29,951 research outputs found

    Long-Term Outcome After Renal Replacement Therapy in Severe Burns

    Get PDF
    Acute kidney injury is a common sequela after major burn injury, but only a small proportion of patients need renal replacement therapy. In the majority of patients, need for renal replacement therapy subsides before discharge from the burn center but limited literature exists on long-term outcomes. A few studies report an increased risk for chronic renal failure after burn injury. We investigated the long-term outcome of severely burned patients receiving renal replacement therapy during acute burn injury treatment. Data on 68 severely burned patients who received renal replacement therapy in Helsinki Burn Centre between November 1988 and December 2015 were collected retrospectively. Thirty-two patients survived and remained for follow-up after the primary hospital stay until December 31, 2016. About 56.3% of discharged patients were alive at the end of follow-up. In 81.3% of discharged patients, need for renal replacement therapy subsided before discharge. Two patients received renal replacement therapy for longer than 3 months; however, need for renal replacement therapy subsided in both patients. One patient required dialysis several years later on after the need for renal replacement therapy had subsided. This study showed that long-term need for renal replacement therapy is rare after severe burn injury. In the vast majority of patients, need for renal replacement therapy subsided before discharge from primary care. Acute kidney injury in association with burns is a potential but small risk factor for later worsening of kidney function in fragile individuals.Peer reviewe

    Epidemiology and Outcome of Critically Ill Pediatric Cancer and Hematopoietic Stem Cell Transplant Patients Requiring Continuous Renal Replacement Therapy:A Retrospective Nationwide Cohort Study

    Get PDF
    OBJECTIVE: Acute kidney injury requiring continuous renal replacement therapy is a serious treatment-related complication in pediatric cancer and hematopoietic stem cell transplant patients. The purpose of this study was to assess epidemiology and outcome of these patients requiring continuous renal replacement therapy in the PICU. DESIGN: A nationwide, multicenter, retrospective, observational study. SETTING: Eight PICUs of a tertiary care hospitals in the Netherlands. PATIENTS: Pediatric cancer and hematopoietic stem cell transplant patients (cancer and noncancer) who received continuous renal replacement therapy from January 2006 to July 2017 in the Netherlands.None. MEASUREMENT AND MAIN RESULTS: Of 1,927 PICU admissions of pediatric cancer and hematopoietic stem cell transplant patients, 68 of 70 evaluable patients who received continuous renal replacement therapy were included. Raw PICU mortality was 11.2% (216/1,972 admissions). PICU mortality of patients requiring continuous renal replacement therapy was 54.4% (37/68 patients). Fluid overload (odds ratio, 1.08; 95% CI, 1.01-1.17) and need for inotropic support (odds ratio, 6.53; 95% CI, 1.86-23.08) at the start of continuous renal replacement therapy were associated with PICU mortality. Serum creatinine levels increased above 150% of baseline 3 days before the start of continuous renal replacement therapy. Urine production did not reach the critical limit of oliguria. In contrast, body weight (fluid overload) increased already 5 days prior to continuous renal replacement therapy initiation. CONCLUSIONS: PICU mortality of pediatric cancer and hematopoietic stem cell transplant patients requiring continuous renal replacement therapy is sadly high. Fluid overload at the initiation of continuous renal replacement therapy is the most important and earliest predictor of PICU mortality. Our results suggest that the most commonly used criteria of acute kidney injury, that is, serum creatinine and urine production, are not useful as a trigger to initiate continuous renal replacement therapy. This highlights the urgent need for prospective studies to generate recommendations for effective therapeutic interventions at an early phase in this specific patient population

    Association between urinary sodium, creatinine, albumin, and long term survival in chronic kidney disease

    Get PDF
    Dietary sodium intake is associated with hypertension and cardiovascular risk in the general population. In patients with chronic kidney disease, sodium intake has been associated with progressive renal disease, but not independently of proteinuria. We studied the relationship between urinary sodium excretion and urinary sodium:creatinine ratio and mortality or requirement for renal replacement therapy in chronic kidney disease. Adults attending a renal clinic who had at least one 24-hour urinary sodium measurement were identified. 24-hour urinary sodium measures were collected and urinary sodium:creatinine ratio calculated. Time to renal replacement therapy or death was recorded. 423 patients were identified with mean estimated glomerular filtration rate of 48ml/min/1.73m<sup>2</sup>. 90 patients required renal replacement therapy and 102 patients died. Mean slope decline in estimated glomerular filtration rate was -2.8ml/min/1.73m<sup>2</sup>/year. Median follow-up was 8.5 years. Patients who died or required renal replacement therapy had significantly higher urinary sodium excretion and urinary sodium:creatinine but the association with these parameters and poor outcome was not independent of renal function, age and albuminuria. When stratified by albuminuria, urinary sodium:creatinine was a significant cumulative additional risk for mortality, even in patients with low level albuminuria. There was no association between low urinary sodium and risk, as observed in some studies. This study demonstrates an association between urinary sodium excretion and mortality in chronic kidney disease, with a cumulative relationship between sodium excretion, albuminuria and reduced survival. These data support reducing dietary sodium intake in chronic kidney disease but further study is required to determine the target sodium intake

    External validation of a risk stratification model to assist shared decision making for patients starting renal replacement therapy

    Get PDF
    BACKGROUND: Shared decision making is nowadays acknowledged as an essential step when deciding on starting renal replacement therapy. Valid risk stratification of prognosis is, besides discussing quality of life, crucial in this regard. We intended to validate a recently published risk stratification model in a large cohort of incident patients starting renal replacement therapy in Flanders. METHODS: During 3 years (2001-2003), the data set collected for the Nederlandstalige Belgische Vereniging voor Nefrologie (NBVN) registry was expanded with parameters of comorbidity. For all incident patients, the abbreviated REIN score(aREIN), being the REIN score without the parameter "mobility", was calculated, and prognostication of mortality at 3, 6 and 12 month after start of renal replacement therapy (RRT) was evaluated. RESULTS: Three thousand four hundred seventy-two patients started RRT in Flanders during the observation period (mean age 67.6 ± 14.3, 56.7 % men, 33.6 % diabetes). The mean aREIN score was 4.1 ± 2.8, and 56.8, 23.1, 12.6 and 7.4 % of patients had a score of ≤4, 5-6, 7-8 or ≥9 respectively. Mortality at 3, 6 and 12 months was 8.6, 14.1 and 19.6 % in the overall and 13.2, 21.5 and 31.9 % in the group with age >75 respectively. In RoC analysis, the aREIN score had an AUC of 0.74 for prediction of survival at 3, 6 and 12 months. There was an incremental increase in mortality with the aREIN score from 5.6 to 45.8 % mortality at 6 months for those with a score ≤4 or ≥9 respectively. CONCLUSION: The aREIN score is a useful tool to predict short term prognosis of patients starting renal replacement therapy as based on comorbidity and age, and delivers meaningful discrimination between low and high risk populations. As such, it can be a useful instrument to be incorporated in shared decision making on whether or not start of dialysis is worthwhile

    How I prescribe prolonged intermittent renal replacement therapy

    Get PDF
    Prolonged Intermittent Renal Replacement Therapy (PIRRT) is the term used to define \u27hybrid\u27 forms of renal replacement therapy. PIRRT can be provided using an intermittent hemodialysis machine or a continuous renal replacement therapy (CRRT) machine. Treatments are provided for a longer duration than typical intermittent hemodialysis treatments (6-12 h vs. 3-4 h, respectively) but not 24 h per day as is done for continuous renal replacement therapy (CRRT). Usually, PIRRT treatments are provided 4 to 7 times per week. PIRRT is a cost-effective and flexible modality with which to safely provide RRT for critically ill patients. We present a brief review on the use of PIRRT in the ICU with a focus on how we prescribe it in that setting

    The evaluation of sequential platelet counts has prognostic value for acute kidney injury patients requiring dialysis in the intensive care setting

    Get PDF
    OBJECTIVE: To evaluate the prognostic value of platelet counts in acute kidney injury patients requiring renal replacement therapy. METHODS: This prospective cohort study was performed in three tertiary-care hospitals. Platelet counts were obtained upon admission to the intensive care unit and during the first week of renal replacement therapy on days 1, 3, 5 and 7. The outcome of interest was the hospital mortality rate. With the aim of minimizing individual variation, we analyzed the relative platelet counts on days 3, 5, 7 and at the point of the largest variation during the first week of renal replacement therapy. Logistic regression analysis was used to test the prognostic value of the platelet counts. RESULTS: The study included 274 patients. The hospital mortality rate was 62%. The survivors had significantly higher platelet counts upon admission to the intensive care unit compared to the non-survivors [175.5×103/mm3 (108.5-259×103/mm3) vs. 148×103/mm3 (80−141×103/mm3)] and during the first week of renal replacement therapy. The relative platelet count reductions were significantly associated with a higher hospital mortality rate compared with the platelet count increases (70% vs. 44% at the nadir, respectively). A relative platelet count reduction >;60% was significantly associated with a worse outcome (mortality rate = 82.6%). Relative platelet count variations and the percentage of reduction were independent risk factors of hospital mortality during the first week of renal replacement therapy. CONCLUSION: Platelet counts upon admission to the intensive care unit and at the beginning of renal replacement therapy as well as sequential platelet count evaluation have prognostic value in acute kidney injury patients requiring renal replacement therapy

    A Monte Carlo Simulation Approach for Beta‐Lactam Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy

    Full text link
    Cefepime, ceftazidime, and piperacillin/tazobactam are commonly used beta‐lactam antibiotics in the critical care setting. For critically ill patients receiving prolonged intermittent renal replacement therapy (PIRRT), limited pharmacokinetic data are available to inform clinicians on the dosing of these agents. Monte Carlo simulations (MCS) can be used to guide drug dosing when pharmacokinetic trials are not feasible. For each antibiotic, MCS using previously published pharmacokinetic data derived from critically ill patients was used to evaluate multiple dosing regimens in 4 different prolonged intermittent renal replacement therapy effluent rates and prolonged intermittent renal replacement therapy duration combinations (4 L/h × 10 hours or 5 L/h × 8 hours in hemodialysis and hemofiltration modes). Antibiotic regimens were also modeled depending on whether drugs were administered during or well before prolonged intermittent renal replacement therapy therapy commenced. The probability of target attainment (PTA) was calculated using each antibiotic’s pharmacodynamic target during the first 48 hours of therapy. Optimal doses were defined as the smallest daily dose achieving ≥90% probability of target attainment in all prolonged intermittent renal replacement therapy effluent and duration combinations. Cefepime 1 g every 6 hours following a 2 g loading dose, ceftazidime 2 g every 12 hours, and piperacillin/tazobactam 4.5 g every 6 hours attained the desired pharmacodynamic target in ≥90% of modeled prolonged intermittent renal replacement therapy patients. Alternatively, if an every 6‐hours cefepime regimen is not desired, the cefepime 2 g pre‐prolonged intermittent renal replacement therapy and 3 g post‐prolonged intermittent renal replacement therapy regimen also met targets. For ceftazidime, 1 g every 6 hours or 3 g continuous infusion following a 2 g loading dose also met targets. These recommended doses provide simple regimens that are likely to achieve the pharmacodynamics target while yielding the least overall drug exposure, which should result in lower toxicity rates. These findings should be validated in the clinical setting.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145557/1/jcph1137.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145557/2/jcph1137_am.pd

    Continuous renal replacement therapy

    Get PDF
    Acute renal failure refers to sudden deterioration in biochemical and physiological functioning of kidneys and often associated with multi organ failure. Continuous renal replacement therapy (CRRT) holds special significance for the treatment of renal failure due to a variety of factors. It is believed that CRRT helps in restoration of acid-base imbalances and electrolyte abnormalities. Along with that, with gradual solute removal, it ensures haemodynamic stability and prevents the risk of cerebral oedema in neurosurgery patients. Besides this, several studies have supported that CRRT enables practitioners to adjust drug dosages and prevent drug accumulation and overdose. In addition, gradual removal of solutes and metabolic waste products helps to clear inflammatory mediators and ensure adequate nutrition for patients and lead to improved renal recovery. Therefore, this article will discuss the different treatment modalities that encompass CRRT and explore the indications and advantages of CRRT in acute renal failure

    Peritoneal Dialysis in Renal Replacement Therapy for Patients with Acute Kidney Injury

    Get PDF
    Peritoneal dialysis (PD) was the first modality used for renal replacement therapy (RRT) of patients with acute kidney injury (AKI) because of its inherent advantages as compared to Hemodialysis. It provides the nephrologist with nonvascular alternative for renal replacement therapy. It is an inexpensive modality in developing countries and does not require highly trained staff or a complex apparatus. Systemic anticoagulation is not needed, and it can be easily initiated. It can be used as continuous or intermittent procedure and, due to slow fluid and solute removal, helps maintain hemodynamic stability especially in patients admitted to the intensive care unit. PD has been successfully used in AKI involving patients with hemodynamic instability, those at risk of bleeding, and infants and children with AKI or circulatory failure. Newer continuous renal replacement therapies (CRRTs) are being increasingly used in renal replacement therapy of AKI with less use of PD. Results of studies comparing newer modalities of CRRT versus acute peritoneal dialysis have been conflicting. PD is the modality of choice in renal replacement therapy in pediatric patients and in patients with AKI in developing countries

    Initiation of renal replacement therapy: is timing everything?

    Get PDF
    Acute kidney injury is commonly encountered and in the critically ill treatment is principally supportive. A recent large, multicentre study has used retrospective analysis to try and identify patient outcomes when commencing renal replacement therapy using conventional biochemical and physiological markers. The authors have also made an attempt to decipher when to commence renal replacement therapy
    corecore