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Abstract—This work focuses on the filtering problem and sta-
bility analysis for positive Takagi-Sugeno (T-S) fuzzy systems with
time delay under L1-induced performance. Due to the importance
of estimation of system states but the few filter design results on
positive nonlinear systems, it is an attractive and meaningful
topic well worth studying. In order to fully exploit and take
advantage of the positivity of positive T-S fuzzy systems, many
commonly used methods, for instance free-weighting matrix
approach and similarity transformation are probably not suitable
for positive systems. To address the hard-nut-to-crack problem,
an auxiliary variable is introduced so that the augmentation
approach can be employed to carry out the positivity and stability
analysis of filtering error systems. In addition, another obstacle
that cannot be ignored is the existence of non-convex terms in
the stability and positivity conditions. For getting around this
barrier, some iterative linear matrix inequality (ILMI) algorithms
have been proposed in the literature. However, considering the
weakness that these methods cannot guarantee the convergence
to a numerical solution and the iterative process is exhaustive, we
present an effective matrix decoupling method to convert the non-
convex conditions into convex ones in this paper. Furthermore,
a linear co-positive Lyapunov function which incorporates the
positivity of system states and time delay at the same time
is chosen so that the positivity characteristic of filtering error
systems can be captured further. However, because of plenty
of valuable information of membership functions (MFs) being
ignored, hence, the obtained results are conservative. For the sake
of relaxing the conservativeness, the advanced piecewise-linear
membership functions (PLMFs) approximate method is utilized
to facilitate the stability and positivity analysis. Therefore, the
relaxed stability and positivity conditions which are cast as sum
of squares (SOS) are obtained and can be solved numerically.
Finally, the effectiveness of the designed fuzzy filtering strategy
with satisfying L1-induced performance are demonstrated by a
simulation example.

Index Terms—Positive T-S fuzzy systems, filter design, L1-
induced performance, sum of squares (SOS).

I. INTRODUCTION

IN the last decade or so, researchers paid more attention to
positive systems which have some special properties. For

example, the state variables and system outputs will stay in
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the positive quadrant if the initial conditions are non-negative
[1]–[3]. Such systems are very close to our daily life, such
as, in biological and physiological field: metabolic systems;
in ecology and population dynamics: the human, animal and
plant populations; in communications: data packets flowing in
a network; and in compartmental systems: pharmacokinetics,
epidemiology and so on. Therefore, it is very important and
valuable to have a deep understanding for positive systems.

Different from general systems, positive systems are defined
on cones rather than linear spaces. This kind of unique
and elegant positivity will make numerous well-established
results for general systems not applicable to positive sys-
tems. Therefore, an increasing number of researchers have
focused on positive systems from different perspectives, such
as the reachability and controllability [4]–[6], the realization
[7], [8], the control synthesis, stability analysis and optimal
control for positive systems [9]–[12]. Furthermore, different
control strategies have been employed for positive systems,
for instance, state feedback control strategy [13], [14], static
output feedback control strategy [15], [16], observer design
[17], positive filter design [18], [19] and so on.

The filter design for general systems has been attracting
researchers for decades and rich results have been achieved
[20]–[23]. In view of the various filtering results in the litera-
ture, we notice that the L1 filtering and H∞ filtering [24], [25]
are more popular than Kalman filtering [26], [27] because the
formers can achieve a great filtering performance without the
exact knowledge of the statistics of the external noise signals
[28]. Another advantage of L1 filtering and H∞ filtering is
insensitivity to the uncertainties either in the exogenous signal
statistics or in dynamic models. All of these benefits of the L1

filtering and H∞ filtering make them more applicable to some
practical systems. However, when designing filters for positive
systems, people are more concerned about the total number
of the components or the maximal quantities which can be
captured by L1 filtering rather than H∞ filtering. Thereby,
from this point, the advantages of L1 filtering are more obvious
than H∞ filtering. To the best of our knowledge, although
the L1 filtering is helpful to describe the features of positive
systems, the research results are not fruitful enough at present.
Hence, it is one of the motivations for us to carry out this work.

On the other hand, although there are some results relating
to filter design for positive systems, it is noted in the literature
that most of the works are for positive linear systems [18],
[19], [29]. In [18], positive filter for continuous-time positive
systems under L1 performance was investigated, meanwhile,
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a new feature of filter was discovered firstly to guarantee
the stability and L1-induced performance of the filter error
system at the same time. The work in [19] mainly designed
the event-triggered network-based `1-gain filter for positive
linear systems, in which the sufficient conditions were derived
so that the positive linear filter existed with satisfying `1-
gain performance. In order to estimate the output of positive
switched systems, the authors in [29] designed a positive filter
based on both the upper-bound and lower-bound information
of system states. Regrettably, as a matter of fact that many
positive systems are of nonlinear in practical applications, such
as the metabolic pathways [30], buck converter [31] and the
gas-lifted oil well system [32], which means that the existing
results for positive linear systems may be unsuitable for posi-
tive nonlinear systems [19], [33]. Therefore, the investigation
of stability analysis and control design for positive nonlinear
systems is well motivated and the achievements will expand
the knowledge in the field.

Up to now, because of the complexity, high non-linearity
and unique positivity constrain of positive nonlinear systems,
the relevant results are less fruitful. Considering the case that
only parts of the system states are available, we have investi-
gated the static output feedback control synthesis for positive
nonlinear based on fuzzy model in [34]–[36], but when all of
the system states are not avaliable, these results using output
feedback control strategy cannot be applied. Meanwhile, in
consideration of the influence of external disturbance for
system stability, designing positive fuzzy filters for positive
nonlinear systems is of great significant and meaningful.

Fuzzy control belongs to one of the intelligent control meth-
ods and has been widely applied in the past several decades
[37]–[40]. Especially, the popular Takagi-Sugeno (T-S) fuzzy
model [41]–[45] has obvious superiorities in approximating
complicated nonlinear systems. Nevertheless, the results re-
lated to the positive T-S filter design for positive nonlinear
continuous-time systems using T-S fuzzy model are relatively
few. From the literature, we find the work in [46] is mainly
related to positive filter design for positive T-S fuzzy systems
under L1 performance, but it aims at the discrete-time systems
without time delay. While the work in this paper mainly aims
at positive T-S continuous-time systems with time delay. And
from the analysis technique perspective, an auxiliary variable
which is helpful to construct an augmented system will be
introduced to facilitate the positivity and stability study, which
is totally different from the analysis in [46]. Besides, it should
be pointed out that time delay which not only can result in
degradation of system performance but also is able to cause
instability is frequently encountered in practical systems [47],
such as, chemical reaction process, network transmission and
reproduction of plants and animals. Hence, it is vital to take the
time delay into account when the positive filter is designed for
positive T-S continuous-time systems, which makes the results
have a great of theoretical value and practical significance.

As mentioned before, we know that positive systems have
the elegant property that all of the state variables are non-
negative values if the initial conditions are non-negative. Based
on extensive literature review, it is shown that the linear co-
positive Lyapunov function not only can better capture the

unique positivity of positive systems but also can reduce the
difficulty of the analysis and computational burden [48]–[50].
In order to take advantage of this property, a linear co-positive
Lyapunov function rather than a quadratic Lyapunov function
is chosen to analyze the stability and positivity of the positive
T-S fuzzy filter error systems in this paper. Up to now, as far as
we know, there has been no L1-induced positive filter design
and stability analysis reported for positive T-S continuous-time
systems with time delay by using linear co-positive Lyapunov
function, which motivates us to study the topic to fill this gap.

At present, some advanced membership-function-dependent
(MFD) techniques, for instance, staircase membership func-
tions (MFs) [51], polynomial MFs [34], [52] and piecewise-
linear MFs (PLMFs) [53], have been proposed to facilitate
relaxed stability analysis. These techniques provide great help
to extract the information of MFs, such as the shape informa-
tion and boundary information. However, they usually are not
taken into the stability analysis of positive T-S fuzzy systems
because the MFs will lead to the complexity of stability
analysis and MFD analysis is still in its early research stage
[54]. In addition, when this advanced technique is employed
for general fuzzy systems, the MFs wi(x) and mj(x) are
only related to x. However, in this paper, the MFs wi(x)
and mj(xf ) are related to x and xf , respectively, which
means the complexity is greatly increased. Therefore, it is a
very challenging task for us. On the other hand, trying to
find a suitable approach to introduce the information of MFs
into the stability analysis for positive T-S fuzzy filter systems
incredibly stimulates us to perform the work.

In order to accomplish our purpose, there are some obstacles
that require to be overcome: firstly, in order to capture the
positivity of positive systems, it is more popular to analyze
the stability by using the linear co-positive Lyapunov function
compared with the quadratic Lyapunov function, but when
using this advanced method, many useful techniques which
are appropriate for quadratic Lyapunov function, such as
the free-matrix approach and the similarity transformation
might not appropriate for linear co-positive Lyapunov function.
Therefore, in order to facilitate the positivity and stability
analysis without the help of these methods, we will introduce
an auxiliary variable which is in favor of the use of the
augmentation approach [55]. Secondly, there are some non-
convex terms in the stability conditions, which make it hard
to obtain the numerical solution based on the current state
of the art. To break through this barrier, some iterative linear
matrix inequality (ILMI) algorithms have been proposed. But
it is well known that these methods cannot guarantee the
convergence to a numerical solution and the iterative process
is exhaustive. Thereby, we will develop a matrix decoupling
method [18] to convert the non-convex conditions into convex
ones so that this problem can be dealt with skillfully. Thirdly,
for better capturing the positivity of the positive systems, L1-
induced performance index instead of H∞ performance is con-
sidered and a linear co-positive Lyapunov function candidate
instead of a quadratic Lyapunov function candidate is chosen
in this paper. Finally, some important information embedded
in MFs is extracted and introduced into the stability analysis
by employing the advanced PLMFs approximate technique so
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that the obtained stability and positivity conditions are relaxed.
The following is the arrangement of this paper. In Section II,

we give a number of useful preliminaries and the positive filter
design procedure. In Section III, the positivity and stability
analysis is carried out for positive T-S fuzzy filter error
systems. In Section IV, we show an example to verify the
reliability and validity of the theoretical results. The Section
V mainly shows the conclusion.

II. PRELIMINARIES

In this section, we will show some standard notations and
give the positive T-S fuzzy model with time delay and the
positive T-S fuzzy filter mathematically.

A. Notation

Over the course of the entire paper, the following notations
are employed. For a matrix M ∈ <l×n where mrs denotes
the element on r-th row and s-th column. M � 0, M �
0, M � 0 and M ≺ 0 represent that each element mrs is
non-negative, positive, non-positive and negative, respectively.
Q(x) = diag(x1, . . . , xn) denotes that the matrix Q(x) is a
diagonal matrix whose diagonal elements are x1, . . . , xn.

B. Positive T-S Fuzzy Model with Time Delay

The dynamics of the positive T-S fuzzy system with time
delay is given as follows:

Rule i : IF θ1(t) is M i
1 AND · · ·AND θΨ(t) is M i

Ψ

THEN
ẋ(t) = Aix(t) + Aωiw̃(t) + Adix(t− τ),
y(t) = Cix(t) + Cωiw̃(t) + Cdix(t− τ),
z(t) = Eix(t) + Eωiw̃(t) + Edix(t− τ),
x(%) = χ(%), % ∈ [−τ, 0],

(1)

where θl(t) is the premise variable, Ψ is a positive integer,
l ∈ {1, 2, . . . ,Ψ}; M i

l is the fuzzy set of the i-th rule
corresponding to the function θl(t); x(t) ∈ <n, w̃(t) ∈ <m,
y(t) ∈ <l and z(t) ∈ <q are the system state vector, the
disturbance signal, measurement output and the signal to be
estimated, respectively; τ > 0 is a given constant time-delay
and χ(%) is the initial function; Ai, Aωi, Adi, Ci, Cωi,
Cdi, Ei, Eωi Edi are the system matrices with compatible
dimensions.

We get the dynamics of the positive T-S fuzzy system with
time delay as follows:

ẋ(t) =
p∑
i=1

µi(θ(t))
(
Aix(t) + Aωiw̃(t) + Adix(t− τ)

)
,

y(t) =
p∑
i=1

µi(θ(t))
(
Cix(t) + Cωiw̃(t) + Cdix(t− τ)

)
,

z(t) =
p∑
i=1

µi(θ(t))
(
Eix(t) + Eωiw̃(t) + Edix(t− τ)

)
,

x(%) = χ(%), % ∈ [−τ, 0],
(2)

where µi(θ(t)) =

∏Ψ
l=1 φMi

l
(θ(t))∑p

k=1

∏Ψ
l=1 φMk

l
(θ(t))

,
∑p
i=1 µi(θ(t)) = 1,

µi(θ(t)) ≥ 0,∀i and µi(θ(t)) is the normalized grade of mem-

bership; φMi
l
(θ(t)) is the grade of membership corresponding

to the fuzzy term M i
l ; p is the number of the fuzzy rules.

The following assumptions and definitions are presented to
support the analysis.

Assumption 1: All of the system states of a positive nonlin-
ear system are not able to be measured.

Assumption 2: A positive nonlinear system is affected by
disturbance signals and time delays.

Assumption 3: A positive nonlinear system is able to be
expressed by a positive T-S fuzzy model (2).

Definition 1: [18] A system is deemed to be positive if the
initial condition x(0) = x0 � 0 holds and the corresponding
trajectory x(t) � 0, z(t) � 0, y(t) � 0 and w̃(t) � 0 for all
t ≥ 0 is satisfied.

Definition 2: [1] A matrix M is called a Metzler matrix if
its off-diagonal elements are non-negative: mrs � 0, r 6= s.

Lemma 1: [56], [57] System (2) is a positive system if Ai

is a Metzler matrix, and the rest of the system matrices satisfy
that all of the elements in each matrix are non-negative.

C. Positive T-S Fuzzy Filter Design

The positive T-S fuzzy filter is described by c rules of the
following format:

Rule j : IF ϑ1(t) is N j
1 AND · · ·AND ϑΩ(t) is N j

Ω

THEN{
ẋf (t) = Afjxf (t) + Bfjy(t),
zf (t) = Cfjxf (t) + Dfjy(t),

(3)

where xf (t) ∈ <n is the filter state, zf (t) ∈ <q is the
estimated output, Afj , Bfj , Cfj , Dfj are the positive T-S
fuzzy filter gain matrices to be determined.

Then the overall positive T-S fuzzy filter is established as
follows:

ẋf (t) =
c∑
j=1

ηj(ϑ(t))
(
Afjxf (t) + Bfjy(t)

)
,

zf (t) =
c∑
j=1

ηj(ϑ(t))
(
Cfjx(t) + Dfjy(t)

)
,

(4)

where ηj(ϑ(t)) =

∏Ω
β=1 φNj

β

(ϑ(t))∑c
k=1

∏Ω
β=1 φNk

β
(ϑ(t))

, ηj(ϑ(t)) ≥ 0,∑c
j=1 ηj(ϑ(t)) = 1, ∀j and ηj(ϑ(t)) is the normalized

grade of membership; φNjβ (ϑ(t)) is the grade of membership

corresponding to the fuzzy term of N j
β .

For the sake of simplicity, we will omit t in the following
analysis. That means x(t), x(t − τ), xf (t), z(t), zf (t), y(t)
and w̃(t) will be replaced by x, xτ , xf , z, zf , y and
w̃, respectively. Meanwhile, µi(θ(t)) and ηj(ϑ(t)) will be
replaced by µi and ηj , respectively.

Defining ζ = [x ; xf −x] and z̃ = zf − z, the positive T-S
fuzzy filter error system is written as follows:

ζ̇ =
p∑
i=1

c∑
j=1

µiηj
(
Âijζ + Âωijw̃ + Âdijxτ

)
,

z̃ =
p∑
i=1

c∑
j=1

µiηj
(
L̂ijζ + L̂ωijw̃ + L̂dijxτ

)
,

(5)



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. YY, MONTH 2020 4

where Âij =

[
Ai 0

Afj + BfjCi −Ai Afj

]
, Âωij =[

Aωi

BfjCωi −Aωi

]
, Âdij =

[
Adi

BfjCdi −Adi

]
, L̂ij =[

DfjCi −Ei + Cfj Cfj

]
, L̂ωij =

[
DfjCωi −Eωi

]
.

L̂dij =
[
DfjCdi −Edi

]
.

Remark 1: On the strength of Lemma 1, the positive T-S
fuzzy filter (4) is positive, if Afj is a Metzler matrix, Bfj � 0,
Cfj � 0, Dfj � 0 for all j.

Remark 2: Based on Lemma 1, the positive T-S fuzzy filter
error system (5) is positive, if Âij is a Metzler matrix, Âωij �
0, Âdij � 0, L̂ij � 0, L̂ωij � 0, L̂dij � 0, for all i, j.

For further investigating the filter design, the definition of
L1-induced performance is given firstly in the following.

Definition 3: [58] It is seen that the system (5) has L1-
induced performance at the level γ, if under zero initial
conditions, the following inequality is satisfied

||z̃||L1
< γ||w̃||L1

, (6)

where γ is the optimal level to be determined.
In this paper, for a given stable positive T-S fuzzy system

with time delay, we aim to design a positive T-S fuzzy filter so
that the stability and positivity of the positive T-S fuzzy filter
error system can be ensured under L1-induced performance.
Therefore, let us focus on this target in the following work.

III. STABILITY ANALYSIS

In this section, to facilitate the stability and positivity anal-
ysis, a novel augmented positive T-S fuzzy filter error system
is given by introducing an auxiliary variable. Furthermore, to
better extract the positivity of the positive system, a linear
co-positive Lyapunov function is used to analyze the stability
and positivity of the positive T-S fuzzy filter error system. In
addition, the advanced PLMFs technique is considered to help
reduce the conservativeness of the results.

A. The Augmented Positive T-S Fuzzy Filter Error System

In the matrices Âij , Âωij , Âdij , L̂ij , L̂ωij and L̂dij , we
can find the determined matrices Bfj , Dfj are coupled with
Ci, Cωi, and Cdi, which will make the non-convex terms in
stability conditions is hard to deal with. In order to solve this
problem, we try to pick out these determined matrices from
Âij , Âωij , Âdij , L̂ij , L̂ωij and L̂dij . Hence, an auxiliary
variable which is shown as (8) is adopted to facilitate the
analysis. Then the system matrices of the positive T-S fuzzy
filter error system are dealt with as follows:

Âij = Āij + MjH̃iC̃, Âωij = Āωi + MjH̃iD̃,

Âdij = Ādi + MjH̃iC̃d, L̂ij = Ēij + NjH̃iC̃,

L̂ωij = Ēωi + NjH̃iD̃, L̂dij = Ēdi + NjH̃iC̃d. (7)

where Āij =

[
Ai 0

Afj −Ai Afj

]
, Āωi =

[
Aωi

−Aωi

]
, Ādi =[

Adi

−Adi

]
, C̃ =

I 0
0 0
0 0

 , D̃ =

0I
0

 , C̃d =

00
I

 , H̃i =

[
Ci Cωi Cdi

]
,Mj =

[
0

Bfj

]
,Nj =

[
Dfj

]
, Ēij =[

Cfj −Ei Cfj

]
, Ēωi =

[
−Eωi

]
, Ēdi =

[
−Edi

]
.

The auxiliary variable is chosen as follows:

ψ̃ =

p∑
i=1

µi
(
H̃iC̃ζ + H̃iD̃w̃ + H̃iC̃dxτ

)
. (8)

Due to H̃i � 0, C̃ � 0, D̃ � 0 and C̃d � 0, we can see
that each element in ψ̃ is non-negative. Then following on (5)
and (8), an augmented system is presented with the defination

of E =

[
I 0
0 0

]
, ξ = [ζ ; ψ̃] :

Eξ̇ =

p∑
i=1

c∑
j=1

µiηj
(
Ãijξ + Ãωiw̃ + Ãdixτ

)
,

z̃ =

p∑
i=1

c∑
j=1

µiηj
(
L̃ijξ + L̃ωiw̃ + L̃dixτ

)
, (9)

where Ãij =

[
Āij Mj

H̃iC̃ −I

]
, Ãωi =

[
Āωi

H̃iD̃

]
, Ãdi =

[
Ādi

H̃iC̃d

]
,

L̃ij =
[
Ēij Nj

]
, L̃ωi =

[
Ēωi

]
, L̃di =

[
Ēdi
]
.

B. Positivity and Stability Analysis of Positive T-S Fuzzy Filter
Error System

In the following, a proper Lyapunov function is chosen
so that not only can the positivity of the positive system be
captured, but also the time delay can be taken into account:

V (t) = pTEξ +

∫ t

t−τ
λTFdx(s)ds, (10)

where 0 � λ ∈ <n is a vector to be determined and 0 � Fd ∈
<n×n is a given matrix.

The derivative of the above Lyapunov function is obtained:

V̇ (t) =pTEξ̇ + λTFdx− λTFdxτ

=pT
p∑
i=1

c∑
j=1

µiηj
(
Ãijξ + Ãωiw̃ + Ãdixτ

)
+ λTFdx− λTFdxτ . (11)

Next, taking the L1 performance index (6) into account:

J =

∫ T

0

||z̃||L1
− γ||w̃||L1

dt =

∫ T

0

q∑
k=1

z̃k − γ
m∑
k=1

w̃kdt

=

∫ T

0

q∑
k=1

z̃k − γ
m∑
k=1

w̃k + V̇ (t)dt + V (0)− V (T ). (12)

Due to the zero initial condition, and V (T ) → 0 when
T →∞, (12) can be treated as:

J =

∫ ∞
0

q∑
k=1

z̃k − γ
m∑
k=1

w̃k + V̇ (t)dt

=

∫ ∞
0

IT1 z̃− γIT2 w̃ + V̇ (t)dt, (13)

where I1 ∈ <q and I2 ∈ <m are vectors with all of the
elements being 1.
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Taking (9) and (11) into (13), we have:

J =

∫ ∞
0

IT1

( p∑
i=1

c∑
j=1

µiηj
(
L̃ijξ + L̃ωiw̃ + L̃dixτ

))
+ pT

( p∑
i=1

c∑
j=1

µiηj
(
Ãijξ + Ãωiw̃ + Ãdixτ

))
+ λTFdx− λTFdxτ − γIT2 w̃dt

=

∫ ∞
0

p∑
i=1

c∑
j=1

µiηj

((
IT1 L̃ωi + pT Ãωi − γIT2

)
w̃

+
(
IT1 L̃ij + pT Ãij + λTFd[In×n 0n×(n+l)]

)
ξ

+
(
IT1 L̃di + pT Ãdi − λTFd

)
xτ

)
dt, (14)

where In×n is an unit matrix with the dimensions of n × n,
0n×(n+l) is a null matrix with the dimensions of n× (n+ l).

Based on (14), we can see that J < 0 can be ensured by
the following conditions:

IT1 L̃ij + pT Ãij + λTFd[In×n 0n×(n+l)] ≺ 0,∀ i, j; (15)

IT1 L̃ωi + pT Ãωi − γIT2 ≺ 0,∀ i; (16)

IT1 L̃di + pT Ãdi − λTFd ≺ 0,∀ i. (17)

For further handling the above inequalities, we have:

IT1 L̃ij + pT Ãij + λTFd[In×n 0n×(n+l)]

=IT1
[
Ēij Nj

]
+
[
pT1 pT2

] [ Āij Mj

H̃iC̃ −I

]
+ λTFd[In×n 0n×(n+l)]

=
[
IT1 Ēij + pT1 Āij + pT2 H̃iC̃ + λTFd[In×n 0n×n]

IT1 Nj + pT1 Mj − pT2

]
, (18)

IT1 L̃ωi + pT Ãωi − γIT2

=IT1 Ēωi − γIT2 +
[
pT1 pT2

] [ Āωi

H̃iD̃

]
=IT1 Ēωi − γIT2 + pT1 Āωi + pT2 H̃iD̃, (19)

IT1 L̃di + pT Ãdi − λTFd

=IT1 Ēdi +
[
pT1 pT2

] [ Ādi

H̃iC̃d

]
− λTFd

=IT1 Ēdi + pT1 Ādi + pT2 H̃iC̃d − λTFd. (20)

Through substituting the expressions of Āij , Āωi, Ādi, Ēij ,
Ēωi, Ēdi, C̃, D̃, C̃d, H̃i, Mj and Nj into the above equalities,
the following conditions hold:

IT1 Ēij + pT1 Āij + pT2 H̃iC̃ + λTFd[In×n 0n×n]

=IT1
[
Cfj −Ei Cfj

]
+
[
pT11 pT12

] [ Ai 0
Afj −Ai Afj

]

+ pT2
[
Ci Cωi Cdi

] I 0
0 0
0 0

+ λTFd[In×n 0n×n]

=
[
IT1 (Cfj −Ei) + pT11Ai + pT12(Afj −Ai) + pT2 Ci + λTFd

pT12Afj + IT1 Cfj

]
, (21)

IT1 Nj + pT1 Mj − pT2

=IT1 Dfj +
[
pT11 pT12

] [ 0
Bfj

]
− pT2

=IT1 Dfj + pT12Bfj − pT2 , (22)

IT1 Ēωi − γIT2 + pT1 Āωi + pT2 H̃iD̃

=− IT1 Eωi − γIT2 +
[
pT11 pT12

] [ Aωi

−Aωi

]

+ pT2
[
Ci Cωi Cdi

] 0I
0


=− IT1 Eωi − γIT2 + (pT11 − pT12)Aωi + pT2 Cωi, (23)

IT1 Ēdi + pT1 Ādi + pT2 H̃iC̃d − λTFd

=− IT1 Edi +
[
pT11 pT12

] [ Adi

−Adi

]

+ pT2
[
Ci Cωi Cdi

] 00
I

− λTFd
=− IT1 Edi + (pT11 − pT12)Adi + pT2 Cdi − λTFd. (24)

In light of the above analysis, we can obtain the stability
conditions as follows:

IT1 (Cfj −Ei) + pT11Ai + pT12(Afj −Ai)

+ pT2 Ci + λTFd ≺ 0, (25)

pT12Afj + IT1 Cfj ≺ 0, (26)

IT1 Dfj + pT12Bfj − pT2 ≺ 0, (27)

− IT1 Eωi − γIT2 + (pT11 − pT12)Aωi + pT2 Cωi ≺ 0, (28)

− IT1 Edi + (pT11 − pT12)Adi + pT2 Cdi − λTFd ≺ 0. (29)

On the basis of the above inequalities, it can be seen that
pT12Afj and pT12Bfj are non-convex terms. To transform them
into convex ones, PAf,j and PBf,j are considered as follows:

PAf,j = [pT12kAfj,k],PBf,j = [pT12kBfj,k], (30)

where Afj,k and Bfj,k are the k-th row of Afj and Bfj

respectively. p12k is the k-th element in p12.
For example, we assume:

Afj =

afj,11 afj,12 afj,13

afj,21 afj,22 afj,23

afj,31 afj,32 afj,33

 ,
p12 =

[
p121 p122 p123

]T
. (31)

Then, we have:

PAf,j =

p121afj,11 p121afj,12 p121afj,13

p122afj,21 p122afj,22 p122afj,23

p123afj,31 p123afj,32 p123afj,33

 . (32)

Thereby, it can be obtained pT12Afj =
∑n
k=1 [PAf,jk],

where PAf,jk is the k-th row of PAf,j .
Taking (30) into (25)-(27), the following conditions hold:

IT1
(
Cfj −Ei

)
+ pT11Ai +

n∑
k=1

[PAf,jk]− pT12Ai

+ pT2 Ci + λTFd ≺ 0, (33)
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IT1 Cfj +

n∑
k=1

[PAf,jk] ≺ 0, (34)

IT1 Dfj +

n∑
k=1

[PBf,jk]− pT2 ≺ 0. (35)

Now, we are at the point that the convex stability conditions
have been obtained. However, different from general systems,
the positivity of the positive T-S fuzzy filter error system
should be ensured as well. Thus, in the following, the positivity
analysis will be of concern.

As mentioned in Remark 1 and Remark 2, the positivity
conditions are shown as follows:

Afj is Metzler,Bfj � 0,Cfj(xf ) � 0,Dfj � 0,∀j, (36)

Âij is Metzler, Âωij � 0, Âdij � 0,

L̂ij � 0, L̂ωij � 0, L̂dij � 0,∀i, j (37)

Because the open-loop system is a positive system, there-
fore, the positive condition (37) can be ensured by satisfying
the positive condition (36) and the following inequalities:

Afj + BfjCi −Ai � 0, ,∀i, j, (38)
BfjCωi −Aωi � 0,∀i, j, (39)
BfjCdi −Adi � 0,∀i, j, (40)
DfjCi −Ei + Cfj � 0,∀i, j, (41)
DfjCωi −Eωi � 0,∀i, j, (42)
DfjCdi −Edi � 0,∀i, j. (43)

On account of p12 � 0, we multiply both sides of the
(38) - (40) by pT12, respectively, so as to get convex positivity
conditions, which are presented as follows:

PAf,j + PBf,jCi − [pT12kAi,k] � 0,∀i, j,
PBf,jCωi − [pT12kAωi,k] � 0,∀i, j, (44)

PBf,jCdi − [pT12kAdi,k],� 0,∀i, j, (45)

where Ai,k, Aωi,k and Adi,k are the k-th row of Ai, Aωi and
Adi, respectively. p12k is the k-th element in p12.

For facilitating the analysis, we define:

F̃1ij = PAf,j + PBf,jCi − [pT12kAi,k], (46)

F̃2ij = PBf,jCωi − [pT12kAωi,k], (47)

F̃3ij = PBf,jCdi − [pT12kAdi,k], (48)

F̃4ij = DfjCi −Ei + Cfj , (49)

F̃5ij = DfjCωi −Eωi, (50)

F̃6ij = DfjCdi −Edi, (51)

Q̃1ij = IT1 (Cfj −Ei) + pT11Ai +

n∑
k=1

[PAf,jk]− pT12Ai

+ pT2 Ci + λTFd, (52)

Q̃2j =

n∑
k=1

[PAf,jk] + IT1 Cfj , (53)

Q̃3j = IT1 Dfj +

n∑
k=1

[PBf,jk]− pT2 , (54)

Q̃4i = −IT1 Eωi − γIT2 + (pT11 − pT12)Aωi + pT2 Cωi, (55)

Q̃5i = −IT1 Edi + (pT11 − pT12)Adi + pT2 Cdi − λTFd. (56)

Remark 3: It is worth noting that the obtained results are
very conservative because of the absence of the information
of MFs. In general, researchers tend to use some mature
techniques, like PDC technique and free-weighting matrix
approach, to cut down the conservativeness of results instead
of utilizing the information of MFs because the MFs will make
stability analysis complex and MFD analysis is still in its
early research stage. Thereby, taking the information of MFs
into account for filter design of positive T-S fuzzy systems
with time delay is very challenging but meaningful. In the
following work, we will try our best to investigate the relaxed
stability and positivity analysis for positive T-S fuzzy filter
error systems.

C. Relaxed Positivity and Stability Analysis by using
Piecewise-Linear Membership Functions

In this section, the PLMFs approximating method which
has been explained in detail in [53], [59] is considered to
extract the shape and boundary information of the original
MFs. Meanwhile, the useful information of MFs is carried by
some slack matrices to the positivity and stability analysis for
relaxing the results.

According to (14), if the PLMFs method is considered, we
obtain that J < 0 can be ensured by the following conditions:

p∑
i=1

c∑
j=1

µiηj

(
IT1 L̃ij + pT Ãij + λTFd[In×n 0n×(n+l)]

)
≺ 0,∀ i, j; (57)
p∑
i=1

c∑
j=1

µiηj

(
IT1 L̃ωi + pT Ãωi − γIT2

)
≺ 0,∀ i, j; (58)

p∑
i=1

c∑
j=1

µiηj

(
IT1 L̃di + pT Ãdi − λTFd

)
≺ 0,∀ i, j. (59)

Next, combining with the analysis from (18) to (56), we can
obtain the convex stability conditions with MFs as follows:

p∑
i=1

c∑
j=1

µiηj

(
Q1ij

)
≺ 0,∀ i, j; (60)

p∑
i=1

c∑
j=1

µiηj

(
Q2j

)
≺ 0,∀ j; (61)

p∑
i=1

c∑
j=1

µiηj

(
Q3j

)
≺ 0,∀ j; (62)

p∑
i=1

c∑
j=1

µiηj

(
Q4i

)
≺ 0,∀ i; (63)

p∑
i=1

c∑
j=1

µiηj

(
Q5i

)
≺ 0,∀ i. (64)

In order to cope with the cross term µiηj in above stability
conditions, the PLMFs method are introduced in the following.
Because µi is related to x but ηj is related to xf , hence, we
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define x̂ = [x;xf ] ∈ <2n, and x̂1 = x1, x̂2 = x2, · · · ,
x̂n = xn, x̂n+1 = xf1, x̂n+2 = xf2, · · · , x̂2n = xfn. Then
dividing the whole operate domain into S sub-domians, where
the sub-domian s is characterized by x̂lsdmin ≤ x̂ls ≤ x̂lsmax,
l ∈ {1, 2, · · · , 2n} and s ∈ {1, 2, · · · , S}.

On the basis of the above definition, the cross term µiηj
can be replaced by the following expression:

µiηj = hijs(x̂) + ∆ijs(x̂),∀ i, j, s, (65)

where hijs(x̂) is the approximated function and ∆ijs(x̂) is
the approximation error.

The approximated function hijs(x̂) is expressed as follows:

hijs(x̂) =

2∑
i1=1

2∑
i2=1

· · ·
2∑

i2n=1

V1i1s(x̂1)V2i2s(x̂2) · · ·V2ni2ns(x̂2n)

× µi(Di1i2···i2ns)ηj(Di1i2···i2ns) ∀ i, j, s, (66)

where Di1i2···i2ns = [x̂1i1 x̂2i2 · · · x̂2ni2n ]. x̂lil = x̂ldmin if
il = 1, and x̂lil = x̂ldmax if il = 2, ∀ l, s. Vlils(x̂l) satisfies∑2
il=1 Vlils(x̂l) = 1, ∀ l, s.
Introducing (65) and (66) into the stability conditions (60) to

(64), the relaxed stability conditions will be obtained. Because
the derivations of relaxed stability conditions for (60) to (64)
are similar, hence, we only show the derivation of relaxed
results for (60). (61) to (64) will follow the same analysis.

p∑
i=1

c∑
j=1

µiηjQ1ij =

p∑
i=1

c∑
j=1

(
hijs(x̂) + ∆ijs(x̂)

)
Q1ij

=

p∑
i=1

c∑
j=1

(
hijs(x̂) + ∆ijs(x̂)− γijs + γijs

)
Q1ij

�
p∑
i=1

c∑
j=1

((
hijs(x̂) + γijs

)
Q1ij +

(
βijs − γijs

)
Y1ij

)

=

p∑
i=1

c∑
j=1

(( 2∑
i1=1

2∑
i2=1

· · ·
2∑

i2n=1

V1i1s(x̂1)V2i2s(x̂2)

· · ·V2ni2ns(x̂2n)µi(Di1i2···i2ns)ηj(Di1i2···i2ns) + γijs

)
Q1ij

+
(
βijs − γijs

)
Y1ij

)

=

2∑
i1=1

2∑
i2=1

· · ·
2∑

i2n=1

V1i1s(x̂1)V2i2s(x̂2) · · ·V2ni2ns(x̂2n)(
p∑
i=1

c∑
j=1

((
µi(Di1i2···i2ns)ηj(Di1i2···i2ns) + γijs

)
Q1ij

+
(
βijs − γijs

)
Y1ij

))
,∀ i, j, d, (67)

where γijs and βijs are the lower and upper bound of ∆ijs(x̂),
respectively, with satisfying γijs ≤ ∆ijs(x̂) ≤ βijs. Y1ij is
the slack matrix with satisfying Y1ij � 0, Y1ij � Q1ij .

Similarly, by introducing the slack matrices Y2j , Y3j , Y4i

and Y5i with satisfying Y2j � 0, Y2j � Q2j , Y3j � 0,
Y3j � Q3j , Y4i � 0, Y4i � Q4i, Y5i � 0, Y5i � Q5i,
respectively, the PLMFs method can be used for relaxing Q2j -

Q5i. For the sake of simplicity, we will not show the derivation
of these relaxed conditions. In terms of above analysis, the
relaxed results are summarized in the following theorem.

Theorem 1: Given a positive T-S fuzzy model with time
delay (2) and satisfying Lemma 1, a positive T-S fuzzy filter
(4) exists such that the stability and positivity of the positive
T-S fuzzy filter error system (5) can be ensured with satisfying
performance index (6), if there exist slack matrices Y1ij � 0,
Y2j � 0, Y3j � 0, Y4i � 0, Y5i � 0 as well as vectors
p11 � 0, p12 � 0, λ � 0, p2 and filter gain matrices PBf,j �
0, Cfj � 0 Dfj � 0 and Metzler matrix PAf,j satisfying:

F1ij,rk is SOS,∀ i, j, r, k; (68)
F2ij,rk is SOS,∀ i, j, r, k; (69)
F3ij,rk is SOS,∀ i, j, r, k; (70)
F4ij,rk is SOS,∀ i, j, r, k; (71)
F5ij,rk is SOS,∀ i, j, r, k; (72)
F6ij,rk is SOS,∀ i, j, r, k; (73)

ρT
(

diag
(
Y1ij −Q1ij

))
ρ is SOS,∀ i, j; (74)

ρT
(

diag
(
Y2j −Q2j

))
ρ is SOS,∀ j; (75)

σT
(

diag
(
Y3j −Q3j

))
σ is SOS,∀ j; (76)

υT
(

diag
(
Y4i −Q4i

))
υ is SOS,∀ i; (77)

ρT
(

diag
(
Y5i −Q5i

))
ρ is SOS,∀ i; (78)

− ρT
(

diag

(
p∑
i=1

c∑
j=1

((
µi(Di1i2···i2ns)ηj(Di1i2···i2ns) + γijs

)
Q1ij

+ (βijs − γijs)Y1ij + ε1In

)))
ρ is SOS,∀ i, j; (79)

− ρT
(

diag

(
p∑
i=1

c∑
j=1

((
µi(Di1i2···i2ns)ηj(Di1i2···i2ns) + γijs

)
Q2j

+ (βijs − γijs)Y2j + ε2In

)))
ρ is SOS,∀ j; (80)

− σT
(

diag

(
p∑
i=1

c∑
j=1

((
µi(Di1i2···i2ns)ηj(Di1i2···i2ns) + γijs

)
Q3j

+ (βijs − γijs)Y3j + ε3Il

)))
σ is SOS,∀ j; (81)

− υT
(

diag

(
p∑
i=1

c∑
j=1

((
µi(Di1i2···i2ns)ηj(Di1i2···i2ns) + γijs

)
Q4i

+ (βijs − γijs)Y4i + ε4Im

)))
υ is SOS,∀ i; (82)

− ρT
(

diag

(
p∑
i=1

c∑
j=1

((
µi(Di1i2···i2ns)ηj(Di1i2···i2ns) + γijs

)
Q5i

+ (βijs − γijs)Y5i + ε5In

)))
ρ is SOS,∀ i; (83)

where Y1ij , Y2j , Y3j , Y4i, Y5i; p11, p12, p2, λ; PBf,j ,
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Cfj , Dfj and PAf,j are to be determined. ρ ∈ <n, σ ∈
<l and υ ∈ <m are arbitrary vectors, ε1, ε2, ε3, ε4 and ε5
are predefined positive scalars. In ∈ <n, Il ∈ <l and Im ∈
<m are vectors with all the elements being 1. F1ij,rk, F2ij,rk,
F3ij,rk, F4ij,rk, F5ij,rk and F6ij,rk are the r-th row and k-
th column element in F1ij , F2ij , F3ij , F4ij , F5ij and F6ij ,
respectively. Q1ij , Q2j , Q3j , Q4i and Q5i can be found in
(52)–(56). Afj and Bfj can be calculated based on (30).

IV. SIMULATION EXAMPLE

In this section, an example is given to demonstrate the
effectiveness of the designed positive fuzzy filter. As described
in Assumption 3, in the following, a positive T-S fuzzy model
is given in the form of (2) with three rules:

A1 =

[
−2.84 1.42
0.26 −1.3

]
,A2 =

[
−1.01 1.55
0.38 −1.95

]
,

A3 =

[
−1.51 0.36
0.16 −1.48

]
,Ad1 =

[
0.01 0.00
0.01 0.08

]
,

Ad2 =

[
0.01 0.00
0.02 0.06

]
,Ad3 =

[
0.01 0.00
0.03 0.07

]
,

Aω1 =

[
0.01
0.1

]
,Aω2 =

[
0.01
0.09

]
,Aω3 =

[
0.02
0.05

]
,

x = [ x1 x2 ]T ,C1 =
[

1.01 1.01
]
,

C2 =
[

4.45 4.83
]
,C3 =

[
5.56 5.82

]
,

Cω1 = 0.01,Cω2 = 0.02,Cω3 = 0.03,Cd1 =
[

0.01 0.01
]
,

Cd2 =
[

0.01 0.02
]
,Cd3 =

[
0.01 0.03

]
,

E1 =
[

5.93 6.33
]
,E2 =

[
1.87 3.41

]
,

E3 =
[

2.69 1.55
]
,

Eω1 = 0.01,Eω2 = 0.02,Eω3 = 0.02,Ed1 =
[

0.01 0.01
]
,

Ed2 =
[

0.02 0.01
]
,Ed3 =

[
0.02 0.01

]
,

As previously mentioned, Fd is a given matrix whose
elements satisfy Fd,rk = max{adi,rk}, where adi,rk is the r-
th row and k-th column element of Adi and Fd,rk is the r-th
row and k-th column element of Fd. The disturbance is chosen
as w̃(t) = βe−t|cos(2t)|, where β is a constant scalar which
is given reasonably. The MFs of the positive T-S fuzzy model
with time delay are chosen as w1(x1) = 1 − 1

1+e−(x1−9)/3 ,
w3(x1) = 1

1+e−(x1−11)/3 , w2(x1) = 1−w1(x1)−w3(x1). And
the MFs of positive T-S fuzzy filter are chosen as m1(xf1) =
1 − 1

1+0.5e−(xf1−10) , m2(xf1) = 1 − m1(xf1). When the
PLMFs method is considered, we pick out the sample points
of wi(x1) at x1 ∈ {0, 4, 8, 12, 16, 20}, i = 1, 2, 3 and the
sampled points of mj(xf1) at xf1 ∈ {0, 4, 8, 12, 16, 20},
j = 1, 2, which means the operating domain of positive T-
S fuzzy model and the one of positive T-S fuzzy filter are
divided into 5 sub-domains, respectively.

In terms of the Theorem 1, the optimal performance index is
calculated as γ = 3.4997 and the filter gain matrices are given
in the following. Furthermore, the time responses of x1, xf1,
x2, xf2, z, zf and z̃ are acquired and shown in Figs. 1 to 8.
In these figures, different time responses of estimation errors
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Fig. 1. System state x1(t) and filter
state xf1(t) for different β
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Fig. 2. Drawing of partial enlarge-
ment of system state x1(t) and filter
state xf1(t) for different β
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Fig. 3. System state x2(t) and filter
state xf2(t) for different β
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Fig. 4. Drawing of partial enlarge-
ment of system state x2(t) and filter
state xf2(t) for different β

and state variables are displayed when the constant coefficient
β in the disturbance are different.

Af1 =

[
−4.2012 3.6304× 10−2

2.6813× 10−4 −11.4001

]
,

Af2 =

[
−4.2095 3.2038× 10−2

2.2390× 10−4 −11.4001

]
,

Bf1 =

[
1.4010
10.0002

]
,Bf2 =

[
1.4002
10.0002

]
,

Cf1 =
[

1.6538× 10−5 4.0000× 10−1
]
,

Cf2 =
[

1.2540× 10−5 3.9999× 10−1
]
,

Df1 = 5.8713,Df2 = 5.8713.

From the time response of the systems states and filter
states, we can see that the positive T-S fuzzy filter can make
the time response of the positive T-S fuzzy filter system with
time delay quickly close to zero, which means the positive
T-S fuzzy filter can achieve asymptotic stability and positivity
of the positive T-S fuzzy filter error system. In addition, from
Figs. 1 to 8, it can be seen that with the value of β becoming
smaller, the time responses of xf1, xf2, zf are closer to x1, x2,
z, respectively. Hence, we can draw a conclusion that when
the value of β is smaller, the filter effectiveness is better.
Besides, when the disturbance parameter β gets bigger, the
convergence rates of the filter state variables and system state
variables slow down. And the estimation errors will be bigger
with the disturbance becoming stronger. Therefore, it can be
concluded that the smaller the disturbance parameter β, the
better the convergence effect of the positive T-S fuzzy filter
error system.
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Fig. 5. Output z(t) and the estimated
output zf (t) for different β
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Fig. 6. Drawing of partial enlarge-
ment of output z(t) and the estimated
output zf (t) for different β
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Fig. 7. Estimated errors e(t) for dif-
ferent β
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Fig. 8. Drawing of partial enlarge-
ment of estimated errors e(t) for dif-
ferent β

V. CONCLUSION

In this paper, a positive T-S fuzzy filter has been designed
for the positive T-S fuzzy system with time delay so that the
stability and positivity analysis of the positive T-S fuzzy filter
error system can be ensured under L1-induced performance.
By employing the augmented approach and the linear co-
positive Lyapunov theory, the stability and positivity condi-
tions with satisfying the optimal performance index γ have
been obtained. Furthermore, considering the conservativeness,
the advanced PLMFs method has been taken into account,
which has a great help to explore some useful information
inlaid in the MFs and facilitate the stability and positivity
analysis. Ultimately, a simulation has been given to verify the
validity of the strategy in this paper.
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