223 research outputs found

    Robust Multi-Criteria Optimal Fuzzy Control of Continuous-Time Nonlinear Systems

    Get PDF
    This paper presents a novel fuzzy control design of continuous-time nonlinear systems with multiple performance criteria. The purpose behind this work is to improve the traditional fuzzy controller performance to satisfy several performance criteria simultaneously to secure quadratic optimality with inherent stability property together with dissipativity type of disturbance reduction. The Takagi– Sugeno fuzzy model is used in our control system design. By solving the linear matrix inequality at each time step, the control solution can be found to satisfy the mixed performance criteria. The effectiveness of the proposed technique is demonstrated by simulation of the control of the inverted pendulum system

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Fuzzy control turns 50: 10 years later

    Full text link
    In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its applications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control: from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control design via some milestones, and key applications. The second part shows where we arrived and what the improvements are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research topics.Guerra, T.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later. Fuzzy Sets and Systems. 281:162-182. doi:10.1016/j.fss.2015.05.005S16218228

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Filter Design for Positive T-S Fuzzy Continuous-Time Systems with Time Delay Using Piecewise-Linear Membership Functions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This work focuses on the filtering problem and stability analysis for positive Takagi-Sugeno (T-S) fuzzy systems with time delay under L1-induced performance. Due to the importance of estimation of system states but the few filter design results on positive nonlinear systems, it is an attractive and meaningful topic well worth studying. In order to fully exploit and take advantage of the positivity of positive T-S fuzzy systems, many commonly used methods, for instance free-weighting matrix approach and similarity transformation are probably not suitable for positive systems. To address the hard-nut-to-crack problem, an auxiliary variable is introduced so that the augmentation approach can be employed to carry out the positivity and stability analysis of filtering error systems. In addition, another obstacle that cannot be ignored is the existence of non-convex terms in the stability and positivity conditions. For getting around this barrier, some iterative linear matrix inequality (ILMI) algorithms have been proposed in the literature. However, considering the weakness that these methods cannot guarantee the convergence to a numerical solution and the iterative process is exhaustive, we present an effective matrix decoupling method to convert the nonconvex conditions into convex ones in this paper. Furthermore, a linear co-positive Lyapunov function which incorporates the positivity of system states and time delay at the same time is chosen so that the positivity characteristic of filtering error systems can be captured further. However, because of plenty of valuable information of membership functions (MFs) being ignored, hence, the obtained results are conservative. For the sake of relaxing the conservativeness, the advanced piecewise-linear membership functions (PLMFs) approximate method is utilized to facilitate the stability and positivity analysis. Therefore, the relaxed stability and positivity conditions which are cast as sum of squares (SOS) are obtained and can be solved numerically. Finally, the effectiveness of the designed fuzzy filtering strategy with satisfying L1-induced performance are demonstrated by a simulation example

    Asymptotically exact stabilisation for constrained discrete Takagi-Sugeno systems via set-invariance

    Full text link
    [EN] Given a Takagi-Sugeno (TS) system, this paper proposes a novel methodology to obtain the state feedback controller guaranteeing, asymptotically as a Polya-related complexity parameter grows, the largest (membership-shape independent) possible domain-of-attraction with contraction-rate performance lambda, based on polyhedral lambda-contractive sets from constrained linear systems literature. The resulting controller is valid for any realisation of the memberships, as usual in most TS literature. For a finite complexity parameter, an inner estimate of such largest set is obtained; the frontier of such approximation can be understood as the level set of a polyhedral control-Lyapunov function. Convergence of a proposed iterative algorithm is asymptotically necessary and sufficient for TS system stabilisation: for a high-enough value of the complexity parameter, any conceivable shape-independent Lyapunov controller design procedure will yield a proven domain of attraction smaller or equal to the algorithm's output. (C) 2016 Elsevier B.V. All rights reserved.This work has been supported by grants DPI2015-70433- P and DPI2016-81002-R, from Spanish Government (MINECO) and grant PROMETEOII/2013/004 from Generalitat Valenciana.Ariño-Latorre, CV.; Sala, A.; Pérez Soler, E.; Bedate Boluda, F.; Querol-Ferrer, A. (2017). Asymptotically exact stabilisation for constrained discrete Takagi-Sugeno systems via set-invariance. Fuzzy Sets and Systems. 316:117-138. https://doi.org/10.1016/j.fss.2016.10.004S11713831

    Robust Tracking Control for Switched Fuzzy Systems with Fast Switching Controller

    Get PDF
    This paper addresses the problem of designing robust tracking controls for a class of switched fuzzy (SF) systems with time delay. A switched fuzzy system, which differs from existing ones, is firstly employed to describe a nonlinear system. Next, a fast switching controller consisting of a number of simple subcontrollers is proposed. The smooth transition is governed by using the fast switching controller. Tracking hybrid control schemes which are based upon a combination of the H∞ tracking theory, fast switching control algorithm, and switching law design are developed such that the H∞ model referent tracking performance is guaranteed. Since convex combination techniques are used to derive the delay independent criteria, some subsystems are allowed to be unstable. Finally, various comparisons of the elaborated examples are conducted to demonstrate the effectiveness of the proposed control design approach. All results illustrate good control performances as desired

    TS fuzzy approach for modeling, analysis and design of non-smooth dynamical systems

    Get PDF
    There has been growing interest in the past two decades in studying the physical model of dynamical systems that can be described by nonlinear, non-smooth differential equations, i.e. non-smooth dynamical systems. These systems exhibit more colourful and complex dynamics compared to their smooth counterparts; however, their qualitative analysis and design are not yet fully developed and still open to exploration. At the same time, Takagi-Sugeno (TS) fuzzy systems have been shown to have a great ability to represent a large class of nonlinear systems and approximate their inherent uncertainties. This thesis explores an area of TS fuzzy systems that have not been considered before; that is, modelling, stability analysis and design for non-smooth dynamical systems. TS fuzzy model structures capable of representing or approximating the essential dis- continuous dynamics of non-smooth systems are proposed in this thesis. It is shown that by incorporating discrete event systems, the proposed structure for TS fuzzy models, which we will call non-smooth TS fuzzy models, can accurately represent the smooth (or contin- uous) as well as non-smooth (or discontinuous) dynamics of different classes of electrical and mechanical non-smooth systems including (sliding and non-sliding) Filippov's systems and impacting systems. The different properties of the TS fuzzy modelling (or formalism) are discussed. It is highlighted that the TS fuzzy formalism, taking advantage of its simple structure, does not need a special platform for its implementation. Stability in its new notion of structural stability (stability of a periodic solution) is one of the most important issues in the qualitative analysis of non-smooth systems. An important part of this thesis is focused on addressing stability issues by extending non- smooth Lyapunov theory for verifying the stability of local orbits, which the non-smooth TS fuzzy models can contain. Stability conditions are proposed for Filippov-type and impacting systems and it is shown that by formulating the conditions as Linear Matrix inequalities (LMIs), the onset of non-smooth bifurcations or chaotic phenomena can be detected by solving a feasibility problem. A number of examples are given to validate the proposed approach. Stability robustness of non-smooth TS fuzzy systems in the presence of model uncertainties is discussed in terms of non-smoothness rather than traditional observer design. The LMI stabilization problem is employed as a building block for devising design strategies to suppress the unwanted chaotic behaviour in non-smooth TS fuzzy models. There have been a large number of control applications in which the overall closed-loop sys tem can be stabilized by switching between pre-designed sub-controllers. Inspired by this idea, the design part of this thesis concentrates on fuzzy-chaos control strategies for Filippov-type systems. These strategies approach the design problem by switching be- tween local state-feedback controllers such that the closed-loop TS fuzzy system of interest rapidly converges to the stable periodic solution of the system. All control strategies are also automated as a design problem recast on linear matrix inequality conditions to be solved by modern optimization techniques. Keywords: Takagi-Sugeno fuzzy systems, non-smooth Lyapunov theory, non-smooth dy- namical systems, piecewise-smooth dynamical systems, structural stability, discontinuity- induced bifurcation, chaos controllers, dc-dc converters, Filippov's system, impacting system, linear matrix inequalities.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore