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ABSTRACT OF THE DISSERTATION
Characterization and application of low-cost particulate matter sensors
by
Jiayu Li
Doctor of Philosophy in School of Engineering and Applied Science
Department of Energy, Environmental and Chemical Engineering

Washington University in St. Louis, 2019

Particulate matter (PM) has been monitored routinely due to its negative effects on human
health and atmospheric visibility. Standard gravimetric measurements and current
commercial instruments for field measurements are still expensive and laborious. The high
cost of conventional instruments typically limits the number of monitoring sites, which in
turn undermines the accuracy of real-time mapping of sources and hotspots of air pollutants
with insufficient spatial resolution. The new trends of PM concentration measurement are
personalized portable devices for individual customers and networking of large quantity
sensors to meet the demand of Big Data. Therefore, low-cost PM sensors have been studied
extensively due to their price advantage and compact size. These sensors have been
considered as a good supplement of current monitoring sites for high spatial-temporal PM

mapping. However, a large concern is the accuracy of these low-cost PM sensors.
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Multiple types of low-cost PM sensors and monitors were calibrated against reference
instruments. All these units demonstrated high linearity against reference instruments with
high R? values for different types of aerosols over a wide range of concentration levels. The
question of whether low-cost PM monitors can be considered as a substituent of conventional
instruments was discussed, together with how to qualitatively describe the improvement of
data quality due to calibrations. A limitation of these sensors and monitors is that their
outputs depended highly on particle composition and size, resulting in as high as 10 times

difference in the sensor outputs.

Optical characterization of low-cost PM sensors (ensemble measurement) was conducted by
combining experimental results with Mie scattering theory. The reasons for their dependence
on the PM composition and size distribution were studied. To improve accuracy in estimation
of mass concentration, an expression for K as a function of the geometric mean diameter,
geometric standard deviation, and refractive index is proposed. To get rid of the influence of
the refractive index, we propose a new design of a multi-wavelength sensor with a robust data

inversion routine to estimate the PM size distribution and refractive index simultaneously.

The utility of the networked system with improved sensitivity was demonstrated by
deploying it in a woodworking shop. Data collected by the networked system was utilized to
construct spatiotemporal PM concentration distributions using an ordinary Kriging method
and an Artificial Neural Network model to elucidate particle generation and ventilation

processes. Furthermore, for the outdoor environment, data reported by low-cost sensors were

XVi



compared against satellite data. The remote sensing data could provide a daily calibration of
these low-cost sensors. On the other hand, low-cost PM sensors could provide a better

accuracy to demonstrate the microenvironment.
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Chapter 1: Introduction: Calibration and
Applications of Low-cost Particle Sensors —
a Review of Recent Advances




1.1 Introduction

New designs for low-cost particulate matter (PM) sensors, new commercial products, and an
accompanying number of new publications all show the trending interest in this top. The
deployment of low-cost PM sensor networks, together with their pros and cons, has also been
discussed in recent works'3. Compared to conventional particulate matter (PM) monitoring
techniques, the price advantage and minimal maintenance of low-cost PM sensors make them
a promising supplement to current monitoring methods. They can enhance the spatiotemporal
resolution of pollution mapping, improving the accuracy of personal exposure estimation and
validation of the PM transport models. Estimating personal PM exposure accurately can
benefit epidemiologic studies by identifying the adverse health effects of PM. Improving and
understanding PM transport models can effectively control and even prevent pollution events.
These promising applications explain the recent extensive studies of low-cost PM sensors. As
shown in Figure 1, publications related to low-cost air quality sensors were almost nil before

2011, but have steadily increased since then.
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Figure 1.1 (a) The number of papers published each year related to “low-cost air quality
sensors”. Data from Web of Science Core Collection 1900 — 2019.

Studies related to low-cost sensors basically focus on their calibration and application. The
calibration studies evaluate sensors’ performance by comparing them with reference
instruments, while the application studies focus on pollution mapping and personal exposure
estimation. Several reviewers have summarized studies related to low-cost PM sensors*”.
Kumar et al. (2015) generally explained the motivations for the rising topic, and reviewed
concerns of the reliability, sensitivity, selectivity, and durability of low-cost sensors*. Rai et
al. (2017) concretely summarized literature on the performance of several different types of
low-cost PM sensors, and also analyzed possible environmental factors and aerosol properties
that could bias their performance®. Morawska et al. (2018) analyzed 17 large on-going funded
research studies on low-cost PM sensors, and summarized the major concerns regarding

sensor calibration and application®. Synder et al. (2013) highlighted that low-cost sensors can



improve existing air pollution monitoring capabilities and inspire innovative applications’.
Several other reviews illustrate the current limitations and future of low-cost air quality

sensors®10,

In this chapter, we further review the studies of low-cost PM sensors, and focus in detail on
their working principles, calibration methods, calibration metrics, and application scenarios.
The working principles of several low-cost PM sensors are demonstrated, using schematics
from previous studies. Sensors measuring PM with other techniques are also briefly
discussed. Calibration methods and metrics are summarized and compared. Calibration
methods and tools include regression or correlation, the non-parametric Wilcoxon signed-
rank test, the ranking method, the Bayesian information criterion, average slope and
individual slope methods, and the machine learning method. Calibration metrics, parameters
for evaluating the performance of low-cost PM sensors, include the limit of detection (LOD),
the correlation coefficient of linear regression, bias and precision, the coefficient of variation
(CV), and the detection efficiency. Finally, innovative applications of low-cost PM sensors in
field measurements or personal exposure estimation are discussed. We also introduce several
spatial analysis methods with corresponding cases, illustrating the use of the coefficient of
divergence (COD), land use regression, and several spatial interpolation methods. One thing
worth noting is that the term “low-cost PM sensor” generally refers to the both electrical
sensing modules (e.g., popular models from Sharp, Shinyei, Samyoung, Oneair, and
Plantower), together with low-cost PM monitors based on sensing modules. To make the

sensing module functional, circuit board design, programming, and calibration are necessary
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to establish the relationship between electrical signals (current, voltage, or pulse width) and
PM concentrations. For low-cost PM monitors, electrical sensing modules have been
integrated with data acquisition and storage systems before being distributed to users, and
they have been calibrated and tested. Compared to the PM sensing module alone, the
assembled monitors’ prices are higher, but these monitors are advertised with enhanced data
quality and stability due to improved algorithms and advanced factory -calibration.
Occasionally, these monitors have even been chosen as reference instruments to calibrate
low-cost sensors. For convenience, here we still use the general term “low-cost PM sensors”

for both sensing modules and low-cost PM monitors.

1.2 The working principles of low-cost PM sensors

Low-cost PM sensors, operating on basic optical principles, determine the PM concentration
level by measuring the intensity of light scattered by particles. Basically, there are two types
of these sensors, nephelometer type sensors and optical particle counter (OPC) type sensors.
In a nephelometer type sensor, particles pass through the sensing volume almost
simultaneously in a cloud, and the particle concentration is determined by the total scattered
light intensity registered by a photodetector. In an OPC type sensor, when a single particle
passes the sensing volume, the scattered light generates a pulse on the photodetector. The
number and the intensity of pulses are proportional to PM’s number concentration and size,

respectively. The working principles of several popular types of low-cost PM sensors are



shown in Figure 2. Only the Plantower sensors in Figure 2(g) and Figure 2(h) are OPC type
sensors; the rest are nephelometer type sensors. Apart from the commercial designs shown in
Figure 2, several studies have proposed new designs for low-cost PM sensors, focusing on

eliminating the effect of the particles’ refractive index or enhancing the sensors’ accuracy*!”

14

Low-cost optical PM sensors that light scattering techniques are often considered capable of
measuring only particles larger than 0.3 um. This conclusion is accurate for OPC type
sensors, since the pulse signal generated by a very small particle will be buried in the noise.
But for nephelometer type sensors, although individual small particles cannot generate
intensive signals, if their number concentration is high enough, they can still generate a
detectable response, since the totally scattered light intensity is also related to the number

concentration.
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Figure 1.2 Working principles of (a) Shinyei PPD42NS, (b) Samyoung DSM501A, (c) Sharp
GP2Y1010AUOF, (d) NovafitnessSDS011, (e) Winsen ZHO3A, (f) Honeywell HPMA115S0-
X, (g) Plantower PMS3003, (h) Plantower PMS5003, and (i) Oneair CP-15-A4. The figures
are from the following studies — (a-c): Wang et al. (2015), (d-f): Hapidin et al. (2019), (g):
Kelly et al. (2017), (h): Sayahi et al. (2019), and (i): Liu et al. (2017). The light sources in (a-
c) and (i) are light emitting diode (LED), and (d-h) are lasers.

Apart from optical sensors, other types of low-cost PM sensors are receiving attention. Intra
et al. (2013) presented a design based on unipolar corona charging and electrostatic detection
of charged particles™. Volckens et al. (2016) designed a time-integrated filter sampler with
an ultrasonic piezoelectric pump to drive flow, together with a cyclone to select particles of a

certain size range'®. Surface acoustic wave sensors can detect PM concentration by



measuring the resonant frequency change after particles deposit on the sensing area, which
interferes with the propagation of acoustic waves? -1°, Budde et al. (2013) designed an add-
on PM detector component for smart phones, using the flashlight and camera as the light
source and photo detector?®®. Snik et al. (2014) also designed an attachable component that
assists smart phones for aerosol optical thickness measurement?!, Du et al. (2018) designed a
PM sensor based on a CMOS (complementary metal oxide semiconductor) imager and an
electrostatic particle collector??. A similar design was also reported by Carminati et al.
(2017)?%. Yang et al. (2018) synthesized a layer of polypyrrole sensing nanofilm on a
photonic crystal fiber?*. Particles deposited on the sensing nanofilm change its refractive
index, indicating a PM concentration level change®*. The feasibility of using photonic and
microelectromechanical resonators for detecting particles or viruses has also been
discussed?®. Recently, a piezoelectric microelectromechanical resonator, together with a low-
cost circuit, was proposed as a new low-cost PM sensor?®. A quartz crystal microbalance
(QCM) has been used to measure PM mass concentration, based on the frequency shift
caused by particle deposition, and miniaturized devices based on QCM have been developed

recently?’ 28,

Although these new innovative designs have an intriguing future, low-cost PM sensors
operating on optical principles are still the dominant type, for several reasons. First, optical
sensors are easy to use with a lower price compared to other type of sensors. Second, theories
of the interactions between light and particles are maturely developed. At the same time,

many research-grade PM measurement instruments are also based on optical principles, and
8



researchers are familiar with these instruments. Therefore, it is easy for them to shift from
using conventional instruments to low-cost PM sensors operating on a similar principle. To
prove the reliability and stability of the innovative designs, further effort is still needed.
Third, their cost and fabrication procedures are also concerns. For some innovative design,
although the sensing unit is low-cost, the signal processing and detection components are
expensive. In summary, nephelometer type and OPC type designs still are the most widely
used because they are compact, easily integrated with other systems, operate on familiar

principles, and are conveniently deployed.

1.3 Calibration methods overview

Laboratory calibrations and field calibrations are the foundations of low-cost PM sensors’
applications?®. In a laboratory calibration, environmental factors and aerosol properties can
be controlled. Environmental factors include the temperature, relative humidity, and
ventilation rate. For aerosols, ultrafine particles can be generated from atomizers, and
micron-sized particles can be generated from dust dispensers. A few studies have also used
common residential or industrial PM sources (e.g., cookstoves and cigarettes) to mimic
practical situations in laboratories. Salt particles, sucrose particles, cigarette emissions,
welding fumes, and Arizona road dust have been used in laboratory calibrations. The size
distribution and composition of aerosols can be controlled fairly well in laboratory

experiments, which benefits the analysis of low-cost PM sensors’ dependence on these



variables. Sensors’ response highly depend on PM sources and size distributions, therefore,
choosing an appropriate PM source during calibration will enhance the accuracy in later
deployment. For ambient application, Arizona road dust (ARD) can be a good choice.
Incense particles can be chosen for sensors planning to deploy for biomass burning
measurement. The choice of PM sources can change with the application requirements.
Common reference instruments include research-grade instruments (e.g., scanning mobility
particle sizer (SMPS), aerodynamic particle sizer (APS), and GRIMM dust monitor) and
portable instruments (e.g., TSI SidePak and TSI PTrak). When choosing reference
instruments, federal reference/equivalent methods and best available techniques should be the
first choice. Other standards, for example the availability and convenience, also need to be

taken into consideration.

Field calibration focuses more on the performance of low-cost PM sensors under
uncontrolled and dynamic environments, and can be conducted in residential or outdoor
environments. In a residential environment, the sensors’ responses to routine PM emission
events (e.g., cookstove emissions, woodworking shop operations, and incense burning) can
be studied. Outdoor calibration focuses on agreement between low-cost PM sensors and
federal reference methods, including the gravimetric method, the g-attenuation analyzer, and
the tapered element oscillating microbalance (TEOM). Outdoor emissions, especially urban
traffic emissions, have been characterized in several studies. In field calibrations, the PM
composition and concentration levels can be highly dynamic. Thus, the time domain is

usually longer than in laboratory calibrations in order to collect enough data over a whole
10



concentration range. Although the performance of low-cost PM sensors in field calibration
may not be as good as that in laboratory calibration, the results from field calibrations are
closer to the real situation, and field calibration is a good method to examine the reliability,

durability, and longevity of low-cost PM sensors.

Here we first discuss several calibration methods that have been used in previous studies,
including linear regression or correlation, the reduced major axis method, Bayesian
information criterion, non-parametric Wilcoxon signed-rank test, the average slope and
individual slope method, and machine learning method. Then, methods to correct sensors’

performance for the effects of temperature and relative humidity are briefly discussed.

Linear regression is the most common method for calibrating low-cost PM sensors. The
sensors’ outputs are plotted against the outputs from reference instruments, and a fitted
equation is used to optimize the accuracy of the sensors’ outputs. The correlation coefficient,
R, is a statistic measuring the degree or strength of linear correlation. In different studies on
evaluating sensors’ performance, R is referred as the r coefficient, Pearson’s product-moment
r, or Pearson’s correlation coefficient. R values, typically given with two decimal places,
range from -1 for a strong negative correlation, through 0 for a no or a weak correlation, to +1
for a strong positive correlation. The value of R? is re-scaled to 0 to 1, describing purely the
strength of the correlation. Several authors have explained that combining the hypothesis test
(p-value significance test) with the r or R? value is a more rigorous method for judging the

relationship between two variables®¢-%,

11



If not otherwise specified, linear regression or correlation is usually based on the least
squares method. The reduced major axis method, in addition to the least squares method was
used in several studies, to calculate the correlation coefficient, slope, and intercept®® *2, The
assumption of the least squares method is that the independent variables are measured
accurately®® 4. Therefore, if we are calibrating low-cost sensors against a reference
instrument and are very confident about the results from the reference instrument, the least
squares method is appropriate. However, in situations where the accuracy of the reference
instrument is underdetermined, or when comparing a low-cost sensor against another low-
cost sensor, the reduced major axis method is more applicable, because it considers the

measurement error of both the dependent and independent variables*®: 41,

To improve sensors’ performance by including more variables in the model, for example,
relative humidity and temperature, linear correlation or regression may not be adequate. Gao
et al. (2015) used both the Bayesian information criterion (BIC) and the standard error of
regression to evaluate fitted models that included temperature and humidity as variables*.
The BIC method can prevent overfitting by introducing a penalty term that reflects the
number of free parameters in the model*-. The standard error of regression, also known as
the standard error of the estimation, evaluates the difference between observed and model-
predicted values. For complicated models, increasing the number of free parameters, for
example, by including more variables or fitting with higher orders, will reduce the standard

error of regression. However, it will also lower the BIC number due to the penalty term*’. By

12



combining these two methods, an optimal predictive model can be selected with minimal

discrepancy from the observations, without overfitting.

The Non-parametric Wilcoxon signed-rank test was used by Zikova et al. (2017) in their
evaluation of the performance of Speck sensors®. This method, also known as Mann-
Whitney U test or Mann-Whitney-Wilcoxon test, can be used to examine whether the sensor
data and the reference instrument data are from the same population. If they are from a same
population, then the quality of the sensor is satisfactory and it can be a replacement for the
reference instrument. Unlike the majority of statistical methods (e.g., student’s t-test), which
require the assumption of a normal distribution, the Wilcoxon signed-rank test is intuitive,
simple, and does not require assumptions about the distribution of the data*® %°. However, it
only qualitatively demonstrates whether a hypothesis can hold, and is inadequate to quantify
the magnitude of any effect. Another rank order analysis method was used by L. R. Crilley
for evaluating the variability of 14 Alphasense OPC-N2s over a period of time®. The PM
measurements were ordered from the highest to the lowest, after being normalized to the
median concentration at the start of the analysis. Compared to pair-wise correlation, this
method can show the dynamics of the variation, such as offset, as a function of time. The
offset drift, or the temporal consistency of each sensor, can also be demonstrated by this
method. Ideally, sensors initially reporting higher PM concentrations than peer sensors are
supposed to also report higher concentration at the end of the measurement period,

representing no drift or the same degree of drift.

13



The average slope and individual slope method was used to guide the deployment of a low-
cost sensor network in a heavy-manufacturing site, for convenience in calibrating multiple
sensors®. A large concern in the deployment of low-cost sensors is their unpredictable data
quality. Repeated calibration has been recommended to enhance the data quality, however, it
is time consuming and inconvenient for tens of sensors in a field deployment. The study
mentioned above used the average slope method to select sensors with similar slopes in the
calibration stage. Then, in the field deployment, the reference instrument was collocated with
only several of the selected sensors, and a universal field calibration factor was applied to all

the selected sensors.

Machine learning, as a popular concept in computer science, has also been used for sensor
calibration. A feedforward Neural Network has been used in the calibration of the Plantower
PMS7003%. An artificial neural network has been used to predict the PM distribution in a
woodworking shop®. Zimmerman et al. (2018) compared three calibration methods,
including laboratory univariate linear regression, empirical multiple linear regression, and
machine-learning method (random forest) to calibrate different gas sensors, and these

methods should be considered in the calibration of low-cost PM sensors®.

The influence of temperature and relative humidity on the performance of low-cost PM
sensors have been studied in field and lab studies. Some studies have indicated that the
influence of temperature was a negligible effect on sensors’ performance®” *®. Several other

studies have concluded that high RH may bias the performance of low-cost PM sensors in

14



both laboratory calibration and field evaluation®” %8, However, still other studies, especially in
field evaluations, indicate that the influence of relative humidity is negligible®®. There have
been attempts to eliminate the influence of relative humidity and temperature by including
empirical equations, fitted equations, or hygroscopic growth factors in a more complicated
model to calibrate low-cost PM sensors*? %65, Compared to research grade instruments, low-
cost PM sensors lack temperature and humidity control components, and thus changes of
shape, size, phase (solid to liquid or liquid to solid), and optical properties of particles under
high relative humidity may bias their performance®® ¢’. The influence of relative humidity has
been extensively studied by atmospheric scientists®®7°, The influence of relative humidity
also depends on particles’ surface properties and compositions, which may explain why, in
several field studies, the relative humidity did not show a significant influence on sensors’
performance®. Further study is needed to explore in detail how environmental factors can

influence the sensors’ performance and how to correct such bias.

As mentioned above, researchers have tried several different calibration methods to improve
the performance of low-cost PM sensors. It has been very controversial whether all studies
should follow the same calibration methods to calibrate different kinds of sensors, so that the
results from different reports can be comparable. However, a concern here is that such a
standard guideline might discourage exploring and applying new statistical methods for
sensor calibration. In addition, other issues arise. First, current OPC type sensors and
nephelometer type sensors follow the same procedures for calibration. Considering the

differences in their working principles and measurement metrics, the calibration methods
15



may need re-evaluation and modification. Second, the criterion for calibrating low-cost
sensing modules (solely electrical component) and low-cost PM monitors (calibrated and
tested before being distributed to users) is worth further discussion. For low-cost sensing
modules, the focus of calibration is whether good linearity can be established; however, for
low-cost PM monitors, agreement with reference instruments might be more important. For
sensing modules, calibration is necessary to establish the relationship between electrical
signals with PM2s. For low-cost PM monitors, since they already report PM2s, the bias and
deviation should be the focuses, instead of correlation. Therefore, it is necessary to
distinguish between sensing modules and low-cost PM monitors, since their calibration

metrics and methods are inherently different.

1.4 Calibration metrics

Calibration metrics are parameter whose values are calculated from the calibration
procedures used to evaluate the performance of low-cost PM sensors. For example, the
correlation coefficient from linear regression is a common parameter to evaluate the linearity
of low-cost PM sensors. Similar metrics include the limit of detection (LOD), the bias and

precision, and the coefficient of variation (COV).

The R? value, from linear regression, is a primary parameter to evaluate the linearity of low-
cost PM sensors. Details related to linear regression have been mentioned in the last section.
The R? values of low-cost PM sensors from previous studies, as summarized by Rai et al.

(2017), are presented in Figure 3. In the literature, R? values are reported for different PM
16



sources under various test environments. The maximum and the minimum R? values for
several types of low-cost PM personal monitors are summarized in Figure 4. The major
components of several of low-cost PM monitors in Figure 4 are sensing modules mentioned
in Figure 3. For example, the major component of the AirAsure is the Sharp
GP2Y1010AUOF, and the major component of the PurpleAir is the Plantower PMS series
low-cost sensing module. Since the tests in Figure 3 and Figure 4 were not conducted
following the same methodology and guidelines, the reported R? values could vary with
different test conditions, and results may not be directly comparable. However, the trend is
basically the same: the R? value from the laboratory calibration (R? > 0.6) is better than that

from field calibration (R? > 0.4).
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Figure 1.3 The R? values of low-cost PM sensors, summarized by Rai et al. (2017).
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Figure 1.4 Reported R? values of low-cost PM personal monitors. The data are from the
following studies — (a) Manikonda et al. (2016), (b) Wang et al. (2015), (c) Feinberg et al.
(2018), (d) Sousan et al. (2017), (e) Jiao et al. (2016), (f) Mukherjee et al. (2017), (g) Sousan
et al. (2016), (h) Gillooly et al. (2019), (i) Crilley et al. (2018), (j) Steinle et al. (2015), (k)
Semple et al. (2015), (1) Sousan et al. (2016), (m) Semple et al. (2013), (n) Jovasevi¢-
Stojanovi¢ et al. (2015), (0) Han et al. (2017), (p) Franken et al. (2019), (q) Moreno-Range et
al. (2018), (r) Sayahi et al. (2019), (s) Malings et al. (2018), (t) Malings et al. (2018), (u)
Zikova et al. (2017), and (v) Zikova et al. (2017).
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The limit of detection (LOD) is the lowest detectable concentration that significantly stands
out from the background noise. Low-cost PM sensors are considered to report reliable and
meaningful data, only when the concentration exceeds the LOD. Equation (1.1) for
calculating the LOD is given below, where k and onik represent the slope from the fitted
model and the standard deviation of low-cost PM sensors under a particle-free background®®
1, Knowing the LOD before deployment is necessary to produce reliable data, especially for
atmospheric measurement. However, LOD is for reference only and should not limit the
application of low-cost PM sensors. According to the requirements of different applications,

LOD is not the lower the better.

LOD = 3a,,, [k (1.1)

Equation (1.2a) shows the bias defined by the National Institute for Occupational Safety and
Health (NIOSH), where Cis and Cy represent the concentrations measured by low-cost
sensors and reference instruments®® > 73, NIOSH bias, also known as the percent difference,
evaluates the percent of error of low-cost sensors’ output compared to reference instruments.
Zikova et al. (2017) and Sousan et al. (2018) have used this method to evaluate the
performance of Speck monitors and Sharp sensors respectively*® 52, Kelly et al. (2019), used
a similar definition, referred to as the normalized residual, to evaluate Plantower sensors®®.
The EPA specifies the bias of low-cost PM sensors by Equation (1.2b), which given the
average of the percent difference in k different measurements’. Both NIOSH bias and EPA

bias have been recommended to be within + 10%.
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NIOSH bias (d;) = ==L x 100% (1.2a)
rf
EPA bias (b) = 1T, =L x 1000 = Z T, d, X 100% (1.2b)
rf

The measurement precision parameter reflects the stability and repeatability of low-cost PM
sensors at a certain concentration level. There are several different definitions of
measurement precision. For evaluating the repeatability and stability of low-cost PM sensors
for a fixed concentration level Long et al. (2016) defined measurement precision, as shown in
Equation (1.3a), where P1, P2, and P3 represent three individual measurements of low-cost
PM sensors for the same concentration level”®. Manikonda et al. (2016), Zikova et al. (2017),
and Zamora et al. (2019) used a similar definition of precision that involved the difference
and mean of the sensor’s and reference instruments’ outputs, as shown in Equation (1.3b and
1.3c)*®- 7> Manikonda et al. (2016) used the normalized root mean square error to quantify
the difference of paired data, as shown in Equation (1.3b)”. In the equation, n is the number
of data pairs in a period of measurement, and P; and C; represent the paired data from two
low-cost PM sensors. Zikova et al. (2017) and Zamora et al. (2019) used the same definition
(Equation (1.3¢)) and referred to the method as “unbiased variance estimate” and “relative
precision error” respectively in their papers*® %1, Compared to Equation (1.3a), Equations
(1.3b and 1.3c) might be more practical for calibration since they do not require a fixed
concentration level, and they consider the precision values with respect to concentration

levels by normalizing them to average measurement results.

| <
2

[
Precision = Nll[ . —iﬁz?:l PE]E] (1.33)

20



[Lem . =
JnZizaPimG)

I (R+G)/2

(1.3b)

Precision of measurement =

Precision = %%l ¥ 10004 (1.3c)

The coefficient of variation (CV), another parameter for evaluating the precision of low-cost
PM sensors, is defined by Equation (1.4), where ¢ and u represent the standard deviation and
the mean of measurements. CV measures the degree of variation, indicating the dispersion of
data points around the mean value. Sousan et al. (2016) and Zamora et al. (2018) have used
this parameter to evaluate the performance of the Alphasense OPC-N2 and Plantower PMS
A003 respectively®® ¢ and several other studies have also used CV to evaluate different
types of sensors’®. A CV value of less than 10% is considered to be a satisfactory

performance.

cv = (1.4)

R

Apart from the parameters mentioned above, other statistical measures can be used to
evaluate the performance of low-cost sensors. Examples include, the median, mean, mode,
the 25" and 75" percentile®!, and the mean relative standard deviation®”. All these statistical
measures quantify the accuracy and repeatability of low-cost sensors from different
perspectives. However, current studies and guidelines have limitations. First, the criterion for
“good” performance is vague. In the methods mentioned above, only reference values for CV
and bias are given by NIOSH and EPA. More criteria are needed, for example, in what range

the reference value of R? can be called a “good” PM sensor. Several guidebooks discuss
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standard procedures and guidelines to calibrate low-cost sensors, led by the EPA and air
quality sensor performance evaluation center (AQ-SPEC), and we expect more discussion on
this subject’’"®. Second, the performance of low-cost PM sensors varies with the particle size
distribution, composition, and testing environment, which makes the results from different
reports difficult to compare. A guideline for specifying test conditions would be helpful in the
field. Third, several different parameters are reported by low-cost PM sensors, including the
number concentration, mass concentration, and size distribution. Sensors reporting number
concentration and mass concentration have been evaluated by the statistical methods
mentioned in this section, however, there are limited options for quantifying the accuracy of
the size distribution data. Normally, the size distributions from low-cost PM monitors are
plotted together with those from reference monitors. Also, sometimes, detection efficiency
has been calculated to quantify the performance. More discussion is needed to evaluate size

distribution measurements from different perspectives.

1.5 Applications

The superiority of low-cost PM sensors, their price advantage, portable size, and moderate
accuracy have made them a good supplement to current monitoring stations. Several studies
have shown that spatial variation cannot be neglected, even over a kilometer scale®® 8, and
such small-scale heterogeneity is important for accurately quantifying the personal exposure

level®?. Here we present several examples of field deployment of low-cost PM sensors,
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together with related spatial analysis methods. An important topic in sensor deployment is
using interpolation method to predict the PM concentration at locations without
measurements, known as pollution mapping. Common interpolation methods were also

discussed in this section.

Low-cost PM sensors have been innovatively applied in industrial or daily life. Low-cost
sensors have been used to examine the relationship between different sources and PM
concentration levels®. Dylos sensors were used to evaluate the pesticide off-target drift of
agricultural tower sprayers®. A Novafitness sensor was used to evaluate the emissions of a
surface filter®®. Other than estimating personal exposure®® and mapping pollution
distribution®’, applications also include characterizing households emissions® 8, cigarette
emissions®, and industrial factory emissions®* °*. Low-cost PM sensors can also contribute to
the construction of smart cities that provide personal exposure estimation with better

accuracy®%4,

Apart from deploying fixed sensors to enhance spatial resolution, several studies have
involved mobile sensing nodes. When combined with a data logging system (e.g., on a
microSD card) or position logging system (e.g., GPS), low-cost sensors can be used to refine
the assessment of personal exposure?® %9, At indoor scale, an ultrasonic indoor positioning
system has been used to position mobile low-cost PM sensors for indoor exposure

estimation?®. These sensors have also been integrated with unmanned aerial vehicles (e.g.,
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drones) for outdoor vertical measurement®®® 1%2, Furthermore, a low-cost robot, carrying a

low-cost PM sensor has been tested for remote sampling or autonomous sampling [Abhay].

The coefficient of divergence (COD), defined by Equation (1.5), quantifies the level of
heterogeneity between two places, where x; j and x; « are the i'" measurement at location j and
k respectively'®. Normally, a COD value smaller than 0.2 represents no significant difference
between the measurements at two different locations, indicating homogeneity. COD values
larger than 0.2 represents increasing heterogeneity'%® 194, Zikova et al. (2017) and Saha et al.
(2019) had used this method to examine, respectively, the PM distribution with 25 Speck
monitors in New York and 32 RAMP (real-time, affordable, multi-pollutant) monitors in
Pittsburg respectively*® 81, Reece et al. (2018) also used this method in a field campaign in
Puerto Rico to analyze spatiotemporal distribution of PM2s and NO2."® Using the COD of
different species, Saha et al. (2019) found that ultrafine particles and PM2s respectively

demonstrated higher and lower heterogeneity?’.

CoD;, = Nlliz?:l[[xij _xikjf(x:j +x5.)]7 (1.5)

Different types of interpolation methods have been used for indoor and outdoor pollution
mapping employing low-cost sensors. Zikova et al. (2017) used the inverse squared-distance
weighing interpolation (IDW) to predict outdoor PM distribution with 25 Speck monitors®,
Li et al. (2018) mapped the spatiotemporal PM distribution in a woodworking shop with 8
Sharp GP2Y sensors by Kriging interpolation and an artificial neural network method®*. In
two consecutive studies, Rajasegarar et al. (2014) used a Bayesian maximum entropy (BEM)
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method to map the PM distribution in a garage and city of Melbourne, Australia, with GP2Y
sensors.1% 1% There are around 30-40 types spatial interpolation methods, have been
deployed in environmental studies, and several reviews have made high-quality summaries
explaining the differences among these methods and how to quantify the accuracy of the
interpolation results!®”11° The major differences among various types of interpolation
methods is the weight assigned to measured data for predicting the concentration at
unsampled locations. Methods used to assess the accuracy of the measurement can also be

used to optimize sampling locations.

Land use regression (LUR) is another important method used to interpret the results from
low-cost PM sensors'!!. LUR also uses data at sampled locations to predict the PM values at
unsampled locations. However, a major difference that distinguishes LUR from other
interpolation methods is the involvement of additional predictor variables, for example, land
use, traffic, population density, physical geography, and meteorology. Including these
additional predictor variables shows that the PM concentration is not only a function of the
location. Another large difference between the spatial interpolation methods discussed above
and the LUR is the restriction of measured datasets. For Kriging interpolation, the highest PM
concentration belongs the measured datasets. However, for LUR, the highest PM
concentration may not be the highest measured value, because the results are influenced by

multiple variables.
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Several questions demand further attention. First, the differences between indoor and outdoor
pollution mapping need to be highlighted. Indoor pollution events are highly dynamic, and
can change within several seconds due to complicated ventilation conditions. How to adjust
the sampling locations and intervals to meet the requirements of indoor and outdoor pollution
mapping needs further exploration. A second question is related to the strategy of
measurement. The majority of monitoring stations are heterogeneously located, concentrated
in and around metropolitan areas or industrial areas. The question of how this sparseness may
undermine the accuracy of pollution mapping should be answered in future studies.
Optimizing the locations of low-cost PM sensors is another potential topic related to the
efficiency and effectiveness of measurements. The third question is how best to connect the
pollution mapping results with studies in other fields. The pollution mapping results from
conventional methods have already been used in epidemiologic studies. Low-cost PM sensors
can indeed provide data with better spatiotemporal resolution; however, the reliability and

accuracy of the data remain as concerns.

1.6 Challenges

We have summarized the methods and metrics used in previous studies to evaluate the
performance of low-cost PM sensors. These methods can demonstrate the advantages and
limitations of each type of sensor. Characterizing these sensors thoroughly will benefit their

deployment in field studies. Low-cost PM sensors have demonstrated acceptable accuracy
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and stability in the calibration and characterization, which demonstrates great potentials in
various applications for mapping pollution distribution and quantifying personal exposure.

However, here are several challenges that may still a concern in current studies.

First, previous studies have concluded the parameters that may bias sensors’ performance,
leading to overestimating or underestimating in mass concentrations. We have also
mentioned in the previous section, environmental parameters (e.g., relative humidity and
temperature) and PM properties (e.g., size distribution and optical properties) may all
challenge the accuracy of the low-cost PM sensors. Either establishing models with more
parameters or improving sensor structures can achieve a better accuracy. Several studies
mentioned above have built different models to correct the bias caused by relative humidity
and temperature. However, a big concern is whether the models are universal, applicable to
all or most of the scenarios. To establish a universal model, more fundamental studies are
needed. At the same time, there are limited studies of improving sensors’ structure for better
performance. Therefore, how to improve sensors’ performance for an accurate estimation of

PM mass concentration needs further effort.

Second, the LOD was not always reported in literature as correlation coefficients. However,
they are vital for judging whether a specific type of sensors is appropriate for deployment.
Further lower the LOD with either advancing algorithms or sensor structure improvement
will benefit sensors’ deployment in field measurement. The cut-off size for OPC type sensors

is approximately 300 nm, which does not include ultrafine particles yet. Furthermore, ultra-
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fine particles have showed a stronger mobility and have demonstrated a more heterogeneous
distribution than larger particles. Therefore, lower the cut-off size for both OPC type and

nephelometer type PM sensors is necessary and practical.

Third, although the cost and maintenance of a single PM sensor is low, maintaining a sensor
network will be a different story. Although the maintenance requirement for low-cost PM
sensors is lower compared to conventional methods, but still cannot be ignored. Identifying
malfunctioning sensors and repairing them will be difficult for a sensor network with more
than a hundred units. How to enhance the stability and robustness of low-cost PM sensors to

realize zero-effort maintenance will benefit field applications.

Fourth, the data from low-cost sensors have been used for pollution mapping and exposure
estimation. A few studies have also used robot and drone with low-cost PM sensors to realize
autonomous measurement. Some attempts have been made to combine low-cost PM sensor
with remote sensing or ground measurement!!2, More studies are expected to explore the

possibilities of using sensor data in different applications and different scenarios.
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Abstract

Particle sensors offer significant advantages of compact size and low cost, and have recently
drawn great attention for usage as portable monitors measuring particulate matter mass
concentrations. However, most sensor systems have not been thoroughly evaluated with
standardized calibration protocols, and their data quality is not well documented. In this
work, three low-cost particle sensors based on light scattering (Shinyei PPD42NS, Samyoung
DSM501A, and Sharp GP2Y1010AUOF) were evaluated by calibration methods adapted
from the US EPA 2013 Air Sensor Workshop recommendations. With a SidePak (TSI Inc.), a
scanning mobility particle sizer (TSI Inc.), and an AirAssure™ PMzs Indoor Air Quality
Monitor (TSI Inc.) which itself relies on a GP2Y1010AUOQF sensor as reference instruments,
six performance aspects were examined: linearity of response, precision of measurement,
limit of detection, dependence on particle composition, dependence on particle size, and
relative humidity and temperature influences. This work found that: a) All three sensors
demonstrated high linearity against SidePak measured concentrations, with R? values higher
than 0.8914 in the particle concentration range of 0 to 1000 ug/m?, and the linearity depended
on the studied range of particle concentrations; b) The standard deviations of the sensors
varied from 15 to 90 ug/m? for a concentration range of 0 to 1000 pg/m*;, c) The outputs of
all three sensors depended highly on particle composition and size, resulting in as high as 10
times difference in the sensor outputs; and d) Humidity affected the sensor response. This

paper provides further recommendations for applications of the three tested sensors.
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2.1 Introduction

Particulate matter (PM) is an important parameter in determining air quality, affecting
visibility (Guo et al., 2014), human health (Biswas and Wu, 2005; Karlsson et al., 2009), and
global climate (Stocker et al., 2013). The size of PM is closely related to the inhalation and
deposition properties of particles in the human respiratory system (Phalen et al., 1991). PM
concentration can be quantified as PMio, PM2s, or PM3, according to the mass concentrations
of particles below the aerodynamic sizes of 10 um, 2.5 pm, and 1 pm, respectively. The US
EPA-approved instruments for measuring PM concentrations include impactors, cyclones,
tapered element oscillating microbalances (TEOM), and beta attenuation monitors (BAM)
(EPA, 2013). Other instruments, such as the DustTrak™ and SidePak™ (TSI Inc.) use light
scattering to obtain particle mass concentrations, while scanning mobility particle sizers
(SMPS) (Knutson and Whitby, 1975; Wang and Flagan, 1990) and aerodynamic particle sizer

(APS) derive particle mass concentrations from measured particle size distributions.

Temporal and spatial PM aggregate concentrations may vary significantly in a region. The
PM concentrations provided by a single monitoring site may not accurately represent the
particle concentrations around people distributed in its vicinity, who may be concerned about
the health effects of PM exposure. In recent years, this concern has become especially acute
in developing countries that are industrializing (Huang et al., 2014; Cao et al., 2013; Tiwari et
al., 2013). To keep the citizens updated on air quality information through additional sources,
the US embassy and consulates have started to measure and post the real-time PM

concentrations in these countries. However, the embassy websites also emphasize that,
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“citywide analysis cannot be done, on data from a single machine (US Embassy, 2015).” In
order to obtain accurate PM concentrations with good resolution, a high density of
measurement sites is required, and the cost associated with the conventional instruments
mentioned above makes this impractical. Based on techniques first developed for smoke
detectors decades ago (Mulholland and Liu, 1980), portable PM monitors have become
popular in recent years (Hagler et al., 2014), driven by their remarkably low price and the
emerging need for real-time “big data” reporting of local air quality (Chong and Kumar,
2003; Leavey et al., 2015). These particle sensors can be used in locating pollution hotspots
or generating coarse 3-D maps of PM concentrations (Rajasegarar et al., 2014). In a broader

sense, the usage of low-cost particle sensors also raises social awareness of air quality.

Particle sensors using light scattering are cheaper and more compact than sensors using the
single particle counting method or other mechanical methods, and hence have drawn more
attention from researchers in recent years (Weekly et al., 2013; Holstius et al., 2014;). A light
scattering PM sensor is typically composed of an infrared emitting diode (IRED), a
phototransistor (PT), and focusing lenses. While passing through the sensor, particles scatter
light, and the intensity of the light received by the phototransistor is directly correlated with
the concentration of particles. The light scattering of particles falls into different regimes
(Friedlander, 2000), and the Rayleigh regime and Mie regime are often encountered for
particles in micrometer size or smaller. Compared to sensors using single particle counting

techniques, light scattering PM sensors measures the optical properties of the particles as an
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ensemble. This feature greatly reduces the cost and size of the sensors; however, at the same

time, it limits their measurement accuracy (Holstius et al., 2014; Gao et al., 2015).

Three models of light scattering particle sensors, the PPD42NS (Shinyei Inc.), DSM501A
(Samyoung Inc.), and GP2Y1010AUOF (Sharp Inc.) are currently available to customers as
single modules, which are simple to assemble, install, and use. Each sensor has been
evaluated separately in previous work, and a qualitative match was observed between their
outputs and the total mass concentrations obtained by established instruments (Nafis, 2012;
Gao et al., 2015; Holstius et al., 2014; Olivares et al., 2012; Weekly et al., 2013). Further
experiments were conducted on deploying the particle sensors for correlation with gas
sensors (Olivares et al., 2012), monitoring occupancy in public space (Weekly et al., 2013),
and measuring particle concentrations in field tests (Gao et al., 2015; Holstius et al., 2014).
The PPD42NS sensor and GP2Y1010AUOF sensor have also been packaged in
commercialized particle monitors, such as the AirAssure PM2s Indoor Air Quality Monitor
(TSI Inc.), which was tested in this study, the Air Box™ (Haier Inc.), and the Pervasive Air-
Quality Monitor (PAM, Air-Scientific). To fulfill the need for smaller, cheaper, and more
accurate particle monitors, other sensors have also been designed (Litton et al., 2004;
Chowdhury et al., 2007), calibrated (Edwards et al., 2006), and applied in field studies

(Chowdhury et al., 2007; Sahu et al., 2011).

Up until now, no parallel comparison among these sensors has been conducted. At the same

time, the lack of studies using a standard protocol assessing the particle sensors has hindered
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a comprehensive understanding of their performance. Several calibration protocols have been
designed and used to calibrate air quality sensors (Spinelle et al., 2013; Long et al., 2014).
The 2013 US EPA Air Sensor Workshop recommended seven parameters to be investigated
upon the receipt of a new air quality sensor device from its developer or manufacturer: (1)
Linearity of response, (2) Precision of measurements, (3) Limit of detection, (4)
Concentration resolution, (5) Response time, (6) Interference equivalents, and (7) Relative
humidity (RH) and temperature influences. Among these parameters, concentration
resolution is reflected in the precision of measurements, as introduced in the EPA workshop
summary (Long et al., 2014). For particle sensors using light scattering method, the light
transfer time in the sensors can be ignored, and their response time is mainly determined by
the electron transport time in the circuits, which can also be neglected. The interference
equivalent does not need to be considered, since, unlike gas sensors, for which equivalent
species can cause similar responses, particle sensors are affected by concentrations and
properties of particles only. Particle composition critically affects the performance of light
scattering sensors. Light scattering depends on the refractive indices of materials, while the
light absorption of materials may also affect the intensity of light received by the
phototransistor. The size of particles also directly influences the light scattering coefficient
and absorption coefficient. Previous analyses indicated that particle mass concentrations
determined by nephelometry, which is also based on light scattering, have an irreducible
uncertainty of approximately £ 30 to 40%, which is directly attributable to the natural

variability of PM.s aerosol parameters, including particle concentration, particle refractive
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index, particle size, and particle morphology (Molenar, 2005). Therefore, for evaluating light
scattering particle sensors, the original EPA list of seven parameters was altered.
Concentration resolution, response time, and interference equivalents were dropped, and

particle composition and size dependence were added.

In this study, the performance of three low-cost light scattering particle sensors was
compared for the first time against commonly used instruments in air quality research, a
SidePak and a SMPS. The laboratory evaluation and calibration used a revised protocol
provided by the EPA 2013 Air Sensor Workshop to obtain a comprehensive understanding of

sensor performance.
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2.2 Calibration platform

A calibration platform was built for testing the performance of the sensors. Detailed
descriptions of the sensors, the reference instruments, the chamber, and the operating

principles for the measurement are as follows.

2.2.1 Particle sensors and reference instrument

Shinyei PPD42NS Samyoung DSM501A  Sharp GP2Y1010AUOF
(PPD) (DSM) (GP2Y)

59 mm 59 mm

[PbF [ROHS] SHIOYE

/\
. ®.o
‘oo ‘ep - 2 L
ﬁ Particle flow ﬁ Particle flow < / Particle flow

Figure 2.1 Dimensions, geometries and schematic diagrams of the sensors evaluated in this
work. The sensors in the figure do not represent actual sizes. In the schematic diagrams
shown in the third row, PT, IRED, and R stand for phototransistor, infrared emitting diode,
and thermal resistor, respectively.
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Table 2.1 Specifications of the tested sensors.

Model PPD42NS DSM501A GP2Y1010AUOF
Abbreviation used in this work PPD DSM GP2Y
Dimension WxHxD (mm) 59x45x22 59x45x20 46x30x18
Detectable PM size range ~1 um ~1 um N/A
Operation voltage 5+05V 5+0.5V 5+0.5V
Current consumption <90mA <90mA <20mA
Maximum detectable concentration 28000 #/L 1400 pg /L 500 pg/m3
Operation temperature 0~+45°C -10 ~ +65 °C -10 ~ +65 °C
Operation humidity <95% <95% N/A
Sensitivity N/A N/A 0.35-0.65V/(100pug/m3)
Output signal Ianuc!ZiIV;l t':j(;[:: Z]UJZ?JIV; :?;2 Analog output
Cost (USD) ~$15.9 ~$13.8 ~$10.0

The Shinyei PPD42NS, Samyoung DSM501A, and Sharp GP2Y1010AUOF sensors were
evaluated in this work. For simplification, the three sensors are named “PPD”, “DSM”, and
“GP2Y” in the following, respectively. The geometries, schematic diagrams, and
specifications of the three sensors are displayed in Figure 2.1 and Table 2.1. The PPD and
DSM sensors share a similar geometry. Both use thermal resistors to generate heat so that
natural convection creates an updraft of particles that flow through the light scattering region.
The GP2Y sensor is smaller than the PPD and DSM sensors. Unlike the PPD and DSM
sensors which are self-aspirated through the application of thermal resistors, the GP2Y sensor
relies on a hole through the center of the body to allow for the convection of particles. The
orientation of the GP2Y sensor is therefore different from the other two types of sensors, as

discussed in the next section. Also, the GP2Y sensors with and without regulated external
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convection may respond differently under the same particle concentrations. All the tested
particle sensors use IREDs for light generation, and commonly used IREDs generate light

with wavelengths between 870 to 980 nm (Schubert, 2005).

The PPD and DSM sensors were controlled by a LabVIEW program through a data
acquisition system (NI 6008, National Instruments Inc.). Both sensors output modulated
pulses, whose Lo Pulse Occupancy (LPO, percentage of time during which the sensors output
a low voltage in a total sampling time of 30 seconds) was directly correlated with the particle
concentrations. Due to the need for an external high frequency square wave to trigger the
diode in the sensor, the GP2Y sensor was connected to a programmed Arduino data
acquisition board (UNO Rev 3, Arduino Inc.). The particle concentration for the GP2Y was
represented by the magnitude of the output voltage. While the GP2Y has a finer time
resolution for data collection, to be consistent with the PPD and DSM which have a sampling
resolution of 30 s, the data for all three sensors were collected by the computer every 30

seconds.

A SidePak Personal Aerosol Monitor AM510 (TSI Inc.), a scanning mobility particle sizer
(SMPS, TSI Inc.), and an AirAssure PMzs Indoor Air Quality Monitor (TSI Inc.) were used
to provide reference measurement results to evaluate the performance of the sensors. Like the
sensors, the SidePak also uses light scattering, while the flow of particles is regulated by a
small built-in vacuum pump. A user-defined calibration factor was used to compensate for

differences in the particulate materials’ refractive indices. In the experiments, the calibration
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factor of the SidePak was set to 1.0, because the study mainly focused on the linearity and

precision of the measurements, while the calibration factor could be added in data processing.

The SMPS uses a differential mobility analyzer (DMA) to classify particles as a function of
electrical mobility size, and a condensation particle counter (CPC) to measure particle
concentrations. A continuous particle size distribution function is obtained through data
inversion, which relates particle concentration to the charging efficiency of the neutralizer,
the detection efficiency of the CPC, and the transfer function of the DMA (Stolzenburg and
McMurry, 2008). The mass concentration is then calculated through the integration of the
product of the size distribution function and particle mass of each size. If the particles follow
lognormal distributions, the method of moments is a simple approach to calculate the mass

concentrations (Hinds, 1982), as elaborated in Section 4.4.

The AirAssure PM2s Indoor Air Quality Monitor utilizes a Sharp GP2Y sensor and regulates
the flow through the sensor via a fan attached at one side of the sensor, so that particles pass
through the sensor by convective flow instead of random diffusion. A specialized algorithm
averages the particle concentrations over a period time to provide more accurate results. In
order to study the effect of these modifications to the sensor prototype, a comparison between
the GP2Y sensors without convective flow and the AirAssure monitor was conducted,

focusing on the linearity of response and the precision of measurements.
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2.2.2 Chamber for particle measurement

Particle Inlet
a
Particle Sensors

- L 58 cm

0 | rrm——t——

To SidePak ﬂ:ﬂ ‘

un 87

ﬂﬁ To SMPS
>

-
CORE S ey s 6%c&
AirAssure
1.2 x T T T T T ' T !

b B Front Wall |
10 O Back Wall |
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Figure 2.2 (a) Schematic diagram of the chamber for particle measurement and the
arrangement of particle sensors. There are two ports on each vertical side of the chamber. The
upper four ports were used for passing the electrical leads. The lower four ports allowed for
particle sampling, including testing the sensor performance, where two ports were used by
the SidePak and the SMPS; and testing the uniformity of the particle distribution, where all
the four ports were used by the SidePak (Figure 2.2b). During the experiments, the unused
ports were plugged. The AirAssure monitor (marked with a dashed box) was placed in the
chamber only when comparing the performance with the GP2Y sensors without convective
flow. (b) Particle mass concentrations measured from the four sides of the chamber. The
results indicate that particles were uniformly distributed.
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The evaluation of the particle sensors was conducted in a custom-built acrylic glass chamber
with dimensions of 58x58x28 cm (Figure 2.2a). The edges of the chamber were sealed with
rubber strips to prevent the leakage of particles and provide a uniform distribution of
particles. Ports with a uniform diameter of 5 mm were drilled on the walls of the chamber to
allow for sampling and passing electrical leads. During the experiments, the unused ports
were snugly plugged. Generated particles were introduced into the center of the chamber via
a stainless-steel tube. One sensor of each type was taped to each vertical side of the chamber,
and the three tested sensors were attached as closely as possible to minimize the spatial
differences in particle concentrations, although the concentration variance in the chamber was
found to be small (Figure 2.2b). The PPD and DSM sensors were fixed with their backs
facing the chamber wall, so that a vertical updraft of the particles could be generated. The
GP2Y sensors were placed with the front panel facing the bottom of the chamber so that
particles could pass through the hole in its center. In this study, due to the relatively large size
of the test chamber and the limited air exchange rates, forced convection through mixing fans
created an uneven distribution of particles. To maintain a uniform particle concentration at
the four sides of the chamber walls, generated particles were transported mainly by random
diffusion. As indicated in Figure 2.2b, the difference in particle concentrations at the four
sides of the chamber was within 15%. This variation in particle concentration might result in
different outputs of the four sensors of each type, but it was not the major reason for the
deviation of the response of some sensors, as discussed in Section 4.1. The SidePak and

SMPS were outside the chamber, and particle streams were sampled via tubes located 2 cm
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below the sensors on two side walls of the chamber, at flow rates of 0.7 Ipm and 0.3 Ipm,
respectively. The AirAssure monitor was not placed in the chamber until when conducting
the comparison with the GP2Y sensors without regulated flows. Note that the convective
flow regulated by the fan inside the AirAssure monitor might disturb the uniform distribution

of particles in the chamber, possibly lead to some error in data analysis.

In the experiments, test particles were introduced into the chamber till the SidePak gave a
mass concentration reading of around 5 mg/m?, which is above the upper limit of the tested
sensors as found in Section 4.1. The particle flow was discontinued and the system was
allowed to equilibrate so that a uniform distribution of particle concentration and size
distribution was obtained in the chamber. Due to particle precipitation and wall loss, the
concentration of particles inside the chamber dropped gradually. Simultaneous measurements
with the sensors, the SidePak, and the SMPS started when the mass concentration given by
the SidePak was below 1 mg/m?, which is slightly above the typical PM concentrations in
highly polluted cities (Guo et al., 2014; Tiwari et al., 2013; Zhao et al., 2013). The whole
process took approximately 2.5 hr (Figure 2.2b), which was close to the gravitational
precipitation time for a 1 pm (aerodynamic size) particle to drop from the top to the bottom of
the chamber (~ 2.4 hr). Hence, the evaluation results of the particle sensors were

representative for PM1 measurements.
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2.3 Assessment aspects

Table 2.2 Experimental plan for the evaluation and calibration of the particle sensors PPD,
DSM and GP2Y.

Test# Assessment aspect Source of Particles Reference Instruments

1 Linearity of response Incense burning SidePak, AirAssure

2 Concentration resolution Incense burning SidePak, AirAssure

3 Limit of Detection Incense burning SidePak

4 Dependence on composition Atomized NaCl, sucrose, and SidePak, SMPS
NH4NO3 particles

5 Sensitivity to particle size Atomized PSL spheres with 300, SidePak, SMPS
600, 900 nm

6 RH and temperature Atomized NaCl particles SidePak, SMPS

influence

Six aspects of the sensor performance were studied in order to comprehensively understand

their characteristics. Table 2 shows a brief summary of the experimental plan.

2.3.1 Linearity of response

The linearity of response was assessed using the least squares regression and Reduced Major
Axis (RMA) regression after plotting the outputs of the sensors against the SidePak measured
particle mass concentrations. Particles were generated by burning incense (Sandalum
Agarbathi Cones, Cycle Brand), which is reported to be an important source of indoor aerosol
in certain countries (Cheng, et al., 1995). The size distributions of the incense-generated
particles as a function of time are displayed in Figure Al.1 in the supplemental information.

Averaged outputs from the sensors on four sides of the chamber were used to evaluate their
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linearity. In the study, the particle mass concentrations measured by the SidePak were used as
the independent variable, while the sensor outputs were reported as the dependent variables.
Due to the existing uncertainty of the SidePak measured particle concentrations, the least
squares regression may not be an adequate method to evaluate linearity. The RMA regression
is specifically formulated to consider the errors in both the dependent and independent
variables (Sokal and Rohlf, 1981; McDonald, 2009). Linear correlations, together with R?
values, via the RMA regression and least squares regression were calculated. The RMA

regression analysis was conducted with software designed by Bohonak and Linde (2004).

2.3.2 Precision of measurements

The precision of the sensors was represented by their accuracy and repeatability of their
measurements. The accuracy means the closeness between the measured results and the
actual results, while the repeatability means the spread of the measured values (Petrozzi,
2012). Due to the lack of a universal calibration curve for the three tested sensors, the linear
correlations derived as described in Section 3.1 were used to evaluate sensor accuracy.
Therefore, the accuracies of the sensors with less linearity became lower. At the same time,
the accuracies of all three particle sensors became dependent on the accuracy of the SidePak,
which does not necessarily provide the actual particle concentration due to instrument errors
and the missing of the calibration factors. The repeatability of the sensors was evaluated by

the variation of sensor outputs at similar particle concentrations. In the experiments, due to
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the difficulty in maintaining the particle concentrations at a constant level, different batches
of measurements with the particle sensors were conducted, so that a series of sensor outputs
was obtained corresponding to the same SidePak reported particle mass concentrations. The
linear correlation derived in Section 4.1 was then applied to convert sensor outputs to particle
concentrations. The standard deviations (o ) and the standard deviations relative to the
SidePak measured particle concentrations were then calculated to evaluate the precision of

measurements.

2.3.3 Limit of detection

The limit of detection (LOD) is defined as the lowest limit which deviates significantly from
the signal obtained from blank measurements. Similar quantifications of detection limits also
exist, such as the limit of determination, limit of quantitation (LOQ), and limit of blank.
(Petrozzi, 2012). In this study, the LOD was obtained with the widely used Kaiser (1956)

method,

LOD =30, /K, [1]

where o, Is the standard deviation at blank conditions maintained by filling the chamber
with air cleaned by HEPA filters. k is the slope of the fitted line obtained from linearity

experiments described Section 4.1. Values of coefficients other than 3 before oy, /k were

also used for other quantifications of detection limits: for example, the limit of determination
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uses 6, and the LOQ uses 10. The o, was calculated based on a measurement time of 60

min, meaning that 120 samples have been collected for each of the sensors.

2.3.4 Dependence on particle composition

A sensor’s performance depends on particle composition, since light scattering is influenced
by the refractive index. This study used three types of particles, produced by atomizing NaCl,
sucrose (C12H22011), and NH4NO3 aqueous solutions. To exclude the effect of particle size on
the performance of the particle sensors, the concentrations of the solutions were controlled to
ensure that generated particles had similar normalized size distributions (Figure A1.2 in the
supplemental information). After exiting the atomizer (Aerosol Generator 3076, TSI Inc.),
particles passed through a custom-built diffusion dryer before entering the chamber. The
different refractive indices of these three materials affected the performance of the particle
sensors. The evolutions of particle size distributions during the measurements were found to
be similar to that of the incense particles (Figure Al.1 in the supplemental information), i.e.,
the normalized size distributions remained the same, while the total particle concentration
decreased. This property could exclude the effect of particle size change during the
experiments. Due to the fact that the SidePak also measures particle concentrations with light
scattering, reference concentrations were calculated from the size distributions obtained by
the SMPS measurements. The outputs of the sensors, together with the readings of the

SidePak were then compared with the mass concentrations calculated from size distributions.
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2.3.5 Dependence on particle size

Light scattering is strongly dependent on particle size in both the Rayleigh regime and Mie
regime. To assess this dependence, water solutions of polystyrene latex (PSL, Bangs Inc.)
spheres were atomized to obtain particles with uniform diameters of 300 nm, 600 nm, and
900 nm, respectively. The mass concentrations of particles were calculated from the size
distributions measured by the SMPS. The performance of the sensors and the SidePak were
then evaluated by comparing the outputs with the mass concentrations calculated from the

size distributions.

2.3.6 RH and temperature influence

RH values of 20%, 67%, 75% and 90%, and temperatures of 5 °C, 20 °C, and 32 °C were
used to test the sensors. The RH and temperature were measured with a sensor probe
(HMP60, Vaisala Inc., accuracy: £ 3% in 0 to 90% RH, £ 5% in 90 to 100% RH) and a type
K thermocouple (OMEGA Inc., accuracy: + 2.2 °C), respectively. The temperature was
controlled by placing ice packs or heating tapes around the chamber. The RH was adjusted by
flowing dry air through a deionized water bubbler and then into the chamber before the test.
After the RH reached the set values, the feeding of water vapor was discontinued, and
particles were introduced into the chamber. The decrease of RH was found to be less than
10% during the test. In this study, the particles were generated by atomizing NaCl aqueous
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solution. Again, similar normalized particle size distributions as a function of time were
observed in the experiments, and hence the effect of particle size change during the

experiments could be excluded.
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2.4 Results and discussion

This section discusses the experimental results on assessing the particle sensors using the

revised protocol provided by EPA 2013 Air Sensor Workshop.

2.4.1 Linearity of response
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Figure 2.3 Pairwise correlation among the three sensors and the SidePak during the 2.5 hr
measurement of the incense particles with a sampling interval of 30 s. Due to the limited
space for plotting, two sensors of each type (PPD1, PPD2, DSM1, DSM2, GP2Y1, and
GP2Y2) were chosen for comparison. The raw sensor outputs (Lo Pulse Occupancy and
Analog Output) were used. R? values were calculated by the least squares regression.
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Figure 2.4 Pairwise correlation between the sensor outputs and the SidePak data during the
2.5 hr measurement of the incense particles with a sampling interval of 30 s: (a-c): PPD, (d-f):
DSM, (g-i): GP2Y. (a), (d), (g): response of particle sensors of the same type in the
concentration range of 0 — 1000 pg/m?®, different symbols represent the response of different
sensors of the same type; (b), (e), (h): response of the same particle sensor in the particle
concentration range of 0 — 1000 pg/m?®, different symbols represent the response of a same
sensor for different batches of experiments; (c), (f), (i): response of particle sensors of the
same type in the particle concentration range of 0 — 5000 pug/m®. R? values were calculated by
the least squares regression.

When using the incense as the particle source, the response of the three sensors and the
SidePak agreed well in the particle mass concentration range of 0 — 1000 pg/m® (Figures 2.3
and 2.4). Pairwise correlations among the instruments were higher than 0.78 (DSM2 against

GP2Y1). To further evaluate the properties of the three sensors, their responses were plotted
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against the SidePak measured particle concentrations in Figure 2.4. Pairwise correlations
between the outputs of the sensors and the SidePak measured particle concentrations were
higher than 0.8914, as indicated by the R? values calculated by the least squares regression
(Figures 2.4a, 2.4b, 2.4d, 2.4e, 2.49, and 2.4h). Given the low cost of these particle sensors, it
will be worthwhile to apply these sensors to obtain local and real-time PM concentrations in
polluted cities, where the daily upper limit of particle concentrations is around 600 pg/m?,
and the hourly upper limit of particle concentrations is higher than 1 mg/m?® (Guo et al., 2014;
Tiwari et al., 2013; Zhao et al., 2013). Among the three sensors, the GP2Y sensor gave the
highest linearity with an R? value of 0.9838 for sensors of the same type on four sides of the
chamber wall in one measurement, and 0.9831 for the same sensor on one side of the
chamber wall in several measurements. The DSM sensors provided the lowest values of R?,

with 0.8914 for sensors of the same type, and 0.8921 for the same sensor.

It should be noted that the lower R? values given by the PPD and DSM sensors were mainly
caused by the “curvature” at higher particle concentrations shown in Figures 2.4a, 2.4b, 2.4d,
and 2.4e. A substantial enhancement in the linearity of the PPD and DSM sensors can be
expected in smaller particle concentration ranges. For example, the PPD and DSM sensors
gave R? values of 0.9496 and 0.9506, respectively, in the particle concentration range of 0 to
100 pg/m?®. For practical applications or enacting regulations on atmospheric particulate

matter, these lower particle concentration ranges may be used (EPA, 2013; MEP, 2013).
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In testing particle sensors of the same type, some deviated significantly from the others,
although the linearity was still high (Figures 2.4a, 2.4d, and 2.4g, as indicated by the arrows).
This systematic deviation could not be explained by the concentration fluctuations at the four
sides of the chamber, as shown in Figure 2.2b. This result suggests that each sensor should be
calibrated separately before being used in commercialized particle monitors, since this
existing systematic error may significantly affect the particle concentrations reported by the
sensors (e.g., the same analog output of 200 from a GP2Y sensor corresponded to a particle
concentration ranging from 600 to 900 pg/m® in Figure 2.4g). The linearity of the same
sensor was similar in each test (Figures 2.4b, 2.4e, and 2.4h), demonstrating the reliability of
the sensor for repeated measurements, as discussed in Section 4.2. Figures 2.4c, 2.4f, and 2.4i
show the range of the particle concentrations in which sensors can be relied on. It was
observed that the outputs of the three tested sensors became saturated at a concentration of
around 4 mg/m® measured by the SidePak. Hence, the tested particle sensors are less
applicable for measuring particle concentrations in highly polluted spaces, such as the outlet
of stacks and construction sites.

Table 2.3 Linear correlations between particle sensor outputs and SidePak measured particle
concentrations in different ranges of particle concentrations (0 — 1000 pg/ m®, 0 — 100 pg/ m3,

and 0 — 300 pg/ m®), calculated by the least squares and reduced major axis (RMA)
regression methods.

Sensors Least squares RMA Least squares Least squares
(0-1000 pg/ m®) (0-1000 pg/ m®) (0 —100 pg/ m®) (0—300 pg/ m®)
intercept  slope R? intercept  slope R? intercept  slope R? intercept  slope R?
PPD -0.353 33.6 0.9452 -0.481 343 0.9558 -0.806 47.1  0.9496 -1.05 43.4  0.9525
DSM 3.93 59.7 0.8914 3.34 63.2 0.8924 -0.469 159  0.9506 -0.0469 119  0.9755
GP2Y 91.1 196  0.9838 90.8 198  0.9831 94.2 190 0.9332 94.2 189  0.9746
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Table 3 gives the linear regression results of the three sensors using the least squares and
RMA regression. The two regression methods yielded similar results, indicating a minimal
influence of the variation of the SidePak measured particle concentrations. The least squares
regression values in the particle concentration ranges of 0 to 100 ug/m® and 0 to 300 pg/m?
were also tabulated, clearly showing the dependence of linearity on the choice of particle
concentrations ranges. Note that the R? values obtained in this study are relatively larger than
those calculated in previous studies on field calibration of the particle sensors (Gao et al.,
2015; Holstius et al., 2014). This discrepancy may be due to variations in the material
composition and size of the atmospheric particles in field calibrations, whereas the incense
particles were the only particle source in the linearity test. Sections 4.4 and 4.5 elaborate the

influence of particle composition and size on the performance of the particle sensors.
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Figure 2.5 Mass concentrations measured by the AirAssure monitor and analog outputs
reported by the GP2Y sensor without regulated convective flow in mass concentration range
of 0 — 800 pug/m3. The experiment was conducted with the incense particles during a
measurement time of around 2.5 hr with a sampling interval of 30 s. Mass concentrations on
the x-axis were measured with the SidePak.

Making modifications to the GP2Y sensor prototype could further enhance the linearity of

response, as shown in Figure 2.5. R? value calculated by the lease squares method increased

to 0.9961 for the AirAssure monitor. This improvement might be brought by regulated flow,

which decreased the amount of erratically distributed particles staying in the light scattering

region of the particle sensor. The specialized algorithm of the AirAssure might also flatten

the fluctuating sensor outputs and provided results with higher linearity.
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2.4.2 Precision of measurements

02—
WA a
c I ]
20.00 |- * -
EY * Vv
_§ g * X Yk ¥
8 0.06 |- —
v
g | K% ]
° oo g;x *
§0.03 - v 0080 o
S vqtvv 0o 00,
% OOO 1 | 1 | 1 | 1 | 1
00 02 04 06 08 1.0
_. 40 — T T T T T T T
& | b ]
5
§ 30 _v o _
o i * 1
B 20| o *k -
3 * l
5 10 O* * s
L B V.
g vvv 8*8“ Uggoa*
©
° 0L
¢ %o o0z o4 06 , 08 10
SidePak (mg/m~)
% PPD ©O DSM V¥ GP2Y

Figure 2.6 (a) Standard deviations and (b) relative standard deviations of the sensor-measured
particle concentrations under different SidePak-measured particle concentrations. The GP2Y

sensors were tested without regulated convective flow.

Experimental results on the repeatability of the three tested sensors as measured by the
standard deviation and relative standard deviation are plotted as a function of SidePak

concentration in Figure 2.6. The standard deviations of the sensors varied from 15 pg/m?® to

90 pg/m® for a concentration range

of 0 to 1000 pg/m® (Figure 2.6a). Although the

63



imprecision could also be partly attributed to the SidePak, the RMA regression calculated in
Section 4.1 suggested a minimal influence of the SidePak’s fluctuation. The DSM sensor
demonstrated relatively constant and small values of standard deviation in the particle
concentration range of 0 to 1000 pg/m®, which can also be observed from the higher
repeatability of the measurement in Figure 2.4e compared to other sensors. The PPD and the
GP2Y sensors showed increased values of standard deviations at higher particle
concentrations (Figure 2.6a), while the relative standard deviations of all the three tested
sensors dropped as particle concentration increased (Figure 2.6b). The trend of increased
relative standard deviation as concentration decreased, indicates that the sensors are not very
accurate for low concentration measurements (<200 pg/m?). It should be noted that these
standard deviations were calculated based on approximately ten measurements due to
constraints of the system used for the laboratory study. If the number of measurements were
increased, it is anticipated that the uncertainty maybe lower. However, by averaging the data,
the “real-time” information of the sensors may be lost. As in our system for testing incense
combustion where the generated particle concentration decays rapidly in a sampling interval
of 30 s, the averaged data over a longer period of time may not represent the actual particle
concentration. Similar problems may be encountered when measuring fluctuating particle
concentrations. In these situations, the high standard deviation of the sensor might cause a
high uncertainty of the measurements. In this laboratory study, due to the considerable
change of particle concentration in the sampling interval, the effect of averaging the

measurements on the sensor performance was not investigated.
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In the applications of real-time measurements, these sensors can be utilized to locate hotspots
for particle emissions in the ambient conditions, and to measure PM concentrations in non-
ambient environments of interest, such as indoor areas and industrial plants. Furthermore,
these particle sensors could serve as preliminary substitutes for more accurate instruments in
developing countries, where the atmospheric PM concentrations are high, and the commonly
used accurate instruments are unaffordable. The AirAssure monitor reported particle mass
concentrations with relatively higher repeatability, as shown in Figure 2.5, indicating the
improvement of data quality after modifying the GP2Y sensor prototypes. Calculated
standard deviations of the AirAssure monitor were below 10 pg/m® in the range of
measurement between 0 — 300 ug/m®. Note that the standard deviations of the particle sensors
reflect the repeatability of the measurements, while precision is also described by the
accuracy of the correlation between sensor outputs and particle concentrations. Since linear
correlations of the three sensors in the particle concentration range of 0 to 1000 pg/m®were
used in calculating particle concentrations, due to the low linearity of the DSM and PPD
sensors as discussed above, the accuracy of the measurement was also negatively affected.
Hence, depending on the specific properties of each type and model of the sensor, nonlinear
correlations between the sensor output and the particle concentration are suggested to be
calibrated to obtain more precise measurement results. For this study, simple second-order
polynomial fittings could predict the response of the PPD and DSM sensors with much higher
R? values. In the particle range of 0 to 1000 pg/m?3, the Lo Pulse Occupancy (LPO, %) of the

PPD and DSM sensors could be fitted with equations:

65



LPO,pp =—17.8m? +47.7m—1.39 and 2]

LPO,,, =—75.3m? +118m+0.544, [3]

with R? values of 0.9651 and 0.9798, respectively, where m is the mass concentration (ug/m?)
measured by the SidePak. The calculated R? values were much higher than those obtained
from the linear regressions and can be further improved by fitting the sensor outputs with

higher orders of polynomial equations.

2.4.3 Limit of detection

Table 2.4 Limits of detection of the three tested sensors using k values in different mass
concentration ranges (0 to 1000pg/m® and 0 to 100pug/m?). The GP2Y sensors were tested
without regulated convective flow.

Sensors PPD DSM GP2Y

307, 0.216 (%) 0.680 (%) 511

K (0 to 1000 pg/m?) 0.0336 (%xm¥ug)  0.0597 (%xm¥ug)  0.196 (M¥ug)
LOD (0 to 1000 ug/m?) 6.44 (ug/md) 11.4 (ng/md) 26.1 (ng/md)
K (0 to 100 pg/m?) 0.0471 (%xm¥ug)  0.159 (%xm¥ug)  0.190 (M¥/pug)
LOD (0 to 100 ug/m®) 4.59 (ug/md) 4.28 (ug/md) 26.9 (ug/m®)

Table 4 lists the limits of detection (LOD), together with the values of o, and k of the
three tested sensors according to the calculation method introduced in Section 3.3. By using
the k values obtained from the linear correlation in the concentration range of 0 to 1000
ng/m3, the GP2Y sensor gave the highest LOD value of 30.2 pg/m®. The LOD values of the

PPD and the DSM sensors were relatively lower, with the PPD sensor showing the lowest
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LOD of 6.44 ng/m®. Accordingly, the LOQ for the GP2Y sensor and the PPD sensor were
101 and 21.5 pg/m?, respectively. Considering the higher gradient of the response of the PPD
and DSM sensors in the lower particle concentration range, the LOD values of the two types
of sensors would become smaller if linear correlations in lower particle concentration ranges
were used. Table 4 also lists the LOD values of the PPD and DSM sensors using the k values
calculated from the least squares regression in the particle concentration range of 0 to 100

ug/m3, where lower LOD values of 4.59 ug/m® and 4.28 pg/m?®were obtained.

2.4.4 Dependence on particle composition

The SidePak also uses light scattering to measure particle mass concentrations, which are
affected by the particle composition and sizes. Hence, particle mass concentrations calculated
from the size distributions of particles can provide higher accuracy for evaluating the sensor
performance. As indicated in Figure Al.2 in the supplemental information, the size
distributions of the three types of generated particles were similar, and could be fitted by
lognormal functions. The total mass concentration of the measured particles (m) can be

calculated by using the method of moments (Hinds, 1982):

m:%Moexp(?alndpg+%In2(ag)j, [4]
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where My, d,, and o, stand for the total number concentration, the geometric mean particle

pg’

size, and the geometric standard deviation, which could be obtained through the curve fitting

process.
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Figure 2.7 Dependence of sensor performance on the composition of particles: (a) PPD, (b)
DSM, (c) GP2Y, and (d) SidePak. The reference mass concentrations were calculated from
the size distributions measured by the SMPS. The experiments were conducted with atomized
NaCl, NHsNO3, and sucrose particles, each with a total measurement time of around 2 hr
with a sampling interval of 30 s. Note the different scales of y-axes.

The outputs of the particle sensors, together with the readings of the SidePak, were then

plotted against the particle concentrations calculated from the size distributions (Figure 2.7).
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Due to the difficulty in generating highly concentrated sucrose particles, the performance of
the sensors and the SidePak was evaluated in a mass concentration below 500 pg/m®. It can
be seen that the composition of the particles indeed affected the response of the particle
sensors: the outputs increased by up to 10 times when measuring sucrose particles (the GP2Y

Sensor).

Moreover, different sensors and instruments responded differently when the composition of
particles changed, as indicated by the magnitudes of the slopes in Figure 2.7. For example,
the GP2Y sensors and the SidePak were more sensitive to the sucrose particles. As discussed
by Molenar (2005), the variability of the refractive index of different materials accounts
partly for the uncertainties when using light scattering to measure particle mass
concentrations. The refractive index is the sum of a real and an imaginary component:
m=n-in', where n and n' are correlated with the magnitude of light scattering and light
absorption respectively. A higher proportion of light could be absorbed by organic
compositions in particles, due to the energy storage in the vibration of carbon bonds, while
inorganic materials are reported to absorb negligible radiation, i.e. the imaginary term of the
refractive index is close to zero. The phototransistor hence received less light in the test of
sucrose particles, and so reported a higher mass concentration. This result implies that
particle sensors may overestimate mass concentrations when measuring particles
incorporating organic compositions. The outputs of the sensors measuring NaCl and NHsNO3
particles were also found to be different from each other, due to the different values of

refractive indices. In this study, NH4sNOs was used to simulate the measurement of
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atmospheric particles in heavily polluted areas, since a large proportion of the inorganic
contents of atmospheric particles is attributed to the reaction between NHz and HNO3 (Guo et
al., 2014; Jimenez et al., 2009; Seinfeld and Pandis, 2012). The retained sensitivity at higher
particle mass concentrations of NH4sNOs may promise the application of the three sensors in
measuring particle concentrations in polluted ambient environments that contain mostly
inorganic particles. However, for human health and exposure studies, particles with different
contents may be measured. Due to the uniqueness of each device, a higher accuracy could be

guaranteed if calibration factors were determined and applied for the materials being used,.
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2.4.5 Dependence on particle size
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Figure 2.8 Sensor performance for PSL particles with three sizes of 300, 600, and 900 nm,
each during a measurement time of around 2 hr with a sampling interval of 30 s: (a) PPD, (b)
DSM, (c) GP2Y, and (d) SidePak. The reference mass concentrations were calculated from
the size distributions measured by the SMPS. Note the different scales of y-axes.

Figure 2.8 shows the dependence of sensor performance on the size of the tested particles, of

which the size distributions are displayed in Figure Al1.3 in the supplemental information.

The outputs of the particle sensors and the SidePak are plotted against particle mass

concentrations calculated from the SMPS measured size distributions in the concentration

below 500 pg/m®. A higher concentration of 900 nm PSL particles could not be obtained,
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possibly due to the loss by impaction and interception during the transport of particles. Note
that the mass concentrations reported by the SMPS might not accurately represent the actual
values, because the narrow size distributions of the PSL particles may not be regarded as a
constant value in the transfer function of the DMA (Stolzenburg and McMurry, 2008).
Different characteristics were observed among the sensors and the SidePak. Under the same
mass concentrations, the outputs of the sensors became higher as particle sizes increased from
300 nm to 900 nm, while the SidePak reported the highest particle concentration for the
smallest particles (300 nm). Further observation on the response of the particle sensors
indicated that the GP2Y sensor was more sensitive to smaller particles, while the PPD and
DSM sensors were more sensitive to larger particles. These properties can be attributed to the
type of the irradiated light used in the instruments. For safe handling and reduced cost,
infrared radiation between 870 and 940 nm was used in the particle sensors, while the
SidePak uses a laser with a wavelength of 670 nm for the light scattering of particles.
Although the light scattering of the sensors and the SidePak all fall into the Mie Regime, the
relative magnitude of the particle size and the wavelength of the radiation determined that the

light scattering in the particle sensors is closer to the Rayleigh regime.

In the experiments, as particle size increased, the response of the particle sensors was
enhanced for the same mass concentration (Figures 2.8a, 2.8b, and 2.8c), which could be
explained as follows. For the same mass concentration of monodisperse particles, NTOTde
remains a constant, where N;,; is the total number concentration of particles with a size

ofd . The scattered light (1) has the form of
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lscar = 1oNror Qscat Z d pz) ) [5]

where |, is the incident light, and Q. is the scattering coefficient. Since the light

scat

scattering for the sensors was closer to the Rayleigh regime, for a simple estimation, Q.

was assumed to be proportional to d;‘ (Friedlander, 2000). Note that this correlation might

overestimate the light scattering coefficient in the Mie regime. The scattered light intensity is

therefore proportional to N, d°

» » and further proportional to df, under the same mass

concentration. Because of the correlation that I, = Kd >, where K is a constant, more light

scat
was lost due to the extinction of larger particles, less light was received by the
phototransistor, and higher concentrations were reported. Based on this result, the particle
sensors may underestimate the particle mass concentrations for smaller particles. On the
contrary, the SidePak reported a reverse trend for the influence of particle sizes, possibly due

to the fluctuations in the light scattering coefficient in the Mie regime, which affected the

amount of light lost in the sensor and received by the transistor.
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2.4.6 RH and temperature influence
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Figure 2.9 Performance of particle sensors under various relative humidity values (20% to
90%), each with a measurement time of around 2.5 hr with a sampling interval of 30 s: (a)
PPD, (b) DSM, (c) GP2Y, and (d) SidePak. The reference mass concentrations were
calculated from the size distributions measured by the SMPS. Note the different scales of y-

axes.

Relative humidity affected the performance of the particle sensors in several ways. First,
similar to organic compositions, water absorbs infrared radiation and can cause an
overestimate of particle mass concentrations due to the reduced light intensity received by the

phototransistor. Second, highly concentrated water vapor may lead to a failure of the circuits
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of the particle sensors and result in biased measurement results. Third, the usage of SMPS
data as references may not be applicable under high RHs, since the sheath flow inside the
DMA may dry the particles and cause an underestimate of particle concentrations measured
by the SMPS. As shown in Figure 2.9, similar trends in the performance of the particle
sensors and the SidePak were observed as RH altered. For the same particle mass
concentration, the outputs of the sensors and the SidePak first increased, and then dropped as
RH increased. This result may be a comprehensive effect of the factors mentioned above,

clearly showing the dependence of sensor performance on RH values.
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Figure 2.10 Performance of particle sensors at different temperatures of 5 °C, 20 °C, and 32
°C, each with a measurement time of around 2.5 hr with a sampling interval of 30 s: (a) PPD,
(b) DSM, (c) GP2Y, and (d) SidePak. The reference mass concentrations were calculated
from the size distributions measured by the SMPS. Note the different scales of y-axes.
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Compared to relative humidity, temperature had negligible effects on the three particle
sensors and the SidePak in the temperature range from 5 °C to 32 °C, as shown in Figure
2.10, because theoretically, light scattering and absorption are independent of temperature.
However, extreme temperatures of the environment may affect the reported particle
concentrations, since the flow rate of the updraft of particles in the PPD and the DSM sensors
is determined by the temperature difference between the thermal resistor and the

environment.
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2.5 Conclusions
Table 2.5. Summary of the characteristics of the particle sensors PPD, DSM and GP2Y.

*The linearity of response is evaluated based on the R? values in the particle concentration
range of 0 to 1000 pg/m?3.

“Accuracy is based on the correlations calculated from linear regression methods. Nonlinear
correlations are suggested in order to enhance the accuracy of the measurement.

Assessment Aspects PPD DSM GP2Y
Linearity of response” Medium Low High
Precision of Accuracy” Medium Low High
measurement Repeatability Low High Medium
Limit of Detection Low Low High
Dependence on composition High High High
Sensitivity to particle size High High High
RH influence High High High
Temperature influence Minimal Minimal Minimal

This work comprehensively evaluated three low-cost light scattering particle sensors. A brief
summary of the characteristics of the three sensors was compiled, and the advantages of each
sensor were determined (Table 5). Throughout the experiments, the GP2Y1010AUOF
(GP2Y) sensor demonstrated the highest linearity in comparison to measurements by the
SidePak. The data quality of the GP2Y sensors could be further enhanced by modifying the
flow system and the algorithm for calculating particle concentrations, as indicated by the
improvement in the response of an AirAssure monitor. The PPD42NS (PPD) and the
DSM501A (DSM) sensors had relatively lower limits of detections than the GP2Y sensors.

Some common characteristics were observed, such as the saturated outputs under high
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particle concentrations of around 4 mg/m?, high dependence on the composition and size of

particles, and minimal dependence on temperature.

While the relative standard deviation increased with decrease in concentration (these sensors
may not be as accurate as more complicated and expensive measurement devices in clean
environments), these low cost particle sensors demonstrated the ability to report particle
concentrations with relatively high linearity and moderate repeatability. In addition, the
uncertainty of the measurement can be further reduced by averaging the measurements over
longer periods of time. The compact size and low cost of the sensors favor their wide
application in tracking air quality in developing countries and heavily polluted areas, where
the demand for monitoring particulate matter is especially urgent for the sake of public
health. Large data sets obtained by the sensor network will make amenable applications of

concepts of “big data” to improve the air quality.
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Chapter 3: Evaluation of Nine L ow-cost-
sensor-based Particulate Matter Monitors

The results of this chapter is under review in Li, J., Mattewal, S., Sameer P. & Biswas, P.

Evaluation of Nine Low-cost-sensor-based Particulate Matter Monitors

82



Abstract

Low-cost sensors have been studied extensively in recent years due to their price advantage,
compact size, and moderate accuracy. Different manufacturers use different calibration
methodologies and report a factor for the user. This study compared nine types of low-cost
PM monitors (AirVisual, Alphasense, APT, Awair, Dylos, Foobot, PurpleAir, Wynd and
Xiaomi) in a chamber with a well-defined aerosol. Additionally, two reference instruments
(GRIMM and SidePak) were also used. These nine types of monitors were divided into two
groups for comparison, according to their working principle and data reporting format. A
linear correlation factor based on PM2s mass concentration was reported for all monitors.
Apart from linear correlation, the differences of the PM2s mass concentrations reported by
the various monitors and reference instruments were plotted against their average to
demonstrate the degree of improvement that was possible after calibration. A bin-wise
calibration was also conducted for monitors reporting size distributions to illustrate any
coincidence error that could bias the results. For monitors designed for residential use, an
important parameter often reported is the air quality index and is illustrated with a simplified
index and color. The color display scheme of various monitors was compared with the US
EPA regulation to demonstrate whether they could convey overall air quality levels
accurately and promptly. The residential monitors indicate the air quality moderately well,
but their different color display schemes make the comparison difficult and possibly

misleading. Various monitors with diverse features showed discrepancies in terms of
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reporting PM concentration, thus requiring user-defined calibration to improve their

accuracy.
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3.1 Introduction

As a major atmospheric pollutant, particulate matter (PM) has adverse health effects,
therefore, it is routinely monitored to reduce the harm it causes. In 2013, PM was classified
as a Group 1 carcinogen by the International Agency for Research on Cancer (IARC), and
has been associated with lung cancer, premature mortality, cardiopulmonary diseases, and
cardiovascular diseases (Valavanidis et al., 2008; Brook et al., 2010; Stewart and Wild,
2017). PM pollution accounts for nearly 1.2 million premature deaths and approximately 6.4
million annual deaths globally (Smith and Mehta, 2003; Cohen et al., 2005; Burnett et al.,
2014). It has been reported that when the mass concentration of fine particulate matter (PM2s,
particulate matter with a diameter smaller than 2.5 um) increases by about 10 pg/m3, the risk
of lung cancer mortality increases approximately by 8% (Pope Il et al., 2002). Due to these
adverse health effects, stringent regulations on PM mass concentration have been enacted and
enforced by governments and local agencies. The standards for annual PMa s concentration
were set as 12 pg/m® and 10 pg/m® by the United States Environmental Protection Agency
(US EPA) and the World Health Organization (WHO) respectively (Organization, 2005).
Apart from the PM concentration standard, the US EPA also specified the gravimetric
method as the federal reference method (FRM) for PM mass concentration measurement. The
gravimetric method calculates the PM mass concentration by weighing the particles
accumulated on a filter over a period of time. This conventional method has been considered

to be one of the most reliable methods for PM mass concentration measurement,
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nevertheless, maintaining the system and weighing filters are laborious. Furthermore, the
gravimetric method is not a real-time measurement, and can report only the accumulative PM
mass concentration. The cost and labor required by the gravimetric method have hindered
application of this method for personal use. Alternative measurement methods, for example,
TEOM, GRIMM, FIMS, and SMPS, can measure real-time PM concentration accurately, but
still face the challenges of high cost and long-term stability (Allen et al., 1997; Sioutas, 1999;

Klepeis et al., 2007; Wang et al., 2018).

As a potential alternative method for PM concentration measurement, low-cost PM sensors
have been studied extensively in recent years due to their price advantage, compact size, and
moderate accuracy (White et al., 2012; Kumar et al., 2015; Rai et al., 2017; Morawska et al.,
2018). Compared to bulky laboratory instruments costing up to thousands of dollars, palm
sized low-cost sensors usually cost less than fifty dollars. One thing worth noting is that the
term “low-cost PM sensor” refers only to the electrical sensing module, including popular
models from Sharp, Shinyei, Samyoung, Oneair, and Plantower (Wang et al., 2015; Sousan et
al., 2016b; Kelly et al., 2017; Liu et al., 2017). To make low-cost PM sensors functional,
circuit board design, programming, and calibration are necessary to establish the relationship
between electrical signals (current, voltage, or pulse width) and the PM concentrations. After
fabrication and laboratory calibration, low-cost PM sensors exhibit a good linearity against
reference instruments, showing promising potential for personal PM monitors and sensor

networks (Wang et al., 2015).
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Currently, research on low-cost PM sensors mainly focuses on two aspects: interpreting their
signal comprehensively through calibration or characterization, and modifying them for
personal or sensor network use. Several groups have tried to explain the deficiencies and
limitations of low-cost sensors due to their working principles (Li and Biswas, 2017; Zhang
et al., 2018). Some studies also calibrated a variety of low-cost PM sensors for different
aerosol sources (e.g., NaCl, Arizona road dust, sucrose, silica, welding fumes, and diesel
fumes) in different test environments (laboratory, residential, and ambient) to identify the
optimal performance and favorable working conditions of each type of sensor (Hapidin et al.;
Wang et al., 2015; Manikonda et al., 2016; Sousan et al., 2016a; Sousan et al., 2016b; Kelly
et al., 2017; Liu et al., 2017; Rai et al., 2017; Zikova et al., 2017; Aliyu and Botai, 2018;
Johnson et al., 2018). These studies demonstrated the advantages and limitations of these
sensors, and laid a solid foundation for further deployment and application. Wireless sensors
or sensor networks, as one major application, have been deployed in households, meeting
rooms, factories, cities, etc. to monitor the dynamic process of pollution events with high
spatiotemporal resolution (Kim et al., 2010; Kim et al., 2014; Rajasegarar et al., 2014;
Leavey et al., 2015; Patel et al., 2017; Jeon et al., 2018; Li et al., 2018a). Some of these
studies have explored in depth the algorithms for organizing sensor data and extracting the
maximum effective information (Li et al., 2018a; Li et al., 2018b). Apart from use in sensor
networks, low-cost PM sensors find another important application as low-cost PM monitors,

as we elaborate in the following section.
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Low-cost PM monitors, whose major components are low-cost PM sensors, are usually
assembled and pre-calibrated before distribution to users. Compared to conventional PM
measurement instruments, they still have an appealing price advantage, however, accuracy is
a still major concern. Compared to just the PM sensors, the assembled monitors’ price is
higher, but these monitors are advertised with enhanced data quality and stability due to
improved algorithms and advanced factory calibration. Occasionally, these monitors have
even been chosen as reference instruments to calibrate low-cost sensors. The Air Quality
Sensor Performance Evaluation Center (AQ-SPEC), a unit of the South Coast Air Quality
Management District (SCAQMD), has evaluated the majority of commercial monitors for
multiple sources (Polidori et al., 2017). They have also built a calibration chamber that can
maintain a stable and reproducible test environment (Papapostolou et al., 2017). Several
popular monitors have been highlighted recently. The Dylos DC1700 Air Quality Monitor
(Dylos Cooperation, Riverside, CA, USA) has been evaluated for different scenarios and has
been deployed in indoor and outdoor environments (Semple et al., 2013; Holstius et al., 2014;
Dacunto et al., 2015; Manikonda et al., 2016; Rai et al., 2017). The Alphasense OPC N3
Particle Monitor (Alphasense Ltd, Great Notley, UK) has been evaluated focusing on its
ability to accurately report the mass concentration of PM1, PM2s, and PM1o (Sousan, Koehler,
Hallett, et al., 2016; Crilley et al., 2018). The PurpleAir PA-1I-SD Air Quality Sensor
(PurpleAir, UT, USA) has demonstrated good linearity against reference instruments for both
laboratory calibration and ambient field measurement (Kelly et al., 2017). Several other low-

cost monitors have also been evaluated and compared in different studies, including
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AirVisual Node (AirVisual, Inc., USA), APT low-cost monitor (Applied Particle
Technology, MO, USA), Awair air quality monitor (Bitfinder, Inc., CA, USA), Foobot
(Airboxlab, San Francisco, CA, USA), Wynd wearable air quality tracker (Air Quality
Tracker Wynd Technologies, Inc., CA, USA), and Xiaomi PM2.5 Detector (Beijing Ji Mi
Electronics Technology Co., Ltd, China) (Sousan et al., 2017; Moreno-Rangel et al., 2018;

Singer and Delp, 2018).

Although low-cost PM monitors have been well characterized, the studies reflect inherent
limitations. First, there is no specified boundary between low-cost PM monitors and low-cost
PM sensors. Occasionally, low-cost PM monitors are used as reference instruments to
calibrate low-cost PM sensors. At other times, they are treated the same as low-cost PM
sensors. It is necessary to distinguish low-cost PM monitors from low-cost PM sensors
according to the differences mentioned above, however, it is still uncertain whether they are
qualified enough as a reference instrument. Second, calibration methods for low-cost PM
monitors very likely differ, but differences are not highlighted in the literature. For low-cost
PM sensors, a user calibration procedure will establish the relationship between the PM
concentration and an electrical signal (e.g., current, voltage, or pulse width). Hence, the major
concern is whether low-cost PM sensors can correlate well with reference instruments.
However, for low-cost PM monitors, the correlation is between PM concentrations reported
by monitors and the reference instrument, and a larger concern is whether the agreement
between monitors and the reference instrument is good enough to replace the user calibration.

Hence, linear or polynomial regression may not be sufficient to demonstrate the performance
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of low-cost monitors. Third, an important function of some residential monitors is indicating
air quality through color change, which is a straightforward display. However, few studies
have examined whether a color indicator can convey air quality information accurately and
promptly. To bridge the scientific gap, in this study, the performance of nine types of popular
low-cost PM monitors was compared, including devices from AirVisual Pro, Alphasense,
APT, Awair, Dylos, PurpleAir, Foobot, Wynd, and Xiaomi. These monitors were divided
into two groups according to their numbers of channels and types of metrics. As for reference
instruments, GRIMM (11C, GRIMM Technologies, Inc., GA, USA) and TSI SidePak
(AM530, TSI, Inc., MN, USA) were chosen to evaluate these monitors. A chamber was built
to provide an adjustable test environment with well-mixed, and evenly distributed PM

concentrations, together with humidity and temperature control.
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3.2 Methods

In this study, nine popular low-cost personal PM monitors were compared against two
reference instruments. The specifications and metrics of the different monitors were
compared, as were their features for convenient application. The procedure to compare
monitors with different specifications and metrics will be elaborated in this section. A
chamber with temperature and humidity control was designed to provide a well-mixed and
evenly distributed flow for calibration experiments. The mixing performance of the chamber
was examined at random locations to demonstrate its workability. With the temperature
around 25 °C and humidity around 50%, three types of aerosols — ARD particles, sea salt
particles, and incense particles —were generated from burning incense, atomizer, and dust

dispenser to evaluate the performance of different monitors.

3.2.1 Specifications of low-cost PM monitors and reference instruments

Table 3.1 lists the specifications of all low-cost PM monitors tested in this study. Although
some of the monitors (for example, the Alphasense and Dylos) have been utilized as
reference instruments to calibrate low-cost PM sensors as reported in the literature
(Rajasegarar et al., 2014; Prabakar et al., 2015; Gao et al., 2016; Hojaiji et al., 2017), we
treated all of them as test units since there are no significant price differences between them
and other tested monitors. Monitors were classified into two groups on the basis of their

working principle and metrics. The Alphasense, APT (Applied Particle Technology Minima),
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Dylos, and PurpleAir, all use a single particle counter which measures the size distribution
for sorting into multiple bins. When particles pass through the measurement area one at a
time, the scattered light generates a pulse that is detected by a photodiode, and then the
particle size is classified according to the pulse height. The particle sensing modules of the
AirVisual, Awair, Foobot, Wynd, and Xiaomi monitors report an analog measurement of the
total mass concentration. Particles that pass through the measurement area at the same time
scatter light onto the photodiode, and the detected light intensity can be correlated with the

PM concentration.

92



Table 3.1 Specifications of low-cost PM monitors

Monitor Cost ($) Size (cm)

Metrics

Data logging

Selected references

Alphasense 506 8x6x6 « 24 bins (0.35 — 40 um) [#/mL] « cable + computer software Sousan et al., 2016a
« PM1, PM25s, and PMzo [pg/m®] « micro SD card Hojaiji et al., 2017
«RH&T [% & °C] Rai et al., 2017
Crilley et al., 2018
Zhang et al., 2018
APT NA 10x9x3 o 6 bins (0.3 — 10 pum) [#/0. lLl « Wi-Fi + webpage NA
_ « PMy, PMz5, and PMlo « micro SD card
o eRH&T [% &
3 Dylos 425 19%13%9 e 2 bins (>0.5 pum, >2.5 um) [#/ft°] e cable + computer software Dacunto et al., 2015
) Semple et al., 2013
Manikonda et al., 2016
Sousan et al., 2016b
Hojaiji et al., 2017
Rai et al., 2017
PurpleAir 259 5x4x2 e 6 bins (0.3um — 10um) [#/0.1L] « Wi-Fi + webpage Morawska et al., 2018
« PM31, PM2s, and PMio [pg/m?] « micro SD card Singer and Delp, 2018
«RH & T [% & °F] Kelly et al., 2017
AirVisual 269 21x12x8  « PMys [ug/m®] « Wi-Fi + App Morawska et al., 2018
« CO> [ppb] « Retrieval through node 1D Singer and Delp, 2018
e RH & T [% & °F]
« AQI + color [NA]
Awair 200 16X9%x5 o PM2s [pg/m°) « Wi-Fi + App Singer and Delp, 2018
« CO2 [ppm]
« VOC [ppb]
«RH&T [% & °F]
« AQS + color [NA]
= Foobot 200 17x8%x7 o PMa2s [pg/m°) « Wi-Fi + App Sousan et al., 2017
= e CO2 [ppm] « Retrieval through web login Moreno-Rangel et al., 2018
o « VOC [ppb] Singer and Delp, 2018
0] eRH&T[% & °C]
« AQI + color [NA]
Wynd 79 Tx4%2 e PM3s [ug/m?] « Bluetooth + App NA
« AQI + color [NA]
Xiaomi 75 6x6x3 o PM25 [ug/m®] « Wi-Fi + App NA
o Color [NA]
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Among the first group, the APT and PurpleAir are equipped with a Plantower
(Plantower Co., Ltd., Beijing, China) single particle sensing module. The Alphasense
and Dylos have their own custom-designed sensing modules. Due to the difference
among sensing modules, the data reporting formats of each monitor are different. The
APT and PurpleAir monitors, using the low-cost Plantower sensor, report the size
distribution of particles ranging from 0.3 — 10 um in six bins. The Alphasense has a
better resolution, and reports the sizes ranging from 0.3 — 38 um in 24 bins. The
Dylos has only two bins for particles larger than 0.5 um and 2.5 pm respectively. To
make the Dylos results comparable with other monitors in the first group, the number
concentration of the second bin (>2.5 um) was subtracted from that of the first bin
(>0.5 um) to represent the number concentration of particles smaller than 2.5 um. The
Alphasense, APT, and PurpleAir not only report the size distribution in the unit of

number concentration, but also report mass concentrations of PM1, PMas, and PMio.

For data logging, Alphasense and Dylos do not have a wireless module, hence they
need to be connected to a computer to display real-time data. The PurpleAir and APT
monitors can upload data to a manufacture-provided webpage through a Wi-Fi
module. The Alphasense, APT, and PurpleAir also have internal off-line data logging
system that can record the data on a micro SD card in case of connection malfunction.
The sampling interval of the APT is adjustable, and in our study was set at one minute
to be consistent with the Dylos and GRIMM. The Alphasense reported data every one

second, and the data was averaged over one minute too. The PurpleAir has a fixed
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sampling interval of 80 seconds, hence the data was interpolated to get a one-minute

sampling interval.

The monitors in the second group are targeted for residential use, hence they are
cheaper and smaller, with an attractive appearance and a straightforward display.
Apart from PM mass concentration, the AirVisual, Awair and Foobot also monitor the
CO2 or VOC concentrations for a more comprehensive air quality measurement. Since
they are designed for residential use, important features, for example, the sampling
interval or working principle, are not explained thoroughly in the manufacturer’s
descriptions. For data logging, all five monitors have a wireless module, a Bluetooth
chip for the Wynd and a Wi-Fi chip for the rest of the monitors, to synchronize the
data to tablet or phone applications. For the AirVisual and Foobot, after data is
synchronized with the application, it can be accessed online with a ten-minute and a
five-minute interval respectively. However, for other monitors, historical data is not
accessible since it is not saved. Our study circumvented this problem by video
recording the screen with the app running to record the data and time. The data was
manually extracted and averaged over one-minute intervals. Apart from measuring
PM concentrations, these monitors also report an air quality related index and use

different colors to display the air quality more straightforwardly.

Comparing different data logging methods of all tested low-cost PM monitors, a Wi-

Fi module or a Bluetooth module can synchronize the data remotely and conveniently
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as opposed to connections with cables. Generally, monitors with a Bluetooth module
can be configured more easily than monitors with a Wi-Fi module, since the Wi-Fi
module usually requires a specific type of wireless internet. The Bluetooth module
can be connected to user applications straightforwardly, however, the data transfer
relies on the user-end application and is restricted in a confined space. On the other
hand, monitors with the Wi-Fi module, can continue collecting the data even without
running user-end applications, which allows long-term and remote data collection.
The transferred data can then be accessed through user-end applications (AirVisual,
Awair, Foobot, Wynd and Xiaomi), through web portals (AirVisual, APT, Foobot and

PurpleAir), or through computer software (Alphasense and Dylos).

To compare monitors with different working principles, GRIMM and SidePak were
chosen as reference instruments. SidePak reported the PM2s mass concentration,
which can be correlated directly with different monitors. GRIMM, as a federal
reference method (FRM), is a single particle counter that measures the sizes of PM
ranging from 0.25 — 32 um and reports the distribution in 31 bins. A bin-wise
comparison, as shown in Figure 3.1 was conducted for the monitors of the first group
to demonstrate the accuracy of their size distribution measurements. Compared to
APT, Dylos, and PurpleAir, the Alphasense has more bins and a different distribution,
therefore, common ranges for the Alphasense and GRIMM were selected for bin-wise
calibration. The APT, Dylos and PurpleAir use fewer bins than the GRIMM, hence

several GRIMM bins were summed to enable comparison.
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Bin Classification
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Figure 3.1 Bin classification for monitors in the first group (Alphasense, APT, Dylos,
and PurpleAir) in bin-wise comparison against the GRIMM. The dash-dot line and
dashed line represent the bin distribution of each monitor and the GRIMM

respectively. The 31% bin of GRIMM (>32 um) is not depicted in this figure. The
thick box represents the common range of combined bins for comparison.

3.2.2 Air quality related index and color display

The second group of monitors, the AirVisual, Awair, Foobot, Wynd, and Xiaomi used
both numeric indexes and color display to report the air quality. Foobot gives a
simplified numeric index on a scale of 0 to 100 indicating air quality ranging from
healthy to poor. The Awair presents an air quality score (AQS), and AirVisual and
Wynd present the air quality index (AQI). The AQS is scaled from 0 to a 100 to
indicate the air quality from poor to healthy. However, neither the product manual nor

the literature describes how the AQS is calculated. Compared to the AQS, the AQIl is
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a more common parameter for presenting the potential airborne hazards. The
component species and calculation details of the AQI vary with local regulations, but
normally, several common air pollutant are included: PM, ozone, VOC, carbon
monoxide, and sulfur dioxide (Gao et al., 2015; Hu et al., 2015; EPA, 2016). A high
AQI indicates an unhealthy environment, and the AQI range from low to high is
divided into six segments with numeric index ranging from 0 to 500 that describes the
overall air quality, from excellent to heavily polluted. Since PM is the major object of
this study, the AQI mentioned in the following section is calculated based on the PM
mass concentration, following the US EPA regulations published in 2016 (EPA,

2016).

Compared to numeric indexes, color is a more straightforward way of showing air
quality. The US EPA divides the AQI into six sections, and each section with a signal
color (green indicates “good”, yellow is “moderate”, orange means “unhealthy for
sensitive groups”, red represents “unhealthy”, purple indicates “very unhealthy”, and
maroon stands for “hazardous”). Ideally, all monitors would use the color scheme of
the AQI, which would make the results directly comparable. In reality, only the
AirVisual follows the AQI color distribution. The Awair, Foobot, Wynd, and Xiaomi
monitors assign colors according to their own schemes, as shown in Figure 3.2. For
example, the Foobot uses just two colors, blue and orange, and Xiaomi monitor has
only three colors, green, yellow, and red. To examine whether the color display

properly conveys the air quality message, the US EPA regulated AQI was first
98



calculated based on the PM concentration reported by the GRIMM, and the AQI-
designated color was used to represent the air quality. The colors reported by the
various monitors were recorded at the same time for comparison. Ideally, the colors
would all be both identical and accurate representations of the GRIMM-reported PM

concentration.

Color Index
AirVisual
Foobot
Wynd
Xiaomi
US EPA
Healthy Air Quality Poor

Figure 3.2 Color display pattern of each monitor and US EPA stipulated display.

3.2.3 Test chamber and aerosol sources
A chamber was designed according to Figure 3.3 to provide a well-mixed and evenly-

distributed PM flow as the test environment. The aerosol was introduced to the



chamber through the inlet on the top, and then ventilated through the outlet on the
bottom. The exhaust air was filtered by a HEPA filter, and a flow controlled vacuum
pump was used to adjust the flowrate (2 — 15 L/min) and to control the PM
concentration level inside. The interior included a mixing area and a test area,
separated by two baffles with a matrix of one-inch holes. In the mixing area, two fans
were used to improve the air circulation. A humidifier and a cartridge heater in the
mixing area were connected to a humidity sensor and a temperature sensor in the test
area to maintain the temperature and humidity in the test area at 23 °C and 50% RH.
Particles, heat, and humidity were mixed with distorted streamlines. After sufficient
mixing, the streamlines passed through two baffles with densely spaced holes to form
an evenly distributed laminar flow passing through the test area. During the
experiments, the monitors and the SidePak were placed on the lower-level baffle, and

the GRIMM was placed outside the chamber but connected to the test area.
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Figure 3.3 The structure of a chamber to provide a well-mixed and evenly-distributed
PM flow as a test environment.

Using incense particles, the uniformity of the PM distribution in the test area was
examined by the SidePak and the APT monitor, placed at random locations on the

lower-level baffle. The response from the APT monitor was correlated with that from

the SidePak via a linear regression. The whole procedure was repeated three times by

placing the APT monitor at different sampling locations. In all three tests, the

response from the APT monitor correlated well with SidePak, with all R? values

higher than 0.99. The slopes from different tests were approximately similar, 0.847,

0.867, and 0.897, which indicated that the PM was well mixed and evenly distributed

in the test area.
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After proving the suitability of the chamber, monitors were tested with ARD (Arizona
road dust) particles, sodium chloride (sea salt) particles, and incense particles. The
normalized mass distribution of each source was reported by GRIMM, as shown in
Figure 3.4. Incense particles and sea salt particles peaked around 0.5 and 0.3 um

respectively. ARD were larger and peaked around 2 — 4 um.
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Figure 3.4 Normalized mass concentration distributions of ARD particles, sea salt
particles, and incense particles generated during the experiments, measured by
GRIMM.
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3.3 Results and discussion

3.3.1 Alphasense, Dylos, APT, and PurpleAir monitors

3.3.1.1 Time response and correlation based on PM2.5 mass concentration

The PM2s mass concentrations reported by monitors and reference instruments for
different PM sources are plotted with time in Figure 3.5, with a one-minute sampling
interval. The red and blue dashed lines represent the GRIMM and SidePak
respectively, and the solid lines with different colors represent different low-cost PM
monitors. For ARD particles, the GRIMM and SidePak overlapped well with each
other, since they were both calibrated with ARD particles in their factory calibrations.
While the GRIMM and SidePak responded simultaneously for incense and sea salt
particles, their indicated PM levels were different. Such a difference might be due to
the different working principles: the GRIMM is a single particle counter, but the
SidePak performs ensemble measurement. Other monitors also responded
simultaneously to PM concentration fluctuations for incense and sea salt particles,
although there was a difference among peak values. However, for ARD particles, a
noticeable delay was found for the Dylos monitor in repeated tests. Two reasons may
lead to such a delay. First, the other monitors directly reported the mass concentration
of PM_s, but for the Dylos monitor, the large bin (>2.5 um) was subtracted from the
small bin (>0.5 pm) to calculate the number concentration of particles from 0.5 — 2.5

pm. Then, the number concentration was converted to the mass concentration by
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assuming all these particles were 2.5 pum, with a density of 1200 kg/m3. These
assumptions might introduce errors into the results. Another possible reason is the
misclassification of particles ranging from 0.5 — 2.5 um. Particles in this range were
supposed to be classified into the small bin, however, they may have been
accidentally classified into the large bin. Misclassification can influence data
accuracy, which results in a noticeable delay. According to the number-based size
distribution, approximately 30%, of the ARD particles fall in the range of 0.5 — 2.5
um, but only 6% of incense particles and 1% of sea salt particles fall in this range.
Thus, the delay is noticeable for ARD particles, but almost negligible for incense and

sea salt particles.
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Figure 3.5 The PM2s mass concentration variation against time for different aerosol
sources, reported by reference instruments (GRIMM and SidePak) and monitors
(Alphasense, APT, Dylos, and PurpleAir monitors).

The PM25 mass concentration reported by each monitor was also plotted against the

reference instruments for pairwise correlation, as shown in Figure 3.6. These monitors
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had been pre-calibrated, hence better accuracy was expected. Apart from a high R?
value, a slope value approximate to one was expected to demonstrate the agreement
between monitors and reference instruments. A slope larger or smaller than one
represents a monitors’ overestimation or underestimation of the PMazs mass
concentration compared to the reference instruments. The APT and PurpleAir
demonstrated good linearity for various sources, with all R? values larger than 0.94
and 0.91 respectively. For the Dylos, linear regression may not be the optimal fitting
method. For the Alphasense, the data slopes were stable when compared against the
GRIMM for different sources. One thing worth noting is that the linear correlation
may not be sufficient to demonstrate agreement between monitors and reference
instruments. It cannot demonstrate how data quality has been improved after
calibration. Thus, we plotted the data in a different manner, which will be illustrated

in a later section
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Figure 3.6 Pairwise correlation among the monitors (Alphasense, APT, Dylos, and
PurpleAir) and the reference instruments (GRIMM and SidePak) for ARD, sea salt,
and incense particles. Slope and R? values were calculated by least squares regression.

3.3.1.2 Bin-wise evaluation for size distribution measurement

Based on the bin classification in Figure 3.1, we plotted the number concentration
reported by the GRIMM and the tested monitors for different bins in Figure 3.7. The
dashed line in the figure represents the 1:1 ratio, where the monitors and the GRIMM
reported the same results. For comparison, figures of the same source were plotted
under the same scales, except for the correlation between the Dylos and the GRIMM
for incense measurement. The legends of different monitors were displayed on the

rightmost position of each row.
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In Figure 3.7, Alphasense demonstrated an overestimation for tested sources. One
more thing worth noting is that after saturation, the response from Alphasense
decreased with increasing PM concentration, especially for ARD and incense
particles. Such an inverted U-shape may be caused by the coincidence error that
several small particles passed the measuring point at the same time and were
characterized as a larger particle by mistake. Coincidence error may lead to an
inaccurate size distribution due to the underestimation and overestimation for small
and large particles respectively. However, the PM mass correlation in Figure 3.6 was
not largely influenced by such coincidence error since the misclassified large particle
made up the mass loss of small particles. APT monitor showed a very close
estimation for ARD particles, however, for sea salt and incense particles, there was an
underestimation and overestimation for 0.3 — 0.5 um and 0.5 — 1 um particles
respectively. Dylos predicted a very close estimation for sea salt particles, however,
underestimated ARD and incense particles for smaller bins, and overestimate ARD
particles for larger bins. PurpleAir monitor demonstrated an underestimation for

tested sources.
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Figure 3.7 Bin-wise number concentration comparison of monitors (Alphasense, APT,
Dylos, and PurpleAir) and the reference instrument (GRIMM) for different sources in
different concentration ranges.

Figure 3.7 also gave a clue on the question whether the calibration procedures should
be the same for the optical particle counters and the monitors performing ensemble
measurement. For sensors performing ensemble measurement, calibration procedures
estab