ensure that generated particles had similar normalized size distributions (Figure A1.2 in the 

supplemental information). After exiting the atomizer (Aerosol Generator 3076, TSI Inc.), 

particles passed through a custom-built diffusion dryer before entering the chamber. The 

different refractive indices of these three materials affected the performance of the particle 

sensors. The evolutions of particle size distributions during the measurements were found to 

be similar to that of the incense particles (Figure A1.1 in the supplemental information), i.e., 

the normalized size distributions remained the same, while the total particle concentration 

decreased. This property could exclude the effect of particle size change during the 

experiments. Due to the fact that the SidePak also measures particle concentrations with light 

scattering, reference concentrations were calculated from the size distributions obtained by 

the SMPS measurements. The outputs of the sensors, together with the readings of the 

SidePak were then compared with the mass concentrations calculated from size distributions.  
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2.3.5 Dependence on particle size 

Light scattering is strongly dependent on particle size in both the Rayleigh regime and Mie 

regime. To assess this dependence, water solutions of polystyrene latex (PSL, Bangs Inc.) 

spheres were atomized to obtain particles with uniform diameters of 300 nm, 600 nm, and 

900 nm, respectively. The mass concentrations of particles were calculated from the size 

distributions measured by the SMPS. The performance of the sensors and the SidePak were 

then evaluated by comparing the outputs with the mass concentrations calculated from the 

size distributions.  

 

2.3.6 RH and temperature influence 

RH values of 20%, 67%, 75% and 90%, and temperatures of 5 oC, 20 oC, and 32 oC were 

used to test the sensors. The RH and temperature were measured with a sensor probe 

(HMP60, Vaisala Inc., accuracy: ± 3% in 0 to 90% RH, ± 5% in 90 to 100% RH) and a type 

K thermocouple (OMEGA Inc., accuracy: ± 2.2 oC), respectively. The temperature was 

controlled by placing ice packs or heating tapes around the chamber. The RH was adjusted by 

flowing dry air through a deionized water bubbler and then into the chamber before the test. 

After the RH reached the set values, the feeding of water vapor was discontinued, and 

particles were introduced into the chamber. The decrease of RH was found to be less than 

10% during the test. In this study, the particles were generated by atomizing NaCl aqueous 
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solution. Again, similar normalized particle size distributions as a function of time were 

observed in the experiments, and hence the effect of particle size change during the 

experiments could be excluded.  
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2.4 Results and discussion 

This section discusses the experimental results on assessing the particle sensors using the 

revised protocol provided by EPA 2013 Air Sensor Workshop.  

 

2.4.1 Linearity of response 

 

Figure 2.3 Pairwise correlation among the three sensors and the SidePak during the 2.5 hr 

measurement of the incense particles with a sampling interval of 30 s. Due to the limited 

space for plotting, two sensors of each type (PPD1, PPD2, DSM1, DSM2, GP2Y1, and 

GP2Y2) were chosen for comparison. The raw sensor outputs (Lo Pulse Occupancy and 

Analog Output) were used. R2 values were calculated by the least squares regression. 
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Figure 2.4 Pairwise correlation between the sensor outputs and the SidePak data during the 

2.5 hr measurement of the incense particles with a sampling interval of 30 s: (a-c): PPD, (d-f): 

DSM, (g-i): GP2Y. (a), (d), (g): response of particle sensors of the same type in the 

concentration range of 0 – 1000 μg/m3, different symbols represent the response of different 

sensors of the same type; (b), (e), (h): response of the same particle sensor in the particle 

concentration range of 0 – 1000 μg/m3, different symbols represent the response of a same 

sensor for different batches of experiments; (c), (f), (i): response of particle sensors of the 

same type in the particle concentration range of 0 – 5000 μg/m3. R2 values were calculated by 

the least squares regression. 

 

When using the incense as the particle source, the response of the three sensors and the 

SidePak agreed well in the particle mass concentration range of 0 – 1000 μg/m3 (Figures 2.3 

and 2.4). Pairwise correlations among the instruments were higher than 0.78 (DSM2 against 

GP2Y1). To further evaluate the properties of the three sensors, their responses were plotted 



59 

 

against the SidePak measured particle concentrations in Figure 2.4. Pairwise correlations 

between the outputs of the sensors and the SidePak measured particle concentrations were 

higher than 0.8914, as indicated by the R2 values calculated by the least squares regression 

(Figures 2.4a, 2.4b, 2.4d, 2.4e, 2.4g, and 2.4h). Given the low cost of these particle sensors, it 

will be worthwhile to apply these sensors to obtain local and real-time PM concentrations in 

polluted cities, where the daily upper limit of particle concentrations is around 600 μg/m3, 

and the hourly upper limit of particle concentrations is higher than 1 mg/m3 (Guo et al., 2014; 

Tiwari et al., 2013; Zhao et al., 2013). Among the three sensors, the GP2Y sensor gave the 

highest linearity with an R2 value of 0.9838 for sensors of the same type on four sides of the 

chamber wall in one measurement, and 0.9831 for the same sensor on one side of the 

chamber wall in several measurements. The DSM sensors provided the lowest values of R2, 

with 0.8914 for sensors of the same type, and 0.8921 for the same sensor.  

It should be noted that the lower R2 values given by the PPD and DSM sensors were mainly 

caused by the “curvature” at higher particle concentrations shown in Figures 2.4a, 2.4b, 2.4d, 

and 2.4e. A substantial enhancement in the linearity of the PPD and DSM sensors can be 

expected in smaller particle concentration ranges. For example, the PPD and DSM sensors 

gave R2 values of 0.9496 and 0.9506, respectively, in the particle concentration range of 0 to 

100 μg/m3. For practical applications or enacting regulations on atmospheric particulate 

matter, these lower particle concentration ranges may be used (EPA, 2013; MEP, 2013).  
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In testing particle sensors of the same type, some deviated significantly from the others, 

although the linearity was still high (Figures 2.4a, 2.4d, and 2.4g, as indicated by the arrows). 

This systematic deviation could not be explained by the concentration fluctuations at the four 

sides of the chamber, as shown in Figure 2.2b. This result suggests that each sensor should be 

calibrated separately before being used in commercialized particle monitors, since this 

existing systematic error may significantly affect the particle concentrations reported by the 

sensors (e.g., the same analog output of 200 from a GP2Y sensor corresponded to a particle 

concentration ranging from 600 to 900 μg/m3 in Figure 2.4g). The linearity of the same 

sensor was similar in each test (Figures 2.4b, 2.4e, and 2.4h), demonstrating the reliability of 

the sensor for repeated measurements, as discussed in Section 4.2. Figures 2.4c, 2.4f, and 2.4i 

show the range of the particle concentrations in which sensors can be relied on. It was 

observed that the outputs of the three tested sensors became saturated at a concentration of 

around 4 mg/m3 measured by the SidePak. Hence, the tested particle sensors are less 

applicable for measuring particle concentrations in highly polluted spaces, such as the outlet 

of stacks and construction sites.  

Table 2.3 Linear correlations between particle sensor outputs and SidePak measured particle 

concentrations in different ranges of particle concentrations (0 – 1000 μg/ m3, 0 – 100 μg/ m3, 

and 0 – 300 μg/ m3), calculated by the least squares and reduced major axis (RMA) 

regression methods.  

 

Sensors Least squares  

(0 – 1000 μg/ m3) 

 RMA 

(0 – 1000 μg/ m3) 

 Least squares  

(0 – 100 μg/ m3) 

 Least squares  

(0 – 300 μg/ m3) 

intercept slope R2  intercept slope R2  intercept slope R2  intercept slope R2 

PPD -0.353 33.6 0.9452  -0.481 34.3 0.9558  -0.806 47.1 0.9496  -1.05 43.4 0.9525 

DSM 3.93 59.7 0.8914  3.34 63.2 0.8924  -0.469 159 0.9506  -0.0469 119 0.9755 

GP2Y 91.1 196 0.9838  90.8 198 0.9831  94.2 190 0.9332  94.2 189 0.9746 
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Table 3 gives the linear regression results of the three sensors using the least squares and 

RMA regression. The two regression methods yielded similar results, indicating a minimal 

influence of the variation of the SidePak measured particle concentrations. The least squares 

regression values in the particle concentration ranges of 0 to 100 μg/m3 and 0 to 300 μg/m3 

were also tabulated, clearly showing the dependence of linearity on the choice of particle 

concentrations ranges. Note that the R2 values obtained in this study are relatively larger than 

those calculated in previous studies on field calibration of the particle sensors (Gao et al., 

2015; Holstius et al., 2014). This discrepancy may be due to variations in the material 

composition and size of the atmospheric particles in field calibrations, whereas the incense 

particles were the only particle source in the linearity test. Sections 4.4 and 4.5 elaborate the 

influence of particle composition and size on the performance of the particle sensors.  
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Figure 2.5 Mass concentrations measured by the AirAssure monitor and analog outputs 

reported by the GP2Y sensor without regulated convective flow in mass concentration range 

of 0 – 800 μg/m3. The experiment was conducted with the incense particles during a 

measurement time of around 2.5 hr with a sampling interval of 30 s. Mass concentrations on 

the x-axis were measured with the SidePak.  

 

Making modifications to the GP2Y sensor prototype could further enhance the linearity of 

response, as shown in Figure 2.5. R2 value calculated by the lease squares method increased 

to 0.9961 for the AirAssure monitor. This improvement might be brought by regulated flow, 

which decreased the amount of erratically distributed particles staying in the light scattering 

region of the particle sensor. The specialized algorithm of the AirAssure might also flatten 

the fluctuating sensor outputs and provided results with higher linearity. 
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2.4.2 Precision of measurements 

 

Figure 2.6 (a) Standard deviations and (b) relative standard deviations of the sensor-measured 

particle concentrations under different SidePak-measured particle concentrations. The GP2Y 

sensors were tested without regulated convective flow.  

 

Experimental results on the repeatability of the three tested sensors as measured by the 

standard deviation and relative standard deviation are plotted as a function of SidePak 

concentration in Figure 2.6.  The standard deviations of the sensors varied from 15 μg/m3 to 

90 μg/m3 for a concentration range of 0 to 1000 μg/m3 (Figure 2.6a). Although the 
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imprecision could also be partly attributed to the SidePak, the RMA regression calculated in 

Section 4.1 suggested a minimal influence of the SidePak’s fluctuation. The DSM sensor 

demonstrated relatively constant and small values of standard deviation in the particle 

concentration range of 0 to 1000 μg/m3, which can also be observed from the higher 

repeatability of the measurement in Figure 2.4e compared to other sensors. The PPD and the 

GP2Y sensors showed increased values of standard deviations at higher particle 

concentrations (Figure 2.6a), while the relative standard deviations of all the three tested 

sensors dropped as particle concentration increased (Figure 2.6b). The trend of increased 

relative standard deviation as concentration decreased, indicates that the sensors are not very 

accurate for low concentration measurements (<200 μg/m3). It should be noted that these 

standard deviations were calculated based on approximately ten measurements due to 

constraints of the system used for the laboratory study. If the number of measurements were 

increased, it is anticipated that the uncertainty maybe lower.  However, by averaging the data, 

the “real-time” information of the sensors may be lost.  As in our system for testing incense 

combustion where the generated particle concentration decays rapidly in a sampling interval 

of 30 s, the averaged data over a longer period of time may not represent the actual particle 

concentration. Similar problems may be encountered when measuring fluctuating particle 

concentrations. In these situations, the high standard deviation of the sensor might cause a 

high uncertainty of the measurements. In this laboratory study, due to the considerable 

change of particle concentration in the sampling interval, the effect of averaging the 

measurements on the sensor performance was not investigated.  
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In the applications of real-time measurements, these sensors can be utilized to locate hotspots 

for particle emissions in the ambient conditions, and to measure PM concentrations in non-

ambient environments of interest, such as indoor areas and industrial plants. Furthermore, 

these particle sensors could serve as preliminary substitutes for more accurate instruments in 

developing countries, where the atmospheric PM concentrations are high, and the commonly 

used accurate instruments are unaffordable. The AirAssure monitor reported particle mass 

concentrations with relatively higher repeatability, as shown in Figure 2.5, indicating the 

improvement of data quality after modifying the GP2Y sensor prototypes. Calculated 

standard deviations of the AirAssure monitor were below 10 μg/m3 in the range of 

measurement between 0 – 300 μg/m3. Note that the standard deviations of the particle sensors 

reflect the repeatability of the measurements, while precision is also described by the 

accuracy of the correlation between sensor outputs and particle concentrations. Since linear 

correlations of the three sensors in the particle concentration range of 0 to 1000 μg/m3 were 

used in calculating particle concentrations, due to the low linearity of the DSM and PPD 

sensors as discussed above, the accuracy of the measurement was also negatively affected. 

Hence, depending on the specific properties of each type and model of the sensor, nonlinear 

correlations between the sensor output and the particle concentration are suggested to be 

calibrated to obtain more precise measurement results. For this study, simple second-order 

polynomial fittings could predict the response of the PPD and DSM sensors with much higher 

R2 values. In the particle range of 0 to 1000 μg/m3, the Lo Pulse Occupancy (LPO, %) of the 

PPD and DSM sensors could be fitted with equations:  
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39.17.478.17 2  mmLPOPPD  and      [2] 

544.01183.75 2  mmLPODSM
,       [3] 

with R2 values of 0.9651 and 0.9798, respectively, where m is the mass concentration (μg/m3) 

measured by the SidePak. The calculated R2 values were much higher than those obtained 

from the linear regressions and can be further improved by fitting the sensor outputs with 

higher orders of polynomial equations.  

 

2.4.3 Limit of detection 

Table 2.4 Limits of detection of the three tested sensors using k values in different mass 

concentration ranges (0 to 1000μg/m3 and 0 to 100μg/m3). The GP2Y sensors were tested 

without regulated convective flow.  

Sensors PPD DSM GP2Y 

blk3  0.216 (%) 0.680 (%) 5.11 

    

k (0 to 1000 μg/m3) 0.0336 (%×m3/μg) 0.0597 (%×m3/μg) 0.196 (m3/μg) 

LOD (0 to 1000 μg/m3) 6.44 (μg/m3) 11.4 (μg/m3) 26.1 (μg/m3) 

    

k (0 to 100 μg/m3) 0.0471 (%×m3/μg) 0.159 (%×m3/μg) 0.190 (m3/μg) 

LOD (0 to 100 μg/m3) 4.59 (μg/m3) 4.28 (μg/m3) 26.9 (μg/m3) 

 

Table 4 lists the limits of detection (LOD), together with the values of blk  and k  of the 

three tested sensors according to the calculation method introduced in Section 3.3. By using 

the k values obtained from the linear correlation in the concentration range of 0 to 1000 

μg/m3, the GP2Y sensor gave the highest LOD value of 30.2 μg/m3. The LOD values of the 

PPD and the DSM sensors were relatively lower, with the PPD sensor showing the lowest 
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LOD of 6.44 μg/m3. Accordingly, the LOQ for the GP2Y sensor and the PPD sensor were 

101 and 21.5 μg/m3, respectively. Considering the higher gradient of the response of the PPD 

and DSM sensors in the lower particle concentration range, the LOD values of the two types 

of sensors would become smaller if linear correlations in lower particle concentration ranges 

were used. Table 4 also lists the LOD values of the PPD and DSM sensors using the k values 

calculated from the least squares regression in the particle concentration range of 0 to 100 

μg/m3, where lower LOD values of 4.59 μg/m3 and 4.28 μg/m3 were obtained.     

 

2.4.4 Dependence on particle composition 

The SidePak also uses light scattering to measure particle mass concentrations, which are 

affected by the particle composition and sizes. Hence, particle mass concentrations calculated 

from the size distributions of particles can provide higher accuracy for evaluating the sensor 

performance. As indicated in Figure A1.2 in the supplemental information, the size 

distributions of the three types of generated particles were similar, and could be fitted by 

lognormal functions. The total mass concentration of the measured particles ( m ) can be 

calculated by using the method of moments (Hinds, 1982): 









 )(ln
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9
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,      [4] 
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where 0M , 
pgd , and 

g  stand for the total number concentration, the geometric mean particle 

size, and the geometric standard deviation, which could be obtained through the curve fitting 

process.  

 

Figure 2.7 Dependence of sensor performance on the composition of particles: (a) PPD, (b) 

DSM, (c) GP2Y, and (d) SidePak. The reference mass concentrations were calculated from 

the size distributions measured by the SMPS. The experiments were conducted with atomized 

NaCl, NH4NO3, and sucrose particles, each with a total measurement time of around 2 hr 

with a sampling interval of 30 s. Note the different scales of y-axes.  

 

The outputs of the particle sensors, together with the readings of the SidePak, were then 

plotted against the particle concentrations calculated from the size distributions (Figure 2.7). 
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Due to the difficulty in generating highly concentrated sucrose particles, the performance of 

the sensors and the SidePak was evaluated in a mass concentration below 500 μg/m3. It can 

be seen that the composition of the particles indeed affected the response of the particle 

sensors: the outputs increased by up to 10 times when measuring sucrose particles (the GP2Y 

sensor).  

 Moreover, different sensors and instruments responded differently when the composition of 

particles changed, as indicated by the magnitudes of the slopes in Figure 2.7. For example, 

the GP2Y sensors and the SidePak were more sensitive to the sucrose particles. As discussed 

by Molenar (2005), the variability of the refractive index of different materials accounts 

partly for the uncertainties when using light scattering to measure particle mass 

concentrations. The refractive index is the sum of a real and an imaginary component: 

'innm  , where n  and 'n  are correlated with the magnitude of light scattering and light 

absorption respectively. A higher proportion of light could be absorbed by organic 

compositions in particles, due to the energy storage in the vibration of carbon bonds, while 

inorganic materials are reported to absorb negligible radiation, i.e. the imaginary term of the 

refractive index is close to zero. The phototransistor hence received less light in the test of 

sucrose particles, and so reported a higher mass concentration. This result implies that 

particle sensors may overestimate mass concentrations when measuring particles 

incorporating organic compositions. The outputs of the sensors measuring NaCl and NH4NO3 

particles were also found to be different from each other, due to the different values of 

refractive indices. In this study, NH4NO3 was used to simulate the measurement of 
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atmospheric particles in heavily polluted areas, since a large proportion of the inorganic 

contents of atmospheric particles is attributed to the reaction between NH3 and HNO3 (Guo et 

al., 2014; Jimenez et al., 2009; Seinfeld and Pandis, 2012). The retained sensitivity at higher 

particle mass concentrations of NH4NO3 may promise the application of the three sensors in 

measuring particle concentrations in polluted ambient environments that contain mostly 

inorganic particles. However, for human health and exposure studies, particles with different 

contents may be measured. Due to the uniqueness of each device, a higher accuracy could be 

guaranteed if calibration factors were determined and applied for the materials being used,.  
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2.4.5 Dependence on particle size 

 

Figure 2.8 Sensor performance for PSL particles with three sizes of 300, 600, and 900 nm, 

each during a measurement time of around 2 hr with a sampling interval of 30 s: (a) PPD, (b) 

DSM, (c) GP2Y, and (d) SidePak. The reference mass concentrations were calculated from 

the size distributions measured by the SMPS. Note the different scales of y-axes. 

 

Figure 2.8 shows the dependence of sensor performance on the size of the tested particles, of 

which the size distributions are displayed in Figure A1.3 in the supplemental information. 

The outputs of the particle sensors and the SidePak are plotted against particle mass 

concentrations calculated from the SMPS measured size distributions in the concentration 

below 500 μg/m3. A higher concentration of 900 nm PSL particles could not be obtained, 
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possibly due to the loss by impaction and interception during the transport of particles. Note 

that the mass concentrations reported by the SMPS might not accurately represent the actual 

values, because the narrow size distributions of the PSL particles may not be regarded as a 

constant value in the transfer function of the DMA (Stolzenburg and McMurry, 2008). 

Different characteristics were observed among the sensors and the SidePak. Under the same 

mass concentrations, the outputs of the sensors became higher as particle sizes increased from 

300 nm to 900 nm, while the SidePak reported the highest particle concentration for the 

smallest particles (300 nm). Further observation on the response of the particle sensors 

indicated that the GP2Y sensor was more sensitive to smaller particles, while the PPD and 

DSM sensors were more sensitive to larger particles. These properties can be attributed to the 

type of the irradiated light used in the instruments. For safe handling and reduced cost, 

infrared radiation between 870 and 940 nm was used in the particle sensors, while the 

SidePak uses a laser with a wavelength of 670 nm for the light scattering of particles. 

Although the light scattering of the sensors and the SidePak all fall into the Mie Regime, the 

relative magnitude of the particle size and the wavelength of the radiation determined that the 

light scattering in the particle sensors is closer to the Rayleigh regime.  

In the experiments, as particle size increased, the response of the particle sensors was 

enhanced for the same mass concentration (Figures 2.8a, 2.8b, and 2.8c), which could be 

explained as follows. For the same mass concentration of monodisperse particles, 
3

pTOT dN  

remains a constant, where TOTN   is the total number concentration of particles with a size 

of pd . The scattered light ( scatI ) has the form of  
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2

0
4

pscatTOTscat dQNII


 ,         [5] 

where 0I   is the incident light, and scatQ  is the scattering coefficient. Since the light 

scattering for the sensors was closer to the Rayleigh regime, for a simple estimation, scatQ  

was assumed to be proportional to 
4

pd  (Friedlander, 2000). Note that this correlation might 

overestimate the light scattering coefficient in the Mie regime. The scattered light intensity is 

therefore proportional to 
6

pTOT dN  , and further proportional to 
3

pd   under the same mass 

concentration. Because of the correlation that 3

pscat KdI  , where K  is a constant, more light 

was lost due to the extinction of larger particles, less light was received by the 

phototransistor, and higher concentrations were reported. Based on this result, the particle 

sensors may underestimate the particle mass concentrations for smaller particles. On the 

contrary, the SidePak reported a reverse trend for the influence of particle sizes, possibly due 

to the fluctuations in the light scattering coefficient in the Mie regime, which affected the 

amount of light lost in the sensor and received by the transistor.   
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2.4.6 RH and temperature influence 

 

Figure 2.9 Performance of particle sensors under various relative humidity values (20% to 

90%), each with a measurement time of around 2.5 hr with a sampling interval of 30 s: (a) 

PPD, (b) DSM, (c) GP2Y, and (d) SidePak. The reference mass concentrations were 

calculated from the size distributions measured by the SMPS. Note the different scales of y-

axes. 

 

Relative humidity affected the performance of the particle sensors in several ways. First, 

similar to organic compositions, water absorbs infrared radiation and can cause an 

overestimate of particle mass concentrations due to the reduced light intensity received by the 

phototransistor. Second, highly concentrated water vapor may lead to a failure of the circuits 
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of the particle sensors and result in biased measurement results. Third, the usage of SMPS 

data as references may not be applicable under high RHs, since the sheath flow inside the 

DMA may dry the particles and cause an underestimate of particle concentrations measured 

by the SMPS. As shown in Figure 2.9, similar trends in the performance of the particle 

sensors and the SidePak were observed as RH altered. For the same particle mass 

concentration, the outputs of the sensors and the SidePak first increased, and then dropped as 

RH increased. This result may be a comprehensive effect of the factors mentioned above, 

clearly showing the dependence of sensor performance on RH values.  

 

Figure 2.10 Performance of particle sensors at different temperatures of 5 oC, 20 oC, and 32 
oC, each with a measurement time of around 2.5 hr with a sampling interval of 30 s: (a) PPD, 

(b) DSM, (c) GP2Y, and (d) SidePak. The reference mass concentrations were calculated 

from the size distributions measured by the SMPS. Note the different scales of y-axes. 
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Compared to relative humidity, temperature had negligible effects on the three particle 

sensors and the SidePak in the temperature range from 5 oC to 32 oC, as shown in Figure 

2.10, because theoretically, light scattering and absorption are independent of temperature. 

However, extreme temperatures of the environment may affect the reported particle 

concentrations, since the flow rate of the updraft of particles in the PPD and the DSM sensors 

is determined by the temperature difference between the thermal resistor and the 

environment.  
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2.5 Conclusions 

Table 2.5. Summary of the characteristics of the particle sensors PPD, DSM and GP2Y. 

#The linearity of response is evaluated based on the R2 values in the particle concentration 

range of 0 to 1000 μg/m3.  
*Accuracy is based on the correlations calculated from linear regression methods. Nonlinear 

correlations are suggested in order to enhance the accuracy of the measurement.  

Assessment Aspects PPD DSM GP2Y 

Linearity of response# Medium Low High 

Precision of 

measurement 

Accuracy* Medium Low High 

Repeatability Low High Medium 

Limit of Detection Low Low High 

Dependence on composition High High High 

Sensitivity to particle size High High High 

RH influence High High High 

Temperature influence Minimal Minimal Minimal 

 

This work comprehensively evaluated three low-cost light scattering particle sensors. A brief 

summary of the characteristics of the three sensors was compiled, and the advantages of each 

sensor were determined (Table 5). Throughout the experiments, the GP2Y1010AU0F 

(GP2Y) sensor demonstrated the highest linearity in comparison to measurements by the 

SidePak. The data quality of the GP2Y sensors could be further enhanced by modifying the 

flow system and the algorithm for calculating particle concentrations, as indicated by the 

improvement in the response of an AirAssure monitor. The PPD42NS (PPD) and the 

DSM501A (DSM) sensors had relatively lower limits of detections than the GP2Y sensors. 

Some common characteristics were observed, such as the saturated outputs under high 
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particle concentrations of around 4 mg/m3, high dependence on the composition and size of 

particles, and minimal dependence on temperature.  

While the relative standard deviation increased with decrease in concentration (these sensors 

may not be as accurate as more complicated and expensive measurement devices in clean 

environments), these low cost particle sensors demonstrated the ability to report particle 

concentrations with relatively high linearity and moderate repeatability. In addition, the 

uncertainty of the measurement can be further reduced by averaging the measurements over 

longer periods of time. The compact size and low cost of the sensors favor their wide 

application in tracking air quality in developing countries and heavily polluted areas, where 

the demand for monitoring particulate matter is especially urgent for the sake of public 

health. Large data sets obtained by the sensor network will make amenable applications of 

concepts of “big data” to improve the air quality.  
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Abstract 

Low-cost sensors have been studied extensively in recent years due to their price advantage, 

compact size, and moderate accuracy. Different manufacturers use different calibration 

methodologies and report a factor for the user. This study compared nine types of low-cost 

PM monitors (AirVisual, Alphasense, APT, Awair, Dylos, Foobot, PurpleAir, Wynd and 

Xiaomi) in a chamber with a well-defined aerosol. Additionally, two reference instruments 

(GRIMM and SidePak) were also used. These nine types of monitors were divided into two 

groups for comparison, according to their working principle and data reporting format. A 

linear correlation factor based on PM2.5 mass concentration was reported for all monitors. 

Apart from linear correlation, the differences of the PM2.5 mass concentrations reported by 

the various monitors and reference instruments were plotted against their average to 

demonstrate the degree of improvement that was possible after calibration. A bin-wise 

calibration was also conducted for monitors reporting size distributions to illustrate any 

coincidence error that could bias the results. For monitors designed for residential use, an 

important parameter often reported is the air quality index and is illustrated with a simplified 

index and color. The color display scheme of various monitors was compared with the US 

EPA regulation to demonstrate whether they could convey overall air quality levels 

accurately and promptly. The residential monitors indicate the air quality moderately well, 

but their different color display schemes make the comparison difficult and possibly 

misleading. Various monitors with diverse features showed discrepancies in terms of 
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reporting PM concentration, thus requiring user-defined calibration to improve their 

accuracy.  



85 

 

3.1 Introduction 

 

As a major atmospheric pollutant, particulate matter (PM) has adverse health effects, 

therefore, it is routinely monitored to reduce the harm it causes. In 2013, PM was classified 

as a Group 1 carcinogen by the International Agency for Research on Cancer (IARC), and 

has been associated with lung cancer, premature mortality, cardiopulmonary diseases, and 

cardiovascular diseases (Valavanidis et al., 2008; Brook et al., 2010; Stewart and Wild, 

2017). PM pollution accounts for nearly 1.2 million premature deaths and approximately 6.4 

million annual deaths globally (Smith and Mehta, 2003; Cohen et al., 2005; Burnett et al., 

2014). It has been reported that when the mass concentration of fine particulate matter (PM2.5, 

particulate matter with a diameter smaller than 2.5 μm) increases by about 10 μg/m3, the risk 

of lung cancer mortality increases approximately by 8% (Pope III et al., 2002). Due to these 

adverse health effects, stringent regulations on PM mass concentration have been enacted and 

enforced by governments and local agencies. The standards for annual PM2.5 concentration 

were set as 12 μg/m3 and 10 μg/m3 by the United States Environmental Protection Agency 

(US EPA) and the World Health Organization (WHO) respectively (Organization, 2005). 

Apart from the PM concentration standard, the US EPA also specified the gravimetric 

method as the federal reference method (FRM) for PM mass concentration measurement. The 

gravimetric method calculates the PM mass concentration by weighing the particles 

accumulated on a filter over a period of time. This conventional method has been considered 

to be one of the most reliable methods for PM mass concentration measurement, 
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nevertheless, maintaining the system and weighing filters are laborious. Furthermore, the 

gravimetric method is not a real-time measurement, and can report only the accumulative PM 

mass concentration. The cost and labor required by the gravimetric method have hindered 

application of this method for personal use. Alternative measurement methods, for example, 

TEOM, GRIMM, FIMS, and SMPS, can measure real-time PM concentration accurately, but 

still face the challenges of high cost and long-term stability (Allen et al., 1997; Sioutas, 1999; 

Klepeis et al., 2007; Wang et al., 2018). 

As a potential alternative method for PM concentration measurement, low-cost PM sensors 

have been studied extensively in recent years due to their price advantage, compact size, and 

moderate accuracy (White et al., 2012; Kumar et al., 2015; Rai et al., 2017; Morawska et al., 

2018). Compared to bulky laboratory instruments costing up to thousands of dollars, palm 

sized low-cost sensors usually cost less than fifty dollars. One thing worth noting is that the 

term “low-cost PM sensor” refers only to the electrical sensing module, including popular 

models from Sharp, Shinyei, Samyoung, Oneair, and Plantower (Wang et al., 2015; Sousan et 

al., 2016b; Kelly et al., 2017; Liu et al., 2017). To make low-cost PM sensors functional, 

circuit board design, programming, and calibration are necessary to establish the relationship 

between electrical signals (current, voltage, or pulse width) and the PM concentrations. After 

fabrication and laboratory calibration, low-cost PM sensors exhibit a good linearity against 

reference instruments, showing promising potential for personal PM monitors and sensor 

networks (Wang et al., 2015).  
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Currently, research on low-cost PM sensors mainly focuses on two aspects: interpreting their 

signal comprehensively through calibration or characterization, and modifying them for 

personal or sensor network use. Several groups have tried to explain the deficiencies and 

limitations of low-cost sensors due to their working principles (Li and Biswas, 2017; Zhang 

et al., 2018). Some studies also calibrated a variety of low-cost PM sensors for different 

aerosol sources (e.g., NaCl, Arizona road dust, sucrose, silica, welding fumes, and diesel 

fumes) in different test environments (laboratory, residential, and ambient) to identify the 

optimal performance and favorable working conditions of each type of sensor (Hapidin et al.; 

Wang et al., 2015; Manikonda et al., 2016; Sousan et al., 2016a; Sousan et al., 2016b; Kelly 

et al., 2017; Liu et al., 2017; Rai et al., 2017; Zikova et al., 2017; Aliyu and Botai, 2018; 

Johnson et al., 2018). These studies demonstrated the advantages and limitations of these 

sensors, and laid a solid foundation for further deployment and application. Wireless sensors 

or sensor networks, as one major application, have been deployed in households, meeting 

rooms, factories, cities, etc. to monitor the dynamic process of pollution events with high 

spatiotemporal resolution (Kim et al., 2010; Kim et al., 2014; Rajasegarar et al., 2014; 

Leavey et al., 2015; Patel et al., 2017; Jeon et al., 2018; Li et al., 2018a). Some of these 

studies have explored in depth the algorithms for organizing sensor data and extracting the 

maximum effective information (Li et al., 2018a; Li et al., 2018b). Apart from use in sensor 

networks, low-cost PM sensors find another important application as low-cost PM monitors, 

as we elaborate in the following section. 
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Low-cost PM monitors, whose major components are low-cost PM sensors, are usually 

assembled and pre-calibrated before distribution to users. Compared to conventional PM 

measurement instruments, they still have an appealing price advantage, however, accuracy is 

a still major concern. Compared to just the PM sensors, the assembled monitors’ price is 

higher, but these monitors are advertised with enhanced data quality and stability due to 

improved algorithms and advanced factory calibration. Occasionally, these monitors have 

even been chosen as reference instruments to calibrate low-cost sensors. The Air Quality 

Sensor Performance Evaluation Center (AQ-SPEC), a unit of the South Coast Air Quality 

Management District (SCAQMD), has evaluated the majority of commercial monitors for 

multiple sources (Polidori et al., 2017). They have also built a calibration chamber that can 

maintain a stable and reproducible test environment (Papapostolou et al., 2017). Several 

popular monitors have been highlighted recently. The Dylos DC1700 Air Quality Monitor 

(Dylos Cooperation, Riverside, CA, USA) has been evaluated for different scenarios and has 

been deployed in indoor and outdoor environments (Semple et al., 2013; Holstius et al., 2014; 

Dacunto et al., 2015; Manikonda et al., 2016; Rai et al., 2017). The Alphasense OPC N3 

Particle Monitor (Alphasense Ltd, Great Notley, UK) has been evaluated focusing on its 

ability to accurately report the mass concentration of PM1, PM2.5, and PM10 (Sousan, Koehler, 

Hallett, et al., 2016; Crilley et al., 2018). The PurpleAir PA-II-SD Air Quality Sensor 

(PurpleAir, UT, USA) has demonstrated good linearity against reference instruments for both 

laboratory calibration and ambient field measurement (Kelly et al., 2017). Several other low-

cost monitors have also been evaluated and compared in different studies, including 
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AirVisual Node (AirVisual, Inc., USA), APT low-cost monitor (Applied Particle 

Technology, MO, USA), Awair air quality monitor (Bitfinder, Inc., CA, USA), Foobot 

(Airboxlab, San Francisco, CA, USA), Wynd wearable air quality tracker (Air Quality 

Tracker Wynd Technologies, Inc., CA, USA), and Xiaomi PM2.5 Detector (Beijing Ji Mi 

Electronics Technology Co., Ltd, China) (Sousan et al., 2017; Moreno-Rangel et al., 2018; 

Singer and Delp, 2018).  

Although low-cost PM monitors have been well characterized, the studies reflect inherent 

limitations. First, there is no specified boundary between low-cost PM monitors and low-cost 

PM sensors. Occasionally, low-cost PM monitors are used as reference instruments to 

calibrate low-cost PM sensors. At other times, they are treated the same as low-cost PM 

sensors. It is necessary to distinguish low-cost PM monitors from low-cost PM sensors 

according to the differences mentioned above, however, it is still uncertain whether they are 

qualified enough as a reference instrument. Second, calibration methods for low-cost PM 

monitors very likely differ, but differences are not highlighted in the literature. For low-cost 

PM sensors, a user calibration procedure will establish the relationship between the PM 

concentration and an electrical signal (e.g., current, voltage, or pulse width). Hence, the major 

concern is whether low-cost PM sensors can correlate well with reference instruments. 

However, for low-cost PM monitors, the correlation is between PM concentrations reported 

by monitors and the reference instrument, and a larger concern is whether the agreement 

between monitors and the reference instrument is good enough to replace the user calibration. 

Hence, linear or polynomial regression may not be sufficient to demonstrate the performance 
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of low-cost monitors. Third, an important function of some residential monitors is indicating 

air quality through color change, which is a straightforward display. However, few studies 

have examined whether a color indicator can convey air quality information accurately and 

promptly. To bridge the scientific gap, in this study, the performance of nine types of popular 

low-cost PM monitors was compared, including devices from AirVisual Pro, Alphasense, 

APT, Awair, Dylos, PurpleAir, Foobot, Wynd, and Xiaomi. These monitors were divided 

into two groups according to their numbers of channels and types of metrics. As for reference 

instruments, GRIMM (11C, GRIMM Technologies, Inc., GA, USA) and TSI SidePak 

(AM530, TSI, Inc., MN, USA) were chosen to evaluate these monitors. A chamber was built 

to provide an adjustable test environment with well-mixed, and evenly distributed PM 

concentrations, together with humidity and temperature control. 
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3.2 Methods 

 

In this study, nine popular low-cost personal PM monitors were compared against two 

reference instruments. The specifications and metrics of the different monitors were 

compared, as were their features for convenient application.  The procedure to compare 

monitors with different specifications and metrics will be elaborated in this section. A 

chamber with temperature and humidity control was designed to provide a well-mixed and 

evenly distributed flow for calibration experiments. The mixing performance of the chamber 

was examined at random locations to demonstrate its workability. With the temperature 

around 25 °C and humidity around 50%, three types of aerosols – ARD particles, sea salt 

particles, and incense particles –were generated from burning incense, atomizer, and dust 

dispenser to evaluate the performance of different monitors. 

 

3.2.1 Specifications of low-cost PM monitors and reference instruments 

Table 3.1 lists the specifications of all low-cost PM monitors tested in this study. Although 

some of the monitors (for example, the Alphasense and Dylos) have been utilized as 

reference instruments to calibrate low-cost PM sensors as reported in the literature 

(Rajasegarar et al., 2014; Prabakar et al., 2015; Gao et al., 2016; Hojaiji et al., 2017), we 

treated all of them as test units since there are no significant price differences between them 

and other tested monitors. Monitors were classified into two groups on the basis of their 

working principle and metrics. The Alphasense, APT (Applied Particle Technology Minima), 
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Dylos, and PurpleAir, all use a single particle counter which measures the size distribution 

for sorting into multiple bins. When particles pass through the measurement area one at a 

time, the scattered light generates a pulse that is detected by a photodiode, and then the 

particle size is classified according to the pulse height. The particle sensing modules of the 

AirVisual, Awair, Foobot, Wynd, and Xiaomi monitors report an analog measurement of the 

total mass concentration. Particles that pass through the measurement area at the same time 

scatter light onto the photodiode, and the detected light intensity can be correlated with the 

PM concentration. 
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Table 3.1 Specifications of low-cost PM monitors 

 Monitor Cost ($) Size (cm) Metrics Data logging Selected references 

G
r
o

u
p

 I
 

Alphasense  506 8×6×6  24 bins (0.35 – 40 μm) [#/mL] 
 PM1, PM2.5, and PM10 [μg/m3] 
 RH & T [% & oC] 

 cable + computer software  
 micro SD card 

Sousan et al., 2016a 
Hojaiji et al., 2017  
Rai et al., 2017  
Crilley et al., 2018  
Zhang et al., 2018 

APT NA 10×9×3  6 bins (0.3 – 10 μm) [#/0.1L] 
 PM1, PM2.5, and PM10 [μg/m3] 
 RH & T [% & oC] 

 Wi-Fi + webpage 
 micro SD card 

NA 

Dylos 425 19×13×9  2 bins (>0.5 μm, >2.5 μm) [#/ft3]  cable + computer software Dacunto et al., 2015 
Semple et al., 2013  
Manikonda et al., 2016 
Sousan et al., 2016b 
Hojaiji et al., 2017 
Rai et al., 2017 

PurpleAir 259 5×4×2  6 bins (0.3μm – 10μm) [#/0.1L] 
 PM1, PM2.5, and PM10 [μg/m3] 
 RH & T [% & oF] 

 Wi-Fi + webpage 
 micro SD card 

Morawska et al., 2018 
Singer and Delp, 2018 
Kelly et al., 2017 

 AirVisual 269 21×12×8  PM2.5 [μg/m3] 
 CO2 [ppb] 
 RH & T [% & oF] 
 AQI + color [NA] 

 Wi-Fi + App 
 Retrieval through node ID 

Morawska et al., 2018 
Singer and Delp, 2018 

G
r
o
u

p
 I

I 

Awair 200 16×9×5  PM2.5 [μg/m3] 
 CO2 [ppm] 
 VOC [ppb] 
 RH & T [% & oF] 
 AQS + color [NA] 

 Wi-Fi + App Singer and Delp, 2018 

Foobot 200 17×8×7  PM2.5 [μg/m3] 
 CO2 [ppm] 
 VOC [ppb] 
 RH & T [ % & oC] 
 AQI + color [NA] 

 Wi-Fi + App 
 Retrieval through web login 

Sousan et al., 2017 
Moreno-Rangel et al., 2018 
Singer and Delp, 2018 

Wynd 79 7×4×2  PM2.5 [μg/m3] 
 AQI + color [NA] 

 Bluetooth + App NA 

Xiaomi 75 6×6×3  PM2.5 [μg/m3] 
 Color [NA] 

 Wi-Fi + App NA 
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Among the first group, the APT and PurpleAir are equipped with a Plantower 

(Plantower Co., Ltd., Beijing, China) single particle sensing module. The Alphasense 

and Dylos have their own custom-designed sensing modules. Due to the difference 

among sensing modules, the data reporting formats of each monitor are different. The 

APT and PurpleAir monitors, using the low-cost Plantower sensor, report the size 

distribution of particles ranging from 0.3 – 10 μm in six bins. The Alphasense has a 

better resolution, and reports the sizes ranging from 0.3 – 38 μm in 24 bins. The 

Dylos has only two bins for particles larger than 0.5 μm and 2.5 μm respectively. To 

make the Dylos results comparable with other monitors in the first group, the number 

concentration of the second bin (>2.5 μm) was subtracted from that of the first bin 

(>0.5 μm) to represent the number concentration of particles smaller than 2.5 μm. The 

Alphasense, APT, and PurpleAir not only report the size distribution in the unit of 

number concentration, but also report mass concentrations of PM1, PM2.5, and PM10.  

For data logging, Alphasense and Dylos do not have a wireless module, hence they 

need to be connected to a computer to display real-time data. The PurpleAir and APT 

monitors can upload data to a manufacture-provided webpage through a Wi-Fi 

module. The Alphasense, APT, and PurpleAir also have internal off-line data logging 

system that can record the data on a micro SD card in case of connection malfunction. 

The sampling interval of the APT is adjustable, and in our study was set at one minute 

to be consistent with the Dylos and GRIMM. The Alphasense reported data every one 

second, and the data was averaged over one minute too. The PurpleAir has a fixed 
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sampling interval of 80 seconds, hence the data was interpolated to get a one-minute 

sampling interval. 

The monitors in the second group are targeted for residential use, hence they are 

cheaper and smaller, with an attractive appearance and a straightforward display. 

Apart from PM mass concentration, the AirVisual, Awair and Foobot also monitor the 

CO2 or VOC concentrations for a more comprehensive air quality measurement. Since 

they are designed for residential use, important features, for example, the sampling 

interval or working principle, are not explained thoroughly in the manufacturer’s 

descriptions. For data logging, all five monitors have a wireless module, a Bluetooth 

chip for the Wynd and a Wi-Fi chip for the rest of the monitors, to synchronize the 

data to tablet or phone applications. For the AirVisual and Foobot, after data is 

synchronized with the application, it can be accessed online with a ten-minute and a 

five-minute interval respectively. However, for other monitors, historical data is not 

accessible since it is not saved. Our study circumvented this problem by video 

recording the screen with the app running to record the data and time. The data was 

manually extracted and averaged over one-minute intervals. Apart from measuring 

PM concentrations, these monitors also report an air quality related index and use 

different colors to display the air quality more straightforwardly.  

Comparing different data logging methods of all tested low-cost PM monitors, a Wi-

Fi module or a Bluetooth module can synchronize the data remotely and conveniently 
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as opposed to connections with cables. Generally, monitors with a Bluetooth module 

can be configured more easily than monitors with a Wi-Fi module, since the Wi-Fi 

module usually requires a specific type of wireless internet. The Bluetooth module 

can be connected to user applications straightforwardly, however, the data transfer 

relies on the user-end application and is restricted in a confined space. On the other 

hand, monitors with the Wi-Fi module, can continue collecting the data even without 

running user-end applications, which allows long-term and remote data collection. 

The transferred data can then be accessed through user-end applications (AirVisual, 

Awair, Foobot, Wynd and Xiaomi), through web portals (AirVisual, APT, Foobot and 

PurpleAir), or through computer software (Alphasense and Dylos).  

To compare monitors with different working principles, GRIMM and SidePak were 

chosen as reference instruments. SidePak reported the PM2.5 mass concentration, 

which can be correlated directly with different monitors. GRIMM, as a federal 

reference method (FRM), is a single particle counter that measures the sizes of PM 

ranging from 0.25 – 32 μm and reports the distribution in 31 bins. A bin-wise 

comparison, as shown in Figure 3.1 was conducted for the monitors of the first group 

to demonstrate the accuracy of their size distribution measurements. Compared to 

APT, Dylos, and PurpleAir, the Alphasense has more bins and a different distribution, 

therefore, common ranges for the Alphasense and GRIMM were selected for bin-wise 

calibration. The APT, Dylos and PurpleAir use fewer bins than the GRIMM, hence 

several GRIMM bins were summed to enable comparison.  
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Figure 3.1 Bin classification for monitors in the first group (Alphasense, APT, Dylos, 

and PurpleAir) in bin-wise comparison against the GRIMM. The dash-dot line and 

dashed line represent the bin distribution of each monitor and the GRIMM 

respectively. The 31st bin of GRIMM (>32 μm) is not depicted in this figure. The 

thick box represents the common range of combined bins for comparison. 

 

3.2.2 Air quality related index and color display  

The second group of monitors, the AirVisual, Awair, Foobot, Wynd, and Xiaomi used 

both numeric indexes and color display to report the air quality. Foobot gives a 

simplified numeric index on a scale of 0 to 100 indicating air quality ranging from 

healthy to poor. The Awair presents an air quality score (AQS), and AirVisual and 

Wynd present the air quality index (AQI). The AQS is scaled from 0 to a 100 to 

indicate the air quality from poor to healthy. However, neither the product manual nor 

the literature describes how the AQS is calculated. Compared to the AQS, the AQI is 
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a more common parameter for presenting the potential airborne hazards. The 

component species and calculation details of the AQI vary with local regulations, but 

normally, several common air pollutant are included: PM, ozone, VOC, carbon 

monoxide, and sulfur dioxide (Gao et al., 2015; Hu et al., 2015; EPA, 2016). A high 

AQI indicates an unhealthy environment, and the AQI range from low to high is 

divided into six segments with numeric index ranging from 0 to 500 that describes the 

overall air quality, from excellent to heavily polluted. Since PM is the major object of 

this study, the AQI mentioned in the following section is calculated based on the PM 

mass concentration, following the US EPA regulations published in 2016 (EPA, 

2016).  

Compared to numeric indexes, color is a more straightforward way of showing air 

quality. The US EPA divides the AQI into six sections, and each section with a signal 

color (green indicates “good”, yellow is “moderate”, orange means “unhealthy for 

sensitive groups”, red represents “unhealthy”, purple indicates “very unhealthy”, and 

maroon stands for “hazardous”). Ideally, all monitors would use the color scheme of 

the AQI, which would make the results directly comparable. In reality, only the 

AirVisual follows the AQI color distribution. The Awair, Foobot, Wynd, and Xiaomi 

monitors assign colors according to their own schemes, as shown in Figure 3.2. For 

example, the Foobot uses just two colors, blue and orange, and Xiaomi monitor has 

only three colors, green, yellow, and red. To examine whether the color display 

properly conveys the air quality message, the US EPA regulated AQI was first 
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calculated based on the PM concentration reported by the GRIMM, and the AQI-

designated color was used to represent the air quality. The colors reported by the 

various monitors were recorded at the same time for comparison. Ideally, the colors 

would all be both identical and accurate representations of the GRIMM-reported PM 

concentration.  

 

Figure 3.2 Color display pattern of each monitor and US EPA stipulated display. 

 

3.2.3 Test chamber and aerosol sources 

A chamber was designed according to Figure 3.3 to provide a well-mixed and evenly-

distributed PM flow as the test environment. The aerosol was introduced to the 
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chamber through the inlet on the top, and then ventilated through the outlet on the 

bottom. The exhaust air was filtered by a HEPA filter, and a flow controlled vacuum 

pump was used to adjust the flowrate (2 – 15 L/min) and to control the PM 

concentration level inside. The interior included a mixing area and a test area, 

separated by two baffles with a matrix of one-inch holes. In the mixing area, two fans 

were used to improve the air circulation. A humidifier and a cartridge heater in the 

mixing area were connected to a humidity sensor and a temperature sensor in the test 

area to maintain the temperature and humidity in the test area at 23 °C and 50% RH. 

Particles, heat, and humidity were mixed with distorted streamlines. After sufficient 

mixing, the streamlines passed through two baffles with densely spaced holes to form 

an evenly distributed laminar flow passing through the test area. During the 

experiments, the monitors and the SidePak were placed on the lower-level baffle, and 

the GRIMM was placed outside the chamber but connected to the test area. 
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Figure 3.3 The structure of a chamber to provide a well-mixed and evenly-distributed 

PM flow as a test environment.  

 

Using incense particles, the uniformity of the PM distribution in the test area was 

examined by the SidePak and the APT monitor, placed at random locations on the 

lower-level baffle. The response from the APT monitor was correlated with that from 

the SidePak via a linear regression. The whole procedure was repeated three times by 

placing the APT monitor at different sampling locations. In all three tests, the 

response from the APT monitor correlated well with SidePak, with all R2 values 

higher than 0.99. The slopes from different tests were approximately similar, 0.847, 

0.867, and 0.897, which indicated that the PM was well mixed and evenly distributed 

in the test area. 
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After proving the suitability of the chamber, monitors were tested with ARD (Arizona 

road dust) particles, sodium chloride (sea salt) particles, and incense particles. The 

normalized mass distribution of each source was reported by GRIMM, as shown in 

Figure 3.4. Incense particles and sea salt particles peaked around 0.5 and 0.3 μm 

respectively. ARD were larger and peaked around 2 – 4 μm.  

 

Figure 3.4 Normalized mass concentration distributions of ARD particles, sea salt 

particles, and incense particles generated during the experiments, measured by 

GRIMM.  
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3.3 Results and discussion 

 

3.3.1 Alphasense, Dylos, APT, and PurpleAir monitors 

3.3.1.1 Time response and correlation based on PM2.5 mass concentration 

The PM2.5 mass concentrations reported by monitors and reference instruments for 

different PM sources are plotted with time in Figure 3.5, with a one-minute sampling 

interval. The red and blue dashed lines represent the GRIMM and SidePak 

respectively, and the solid lines with different colors represent different low-cost PM 

monitors. For ARD particles, the GRIMM and SidePak overlapped well with each 

other, since they were both calibrated with ARD particles in their factory calibrations. 

While the GRIMM and SidePak responded simultaneously for incense and sea salt 

particles, their indicated PM levels were different. Such a difference might be due to 

the different working principles: the GRIMM is a single particle counter, but the 

SidePak performs ensemble measurement. Other monitors also responded 

simultaneously to PM concentration fluctuations for incense and sea salt particles, 

although there was a difference among peak values. However, for ARD particles, a 

noticeable delay was found for the Dylos monitor in repeated tests. Two reasons may 

lead to such a delay. First, the other monitors directly reported the mass concentration 

of PM2.5, but for the Dylos monitor, the large bin (>2.5 μm) was subtracted from the 

small bin (>0.5 μm) to calculate the number concentration of particles from 0.5 – 2.5 

μm. Then, the number concentration was converted to the mass concentration by 
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assuming all these particles were 2.5 μm, with a density of 1200 kg/m3. These 

assumptions might introduce errors into the results. Another possible reason is the 

misclassification of particles ranging from 0.5 – 2.5 μm. Particles in this range were 

supposed to be classified into the small bin, however, they may have been 

accidentally classified into the large bin. Misclassification can influence data 

accuracy, which results in a noticeable delay. According to the number-based size 

distribution, approximately 30%, of the ARD particles fall in the range of 0.5 – 2.5 

μm, but only 6% of incense particles and 1% of sea salt particles fall in this range. 

Thus, the delay is noticeable for ARD particles, but almost negligible for incense and 

sea salt particles.  

 

Figure 3.5 The PM2.5 mass concentration variation against time for different aerosol 

sources, reported by reference instruments (GRIMM and SidePak) and monitors 

(Alphasense, APT, Dylos, and PurpleAir monitors).  

 

The PM2.5 mass concentration reported by each monitor was also plotted against the 

reference instruments for pairwise correlation, as shown in Figure 3.6. These monitors 
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had been pre-calibrated, hence better accuracy was expected. Apart from a high R2
 

value, a slope value approximate to one was expected to demonstrate the agreement 

between monitors and reference instruments. A slope larger or smaller than one 

represents a monitors’ overestimation or underestimation of the PM2.5 mass 

concentration compared to the reference instruments. The APT and PurpleAir 

demonstrated good linearity for various sources, with all R2 values larger than 0.94 

and 0.91 respectively. For the Dylos, linear regression may not be the optimal fitting 

method. For the Alphasense, the data slopes were stable when compared against the 

GRIMM for different sources. One thing worth noting is that the linear correlation 

may not be sufficient to demonstrate agreement between monitors and reference 

instruments. It cannot demonstrate how data quality has been improved after 

calibration. Thus, we plotted the data in a different manner, which will be illustrated 

in a later section 
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Figure 3.6 Pairwise correlation among the monitors (Alphasense, APT, Dylos, and 

PurpleAir) and the reference instruments (GRIMM and SidePak) for ARD, sea salt, 

and incense particles. Slope and R2 values were calculated by least squares regression. 

 

3.3.1.2 Bin-wise evaluation for size distribution measurement 

Based on the bin classification in Figure 3.1, we plotted the number concentration 

reported by the GRIMM and the tested monitors for different bins in Figure 3.7. The 

dashed line in the figure represents the 1:1 ratio, where the monitors and the GRIMM 

reported the same results. For comparison, figures of the same source were plotted 

under the same scales, except for the correlation between the Dylos and the GRIMM 

for incense measurement. The legends of different monitors were displayed on the 

rightmost position of each row. 
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In Figure 3.7, Alphasense demonstrated an overestimation for tested sources. One 

more thing worth noting is that after saturation, the response from Alphasense 

decreased with increasing PM concentration, especially for ARD and incense 

particles. Such an inverted U-shape may be caused by the coincidence error that 

several small particles passed the measuring point at the same time and were 

characterized as a larger particle by mistake. Coincidence error may lead to an 

inaccurate size distribution due to the underestimation and overestimation for small 

and large particles respectively. However, the PM mass correlation in Figure 3.6 was 

not largely influenced by such coincidence error since the misclassified large particle 

made up the mass loss of small particles. APT monitor showed a very close 

estimation for ARD particles, however, for sea salt and incense particles, there was an 

underestimation and overestimation for 0.3 – 0.5 μm and 0.5 – 1 μm particles 

respectively. Dylos predicted a very close estimation for sea salt particles, however, 

underestimated ARD and incense particles for smaller bins, and overestimate ARD 

particles for larger bins. PurpleAir monitor demonstrated an underestimation for 

tested sources.  
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Figure 3.7 Bin-wise number concentration comparison of monitors (Alphasense, APT, 

Dylos, and PurpleAir) and the reference instrument (GRIMM) for different sources in 

different concentration ranges. 

 

Figure 3.7 also gave a clue on the question whether the calibration procedures should 

be the same for the optical particle counters and the monitors performing ensemble 

measurement. For sensors performing ensemble measurement, calibration procedures 

established the one-to-one relationship between the sensor output and the PM 

concentration level. However, for optical particle counters, all different channels 

together contribute to the final mass concentration estimation, and the one-to-one 

correlation may oversimplify the situation. In Figure 3.7, most of the data points could 

not fall in a narrow range, indicating that no unique calibration factors could be 
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applied for all different channels. On the contrary, different calibration factors from 

bin-wise size distribution calibration may produce better accuracy. However, a bin-

wise calibration may lower the resolution since common ranges between the monitors 

and the reference instruments need to be selected. In addition, the bin-wise calibration 

may be influenced by the PM composition too, since the composition will influence 

the size characterization, which makes the situation more complicated. 

To demonstrate a more straightforward comparison, the size distribution reported by 

different monitors and the GRIMM is displayed in Figure 3.8. Three samples under an 

approximately stable and high PM concentration were selected for different sources, 

and the number concentration reported by the GRIMM and the tested monitors were 

plotted in shaded and yellow columns, respectively, on the left y axis. The bin ratio, 

which is the ratio of the number concentration reported by the monitors to that 

reported by the GRIMM, is plotted in a line to be read from the right y axis. The 

dashed line in the figure represents the bin ratio of 1, where the monitors and the 

GRIMM reported the same results. Figure 3.8 also indicated that no unique calibration 

factor can be deployed for all channels, although all sensors predicted a roughly 

correct size distribution. Alphasense and PurpleAir displayed an underestimation and 

overestimation for small and large particles respectively, which might be due to the 

coincidence error. The Dylos has only two bins, therefore it is difficult to compare the 

size distribution. One thing worth noting is that the noticeable overestimation for 

larger particles might not be sufficient to assess the monitors’ true performance. The 
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number concentration is very low for larger particles, which may skew the evaluation. 

The GRIMM detected almost no particles larger than 4 μm, but the PurpleAir, APT, 

and Alphasense monitors reported the existence of 10 μm particles.  

 

Figure 3.8 Size distributions reported by monitors (Alphasense, APT, Dylos, and 

PurpleAir) and the reference instrument (GRIMM). The number concentrations 

reported by the monitors and GRIMM are plotted on the left y axis in yellow and 

shaded columns respectively. The bin ratio can be read on the right y axis. 

 

3.3.1.3 Agreement before and after calibration 

As mentioned in the introduction, a large selling point of these low-cost PM monitors 

is that they arrive assembled and calibrated for deployment. However, according to 

the results of the pairwise correlation based on the PM2.5 mass concentration and the 



111 

 

bin-wise comparison based on the number concentration, discrepancies existed 

between measurements. Two reasons can explain such discrepancy: different inherent 

working principles of these monitors, and errors that can be eliminated by 

calibrations. In other words, the calibration discrepancy is a systematic error, 

representing a constant drift that can be corrected. However, the inherent discrepancy 

cannot be eliminated through further calibrations, similar to random errors that cannot 

be ruled out.  

To distinguish whether the discrepancies were inherent or the result of inadequate 

calibration, the ARD PM2.5 data in Figure 3.6 was replotted as shown in Figure 3.9. 

For each data point, the differences between the PM2.5 mass concentrations reported 

by the monitors and GRIMM were plotted against their average. This method can 

demonstrate the agreement between two measurements, and thus examines whether 

an instrument is a qualified substitute of the reference instruments (Bland and Altman, 

1986; Bland and Altman, 2003; Astrua et al., 2007). On each figure, the dashed line in 

the middle is the mean of differences (σ), and the dotted lines (σ±2SD) indicate the 

upper and lower boundaries of the differences, where SD is the standard deviation of 

the differences. A smaller absolute value of σ and a narrower boundary (4SD) indicate 

a better data quality. For the column of before calibration, the data reported by the 

monitors were used directly to calculate the differences by comparing with the 

GRIMM data. Since the inherent deficiencies need to be examined after getting rid of 

the effects of inappropriate calibration, all monitors were calibrated according to 
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either linear regression (SidePak, APT, and PurpleAir) or secondary polynomial 

regression (Alphasense and Dylos) to obtain an R2 value larger than 0.96. The data 

reported by monitors from direct measurements were recalculated with calibration 

equations to repeat the previous procedures for the “after calibration” column.  

 

Figure 3.9 Differences and averages of PM2.5 mass concentrations reported by the 

monitors and GRIMM for examining the agreement before and after calibration.  
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Before calibration, the low-cost PM monitors exhibited a strong relationship between 

the difference and the average. For the Alphasense, APT, and PurpleAir, the 

difference increased negatively with the average, which illustrated that the calibration 

factor provided by the manufacturer was too large. Therefore, these monitors 

overestimated the PM2.5 mass concentration compared to the GRIMM. The 

overestimation was proportional to the measurement scale; hence the difference and 

the average demonstrated a strong correlation. The Dylos showed a positive 

correlation between the difference and average, which may be caused by too small a 

calibration factor. For all four monitors, the gaps between boundaries (4SD) had 

shrunk observably and the σ had been reset closer to zero after applying calibration 

equations, which demonstrate that calibration deviations for these four monitors were 

corrected after user calibration. 

One thing worth noting is that no matter whether before or after calibration, the 

SidePak did not show a strong correlation between the difference and the average. It 

showed the narrowest gap between boundaries (4SD) before calibration, when 

compared to other monitors. After calibration, the width of the gap (4SD) remained 

the same, and the mean of the difference (σ) was reset closer to the zero. This 

behavior illustrated that the user calibration did not significantly improve the data 
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quality of the SidePak. Therefore, user calibration is not necessary for SidePak in 

measuring ARD PM2.5 mass concentration.  

In summary, the factory calibration is sufficient for the SidePak for measuring ARD 

PM2.5, however, the user calibration improves the data quality of the other four 

monitors. After the user calibration, the distribution of differences demonstrated a 

narrower difference boundary (4SD) and a smaller absolute value of σ, which 

supports the elimination of calibration deviation. After user calibration, the 

Alphasense demonstrated the best performance, with an even narrower gap of 

boundaries (4SD) than the SidePak. The reason might be that both the GRIMM and 

the Alphasense use a single particle counter, but the SidePak uses ensemble 

measurement. Hence, after the user calibration, the Alphasense demonstrated a greater 

consistency with the GRIMM data. 

 

3.3.2 AirVisual, Awair, Foobot, Wynd, and Xiaomi monitors 

3.3.2.1 Time response and correlation based on the PM2.5 mass concentration 

Similar to the first group, the PM2.5 mass concentration reported by different monitors 

and reference instruments were plotted against time. As shown in Figure 3.10, the 

monitors responded almost simultaneously to increasing PM concentrations. 

However, it is noticeable that the AirVisual demonstrated a different shape due to its 

five-minute sampling interval. The Awair and Wynd saturated very quickly in the 
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tests, especially for ARD and incense particles. This saturation can be observed more 

clearly in Figure 11, which plots the PM2.5 mass concentration reported by the 

monitors against the reference instruments. 
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Figure 3.10 PM2.5 mass concentration variation against time for different aerosol 

sources, reported by the reference instruments (GRIMM and SidePak) and monitors 

(AirVisual, Awair, Foobot, Wynd, and Xiaomi).  

 

Figure 3.11 shows that all five monitors demonstrated good linear correlation with the 

GRIMM or SidePak. The AirVisual had a longer sampling interval, leading to 

segmented scattered data. The Awair and Wynd showed lower saturation 

concentrations, and the linear fitting curve in the figure is based on the unsaturated 

part. The Foobot and Xiaomi correlated well with the GRIMM and SidePak over the 

full range for different PM sources. However, for AirVisual, Awair, and Wynd, 

saturation occurred at a lower concentration level. The Foobot presented a high R2 

value with a slope close to one for ARD particles, hence the Foobot has been 

calibrated well for ARD particle measurement in the manufactory setting.  
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Figure 3.11 Pairwise correlation among the monitors (AirVisual, Awair, Foobot, 

Wynd, and Xiaomi) and the reference instruments (Grimm and SidePak) for ARD, sea 

salt, and incense particles. Slope and R2 values were calculated by the least squares 

regression for the unsaturated range. 

 

3.3.2.2 Color indication 

Unlike the first group of low-cost monitors, the second group of monitors is mainly 

for residential use. Hence conveying the air quality precisely to users is the first 

concern, rather than accurately measuring the PM mass concentration. They all 

convey the air quality though a straightforward color display. Therefore, instead of 

focusing on the statistics for data quality, we recorded the color change pattern to 

examine whether each monitor could trigger an air quality alarm promptly. The PM2.5 
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mass concentration reported by the GRIMM was selected as the reference. The US 

AQI was calculated based on the reference mass concentration, then a color was 

chosen accordingly per to the US EPA regulations. The color change of the monitors 

was recorded from their user applications and then correlated with the PM2.5 mass 

concentration reported by the GRIMM, as shown in Figure 3.12. 

 

Figure 3.12 Color display patterns of the monitors (AirVisual, Awair, Foobot, Wynd, 

and Xiaomi) for different aerosol sources. The color change for the US AQI column is 

based on the PM2.5 mass concentration reported by the GRIMM. The color changes of 

other monitors were recorded from user applications. 

 

Among these monitors, the AirVisual has the same color pattern as to US AQI; the 

Awair and Wynd each had a similar color pattern. The Awair does not use the maroon 

color, which represents the poorest air quality in the US AQI. The Wynd uses a blue 

instead of green for good air quality. The Xiaomi and Foobot have just three and two 
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colors respectively, a very simplified color scheme that is inconvenient for 

comparison. For example, for ARD particles, when other monitors turned red or 

maroon indicating unhealthy air quality, the Xiaomi monitor still displayed green, 

indicating a healthy environment, which is misleading to users. Among the monitors 

in the second group, the Foobot most closely predicted the PM mass concentration, 

but its color pattern is very different from that of the US AQI or other monitors. 

Nevertheless, for Foobot, the color change between blue and orange always happened 

when the US AQI was displaying a yellow color, indicating moderate air quality, 

which can be considered as consistent and accurate. Considering the difficulty of 

comparing different color patterns, we left the Foobot and Xiaomi out of the 

comparison, and focused only on the color indicating function of the AirVisual, 

Awair, and Wynd. 

Among the AirVisual, Awair, and Wynd, the Wynd triggered the alarm ahead of the 

US AQI for all three different sources, hence, the Wynd is qualified as a residential 

monitor for generating prompt alarms. The Awair had an early response to incense 

particles, an almost simultaneous response to ARD particles, and a delayed response 

to sea salt particles. Therefore, the Awair is more sensitive to combustion particles, 

and may not be very sensitive to sea salt particles. The AirVisual demonstrated an 

early alarm for incense and sea salt particles, and a late alarm for ARD particles. 

However, as mentioned before, the AirVisual measured the PM level and 

synchronized the data every five minutes, which may affect the color display. In 
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general, apart from the Xiaomi monitor, although each monitor has different 

responses to various sources, all four other monitors, AirVisual, Awair, Foobot, and 

Wynd, indicated the air quality moderately well. 

 



121 

 

3.4 Conclusions 

 

This study compared nine popular low-cost PM monitors, divided into two groups 

based on their features and working principles. For the first group, including the 

Alphasense, APT, Dylos, and PurpleAir monitors, we evaluated whether they were 

qualified substitutes of the reference instruments. Although they all demonstrated a 

good linearity against the reference instruments, the agreement was not good between 

them and the reference instruments. In the bin-wise comparisons, no unique 

calibration factor could be applied to all channels. Thus, bin-wise calibration might 

improve the data quality more effectively, and user calibration is necessary to 

guarantee the data quality. Coincidence error, leading to a biased size distribution, has 

been observed under high concentration level, however, was found to have little 

impact on the reported mass concentration. In the second group, including the 

AirVisual, Awair, Foobot, Wynd, and Xiaomi monitors, we examined whether they 

could report the air quality changes promptly and accurately through their color 

displays. They all demonstrated a good linearity compared to the reference 

instruments. Apart from Xiaomi, the other four monitors could demonstrate the air 

quality through color display with a moderate accuracy. 
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Abstract 

Compact low-cost sensors for measuring particulate matter (PM) concentrations are 

receiving significant attention as they can be used in larger numbers and in a 

distributed manner. Most low-cost particle sensors work on optical scattering 

measurements from the aerosol. To ensure accurate and reliable determination of PM 

mass concentrations, a relationship of the scattering signal to mass concentration 

should be established. The scattering signal depends on the aerosol size distributions 

and particle refractive index. A systematic calibration of a low-cost particle sensor 

(Sharp GP2Y1010AU0F) was carried out by both experimental and computational 

studies. Sodium chloride, silica, and sucrose aerosols were used as test cases with size 

distributions measured using a scanning mobility particle sizer (SMPS). The mass 

concentration was estimated using the measured size distribution and density of the 

particles. Calculations of the scattered light intensity were done using these measured 

size distributions and known refractive index of the particles. The calculated scattered 

light intensity showed better linearity with the sensor signal compared to the mass 

concentration. To obtain a more accurate mass concentration estimation, a model was 

developed to determine a calibration factor (K). K is not universal for all aerosols, but 

depends on the size distribution and refractive index. This approach not only provides 

a more accurate estimation of PM concentration, but also provides an estimate of the 

aerosol number concentration.  
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4.1 Introduction 

Particulate matter (PM) is ubiquitous in the environment and is receiving significant 

attention due to potential impacts on health (Pope 3rd et al., 1995; Brunekreef and 

Holgate, 2002; Biswas and Wu, 2005; Oberdörster et al., 2005). Outdoor PM 

pollution can be attributed to gasoline exhaust, diesel emissions, biomass burning, 

traffic-related pollutions, and industrial emissions (Chow, 2001; Zheng et al., 2002; 

Donaldson et al., 2005; Edney et al., 2005). Indoor PM are generally emitted from 

tobacco smoking, cooking, wood burning, medical treatment, and outdoor PM 

penetration (Monn et al., 1995; Tuckett et al., 1998; Long et al., 2000; Tucker, 2000; 

He et al., 2004; Liu et al., 2016; Wang et al., 2017). Developing countries, such as 

India and China, had to cope with a challenging situation due to the adverse effect of 

high PM level (Brook et al., 2010; Cheng et al., 2013; Smith and Sagar, 2014; 

Tripathi et al., 2015; Liu et al., 2016; Sagar et al., 2016). For example, recent studies 

have indicated that ambient air pollution accounts for 1.6 million deaths every year in 

China (Cheng et al., 2013; Rohde and Muller, 2015) and 4-6% of the Indian national 

burden of disease (Smith, 2000). 

Indoor PM pollution increases the potential risk for chronic obstructive pulmonary 

disease and acute respiratory infections (Bruce et al., 2000; Smith et al., 2000; 

Brunekreef and Holgate, 2002). Most buildings have HVAC (heating, ventilation and 

air conditioner) systems that filter the air in the indoor environment. However, most 

systems do not take into account the concentration of pollutants indoors, which may 
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fluctuate over time (Leavey et al., 2015). By developing a real-time air quality 

monitoring system, the HVAC system can operate more efficiently. Therefore, 

distributed and real-time particle concentration measurements are necessary to 

identify hotspots indoors and provide information for the HVAC system (Kim et al., 

2010; Bhattacharya et al., 2012). 

Since it is important to monitor PM concentrations, many instruments have been 

developed, ranging from accurate and expensive laboratory scale instruments (Wang 

and Flagan, 1990; Chen et al., 1998) to portable instruments for field measurements 

(Yanosky et al., 2002; Rees and Connolly, 2006). Field and laboratory instruments 

that are compact typically rely on the measurement of the optical scattering intensity 

of particles. The governing principles of these instruments can be divided into either 

single particle light scattering measurements or total particle light scattering 

measurements; and they report either the number or the mass concentration, 

respectively. Portable instruments sacrifice some accuracy, but they are more 

convenient and practical for field measurements. The TSI SidePakTM AM510, 

weighing 0.46 kg, uses a 670 nm laser to sample aerosol mass concentration from 

0.001 to 20 mg/m3 (Rees and Connolly, 2006; Jiang et al., 2011). The P-Trak®, whose 

longest dimension is 27 cm, uses isopropanol as the working fluid to monitor 0.02 to 

1 μm particle number concentrations, ranging from 0 to 5×105 particles/cm3 (Chao et 

al., 2003; Zhu et al., 2006). These portable aerosol instruments with light weight 
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provide reasonable accurate estimations of either the number or the mass 

concentration. 

While several portable instruments are available, cost is still the major concern for 

deploying such real-time monitoring network systems for indoor and outdoor air 

quality measurements. Recently, a series of low-cost particle sensors that operate by 

measuring the total particle light scattering intensity are being touted for use. Their 

low price (device cost in the range of USD 10 each) alleviates the economic concerns 

in making widespread measurements in large-scale environments, and their compact 

size makes them readily portable. These units could be assembled for a total cost of 

USD 50 and used in a distributed manner. In controlled laboratory tests, low-cost 

particle sensors have shown high linearity and stability in comparison with 

commercial instruments with a known particle size and composition (Wang et al., 

2015; Manikonda et al., 2016; Sousan et al., 2016; Sousan et al., 2017; Zikova et al., 

2017). Several studies in the literature have reported the combination of low-cost 

particle sensors with “smart” home devices (e.g. temperature, humidity, carbon 

monoxide sensors, cameras) to provide more comfortable and energy-efficient homes 

and workplaces (Ivanov et al., 2002; Chung and Oh, 2006; Kim et al., 2010; 

Bhattacharya et al., 2012; Kim et al., 2014). Moreover, a few studies also applied 

multiple sensors for outdoor or indoor air quality measurements (Rajasegarar et al., 

2014; Patel et al., 2017). One of the disadvantage is that the response of the low-cost 

particle sensors varies with particle composition and size distributions, which requires 
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repeated calibration to ensure reliable estimations of mass concentration. This 

disadvantage has been reported by several groups (Wang et al., 2015; Sousan et al., 

2016). However, there is no sufficient study of the reasons and quantification for such 

variations; nor approaches proposed to enhance the accuracy.   

To overcome these limitations, an evaluation of the relationship between particle 

composition, size, and signal outputs of a low-cost particle sensor is reported in this 

paper. Sharp GP2Y1010AU0F (Model GP2Y) was selected as the representative low-

cost particle sensor due to its high linearity and long-time operational stability in 

comparison with reference instruments as established in a former study (Wang et al., 

2015). To accomplish this, first, experimental studies for calibration were conducted 

in a chamber with known aerosols. Second, Mie and Rayleigh scattering expressions 

(Laven, 2006) were used along with the particle size distributions to predict the 

measured signals of the low-cost particle sensors. The sensor signal output was 

correlated to the integrated information from more sophisticated size distribution 

measurement instruments to evaluate accuracy. Finally, based on the light scattering 

theory, an expression for a calibration factor (K) dependent on refractive index and 

size distribution parameters (geometric mean diameter, dpg, and geometric standard 

deviation, σg) was derived to predict the mass concentration and number concentration 

from the sensor signal output.  
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4.2 Methods 

 

4.2.1 Major components of the wireless sensor 

Figure 4.1(a) shows the schematic diagram of the wireless sensor setup. Sharp GP2Y 

with a fan (Figure 4.1(b)) was evaluated in this study. Sharp GP2Y contains an 

infrared emitting diode (IRED) and a phototransistor. The IRED illuminates particles 

in the air flow with a 10 ms pulse-driven waveform whose duty ratio is 0.032. 

Scattered light intensity is converted to a 0-3.5 V analog signal by the phototransistor. 

The analog signal becomes fully developed within 0.28 ms, so the voltage on the 

phototransistor is recorded at exactly 0.28 ms. A 5 V, 2×2 cm2 brushless mini fan 

(Mini Cooling Radiator, 2510S) was attached to the back of the sensor to allow air 

flow through the aperture. Since the sensor was attached on the wall, the natural air 

convection of the sensor design is limited. Therefore, the fan was equipped with the 

sensor to direct the air flow through the unit that introduces the particles to the 

sensing region. 
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Figure 4.1 Major components of the wireless sensor, (a) Assembled wireless sensor 

system, (b) Sharp GP2Y1010AU0F (Sharp GP2Y) sensor with a fan in the back, (c) 

XBee Series 2 wireless module, (d) Arduino Nano ATmega328P Microcontroller.   

 

The communication module used in this experiment is an XBee Series 2 (Figure 

4.1(c)). Its operating frequency is 2.4 GHz, and the transmission power output is 2 

mW. The range of indoor transmission is 30 meters, and the outdoor free air range is 

100 meters. In this study, the XBee was placed on the circuit board as shown in 

Figure 4.1(a). The microcontroller used in this work was an Arduino Nano 

ATmega328P (Figure 4.1(d)), which accurately coordinated the data timing between 

the sensor and the XBee module. In the loop, the Arduino powered the IRED in the 

sensor with an accurate 10 ms square waveform and then sampled the voltage signal 

at 0.28 ms after the leading edge of the waveform was detected. After this, the 

microcontroller converted the analog voltage signal into a digital signal that can be 
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sent by the XBee module. In these experiments, the sampling interval of the 

microcontroller (Arduino) was set to 2.5 seconds, and every four samples were 

averaged before sent to the computer through XBee. Therefore, the log file stored on 

the computer recorded signal every ten seconds. 

 

4.2.2 Experimental set up 

As stated previously, it is important to ensure that the signal output can be accurately 

used to determine the mass concentration by a calibration factor. The signal from the 

Sharp GP2Y is dependent on the particle composition and size distribution. Our 

earlier work has demonstrated that for the same mass concentration of different 

particle types (e.g. NaCl, sucrose, and NH4NO3) and size distributions (e.g. 300 nm, 

600 nm, and 900 nm polystyrene latex particles), the sensor signal outputs were 

different (Wang et al., 2015). However, the patterns of the change, together with the 

necessity of calibration, has not been clearly presented. Therefore, it is crucial to 

explain the reason for such difference qualitatively or quantitatively with a 

systematically study, which is addressed in this study. In this work, a systematical 

calibration of a Sharp GP2Y was carried out experimentally. Then, with a proposed 

model, the response of the sensor as a function of particle composition and size 

distribution parameters was studied. 
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Initial experiments were done with laboratory generated NaCl, sucrose, and SiO2 

particles. Different sets of tests with various solution concentrations were done to 

determine the effect of varying size distributions on the measured signal outputs. The 

experimental system is shown in Figure 4.2. Different concentrations of NaCl 

solutions, sucrose solutions, and SiO2 solutions were added in a constant output 

atomizer (TSI Model 3076) to generate test aerosols with different size distributions. 

NaCl solutions (0.507 mg/mL, 1.087 mg/mL, and 1.892 mg/mL) and sucrose 

solutions (1.150 mg/mL, 3.325 mg/mL, 4.315 mg/mL) were prepared by dissolving 

NaCl (reagent grade ≥ 98%, +80 mesh, Sigma-Aldrich) and sucrose (≥ 99.5%, Sigma 

Ultra, Sigma-Aldrich) in deionized water. SiO2 solutions (1% dispersion and 2% 

dispersion) were prepared by diluting SiO2 solutions (40 wt. % suspension in H2O, 

LUDOX® TM-40 colloidal silica, Sigma-Aldrich) with deionized water. The atomized 

particles were passing through a diffusion drier to remove the water contents in the 

particles. Then, the dried particles were sent to a cubic chamber (58 cm × 58 cm × 58 

cm) through the inlet tube at the top of the chamber. On the right side of the chamber, 

a Sharp GP2Y sensor and a sampling tube that connected the chamber with a scanning 

mobility particle sizer (SMPS, size range 14.6 nm to 661.2 nm, TSI Model 3080) 

were placed close to each other at the middle of the right panel. The distance between 

the Sharp GP2Y center and the sampling tube was around 5 cm, small in comparison 

to the width of the chamber (58 cm). Thus, the PM sampled by the SMPS was 

assumed to be the same as that detected by the Sharp GP2Y. The SMPS was operated 
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with a three-minute sampling interval to measure the size distributions (nd (dp)) of the 

generated particles in the chamber. And as mentioned before, the data log file of the 

Sharp GP2Y had a 10-second sampling interval. Therefore, every eighteen samples 

from the Sharp GP2Y will be averaged to match the sampling interval of the SMPS. 

 

Figure 4.2 Schematic diagram of systems used to compare the performance of the 

wireless sensor with that of standard aerosol instruments. Constant output atomizer 

3076 producing small particles (dp < 600 nm) with an SMPS reference instrument. 

 

Characteristic size distributions from different solutions are shown in Figure 4.3. Two 

critical parameters, the geometric mean diameter (dpg) and the geometric standard 

deviation (σg) of each size distribution are reported in Table 4.1. The difference was 

not large among the size distributions of particles generated from atomizing sucrose 

and SiO2 solution. This is mainly caused by the larger standard deviations of the size 

distributions as shown in Table 4.1, so that the size distributions were broadened, 

covering each other. 
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Table 4.1 Densities and size distribution parameters of the particles generated from 

different solutions. 

 

 

 

 

 

 

 

 

 

 
Figure 4.3 Characteristic size distributions of particles generated by the constant 

output atomizer with different solutions. 

 

 Solution 

conc. 

 
Particle density 

Size distributions  

from SMPS Test number 

 mg/cc  g/cc dpg σg 

I. NaCl  0.507 1 2.16 92.02 1.77 

  1.087* 2  119.55 1.69 

  1.892 3  156.95 1.48 

II. Sucrose  1.150 4 1.59 115.78 1.91 

  3.325 5  126.99 1.99 

  4.315 6  155. 57 1.87 

III. SiO2  1% 7 2.32 150.93 2.07 

  2% 8  176.06 1.91 



138 

 

With the experimental setup, we can obtain the signal output from sensor and the size 

distribution from SMPS, which is necessary to calculate the mass concentration and 

the total scattered light intensity. The detailed expressions of the mass concentration 

and the total scattered light intensity are presented in the next section. 

4.2.3 Mass concentration (mtotal) and calculated total scattered light 

intensity (I)  

The mass concentrations (mtotal) were calculated based on the size distribution 

function, nd (dp), assuming that all particles are spherical (Friedlander, 2000): 

，dddn
d

m ppd

p

ptotal )()(
6

3

 


                                     (4.1) 

where ρp is the particle density, dp is the particle diameter. In this work, nd (dp) was 

measured by the SMPS as described in the experimental set up section.   

The total scattered light intensity (I), was calculated based on the working principle of 

the Sharp GP2Y sensor, as shown in Figure 4.4. Total scattered light intensity is a 

summation of the product of the scattered light intensity of a single particle, idp, and 

the size distribution function, nd (dp), as Eq. (4.2) (Friedlander, 2000).  

)()( ppddp dddniI   ,    (4.2) 

As shown in the right side of Figure 4.4, idp is the scattered light intensity detected by 

the phototransistor when a single particle passing through the measuring point. idp can 

be determined by the structure of the Sharp GP2Y and particle properties. Structure 
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parameters include: the scattering angle (θ), the distance between the illuminated 

particles and the phototransistor (R), the wavelength of light source (λ), and the 

incident light intensity (I0). Particle properties include the particle size (dp) and the 

refractive index (m). The refractive index can be expressed as a combination of real 

and imaginary terms ( immm imgreal  ). However, practically, particles would pass 

the measuring point as a combination of different particle diameters with different 

number concentrations, rather than pass through the measuring point one by one, 

which is the situation shown in the left side of Figure 4.4. Therefore, idp needs to be 

coupled with nd (dp)·d(dp), the number concentration of particles whose size is dp. 

Then, it needs to be integrated from the minimum size to the maximum size. 

 

Figure 4.4 Working principle and critical parameters of the Sharp GP2Y low-cost 

particle sensor. “PT” and “IRED” represent the phototransistor and the infrared 

emitting diode respectively. 

 



140 

 

In this study, the sensor parameters are, θ = 60°, R = 2 cm, λ=860 nm, and m=1.536 

(NaCl particles), 1.5376 (sucrose particles), and 1.486 (SiO2 particles) (Hand and 

Kreidenweis, 2002). MiePlot V4.5 (Laven, 2006) was used to calculate the scattered 

light intensity of a single particle (idp) as a function of particle diameter (dp) with the 

mentioned constraints.  

 

4.2.4 Expression for calibration factor (K) to relate sensor signal 

output (S) to mass concentration (mtotal) from experiments 

A calibration factor (K) linking the mass concentration (mtotal) with the sensor signal 

output (S) is defined as follows: 

)( 0SSKmtotal                                                       (4.3) 

S0 is a signal output obtained at a particle concentration of zero due to a certain drift 

in the electronics of the system. In the following section, there will be: Kexp, Keq,6, and 

Keq,12, representing the calibration factor fitted from the experimental results (Kexp) or 

calculated from the proposed model (Keq,6 and Keq,12).  

In the experiments, mass concentration (mtotal) can be calculated from Eq. (4.1) with 

the nd (dp) measured by the SMPS and the ρp reported in Table 4.1. The sensor signal 

output (S) was recorded in the log file on the computer. So, Kexp can be obtained by 

fitting experimental results into Eq. (4.3). 
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4.2.5 Estimation the calibration factor (K) with lognormal size 

distribution 

To further analyze how other parameters will influence the calibration factor, (S-S0) 

was expressed as a function of the total scattered light intensity, I 

ISS  0 ,    (4.4) 

where η is the response coefficient of the sensor, which is determined by the optical 

characteristics of the phototransistor. The value of η is determined experimentally by 

calibration. With Eq. (4.4), Eq. (4.3) can be written as 

IKmtotal        (4.5) 

According to Eq. (4.1) and Eq. (4.2), mtotal and I are functions of nd (dp) and idp. By 

substituting Eqs. (4.1-4.2) into Eq. (4.5), the calibration factor (Keq,6) can be expressed 

as Eq. (4.6), which is dependent on the properties (density, size distribution, and 

refractive index) of the measured PM.  
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Eq. (4.6) indicated that the PM size distribution and the PM properties have a 

complex influence on the calibration factor. The integration in the numerator and the 

denominator are too complicated for either qualitative analysis or practical 
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implementation. To simplify the integration, lognormal size distribution assumption 

and method of moments were applied in the following derivation. 

The definition of lognormal size distribution is shown as follows, where N∞, σg, and 

dpg represent the total number concentration, the geometric standard deviation, and the 

geometric mean diameter, respectively (Friedlander, 2000).   

]
ln2

)ln(ln
exp[

ln)2(
)(

2

2

2/1

g

pgp

gp

pd

dd

d

N
dn




     (4.7) 

The method of moments is defined as Eq. (4.8) (Friedlander, 2000). 

rM )()( ppd

r

p dddnd      (4.8) 

where Mγ is the general moment of the particle size distribution, where γ represents 

the order of the moment. The geometric standard deviation (σg) and the geometric 

mean diameter (dpg) can be used to express Mγ as shown in Eq. (4.9). M0 is the zeroth 

moment, which represents total number concentration (Friedlander, 2000) and M0 can 

be cancelled out later. 
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In order to apply the method of moments to Eq. (4.6), apart from lognormal size 

distribution assumption, idp needs to be expressed as a polynomial function of particle 

size (dp). Therefore, we expect to fit the relationship between idp and dp for the 

simplification. Eq. (4.10) was applied to describe the relationship between idp and dp. 
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idp was enlarged with a factor of 1015 to increase the accuracy of fitting since idp was 

too small for calculation. The relationship between idp and dp can be divided into two 

ranges, proportional to 
6

pd  and 
2

pd  for small particles in the Rayleigh regime and 

large particles in the geometric scattering regime respectively. Although the transition 

regime, Mie regime is not included here in Eq. (4.10), it can still quantitatively cover 

the light scattering properties in the whole size range. The fitting results of Eq. (4.10) 

will be discussed in detail in the Results and Discussion section. 

62
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Eq. (4.10) could be further simplified as Eq. (4.11) under the following two situations. 

When most of the measured particles are small, Rayleigh regime will be the dominate 

regime, and Eq. (4.10) can be simplified as Eq. (4.11a). On the contrary, when the 

measured particles are larger, geometric scattering regime will be the dominant 

regime. Therefore, Eq. (4.10) can be simplified as Eq. (4.11b) 

b

d
i

p

dp

6

   when pd  < 500 nm and g  < 1.3  (4.11a) 

a

d
i

p

dp

2

   rest of the situations   (4.11b) 

The calibration factor (Keq,12) can be expressed as Eq. (4.12) after plugging in Eqs. 

(4.6, 4.8-4.11). 
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    (4.12b) 

The errors of the calibration factor predicted by the proposed model (Keq,6 and Keq,12) 

can be calculated by Eq. (4.13), regarding to the experimental results (Kexp) 

exp

12,6,exp

K

KorKK
error

eqeq
       (4.13) 

4.2.6 Estimation of the number concentration 

A method of estimating number concentration with given parameters is presented as 

follows. Mass concentration and number concentration are relevant to the third and 

the zeroth moment of size distributions respectively. In addition, the mass 

concentration can be derived from Eq. (4.3). Therefore, the number concentration 

(M0) is a function of calibration factor (K), sensor signal output (S), and size 

distribution parameters (σg and dpg) as shown in Eqs. (4.14-4.15). 
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The number concentration estimated from Eq. (4.15) were compared with the number 

concentration measured by the SMPS. The errors between the two values were 

calculated with Eq. (4.16). SMPSN  and 15,eqN  represent the number concentrations 

measured by the SMPS and evaluated from Eq. (4.15) respectively. 

SMPS

eqSMPS

N

NN
error

15,
     (4.16) 
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4.3 Results and discussion 

 

4.3.1 Relationship between the scattered light intensity of a single 

particle (idp) and the particle size (dp)  

The scattered light intensity of a single particle (idp) is plotted in Figure 4.5 as a 

function of particle size (dp). Figure 4.5 (a, c, and e) show the calculated scattered 

light intensity of a single particle (idp) as a function of particle diameter (dp). 

According to the plots, the slopes of the curve change from 6 to 2 with increasing 

particle diameter on logarithm scale, which demonstrated that idp is proportional to 
6

pd  

and 
2

pd  for small and large particles respectively. This linearity is consistent with the 

different light scattering characteristics in the Rayleigh, Mie, and geometric scattering 

regimes. In the Rayleigh regime, the scattered light intensity is proportional to dp6, 

while in the geometric scattering regime, the scattered light intensity is proportional to 

dp2. The transition regime between the above two regimes is the Mie regime.  
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Figure 4.5 Scattered light intensity of a single particle as a function of particle 

diameter for (a) NaCl particles, (c) sucrose particles, and (e) SiO2 particles. Scattered 

light intensity of unit volume as a function of particle diameter for (b) NaCl particles, 

(d) sucrose particles, and (f) SiO2 particles. 

 

Since the final aim is to estimate the mass concentration with the sensor signal output, 

we also plot the scattered light intensity of unit volume against particle diameter in 

Figure 4.5 (b, d, and f). The scattered light intensity of unit volume is calculated by 

dividing the calculated scattered light intensity of a single particle (idp) by the volume 
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of the particle (
6

3

pd
). After assuming the density of the particle (shown in Table 4.1) 

is a constant, the curves can be interpreted as the scattered light intensity of unit mass. 

For NaCl, sucrose, and SiO2 particles, the peaks of responsive curve occur around 600 

nm to 1000nm, which illustrates that Sharp GP2Y is more sensitive to above range for 

mass concentration prediction. 

 

4.3.2 Relationship among the mass concentration (mtotal), the 

calculated total scattered light intensity (I), and the sensor signal 

output (S) 

With idp from Figure 4.5 and nd (dp) from SMPS, calculated total scattered light 

intensity (I) and total mass concentration (mtotal) can be determined by Eqs. (4.1-4.2). 

Figure 4.6 shows the plots of the calculated total scattered light intensity (I) and the 

total mass concentration (mtotal) versus the signal output (S) over the range of 

measurements. The parameters: slope, intercept, and R2 for the various cases are 

shown in the column 3-6 of Table 4.2. Column 3 and column 4 report the fitting 

equations and the R2 values of the calculated total scattered light intensity (I) versus 

the sensor signal output (S), while column 5 and column 6 report the fitting equations 

and the R2 values of the total mass concentration (mtotal) versus the sensor signal 

output (S). The R2 values are larger than 0.951 in all separate tests, which 

demonstrates that the sensor signal outputs are proportional to both the mass 
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concentration and the calculated scattered light intensity. However, while plotting 

experiments of a same component with different concentrations on one graph, the 

calculated total scattered light intensities are easier to line up on a single straight line 

against sensor output, as shown in Figure 4.6. In Figure 4.6(a-f), the fitting equations 

and the R2 values are obtained by combining all tests of the same composition, while 

Figure 4.6(g, h) showed the fitting results of all tests from all compositions. In detail, 

the R2 values of calculated scattered light intensity (Figure 4.6 (a, c)) are larger than 

the R2 values of mass concentration (Figure 4.6 (b, d)) for NaCl and sucrose tests. The 

R2 values are comparable for the SiO2 tests (Figure 4.6 (e, f)). In Figure 4.6 (g, h), the 

R2 value for scattered light intensity (Figure 4.6(g)) is significantly larger than the R2 

value for mass concentration (Figure 4.6(h)) after plotting all measurement data 

together. This indicates that the correlation between the signal output and the total 

calculated scattered light intensity is better. On the contrary, when estimating the total 

mass concentration from the signal output, although high linearity was preserved in 

the separate tests (selected size distributions), the intercept and the calibration factor 

(Kexp) changed with the particle size distributions and the particle composition.
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Table 4.2 Detail properties of the generated particles and the fitting results for mass concentration and calculated total scattered light intensity 1 

against sensor signal output. 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 Test 

number 

Calculated scattered light intensity fitted 

equation 

Scattered light int. (y, UA) 

versus sensor output (x, UA) 

Mass fitted equation 

(experimental data) 

Mass conc. (y, µg m-3) 

versus sensor output (x, UA)  

Calibration factor (K) 

Kexp 

from 

fitting 

Keq,6 

from Eq. 

(4.6) 

Error 

from Eq. 

(4.13) 
Equation R2   Equation R2 

I. NaCl 1 y = 3.20×10-16x - 5.35×10-14 0.978   y = 11.26(x– 146.98) 0.951 11.26 8.42 25.22% 

 2 y = 2.58×10-16x - 3.73×10-14 0.995   y = 7.03(x– 146.98) 0.996 7.03 7.13 NA  

 3 y = 3.26×10-16x - 4.24×10-14 0.977   y = 12.74(x– 146.98) 0.961 12.74 8.89 30.21% 

II. Sucrose 4 y = 2.16×10-16x - 3.08×10-14 0.990   y = 3.75(x– 146.98) 0.989 3.75 3.66 2.40% 

 5 y = 1.81×10-16x - 2.42×10-14 0.996   y = 2.44(x– 146.98) 0.993 2.44 3.43 -40.57% 

 6 y = 2.39×10-16x - 3.43×10-14 0.966   y = 3.04(x– 146.98) 0.977 3.04 3.28 -7.90% 

III. SiO2 7 y = 2.74×10-16x - 3.80×10-14 0.984   y = 4.84(x– 146.98) 0.996 4.84 5.56 -4.91% 

 8 y = 2.56×10-16x - 3.66×10-14 0.995   y = 5.30(x– 146.98) 0.994 5.30 6.04 -28.00% 
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Figure 4.6 Relationship of the calculated total scattered light intensity and the mass 

concentration as a function of the sensor outputs. Hollow symbols represent 

calculated scattered light intensity for (a) NaCl particles, (c) sucrose particles, and (e) 

SiO2 particles. Solid symbols represent mass concentration for (b) NaCl particles, (d) 

sucrose particles, and (f) SiO2 particles. (g) and (h) are combinations of (a, c, and e) 

and (b, d, and f) respectively. 

 

Apart from reporting the fitting results, Table 4.2 also includes the estimated 

calibration factor calculated from Eq. (4.6) in column 8. Test 2 (NaCl 1.087 g/cc) was 
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chosen as calibration to calculate the response coefficient (η) due to its highest R2 

value for both mass fitting and intensity fitting. After substituting the density (ρp = 

2.16 g/cc), the size distribution parameters (dpg = 119.55 nm, σg = 1.69), and the 

scattered light intensity (idp) into Eq. (4.6), η is equal to 3.85×1015. By combining the 

value of η and Eq. (4.6), the calibration factor of each test can be estimated. To 

evaluate the accuracy of Eq. (4.6), the errors between the calibration factor from 

experiments (Kexp) and the calibration factor from Eq. (4.6) (Keq,6) were calculated 

with Eq. (4.13) and reported in column 9 of Table 4.2. The error range of Keq,6 can be 

controlled within ±30% except for Test 5. The calibration factor from the mass fitting 

result of Test 5 (Kexp=2.44) was the smallest within seven tests, so the denominator in 

Eq. (4.13) was small, which might lead to a larger error. The error range demonstrated 

that Eq. (4.6) can provide moderate accuracy for calibration factor estimation.  

The K values of low-cost particle sensors varying with regards of aerosol 

composition and size distributions have been reported by several groups (Wang et al., 

2015; Sousan et al., 2016). Wang et al. (2015) compared the response of three sensors 

and an instrument (the Shinyei PPD42NS, the Samyoung DSM501A, the Sharp 

GP2Y, and the SidePakTM) to three types of particles (NaCl particles, Sucrose 

particles, and NH4NO3 particles) and recommended repeated calibration for different 

types of particles to obtain higher accuracy. Sousan et al. (2016) also demonstrated 

the same conclusion that the sensors require repeated calibration, since the size 

distribution, the refractive index, and the shape of the particles would influence 

sensors’ performance. However, there is no systematic study on how K changes and 

how to improve the sensors’ performance without repeated calibration.  
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4.3.3 Estimation of K for lognormally distributed particles 

As presented in Table 4.2 and Figure 4.6, calibration factor is not universal for all 

aerosols, but depends on the size distribution parameters and particle composition 

(refractive index). To further analyze how these parameters would influence the 

calibration factor, we assumed lognormal distribution as shown in Eq. (4.7). The size 

distribution generated by Eq. (4.7) was plugged into Eq. (4.6) to evaluate the 

influence of each parameter.  

By assuming lognormal parameters, lnσg ranging from 0.1 to 0.7 and dpg ranging from 

0.2 to 2 µm respectively, we simulated the calibration factor of various size 

distributions for NaCl particles, sucrose particles, and SiO2 particles as shown in 

Figure 4.7. The values of calibration factors significantly differ from various 

combinations of lnσg and dpg. Figure 4.7 could be an important tool for estimating 

how much error will be created by a one-time calibration. For example, if the sensor 

is calibrated with SiO2 particles (lnσg = 0.7, dp = 1.0 µm), then, the error can be 

controlled within ± 60% while using this calibration factor to measure particles ranges 

from 0.1-2.0 µm whose ln σg is 0.7. However, if the sensor is calibrated with NaCl 

particles (lnσg = 0.1, dp = 0.6 µm), then, the error would be enlarged to ± 700% while 

using this calibration factor to measure particles ranges from 0.1-2.0 µm whose lnσg is 

0.1. Furthermore, two rules can be summarized to describe the variation. First, with a 

small lnσg value, the calibration factor is nonmonotonically related to dpg value. 

Generally, the calibration factor initially decreases with the increasing dpg value. 

However, after the turning point, the calibration factor increases with the increasing 

dpg value in the successive stage. Second, for a larger lnσg value, the calibration factor 

is a monotonic function of dpg, and it increases with increasing dpg value. Above two 

rules are common for NaCl, sucrose, and SiO2 particles.  
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Figure 4.7 Slope estimated from Eq. (4.6) for lognormally distributed particles. Black, 

red, and green lines represent NaCl, sucrose, and SiO2 particles respectively. Solid, 

dash, dot, and dash dot lines represent lnσg equal to 0.1, 0.3, 0.5, and 0.7 respectively. 

 

To further investigate the above phenomena, idp was simplified as a function of 

particle diameter (dp). The details of fitting idp with dp for values of a and b with six 

types of substances – NaCl, sucrose, SiO2, elemental carbon, Al2O3, and Fe2O3 are 

shown in Figure 4.8. We included elemental carbon, Al2O3, and Fe2O3 to demonstrate 

that Eq. (4.10) should be universal for different species. idp for element carbon whose 

refractive index has an imaginary part is slightly different from others. The 

parameters, a, b, and R2 varying with the refractive indices of the different materials 

for each set are listed in Table 4.3. The R2 values vary from 0.7313 to 0.983. Element 

carbon demonstrated the highest R2 value, since the imaginary part reduced the 

wrinkle of the idp curve, which improved the accuracy of fitting. For other species, 

lower R2 values were resulted from the fluctuation of the idp curve. 
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Table 4.3 Details of fitting idp as a function of dp in Eq. (4.10) for NaCl, sucrose, SiO2, 

Fe2O3, Al2O3, and elemental carbon particles.  

 

 

Figure 4.8 The scattered light intensity of a single particle simulated by MiePlot 

(black solid line) and fitted by Eq. (4.9) (red solid line) for NaCl, sucrose, SiO2, Fe2O3, 

Al2O3, and elemental carbon particles. 

   Refractive index a (×10-15) b (×10-15) R2 

NaCl 1.536 29.44 1.394 0.7508 

Sucrose 1.5376 29.58 1.012 0.7344 

SiO2 1.486 33.64 0.932 0.7313 

Element carbon 1.96-0.66i 172.8 0.258 0.983 

Fe2O3 3.011 32.19 0.1582 0.7849 

Al2O3 1.765 25.27 0.447 0.8567 
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Regarding the fitting results as shown in Figure 4.8 and Table 4.3, Eq. (4.10) is 

capable of depicting the correlation between idp and dp. idp is proportional to the dp
6 

and dp
2 for small particles and large particles respectively, which leads to the 

phenomena we summarized from Figure 4.7. For small lnσg, the feature of the aerosol 

whose geometric mean diameter is dpg is similar to the feature of monodisperse 

particles with only size dpg, so Eq. (4.6) can be simplified as Eq. (4.17). 
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where idpg is the scattered light intensity of particles whose size equals to dpg. When 

dpg is small, K is proportional to dpg
-3, where K decreases with increasing dpg. After 

some turning point, dpg is large enough to fall in the range where idp is proportional to 

the dp
2, so K is proportional to dpg and increases with increasing dpg. However, when 

lnσg is larger, the characteristics mentioned above will disappear since the particles 

tend to be distributed evenly through the size range rather than monodisperse. Under 

this situation, the larger particles under the size distribution are more influential, so idp 

is approximately proportional to the dp
2, so K is proportional to dpg and increases with 

increasing dpg.   

Apart from qualitatively explaining the trends in Figure 4.7, the method of moments 

and further simplification of idp were applied to overcome the disadvantage of 

repeated calibration.  

 



157 

 

4.3.4 Estimate K with simplified equation for practical use  

As shown in Eq. (4.11), Eq. (4.10) can be simplified for small and large particles 

separately. With Eq. (4.11), Eq. (4.6) is further simplified as Eq. (4.12). An 

expression for K as a function of geometric mean diameter, geometric standard 

deviation, and refractive is established by assuming lognormal distribution, as shown 

in Eq. (4.12). While some information (σg, dpg and m) will need to be known for 

determining the value of K; estimates can be inferred for a specific type of aerosol in a 

region. Eq. (4.12a) can be applied when most of particles are smaller than 0.5-0.8 µm.  

On the contrary, Eq. (4.12b) can be applied when most of particles are larger than 0.5 

– 0.8 µm. Generally, whether to choose Eq. (4.12a) or Eq. (4.12b) needs to be 

considered regarding particle size distribution parameters.  

To validate the equations, Eq. (4.12) was applied to the experimental results with 

parameters we calculated before. η is still equal to 3.85×1015. The values of a and b 

for each composition are from Table 4.3. The density and size distribution parameters 

for each experiment is from Table 4.1. Since NaCl solutions produced particles with 

smaller σg and dpg, Eq. (4.14a) was applied to Test 1-3. Compared to NaCl particles, 

sucrose and SiO2 solutions generated particles with larger σg and dpg, so Eq. (4.14b) 

was applied to Test 4-8. The calibration factor estimated from Eqs. (4.12) (Keq,12) are 

listed in Table 4.4. The errors between Kexp and Keq,12 were calculated with Eq. (4.13) 

and listed in the last column of Table 4.4. The errors can be controlled within ±40%, 

thus proving that the accuracy of Eq. (4.12) is reasonable.  
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Table 4.4 Parameters and results of estimating calibration factor from Eq. (4.12). 

 

One thing worth noting is that one-time calibration probably would introduce serious 

errors for mass concentration estimation. For example, if we just calibrate the sensor 

once and use the calibration factor of Test 5 (Kexp= 2.44) for other measurements, the 

errors will be enlarged to -422.13% for the aerosol from Test 3 (Kexp= 12.74). And 

compared to this, the errors of the proposed model are reasonable and acceptable. 

In general, the calibration factor can be adjusted according to former calibration 

results and three parameters (m, σg, and dpg) for mass concentration estimation. It will 

be more accurate than singly using a fixed calibration factor for all types of aerosols. 

More field comparison studies are to be conducted to further verify and validate this 

approach.   

 

4.3.5 Estimate number concentration with known parameters  

As mentioned above, with an estimation of size distribution parameters, the 

calibration factor can be predicted with moderate accuracy. Furthermore, with known 

parameters, number concentrations can be derived from Eq. (4.15) 

 
Refractive 

index 

Test 

No. 
Equation 

Kexp from 

experiments 

Keq,12 from 

Eq. (4.12) 

Error from 

Eq. (4.13) 

NaCl 1.536 1 12a 11.26 8.04 28.6% 

  
2 

 
7.03 7.27 -3.4% 

  
3 

 
12.74 16.60 -30.3% 

Sucro

se 
1.5376 4 12b 3.75 2.57 31.5% 

  
5 

 
2.44 3.25 -33.2% 

  
6 

 
3.04 3.24 -6.6% 

SiO2 1.486 7 12b 4.84 7.51 -41.7% 

  
8 

 
5.30 6.64 -40.7% 
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With Eq. (4.15) and the calibration factor from Eq. (4.12), the number concentrations 

for each experiment were calculated. Table 4.5 summarizes the number 

concentrations both estimated from proposed model and reported by the SMPS. The 

errors between SMPS reported number concentration and model predicted number 

concentration can be controlled within ±50% for most of tests, except for Test 1. 

The calibration method presented here for estimating mass concentration and number 

concentration requires particle properties and size distributions. However, the 

adjusted calibration factor increases the data accuracy for mass concentration. 

Furthermore, the number concentration is critical for practical use too. Both the 

improved data quality and additional number concentration will benefit the field 

measurements. Based on the structure of low-cost particle sensors, these are limited 

improvements that could be achieved. 



160 

 

Table 4.5 Examples of estimating number concentrations from the proposed model.  Each test has several data points, and the statistics reports 

the maximum and minimum errors of all data points. 

 

Solution Test Distribution Statistics Examples 

conc. number characterization 

No. of 

points max min Signal 

Number concentration 

Error  
mg/cc 

 
dpg σg SMPS 

From Eq. 

(4.16) 

I. NaCl 0.507 1 92.02 1.77 12 75.52% -57.50% 554.0 7.70×105 8.57×105 -11.29% 

  
 

     
245.2 1.67×105 2.07×105 -23.90% 

 
1.087 2 119.55 1.69 9 17.91% -26.68% 373.8 2.53×105 2.47×105 2.11% 

  
 

     
195.5 5.25×104 5.29×104 -0.72% 

 
1.892 3 156.95 1.48 16 37.10% -41.84% 396.4 4.65×105 4.74×105 -1.99% 

  
 

     
231.0 1.38×105 1.60×105 -15.36% 

II. Sucrose 1.150 4 115.78 1.91 9 61.23% 45.52% 332.9 1.09×105 5.62×105 48.52% 

  
 

     
220.8 4.30×104 2.23×105 48.11% 

 
3.325 5 126.99 1.99 8 38.63% 8.59% 418.2 6.71×104 6.13×104 8.59% 

  
 

     
215.9 2.18×104 1.56×104 28.42% 

 
4.315 6 155. 57 1.87 8 31.60% 24.28% 350.3 4.76×104 3.60×104 24.28% 

  
 

     
213.9 1.64×104 1.19×104 27.82% 

III. SiO2 1% 7 150.93 2.07 10 55.92% 14.76% 526.4 7.42×104 6.30×104 15.05% 

  
 

     
220.7 1.60×104 1.22×104 23.46% 

 
2% 8 176.06 1.91 12 35.97% 14.72% 508.8 7.05×104 5.51×104 21.93% 

  
 

     
210.4 1.18×104 9.65×103 18.48% 
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4.4 Conclusions 

The calculated total scattered light intensity based on scattering theories were well correlated to 

the experimentally measured signals from the low-cost particle sensor. The experimental results 

also indicated the important dependency on the size distribution and the composition of the 

particles. The sensor signal outputs were not well correlated to the mass concentration. A model 

was proposed to determine the calibration factor (K) which would provide a more accurate 

estimate of the mass concentrations from the signal outputs. Based on the proposed model, an 

equation for K as a function of the refractive index and the size distribution parameters 

(geometric standard deviation and geometric mean diameter) was derived. The use of this value 

of K resulted in a better accuracy in the estimation of the mass concentration; and additionally, 

could provide an estimate of the number concentration. From experimental and simulation 

results, the low-cost sensor’s ability of evaluating mass concentration has been confirmed with 

particles of a single composition. However, the ability to extend the application to more complex 

aerosol systems encountered in the ambient environment would need to be carefully examined.  
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Chapter 5: Algorithm for multi-wavelength 

optical signal inversion to obatain accurate 

PM characterization 
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1. Lorenz-Mie theory 

Lorenz-Mie theory describes the absorption and scattering of plane electromagnetic waves by 

uniform isotropic particles, in another word, the interactions between light and small particles. In 

the development of Lorenz-Mie theory, a lot of scientists have contributed to improving the 

theory, especially the following three scientists. Ludvig Lorenz (1829 – 1891) was the first 

physicist try to solve the problem. Later, Gustav Mie (1868 – 1957) developed the Mie theory to 

understand the varied colors of gold particles suspended in water. Then, Peter Debye (1884 – 

1966) developed the theory in his doctoral dissertation for an application of Lorenz-Mie theory 

in astrophysical problem. The study of light propagation in different media (e.g., Snell’s law) can 

date back to early 1600s. As shown in Figure 1(a), the direction of the light will be altered when 

passing from one medium to another. The pattern of light scattering for a slab and a spherical 

particle are shown in Figure 5.1(a) and 5.1(b) respectively. Lorenz-Mie theory is critical for 

detecting or characterizing liquid or solid particles, and a lot of instruments are based on light 

scattering principles. We first introduced how to calculate the scattered light intensity at a 

specific angle based on Lorenz-Mie theory, referring to Craig F. Bohren and Donald R. 

Huffman’s book Absorption and Scattering of Light by Small Particles.1 Then, using GRIMM 

personal dust monitor as an example, we analyze factors may challenge the accuracy of 

instruments.  
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Figure 5.1 Analogy between scattering by a particle (b) and reflection-transmission by a slab 

(a).1 

 

When incident light cast on a particle, the electric charges inside of the particle start to oscillate 

due to the electric field of incident light. These excited electric charges may scatter 

electromagnetic energy in all directions, which is known as scattering. At the same time, the 

excited charges can convert energy into different forms, such as heat, which is known as 

absorption. Lorenz-Mie theory is confined to the scattering of light of an arbitrary wavelength 

with a single particle. Some assumptions are made to simplify the derivation procedure of 

Lorenz-Mie theory. First, the light source is a plane wave, which is a wave of constant frequency 

and amplitude whose wave fronts are an infinitely long straight line. Plane waves travel in the 

direction perpendicular to the wave fronts. Second, the focus of the theory is elastic scattering: 



168 

 

the frequency of the scattered light is the same as that of the incident light. Scattering due to 

fluctuation was excluded. Third, the particle is idealized to homogeneous and spherical. When 

referring to a collection of many particles, the assumption is that the number of particles is 

sufficiently small and the separation between particles are sufficiently large. Therefore, the total 

scattered intensity is the summation of the scattered intensity of each small particle. 

 Lorenz-Mie solution is the solution of Maxwell’s equations for a homogeneous spherical 

particle in a spherical polar coordinate system, as shown in Figure 2. Maxwell’s equations 

describe how waves physically propagated through space. Maxwell’s equations are from several 

well-established laws. Equation 1a is Gauss’s law that the electric flux through any closed 

surface is proportional to the enclosed electric charge. Followed by Equation 1b, the Gauss’s law 

for magnetism, no magnetic monopoles exist. Then, Equation 1c is the Faraday’s law of 

induction, indicating time varying magnetic field produces an electric filed. The last equation is 

the Ampere’s circuital law, showing that currents and a time-varying electric fields will induce 

magnetic fields. Maxwell’s equations describe the relationships between electricity and 

magnetism in a neat and symmetrical manner. 

      (1a) 

      (1b) 

      (1c) 

     (1d) 
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Figure 5.2 Spherical polar coordinate system centered on a spherical particle. 

 

The derivation of Lorenz-Mie theory is difficult and complicated; therefore, we leave out the 

procedures of solving equations and directly show useful equations and conclusions derived from 

the Lorenz-Mie theory. The equations here can be used to calculate the scattered light intensity at 

an angle θ of a particle with diameter dp and refractive index m. The vibration of the polarized 

incident light (iunpolorized, wavelength = λ) can be decomposed on two directions, i⊥ and i// for 

perpendicular and parallel to the scattering plain. No matter for incident light or scattered light, 

the relationship between i⊥, i//, and iunpolorized are universal as defined by Equation 2.  

     (2) 
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The scattered light intensity i⊥ and i// at a certain angle θ can be calculated from the following 

equations, where S1 and S2 are defined amplitude functions. Using S1 and S2 can simplify the 

phase function that describes the angular distribution of scattered intensity.  

       (3a) 

      (3b) 

    (4a) 

    (4b) 

S1 and S2 are functions of an, bn, πn, and τn, which are coefficients derived when solving the 

Maxwell’s equations using the boundary conditions at the particle-medium interface. an and bn 

can be calculated from Equations 5a and 5b, where m is the refractive index of particles and x is 

the dimensionless parameter defined as Equation 6. 

    (5a) 

     (5b) 

 =      (6) 



171 

 

The φn and ξn in Equations 5a and 5b are functions of the spherical Bessel function of the first 

kind (jn) and the second kind (yn), as shown in Equations 7a and 7b. The φn’ and ξn’ are 

derivatives of φn and ξn and can be calculated as Equations 7c and 7d. Since x is defined as the 

dimensionless size parameter, we use ρ instead of x as variables. 

      (7a) 

     (7b) 

     (7c) 

      (7d) 

Bessel functions are first defined by Daniel Bernoulli and generalized by Friedrich Bessel. The 

plots of Bessel functions of the first and second kind are shown in Figure 5.3.  
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Figure 5.3 Plots of Bessel functions of the (a) first kind and (b) the second kind.1  

 

With Equations 5 to 7, an and bn can be calculated for a certain wavelength (λ), a particle with 

known diameter (dp), and the refractive index m. To calculate S1 and S2, we still need to 

calculate πn and τn. πn and τn are related to the scattering angle and are in recurrence relationship 

as shown by Equations 8(a) and 8(b). 
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    (8a) 

     (8b) 

The initial values π0 and τ0 are defined as Equations 9(a) to 9(c). 

       (9a) 

      (9b) 

      (9c) 

The polar plots of π0 and τ0 are shown in Figure 5.4, indicating the scattering intensity’s 

dependence on the scattering angle θ. As demonstrated in Figure 5.4, with an increasing n, the 

lobes of the plots increase. At the same time, the forward scattering lobes becomes narrowed 

and the backward scattering lobes are usually negative or disappeared. This agrees with the 

phenomenon that normally forward scattering is stronger than backward scattering. 
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Figure 5.4 Polar plots of the first five angle-dependent functions πn and τn. Both functions are 

plotted to the same scale.1 

 

Above equations are widely used to solve the light scattering problems. There are some 

software packages available that have already incorporated these equations, which can provide 

scattering phase functions after entering the properties of the particle and the incident light. 

Two software packages have been used in this study. MiePlot, based on graphical user 

interface, is easy to use.3 It can calculate the scattered light intensity as a function of 

wavelength, size distribution, and scattering angle, together with several additional optical 

properties (e.g., scattering or absorbing coefficient). Another software is PyMieScatt, which is 

integrated with Python. Compared to MiePlot, PyMieScatt is more powerful, and users can 
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program according to their own requirement with pre-defined functions in PyMieScatt software 

package.4  

 

5.2 Limitation of optical instruments 

The accuracy of optical instruments is a major concern in their application and deployment. 

Currently, the most reliable and accurate method of measuring the PM concentration is the 

gravimetric method. This method uses the high-volume air sampler to maintain particles on a 

filter. By weighing the filter, the PM mass concentration can be determined. A limitation of this 

method is its temporal resolution. The high-volume air sampler usually operates over a long 

period of time, and the PM concentration variation during this period is neglected. On the other 

hand, PM mass concentration is only one metric to evaluate the PM concentration. Other 

parameters, including the number concentration and size distribution, are also important to 

characterize the PM. Optical instruments are dominant for measuring these parameters. For 

example, the aerodynamic particle sizer (APS) uses time of flight measurement to determine the 

aerodynamic diameter of particles. The condensation particle counter (CPC) measures the count 

of magnified particles to determine the total number concentration. CPC combined with 

differential mobility analyzer (DMA) can form a scanning mobility particle sizer (SMPS) for 

measuring size distribution functions. The optical particle counter (OPC) can also measure the 

PM size distribution by measuring the scattered light intensity of each single particle. All these 

methods mentioned above involve optical measurement more or less. Here we analyze some 

parameters that may bias the accuracy of optical measurement with the GRIMM personal dust 

monitor as an example. 
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GRIMM, a federal reference method (FRM), measures the PM number concentration, mass 

concentration and size distribution functions, and it has been widely used to evaluate or 

calibrate low-cost PM sensors. The working principle of GRIMM is shown as in Figure 5.5. 

The 683 nm laser diode illuminate each particle when it passes through the sensing volume. The 

scattered light from 30° to 150° is captured by the parabolic mirror then focused on a 

photodetector. On the opposite side, the scattered light from 81° to 99° directly cast on the 

photodetector. Using optics to collect the scattered light at a wider angle decreases the signal to 

noise ratio, which lowers the cut-off size. At the same time, the design can smooth the 

fluctuation of Lorenz-Mie scattering curve, therefore, enhance the accuracy for size 

measurement. When a particle passes through the sensing volume, a pulse will be generated 

reflecting the intensity of scattered light. The pulse height is related to particle size. The number 

of the pulses is related to the number concentration. 

 

Figure 5.5 Schematic of the cross-section of the Grimm 1.109 OPC. The aerosol flow through 

the sensing volume is perpendicular to the image plane2. 

 

Based on the working principle of the GRIMM, the pulse height detected by the optical detector 

in the GRIMM, proportional to the scattered light intensity collected by the photodetector, can 

be simulated. Assuming the refractive index is 1.45, the response curve we simulated by 

PyMieScatt (Figure 5.6a) agrees well with that in previous literature (Figure 5.6b). The 

response curve demonstrates that the pulse height increases with an increasing particle 
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diameter. The fluctuations of light scattering intensity in Mie regime will interfere the accuracy 

of particle size classification.  

 

Figure 5.6 (a) The pulse height varying with particle diameter simulated by PyMieScatt. (b) The 

response curve from previous literature. 

 

Particle’s optical properties can also influence instruments’ accuracy. Figure 5.6 is simulated 

based on refractive index equals to 1.45. Figure 5.7 simulated how GRIMM’s response curves 

vary with different refractive index. The real part of the refractive index has minor influence on 

the response curve. However, the imaginary part of the refractive index significantly lowers the 

response value, which is a major reason of size misclassification. For example, a 2 μm particle 

whose refractive index equals to 1.59+0.03j might be classified as a 1 μm particle. 
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Figure 5.7 The response curve of GRIMM varies with the refractive index of aerosols. 

 

5.2 Data inversion algorithm 

Sensor’s dependence on PM composition and size distribution has been investigated 

extensively in calibration and characterization. The composition will influence the optical 

properties, together with the refractive index, which interfere size classification and mass 

concentration estimation. Such dependency also influences the performance of research-grade 

instruments. Therefore, we proposed an algorithm to improve the performance of low-cost PM 

sensors.  

The refractive index is a complex number, containing a real component (mreal) and an imaginary 

component (mimg), as shown in Equation 10. The real and imaginary component are related to 
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the light scattering and absorbing ability respectively. The speciation influence the optical 

properties, together with the refractive index, therefore reduce the accuracy of sensors’ 

performance. Underestimation and overestimation are mainly due to the size misclassification 

caused by refractive index variation. Distinguishing between light absorbing and light scattering 

material will be very helpful for revising the accuracy of low-cost PM sensors.  

     (10) 

Here we propose an algorithm that can approximately distinguish between light scattering and 

light absorbing materials. The method relies on the calibration slope k, also known as the 

calibration coefficient. The slope k can be obtained from the correlation between the mass 

concentrations and the signal outputs. We assume that the measurements of both the mass 

concentration and the signal outputs are accurate, and the density of the aerosols are the same. 

The structure of the sensing component is similar to the Sharp GP2Y sensor, with a scattering 

angle from 60° to 90°. We randomly generated 2000 data sets and each dataset contains four 

parameters: the geometric mean diameter (dpg), geometric standard deviation (σg), total number 

concentration (N), and refractive index (m). The range of dpg and σg are 50 nm – 10 μm, and 1.1 – 

1.9 respectively. The refractive indices of half of the data only have the real part within a range 

of 1.49 – 1.51. The refractive indices of the other half of the data have an additional imaginary 

part within a range of 0.05 – 0.9. The slope k (the ratio of the scattered light intensity and the 

mass concentration) of the generated parameters was simulated with PyMieScatt and plotted in 

Figure 5.8. The simulated slopes for the light scattering materials are much higher than that of 

the light absorbing materials. Compared to light scattering materials, to achieve the same level of 

response, higher concentration is needed for light absorbing aerosols.  
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Figure 5.8 The simulated slope k of randomly generated refractive index and size distribution 

parameters varying with the wavelength of the incident light. 

 

The method proposed here can realize rough speciation by distinguish the light scattering 

material from the light absorbing material. However, there are some limitations. First, this 

method did consider the accuracy of the mass concentration measurement. Second this system 

has only been tested with the single-component aerosols. However, aerosols with multiple 

compositions are the dominant situation in practical deployment. Third, the method is based on 

the slope by correlating the mass concentration with the light scattering measurement. A wider 

range of concentration is needed to establish the correlation. Therefore, this method may not be 

applicable for measurements with steady concentration. 

To overcome the limitations mentioned above, we propose two more advance algorithms 

targeting enhancing the accuracy of the optical PM measurement. The first algorithm is based on 
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single particle measurement that uses lasers with multiple wavelengths to measure particle size 

and determine its refractive index. The second algorithm is based on multi-wavelength 

measurement and use the total scattered light intensity 

To retrieve the refractive index, the necessary input of the first algorithm is the scattered light 

intensity at a certain angle for three different wavelengths, together with the particle size (dp). 

Assuming red, green, and blue lasers were used, and the scattered light intensity was the 

integrated angular measurement from 60° to 90°, and were denoted as Ired, Igreen, and Iblue. With 

particle size (dp), the scattered light intensity can be plotted on a 2D space, where the x axis is 

real component of the refractive index (mreal) and the y axis is the imaginary component of the 

refractive index (mimg). Each point on the 2D space is a combination of mreal ranging from 1 to 3 

and mimg ranging from 0 to 1. With known dp, for each point on the 2D space, the scattered light 

intensity can be calculated and plotted as the z axis, which forms the green, red, and blue 

surfaces. On a surface plot, we can find the contour with the iso-response values equals to the 

scattered light intensity of the measurement. For example, on the green surface plot, we can use a 

plane parallel to the 2D x-y space (z = Igreen) to find refractive indices (combinations of mreal and 

mimg) meet the requirements. These refractive indices will make the scattered light intensity 

integrated from 60° to 90° exactly equals to Igreen for particles of size dp. Intersection between the 

contours from the green and red surface plots are shown in Figure 5.9, the same as the contours 

from the red and blue surface plots. The common solution is the refractive indices that meet all 

requirements. 
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Figure 5.9. An example of data inversion routine with input of dp = 1 μm, Ired, Igreen, and Iblue. (a) (b) and (c) are 3D surface plots for dp 

= 1 μm, where x and y axes are the real and imaginary part of refractive index (mreal and mimg) and the z axis is the scattered light 

intensity of particle. (d) and (e) are the contour plots whose intersections are the retrieved refractive index. (f) schematic diagram 

designed for the algorithm. 
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However, this method is very sensitive to the accuracy of input parameters. Even an error of 

±1% in particle size or scattered light intensity will lead to invalid solutions. This is due to the 

noisy peaks of the scattered light intensity in the Mie regime, which is straightforward in the red, 

green, or blue surface plots shown in Figure 5.9 and Figure 5.10. Therefore, a small error will 

lead to different contour plots, and possibly no intersections among contour plots. In addition, 

accurately measuring the particle size and the scattered light of a single particle is difficult to 

realize.  

To accommodate these limitations, we developed another algorithm that is based on the size 

distribution and the total scattered light intensity. The input parameters include the size 

distribution (nd) and the scattered light intensity measured from 60° to 90° for the specified size 

distribution at different wavelengths (Ind,λ). The procedure is similar to the algorithm mentioned 

above. The scattered light intensity of the specified PM size distribution will be calculated for 

different combinations of mreal and mimg, and contours will be found for given Ind, red, Ind, green, and 

Ind, blue. The intersections of the contours are the retrieved refractive index.  
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Figure 5.10 An example of data inversion routine with input of size distribution shown in (a), Ired, Igreen, and Iblue. (b) (c) and (d) are 3D 

surface plots the size distribution in (a), where x and y axes are the real and imaginary part of refractive index (mreal and mimg) and the z 

axis is the scattered light intensity of particle. (e) and (f) are the contour plots whose intersections are the retrieved refractive index. 
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5.3 Summary 

In this chapter, we introduced the Lorenz-Mie theory, which is the theoretical foundation of 

optical sensors. With the Lorenz-Mie theory, we simulated the performance of GRIMM dust 

monitor, demonstrating that the performance of optical sensors or optical instruments inevitably 

depends on PM optical properties. The variation on optical properties can influence the scattered 

light intensity of a single particle, leading to size misclassification, which will underestimate or 

overestimate mass concentration. To overcome such a dependency, we proposed two designs, 

together with two data inversion algorithms for retrieving the refractive index, which can 

eliminate the dependency on PM optical properties. The algorithms used a graphical solution to 

find the combinations of the real and imaginary parts of the refractive index that can meet 

requirements. However, the proposed data inversion algorithms did not take the measurement 

accuracy into consideration. Further discussion is needed to test the robustness of the algorithm 

after introducing measurement errors. 
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Aerosol Measurements 

 

 

 

The results of this chapter have been published in Cashikar A., Li, J., & Biswas, P. (2019). 

Particulate Matter Sensors Mounted on a Robot for Environmental Aerosol Measurements. 
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Abstract 

In recent years, miniaturized particulate matter (PM) sensors have been studied intensively as an 

alternative device for air quality measurement due to their price advantage, moderate accuracy, 

and portable size. The accuracy of these sensors has been studied by calibration against 

conventional laboratory instruments. Such sensors have been connected in a network for 

spatiotemporal air quality measurements or used as a personal monitor for exposure estimation. 

Another important application is combining low-cost PM sensors with drones or other unmanned 

vehicles for sampling environments where the setup of a static sensor network may not be viable. 

In this study, a mobile robot cart with a low-cost PM sensor (AAQRL-ROBOPM ©) was 

developed to map spatial PM distributions over time. The robot can be moved either manually 

via Bluetooth inputs from an Android device, autonomously by following preprogrammed 

instructions, or with basic artificial intelligence (AI) and an algorithm. PM concentration 

readings are sent to the Android device for monitoring and storage. The mobile sensor module 

was tested for both indoor and outdoor environments, and effectively found the locations of the 

highest PM concentrations. Using such a device has advantages over a sensor network, such as 

lower overall cost and lesser complexity of setup. This mobile sensor module provides a more 

cost- and time-efficient method of finding PM hotspots. Once hotspots are located in the sampled 

environment, static sensors can be placed for the greatest effectiveness in measuring PM 

concentration over time. Furthermore, the mobile sensor module was manufactured with low-

cost components, making it broadly affordable. 
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6.1 Introduction 

Aerosols or particulate matter (PM) is a general term for solid or liquid particles with different 

sizes suspended in air.  Inhalation of PM can cause health concerns, and its ubiquity in both 

indoor and outdoor environments makes exposure inevitable. Exposure to environments with 

high PM concentrations has been linked to weakened lung function (Strak et al. 2012). In 

addition, an estimated two million deaths occur annually as a result of damage to the respiratory 

system caused by PM (Shah et al. 2013). PM inhalation has been associated with exacerbation of 

respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD) 

(Guarnieri and Balmes 2014; Ling and van Eeden 2009). Short-time exposure can cause 

cardiovascular disease, but long-time exposure significantly increases the mortality rate and 

decreases life expectancy (Brook et al. 2010). Seniors and infants are most susceptible to PM 

pollution; however, healthy middle-aged adults may also suffer from coughing or other short-

term adverse effects. PM pollution contributes to 3% and 5% of mortality from cardiopulmonary 

disease and respiratory system cancers, respectively (Cohen et al. 2005). This issue is more 

concerning in developing countries, where high PM concentrations occur in their rapidly 

growing economies (Burnett et al. 2014; Smith 1993). Due to its adverse health effects, PM 

concentration is routinely monitored and regulated by most governments. Indoor PM can be 

generated from smoking, cooking, incense burning, heating, or other human activities (Ferro et 

al. 2004; Löfroth et al. 1991).  Sources of outdoor PM include vehicle emission, industrial 

emission, secondary aerosol formation and sea spray (Viana et al. 2008). PM has been classified 

as a Group I carcinogen by the International Agency for Research on Cancer (IARC) (Hamra et 

al. 2014).  
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There are various methods for performing PM concentration measurements, with different costs 

and accuracies.  Normally, regulated PM concentration is determined by either mass 

concentration (the mass of PM in a unit volume of air) or number concentration (the number of 

PM in a unit volume of air). The gravimetric method, a federal reference method (FRM) 

regulated by the US Environmental Protection Agency (EPA), weighs the mass of PM retained 

on a filter after high-flowrate sampling and calculates the mass concentration accordingly. An 

alternative method involves the use of a tapered element oscillating microbalance (TEOM) to 

provide online PM mass concentrations by correlating the changes in oscillation frequency of the 

device with the mass increment due to PM landing on the filter (Patashnick and Rupprecht 

1991). The PM concentrations reported by monitoring sites are crucial for PM exposure 

estimations. The prediction of PM concentrations at a certain location is based on the data 

provided by nearby monitoring sites. Inadequate distributions of monitoring sites hinder the 

accurate prediction of spatiotemporal PM concentrations. Moreover, the conventional methods 

listed above are laborious and costly, which limits the number of monitoring sites for PM 

measurements that can be simultaneously used. Therefore, improving spatial and temporal 

resolution and reducing the expense and maintenance labor of such networks are all major 

concerns in air quality monitoring.  

Low-cost PM sensors have become popular in recent studies due to their price advantage and 

acceptable accuracy. The accuracy of low-cost PM sensors has been examined by comparing 

them with commercial instruments in laboratory measurements (Kelly et al. 2017; Manikonda et 

al. 2016; Sousan et al. 2017; Sousan et al. 2016; Wang et al. 2015). Wang et al. (2015) compared 

three low-cost PM sensors in laboratory experiments and demonstrated their high linearity with a 

SidePak (AM520, TSI Inc., Shoreview, MN, USA) after being properly calibrated according to 
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EPA recommendations. Although factors such as the PM composition, size distribution, and 

ambient temperature and humidity may bias the predicted mass concentration, low-cost PM 

sensors are capable of roughly estimating PM concentrations after calibration and evaluation (Li 

and Biswas 2017; Sousan et al. 2016; Wang et al. 2015). Sousan et al. (2016) calibrated multiple 

low-cost PM sensors in a controlled laboratory environment along with a reference sensor at PM 

concentrations of up to 6500 µg/m3. Although the low-cost sensors misclassified fine and coarse 

particles, the coefficient of determination between the low-cost and reference sensors was 0.99, 

indicating a high degree of correlation. In addition, Li and Biswas (2017) determined a method 

for ensuring accurate and consistent measurement of PM using these sensors. They developed a 

mathematical model to determine a calibration factor, unique to each type of aerosol. Low-cost 

PM sensors have also been calibrated and evaluated outside the laboratory in field measurements 

(Holstius et al. 2014; Kelly et al. 2017; Shi et al. 2017; Zikova et al. 2017). Zikova et al. (2017) 

assessed the ability of 66 low-cost Speck PM sensors to measure PM concentrations in both 

indoor and outdoor real use environments. The data from the low-cost PM sensors had a high 

correlation, indicating a high degree of consistency between the sensors. Kelly et al. (2017) 

compared the performance of a low-cost PM sensor to two federal equivalent and gravimetric 

federal reference methods outdoors during the winter. They demonstrated a high association of 

the low-cost PM sensor with gravimetric methods in these ambient conditions. These studies 

have demonstrated the overall effectiveness of low-cost PM sensors for further application in 

field measurements. 

After calibration, these sensors have been used to monitor indoor and outdoor air quality (Ivanov 

et al. 2002; Kelleher et al. 2018; Kim et al. 2014). Kim et al. (2014) explored the challenges of 

using a low-cost sensor system to measure indoor air quality. Ivanov et al. (2002) presented three 
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solutions for smart home automation of climate control by monitoring PM, CO2, and other 

substance concentrations: a wall mount, a wearable, and a microchip sensor system. Kelleher et 

al. (2018) developed a weatherproof air sampler using a low-cost PM sensor for wildland fire 

monitoring. Low-cost PM sensor networks have been deployed to map high-resolution PM 

distributions (Leavey et al. 2015; Li et al. 2018; Patel et al. 2017; Rajasegarar et al. 2014; Sousan 

et al. 2018). Leavey et al. (2015) utilized a condensation particle counter alongside temperature 

and CO2 sensors to produce energy savings of up to 79% from increasing the efficiency of an 

HVAC system in an auditorium. Patel et al. (2017) examined the PM concentrations in a rural 

Indian household. A high-resolution PM sensor network installed in the kitchen area and around 

the house showed that PM decay rates throughout the household varied greatly from day to day, 

owing to the varying natural air exchange rates. Rajasegarar et al. (2014) increased the accuracy 

of PM measurements by replacing a few expensive PM sensors in their setup with a higher 

quantity of low-cost sensors. This allowed for higher spatial resolution because of the relative 

closeness of the low-cost sensors. To achieve accurate and representative large area mapping 

results with a limited number of sensors, the choice of sampling locations is critical (Li et al. 

2018). Li et al. (2018) demonstrated the accurate placement of low-cost PM sensors to measure 

the PM distribution in a woodworking shop. Sensors were placed in areas such that they would 

simulate the PM intake of different workers and bystanders in the shop. Using Kriging 

interpolation, gradient maps were created to display the ventilation of PM through the shop as it 

was emitted. 

Sensor networks have extended the application of low-cost PM sensors; however, the location of 

each sensor in a network is crucial for generating an accurate PM distribution map. Mobile low-

cost PM sensors could help optimize sampling locations. One possible method to mobilize PM 
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sensors is using robots. Robots have been used in environmental monitoring (Dunbabin and 

Marques 2012). Gas sensors have been installed on mobile robots to map distributions of 

hydrogen, carbon monoxide, carbon dioxide, methane, VOCs, ammonia, and hydrogen sulfide, 

among other gases (Chen et al. 2012; Reggente and Lilienthal 2009; Trincavelli et al. 2008). 

However, few studies have examined PM monitoring with robots. Ferri et al. (2010) presented 

the DustCart, a mobile robot equipped with a DustTrak® (8520, TSI Inc.) sensor to monitor PM 

concentrations. Data collected by the DustCart was used to reconstruct the spatial distribution of 

pollutants. Compared to a DustTrak, low-cost PM sensors are more compact, lightweight, and 

readily integrated with a miniaturized mobile cart. Furthermore, the robot cart in the above study 

costs roughly $20,000.  

In this paper, a programmable and agile mobile robot cart combined with a low-cost sensor 

referred to as the AAQRL-ROBOPM © was developed.  The overall cost of the AAQRL-

ROBOPM is reasonable and lower than other reported systems. The AAQRL-ROBOPM was 

demonstrated to collect real-time data in pre-designed paths for repeated sampling to find PM 

hotspots in both indoor and outdoor environments.   
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6.2 Methods 

The AAQRL-ROBOPM consists of a Sharp GP2Y1010AU0F (GP2Y, Sharp Corp., Osaka, 

Japan), a representative low-cost PM sensor, with an in-house designed and constructed robot 

cart, shown in Figure 6.1. The robot has three operation modes. Under the manual control mode, 

the robot receives real-time commands from an Android device (ZenPad C 7.0, AsusTek 

Computer Inc., Taipei, Taiwan) dictating instructions for movement and the sampling of PM 

concentrations. In the straight autonomous mode, the robot follows a pre-programmed linear path 

and conducts sampling along that path. In the quadrant algorithm mode, the robot uses basic AI 

programming to find a PM hotspot without requiring manual PM concentration data collection or 

analysis. To realize these three operation modes, the robot consists of three parts: a PM sensor 

module, a control module, and a Bluetooth module. The sampling inlet is attached with a 3D 

printed intake accessory to reduce directional selectivity caused by cart movement. The system 

was tested in an indoor area with multiple incense cones as a PM source, and near an outdoor 

construction site. 

 

Figure 6.1 The handbuilt AAQRL-ROBOPM with a low-cost PM sensor for mobile field 

measurement. The sensor module is contained within the blue case. 
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6.2.1 Major Components of the AAQRL-ROBOPM 

Table 1 shows the major components of the AAQRL-ROBOPM and their prices. The sensor 

module is responsible for sampling PM concentration. It contains a Sharp GP2Y1010AU0F, 

Keyes temperature (KY-013, Keyes) and humidity sensor (KY-015, Keyes), and an Arduino 

Nano (ATmega328, Arduino Inc., S.R.L, Italy). Pictures of these components are shown in 

Figure 6.2. 

 

Figure 6.2 Major components of the robot, separated by module. 

 

In the sensor module, the Sharp GP2Y illuminates the particles with an infrared emitting diode 

(IRED) and detects the scattered light intensity with a phototransistor. The IRED is powered by a 

square-wave voltage with a 0.32-millisecond pulse width. The phototransistor converts the light 

intensity into voltage as an output. A larger voltage output from the Sharp GP2Y represents a 
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higher PM concentration that scatters more light towards the phototransistor. The Sharp GP2Y is 

a passive sampling sensor, so a small fan was positioned behind the sensor to bring a greater 

volume of air through the sensor inlet. The Arduino is the central microcontroller that executes 

measurements and communication. Once triggered, the Arduino can measure the PM 

concentration and send the readings to the Android device via the Bluetooth module. Although 

the sensor module operates continuously, measurements are only recorded when instruction to 

conduct sampling is received. Upon receiving such a command from the control module, 100 

measurements are taken from the PM sensor over the span of one second, with a pulse cycle of 

ten milliseconds. The measurements are then averaged and reported. The temperature sensor and 

humidity sensor were used to monitor environmental conditions and confirm that the testing area 

was stable. 

The control module allows the robot either to be actively guided by commands received via 

Bluetooth communication from the Android device, or to move autonomously, following 

preprogrammed instructions. The module consists of another Arduino Nano separate from the 

one contained in the sensor module, two VEX motors (393, VEX Robotics, Inc., Greenville, 

Texas, USA) with integrated encoder modules (VEX Robotics, Inc.), and an L298N motor 

controller (L298N, Qunqi C). The Arduino in the control module interprets signals from the 

Android device via the Bluetooth module. It also moves the robot by commanding the motors to 

turn via the L298N motor controller. The encoders measure the distance that each motor moves; 

therefore, the distance and direction that the robot travels relative to its starting position can be 

accurately programmed. To achieve better traction with the surfaces being tested on, the robot 

was moved at a speed slower than its maximum in all trials. 
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In the Bluetooth module, a Bluetooth chip (HC-06, HiLetgo E-Commerce Co. LTD, Shenzhen, 

China) communicates between the Arduinos on the robot and the external Android device. The 

module is a Class 2 Bluetooth device that can communicate wirelessly with a connected device 

up to ten meters away. Although Class 1 Bluetooth devices have a range of up to 100 meters, 

most Bluetooth-enabled devices contain only a Class 2 device; therefore, a Class 2 module was 

chosen for economy. An application, Bluetooth Serial Controller (NEXT PROTOTYPES, 2015), 

was used on the external Android device to communicate with the robot. The user interface was 

configured with four movement-related buttons (forward, backward, left, and right) and a button 

to take a PM concentration measurement. In addition to Bluetooth communication, the two 

Arduinos are also linked via Serial communication. 

To power the electrical components, a 6-volt and a 12-volt rechargeable nickel metal hydride 

(NiMH) battery (Tenergy, Fremont, California, USA) were utilized. Two separate batteries were 

required because, when the system was tested with a single battery, the high current draw of the 

motors hindered the stable operation of the other electrical components. The 12-volt battery was 

used to power the motors, while the remaining components were powered by the 6-volt battery. 

When the robot was tested with both batteries fully charged, the 12-volt battery began running 

out of charge first, after about three hours of continuous robot movement. 

 

6.2.2 Robot Operation Modes 

In manual control mode, the buttons on the Android device screen move the robot and conduct 

PM concentration measurements. When a button is pressed, a character corresponding to the 

dedicated task is sent to the control module via the Bluetooth module. If the task is a movement, 
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the Arduino in the control module commands the motors accordingly. If the task is PM 

measurement, the command is passed from the Arduino in the control module to the Arduino in 

the sensor module via Serial communication. After the reading is taken, it is printed directly to 

the terminal window on the Android device via the Bluetooth module. 

The straight autonomous mode allows the robot to complete a cycle of conducting PM 

concentration measurements after a single start command is sent. Once the robot receives the 

start command, it conducts a series of programmed movements and PM concentration 

measurements. The robot can also be programmed to stand by for another start signal after 

completing a cycle. 

The quadrant algorithm mode uses basic AI to move the robot towards a PM source or hotspot in 

the environment being tested in. As shown in Figure 6.3, the robot moves in a square path, taking 

a measurement at each corner of said path. The process is then repeated in the quadrant of the 

original path with the highest PM concentration measurement. The robot continues entering 

smaller quadrants until the side length of a new quadrant would fall below 0.3 meters. The robot 

then moves to and stops at the location in the current quadrant with the highest PM 

concentration, which represents the closest measurement point to the source of PM. 
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Figure 6.3 (a) A top-down diagram of the PM sensor inlet is shown. Note that the intake 

accessory covers the entire front of the robot, and that the fan is placed just behind the PM sensor. 

(b) The 3D model of the intake accessory to the PM sensor. 

 

6.2.3 Sensor Module Case and Inlet Design 

To diminish any possible interference caused by PM entering the sensor from behind, a case was 

designed and 3D printed to encase the sensor module. The case, as seen in Figure 6.1, is roughly 

shaped like a rectangular prism, with a vented lid covering the top. This allows for the fan to pull 

particles through the PM sensor inlet and subsequently remove them from around the sensor. 

During pre-experimentation, a source of PM was placed in various positions surrounding the 

front of the AAQRL-ROBOPM. It was observed that the sensor could only sense the PM source 

when it was directly in front of its inlet; therefore, an intake accessory (shown in Figure 6.4) was 

designed and 3D printed to increase the PM collection radius to surround the whole front of the 

robot. With the accessory, sampling occurs more nearly along a line parallel to the front of the 

robot rather than at a single point directly in front of the sensor inlet. The edges of the wide-

angle wedge-shaped accessory extend slightly beyond the sides of the robot frame, with the 
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farthest points on the wedge 137 millimeters apart. The accessory is 11 millimeters thick, with 

the mouth cavity occupying 9 millimeters of that thickness. It sits in front of the sensor on the 

case. 

 

Figure 6.4 Floor print of room with 17 markers where the robot stopped and recorded PM 

concentrations. The transparent squares and circle with dashed borders represent the HVAC 

ports and ventilation port in the room, respectively. 

 

6.2.4 Manual Control Mode Test 

The manual control mode was tested in an indoor, controlled laboratory environment with a large 

initial base PM concentration of roughly 12 mg/m3 being slowly reduced by normal operating 

ventilation. Multiple incense cones were lit in a room 4.9 meters long by 3.9 meters wide. After 

the incense cones had produced PM for 10 minutes, they were fully extinguished and removed 
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from the room, causing a decay over time of the base PM concentration. The particles gradually 

ventilated out of the room through a ceiling ventilation port and the HVAC system, and this 

decay was monitored for the following 20 minutes. To monitor the PM concentration distribution 

during the ventilation process, seventeen points on the open floor were selected as sampling 

locations, as shown in Figure 6.5.  

 

Figure 6.5 A top-down map of the area the straight autonomous mode was tested. The shaded 

area represents an area where the ground was covered by the building. The numbers on the 

sampling path represent the locations where the PM concentration was sampled, as well as the 

distance in meters away from the robot’s starting position. 

 

The robot was directed through the 17 points sequentially, as shown by the blue path. At each 

sampling location, the robot stopped, read the PM concentration from the sensor, and sent the 

measurement to the Android device. After the robot completed a measurement set, its position 

was manually reset to the first marker to begin the next measurement set. The time for the robot 

to sample all 17 locations was two minutes. We assumed that the PM concentration around the 
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sampling environment was relatively stable during the sampling process. To perform a real-time 

verification of the accuracy of the Sharp sensor PM measurements, a SidePak aerosol monitor 

was placed next to Marker 4 and set to take a PM measurement every second for real-time 

dynamic calibration. We consider the SidePak as a reference instrument in this experimentation 

due to its higher accuracy and reliability compared to low-cost sensors. 

 

6.2.5 Straight Autonomous Mode Test 

The straight autonomous mode was tested in an outdoor environment. Construction on the 

Danforth Campus of Washington University in Saint Louis created environmental PM for 

measurement by the robot. The robot was tested along a 10-meter stretch of pavement near the 

construction over a 20-minute period, sampling once every meter along the sampling path. The 

path led from the entrance to Brauer Hall to just outside the construction area, as shown in Figure 

6.5. 

 

6.2.6 Quadrant Algorithm Mode Test 

The quadrant algorithm was tested in an unfinished laboratory, with a single incense cone used 

as a PM source. The incense was suspended above the ground such that the robot would not run 

into it during testing. Figure 6.6 shows an example of the quadrant algorithm being used. During 

each run, the robot conducted sampling at each corner of the square path, then repeated the 

process within the quadrant containing the highest PM concentration reading. The process 

repeated and the path size grew smaller until the path side length threshold was reached, at which 

point the robot would stop at the location it determined was the location of PM source. 
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Figure 6.6 A drawing of a potential run of the quadrant algorithm. The number(s) at each point 

represent the order they were sampled at in. In this example, the robot finds that the highest PM 

concentrations are at the points labeled with the red 3, orange 2, and blue 3 in each colored 

quadrant. The PM source would be located near the blue 3, and the robot would stop there. 

 

 



204 

6.3 Results and discussion 

 

6.3.1 AAQRL-ROBOPM Performance and Cost 

The robot had satisfactory movement and handling when operated manually or autonomously. 

The robot stopped at all measurement locations and performed PM measurements as intended. 

All data packages sent between the Arduinos and between the robot and Android device were 

received. The robot could turn on a central axis in a 23.18 cm diameter circle, and could move 

forward at a maximum speed of 28.0 cm/s. In experiments, the speed of the robot was reduced to 

11.0 cm/s for increased control and traction.  

As Table 1 demonstrates, the overall cost of the robot was lower than solutions explored in other 

studies. The major components on the entire AAQRL-ROBOPM cost approximately $170, 

below the cost of a laboratory-grade PM sensor which could cost thousands of dollars with no 

mobile capabilities and only marginal increases in measurement accuracy. 
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Table 6.1 Cost of major components for the robot cart 

Component Quantity Unit Cost Cost 

Arduino Nano ATmega328 Microprocessor 2 $3.20 $6.40 

HiLetgo HC-06 Bluetooth Module 1 $6.99 $6.99 

Qunqi L298N Motor Drive Controller 1 $6.99 $6.99 

Sharp Optical Dust Sensor - GP2Y1010AU0F 1 $11.95 $11.95 

Tenergy 12V 2000mAh NiMH Rechargeable Battery  1 $23.92 $23.92 

Tenergy 6V 2000mAh NiMH Rechargeable Battery  1 $10.99 $10.99 

F310R-05LLC 5VDC Wired Fan 1 $7.85 $7.85 

VEX Motor 393 2 $14.99 $29.98 

VEX Integrated Encoder Module 2 $15.00 $30.00 

VEX 5x15 Aluminum Plate 2 $2.50 $5.00 

VEX 2x2x15 Aluminum Angle 2 $5.00 $10.00 

VEX 2.75” Wheel 2 $2.50 $5.00 

VEX 2.75” Omni-Directional Wheel 1 $10.00 $10.00 

Miscellaneous (tape, nuts and bolts, etc.) - $2.00 $2.00 

Total Cost   $167.07 

 

 

6.3.2 Manual Control Test Results 

The data from both the SidePak and Sharp sensor at Marker 4 (Figure 6.4) were plotted in Figure 

6.7, SidePak vs. Robot PM Measurements, to show a real-time correlation. Because the AAQRL-

ROBOPM conducts PM measurement at Marker 4 only once per measurement set, the time 

duration between measurements is two minutes. Figure 6.7 demonstrates that the raw voltage 

data from the Sharp sensor has a strong correlation with the SidePak data throughout the 

experimentation period. Therefore, not only can the Sharp sensor data be verified, but its output 

voltages can also be fitted to the equation produced by the correlation, providing an accurate 

conversion method to PM concentrations. The SidePak conducts optical measurements, and this 

optical-to-optical comparison is better for verifying the Sharp sensor than comparison with other 

types of federal equivalent method measurements. 
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Figure 6.7 The correlation between the Sharp sensor and the SidePak was strong (R2 = 0.99). 

 

The data collected by the robot was interpolated to produce PM spatiotemporal distribution 

maps, shown and discussed in Figure 6.8. Boundaries were defined where walls or other 

obstacles stood in the way of the robot’s movement across the floor. PM concentrations were set 

to zero at these boundaries to improve the accuracy of the PM maps. Interpolation of 

measurement locations and boundary layers was used to generate PM concentrations at locations 

that were not measured at, as in Li et al. (2018). The incense cones generated many particles, 

increasing the PM concentrations throughout the whole room. Once the incense cones were 

removed from the room, the particles ventilated out of the room, causing a decrease in base PM 

concentration over the next 20 minutes. The PM concentration gradient surrounding the 

ventilation ports suggests there are local PM hotspots underneath the ventilation ports. 
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Figure 6.8 Spatial distribution maps of PM concentrations from the manual control mode 

experiment. The 17 markers in the room are each represented by a magenta point. After the 17th 

marker in each measurement set was sampled, the robot was moved back to the first marker and 

the next set of measurements were started. Since each measurement set took two minutes, the 

PM concentration values shown at the same marker in two different measurement sets are also 

two minutes apart. By the tenth measurement set (bottom-right), PM concentrations had returned 

to pre-experimentation values. 

 

According to the interpolation results in Figure 6.8, the PM spatiotemporal concentration 

variance within the room is large, so measurement at a single position is not sufficient to 

represent the PM concentration distribution in the room. Because the robot cart took some time 

to move between markers, the results from each run cannot be compared by a gradient map using 

the absolute concentrations at each point. Rather, a contour plot overlaid with a quiver plot was 

created to demonstrate the relative concentration at many locations based on an inverse distance 

relationship. The further away a marker is from a point being considered, the less weight that 

marker carries on the estimated PM concentration magnitude and direction of the quiver plot 
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vector at that point. The results show that PM gathered underneath the three ventilation ports, 

and that some stagnation of air flow was present near Markers 1, 6, and 17. The 17 markers in 

the room are each represented by a magenta point. After the 17th marker in each measurement set 

was sampled, the robot was moved back to the first marker and the next set of measurements 

were started. Since each measurement set took approximately two minutes, the PM concentration 

values shown at the same marker in two different measurement sets are also approximately two 

minutes apart. By the tenth measurement set (bottom-right), the generated PM had been mostly 

ventilated. 

 

6.3.3 Straight Autonomous Test Results 

Results from the straight autonomous mode testing show a development of PM hotspots over 

time as construction near the testing site began to produce PM. Figure 6.9 demonstrates a gradual 

increase in base PM levels as well as a development of PM hotspots as the experiment proceeds. 

PM production from the nearby construction site began at 2:52PM, just before the fourth test was 

started. As shown by the gradient for each test, PM hotspots became evident at three and eight 

meters away from the starting position of the AAQRL-ROBOPM. 
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Figure 6.9 Data from all ten tests, mapped and shown top to bottom chronologically. The time 

the test started is shown to the left of each map. Once PM production from construction started 

around the fourth test, hotspots developed at approximately three and eight meters away from the 

starting position. 

 

6.3.4 Quadrant Algorithm Test Results 

The robot was always able to properly execute the quadrant algorithm, regardless of initial 

position, orientation, or loop size. Square loops with side lengths of 0.6 m, 1.2 m, and 1.8 m were 

each tested four times, with the robot at a different point on the initial square path in each test. 

However, the robot could not make precise 90 degree turns in every instance, leading to a 

gradual drift from the initial square path in some tests. This is due to the manufacturing 

tolerances of the VEX motors, which allows about a 1/16th rotation of the wheel where the shaft 

freely spins within the motor. With a more tightly fitting shaft, this free rotation could be 

eliminated, resulting in more precise movement, particularly turning. Another concern is the 

requirement of a stable source of PM for accurate location of the PM source. The robot’s 

maximum speed would become a more significant factor as loop size was increased, as the robot 

would take a much longer time to locate the PM source.  
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6.4 Conclusions 

This study extends work published about low cost-PM sensors in mapping concentration, as well 

as the development of mobile sensor modules on buggies, drones, and other robotic 

implementations. An affordable, programmable, and agile mobile sensor module, AAQRL-

ROBOPM, presented here was demonstrated to conduct PM concentration sampling by either 

manual or autonomous control, and can also autonomously find a PM hotspot using basic 

artificial intelligence routines. During manual scanning of PM concentrations, the path of the 

robot can be changed instantaneously via commands from the Android device, and the PM 

concentrations at various locations in the sampling area are reported in real-time. With the 

recorded spatial distribution, hotspots can be identified, which can be useful for determining 

potential static sensor locations. For instance, placing static sensors where they will be most 

effective can greatly reduce the cost and complexity of sensor networks for long-term PM 

monitoring. Using the straight autonomous mode, the robot can conduct routine sampling in a 

region over long periods of time without any human supervision. However, the capacity of the 

power supply, surrounding terrain, atmospheric conditions, and weather must be considered for 

such long-term autonomous measurement.  Although the quadrant algorithm was able to 

correctly identify the location of the PM source in every test, improvements like obstacle 

detection and collision prevention could be made to the robot to improve the algorithm’s 

effectiveness and reduce necessary human interaction with the robot and testing environment. 

Due to its flexibility, the AAQRL-ROBOPM can determine the optimal locations for static PM 

sensors even in environments with unknown PM sources and unknown PM distributions. The 

ability to conduct a pre-scan and develop instructions for static sensor deployment using a 

mobile sensor makes them a valuable asset when attempting to gather accurate information using 
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the lowest number of sensors possible. However, the system also has some limitations. The 

AAQRL-ROBOPM measures PM concentrations at only a few inches above the ground, not at 

breathing height. In addition, the AAQRL-ROBOPM cannot traverse rugged terrain, and has 

only basic intelligence and data analysis capability. A future version of the AAQRL-ROBOPM 

is expected to include a function to adjust the height of the PM sensor to estimate exposure for 

humans of different heights, as well as usability in various landscapes. It is also expected to have 

more advanced and precise algorithms that will diminish and eliminate the need of human 

monitoring. Expected improvements to the AAQRL-ROBOPM include real-time PM 

concentration mapping, sampling across multiple heights, and greater sampling and movement 

speed. 

Further development of such a low-cost mobile PM sensor module has exciting possibilities. For 

example, the sensor module could be retrofitted onto flying drones or cars to conduct PM 

sampling and hotspot detection in much larger indoor and outdoor environments. However, the 

effects on sensor readings due to turbulence from movement of such mobile platforms would 

need to be addressed. Public transportation such as buses and trains could be specifically targeted 

to identify stops along their routes where PM concentrations are stable at a high level. Bus stops 

and train stations where hotspots were identified could be retrofitted with static sensors to create 

PM concentration gradient maps of entire cities. 
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Abstract 

Real-time measurement of particulate matter (PM) is important for the maintenance of 

acceptable air quality.  The high cost of conventional instruments typically limits the number of 

monitoring sites, which in turn undermines the accuracy of real-time mapping of sources and 

hotspots of air pollutants with sufficient spatial resolution.  In this study, a wireless network of 

low-cost particle sensors that can be deployed indoors was developed.  To overcome the well-

known limitations of low sensitivity and poor signal quality associated with low-cost sensors, a 

sliding window and a low pass filter were developed to enhance the signal quality.  Utility of the 

networked system with improved sensitivity was demonstrated by deploying it in a woodworking 

shop.  Data collected by the networked system was utilized to construct spatiotemporal PM 

concentration distributions using an ordinary Kriging method and an Artificial Neural Network 

model to elucidate particle generation and ventilation processes.   
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7.1 Introduction 

Particulate matter (PM) is a routinely monitored air pollutant in outdoor and indoor 

environments [1-3].  High PM2.5 exposure levels tend to trigger cardiovascular disease and 

mortality via various mechanisms including pulmonary and systemic inflammation, accelerated 

atherosclerosis, and altered cardiac autonomic function [4, 5].  Worldwide, outdoor PM2.5 

pollution accounts for 6.4 million deaths annually [6].  Indoor PM, carrying allergens and 

endotoxins, may exacerbate asthmatic symptoms [7].  Due to these adverse health effects, many 

countries have enacted regulations in an effort to lower PM concentrations, and regulatory 

agencies commonly require long-term measurements to monitor air quality [8, 9].  The 

designated US Environmental Protection Agency (US EPA) federal reference method (FRM), 

gravimetric sampling, measures PM mass concentration by collecting the particles on a filter for 

a set time in a high-volume air sampler [10-12].  There are around hundreds of monitoring sites 

across the country that provide the daily concentrations of total suspended particles (TSP), PM10, 

and PM2.5.  Using these data to generate a spatiotemporal distribution map showing how the 

pollutants vary with location and time aids exposure assessment and health effect studies.  To 

generate the spatiotemporal distribution on the basis of limited data from scattered monitoring 

sites, researchers need to predict the pollutant concentration at unsampled locations.   

Geostatistical interpolation and land use regression (LUR) are common methods to predict the 

spatiotemporal distribution in outdoor atmospheric studies.  Geostatistical interpolation (also 

called spatial interpolation) characterizes the relationship between pollutant concentrations and 

their locations, and utilizes the relationship to predict the pointwise pollution concentration.  

There are four general weighted average algorithms for geostatistical interpolation: spatial 

averaging, nearest neighbor, inverse distance weighting, and Kriging [13].  Among the four 
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algorithms, since Kriging produces the best linear unbiased estimate of the pollution surface 

[14], it has become the most widely used algorithm for predicting air pollution distribution [15].  

Using Kriging, Jerrett et al. [16] interpolated the PM2.5 concentrations from 42 monitoring sites 

and demonstrated that these concentrations are relevant to ischemic heart disease.  Kriged ozone 

concentrations have been used for monthly exposure assessment in the southeastern United 

States [17], and have been applied to correlate exposure with pediatric asthma presentation rates 

[18].  LUR, the other predictive method, associates pollution data with multiple variables, 

including the wind field, traffic count, land use, population, and emissions [19].  LUR has been 

used to predict the PM concentration distributions across New York City and Los Angeles [20, 

21].  Neither of these predictive methods consistently outperformed the other.  The distributions 

they predicted may vary according to their principles [13, 22].  Furthermore, the scattered 

monitoring sites limit the resolution and the accuracy of the spatiotemporal distribution map, 

which will further undermine the confidence of the spatiotemporal distribution.   

Recently, advances in the low-cost particle sensor techniques have altered the conventional data 

collecting and data mining processes.  Conventional gravimetric sampling is off-line and 

laborious, whereas low-cost particle sensors offer adequate accuracy, are compact, and require 

only modest maintenance.  The networking capability of particle sensors enhances the possibility 

of wider application.  Laboratory evaluations have demonstrated that low-cost particle sensors 

operate with high linear correlation to standard commercial instruments for fixed PM sources 

[23-25].  In combination with other sensors and wireless communication chips, low-cost particle 

sensors can be networked to collect air quality data efficiently and conveniently.  The data 

mining process of the networked low-cost particle sensor is a trending topic.  By distributing 

8000 low-cost iSPEX (a smart phone add-on) sensors across Netherlands, Snik et al. [26] 
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obtained a map of aerosol optical thickness with higher spatial resolution than conventional maps 

generated by the satellite.  In a similar study, Shinyei PPD sensors were deployed in Xi’an, 

China, to determine the spatiotemporal variations of PM2.5 [27].  However, one shortcoming of 

low-cost particle sensors is their low signal to noise ratio, which allows accurate measurements 

only under higher concentration scenarios or after long periods of averaging to increase data 

quality.  To eliminate high-frequency noise and to accurately represent the measurement data, 

digital filters were added to the sensor system.  Common digital filters include sliding window 

filter, low-pass filter (e.g. finite impulse response (FIR) filter and fast Fourier transform (FFT) 

filter), and model-based filter (e.g. Kalman filter) [28-30].  The advantages of sliding window 

filter and low-pass filter are model-independent, light computational weight, and specifically 

tailored for filtering high frequency noises [28, 31].   

In addition to the conventional geostatistical models, such as ordinary kriging, machine-learning 

techniques were also previously used for the spatial interpolation of environmental variables as a 

cost-effective method where monitoring resources are limited [32, 33].  For example, 

Chowdhury et al. [34] implemented Artificial Neural Networks (ANNs) for the spatial mapping 

of complex patterns of groundwater arsenic levels based on sampling data at finite locations.  

They demonstrated that the use of non-linear pattern learning techniques, such as ANNs, could 

yield more accurate results than the ordinary Kriging method.  Antonic et al. [35] used neural 

networks to build empirical spatio-temporal models for various climatic variables such as 

temperature, relative humidity, precipitation, solar irradiation, and evapotranspiration.  In 

addition, ANN models were used to forecast outdoor particulate matter concentrations such as 

PM10 and PM2.5 [36, 37].  
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Apart from atmospheric measurements, low-cost particle sensors can perform multi-point indoor 

measurements.  Indoor air quality, referring to PM concentrations and trace gas concentrations, is 

critical to human health, since a human being spends on average approximately 88% of their 

time inside buildings [38-43].  The application of low-cost sensors and their networks enables 

sampling PM and trace gas under various scenarios [44-47].  Generally, the exposure level 

estimated from indoor or personal low-cost sensors is more accurate than the Kriging or LUR 

predicted values from scattered fixed monitoring sites.  Compared to outdoor field 

measurements, indoor measurements are usually limited by confined space and room 

arrangements.  It is common to neglect the indoor spatiotemporal distribution and use a single-

point measurement to represent the whole room, which introduces errors to exposure intake 

estimation [48].  The sensors’ low price and the compact size allow deploying multiple sampling 

points in households, which is very helpful for understanding ventilation process and monitoring 

occupancy [49-51].  However, very few studies using networked sensor systems reported the 

dynamic evolution of the particle concentrations as a function of location and time.  Rajasegarar 

et al. [52] conducted one of such studies that reported the PM concentration distribution mapped 

by networked low-cost particle sensors in a garage.  Patel et al. [49] deployed low-cost particle 

sensors in a household to monitor the transport of particles produced from biomass burning.  

Leavey et al. [53] implemented several wireless PM sensors, gas sensors, and temperature 

sensors in an auditorium room and analyzed the energy consumption of different operation 

modes.  However, neither of these studies reported the spatial evolution of the PM concentration.     

The focus of indoor air quality mapping should be different from that of outdoor atmospheric 

studies.  The scale of an atmospheric study is obviously large, possibly also ranging from county 

to country in scale, while indoor measurements are confined to several hundreds or thousands of 



221 

square feet.  Due to these space limitations, indoor measurements usually involve fewer than ten 

sampling locations, but the density (sampling locations/unit area) is high.  In addition, there are 

no boundary conditions for atmospheric measurements, but the PM concentrations at the 

boundaries of a room should be zero, since it is a confined space and particles are scavenged at 

the wall.  Additional variables (e.g., traffic and land use) that can be incorporated in atmospheric 

measurements are inapplicable for indoor sampling.  Furthermore, in Kriging and the LUR 

method, the PM concentration distributions are considered steady and stable, hence yearly-

average concentrations are commonly used as inputs.  For indoor measurements, capturing 

instant emission events is of major interest.  In general, spatially depicting the dynamic evolution 

of the PM concentration with a limited number of sensors in a confined space is the goal of 

deploying low-cost sensors for indoor measurements. 

In this study, a networked wireless particle sensor system coupled with a sliding window filter 

and a low pass filter to enhance the sample quality by increasing the signal to noise ratio, while 

preserving the time resolution is presented.  After calibrating the networked wireless sensor 

system, its use is demonstrated by conducting spatiotemporal measurements in a student 

woodworking shop to identify PM concentration hotspots.  Kriging interpolation and artificial 

neural network (ANN) methods are used, and the pros and cons of each are compared.  The total 

exposure to PM of woodworkers is estimated from calculations based on the predicted 

spatiotemporal PM concentration distribution.  
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7.2 Materials and Methods 

The networked wireless sensor system consists of multiple end devices to monitor the PM 

concentration, and a base station that receives the data from the sensors for further processing.  

For each end device, a Sharp GP2Y1010AU0F (GP2Y, Sharp Corp., Osaka, Japan) PM sensor, 

an Arduino Nano ATmega328 (Arduino, Arduino Inc., S.R.L, Italy), and an XBee radio (Digi 

International Inc., Minnetonka, MN) were mounted on a printed circuit board.  The base station 

that collects and translates the data package sent from the end devices integrates a Raspberry Pi 2 

embedded computer (Adafruit Industries., New York City, NY) and an XBee radio.  The system 

and the major components are shown in Figure 7.1. 

 

 

Figure 7.1 Network arrangement of the end devices and base station. The end device contains a 

Sharp GP2Y, an Arduino, an XBee, and a power bank; the base station contains a Raspberry Pi 

and an XBee to receive the signal sent from the end devices. 
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7.2.1 Major components 

The Sharp GP2Y measures a scattered light signal that is correlated with aerosol concentration.  

When the infrared emitting diode inside the Sharp GP2Y is powered with a square wave voltage 

with a 32 ms pulse width, the particles passing through the testing location are illuminated and 

the light is reflected towards a phototransistor.  The light is reflected or scattered more at higher 

aerosol concentrations since more particles alter the path of light.  The infrared-sensitive 

phototransistor converts the scattered light intensity into a voltage signal.  An earlier study [23] 

showered that the Sharp GP2Y demonstrates the highest linearity against commercialized 

instruments among the low-cost particle sensors tested, and is stable under humidity and 

temperature fluctuation. 

The Arduino chip works as a controller to manage the sequential order and information flow 

inside the end (sensor) devices.  It provides the square wave voltage to power the emitting diode 

in the Sharp GP2Y and samples the resultant fully developed voltage signal from the 

phototransistor 28 ms after the leading edge of the square wave has passed.  After digitally 

recording the voltage amplitude signal, the Arduino constructs a data package with voltage 

amplitude information, then forwards it to the XBee wireless transmitter.  All of the XBees on 

the end devices in the network operate in router mode, relaying the package to the base station 

for further processing. 

The base station is a Raspberry Pi 2 embedded computer connected with an XBee radio.  Upon 

receiving a package from an end device, the base station tags the data with a time stamp, an 8-bit 

node identification, and an 8-bit package serial number before pushing the new data object into a 

buffer.  A data processing routine periodically processes all the data objects in the buffer and 

clears the buffer for new packages.  The processed data objects at the base station can be 
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uploaded to a server or website for real-time access.  The network is easy to set up, and the cost 

is around $40 for each end device, which is lower in comparison to conventional instruments 

(e.g. SidePak for around $3000) for real-time PM monitoring.  

 

7.2.2 Digital filter 

As mentioned above, the application of low-cost sensors is hindered by their low signal to noise 

ratio.  The noise increases the limit of detection since the small response to a low concentration 

will be buried under the noise.  In order to lower the limit of detection and to preserve high 

temporal resolution, an online sliding window filter and a low pass digital filter are incorporated 

in the system.  The sliding window filter can eliminate the fluctuations by averaging the results 

over time; however, this approach sacrifices the time resolution.  The equations for both off-line 

Eq. (7.1) and online Eq. (7.2) sliding window filters are shown below, where k is the time slot, w 

is the size of the window, and Si(j) represents the PM concentration value from sensor i at time j.   
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For an off-line sliding window filter, time j is put at the center of the window, and the data 

received during the window-sized interval is averaged to represent the value at time j.  However, 

using an on-line sliding window filter, we do not have data after the current time to calculate the 
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average of the window, so a window-size data set before the current time is selected as the 

trailing average for calculation.  In this study, the sampling interval is 0.25 second and a one 

second window-size filter is applied for data smoothing.  The digital online sliding window filter 

is integrated into the Arduino program, and the processed data is used for the online real-time 

display. 

To further process the data from the base station, a low pass filter is applied to attenuate the 

background noise and to lower the limit of detection.  The noise fluctuates at a higher frequency 

than the signal, so it can be separated accordingly.  The data is processed with a 29th order finite-

duration impulse response (FIR) low pass digital filter in Matlab fir1(n,ωn) with a 0.04 Hz cut-

off frequency, and the one second resolution is preserved [28, 54].  Normally, a low pass filter is 

closer to an ideal filter when operating at higher order, at the expense of a longer implementation 

time.  The cut-off frequency sets the threshold for distinguishing between noise and signal.  

Using the processed data, our low-cost sensors were calibrated against a SidePak (AM510, TSI 

Inc., Minneapolis, MN) in a cubical chamber with controlled air flow air-tight to correlate their 

output signals with SidePak equivalent PM concentrations in prior research [23].  

 

7.2.3 Sensor calibration 

The method for sensor calibration was similar to that in Wang et al. [23], which can be 

summarized as follows.  An incense stick that was the source of PM was set at the center of the 

chamber, and the SidePak and sensors were close to each other around the center of the chamber 

to measure the generated aerosol in one-second intervals.  Eight sensors were divided into two 

batches for calibration to keep the positions of sensors and Sidepak symmetrical and close to the 
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center.  Four small circulating fans were installed at the bottom four corners to obtain a well-

mixed uniformed concentration distribution inside the chamber.  Although linear fitting has been 

recommended for the Sharp GP2Y in former studies, the differences between the 1st to the 5th 

degrees of polynomial fitting were examined with the least squares method as given in Eq. (7.3) 

and Eq. (7.4).  
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where n  is the degree of the polynomial fitting, and jix ,  and jiny ,,  represent the smoothed data 

and the calibrated PM concentration with the 
thn  order at time j  for sensor i .  iS  is the 

summation of the square of the PM concentration difference between the SidePak and the 

calibrated GP2Y over the sampling period of sensor i .  Our goal is to find kiP , , ( i =1, 2, …, 8; 

k =1, 2, …, 1n ) that minimize iS , so that the calibrated data and the SidePak results are more 

comparable. They are identical when iS  equals zero.  The results from one specific sensor show 

no significant differences between linear fitting and higher order fittings, though there is some 

improvement when more complicated equations are used.  Thus, linear fitting, as given by Eq. 

(7.5), was chosen for convenience in calibrating all the other sensors.  

2,,,1,,1 ijiiji pxpy        (7.5) 
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7.2.4 Demonstration in a woodworking shop 

After calibration, an eight-sensor system was installed in a student woodworking shop in the 

Sam Fox School of Art and Architecture, Washington University in St. Louis. The woodworking 

shop is equipped to saw, drill and sand wood for making models.  A vacuum dust collection 

system traps wood dust near the operating machines and collects it in a cyclone separator.  

However, high concentrations of wood particles are still emitted directly into the room as clearly 

observed by the naked eye.  These coarse particles that deposit in various parts of the room are 

readily re-entrained and become airborne.  Several studies have demonstrated that particles 

generated during wood machining elevate the risk for respiratory diseases [55, 56].  So, in this 

study, we focused on the PM exposure dose of both an active worker, the woodworking manager 

who moves among high concentration PM sources most of the time, and two passive receivers, 

the student assistants on duty who often sit at a table near the door.  The sensors were placed 

near each machine where concentrated particles might be released, at the ventilation port where 

particles were extracted for filtration, and the table next to the door. 

 

7.2.5 Kriging and biharmonic spline interpolation 

The sampling in the woodworking shop lasted around four thousand seconds, and in each 

second, eight PM concentrations from eight sensors were recorded.  The eight data samples in 

each second were entered into Statgraphics Centurion XVII (StatPoint, Inc., 2014) for Kriging 

interpolation.  Kriging is a weighted average algorithm, so the predicted values at the unsampled 

points are determined by the values and the weights of the sampled points in the vicinity.  The 

basic formula to predict the PM concentration ( z ) at an unsampled point ( 0x ) is shown as 
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follows, where i  and )( ixz represent the weight and the measured PM concentrations of the 

eight sensors [13].   
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To determine the weight ( i ), Kriging uses a variogram to evaluate the differences among 

measured values.  With the PM concentration data from eight points, the empirical variogram, 

)(h , was estimated at two locations separated by a distance of h, as shown in Eq. (7.7).  N(h) 

represents the number of pairs of samples separated by a distance of h .  )( ixZ  and )( hxZ i   are 

the measured PM data at positions xi and xi+h.   
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By plotting )(h  against h , a graph with scattered points can be obtained, showing the spatial 

relationship of the sampled points.  Generally, if h  is small, )(h  increases with h , indicating 

that the differences between observations increase with distance.  On the contrary, when h  is 

large, the differences between observations will stabilize, so that )(h  does not change with h .  

This tendency of )(h  vary with h  implies that nearby observations tend to be similar or related, 

while more remote observations tend to be different or unrelated.   

A variogram with scattered points is not sufficient to calculate the weight ( i ) for all directions 

and distances, hence a continuous curve must be fitted to the variogram datasets.  The model 

fitting the datasets with the highest correlation coefficient (
2R ) is chosen to calculate the weight 

( i ).  For each second, an empirical variogram of the data from eight sensors can be obtained; 
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then, six mathematical models – exponential, circular, Gaussian, pentaspherical, power function, 

and spherical function – were tested separately in the Statgraphics Centurion to adjust the 

empirical variogram for best performance.  The spherical model was chosen for data 

interpolation because it yielded the highest validation (
2R ).  Based on the spherical model, 2600 

Kriged points, evenly distributed in the measured area, together with the validation and variance 

estimations, were calculated for each second.  Then, 94 boundary points were forced to zero 

according to the physical requirements.  The boundary points and the 2600 Kriged values were 

used as input data for biharmonic spline interpolation in Matlab, which refined the local mesh 

with negligible influence on the spatial prediction from the Kriged results.  The resolutions for 

Kriging interpolation and biharmonic spline interpolation were 0.546 m and 0.100 m, 

respectively. 

 

7.2.6 Artificial neural network for interpolation 

An artificial neural network (ANN) is a powerful tool for solving complex and highly nonlinear 

problems.  The elements of the ANN toolbox in Matlab are an input, an output, and a hidden 

layer.  The nodes in the hidden layer nonlinearly propagate the linear combination of the input 

multiplied by different weight coefficients to obtain a value that is close to the output. The output 

y  of each neuron k  can be written as: 

)(
1

,0,



I

r

kkrrk wwxgy       (7.8) 



230 

where rx  is the input of neuron r , krw ,  is the weight assigned to the link between the input 

neuron r  and the output neuron k . kw ,0  is the bias assigned to neuron k , and g  is the 

hyperbolic tangent activation function defined as: 
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 In our case, the input is the time and the coordinates, while the outputs are the measured PM 

concentrations.  The hidden layer connecting the input data and the output data was set to have 

two layers and thirty neurons in each layer.  After running the ANN toolbox with the input data, 

a function was established predicting the PM values for given coordinates and times.  With the 

function, we recalculated the PM concentrations of eight sampled points for each second and 

calculated the root mean square error (RMSE) between the predicted PM concentrations and the 

sampled concentrations.  

Compared to Kriging interpolation, the ANN’s inclusion of time as a variable is a significant 

difference.  Originally, data points from all 4000 seconds of measurements were fed to the 

toolbox together, however, the results were unusable.  After visualization, a large pollution 

plume dominated the entire 4000-second period, for reasons that will be discussed in a later 

section.  Accordingly, the sliding window strategy was applied to handle the time variable.  The 

data were divided into several segments with the same window size.  The data in each segment 

were fed separately to the ANN toolbox for training.  For example, if the window size was ten, 

data from the 1st second to the 10th second were used to train the ANN.  The resulting function 

was used to predict the PM concentrations and calculate the RMSE.  The process was repeated 
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with the segment from the 11th second to the 20th second, the 21th second to the 30th second, and 

so on, until the last second.  The effect of the window size will also be discussed later.   

A rotating boundary method was applied to include the conditions at walls.  The problem with 

including boundary conditions is similar to that encountered in Kriging.  In each second, the 94 

zeros (boundary points) lowered the accuracy of the training model.  In contrast to the boundary 

conditions, the priority of the data from the eight sensors is essential.  Hence, the trained model 

must fit the data from the eight sensors first, and consider the boundary conditions afterwards, if 

possible.  Accordingly, a good option is to reduce the points forced to zeros on the boundaries.  

In addition, time is included as a variable, so there is a temporal relationship among the data for 

similar time, which is helpful for further reducing the number of forced zeros on the boundaries.  

Therefore, four points at four corners of the room were forced to zeros at the current second, and 

four points in the middles of each boundary were forced to zeros in the next second.  The corner 

points and midpoints were rotated second by second to obtain the boundary conditions. 

To evaluate the performance of the ANN toolbox, the root-mean-square error (
totTRMSE ) over 

the overall four thousand seconds was calculated as follows, where n  is the serial number of the 

sensor and t  is time.  tnsensC ,,  and tnANNC ,,  are the PM concentrations measured from a sensor and 

predicted by the ANN toolbox at the same location, respectively.  N and totT  are the total 

number of sensors and the overall sampling duration, which were 8 and 4000 seconds 

respectively in this study. 
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7.3 Results and discussion 

7.3.1 Data smoothing and calibration 

One sensor was selected to demonstrate the improvement of the data quality and the accuracy of 

the calibration after applying the digital filters.  Figure 7.2a shows the highly fluctuating raw 

data due to noise, and the smoothed data in arbitrary units.  The signal quality from the Sharp 

GP2Y is clearly enhanced by applying the sliding window filter and the low pass filter.  The 

calibrated PM concentration (µg/m3) data is shown in Figure 7.2b.  Calibration factors were 

obtained by correlating the smoothed data with that from the SidePak data, both at one second 

resolution, using linear fitting as in Eq. (7.5).  The detailed calibration results for four of the 

eight sensors are reported in Figure 7.3.  The results show the Sharp GP2Y data is in good 

agreement with the commercial SidePak particle mass concentration monitor, SidePak.  After 

calibration, a series of measurements were conducted in the woodworking shop, demonstrating 

the efficacy of the networked sensor system. 
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Figure 7.2. (a) The raw data, the data processed by the sliding window filter and low pass filter. 

(b) The calibrated data compared with the SidePak data. 

 

 

Figure 7.3 Linear fitting results between the responses of sensors and SidePak. 
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7.3.2 Demonstration in woodworking shop 

The sensor system was deployed in the woodworking shop, which was 26 meters long and 19 

meters wide.  The overall sampling time was around 4000 seconds.  As shown in Figure 7.4 and 

5, the sensor network system monitored the PM concentrations at various locations for a series of 

activities (fabricating wood drawers).  The activities included cutting a wooden board to proper 

size, drilling holes for the drawer pulls, assembling the boards with a wood stapler and wood 

glue, and sanding the drawer.  Due to the space limitation on the drilling platform, a sensor was 

placed on the saw table with coordinates (3, 21) to monitor the PM emission from both the 

drilling platform and the saw table.  Another sensor was placed at (13, 21) to monitor the 

emission from saw table on the other side.  The sensor at (17, 13) monitored the emission from 

sanding table, and sensors at (15, 2) and (15, 6) were used to monitor the area of stapling and 

gluing.  Against the door, we set a sensor at (5, 6) to monitor the PM concentration exchange 

between indoor and outdoor air.  Apart from the person fabricating the drawers, a student 

assistant on duty sat at the second table, with coordinates of (15, 9).  An air filtration system 

located at coordinates (3, 12) collected air-dispersed dust.  Each sensor was assigned a 

coordinate as shown in Figure 7.4 and Figure 7.5.   
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Figure 7.4. Particle mass concentration distribution predicted by Kriging, displaying particle 

generation and flow according to floor plan for sawing and drilling. 

 

During the sampling period, sawing, drilling, and sanding are identified as characteristic events 

that emitted high PM concentrations.  The maximum concentrations and the average 

concentrations during sawing, drilling, and sanding were respectively 2.163 and 1.489, 1.194 and 

1.141, 1.300 and 0.794 mg/m3.  Although the vacuum dust collection system was on, the PM 

concentrations were extremely high during these woodworking processes.  The highest 

concentrations the manager and the student were exposed to were 2.114 and 0.127 mg/m3, 

respectively, and the average exposures of the manager and the student were 0.228 and 0.017 

mg/m3, respectively.  The estimated exposure illustrates the potential risk for both people 

engaging in woodworking and passive observers. 
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7.3.3 Kriging interpolation 

With Kriging, the spatiotemporal distribution of the PM concentrations was interpolated second 

by second.  During characteristic events, such as sawing, drilling, and sanding, the validation 

(R2) of the interpolation ranged from 56.33% to 91.26%, with an average of 74.28%.  From 

Statgraphics, the RMSE of each second between the predicted values and the measured values 

given was between 0.011 and 0.128.  Since sawing and drilling were performed in close 

sequence, these two events were combined.  Figure 7.4 shows the Kriging interpolation results 

for the evolution of PM concentrations around the saw table and drilling platform.  Figure 7.5 

shows that the PM concentrations generated during sanding were ventilated gradually.  The 

interpolation results for each second are combined as animations demonstrating the time 

evolution of PM concentrations during these two processes (published online).  The 

spatiotemporal distributions show that the particulate plume fills the region between the 

ventilation port and the pollutant source.  The room-averaged PM concentration can be estimated 

based on the interpolated results, eliminating the error that would be introduced by considering 

the aerosol in the room or chamber as a homogeneous medium.   
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Figure 7.5 Particle mass concentration distribution predicted by Kriging, displaying particle 

generation and flow according to floor plan for sanding. 

 

 

One thing worth noting is that the time pattern is pseudo-temporal, although the animations 

report the spatiotemporal distributions changing with time.  In the Kriging method, time is 

discrete and is not involved in the interpolation process.  The time is a sequence number that 

groups the data second by second and helps order the interpolation results.  Thus, if the sampling 

interval is one second, it is not possible to know the distribution between consecutive seconds.  

In addition, since time cannot be fed to the Statgraphics system as a variable, data need to be 

manually processed second by second, which is tedious and inconvenient. 
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Kriging interpolation strongly depends on the spatial relationship between observations.  As 

mentioned in the Methods section, we interpolated the data from sensors first and smoothed the 

data with boundary conditions afterwards.  The boundary conditions were not included in the 

Kriging interpolation since they weakened the spatial relationship.  Before the boundary 

conditions were added, the data from eight sensors obeyed the principle that observations far 

away are less correlated and observations nearby are comparable.  However, after the boundary 

conditions were added, there was no difference, even for the points that were separated by the 

longest distance, the diagonal of the room.  Hence, the spatial relationship, which is essential for 

the Kriging interpolation, was deteriorated.  The software reported errors and could not predict 

the interpolation due to the poor relationship.  Apart from adding all boundary conditions at the 

same time, we also tried to add fewer zeros on the boundaries, however, the results were 

disappointing.  Even when we added only one zero at (0, 21) to restrict the size of the plume 

generated at the sawing table, the validation (R2) of the interpolation decreased.  It ranged from 

7.06% to 28.12%, with an average of 13.65%.  Therefore, for Kriging interpolation, adding 

boundary conditions adversely influenced the spatial relationship and compromised the accuracy 

of interpolation.  

 

7.3.4 Artificial neural network interpolation 

As mentioned earlier, the ANN toolbox in Matlab was used for interpolation.  After each 

training, the ANN toolbox generated an equation that predicted the PM concentrations as a 

function of time and coordinates.  Figure 7.6 shows the evolution of PM concentrations around 

the saw table and drilling platform.  Figure 7.7 shows the PM concentrations generated during 

sanding decreased gradually.  The interpolation results for each second are combined as 
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animations demonstrating the time evolution of PM concentrations during these two processes 

(published as supporting information).   

 

Figure 7.6 Particle mass concentration distribution predicted by ANN, displaying particle 

generation and flow according to floor plan for sawing and drilling. 
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Figure 7.7 Particle mass concentration distribution predicted by Kriging, displaying particle 

generation and flow according to floor plan for sanding. 

 

A distinctive feature of the ANN model is including time as a continuous variable, which means 

that even though the sampling interval is one second, the distribution at any time can be 

predicted.  With time included as a variable, the input data collected from history will be used to 

predict the output at the current time.  Therefore, the ANN toolbox can not only predict the 

distribution regardless of the sampling interval, but also improve the continuity of the spatial 

distribution.   

To select a proper window size, the 
totTRMSE of the overall 4000 seconds was plotted against the 

window size in Figure 7.8.  The 
totTRMSE  initially decreases with increasing window size, and 



241 

after a turning point, the 
totTRMSE  increases with window size.  In the first range, increasing the 

length of the window enlarged the training data sets and consequently improved the prediction 

accuracy.  However, as the window size and hence the training data set becomes overly large. the 

prediction accuracy drops due to overfitting.  The window size was therefore selected as 30 for 

the spatiotemporal prediction. 

 

 

Figure 7.8 RMSETtot varying with window different size, displaying that insufficient data sets and 

over fitting bias the predicted PM spatial temporal distribution. 

 

The ANN method exhibited higher variance in its performance.  On the contrary, the Kriging 

predicted similar results if the input and the subtype model were fixed.  Four intervals (500-530 

sec, 1000-1030 sec, 1900-1930 sec, and 3040-3070 sec) were selected to examine the 
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repeatability of ANN and to compare the difference between ANN and Kriging.  The first two 

intervals were randomly selected, and no PM emission events were observed during the 

intervals.  The next two intervals belonged to Sawing event and Sanding event respectively.  

ANN was repeated for 30 times for each time interval, and the room-averaged concentrations 

during the 30 seconds were computed with the interpolation results from Kriging and ANN.  The 

variation and the comparison of the two methods are reported in Figure 7.9, where the red dot is 

the PM concentration from Kriging, and the box plot is that from ANN.  ANN reported slightly 

higher concentrations than Kriging, however, these methods quantitatively match with each 

other.      

 

 

Figure 7.9 The room averaged PM concentrations of four sampling intervals predicted by 

Kriging and thirty repeated training in ANN.  
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In summary, neither Kriging interpolation nor the ANN method dominated each other.  Kriging 

is a standard solution to spatiotemporal problems, but it strongly depends on the spatial 

relationship of the observations, which increase the difficulty of including boundary conditions.  

In addition, the process of entering data second by second and selecting models one by one is 

tedious.  For indoor measurements, PM evolution indicating hotspots and ventilation efficacies 

has the top priority, and requires a larger dataset.  Nonetheless, the results predicted by Kriging 

can be interpreted easily, while predictions produced by the ANN method are less intuitive.  On 

the other hand, ANN method is independent of spatial relationship, can predict temporal 

dynamics, and is easy to program for processing large data sets.  However, further study is 

required to understand how to constrain the ANN training and how to interpret the functions 

from the training.   

Due to the scale of this study, uncertainties remain in how the quantity and locations of sensor 

nodes would influence the interpolation results.  Limited to the scattered sampling locations, 

removing any sensors around the hotspots would significantly influence the interpolation results, 

making the cross-validation unreasonable.  It is challenging to quantify the influence of sensor 

quantity and location on the accuracy of the prediction results with current settings, and more 

efforts are needed in future studies with wider sampling space and more sensor nodes.  In this 

way, the number and locations of the sensors could be optimized, and further detailed cross-

validation could reveal critical information on the stability and credibility of the sensor network.  
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7.4 Conclusions 

The monitoring of indoor aerosols in this study demonstrates the capability of the sensor network 

platform for measuring real-time spatial aerosol concentrations in a wide range of scenarios.  The 

online sliding window filter and the low pass filter subtract the signal from large background 

noise successfully.  The combination of Kriging interpolation and biharmonic interpolation 

predicts the spatial distribution.  The ANN predicts similar distribution as the Kriging 

interpolation and further includes time as a variable for predicting spatiotemporal distribution.  

The pros and cons of these methods were illustrated in this paper.  Finally, based on our study it 

is strongly recommended that the workers wear protective personal equipment (PPE) to prevent 

inhaling these particles during woodworking.  
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Chapter 8: Integrating Low-cost Sensor 

Networks with Fixed and Satellite 

Monitoring Systems for Enhanced Accuracy, 

Reliability, and Applicability  

 

The results of this chapter is under review in Li, J., Zhang, H., Chao, C, Chieh, C, Wu, C, Chen, 

L., Luo, C., & Biswas, P. Integrating Low-cost Air Quality Sensor Networks with Fixed and 

Satellite Monitoring Systems for Enhanced Accuracy, Reliability, and Applicability 
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Abstract 

The particulate matter (PM) mass concentration reported by monitoring stations is a reliable data 

source for air quality communications, pollution mapping, and exposure estimation. Achieving a 

better understanding of PM transport on a regional and global scale requires a high density of 

monitoring stations, but deploying and maintaining these stations is expensive. To increase the 

measurement density, a network of low-cost PM sensors is a promising supplement. Another 

source to retrieve PM concentrations is the aerosol optical depth (AOD) data from remote 

sensing, but these datasets are usually compromised by weather conditions and aerosol optical 

properties. To construct a highly spatially resolved PM distribution map, we synergize the data 

from 75 monitoring stations, 2,363 AirBox low-cost sensors, and Terra remote sensing data for 

the main island of Taiwan. A machine learning method identifies useful data from the massive 

AirBox datasets. Then, the AirBox and remote sensing datasets are calibrated with data from 

collocated monitoring stations. The maps created from these three data sources with Kriging 

interpolation demonstrate an approximate 30-fold synergistic improvement in the spatial 

resolution of PM mapping, with minimal bias. This method will greatly assist the validation of 

PM transport models and enhance the accuracy of exposure estimations.  
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8.1 Introduction 

Knowledge of the distribution of particulate matter (PM) is vital for identifying hotspots, 

estimating exposure, and establishing PM transport models.1-3 Aerosol physical processes (e.g., 

deposition, coagulation, and cloud scavenging)4 and atmospheric conditions (e.g., wind speed 

and temperature gradients)5 can cause spatial heterogeneity and temporal variation, which are the 

major uncertainties in PM transport modeling and exposure estimation. Current monitoring 

stations, also known as the ground measurement, can accurately measure the PM concentration 

at fixed locations with relatively expensive research-grade instruments; however, due to their 

high cost and maintenance requirements, current monitoring stations are highly heterogeneously 

located, concentrated around heavily polluted or populated areas. Therefore, while pollution 

mapping based on monitoring sites can demonstrate a general trend, its low spatiotemporal 

resolution compromises the accuracy of the mapping. 

As an alternative ground measurement method, low-cost PM sensors have great potential to 

achieve higher spatiotemporal resolution6-11. The accuracy and reliability of these low-cost PM 

sensors have been validated in laboratory characterizations12-14 and field evaluations15-18. Pilot 

studies of sensor networks6-8, 19-23 and mobile sensing nodes24 have already explored various 

applications, revealing a promising future in detecting spatial heterogeneity and temporal 

variations.  

PM concentration can also be derived from remote-sensing aerosol optical depth (AOD) data by 

the semi-empirical model25, 26, the simulation-based method27, 28, and multivariate statistical 

regression29-31. The AOD data are typically derived from the moderate resolution 
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spectroradiometer (MODIS) on a satellite, and the data can cover the earth in one day, with both 

3 km and 10 km spatial resolution.32 The relationship between AOD data and PM concentrations 

depends on meteorological conditions (e.g., relative humidity and the atmospheric boundary 

layer) and PM properties (e.g., composition and size distribution)29, 31, 33-35, although aerosol data 

cannot be retrieved under overcast conditions. Despite the uncertainty in correlation, the 

advantage of AOD data is its coverage of unpopulated and remote areas.  

In this study, we include the data from all three methods to realize a high spatial-resolution 

mapping that covers both the urban and suburban areas of the main island of Taiwan. The PM2.5 

mass concentration data from monitoring stations were chosen as the standard to calibrate the 

low-cost sensor (AirBox) data and remote sensing AOD data. Machine learning was used to 

identify useful low-cost PM sensor data. Ordinary Kriging (OK) interpolation was used to 

visualize the pollution distribution and demonstrate the distinctive characteristics of each dataset. 
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8.2 Methods 

 

8.2.1 Data source and spatial distribution 

PM and AOD data from monitoring stations and remote sensing are well-documented in public 

datasets. On the main island of Taiwan, 75 monitoring stations, as shown in Figure 8.1 report the 

hourly PM2.5 mass concentrations measured by β-ray attenuation analyzers and tapered element 

oscillating microbalances (TEOM). With research grade instruments, rigid sampling intervals 

and detailed documentation, the monitoring stations provide the most reliable PM2.5 mass 

concentration.  

 

Figure 8.1 The spatial distribution of monitoring stations (red dots), AirBox devices (blue 

crosses), and ideal (assuming all data valid) remote sensing data points (grey dots). 
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The Terra 3-km dataset was selected as a representative remote sensing AOD dataset in this 

study. Theoretically, 4,000 data points can be retrieved for Taiwan daily (Figure 8.1). However, 

the quality of remote sensing data is largely influenced by weather conditions, which limit the 

number of effective data points. In October 2018, for Taiwan, there were only seven days with 

more than 2,000 daily effective data points, and 14 days had fewer than 500 data points. Clearly, 

meteorological interference creates the largest uncertainty and unpredictability in remote sensing 

datasets.  

As for the low-cost PM sensors, under the management of Academia Sinica, 2,363 AirBox 

devices are deployed in Taiwan, comprising one of the world’s largest open framework low-cost 

sensor deployments.36-39 The AirBox dataset of this study includes measurement results from 

July to October of 2018. Each AirBox measures PM1, PM2.5, PM10, relative humidity, and 

temperature, together with a global positioning system (GPS) logs real-time longitude and 

latitude. The major component of the AirBox is a Plantower PMS5003, whose accuracy and 

reliability have been extensively evaluated in earlier literature.15, 40-42 Approximately 75% of 

AirBox devices have sampling intervals of less than 35 minutes. Statistics of each dataset are 

listed in Table 8.1. 
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Table 8.1 Statistics of AOD datasets, monitoring station datasets, and AirBox datasets. The data 

ranges given for the average, 50th percentile, and 90th percentile are obtained by analyzing 

monthly data. 

 

8.2.2 Selecting effective low-cost sensor data 

The AirBox datasets are enormous due to the great number of devices and their short sampling 

interval. Every month, there are over 3,000,000 entries in the AirBox dataset; in comparison, 

there are only approximately 5,000 entries in the monitoring station dataset. One convenience of 

low-cost sensors is their low maintenance, but this in turn introduces uncertainty about the 

quality of the data because malfunctions can go undetected for long periods. Therefore, an 

unsupervised learning method, called balanced iterative reducing and clustering using hierarchies 

(BIRCH), was used in this study to exclude erroneous data from the enormous datasets.43 

Basically, suspicious data have two features. First, they are isolated from regular data by extreme 

values. Second, their derivatives with respect to time are very large, representing a temporal 

discontinuity. The BIRCH method uses a clustering feature tree to classify the sensor data into 

different clusters (or groups) based on these two features. Figure 8.2 (supporting information) 

shows an example of the BIRCH method identifies outlier datum. 

 AOD datasets Monitoring station 

datasets 

AirBox datasets 

Time period  03/2018-10/2018 03/2018-10/2018 07/2018-10/2018 

Maximum value 0.999 158 μg/m3 500 μg/m3 

Minimum value 0.001 2 μg/m3 0 μg/m3 

Averaged value 0.180-0.360 10-24 μg/m3 13-25 μg/m3 

50th percentile  0.135-0.334 10-22 μg/m3 16-31 μg/m3 

90th percentile 0.314-0.634 29-44 μg/m3 35-49 μg/m3 
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Figure 8.2 An outlier datum, identified by the BIRCH method, whose value is extremely far from 

the regular range. Its high derivative with respect to time represents temporal discontinuity. 

 

8.2.3 Collocation calibration and visualization 

The collocations for comparing the AOD datasets with the monitoring station datasets and the 

AirBox datasets are regulated by grids formed by AOD data points enclosing approximately 9 

km2, and the AOD value inside the polygon is taken as the average of the actual AOD data from 

the four corners. Figure 8.3 in the supporting information, showing data for October 4th, 2018, 

demonstrates the collocation method for comparing AOD datasets with monitoring station 

datasets and AirBox datasets. 
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Figure 8.3 An example (October 4th, 2018) of the collocation method for associating remote 

sensing datasets with monitoring station datasets and AirBox datasets. (a) Grids consist of 

squares formed by valid remote sensing data. (b) Monitoring stations that can be paired with 

remote sensing data under the grids shown in (a). (c) AirBox devices that can be paired with 

remote sensing data under the grids shown in (a) 

 

An effective distance (r) was defined to correlate the AirBox datasets with monitoring station 

datasets. Circles were drawn with monitoring stations as center points and a certain effective 

distance as the radius, to match the AirBox data with nearby monitoring stations. It is common 

for a monitoring station to pair with multiple AirBox devices. The paired data meeting the 

criterion of the same effective distance were combined to calculate the correlation coefficient (R) 

and the p-value with linear regression. A series of effective distances, ranging from 50 meters 

(m) to 2 kilometers (km), was chosen to examine the correlation between the AirBox datasets 

and the monitoring station datasets. Figure 8.4 illustrates an example (r = 1 km) of the 

collocation method for comparing AirBox datasets and monitoring station datasets. 
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Figure 8.4 An example (r = 1 km) of the collocation method for associating AirBox datasets and 

monitoring station datasets. Blue crosses are locations of AirBox devices. A red circle with a red 

dot at the center represents the effective boundary with a monitoring station at the center. Blue 

crosses within the red circle can be paired with the monitoring station at the center. 

 

To visualize the PM pollution distribution, datasets were interpolated by ordinary Kriging (OK) 

to predict values at unsampled locations. The OK method predicts the values at unsampled 

locations through a fitted model, based on the spatial dependence among measurements, and this 

method has been used to interpolate air pollution data.6, 44-47 In this study, the ordinary Kriging 

module in ArcGIS was used to interpolate and visualize the data. 
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8.3 Results and discussion 

8.3.1 Correlation among the AOD, monitoring station, and AirBox datasets 

As can be seen in Figure 8.5, the AOD datasets and the monitoring station datasets demonstrate a 

strong linear correlation (p < 0.01), with R equal to 0.513. This value of R is moderate compared 

to values reported in previous literature, where R values ranged from 0.32 to 0.80.28-30, 48 Several 

factors led to a strong linear correlation but a moderate R value. First, as mentioned above, the 

AOD data depends on weather conditions. Taiwan is rainy, with both tropical and subtropical 

monsoon climates, and this wet weather reduces the data size and introduces unpredictability.49 

Second, aerosols compositions, size distributions, and optical properties may all influence the 

correlation between AOD and PM2.5 mass concentration. Therefore, in the previous literature, 

dividing the original datasets into different seasons retrieved a higher R value, since the variation 

caused by aerosol properties was minimized.49, 50 Third, relative humidity (RH) also influences 

the correlation, and the highest correlation between AOD and PM2.5 mass concentration can be 

achieved under low RH (RH < 50 %).31, 34 In fact, according to the daily average RH reported by 

monitoring stations, there are only two entries from a low RH condition within the twenty 

thousand entries from March to October. Fourth, to obtain enough data points, in this study, daily 

comparisons between AOD data and monitoring station data were conducted, instead of the 

monthly, seasonal, or annually averaged comparisons in previous works, where averaging over 

such longer periods of time stabilizes the fluctuation, for a better R value.28, 34, 49  The AOD 

datasets were converted to PM2.5 mass concentration according to the linear fitting equation 

shown in Figure 8.5a. The correlation between the AOD datasets and the AirBox datasets also 

demonstrates a strong linear correlation, but with a slightly lower R value. Apart from the 
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reasons mentioned above that might influence the R value, individual differences between 

AirBox devices may also weaken the correlation.  

 

Figure 8.5. The correlation between (a) remote sensing AOD and the PM2.5 mass concentration 

reported by monitoring stations, from March to October of 2018; (b) remote sensing AOD and 

the PM2.5 mass concentration reported by AirBox devices, from July to October of 2018 

 

8.3.2 Correlation between AirBox datasets and monitoring station datasets 

Following the method described in the collocation calibration section, the AirBox datasets were 

paired with monitoring station datasets to calibrate low-cost sensors. The AirBox data was 

processed by month due to the large dataset. A similar trend was observed from July to October; 

thus, only the calibration results for October are shown as an example in Figure 8.6a. When r 

equals 0.05 km (Figure 8.6b), only one AirBox device in the vicinity of the XiZhi monitoring 

station can be paired successfully within the circle, leading to the high linearity (R = 0.87). Then, 

as r increases (0.05 < r < 1 km, Figure 8.6c), more AirBox devices can be paired with their 
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nearby monitoring stations, and the R value fluctuates in the range of 0.60 – 0.65. In this range, 

the quantity of paired data increases with increasing r, and irrelevant data may also be included. 

These two factors, the quantity of the paired data and the irrelevance of some of the data, in turn 

determine the correlation factor R. When r increases continuously (r > 1 km, Figure 8.6d), 

irrelevant data becomes dominant, and therefore the correlation factor R decreases with 

increasing r.  

 

Figure 8.6. The correlation of the PM2.5 mass concentration between monitoring station datasets 

and AirBox datasets. Specific examples of (b) r = 0.05 km, (c) r = 0.14 km, and (d) r = 2.05 km 

are chosen to demonstrate the variation of R versus r. 

 

Figures 8.6b and 8.6c demonstrate the strong linearity between AirBox datasets and monitoring 

station datasets. In Figure 8.6d, many points appear in the upper left corner, representing a high 
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AirBox response and a low response from a nearby monitoring station. These data points 

indicate that pollution events happened nearby, but were not captured by the monitoring station, 

although they were observed by AirBox devices. These pollution events are typical cases 

demonstrating the spatial heterogeneity of PM distribution and the necessity of high spatial 

resolution sampling, which is a feature of low-cost PM sensor networks. 

8.3.3 Pollution map visualization 

AOD data were converted to the PM2.5 mass concentration with the equation from Figure 8.5a. 

AirBox PM2.5 mass concentration data were calibrated according to Figure 8.6c, with a 450 m 

effective distance (PM2.5, calibrated = 0.91× PM2.5, AirBox–4.55, R = 0.68). The converted PM2.5 mass 

concentrations from three datasets were combined as the all-combined datasets. The monitoring 

stations’ datasets have the highest priority, followed by the AirBox datasets and then the AOD 

datasets. Therefore, monitoring station data will overwrite the other two types of data if they 

overlap at the same location in the all-combined datasets. Figure 8.7 shows the pollution maps of 

October 2rd, 2018, depicted from monitoring station datasets, AirBox datasets, remote sensing 

datasets, and all-combined datasets, with the OK method.  

The dark dots in Figures 7a-7c represent the locations of measured data, which are the inputs to 

the OK methods. The visualized maps interpolated from monitoring station datasets are highly 

similar to the one from AirBox datasets, due not only to the accuracy of the low-cost PM sensors 

but also to the similar spatial deployment of monitoring stations and AirBox devices. The 

majority of monitoring stations and AirBox devices are clustered in western Taiwan, in 

populated metropolitan areas (Taipei) and industrial areas (Kaohsiung). As seen in Fig. 3, the 

uneven spatial distribution of AirBox devices and monitoring stations biases the prediction of the 
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OK method in areas with low data density. The central and eastern mountain area is almost 

devoid of sensors and can be covered only by remote sensing data under appropriate weather 

conditions. The remote sensing map (Figure 8.7c) demonstrates a slightly different pattern. 

Although the hotspot is still located around Kaohsiung, there is a distinct boundary line between 

the mountain area and the residential area. This line is vague in the monitoring station and 

AirBox maps due to the lack of data in western Taiwan needed to define such a sharp change. 

After combining data from monitoring stations, AirBox devices, and remote sensing, Figure 8.7d 

shows a PM distribution map with improved accuracy and greater detail.  

With the all-combined datasets and the OK method, the pollution distribution was mapped from 

October 2nd to 5th, 2018, as shown in Figure 8.8. The PM spatial distribution varied due to a wind 

field change when Typhoon Kong-rey approached. Although the wind field is complicated, and 

other factors can influence the PM distribution, the pollution map can be still approximately 

explained by wind field variation. On October 2nd and 3rd, the prevailing wind direction was 

north-east, and pollution from industrial cities was confined in the southwestern areas. On 

October 4th, as Kong-rey was approaching, a west wind in southern Taiwan carried the pollution 

to mountain areas, leading to higher PM concentrations in mountain areas compared to other 

days. On October 5th, the west wind prevailed in northern Taiwan, which brought external 

pollution from the nearby continent and created the hotspot in northern Taiwan. This case 

illustrates that this method can provide highly resolved PM distribution maps for validating PM 

transport models over a larger scale in future studies. 
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Figure 8.7 Using ordinary Kriging to visualize the pollution distribution of October 2rd, 2018, 

with (a) monitoring station datasets, (b) AirBox datasets, (c) AOD remote sensing datasets, and 

(d) all-combined datasets. Black dots represent locations of measurements for each method. 
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Figure 8.8 From October 2nd to 5th, Typhoon Kong-rey approached Taiwan and caused PM 

spatial distribution variation. PM2.5 distribution maps on the left are Kriging interpolation results 

of the all-combined datasets from each day. Figures on the right are 24-hour backward 

trajectories of wind in Taipei (Red triangle), Kaohsiung (Blue square), and Yushan National Park 

(green circle), predicted by NOAA HYSPLIT trajectory model. 

 

This study enables another possible application of the low-cost sensor network and reveals the 

uniqueness of each measurement method. Monitoring stations, although they provide the most 

reliable PM2.5 mass concentration, are highly limited in pollution mapping due to their spatial 

sparseness. AirBox devices, which also directly report the PM2.5 mass concentration, sacrifice 



266 

some data quality but provide a cost-effective solution to enhance the spatial resolution. The 

AOD data from the remote sensing may be biased when converted to the PM2.5 mass 

concentrations and are unavailable under cloudy conditions, but they provide unique information 

in rural and sparsely populated mountain areas. Using the example of October 2rd, 2018, we can 

see that integrating the datasets of the monitoring stations, low-cost PM sensors, and the remote 

sensing significantly enhances the number measurements from 75 (for monitoring stations) to 

2402 (all-combined datasets). Integration also improves the spatial resolution from 447 

km2/measurement (for monitoring stations) to 15 km2/measurement (all-combined datasets). The 

case identified in Figure 8.8 demonstrates that such an improved spatial resolution is essential for 

understanding the heterogeneity of PM distribution, which will be useful in validating transport 

models and exposure estimations in future studies. 

There are some limitations of this study. First, the accuracy of the predicted map has not been 

evaluated thoroughly. Apart from the Kriging interpolation, machine learning method can also be 

used to predict the PM spatial distribution. Machine learning algorithms have been applied to 

spatial data mining and modeling for environmental studies, including the artificial neural 

network and classification tree methods.51,52 These methods are also applicable for this case 

study. The jackknife resampling method can be used to examine the bias and variance of 

pollution mapping. Furthermore, more variables can be included to improve the spatial 

relationship. The land use regression (LUR) and the machine learning methods can cooperate 

more variables (e.g., the population density, traffic distribution, and wind direction) to further 

enhance mapping accuracy.  
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Chapter 9: Summary 

As a new trending topic, low-cost PM sensors have brought increasing publications and 

commercial products. The appealing superiority of these sensors, their low-cost, portable size, 

and minimal siting requirement make them a good supplement to current monitoring techniques. 

However, accuracy, stability, and repeatability are major concerns before application. In this 

thesis, we first made an evaluation of sensing modules and commercial units (Chapter 2&3). 

These sensors demonstrated a good linearity and a low limit of detection, which proves they are 

capable of field deployment. We also explored their dependency on PM properties (size and 

composition) and environmental parameters (relative humidity and temperature). To enhance the 

performance, detail reasons may bias sensors performance were discussed (Chapter 4&5). 

Modifying the structure of PM sensors with advancing algorithms may help us obtain more 

effective information from these sensors. After calibration and characterization, these sensors 

have been innovatively applied to various scenarios. They have been integrated with a low-cost 

robot for remote or autonomous sampling (Chapter 6). A sensor network has been deployed in a 

woodworking shop, which captured how pollutions were generated and ventilated gradually in 

complicated indoor environments (Chapter 7). For outdoor deployment, by synergizing the low-

cost PM sensor networks with the ground measurement and satellite remote sensing, we 

demonstrated the great potential of low-cost PM sensors for enhancing the accuracy of pollution 

mapping and exposure estimating (Chapter 8). 

In the future study, there are some questions still need to address. We have introduced various 

methods to evaluate sensors’ performance in laboratory calibration. This method mainly focuses 
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on evaluating the performance of an individual sensor. However, the accuracy of an individual 

sensor may not be the most important parameter. Combining low-cost sensor networks with 

epidemiologic studies and evaluating low-cost PM sensors in practical applications may 

introduce new metrics to evaluate aerosols’ adverse health effect, which will be a future direction 

in the field. The applications of low-cost PM sensors should consider the cut-off size of optical 

sensors, which cannot efficiently detect particles smaller than 300 nm. In future studies, lowering 

the cut-off size is as important as lowering the limit of detections. While optical sensors have 

such a limitation, innovative new techniques can be used to solve this problem. 

In studies related to this thesis, low-cost PM sensors have demonstrated superiority in achieving 

high spatiotemporal sampling, leading to numerous applications in future studies. Integrating 

low-cost PM sensors with various gas sensors to form an air monitoring platform might be a 

trending topic of the field in the near future. Deploying these monitoring platforms under a 

regional or global scale will help us understand and validate the transport model of PM or other 

pollutants. Correlating the PM2.5 with AOD is always a hot topic in geoscience. Low-cost PM 

sensors may play an important role in this procedure. Till now, majority applications of low-cost 

PM sensors focus on the ground-level measurement. Using low-cost PM sensors to measure 

vertical distributions can be vital for establishing the relationship between PM2.5 and AOD. 
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Appendix I: Calibration of sensors 

(supporting materials for Chapter 2) 
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Figure A1.1 Size distribution of particles generated by burning incense as a function of time. The 

mode size was approximately 260 nm.  

 

 

Figure A1.2 Normalized size distributions of atomized particles for studying the material 

dependence of sensor performance. Size distributions of the particles could be fitted by 

lognormal distributions.  
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Figure A1.3 Normalized size distributions of atomized PSL particles used to study of the effect 

of particle size on sensor performance. Doubly charged PSL 300 nm, 600 nm, and 900 nm 

particles were also detected at 187 nm, 347 nm, and 502nm, respectively.   
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Appendix II: Comparing the performance of 

3 bioaerosol samplers for influenza virus 

 

 

The results of this chapter have been published in Li, J., Leavey, A., Wang, Y., O’Neil, C., 

Wallace, M. A., Burnham, C. A. D., ... & Biswas, P. (2018). Comparing the performance of 3 

bioaerosol samplers for influenza virus. Journal of Aerosol Science, 115, 133-145. 
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Abstract 

Respiratory viral diseases can be spread when a virus-containing particle (droplet) from one 

individual is aerosolized and subsequently comes into either direct or indirect contact with 

another individual. Increasing numbers of studies are examining the occupational risk to 

healthcare workers due to proximity to patients. Selecting the appropriate air sampling method is 

a critical factor in assuring the analytical performance characteristics of a clinical study. The 

objective of this study was to compare the physical collection efficiency and virus collection 

efficiency of a 5 ml compact SKC BioSampler®, a gelatin filter, and a glass fiber filter, in a 

laboratory setting. The gelatin filter and the glass fiber filter were housed in a home-made filter 

holder. Submersion (with vortexing and subsequent centrifugation) was used for the gelatin and 

glass fiber filters. Swabbing method was also tested to retrieve the viruses from the glass fiber 

filter. Experiments were conducted using the H1N1 influenza A virus A/Puerto Rico/8/1934 

(IAV-PR8), and viral recovery was determined using culture and commercial real-time-PCR. 

The SKC BioSampler demonstrated a U-shaped physical collection efficiency, lowest for 

particles around 30 – 50 nm, and highest at 10 nm and 300-350 nm within the size range 

examined. The physical collection efficiency of the gelatin filter was strongly influenced by air 

flow and time: a stable collection across all particle sizes was only observed at 2 L/min for the 9 

min sampling time, otherwise, degradation of the filter was observed. The glass fiber filter 

demonstrated the highest physical collection efficiency of all tested samplers, however, its 

overall virus recovery efficiency fared the worst. The highest viral collection efficiencies for the 

SKC BioSampler and gelatin filter were 5% and 1.5%, respectively. Overall, the SKC 

BioSampler outperformed the filters. 
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1. Introduction 

Respiratory viral diseases can be spread when a virus-containing particle is aerosolized, 

frequently through coughing, sneezing, and talking, and subsequently comes into either direct or 

indirect contact with another individual via the mouth, eyes or nose, or by being inhaled into the 

lungs (Gao, Li, & Leung, 2009; Verreault, Moineau, & Duchaine, 2008, Belser, Gustin, Katz, 

Maines, & Tumpey, 2014).  The infectivity of an airborne virus depends on factors such as 

relative humidity (RH), temperature, aerosolization medium, and residence time in the air 

(Verreault et al., 2008).  Common diseases that can be transmitted through the air include 

chickenpox, measles, tuberculosis (TB), and influenza virus (Gao et al., 2009).  In an age of 

globalization, increasingly mobile populations exacerbate the potential health risks from airborne 

infectious diseases by both increasing their spatial influence, and decreasing the time it takes to 

reach them (Charu et al., 2017; Fidler, 2004).  This has led to several well-known pandemics 

including the emergence of Severe Acute Respiratory Syndrome (SARS) in 2003, which was 

associated with more than 700 fatalities in only a few months (WHO, 2004), and the influenza A 

(H1N1) virus, which by May 2009, had over 10,000 laboratory-confirmed cases across 41 

countries (WHO, 2009).      

The influenza virus has been the subject of much research since its discovery more than 70 years 

ago, and debate continues over the relative importance of its different potential transmission 

routes: airborne, droplet, or contact (Brankston, Gitterman, Hirji, Lemieux, & Gardam, 2007; 

Teunis, Brienen, & Kretzschmar, 2010; Weber & Stilianakis, 2008).  Currently, the airborne 

route followed by inhalation at a close proximity is considered to have high infectivity, and may 

be a pathway for influenza transmission in an indoor environment (Teunis et al., 2010; Weber & 

Stilianakis, 2008). Many studies attempted to assess the importance of this route within a clinical 
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setting.  Bischoff et al., (2013) used three Anderson air samplers to detect the aerosolized 

influenza virus (RNA) in 26 of the 61 symptomatic patients admitted to the emergency 

department of a medical center, with the highest concentrations occurring within 1 foot from the 

patient’s head; however, the virus was also detected in particles (<4.7 µm) up to 6 feet away.  

Lindsley et al., (2010) detected viable influenza virus with a NIOSH two-stage bioaerosol 

cyclone sampler and an SKC BioSampler® from the coughs of 38 of the 58 patients presenting 

with symptoms at a student health clinic; the majority (42%) of viruses were detected in particles 

<1 µm, while 35% were detected in particles >4 µm.  Lednicky and Loeb (2013) sampled 

influenza H3N2 with a Sioutas Personal Cascade Impactor and an SKC BioSampler and 

suggested that viable virus may be produced by influenza patients.  Marchand et al., (2016) 

sampled the surrounding air during bronchoscopy procedures with a wet wall cyclonic sampler 

and an impactor to examine whether the aerosolized particles contained pathogens that were 

dangerous to healthcare workers.  Although the influenza virus was not detected, several bacteria 

were, leading authors to conclude that aerosolized pathogens could possibly pose an 

occupational health risk.  Another study by Leung et al., (2016) sampled with cyclone samplers 

in the rooms of hospital patients with confirmed influenza virus.  Although no aerosolizing 

procedures were conducted during the measurement period, they detected the virus in 50% of 

collected air samples by PCR, and highlighted the need for additional studies that collected air 

samples during routine patient procedures, in order to gain further understanding regarding the 

risks posed to healthcare workers.         

Although influenza is generally considered to be spread by larger droplets, these findings support 

the possibility that influenza transmission can also occur via an airborne route, especially within 

the immediate vicinity of an influenza patient.  This poses significant challenges for healthcare 
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workers, who currently adopt face masks to prevent transmission, with special ventilation 

controls only for certain circumstances (Bischoff et al., 2013; Brankston et al., 2007).  

Nevertheless, there have been numerous cases of healthcare workers being infected during 

routine healthcare procedures (Lau, 2004), and calls for further research on the viability of 

airborne influenza viruses and the risk of transmission have been made (Lindsley et al., 2010). 

Airborne influenza virus is highly infectious.  As such, it is imperative that efficient samplers are 

used to collect and quantify these pathogens in order to determine their spread.  This will not 

only benefit aerobiological research, but also enable us to evaluate whether standard precautions 

currently undertaken in a clinical setting are adequate to protect patients and health-workers from 

infection.  Samplers currently used to collect pathogens include: solid impactors (the Anderson 

sampler, slit sampler, and cyclone sampler); liquid impactors (All-glass Impinger (AGI) and 

SKC BioSampler); and filters (gelatin filter and polytetrafluoroethylene (PTFE) filter).  The 

Anderson sampler is most efficient at capturing larger particles (0.65-7.5 µm), and also at 

providing size distributions (Verreault et al., 2008).  Slit samplers are capable of determining the 

aerosol concentration of bacteria as a function of time (Verreault et al., 2008).  The AGI and 

SKC BioSamplers operate on similar principles and demonstrate comparable performances 

(Hogan et al., 2005).  Filters are widely used because of their high physical collection 

efficiencies, for example, the gelatin filter was reported to have a high physical collection 

efficiency (>93%) for MS2 virus (Burton, Grinshpun, & Reponen, 2007).  Burton et al. (2007) 

recommend 0.3-µm PTFE filters for long-term virus sampling.  The glass fiber filter was 

evaluated for capturing endotoxin and influenza virus during air sampling (Thorne et al., 1997; 

Blachere et al., 2007).  In this study, we evaluated the performance of the 5 mL SKC BioSampler 
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(also referred to as an impinger), gelatin filter, and glass fiber filter in a laboratory setting with 

aerosolized solutions of influenza virus. 

The SKC BioSampler is being increasingly used in clinical settings to capture viruses and 

bacteria due to its relatively higher collection efficiency for viable virus capture compared to the 

gelatin filter.  It has also been used to capture the bacteriophage MS2, which was generated from 

a vomiting simulation machine to study the transmission of the human noroviruses (Tung-

Thompson, Libera, Koch, Francis III, & Jaykus, 2015).  The SKC BioSampler was chosen by 

Cao et al. as the reference with which to evaluate the NIOSH two-stage cyclone bioaerosol 

sampler and the SKC AirCheck TOUCH personal air sampler (Cao, Noti, Blachere, Lindsley, & 

Beezhold, 2011; Nguyen et al., 2017).  Fabian et al. (2009) reported that the gelatin filter, 

cascade impactor, and Teflon filter recovered around 7-22% of the amount of infectious virus 

recovered from the SKC BioSampler.  This may be attributed to the liquid media in the 

collection vessel, which provides a favorable condition for viral preservation (Lindsley et al., 

2010).  However, while it has been reported to efficiently collect submicrometer particles, it was 

unable to adequately collect bioaerosols in the 30–100 nm size range (Hogan et al., 2005).   

The gelatin filter has a high physical collection efficiency in the 100-900 nm size range (Burton 

et al., 2007), and it even outperformed the SKC BioSampler for the influenza A virus when 

sampling over a short period of time (under two minutes) (Wu, Shen, & Yao, 2010).   

The glass fiber filter has been used for a variety of applications, for example, ambient air 

sampling of trace elements in particulate matter (Jena & Singh, 2017; Tian, Pan, Wang, & Wang, 

2016), and aromatic amines in cigarette smoke (Zhang, Bai, Zhou, Liu, & Zhou, 2017).  

Although high collection efficiencies have been reported for fine particles (VanOsdell, Liu, 
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Rubow, & Pui, 1990), there are only limited studies that have applied glass fiber filter 

technology to aerobiology research.  For viral aerosols, the available data on glass fiber filter 

performance is almost exclusively limited to bacteriophages (Harstad, 1965; Harstad, Decker, 

Buchanan, & Filler, 1967).  It is therefore important to extend this research to other viruses, 

especially given the increasing interest among researchers and industry in low-cost filtration 

methods to recover or remove virus aerosols.  In addition, the glass fiber filter was a good 

counterpart to the gelatin filter for the experiments described in this paper. 

The collection efficiency of each sampler is critical for the reliability of laboratory and field 

measurements.  This is determined by examining two critical parameters: the physical collection 

efficiency of the sampler, and the recovery rate of infectious particles.  The physical collection 

efficiency describes how many particles can be sustained on the filter or in the collection vessel, 

regardless of whether these particles are still infectious.  This can be determined with 

microorganisms or small pellets, such as polystyrene latex (PSL) particles or sodium chloride 

particles.  For the SKC BioSampler, the evaporation of the liquid may increase particle bounce 

or lead to reaerosolization of the collected microorganisms, which decreases the collection 

efficiency of the device (Grinshpun et al., 1997; Lin, Willeke, Ulevicius, & Grinshpun, 1997).  

The sampling devices and collection process itself can also have negative effects on the recovery 

rate of collected microorganisms, for example, desiccation of the microorganism may occur in a 

filter medium (Dabisch et al., 2012).  Dramatic changes to a microorganism’s surroundings may 

also shock and kill them (Lindsley et al., 2010).  Therefore, the ability to recover infectious 

particles, which is measured by the ratio of viable viruses to the total viruses sent to the sampler, 

is also used to estimate the portion of microorganism that remains infectious after sampling.   
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Existing research has evaluated and characterized different samplers according to different 

standards.  Fabian et al. (2009) compared the T/I value (total virus concentration / infectious 

concentration) of the SKC BioSampler, cascade impactor, Teflon filters and gelatin filters with 

nebulized virus particles whose size is above 1 µm. Turgeon et al. (2014) compared the 

collection efficiency of the NIOSH sampler and the SKC BioSampler for five different 

bacteriophages.  Despite theses studies that incorporate different samplers in their sampling 

portfolio, uncertainty remains regarding the percentage of the total aerosolized viruses, which are 

subsequently recovered.  This percentage has been reported for the 20 mL SKC BioSampler with 

MS2 virus (Hogan et al., 2005; J. Lednicky et al., 2016); however, this percentage is still 

unknown for 5 mL SKC BioSampler with the real influenza virus.   

The objective of this study was to estimate the amount of influenza virus that each sampler was 

able to recover compared to the total aerosolized particles.  The size of interest was 10 – 400 nm, 

which is closer to the size of the airborne influenza virus when comparing with the size range 

(above 1 µm) reported by Fabian et al. (2009).  The performance of the glass fiber filter and the 

gelatin filter as for viral recovery was further evaluated.  Room sampling was also simulated by 

comparing direct sampling with indirect chamber sampling. 
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2. Materials and Methods 

2.1 Test virus 

The H1N1 influenza A virus A/Puerto Rico/8/1934 (IAV-PR8) was used as the test virus in this 

study and obtained from St. Jude Children’s Research Hospital.  It was propagated in the 

allantoic cavities of 10-day-old embryonic chicken eggs (Boon et al., 2010).  The allantoic fluid 

containing IAV-PR8 was diluted in sterile phosphate buffered saline (PBS) at the indicated doses 

of 105 – 10 tissue culture infectious doses per ml (TCID50/ml). 

2.2 Test samplers 

Three samplers were compared: the SKC BioSampler (5 mL, SKC Inc., Eighty-Four, PA, USA), 

the gelatin filter (3.0-μm pore size, Sartorius AG, Göttingen, Germany), and the glass fiber filter 

(Grade EPM 2000, 47 mm, Whatman®, USA) (Fig. A2.S1).  Each of these collection samplers 

possess different structures, working principles, and recovery methodologies.  The SKC 

BioSampler uses inertial impaction to collect and subsequently entrain particles in its sampling 

media.  It consists of three parts: an inlet, a critical orifice section, and a 5 mL collection vessel.  

These parts were autoclaved separately under a 30-minute sterilization cycle and a 30-minute dry 

cycle before sampling to minimize potential cross-contamination.  The temperature for the 

autoclave was approximately 122 °C, and it was maintained at a pressure of 1.24 pbar.  The 

critical orifice section contains three 0.63 mm tangential critical orifices (Hogan et al., 2005).  

Connecting the outlet to a vacuum pump creates a negative pressure over 0.5 atm (15 in Hg) 

downstream of the critical orifices.  This high-pressure drop across the critical orifices maintains 

a stable 12.5 L/min flowrate and creates a vortex in the media in the collection vessel into which 

the particles are subsequently entrained.  
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The gelatin and glass fiber filters must be placed in a filter holder (Figure A2.S1).  When air is 

drawn through the holder, particles collect on the dry film of the filter through the processes of 

diffusion, interception, and impaction.  Because they trap viruses on a dry film rather than in a 

liquid, additional extraction processes are required.  For the gelatin filter, this poses less of an 

issue, as the filter can be fully dissolved in a liquid (universal viral transport media, UTM 

(Becton, Dickson and Company, Sparks, MD), was used in the described experiments).  In 

contrast, the glass fiber filter is insoluble and requires extra processing to extract the captured 

viruses.  Two processing methods, submersion and swab, were tested separately on the glass 

fiber filters.  For the submersion method (Blachere et al., 2007), the glass fiber filter was torn 

into four pieces before being crumpled into a 3 mL vial of UTM solution.  To reduce the 

mechanical agitation that damaged the viral particles, we shortened the vortex time to thirty 

seconds and prolonged the submersion time to 15 minutes.  Then, the filter was removed and the 

liquid was centrifuged (1,000 x g, 10 minutes) at 4 °C.  For the swab method, the glass fiber 

filter was brushed with a Copan FLOQ swab (Becton, Dickinson and Company) using both 

vertical and horizontal strokes.  Next, the flocked swab was placed into a 3 mL vial of UTM for 

further analysis.  

2.3 Biological analysis with viral culture and real-time PCR.   

Culture and real-time PCR techniques were used to evaluate the amount of virus collected from 

each sampler.  For the culture method, virus titers were determined in Madin-Darby canine 

kidney (MDCK) cells as described previously (Boon et al., 2010). Briefly, confluent monolayers 

of MDCK cells were grown overnight in 96 well-plates.  The following day, the cells were 

washed with phosphate buffered saline (PBS) and inoculated with ten-fold serial dilutions (10-1 

to 10-8) of allantoic fluid or sample in Minimal Essential Medium containing penicillin, 
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streptomycin, L-glutamine, and vitamins plus 0.1% bovine serum albumin (M0.1B) for one hour 

at 37°C and 5% CO2.  After one hour, the cells were washed once with PBS and 200µl of M0.1B 

with 1µg/ml TPCK-trypsin was added to each well. After 72 hours at 37°C and 5% CO2, the 

presence of influenza A virus was determined by hemagglutination assay using 0.5% turkey red 

blood cells (Boon et al., 2010; Williams, Pinto, Doll, & Boon, 2016). The 50% Tissue Culture 

Infectious Dose (TCID50) was determined by the Reed-Muench method and presented as 

TCID50/mL (Reed & Muench, 1938). 

For real-time PCR based detection, the BioFire FilmArray Respiratory Panel (bioMerieux, 

Durham, NC) and the Xpert Flu/RSV Assay (Cepheid, Sunnyvale, CA) were used to detect the 

virus.  It is important to note that neither of these instruments can provide a quantitative assay.  

While the Biofire presents results as either positive or negative, the Xpert demonstrates 

decreasing cycle threshold values with increasing viral concentration (Table A2.1).  Both tests 

were performed according to manufacturer recommendations, with 300uL used for Xpert testing 

and 300uL used for Biofire analysis. 

Table A2.1 Correlation between the virus suspension concentration and the cycle value from the 

Xpert for qualitative assessment. 

Virus suspension concentration 

(TCID50/mL) 
Cycle value 

100 21 

100 20.4 

1,000 17.6 

1,000 17.2 

10,000 13.9 

10,000 14 
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2.4 Experimental set-up 

Table A2.2 provides details on the experiments that were performed in this study, characterizing 

both the physical collection efficiency (Experiment I) and the virus sampling efficiencies 

(Experiments II, III, and IV).  Virus concentrations, test sampling times, and flowrate 

specifications are also presented in the table.  Each test was repeated twice. The experimental 

set-up of each test is shown in Fig. A2.1.  For all experiments, a constant output atomizer (TSI 

3076), operating at a flowrate of 3 L/min and a pressure of 35 psi, was used to aerosolize 

particles.  The particle number size distributions both upstream (triangle in Fig. A2.1a) and 

downstream (square in Fig. A2.1a) of the samplers were measured using two scanning mobility 

particle sizers (SMPS).  A HEPA filtered air inlet was included in the setup, to create an open 

system and allow for the removal of any extra air flow.  All tests were conducted in a fume hood 

and the exhaust air was ventilated directly from the fume hood to a sterilizing exhaust. 
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Figure A2.1 Experimental set-up. 

*Exp. = experiment;  = the upstream of the sampler;  = downstream of the sampler. 
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Table A2.2 Summary of the experimental plan.  

Experiment Test Sampler 

Atomized 

solution 

(TCID50/ml) 

Run length 

(minutes) 
Specifications 

I.  

Efficiency 

1 Gelatin  

PBS 

3×3min 

Flowrate 

2, 3, 4 L/min 

2 Glass  3×3min 2, 3, 4 L/min 

3 SKC 3×3min 12.5 L/min 

II.  

Direct 

sampling 

1 

SKC  

10 20 

SKC 

solution 

5mL UTM 

2 10 5 5mL UTM 

3 10 4 4mL UTM 

4 10 5 4mL PBS 

5 100 10 4mL PBS 

6 1,000 10 4mL PBS 

7 10,000 10 4mL PBS 

8 100,000 10 4mL PBS 

III. Indirect 

sampling 

1 

SKC 

PBS  10 

SKC 

solution 

4mL PBS 

2 10 10 4mL PBS 

3 10 10 4mL PBS 

4 100 10 4mL PBS 

5 1,000 10 4mL PBS 

6 10,000 10 4mL PBS 

7 100,000 10 4mL PBS 

IV. 

Operation 

procedure 

1 
SKC, 

Gelatin  

Glass 

1,000 10 
Glass 

retrieve 

method* 

submersion 

2 1,000 10 surface swab 

3 100,000 10 submersion 

4 100,000 10 surface swab 

SKC = SKC BioSampler; Gelatin = gelatin filter; Glass = glass filter; Samples from the gelatin 

filter and SKC were retrieved using the same method.  The gelatin filter was dissolved in 3 mm 

of UTM solution.  The SKC solution was manually removed from the collection vessel. *Only 

the Glass fiber filter had different retrieval methods presented in this table. 

 

2.4.1 Physical collection efficiency 

To measure the physical collection efficiency (Experiment I), the atomizer was filled with 200 

ml PBS solution and was used to generate nanometer-size particles of PBS, with an average 

Geometric Mean Diameter (GMD) of 41.71±0.29 nm, ranging from 9.82 to 414.20 nm.  The 

physical collection efficiency ( phys ), defined in Eq. A2.1, was determined from Experiment I, 



290 

where ipd ,  is the particle diameter, and )( ,, ipnebd dn  and )( ,, ipdownd dn  are the size distributions at 

the exit of the nebulizer and downstream of the test samplers.  
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dndn
d


     (A2.1) 

Fig. A2.1a(1) depicts the setup for the gelatin and glass fiber filters.  The filters were operated at 

three different flowrates (Qf =2, 3, and 4 L/min), and controlled using a valve and rotameter.  In 

the SMPS-1 settings, in order to achieve a wide measurement size range, while keeping the 

particle concentration below the CPC saturation concentration, a sheath flowrate of 6 L/min and 

a CPC flowrate of 0.3 L/min were used. The SMPS-2 was operated under a high-flow mode (1.5 

L/min) to ensure the stability of the flow entering the instrument.  When the filter was operated 

at a flowrate of 2 L/min, the total flowrate before node A was 2.3 L/min (2 L/min from the filter 

and 0.3 L/min from the SPMS-1).  The addition of a HEPA filter permitted the removal of 0.7 

L/min of filtered air, which balanced the flowrate in the system.  In contrast, when the filter was 

operated at flowrates of 3 and 4 L/min, the total flowrate before node A was 3.3 and 4.3 L/min, 

respectively.  This time, the HEPA filter was used to supply additional filtered air to the system 

(0.3 and 1.3 L/min, respectively).  During this experiment, the physical collection efficiency of 

the gelatin and glass fiber filters were averaged over 9 minutes.  The SKC BioSampler was 

operated in much the same way, except for the higher flowrate (12.5 L/min), depicted in Fig. 

A2.1a(2). 

2.4.2. Virus collection efficiency 

To evaluate the virus collection efficiency (Experiments II-IV), the different concentrations of 

viruses, suspended in PBS solution, were atomized, generating particle sizes in similar ranges as 



291 

mentioned previously.  This time; however, the aerosolized particles were comprised of a 

mixture of viruses and PBS.  Similar to the findings from Hogan et al., (2005), the size 

distributions did not change with increasing virus concentrations.  This is due to the low virus 

mass to PBS solute mass ratio, and the fact that the PBS concentration was identical for each 

test.  In 1 mL of 105 TCID50/mL virus suspension, the mass of the total virus is 10-9 smaller than 

the mass of the total solutes from the PBS.  However, the concentration of each virus suspension 

will influence the number of viruses carried in each droplet or particle.  

Experiments II, III, and IV evaluated the capability of each sampler to collect viruses within the 

different experimental parameters.  In Experiment II (direct sampling) (Fig. A2.1b), virus 

suspensions ranging from 10 to 105 /mL were aerosolized and sent directly to the SKC 

BioSampler, which contained either a 4 ml solution of UTM or a 4 ml solution of PBS in its 

collection vessel.  Tests 1-4 compared the performance of the PBS and UTM solution.   

However, the UTM solution proved an unsuitable collection liquid due to excessive foaming 

which led to unacceptable evaporation and liquid losses; therefore, the remaining tests only used 

PBS solution as the collection fluid (Prior testing had demonstrated comparable PCR testing 

results with viral solutions in PBS and UTM, shown in Table A2.S1).  Tests 5-8 examined the 

sampling capability of the SKC BioSampler at different concentrations of virus suspensions.  The 

test parameters in Experiment III (indirect sampling) (Fig. A2.1c) echoed those of Experiment II, 

except for the addition of a chamber measuring 15” ×15” ×15” that was placed between the 

atomizer and the SKC BioSampler.  This forced the virus droplets generated by the atomizer to 

undergo additional evaporation, diffusion, and convection inside the chamber (Wang et al., 

2016), before being sampled by the SKC BioSampler, thus simulating more closely the physical 

changes of aerosols generated in a clinical setting, such as a hospital room.  During the sampling 
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process, the relative humidity levels within the chamber were sustained around 58.3% to 68.1%.  

Theoretically, the sampling efficiency for the indirect method should be lower than for the direct 

method due to particle diffusion losses in the chamber.  It is also worth noting that the size of the 

chamber will influence particle loss and the sampling results.  For these experiments, the 

chamber size was dictated by the space inside the fume hood where the tests were being 

conducted.   

Experiment IV (Fig. A2.1d) compared the side-by-side sampling performances of the SKC 

BioSampler, the gelatin filter, and the glass fiber filter.  The aerosolized particles were sent to 

each sampler simultaneously.  The flowrates remained the same for each test: 12.5 L/min for the 

SKC BioSampler, and 2 L/min for the gelatin and glass fiber filters.  The collection vessel of the 

SKC BioSampler was always filled with 4 mL PBS solution. The liquid from the SKC 

BioSampler and the UTM solution in which the gelatin filters were dissolved, were stored 

directly as samples.  To retrieve the viruses from the glass fiber filters, Tests 1 and 3 used the 

submersion method, while Tests 2 and 4 used the swab methods (described previously). 
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3. Results and discussion 

3.1 Experiment I: physical collection efficiency 

The physical collection efficiencies were calculated for each sampler using Eq. A2.1 and the 

particle number size distributions obtained from the 2 SMPSs during Experiment I.  Fig. A2.2 

and Fig. A2.3 present the results for the SKC BioSampler and gelatin filter respectively.  The 

SKC BioSampler demonstrated a U-shaped collection efficiency curve (Fig. A2.2), lowest for 

particles around 30 – 50 nm, which is close to the results from previous studies (Hogan et al., 

2005; Wei, Rosario, & Montoya, 2010), but higher than the efficiency reported by Hogan et al. 

(2005).  However, while Hogan et al. (2005) tested the 20 mL SKC BioSampler, the 5 mL SKC 

BioSampler was used in this study.  According to Zheng and Yao (2017), SKC BioSamplers 

with different vessel volumes demonstrated different collection efficiencies in the bacterial size 

range.  Presumably, this would pertain to virus size range also, therefore, differences in physical 

collection efficiencies may have resulted from the sizes of the collection vessels.  In addition, 

although we suspect that viral particles in the size range of 10-400 nm were not collected, we 

cannot rule out the mechanism of reaerosolization (Riemenschneider et al., 2010; Grinshpun et 

al., 1997), given the fierce vortex generated by the high flowrate, and the hydrophobic nature of 

the test virus.  Reaerosolization is determined by multiple factors: sampling time, aerosol 

flowrate, and the suspension concentrations of the liquid in the collection vessel.  Although 

reaerosolization has not been characterized as a significant limitation of the SKC BioSampler, it 

may still influence the overall performance (Riemenschneider et al., 2010; Grinshpun et al., 

1997).  Within the examined size range, the highest efficiencies were also observed at 10 nm 

(0.9), possibly due to enhanced diffusion inside the collection vessel, and 300-350 nm (~0.7), 

which has been attributed to enhanced impaction and interception (Hogan et al., 2005).  The 
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strong dependence between collection efficiency and particle size emphasizes the importance of 

knowing the size range of the pathogen being collected, which in the case of spherical IAV-PR8 

virus, is 80-120 nm (Rossman, Leser, & Lamb, 2012). 

 
Fig. A2.2 The physical collection efficiency of the SKC BioSampler.  

*The flowrate was kept constant at 12.5 L/min. Results are based on the average of 9 test runs.  

 

 
Fig. A2.3 The physical collection efficiency of the gelatin filter with varying flowrates and 

sampling times. 
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Fig. A2.3a depicts the influence of particle size and flowrate on the physical collection efficiency 

of the gelatin filter, which was generally able to capture larger particles more efficiently.  

However, the sampling flowrate influenced the efficiency curves: a collection efficiency of 

almost 100% across all particle sizes was observed at the lowest flowrate, while the collection 

efficiency increased with particle size at the highest flowrate.  In addition, the performance of the 

gelatin filter was unpredictable under higher flowrate.  This trend persisted during repeated tests.  

To show this phenomenon, the total physical collection efficiency ( totphy, ), defined in Eq. A2.2, 

where upN  and downN  represent the upstream and downstream particle number concentrations, 

was calculated and plotted against time (Fig. A2.3b).  

up

downup

totphys
N

NN 
,       (A2.2) 

In general, it is difficult to determine the influence of flowrate on a gelatin filter.  In these 

experiments, the gelatin filter collecting at a flowrate below 2 L/min demonstrated stable 

performances during three repetitions each lasting 9 minutes.  However, the physical collection 

efficiencies when collecting between 3 and 4 L/min were unpredictable.  The texture of the 

gelatin filter deteriorated during the sampling period, changing from brittle to ductile as the 

aerosolized particles were continually introduced (Wu, Shen, & Yao, 2010).  Fig. A2.S3 is a 

photo of the gelatin filter dissolving within the filter holder after sampling.  The gelatin filter is 

sensitive to relative humidity, which may impede its performance over extended periods of time 

(Haig, Mackay, Walker, & Williams, 2016), potentially making it an unpredictable collection 

medium.  Results indicate that a dry flow, and a low flowrate, as well as a short sampling time 

are the best operating conditions for the gelatin filter, which seems to perform sub-optimally 
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when these conditions are reversed.  In contrast, the glass fiber filter demonstrated a very stable 

physical collection efficiency (100%) across all measured particle sizes, and during the different 

flowrates.  The efficiency remained stable for the entire test duration (~ 2 hours).  

3.2. Experiments II and III: comparison of direct and indirect sampling 

Experiments II and III focused on the collection efficiency of viral particles from the SKC 

BioSampler only.  Three methods were used to detect collected viral particles: 1) BioFire 

Multiplex Respiratory Panel (Biofire), 2) Xpert Flu/RSV assay, and 3) culture.  While culture is 

able to determine viable virus concentration, Biofire and Xpert, which are both real-time PCR 

methods, are able to detect the presence of viral RNA but are not able to distinguish whether 

there are viable viruses or not.  Tests 5-8 used PBS solution as the virus collection liquid.  For 

the remainder of this section, the term “suspension” will refer to the solution inside the atomizer, 

and the term “liquid sample” will refer to the solution inside the collection vessel of the SKC 

BioSampler.  The results from the BioFire and Xpert PCRs are presented in Table A2.3 and Fig. 

A2.4, respectively.  In both direct and indirect sampling, the BioFire PCR reported positive 

influenza A results only from starting suspensions of 10,000 and 100,000 TCID50/mL.  The 

Xpert PCR was able to detect virus from starting suspensions of 1,000, 10,000 and 100,000 

TCID50/mL in direct sampling, and suspensions of 10,000 and 100,000 TCID50/mL in indirect 

sampling.  However, the Xpert cycle threshold for 1,000 TCID50/mL was 35.4 for the liquid 

sample from both tests, compared to 34 and 32.3 for 10,000 and 28.2 and 27.3 for 100,000 

TCID50/mL, respectively, reflecting the relatively lower abundance of virus in the 1000 

TCID50/mL sample. Although lower numbers of PCR cycles were needed to detect the virus in 

the more concentrated suspensions, results still indicated that the relative abundance of virus in 

these samples was low (refer to Table A2.1).  The viral culture results were similar (Table A2.4); 
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a positive well was detected only in the sample liquid for the highest virus suspension (100,000 

TCID50/mL).  The positive well was detected with a 1:10 dilution ratio, which translates to a 

virus concentration of the liquid sample at approximately 100 TCID50/mL. 

 
Figure A2.4 Summary of Xpert results from a) direct sampling, and b) indirect sampling using 

the SKC BioSampler. 

*PBS = only PBS was aerosolized for a control; all other experiments used PBS plus different 

concentrations of virus; Assay 1 = first batch of results; Assay 2 = second batch of results; Neg = 

negative (no influenza A virus was detected in the sample). 
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Table A2.3 Summary of BioFire results from the direct and indirect sampling. 

Experiment 
Atomized virus suspension 

(TCID50/mL) 
Interpretation 

Direct sampling-

Experiment II 

100 Negative 

1,000 Negative 

10,000 Influenza A 

100,000 Influenza A 

Indirect sampling-

Experiment III 

PBS Negative 

10 Negative 

100 Negative 

1,000 Negative 

10,000 Influenza A 

100,000 Influenza A 

*Identical results were obtained with all repeated sampling 

Table 2.4 Summary of culture results from the Experiment IV 

Experiment  

(Test number) 

Atomized virus 

suspension 

(TCID50/mL) 

Sampler 

Culture 

results 

(TCID50/mL) 

Experiment IV (1) 1,000 SKC  Negative 

  Gelatin Negative  

  Glass (submersion)  Negative 

Experiment IV (2) 1,000 SKC Negative 

  Gelatin Negative  

  Glass (swab) Negative 

Experiment IV (3) 100,000 SKC  1,000  

  Gelatin <31 

  Glass (submersion)  <31 

Experiment IV (4) 100,000 SKC  100  

  Gelatin 47 

  Glass (swab) <31 

 

The Biofire PCR results from indirect sampling (with the chamber) were similar to those of 

direct sampling, with positive influenza A virus detected in the liquid samples of 10,000 and 

100,000 TCID50/mL suspensions (Table A2.3).  However, the Xpert PCR was able to detect 

virus when the atomized virus suspension concentration was 1,000 TCID50/mL or higher during 
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direct sampling, but was only able to detect virus in the 10,000 and 100,000 TCID50/mL 

suspensions during indirect sampling. Another thing to note is the increased number of Xpert 

PCR cycles that were required to detect any viral particles for the atomized 100,000 TCID50/mL 

suspension during indirect versus direct sampling, which indicates lower amounts of virus 

present in the samples collected during indirect sampling.  The particle size distributions for 

direct sampling and indirect sampling are included in the supplementary material (Fig. A2.S2), 

showing that smaller particles (<50 nm) may be scavenged due to diffusion loss.  This may 

indicate that fewer viral particles were collected during indirect compared to direct sampling and 

consideration should be paid regarding the type of sampling (direct versus indirect) that is being 

conducted in order to interpret the results obtained.  These findings were reinforced by the 

culture results. 

3.3 Experiment IV: comparison of different samplers and different operation procedures  

First, the extraction rate for the gelatin and glass fiber filters were compared with direct 

inoculation experiments.  Two glass fiber filters and one gelatin filter were placed in individual 

petri dishes.  Virus suspension solution, containing approximately 31,000 live viruses, was then 

injected onto each filter inside of the petri dish.  Next, the gelatin filter was dissolved in 3 mL of 

UTM solution.  One of the glass fiber filters was treated with the submersion method using 3 mL 

of UTM solution, and the other one was treated with the swab method using another 3 mL of 

UTM solution.  Subsequent culture analysis of the liquid samples detected concentrations of 

approximately 4,700, 470, and <31 TCID50/mL for the dissolved gelatin filter, submerged glass 

fiber filter, and the swabbed glass fiber filter, respectively.  After multiplying the detected 

concentrations by the volume of the UTM solution (3 mL), the total number of viruses detected 

from the gelatin filter, the submersion method, and the swab method were calculated to be 
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14100, 1410, and <93, respectively.  These results indicate that the gelatin filter outperformed 

the glass fiber filter ten-fold and was able to retrieve around 45% of the total virus loading that 

had been injected into the petri dish.  It is likely that viruses were killed during the processing, 

which would explain the moderate virus recovery percentage of the gelatin filter.  The glass fiber 

filter fared even worse, with an extraction rate of only 5% and 0.3% for the submersion and swab 

methods, respectively.  A similar concern, regarding the impact of low extraction rates on qPCR 

results, was previously expressed by Hospodsky, Yamamoto, & Peccia (2010).  Either the glass 

fiber filters may bind viruses tightly to their surfaces, or the recovery process involving 

mechanical agitation and vibration may deactivate virus.   

After direct inoculation experiments, the liquid samples from the SKC BioSampler, the gelatin 

filter, and the glass fiber filter collected during atomization of the viral suspension solutions were 

compared using culture and Xpert PCR; results are reported in Table A2.4 and Fig. A2.5. As 

previously described, no viable viruses were detected during viral culture of the samples 

collected for the 1,000 TCID50/mL atomized virus suspensions by any of the samplers.  For 

suspensions of 100,000 TCID50/mL, only the SKC BioSampler and the gelatin filter produced 

positive culture results.  The SKC BioSampler retrieved approximately 100 – 1000 TCID50/mL 

of 4 mL liquid in the collection vessel using viral culture, which was the highest retrieval rate of 

all the samplers.  This was consistent with the Xpert PCR results, which showed that sample 

liquid from the SKC BioSampler required the lowest number of cycles to detect (Figure A2.5).  

The gelatin filter retrieved around 30 – 50 TCID50/mL of 3 mL of UTM solution.  The number of 

viral particles captured by the gelatin filter was around 3 – 35% of what was captured by the 

SKC BioSampler.   
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Figure A2.5 Summary of Xpert results from Experiment IV  

*SKC = SKC BioSampler; Gelatin = gelatin filter; Glass = glass fiber filter; Exp = experiment; 

Sub = submersion method; Swab = swab method; Neg = negative (no influenza A virus was 

detected in the sample). 

 

For the glass fiber filter, the Xpert reported positive results for the submersion method, and 

negative results for the swab method for the same virus suspension (100,000 TCID50/mL).  

Therefore, the submersion extraction method was more effective than the swab method.  

It is also important to compare the number of viral particles retrieved to the total number of viral 

particles that entered the sampler.  To estimate this number, the liquid consumption rate of the 

atomizer was estimated and compared to the viral culture results.  In general, the atomizer 

consumed 7 mL hourly.  This means that an atomized virus suspension of 100,000 TCID50/mL 

would generate a total of 90,000 viral particles in the air flow entering the SKC BioSampler, 

over a period of 10 minutes (the length of sampling for the current testing). This was calculated 



302 

by multiplying the initial virus concentration in the atomizer (100,000 TCID50/mL) by the hourly 

liquid consumption of the atomizer (7 mL/h), multiplied by the duration of the experiment (1/6 

h), multiplied by the SKC BioSampler flowrate (12.5 L/min) divided by the total flowrate for all 

samplers (16.5 L/min). Since there was 4 mL of liquid sample inside the SKC BioSampler, there 

would be around 400 to 4,000 viable viruses (100 – 1000 TCID50/mL * 4 mL) (Table A2.4) 

captured by the SKC BioSampler.  Therefore, the SKC BioSampler was able to collect only 0.5 – 

5% of atomized viruses.  This percentage is comparable with the percentage reported by Hogan 

et al. (2005) and Lednicky et al. (2016) for the 20 mL SKC BioSampler.  A low collection 

efficiency will be a concern in the clinical setting, especially for low virus concentrations.  This 

work indicates that if a positive result is obtained using SKC BioSamplers, the virus 

concentration in the surroundings is likely to be high.  However, negative results can not assure a 

healthy environment.  Further work and improvements are required to extrapolate the results in 

practical use for quantitatively measuring airborne viruses.  The recently developed laminar-

flow, water-based viable virus aerosol sampler (VIVAS) may be as a promising technology to 

improve the viable sampling efficiency (J. Lednicky et al., 2016; Pan et al., 2016). 

Although the virus collection efficiency for the SKC BioSampler is relatively low, it far 

outperforms both the gelatin (maximum of 1.5%) and glass fiber filter (too low to quantify).  

There are several reasons for the overall low collection efficiency reported here.  The large 

pressure drop in the atomizer may have killed and deactivated some of the virus particles.  The 

similar T/I values of the prepared viral suspension and the BioSampler® collected liquid implies 

that the nebulization process did not overly affect the viability of virus (Fabian et al., 2009).  

However, the T/I value characterizes the viability of the captured influenza virus, rather than 

quantitively estimates the proportion of the viruses captured by the samplers.  So, it is possible 
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that particles are destroyed or deactivated during the atomization process.  Furthermore, the 

droplets from the atomizer evaporated gradually during the sampling process, which may lower 

the portion of viable viruses (Haig et al., 2016).  Equally, increasing sampling time will also 

desiccate or deteriorate the filters, either of which could compromise the viability of the 

pathogen (Haig et al., 2016, Wu, Shen, & Yao, 2010).  This evaporative process may also 

decrease the risk of viable virus survival in clinical settings.  Specific to the SKC BioSampler, 

the pressure variation at the critical orifice and the shear force due to the violent vortex in the 

collection vessel could also influence the viability of the viruses (Haig et al., 2016).  There may 

also have been reaerosolization of the particles due to the high sampling flowrate and the low 

virus concentration of the liquid in the collection vessel (Riemenschneider et al., 2010).  Virus 

particles adhere to the walls of the collection vessel may further decrease the collection 

efficiency (Haig et al., 2016).  Studies have also shown that the volume of the collection liquid 

can impact viability (Zheng & Yao, 2017).  The dry surfaces intrinsic to the filters may not be a 

suitable environment to sustain virus viability (Dabisch et al., 2012; Lindsley et al., 2010).  What 

is more, the additional extraction processes required for retrieval from the filters could result in 

even further losses.     

4. Conclusions 

Results indicated that the gelatin and glass fiber filters demonstrated high physical collection 

efficiencies.  However, concerns over the stability of the gelatin filter were noted.  The glass 

fiber filter maintained high physical collection efficiency across all measured particle sizes, 

sampling flowrates, and sampling times.  The SKC BioSampler demonstrated a slightly lower 

physical collection efficiency, especially for particles around 30 - 50 nm, but had the highest 

virus collection efficiency compared to either of the filters.  This was most likely due to the 
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liquid media inside the collection vessel, which provided a more suitable environment for the 

preservation of viruses.  Although the SKC BioSampler demonstrated the highest retrieval rates, 

it still only managed to recover at most 5% of the total influenza A virus particles.  However, the 

retrieval rate for the gelatin filter (at most 1.5 %) and glass filter (too low to quantify) were still 

lower.  In order to obtain positive results for any of the samplers, the total concentration of 

viruses entering the sampler must be considered.  This poses a challenge when working in the 

field where there is expected to be substantial variability in viral shedding by a patient depending 

on a patient’s immune status and vaccination status, how long they have been symptomatic and 

whether they are taking antiviral medications.   
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Supplementary material 

Table A2.S1 The cycle threshold established for the UTM and the PBS solution containing 

different concentrations of influenza A. 

Virus particle concentration in 

the suspension (#/mL) 

Cycle threshold values for the PBS and the UTM 

virus suspensions 

PBS UTM 

Assay 1 Assay 2 Assay 1 Assay 2 

100 21 21.8 20.4 21.3 

1,000 17.6 18.4 17.2 18.1 

10,000 13.9 14.7 14 14.7 

 

 

Figure A2.S1 Major components of the SKC BioSampler, the glass fiber filter, and the gelatin 

filter with the filter holder. 
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Figure A2.S2 Particle size distributions for direct sampling and indirect sampling. 

 

 

 

Figure A2.S3 A photo of the gelatin filter dissolved in the filter holder after sampling for nine 

minutes. 
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Appendix III: Comparative study on the size 

distributions, respiratory deposition, and 

transport of particles generated from 

commonly used medical nebulizers 

 

The results of this chapter have been published in Wang, Y., Li, J., Leavey, A., O'Neil, C., 

Babcock, H. M., & Biswas, P. (2017). Comparative study on the size distributions, respiratory 

deposition, and transport of particles generated from commonly used medical nebulizers. 

Journal of aerosol medicine and pulmonary drug delivery, 30(2), 132-140. 

 



312 

Abstract: 

Medical nebulizers are widely and conveniently used to deliver medication to the lungs as an 

inhalable mist; however, the deposition of nebulized particles in the human respiratory system, 

and the transport of the nebulized particles in the environment have not been studied in detail. 

Five medical nebulizers of three different types (constant-output, breath-enhanced, and 

dosimetric) were evaluated. The size distribution functions (SDFs) and respiratory deposition of 

the particles generated from the nebulizers were characterized. The SDFs were obtained with an 

Aerodynamic Particle Sizer (APS, TSI Inc., St. Paul) after data correction, and the respiratory 

deposition was calculated according to the model developed by the International Commission on 

Radiological Protection. The evaporation, Brownian diffusion, and convective movement are 

further calculated based on aerosol properties. The SDFs measured by the APS indicated that 

most of the generated particles were in the size range of 1 to 8 μm. The operating pressure and 

flow rate affected the number-based SDF of the nebulized particles. Although different values of 

mean aerodynamic diameter (MAD) were obtained for the nebulizers, the mass median 

aerodynamic diameter (MMAD) did not differ significantly from each other (between 4 and 5 

μm). According to calculation, the deposition of particles in the head airways region accounted 

for the most of the particle mass collected by the respiratory system. Convective movement was 

the dominant mechanism for the transport of particles in the size ranges investigated. Relative 

humidity-dependent evaporation can significantly decrease the size of the emitted particles, 

resulting in a different respiratory deposition pattern such that the amount of particles deposited 

in the alveolar region is greatly enhanced.  Appropriate protection from these particles should be 

considered for those persons for whom the medication is not intended (e.g., healthcare workers, 

family members).  
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Introduction 

Medical nebulizers are widely used in respiratory treatments, where medicine-containing 

droplets are generated by atomization and delivered to patients through the inhalation gas flow1. 

The nebulized particles deposit in different regions of the respiratory system and deliver the drug 

to the target area. Three types of commercial medical nebulizers are currently on the market2: 1) 

constant-output; 2) breath-enhanced; and 3) dosimetric. Each type of medical nebulizer has 

different advantages in terms of cost, reliability, and efficiency. The constant-output nebulizers 

operate with a T-mouthpiece, where half of the medication is exhausted during exhalation. This 

waste of medication is eliminated in the breath-enhanced and dosimetric type nebulizers because 

they have one-way valves that only allow particles to be generated and transported during 

inhalation. The size of the nebulized particles is one of the most important factors that determine 

the performance of a medical nebulizer. Other parameters, such as breathing rate and maneuver, 

lung structure and dimension, also significantly influence the particle deposition in lungs. The 

mass median aerodynamic diameter (MMAD), often used to evaluate medical nebulizers, is the 

particle diameter separating the higher half of the particle mass from the lower half. Because 

particle deposition characteristics are closely related to particle size, MMAD determines where 

in the respiratory tract, and in what proportion, most of the particles are deposited after they are 

inhaled3. The particle size distribution function (SDF) provides the particle concentration as a 

function of the particle diameter4. By further considering the deposition efficiencies as a function 

of particle diameter, we can accurately calculate the fraction and location of particles deposited 

in respiratory systems5.  
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Various instruments can measure the size characteristics of nebulized particles. Cascade 

impactors use a particle’s inertia to classify particles according to its aerodynamic size6, 7. The 

drawbacks of this method are the intensive labor required and the low-resolution of the SDF due 

to the limited number of impactor stages, constrained by their mass and bulk. Laser diffraction 

determines aerosol SDF based on the Mie theory, which is dependent on the material type and 

shape of the particles8. Time-of-flight (TOF) aerosol analyzers use light detection to measure the 

aerodynamic diameters of particles during a controlled acceleration in a well-defined flow field, 

but coincidence effects during sampling limit the accuracy of the measurement above certain 

particle concentrations9-11.  

Multiple studies have used these methods to compare the performance of medical nebulizers, and 

concluded that the MMAD of nebulized particles differ significantly depending on the design of 

the nebulizers2, 12-15. Up until now, very few studies have reported the SDFs of the nebulized 

particles generated by different types of nebulizers. Furthermore, only limited studies have 

investigated the effects of a nebulizer’s operating conditions, such as gas flow rate and pressure, 

on the SDF of the generated particles16-18. The operating pressure affects the shear force applied 

on the nebulized droplets, which influences the size of the generated particles. The gas flow rate, 

typically decided by a patient’s inhalation flow rate, also determines the size and amount of 

particles lost in the nebulizer due to inertial impaction. The resulting change in the particle SDF 

will ultimately change the amount of medicine deposited in the patient’s respiratory tract.  

Impaction, settling, and Brownian motion are three major mechanisms that cause particles to 

deposit in the respiratory system. A particle’s size determines the relative importance of these 

mechanisms, and affects the fraction of particles depositing in the three regions of the respiratory 

system: the head airways (HA) region, tracheobronchial (TB) region, and alveolar (AL) region. 
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A model developed by the International Commission on Radiological Protection (ICRP19) is 

widely used for predicting total and regional deposition of inhaled particles. It estimates the 

amount of deposited particles over a wide range of particle sizes and breathing conditions. 

Hence, by integrating the product of the SDF and the size dependent deposition efficiency, one 

can calculate the amount and fraction of nebulized particles depositing in different respiratory 

regions, and hence quantify the dose delivered to a target region.   

However, one unintended consequence of using nebulizers for drug delivery to a patient is the 

potential exposure of healthcare workers, which may be especially concerning if the medication 

has side effects, given the likelihood that medical staff will be exposed to this medication, or 

multiple medications, over many years.  As particles move through the air, they age and 

transform, thus their SDF and deposition characteristics may change, leading to different 

deposition fractions in the respiratory systems of those nearby, than the ones of the intended 

target.  Therefore, it is imperative to study not just the SDF and deposition characteristics of 

freshly nebulized particles, but also to examine the changing characteristics of these nebulized 

particles as they transport and transform away from source and are subsequently inhaled by 

nearby individuals.  

In this study, five commonly used medical nebulizers under a range of operating conditions, 

focusing on the SDF and deposition characteristics of the nebulized particles are evaluated. The 

transportation and transformation of the nebulized particles in the surrounding environment was 

also analyzed, and the deposition of the transported particles in the respiratory systems of 

individuals present in the vicinity is briefly discussed.  
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Materials and Methods  

Experimental Setup 

Figure A3.1 shows schematic diagrams of the tested medical nebulizers and the experimental 

setup. Five nebulizers of three types were tested in this study: the AirLife Misty Max 10 

nebulizer (Figure A3.1a, CareFusion, Chicago, IL) and SideStream nebulizer (Figure A3.1b, 

Philips Respironics, Parsippany, NJ) are the constant-output type; the SideStream Plus nebulizer 

(Figure A3.1c, Philips Respironics, Parsippany, NJ) and PARI LC Sprint nebulizer (Figure 

A3.1d, PARI Respiratory Equipment, Inc., Midlothian, VA) are the breath-enhanced type; and 

the AeroEclipse II Breath Actuated nebulizer (Figure A3.1e, Monaghan Medical Corp., 

Plattsburgh, NY) is a dosimetric type. For simplicity, these five nebulizers are referred to as the 

Misty Max 10, SideStream, SideStream Plus, PARI, and AeroEclipse, respectively. The 

constant-output nebulizers generate particles regardless of the patient’s breathing status. During 

exhalation, the atomized particles can escape from the exit points of the nebulizers due to the 

convective flow of the exhaled air, resulting in a loss of medication. The breath-enhanced 

nebulizers use one-way valves that allow generated particles to exit the nebulization chamber 

only during inhalation, while the exhaled air is released directly into a port near the mouthpiece. 

The dosimetric nebulizers go even further by connecting the one-way valves with a switch that 

controls the liquid flow through the nebulizer, so that particles are only generated during 

inhalation.  
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Figure A3.1 Schematic diagrams of the five nebulizers and the experimental setup. a. Misty Max 

10 nebulizer; b. SideStream nebulizer; c. SideStream Plus nebulizer; d. PARI nebulizer; e. 

AeroEclipse nebulizer; f. diagram of the experimental setup.  

 

Figure A3.1f displays the platform for testing the performance of the nebulizers. The 

experiments were conducted in an open laboratory space where the temperature and relative 

humidity (RH) were kept at 22.5 oC and 45%, respectively. Before nebulization, each device was 

filled with 5 ml of 0.9 % NaCl (>99.0%, Sigma-Aldrich, St. Louis, MO) aqueous solution. 

Compressed air was used as the high pressure source, and controlled by a pressure regulator 

(Airgas, Inc., Radnor, PA). The flow through the mouthpiece (outlet) of the nebulizer was split 

into two streams. One stream was fed into an aerodynamic particle sizer (APS, TSI 3321, St. 

Paul, MN) through a 10 cm tube at a flow rate of 5 lpm. To achieve a controllable outlet flow 

rate, the other stream was connected to a rotameter (Dwyer Instruments, Michigan City, IN) and 

a vacuum source. The RH value of 98±5% at the inlet of the APS was measured with a sensor 

probe (HMP60, Vaisala Inc., accuracy: ±3% in 0 to 90% RH, ±5% in 90 to 100% RH). 
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Operating on the time-of-flight theory, the APS measures the aerodynamic size distributions of 

particles ranging from 0.5 to 20 μm, which is a suitable range for evaluating medical nebulizers 

whose MMAD values are between 1 and 10 μm. In the APS, the sampled particles flow along the 

centerline of an accelerating flow created by the sheath air. As they pass through two broadly 

focused laser beams, each particle scatters light twice, which is collected by the photodetector in 

the APS. The aerodynamic particle size is then calculated based on the time interval between the 

pulses of the scattered light. Existing work has shown that shifts in particle size may occur due to 

the gradual accumulation of particles in the nozzle of the APS. This size shift20 in μm is 

quantified by Eq. A3.1 as shown in Table A3.1. Other important equations used in this study are 

also listed in Table A3.1.  
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Table A3.1 Equations used for calculating the respiratory deposition, transform, and transport of 

nebulized particles.  

No. Equation 
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Experimental Plan 

The particle size distribution function (SDF) and time for nebulizing the entire solution were 

experimentally studied. Before directly comparing the five nebulizers, we first investigated the 

influence of the operating conditions on their performance. In this study, the operating pressure 

and the flow rate at the nebulizer outlet can change the SDF of the nebulized particles. Pressures 

of 25, 35, and 45 psi were used, covering the recommended operating pressures of the tested 

nebulizers. A nebulizer’s outlet flow rate is typically determined by a patient’s inhalation flow 

rate, which is strongly dependent on the age, gender, and exercise level of the patient21. Based on 

the age and activity of a person, the average inhalation flow rate may range from 10 to 40 lpm 3. 

In this study, nebulizer outlet flow rates of 10, 20, and 30 lpm were used, resulting in flow rates 

through the bypass stream of 5, 15, and 25 lpm, respectively. The results and discussion 

highlight the influence of operating conditions on the Misty Max 10 nebulizer only, since similar 

influences were also observed for the other nebulizers. The direct comparisons among the five 

nebulizers were conducted at a pressure of 35 psi and an outlet flow rate of 20 lpm. Each test was 

conducted at least three times to ensure repeatability. With the obtained SDF, we could further 

calculate the respiratory deposition and transport of nebulized particles.  

 

Respiratory deposition of nebulized particles 

The deposition of particles in the human respiratory system is strongly dependent on the SDF of 

the particles22. Smaller particles have larger diffusivity and smaller inertia, making it easier for 

them to diffuse to the deeper alveolar (AL) region, where the particle residence time is the 

highest and the airway is the narrowest. With higher mass and inertia, the larger particles are 

predominantly collected in the head airways (HA) and tracheobronchial (TB) regions due to 
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impaction. Settling by gravity further affects particle deposition in the TB regions.  Apart from 

particle SDF, the deposition of particles is also affected by breathing conditions. There is large 

inter-subject variability among adults and children, and individuals may have different 

deposition patterns. The ICRP model uses empirical equations based on experimental data and 

theory to characterize deposition by different mechanisms. Averaging the data for males and 

females at three exercise levels yields a set of simplified equations which estimates the 

deposition fractions of pd -sized (aerodynamic size) particles in different respiratory regions.  

The deposition fraction for the HA region ( HADF ) is calculated by Eq. A3.2, where IF  is the 

inhalable fraction and satisfies )
00076.01

1
1(5.01

8.2

pd
IF


 . The deposition fractions for the 

TB region ( TBDF ), AL region ( ALDF ), and the whole respiratory system are calculated by Eqs. 

A3.3, A3.4, and A3.5, respectively. Since the APS measures the aerodynamic particle size, the 

mass-based SDF can be calculated by multiplying the size-based SDF with the mass of particles 

at each size, where particles were assumed to be spherical. The regional and total deposition of 

particle mass are then calculated by integrating the product of DFs (DFHA, DFTB, and DFAL) and 

the mass-based particle SDF, and the total particle mass concentration is calculated by 

integrating the mass-based particle SDF only. Further, we can obtain the mass fraction of 

particles deposited in different regions of the respiratory system by taking the ratio of the 

deposited mass over the total particle mass.  

 

Transport of nebulized particles 
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Medical nebulizers may release some of the generated particles into the surrounding 

environment.  These particles can then transport to the respiratory systems of nearby healthcare 

workers. Hence, it is important to examine how particle properties change during their 

transportation through the surrounding environment, for example, the medicine-containing 

droplets may lose solvent due to evaporation, leading to a change in the aerodynamic particle 

size. The movement of the nebulized particles are governed by Brownian diffusion, as well as 

the convective flow of the surrounding air. Theoretically, these mechanisms should be solved 

simultaneously to accurately predict the transform and transport of particles. However, the 

combined equation is a complex non-linear second order partial differential equation which 

cannot be solved analytically. To simplify this analysis, the three processes that alter particles’ 

properties: evaporation, Brownian diffusion, and convective flow, are considered separately.  

Evaporation occurs when the pressure of the solvent at the surface of the particle is higher than 

the pressure of the environment. With water as the solvent, the characteristic evaporation time of 

a particle with a diameter of 
pd  can be calculated with Eq. A3.6, where D  is the diffusion 

coefficient of water vapor molecules, dp  and ep  are the water vapor pressure at the surface of 

the droplet and the environment, mv  is the volume of the water molecule, k  is Boltzmann’s 

constant, and T  is the temperature. ep  is dependent on the RH and the water saturation vapor 

pressure ( sp ), where se RHpp  , and a value of 3173 Pa was used for sp  according to the 

property of water vapor at 25 oC. Hospitals typically maintain an RH of at least 30 % in different 

types of rooms23, meaning that the nebulized particles will evaporate quickly due to the vapor 

pressure difference. This reduction in size means that now any nearby healthcare workers are 

potentially being exposed to a higher fraction of smaller particles with high diffusivity and low 
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inertia, which if inhaled, may deposit further down in the AL region.  Thus, the particle 

respiratory deposition patterns may differ between the patient for whom the medicine is targeted, 

and nearby healthcare workers.    

It should be noted that nebulization also generates highly concentrated water vapors; hence the 

RH around the nebulized particles continuously changes, from around 100% at the outlet of the 

nebulizer to the RH in the surrounding air. In this study, characteristic evaporation times were 

calculated with various RH values to determine the effect of evaporation. Due to the Kelvin 

effect and solute interaction24, the water vapor pressure at the surface of the droplet is determined 

by Eq. A3.7. In this equation,   is the surface tension of water, 2n  is the number of moles of 

solute in the droplet, and AN  is Avogadro’s number. In this studied case (0.9 % saline 

solution), 6/3

2 pAm dNvn  , resulting in a relationship of )
4

exp(
kTd

v
pp

p

m
sd


 . According to 

Eqs. A3.6 and A3.7, the characteristic evaporation time is strongly dependent on the diameter of 

the droplet.  

Particle diffusion occurs when there is a concentration gradient of particles in space. Neglecting 

the convective air flow around the medical nebulizer and considering the nebulizer as a spherical 

source releasing particles, we derived a second-order partial differential equation (Eq. A3.8) 

describing the concentration distribution of particles as a function of time. In this equation, n  is 

the concentration of particles, t  is time, r  is the radial distance between the point of interest and 

the particle source, and D  is the diffusion coefficient of the particle. D  is calculated by 

pdkTCD 3/ , where C  is the Cunningham correction factor. For particles larger than 1 μm, 

C  has a value close to 1. The boundary conditions of Eq. A3.8 are 0),0(  rtn , 
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0),( nRrtn  , and 0),( rtn , where R  is the radius of the particle-emitting source and 0n  

is the particle concentration at the surface of the source. This partial differential equation has an 

analytical solution as shown in Eq. A3.9.  

Due to ventilation and gravitational force, particles may move through convection, as described 

by Eq. A3.10, where v


is the velocity of particles. Eq. A3.10 has boundary conditions of 

0),,,0(  zyxtn , 0),0,,( ntzyxn  . For particles generated from medical nebulizers, 

v


evolves from an initial velocity to a final constant velocity. The characteristic time that 

determines this evolution is calculated by Eq. A3.11, where 
p  is the density of the particle. 

After the particle reaches a constant velocity, Eq. A3.10 can be further simplified by taking v


 

out of the divergence operator. The solution for Eq. A3.10 is a wave that travels with a speed v


, 

while the shape of the solution does not change as a function of time and location. In the case of 

particles generated from nebulizers, this solution means that the particle concentration of a 

location remains 0 until the flow of particles passes by, which changes the particle concentration 

to 0n . Particle transport in the case of convective movement is determined by the final particle 

velocity. This final particle velocity is affected by the external air velocity and the particle 

settling velocity due to gravitational force. So, it is necessary to compare the magnitudes of these 

two velocities. The particle settling velocity is calculated by Eq. A3.12, where g  is the 

gravitational acceleration. The external air velocity ( ev ) is dependent on the air exchange rate of 

the environment and is strongly location-dependent. The air velocity due to natural convection 

can be estimated by Eq. A3.13. In this equation,   is the air density,   is the difference in the 

air densities between the two locations, and L  is the distance between the two locations.  
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Results  

Figures A3.2 and A3.3 show the influence of the operating flow rate and pressure on the number-

based and mass-based SDF of particles generated from the Misty Max 10 nebulizer. As the 

operating flow rate increased, especially from 20 to 30 lpm, the size of the particles decreased 

(Figure A3.2a), possibly caused by the enhanced impaction loss of larger particles as they were 

transported from the nebulization chamber to the mouthpiece of the nebulizer. Due to their 

smaller inertia, the smaller particles could follow the streamline well. At the same time, the 

reduced diffusion loss due to the decrease of residence time helped preserve the smaller particles. 

Because of this effect, the mass-based SDFs are significantly reduced at high flow rates (Figure 

A3.2b). Since particle mass is proportional to the cube of particle diameter, the high number 

concentration at around 1 μm is less important than for particles of around 4 μm. It should be 

noted that the change in flow rate did not significantly affect the lognormal shape of the mass-

based SDF. This result implies that the regionally deposited fraction of the total deposited 

particle mass does not change as a function of the outlet flow rate. As the operating pressure 

increased, the number concentration of particles at around 1 μm dropped (Figure A3.3a). The 

geometric standard deviation of particle size distribution at the lower pressure condition was 

higher, possibly caused by the instability of the nebulization process. This instability also 

resulted in generating smaller particles. As the pressure further increased, the concentration of 

particles at around 4 μm also decreased. This change was caused by the stronger shear force, 

which broke up the larger particles, and the higher particle velocity, which resulted in a larger 

impaction loss. This effect led to a lower mass-based SDF in this size range, as indicated in 

Figure A3.3b.  



326 

Figure A3.2 Influence of operating flow rate on the (a) number-based and (b) mass-based SDF of 

particles generated from the Misty Max 10 nebulizer.  

 

Figure A3.3 Influence of operating pressure on the (a) number-based and (b) mass-based SDF of 

particles generated from the Misty Max 10 nebulizer.  

 

Table A3.2 lists the mean aerodynamic diameter (MAD), mass median aerodynamic diameter 

(MMAD), time for nebulizing 5 ml of saline solution, and their standard deviations (SD) for the 

Misty Max 10 nebulizer under different operating conditions (Tests 1 through 5). The MMAD 

values remained around 4.5 μm under a broad range of operating conditions, although the MAD 

values differ greatly among the tests. The stabilized MMAD values ensure uniform deposition 
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characteristics of particles generated from nebulizers. Similar time periods (~ 15 min) were 

required to completely nebulize 5 ml of saline solution under different operating conditions. The 

test with the highest operating pressure had the shortest nebulizing time, 12.78 min, probably a 

result of the higher nebulization rate, while the loss of larger particles during their transport in 

the nebulizer produced a lower mass-based SDF (Figure A3.3b).  

Table A3.2 Mean aerodynamic diameter (MAD), mass median aerodynamic diameter (MMAD), 

time for nebulizing 5 ml of saline solution, and the standard deviations (SD) of different 

nebulizers at various operating conditions.  

Test 

# 

Brand Flow 

(lpm) 

Pressure 

(psi) 

MAD 

(μm) 

SD 

(μm) 

MMAD 

(μm) 

SD 

(μm) 

Time 

(min) 

SD 

(min) 

1 Misty Max 10 10 35 2.157 0.056 5.048 0.312 13.67 1.33 

2 Misty Max 10 20 35 2.119 0.054 4.698 0.598 14.50 0.50 

3 Misty Max 10 30 35 1.258 0.021 4.068 0.487 15.00 1.19 

4 Misty Max 10 20 25 1.889 0.139 4.371 0.697 15.89 1.34 

5 Misty Max 10 20 45 1.901 0.06 4.371 0.030 12.78 0.68 

6 SideStream 20 35 1.636 0.097 4.068 0.038 10.00 1.00 

7 SideStream Plus 20 35 1.969 0.054 4.371 0.323 6.83 0.17 

8 PARI 20 35 1.806 0.032 4.068 0.754 7.00 1.00 

9 AeroEclipse 20 35 1.212 0.003 4.698 0.063 24.44 0.96 

 

Figure A3.4 presents the (a) number-based and (b) mass-based SDF of particles generated from 

the five tested nebulizers at an operating pressure of 35 psi and a flow rate of 20 lpm. With the 

exception of the AeroEclipse nebulizer, all nebulizers produced particles predominantly in the 

size range of 2 to 4 μm (Figure A3.4a). A major peak at 1 μm was observed in the number-based 

SDF of particles generated by the AeroEclipse nebulizer. This peak was mainly due to the 

presence of a plate near the outlet of the nebulization chamber, which collected the larger 

particles through impaction. These accumulated droplets then flowed back to the liquid reservoir, 

which resulted in a longer time before the solution was completely nebulized (Table A3.2 Test 

9). However, in the mass-based SDFs (Figure A3.4b), the AeroEclipse nebulizer also generated 
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particles with the largest sizes, around 5 μm, which demonstrated the strong dependence of mass 

concentration on the size of the nebulized particles. Although the SideStream Plus and 

AeroEclipse nebulizers were the quickest and slowest to nebulize the 5 ml of saline solution, 

respectively, the MMAD values of the particles generated from the five nebulizers were 

distributed quite narrowly between 4 to 5 μm, despite the widely varied MAD values. The wide 

variation in the number-based SDFs and the consumption rate of the nebulized solution suggest 

that each nebulizer should be calibrated under multiple operating conditions by the 

manufacturers, as indicated in existing studies 12.  

Figure A3.4 (a) Number-based and (b) mass-based SDF of particles generated from five 

commercially available nebulizers.  
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Discussion 

Table A3.3 (Tests 1 to 9) lists the mass fractions of particles deposited in different regions of the 

respiratory system and the mass fractions of particles exiting the respiratory system calculated 

with the measured particle size distributions. Particles deposited in the HA region dominated the 

total mass of particles generated from nebulization. It is also interesting to observe that the 

different nebulizers demonstrated similar mass distributions even under a wide range of 

operating conditions. This could be attributed to the similar mass-based SDFs (Figs A3.2b, 

A3.3b, A3.4b) which were mainly distributed above 3 μm, where the deposition efficiency of 

particles in the HA region is the highest 19. The airway surfaces of the HA and TB regions are 

covered with a layer of mucus which enhances the collection of deposited particles. The mucus is 

slowly propelled by ciliary action to the pharynx, where it is subconsciously swallowed into the 

gastrointestinal tract3, 25. This transport process can remove the deposited particles in the airways 

from the respiratory system in a matter of hours. Therefore, any medication administered 

specifically to this region should release fairly quickly, and such a method may not be optimal 

when extended-release medications are required. Under these circumstances, a shorter time for 

finishing the nebulization is needed to reduce the waste of medication. The treatment of 

pulmonary diseases using aerosolized medications may require that medicine-containing 

particles reach deeper into the TB or AL regions of the respiratory system.  For this to be 

optimally achieved, the size of the generated particles should be reduced efficiently (< 0.2 μm) 

so that they can reach these regions through diffusion. This method may not be adequate since 

the mass-based SDF is very sensitive to the proportion of particles with large sizes, as indicated 

by the case of the AeroEclipse nebulizer. Therefore, installing multiple impactors that efficiently 

collect particles above 1 μm may be a viable method to alter the deposition characteristics of the 
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nebulized particles.  In the end, the decision as to which medical nebulizer will best administer a 

given medication to a given lung region will not just be based on the particle size distribution, 

but many other factors including nebulization time, staff working time, availability and cost 

effectiveness.  

Table A3.3 Respiratory deposition fractions of particles generated by different nebulizers at 

various operating conditions. The mass fractions of particles deposited in the head airways (HA) 

region, tracheobronchial (TB) region, alveolar (AL) region, and the mass fraction of particles 

exiting the respiratory system are listed. Test 10 shows the deposition fractions of particles 

generated by the Misty Max 10 nebulizer after complete drying.  

Test 

# 

Brand Flow 

(lpm) 

Pressure 

(psi) 

HA 

(%) 

TB 

(%) 

AL 

(%) 

Escape 

(%) 

1 Misty Max 10 10 35 82.3 3.5 4.7 9.6 

2 Misty Max 10 20 35 83.2 3.9 5.3 7.6 

3 Misty Max 10 30 35 82.1 4.0 5.6 8.3 

4 Misty Max 10 20 25 83.0 4.1 5.7 7.1 

5 Misty Max 10 20 45 83.1 4.0 5.5 7.3 

6 SideStream 20 35 81.6 4.0 5.7 8.7 

7 SideStream Plus 20 35 83.5 4.0 5.5 6.9 

8 PARI 20 35 82.4 4.2 5.9 7.5 

9 AeroEclipse 20 35 81.7 3.1 4.2 10.9 

10 Misty Max 10 (dried) 20 35 46.8 4.2 11.5 37.5 

 

Figure A3.5 shows the characteristic evaporation times of particles ranging from 0.01 to 10 μm 

at different RH values. It can be observed that RH indeed has a strong effect on the evaporation 

of droplets. When the particle size is larger than 1 μm, the characteristic evaporation times differ 

by several orders of magnitude when RH drops from 100 % to 30 %. Given the fact that hospital 

rooms normally maintain a low RH, this information may be important for the design of medical 

nebulizers, since the generated particles are mainly concentrated in the size range from 1 to 8 μm 

(Figures A3.2 to A3.4), where the evaporation time is very sensitive to particle size. Take the 4 

μm particles as an example: after they are emitted from the nebulizer, they may conserve their 

size for several seconds, since the nebulizer also produces highly concentrated water vapor, 
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which leads to an RH value close to 100 %. But as the particles mix with the surrounding air, the 

significantly reduced characteristic evaporation time (below 1 ms) quickly shrinks the droplet, 

and eventually leaves solute particles which may be in nanometer range, depending on the 

concentration of the nebulized solution.  This process was observed during the experiments: the 

nebulizer generated a cloud of white mist directly at the outlet, which quickly disappeared, in a 

matter of seconds. For saline solution, the final solute particle size is around 0.21 μm when the 

original droplet size is 1 μm. Therefore, the deposition characteristics of the transported particles 

may be greatly different from the original particles. For example, 0.21 μm solid particles have 

deposition efficiencies of 2.7%, 0.8%, and 6.0% in the HA, TB, and AL region, respectively, 

meaning that the alveoli become the major region for the deposition of particles in the respiratory 

tract. This large alteration to the respiratory deposition pattern can change the effects on nearby 

healthcare workers because of the potential for chronic exposure to these transformed particles. 

According to the size distribution of particles generated from the Misty Max 10 nebulizer, the 

dried particle size distribution can be calculated by assuming particles keep spherical. Similar 

method can be used to derive the deposition fractions of the dried particles, which are shown in 

the Test 10 of Table A3.3. Although the dried particles still mainly deposit in the HA region, the 

fraction dropped, due to the increased mass deposition in the AL region (11.5%) and the escape 

of particles (37.5%).  
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Figure A3.5 Influence of RH on the characteristic evaporation times of particles with sizes 

ranging from 0.01 to 10 μm.  

 

In a diffusion-only scenario, the concentration profile around the source of particles is closely 

related to time and the distance from the point of interest and the particle source, as shown in Eq. 

A3.9. In the case of nebulized particles, we use 03.0)
2

(1 



Dt

Rr
erf  to quantitatively represent 

that particles have diffused through a distance of r . By further using 01.0R  m, which is the 

radius of the nebulizer mouthpiece, we obtained the required time for particles to diffuse to the 

locations of r = 0.02, 0.1, and 1 m as a function of particle size (Figure A3.6). It takes at least 

150 s even for particles with a size of 0.01 μm to diffuse 0.01 m (to r = 0.02 m), mainly because 

of the low diffusion coefficients of the particles. Hence, it is not possible to observe the 
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movement of nebulized particles due to diffusion only, and the effect of diffusion in transporting 

the nebulized particles is minimal, even if they are dried due to the low RH in the environment. 

Figure A3.7 plots both the characteristic time for particles to follow the external air velocity and 

the settling velocity of particles as a function of particle size. The time needed for particles to 

reach the external flow velocity is very short (below 1 ms for a particle with a size of 10 μm) due 

to their small inertia. Hence, we can conclude that particles generated from medical nebulizers 

are transported mainly through convective movement. Calculations show that the settling 

velocity of particles between 0.01 and 10 μm in size is smaller than 0.01 m/s. This velocity is 

very small, since the natural convection of air between two locations with a distance of 1 m and a 

temperature difference of 0.1 oC can cause a flow velocity of 0.06 m/s, according Eq. A3.13. 

Hence, healthcare workers are recommended to avoid pathways through which the nebulized 

particles move, and major air outlets in patient rooms where nebulized medication is 

administered.   

 

Figure A3.6 Times needed for particles in the size range of 0.01 to 1 μm to diffuse to the location 

at r=0.02, 0.1, and 1 m.  
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Figure A3.7 Settling velocity (open circle line) and the characteristic time for particles to follow 

the external flow (closed circle line) as a function of particle size.  

 

From the analysis above, we can make several generalizations about the transport of particles 

released from medical nebulizers. After particles are emitted, the high water vapor concentration 

at the outlet of the nebulizer conserves the size of the particles for several seconds; however, as 

soon as the external (dry) air mixes with the plume of particles, the particles shrink within 

milliseconds, leaving a particle composed of solute materials. Particle diffusion plays a minimal 

role in the transport of nebulized and dried particles, due to the small diffusion coefficient of the 

particles. Convection (both forced and natural) is the dominant mechanism for transporting the 

particles generated from medical nebulizers, and any settling due to gravitational force can be 

neglected. Notably, the convective movement of particles promotes the mixing of the 

surrounding air with the particles, which accelerates particle evaporation. Hence, the respiratory 
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deposition of the transported particles may be significantly different from that of the original 

particles, since submicron particles mainly composed of solute materials can easily penetrate 

deeper into the respiratory systems. Considering the potential side effects of, and long-term 

exposure to, the nebulized medication, more consideration should be given on how to remove 

those particles released from medical nebulizers from the environment, perhaps through 

specialized ventilation or filtration equipment, before they are able to transport into the breathing 

zones of nearby healthcare workers, or at least to equip healthcare workers with personal 

protective equipment (PPE) that will prevent these small particles from being inhaled. The 

impact of repeated inhalation of nebulized medications on healthcare workers such as respiratory 

therapists has not been well studied.  The importance of prevention is especially important 

considering the potential side effects of, and long exposure times to, these medications.
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Appendix IV: Characterization of Aerosols 

Generated During Patient Care Activities 

 

 

The results of this chapter have been published in O’neil, C. A., Li, J., Leavey, A., Wang, Y., 

Hink, M., Wallace, M., ... & Babcock, H. M. (2017). Characterization of Aerosols Generated 

During Patient Care Activities. Clinical Infectious Diseases. 
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ABSTRACT  

Background.  Questions remain about the degree to which aerosols are generated during routine patient 

care activities and whether such aerosols could transmit viable pathogens to healthcare personnel.  The 

objective of this study was to measure aerosol production during multiple patient care activities and to 

examine the samples for bacterial pathogens. 

Methods.   Five aerosol characterization instruments were used to measure aerosols during seven patient 

care activities: patient bathing, changing bed linens, pouring and flushing liquid waste, bronchoscopy, 

non-invasive ventilation, and nebulized medication administration (NMA).  Each procedure was sampled 

5 times.  A SKC BioSampler was used for pathogen recovery.  Bacterial cultures were performed on the 

sampling solution.  Patients on contact precautions for drug resistant organisms were selected for most 

activity sampling.  Any patient undergoing bronchoscopy was eligible.   

Results.  Out of 35 sampling episodes, only two procedures showed significant increase in particle 

concentrations over baseline: NMA and bronchoscopy with NMA.  Bronchoscopy without NMA and 

non-invasive ventilation did not generate significant aerosols.  Of 78 cultures from the impinger samples, 

6/28 baseline samples (21.4%) and 14/50 procedure samples (28.0%) were positive.   

Conclusions.  In this study, significant aerosol generation was only observed during NMA, both alone 

and during bronchoscopy.  Minimal viable bacteria were recovered, mostly common environmental 

organisms.  Although more research is needed, these data suggest that some of the procedures considered 

to be aerosol-generating may pose little infection risk to healthcare personnel. 

 



340 

BACKGROUND  

The majority of pathogens are spread person to person under normal circumstances through 

contact or droplet transmission, with a small number known to be transmitted by small particle 

aerosols.  For pathogens spread by contact or droplet, additional respiratory protection with a 

respirator is not considered necessary to protect healthcare personnel (HCP) from exposure [1].  

However, concerns have been raised that some infections usually spread by contact or droplet 

routes could also be transmitted through aerosols generated during certain medical procedures.  

These concerns have been heightened during outbreaks of emerging infections such as Ebola, 

Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and 

pandemic influenza.  Some infection prevention guidelines therefore recommend that HCP use 

additional respiratory protection (e.g., a fitted particulate respirator) when performing “aerosol-

generating procedures” to protect themselves from exposure to infectious agents [1-8]. 

Concerns about disease transmission to HCP during aerosol-generating procedures were raised 

during the 2003 SARS outbreak [9], when there were multiple reports of disease transmission to 

HCP who were wearing appropriate personal protective equipment [10-12].  Aerosol 

transmission during medical procedures was the suspected source of infection, based largely on 

observational and anecdotal evidence [11, 13, 14].  Air sampling conducted in the rooms of 

SARs patients at a hospital in Toronto provided experimental confirmation of the possibility of 

airborne transmission of SARs, but did not correlate this with the performance of medical 

procedures [15].  

Aerosol-generating procedures have also been suspected as a source of HCP infection in other 

outbreaks, such as 2009 H1N1 Influenza [2, 4, 16], seasonal influenza [3, 17, 18], and MERS 
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[19, 20].   Some have also raised concerns that filoviruses, including Ebola, may be transmitted 

through aerosols, though this remains controversial [21].  Other infections that may occasionally 

be transmitted via aerosols include Norovirus [8, 22] and methicillin resistant Staphylococcus 

aureus [22]. 

Routine healthcare procedures most often identified as potentially “aerosol-generating” include: 

intubation and extubation, cardiopulmonary resuscitation, bronchoscopy, non-invasive 

ventilation, tracheotomy, sputum induction, airway suctioning, manual ventilation, and 

administering oxygen or nebulized medication [2, 4, 8, 13, 22-24].  For most of these procedures, 

evidence for the generation of infectious aerosols is based mostly on case reports and anecdotal 

evidence rather than on epidemiological studies or environmental air sampling.  A 2009 review 

by Davies et al. concluded that, although there are a number of procedures considered to be 

aerosol-generating, few have sufficient evidence to confirm that they actually do produce 

aerosols [23]. 

In absence of clear evidence, questions remain about the degree to which aerosols are generated 

during “aerosol-generating” medical procedures, the size and concentration of medically-

aerosolized particles, and whether such aerosols could transmit viable pathogens to HCP or to 

other patients [1, 7, 25].   Uncertainty about which procedures are associated with increased risk 

makes it difficult for hospitals to develop effective preventive measures [7, 23, 25].  The 

objective of this investigation was to characterize any aerosols generated during several common 

medical procedures, and to determine whether bacterial pathogens could be isolated from these 

aerosols.  
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METHODS  

Sampling Strategy 

Aerosol production was measured during seven routine patient care activities: changing bed 

linens, patient bathing, pouring liquids into a hopper, flushing liquid waste, non-invasive 

ventilation using Bilevel Positive Airway Pressure (BiPAP), nebulized medication administration 

(NMA), and bronchoscopy with and without NMA, including both intubation (laryngeal mask) 

and extubation during  the procedure.  Prior to sampling, both the patient and the HCP 

performing the procedure were informed about the aerosol sampling and asked to provide verbal 

assent.  For patients who were unconscious or sedated, a family member or surrogate was asked 

to provide assent, if they were present.   

Each type of procedure was sampled five separate times.  All samples were collected in patient 

and procedure rooms at a large tertiary care medical center.  Most samples were collected in the 

Medical ICU, although some NMA samples were collected in the cystic fibrosis ward.  These 

rooms all had routine air handling.  Bronchoscopy samples were collected in both the 

Interventional Pulmonology suite (routine air handling) and the ICU bronchoscopy suite 

(negative pressure ventilation).  During some of the bronchoscopies, nebulized medication was 

administered to the patient before and after the procedure. 

Subjects 

For all procedures except bronchoscopy, patients were selected from among inpatients on contact 

precautions for drug resistant organisms, including methicillin-resistant Staphylococcus aureus 

(MRSA), vancomycin-resistant Enterococcus (VRE), multi-drug resistant gram negative 
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organisms (MDRO), and Clostridium difficile.  Bronchoscopy patients were not pre-screened for 

colonization or infection with specific organisms.   

Aerosol Sampling 

Whenever possible, baseline samples were collected in the room before the procedure began.  It 

was not possible to collect baseline samples for mechanical ventilation or non-invasive 

ventilation, which were continuous.  For pouring/flushing of patient waste in a hopper, a single 

baseline sample was collected for two procedure samples (one pouring, one flushing).  For 

bronchoscopies, one baseline and two procedure samples were collected (one including 

intubation and one including extubation).  

During each procedure, five real-time aerosol characterization instruments were used to detect 

and characterize any generated aerosols.  These included:  a P-Trak Ultrafine Particle Counter 

(TSI Inc.), which measures particle number concentration (#/cm3);  a SidePak AM510 Personal 

Aerosol Mobility Spectrometer (TSI Inc.), which measures particle mass concentration 

(mg/cm3); a Portable Aerosol Mobility Spectrometer (PAMS, Kanomax Inc.), which measures 

the particle number size distribution of sub-micrometer aerosols (14 - 862 nm); an Aerodynamic 

Particle Sizer (APS) Spectrometer (TSI Inc.), which measures the particle number size 

distribution of larger aerosols (0.5 - 20 µm); and a Nanoparticle Surface Area Monitor 

(NSAM,TSI Inc.), which measures lung-deposited surface area, providing an estimate of the total 

surface area of particles that would deposit in the alveolar regions of the human lung (µm2/cm3).  

All samples were collected using two sets of conductive silicone tubing that were hung at a 

single point three feet from the patient’s head at approximately HCP head level.   One set of 

tubing was connected to the impinger inlet and the other was connected to the real time aerosol 
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sampling instruments.   The tubing was inspected prior to sampling to ensure that it had no sharp 

bends or kinks. All instruments were calibrated prior to each use to ensure accurate 

measurements. 

Testing of Biological Samples 

To determine whether the aerosols generated during the various procedures included any 

potentially infectious particles, a BioSampler (SKC Inc.) was used to collect samples for 

bacterial pathogen recovery.  The sterile BioSampler was filled with 15 ml of phosphate buffered 

saline with Tween-80.  Tubing attached to the impinger inlet was hung alongside the collection 

tubing for the aerosol characterization instruments.  After sampling, the collection liquid was 

decanted and centrifuged, and the pellet re-suspended.  A Gram stain and culture was performed, 

and the sample was inoculated on several culture plates: 5% sheep’s blood agar (Hardy 

Diagnostics); Spectra MRSA agar (Remel); chromID VRE (bioMerieux); CCMB-TAL broth for 

Clostridium difficile detection (Anaerobe Systems); and a 6.5% NaCl broth (Hardy), which was 

incubated for 18-26 hours and then plated to the blood, MRSA, and VRE agars.  Bacterial 

colonies were identified using the VITEK MS MALDI-TOF MS system [26-29].  Following 

each procedure, the collection tubing was rinsed with ethanol and the BioSamplers were rinsed 

and autoclaved to reduce the potential for cross-contamination. 

Analysis 

Averages and standard deviations were calculated for all aerosol characterization data (particle 

counts, mass, size, lung-deposited surface area) for each procedure and associated baseline 

(when available), so the contribution of each procedure to overall measured particle 

concentrations could be compared.  



345 

The study protocol was reviewed by the Washington University Human Research Protection 

Office, which determined that it did not require Institutional Review Board oversight because no 

personally identifiable information was collected. 

 

RESULTS 

A Total of 35 procedures were sampled (5 samples for each of 7 types of procedure) over a four 

month period from June through October, 2015.   

Particle Concentration 

Differences between baseline and procedure particle number and mass for the different types of 

procedure samples are presented in Figure 1.  Data from the mechanical ventilation and non-

invasive ventilation samples are not included in this figure because no baseline samples were 

collected for these procedures.  No significant differences between the baseline and procedure 

measurements were observed for bathing, changing linens, pouring liquids into the hopper, 

flushing the hopper, and bronchoscopy without NMA.   However, there was an increase in 

particle concentrations during NMA, and during bronchoscopy procedures that started and ended 

with NMA.  Bronchoscopy with NMA was associated with up to a 30,000 #/cm3 increase in 

particle counts and a 1.5 mg/m3 increase in particle mass, while NMA alone was associated with 

up to a 70,000 #/cm3 increase in particle count and a 0.8 mg/m3 increase in particle mass.  

However, as indicated by the error bars in Figure 1, there was a high amount of variation in 

particle concentration among the NMA samples. 
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Figure 1: Change from pre-procedure baseline in particle number (a) and mass (b) concentrations during 

the sampled procedures.  Mechanical ventilation and non-invasive ventilation are not included in this 

figure because no baseline samples could be collected for these procedures.  Bronch = bronchoscopy.  

NMA = nebulized medication administration.  Error bars = standard deviation.  
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Figure 2 presents particle number and mass concentration time-series data comparing baseline 

and procedure samples collected during bronchoscopy with NMA (a & c) and NMA alone (b & 

d).  For samples collected during bronchoscopy with NMA, two narrow concentration peaks are 

observed, which correspond with the nebulized medication administration before and after the 

procedure.  The samples collected during NMA alone demonstrate wider concentration peaks 

(when adjusted for the different time scales), as the nebulizer was running throughout the entire 

procedure, and higher particle counts but lower mass concentrations, indicative of smaller 

particle sizes.  For the NMA alone procedures, baseline aerosol concentration levels were not re-

established until 10 to 20 minutes after the procedure had ended.  
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Figure 2: Particle number and mass concentrations for bronchoscopy with nebulized medication 

administration (NMA) (a & c), and for NMA alone (b & d).  Please note the different y-axis scales for the 

two mass concentration graphs (c & d).  The insert shows an enlarged view of the first peak of the 

bronchoscopy with NMA graph (a & d) to make the time scale comparable to the NMA alone graphs (b & 

d).  

 

Particle Size Distribution 

Particle number size distribution data (Figure 3) indicates that the particles generated during 

bronchoscopy with NMA (a,c) were generally larger (geometric mean diameter (GMD) 44 nm, 

SD 2.75) than those generated during NMA alone (b, d; GMD 33 nm, SD 2.61).  This is 

consistent with the results presented in Figure 2, which showed higher mass concentrations for 
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bronchoscopy with NMA, as larger particles contribute more to mass concentration than smaller 

particles.  Since the nebulized particles are composed mainly of water, their sizes are largely 

affected by the nebulizing conditions (such as pressure and air flow rate) and time allowed for 

evaporation after they are emitted from the nebulizer [30].  It is therefore possible that the 

different particle sizes observed during the two types of procedures may be due to different air 

flow patterns in the rooms where the procedures were performed (some bronchoscopies were 

performed in negative pressure ventilation rooms, unlike those used for NMA).  The particle size 

observations may also be influenced by different locations of the patient relative to air 

intake/outlet in the rooms, different NMA administration techniques (mask versus mouth piece), 

and whether albuterol was co-administered with another medication.  Particle size distribution 

data for the other procedures evaluated in this study showed that pouring and flushing liquid 

waste in the hopper did produce a few aerosolized particles of around 1 μm (less than 0.5 #/cm3); 

however, this peak was no longer discernable after 20 seconds, as particles most likely drifted, 

settled, or were carried away by convection.  Changing linens also produced small amounts of 

particles of around 40 nm in size.  Bathing patients produced a low concentration of 0.5-1.5 μm 

particles, possibly caused by the evaporation of chlorhexidine gluconate in the soap used for 

bathing.  
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Figure 3: Particle number size distribution curves for (a) bronchoscopy with NMA as measured by 

portable aerosol mobility spectrometer (PAMS), (b) NMA alone as measured by PAMS, (c) 

bronchoscopy with NMA as measured by aerodynamic particle sizer spectrometer (APS), and (d) NMA 

alone as measured by APS. Please note the different y-axis scales for the two number concentration 

graphs (a & b).  NMA = nebulized medication administration.   

 

Lung-Deposited Surface Area 

Figure 4 shows the difference between the average baseline and procedure measurements of the 

particle surface area that would deposit in the alveoli of the lung if inhaled.  Bronchoscopy with 

NMA showed only a small elevation from baseline, while concentrations during NMA alone 

were much higher.  No substantial elevation from baseline was observed during any of the other 

patient care activities that were sampled.   
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Figure 4: Change from pre-procedure baseline in lung-deposited surface area concentrations (alveolar 

region) during the sampled procedures.  Mechanical ventilation and non-invasive ventilation are not 

included in this figure because no baseline samples could be collected for these procedures.  Bronch = 

bronchoscopy.  NMA = nebulized medication administration.  Error bars = standard deviations. 

 

Microbiology 

Of 78 baseline and procedure BioSampler collection liquid samples that were cultured, bacteria 

were isolated from 6 of the 28 baseline samples (21.4%), as compared to 14 of 50 procedure 

samples (28.0%).  In all cases, the bacterial burden was low (rare growth on solid medium or 

growth only upon broth enrichment).   The most common culture result was mixed Gram-

positive flora, with the most frequently isolated organisms being coagulase-negative 
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Staphylococcus spp. (n=12) and Micrococcus spp. (n=6).  Other organisms identified included 

viridans group Streptococcus, Bacillus spp., Paenibacillus spp., Corynebacterium spp., and a 

non-meningitidis species of Neisseria.  Twenty five samples were collected during procedures 

involving patients who were on contact precautions for drug resistant organisms (18 patients 

with VRE; 3 with C. difficile; 8 with MRSA; and 5 with MDRO).  None of the drug-resistant 

organisms were recovered from any of these samples.  

 

 

DISCUSSION 

The protection of HCP from disease transmission during potentially aerosol generating 

procedures is a priority.  Effective recommendations require a clear understanding of the 

physical characteristics of any aerosols produced during these procedures and whether they carry 

viable pathogens that could pose an infection risk.  In this study, multiple air sampling 

instruments were used to collect detailed real-time measurements of the aerosols generated 

during seven common medical procedures, including several that are generally considered to be 

“aerosol-generating.”  Microbiological analysis was used to determine the presence and viability 

of any bacterial organisms in these aerosols.   

Significant aerosol generation was only observed during two types of procedures: NMA and 

bronchoscopy with NMA.  The NMA findings are not surprising because nebulized medications 

are designed to be administered in aerosol form.  Changing bed linens, patient bathing, pouring 

liquids into a hopper, flushing liquid waste, non-invasive ventilation, and bronchoscopy without 

NMA were not associated with significantly greater aerosols than at baseline.  In addition, 



353 

minimal amounts of viable bacteria were recovered during the sampled procedures, and what 

was recovered represented mainly common environmental or skin contaminants.  These 

comprehensive aerosol assessment results, while from only a small number of sampled 

procedures, are reassuring about the potential risk to HCP. 

Other studies have indicated that the risks posed by potentially aerosol-generating procedures 

may be overestimated [31-33].  Two reviews evaluating evidence for whether noninvasive 

ventilation should be considered a high-risk procedure found little epidemiologic data to support 

the theory that noninvasive ventilation increases occupational exposure [9, 34].  A 2013 review 

of evidence for whether flushing toilets is associated with infectious disease transmission found 

that no studies have clearly demonstrated toilet plume-related disease transmission [35].  

Although bronchoscopy is frequently cited as a possible aerosol-generating procedure, a 2012 

systematic review found no evidence of a significant association between bronchoscopy and 

increased risk of SARS transmission to HCP [24].   

The most consistent clinical evidence for the transmission of infections via aerosols generated 

during medical procedures is during patient intubation [7, 24].  Although no increase in aerosol 

production over baseline was observed during patient intubations in this study, most captured 

intubations were laryngeal mask intubations on sedated patients for the purpose of bronchoscopy 

and may not be representative of emergent or less controlled settings. 

Only NMA and bronchoscopy with NMA were found to generate a significant increase in particle 

concentrations (number, mass, and lung-deposited surface area) over baseline levels.  The high particle 

concentrations are likely related to the use of a nebulizer during these procedures, and the particles are 

most likely aerosolized medication that escaped from the nebulizer device.  This conclusion is supported 

by the results of a previous study, which evaluated droplet dispersion during nebulizer treatment and 
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found an aerosol output profile consistent with nebulizer characteristics, rather than with dissemination of 

droplets from patients [36].  The extent of particle generation during NMA is probably related to the type 

of nebulizer used, treatment length, and patient characteristics, as a high amount of variability in particle 

concentration was observed during the different NMA sampling episodes.  Although there was no 

significant bacterial pathogen recovery during NMA, the high concentrations of small aerosolized 

particles (median of 1 μm) could potentially affect HCP who administer the treatments.   

Limitations of this study include small sample numbers (five samples for each procedure), lack 

of clinical data, having only one sampling location for each sample, non-continuous air 

sampling, and lack of viral pathogen recovery.  In addition, the study focused on only seven of 

the many medical procedures that may be considered “aerosol-generating.”  The SKC 

BioSamplers used to capture aerosolized particles in this study also have limited sampling 

efficiency for particles <1 µm or ≥9µm in diameter, though most bacterial particles are expected 

to fall within the 1 – 9 µm range [37].   

Strengths of this study include the use of multiple real-time aerosol measurement instruments, 

use of culture to determine the presence of viable microbes as a metric to assess the infection risk 

posed by medically-generated aerosols, and sampling during seven types of medical procedures 

in a real-world healthcare setting.   

Studies documenting the frequency and type of aerosols generated during common medical 

procedures in healthcare settings provide critical information needed to inform infection 

prevention strategies and guidelines.  Evidence-based guidelines are necessary to help protect 

HCP from infection, especially in outbreak situations.  Current guidelines for HCP participating 

in suspected aerosol-generating procedures have had to rely on minimal or low-quality evidence 

[6, 7].  Though additional research is needed, the results of this study suggest that some of the 
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procedures that are widely considered to be high risk for the generation of infectious aerosols 

may actually pose little infection risk to HCP.   

While this study has provided some information on aerosol generating procedures that could 

potentially be used to inform infection prevention protocols, further research is needed to 

confirm these findings.  Additional studies are also needed to describe aerosol generation during 

other procedures suspected to be aerosol-generating, to investigate whether viruses can be 

isolated from medically-generated aerosols, and to examine the impact of patient clinical 

characteristics on aerosol production and pathogen recovery.  Such studies would provide a more 

solid base of evidence on which to base infection prevention guidelines, and would provide 

information that could be used to develop methods that reduce aerosol generation during medical 

procedures, thereby reducing the risk of environmental contamination and infection transmission.



356 

 References 

1. Coia JE, Ritchie L, Adisesh A, et al. Guidance on the use of respiratory and facial protection 

equipment. J Hosp Infect 2013; 85(3): 170-82. 

2. CDC. Interim Guidance on Infection Control Measures for 2009 H1N1 Influenza in Healthcare 

Settings, Including Protection of Healthcare Personnel. Available at: 

http://www.cdc.gov/h1n1flu/guidelines_infection_control.htm. Accessed 8/10/2016. 

3. CDC. Prevention Strategies for Seasonal Influenza in Healthcare Settings. Available at: 

http://www.cdc.gov/flu/professionals/infectioncontrol/healthcaresettings.htm. Accessed June. 

4. WHO. Infection prevention and control in health care for confirmed or suspected cases of 

pandemic (H1N1) 2009 and influenza-like illnesses. Available at: 

http://www.who.int/csr/resources/publications/cp150_2009_1612_ipc_interim_guidance_h1n1.pd

f?ua=1. Accessed August 8. 

5. Chughtai AA, Seale H, MacIntyre CR. Availability, consistency and evidence-base of policies 

and guidelines on the use of mask and respirator to protect hospital health care workers: a global 

analysis. BMC Res Notes 2013; 6: 216. 

6. Gralton J, McLaws ML. Protecting healthcare workers from pandemic influenza: N95 or surgical 

masks? Critical care medicine 2010; 38(2): 657-67. 

7. WHO. Infection prevention and control of epidemic-and pandemic-prone acute respiratory 

infections in health care: WHO Guidelines. Geneva, Switzerland: World Health Organization, 

2014. 

8. Siegel JD, Rhinehart E, Jackson M, Chiarello L, Health Care Infection Control Practices 

Advisory C. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious 

Agents in Health Care Settings. Am J Infect Control 2007; 35(10 Suppl 2): S65-164. 

9. McCracken J. Should noninvasive ventilation be considered a high-risk procedure during an 

epidemic? Cmaj 2009; 181(10): 663-4. 

10. Christian MD, Loutfy M, McDonald LC, et al. Possible SARS coronavirus transmission during 

cardiopulmonary resuscitation. Emerg Infect Dis 2004; 10(2): 287-93. 

11. Fowler RA, Lapinsky SE, Hallett D, et al. Critically ill patients with severe acute respiratory 

syndrome. Jama 2003; 290(3): 367-73. 

12. Ofner M, Lem M, Sarwal S, Vearncombe M, Simor A. Cluster of severe acute respiratory 

syndrome cases among protected health care workers-Toronto, April 2003. Can Commun Dis 

Rep 2003; 29(11): 93-7. 

13. CDC. Infection control precautions for aerosol-generating procedures on patients who have 

suspected severe acute respiratory syndrome (SARS). Atlanta: US Centers for Disease Control, 

2013. 

14. Hui DS. Severe acute respiratory syndrome (SARS): lessons learnt in Hong Kong. Journal of 

thoracic disease 2013; 5 Suppl 2: S122-6. 

15. Booth TF, Kournikakis B, Bastien N, et al. Detection of airborne severe acute respiratory 

syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J Infect 

Dis 2005; 191(9): 1472-7. 

16. Kuster SP, Coleman BL, Raboud J, et al. Risk factors for influenza among health care workers 

during 2009 pandemic, Toronto, Ontario, Canada. Emerg Infect Dis 2013; 19(4): 606-15. 



357 

17. Tellier R. Aerosol transmission of influenza A virus: a review of new studies. J R Soc Interface 

2009; 6 Suppl 6: S783-90. 

18. Lindsley WG, Blachere FM, Davis KA, et al. Distribution of airborne influenza virus and 

respiratory syncytial virus in an urgent care medical clinic. Clin Infect Dis 2010; 50(5): 693-8. 

19. Al-Dorzi HM, Alsolamy S, Arabi YM. Critically ill patients with Middle East respiratory 

syndrome coronavirus infection. Crit Care 2016; 20: 65. 

20. Al-Tawfiq JA, Perl TM. Middle East respiratory syndrome coronavirus in healthcare settings. 

Current opinion in infectious diseases 2015; 28(4): 392-6. 

21. Mekibib B, Arien KK. Aerosol Transmission of Filoviruses. Viruses 2016; 8(5). 

22. Eames I, Tang JW, Li Y, Wilson P. Airborne transmission of disease in hospitals. J R Soc 

Interface 2009; 6 Suppl 6: S697-702. 

23. Davies A, Thompson G, Walker J, Bennett A. A review of the risks and disease transmisison 

associated with aerosol generating medical procedures. Journal of Infection Prevention 2009; 10: 

122-6. 

24. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk 

of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS 

One 2012; 7(4): e35797. 

25. Gamage B, Moore D, Copes R, Yassi A, Bryce E. Protecting health care workers from SARS and 

other respiratory pathogens: a review of the infection control literature. Am J Infect Control 2005; 

33(2): 114-21. 

26. Branda JA, Rychert J, Burnham CA, et al. Multicenter validation of the VITEK MS v2.0 

MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative 

bacteria. Diagn Microbiol Infect Dis 2014; 78(2): 129-31. 

27. Manji R, Bythrow M, Branda JA, et al. Multi-center evaluation of the VITEK(R) MS system for 

mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli. Eur J Clin 

Microbiol Infect Dis 2014; 33(3): 337-46. 

28. Richter SS, Sercia L, Branda JA, et al. Identification of Enterobacteriaceae by matrix-assisted 

laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system. Eur J 

Clin Microbiol Infect Dis 2013; 32(12): 1571-8. 

29. McElvania TeKippe E, Burnham CA. Evaluation of the Bruker Biotyper and VITEK MS 

MALDI-TOF MS systems for the identification of unusual and/or difficult-to-identify 

microorganisms isolated from clinical specimens. Eur J Clin Microbiol Infect Dis 2014; 33(12): 

2163-71. 

30. Wang Y, Li J, Leavey A, O'Neil C, Babcock HM, Biswas P. Comparative Study on the Size 

Distributions, Respiratory Deposition, and Transport of Particles Generated from Commonly 

Used Medical Nebulizers. J Aerosol Med Pulm Drug Deliv 2016. 

31. Zhang Y, Seale H, Yang P, et al. Factors associated with the transmission of pandemic (H1N1) 

2009 among hospital healthcare workers in Beijing, China. Influenza Other Respir Viruses 2013; 

7(3): 466-71. 

32. Seto WH. Airborne transmission and precautions: facts and myths. J Hosp Infect 2015; 89(4): 

225-8. 



358 

33. Thompson KA, Pappachan JV, Bennett AM, et al. Influenza aerosols in UK hospitals during the 

H1N1 (2009) pandemic--the risk of aerosol generation during medical procedures. PLoS One 

2013; 8(2): e56278. 

34. Esquinas AM, Egbert Pravinkumar S, Scala R, et al. Noninvasive mechanical ventilation in high-

risk pulmonary infections: a clinical review. European respiratory review : an official journal of 

the European Respiratory Society 2014; 23(134): 427-38. 

35. Johnson DL, Mead KR, Lynch RA, Hirst DV. Lifting the lid on toilet plume aerosol: a literature 

review with suggestions for future research. Am J Infect Control 2013; 41(3): 254-8. 

36. Simonds AK, Hanak A, Chatwin M, et al. Evaluation of droplet dispersion during non-invasive 

ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: 

implications for management of pandemic influenza and other airborne infections. Health 

Technol Assess 2010; 14(46): 131-72. 

37. Kesavan J, Schepers D, McFarland AR. Sampling and Retention Efficiencies of Batch-Type 

Liquid-Based Bioaerosol Samplers. Aerosol Sci Tech 2010; 44(10): 817-29. 



359 

Appendix V: Curriculum vitae 



360 

Jiayu Li 

EDUCATION                                                                                

Fellow of the McDonnell International Scholars Academy Aug 2014 – now 

Ph. D. Candidate, Washington University in St. Louis Aug 2014 – now 

    Energy, Environmental, and Chemical Engineering Cumulative GPA: 3.99/4.0 

    Aerosol and Air Quality Research Laboratory 

B. S. Tsinghua University  

Environmental Engineering Aug 2010 – July 2014 

AWARDS                                                                                  

Fellow of the McDonnell International Scholars Academy Aug 2014 – now 

NASA Earth and Space Air Prize 2018 

RESEARCH EXPERIENCE                                                                                     

2014 – Now Graduate Research Assistant 

Supervisors: Professors Pratim Biswas, Brent Williams, Rajan Chakrabarty, Chenyang Lu, and Pramod 

Kulkarni,  

Low-cost sensor calibration and application 

Bioaerosol measurements during clinical procedures  

 

2012 – 2014 Undergraduate Research Assistant 

Supervisor: Professor Jingkun Jiang 

DEG degradation mechanism as the working fluid of condensed particle counter (CPC) 

PUBLICATIONS (# first author)                                         

Peer-Reviewed Publications 

10#. Jiayu Li, Huang Zhang, Chun-Ying Chao, Ling-Jyh Chen, Pratim Biswas. “Combining Ground 

Measurement, Low-cost Sensor, and Aerosol Optical Depth for high-resolution pollution mapping” 

(submit soon). 

9#. Jiayu Li, Simar K. Mattewal, Sameer Patel, Pratim Biswas. “Evaluation of Nine Low-cost Sensor 

Based Personal PM Monitors”. Aerosol Air Qual. Res. (submitted) 

8. Abhay Cashikar, Jiayu Li, Pratim Biswas. “Combining a Low-Cost Particulate Matter Sensor with a 

Robot for Field Measurements”. J Environ Eng. (Accepted) 

7#. Jiayu Li, Haoran Li, Yehan Ma, Yang Wang, Ahmed Abokifa, Chenyang Lu, and Pratim Biswas 

(2018). “Spatiotemporal 3D Measurements of Particle Mass Concentrations with a Distributed 

Sensor Network Platform”. Build. Environ. doi.org/10.1016/j.buildenv.2017.11.001. 

6#. Jiayu Li and Pratim Biswas (2017). “Optical Characterization Studies of a Low-Cost Particle Sensor”. 

Aerosol Air Qual. Res. doi.org/10.4209/aaqr.2017.02.0085. 

5. Sameer Patel, Jiayu Li, Apoorva Pandey, Shamsh Perves, Rajan K. Chakrabarty, and Pratim Biswas 

(2017). “Spatio-temporal measurement of indoor particulate matter concentrations using a wireless 

network of low-cost sensors in households using solid fuels”. Environ. Res. 

doi.org/10.1016/j.envres.2016.10.001. 

4#. Jiayu Li, Anna Leavey, Yang Wang, Caroline O’Neil, Meghan A. Wallace, Carey-Ann D. Burnham, 

Adrianus CM Boon, Hilary Babcock, and Pratim Biswas (2017). “Comparing the Performance of 3 

Airborne Virus Samplers for Influenza Virus”. J. Aerosol Sci. 

doi.org/10.1016/j.jaerosci.2017.08.007.  



361 

3. Carrie O’Neil, Jiayu Li, Anna Leavey, Yang Wang, Meghan Wallace, Carey-Ann D. Burnham, Pratim 

Biswas, and Hilary Babcock, (2017). “Characterization of Aerosols Generated During Patient Care 

Activities”. Clin. Infect. Dis. doi.org/10.1093/cid/cix535. 

2. Yang Wang, Jiayu Li, Anna Leavey, Hilary Babcock, and Pratim Biswas (2016). “Comparative Study 

on the Size Distributions and Respiratory Deposition of Particles Generated from Commonly Used 

Medical Nebulizers”. J. Aerosol Med. Pulm. Drug Deliv. doi.org/10.1089/jamp.2016.1340. 

1. Yang Wang, Jiayu Li, He Jing, Qiang Zhang, Jingkun Jiang, and Pratim Biswas (2015). “Laboratory 

Evaluation of Three Low-Cost Particle Sensors for Particulate Matter Measurement”. Aerosol Sci. 

Technol. doi.org/10.1080/02786826.2015.1100710. (Editor’s selection of notable 2015 papers in 

Aerosol Sci. Technol. Featured in AAAR 2015 Winter Newsletter). 

Manuscripts under preparation 

3#. Jiayu Li, Pratim Biswas. “Low-cost sensor: from principle to application: A review”. 

2#. Jiayu Li, Tandeep Chadha, Jiaxi Fang, Su Huang, Pratim Biswas. “Coupling single particle counter 

with a low-cost spectrometer to retrieve refractive index for aerosol classification”. 

1. Carrie O’Neil, Jiayu Li, Ramesh Raliya, Anna Leavey, Yang Wang, Meghan Wallace, Carey-Ann D. 

Burnham, Pratim Biswas, and Hilary Babcock. “Characterization of Aerosols Generated from 

clinical sample during flu season in St. Louis”  

SELECTED PRESENTATIONS (Presenter with *) 

6. Jiayu Li, Carrie O’neil, Ramesh Raliya, Yang Wang, Anna Leavey, Meghan Wallace, Carey-Ann, 

Burnham, Adrianus Boon, Hillary Babcock*, and Pratim Biswas. September 2018. “Defining 

Pathogen Transmission Risks during Aerosol Generating Procedures in Healthcare Settings” St. 

Louis, MO. IAC 10th Conference.5. Jiayu Li*, Jiaxi Fang, Fandeep Chadha, Benjamin Sumlin, 

Rajan K. Chakrabarty, and Pratim Biswas. September 2018. “Low-cost Sensor Calibration, 

Application, and Modification for Size Distribution and Refractive Index Measurement” St. Louis, 

MO. IAC 10th Conference. 

4. Jiayu Li*, Haoran Li, Yehan Ma, Yang Wang, Ahmed, Abokifa, Chenyang Lu and Pratim Biswas. 

August 2017. “Optical Characterization of the Low-Cost Sensor and Its Application with Robots” 

Raleigh, NC. AAAR 36th Annual Conference. 

3. Jiayu Li* and Pratim Biswas. August 2016. “Distributed Low-cost Wireless Particle Sensors: Optical 

Characterization” Portland, OR. AAAR 35th Annual Conference. 

2. Jiayu Li, Yang Wang, and Pratim Biswas*. August 2016. “Optical Characterization and Deployment 

of a Distributed Low-Cost Wireless Particle Sensor Network.” Tours, France. 22nd European 

Aerosol Conference.   

1. Yang Wang, Jiayu Li*, He Jing, Qiang Zhang, Jingkun Jiang, and Pratim Biswas. October 2015. 

“Laboratory Evaluation of Three Low-cost Particle Sensors for Particulate Matter Measurement.” 

Minneapolis, MN. AAAR 34th Annual Conference.  

TEACHING EXPERIENCES                                                                                     

Teaching Assistant  
Transport Phenomena (Fall 2015), Thermodynamics (Spring 2016), Environmental Nanochemistry 

(Spring 2018) 

JOURNAL REVIEW ACTIVITY 
Environmental Science and Technology Letters; Building and Environment; Journal of Aerosol Science; 

Aerosol and Air Quality Research; Sensors; Aerosol Science and Technology 



362 

Appendix VI: Transcript 



363 

Jiayu Li 

Department Course Units Final Title 

E33 EECE 501 3.0 A+ Transport Phenomena in Energy, 

Environmental, and Chemical 

Engineering 

 

E37 MEMS 5610 3.0 A Quantitative Materials Science & 

Engineering 

 

E63 ChE 518 3.0 A- Aerosol Science and Technology 

E33 EECE 503 3.0 A Kinetics and Reaction Engineering 

Principles 

 

E33 EECE 511 3.0 A Advanced Thermodynamics 

 

E44 EECE 503 3.0 A Mathematical Methods in EECE 

 

E44 EECE 512 3.0 A+ Combustion Phenomena 

 

E44 EECE 531 3.0 A Environmental Organic Chemistry 

 

E44 EECE 510 3.0 A Advanced Topics in Aerosol Science 

& Engineering 

 

E44 EECE 514 3.0 A Atmospheric Science and Climate 

 

 

 


	Washington University in St. Louis
	Washington University Open Scholarship
	Spring 5-15-2019

	Recent advances in low-cost particulate matter sensor: calibration and application
	Jiayu Li
	Recommended Citation


	tmp.1561062244.pdf.vnLIC

