35 research outputs found

    Prediction, Recommendation and Group Analytics Models in the domain of Mashup Services and Cyber-Argumentation Platform

    Get PDF
    Mashup application development is becoming a widespread software development practice due to its appeal for a shorter application development period. Application developers usually use web APIs from different sources to create a new streamlined service and provide various features to end-users. This kind of practice saves time, ensures reliability, accuracy, and security in the developed applications. Mashup application developers integrate these available APIs into their applications. Still, they have to go through thousands of available web APIs and chose only a few appropriate ones for their application. Recommending relevant web APIs might help application developers in this situation. However, very low API invocation from mashup applications creates a sparse mashup-web API dataset for the recommendation models to learn about the mashups and their web API invocation pattern. One research aims to analyze these mashup-specific critical issues, look for supplemental information in the mashup domain, and develop web API recommendation models for mashup applications. The developed recommendation model generates useful and accurate web APIs to reduce the impact of low API invocations in mashup application development. Cyber-Argumentation platform also faces a similarly challenging issue. In large-scale cyber argumentation platforms, participants express their opinions, engage with one another, and respond to feedback and criticism from others in discussing important issues online. Argumentation analysis tools capture the collective intelligence of the participants and reveal hidden insights from the underlying discussions. However, such analysis requires that the issues have been thoroughly discussed and participant’s opinions are clearly expressed and understood. Participants typically focus only on a few ideas and leave others unacknowledged and underdiscussed. This generates a limited dataset to work with, resulting in an incomplete analysis of issues in the discussion. One solution to this problem would be to develop an opinion prediction model for cyber-argumentation. This model would predict participant’s opinions on different ideas that they have not explicitly engaged. In cyber-argumentation, individuals interact with each other without any group coordination. However, the implicit group interaction can impact the participating user\u27s opinion, attitude, and discussion outcome. One of the objectives of this research work is to analyze different group analytics in the cyber-argumentation environment. The objective is to design an experiment to inspect whether the critical concepts of the Social Identity Model of Deindividuation Effects (SIDE) are valid in our argumentation platform. This experiment can help us understand whether anonymity and group sense impact user\u27s behavior in our platform. Another section is about developing group interaction models to help us understand different aspects of group interactions in the cyber-argumentation platform. These research works can help develop web API recommendation models tailored for mashup-specific domains and opinion prediction models for the cyber-argumentation specific area. Primarily these models utilize domain-specific knowledge and integrate them with traditional prediction and recommendation approaches. Our work on group analytic can be seen as the initial steps to understand these group interactions

    Machine Learning Models for Educational Platforms

    Get PDF
    Scaling up education online and onlife is presenting numerous key challenges, such as hardly manageable classes, overwhelming content alternatives, and academic dishonesty while interacting remotely. However, thanks to the wider availability of learning-related data and increasingly higher performance computing, Artificial Intelligence has the potential to turn such challenges into an unparalleled opportunity. One of its sub-fields, namely Machine Learning, is enabling machines to receive data and learn for themselves, without being programmed with rules. Bringing this intelligent support to education at large scale has a number of advantages, such as avoiding manual error-prone tasks and reducing the chance that learners do any misconduct. Planning, collecting, developing, and predicting become essential steps to make it concrete into real-world education. This thesis deals with the design, implementation, and evaluation of Machine Learning models in the context of online educational platforms deployed at large scale. Constructing and assessing the performance of intelligent models is a crucial step towards increasing reliability and convenience of such an educational medium. The contributions result in large data sets and high-performing models that capitalize on Natural Language Processing, Human Behavior Mining, and Machine Perception. The model decisions aim to support stakeholders over the instructional pipeline, specifically on content categorization, content recommendation, learners’ identity verification, and learners’ sentiment analysis. Past research in this field often relied on statistical processes hardly applicable at large scale. Through our studies, we explore opportunities and challenges introduced by Machine Learning for the above goals, a relevant and timely topic in literature. Supported by extensive experiments, our work reveals a clear opportunity in combining human and machine sensing for researchers interested in online education. Our findings illustrate the feasibility of designing and assessing Machine Learning models for categorization, recommendation, authentication, and sentiment prediction in this research area. Our results provide guidelines on model motivation, data collection, model design, and analysis techniques concerning the above applicative scenarios. Researchers can use our findings to improve data collection on educational platforms, to reduce bias in data and models, to increase model effectiveness, and to increase the reliability of their models, among others. We expect that this thesis can support the adoption of Machine Learning models in educational platforms even more, strengthening the role of data as a precious asset. The thesis outputs are publicly available at https://www.mirkomarras.com

    Learning Representations of Social Media Users

    Get PDF
    User representations are routinely used in recommendation systems by platform developers, targeted advertisements by marketers, and by public policy researchers to gauge public opinion across demographic groups. Computer scientists consider the problem of inferring user representations more abstractly; how does one extract a stable user representation - effective for many downstream tasks - from a medium as noisy and complicated as social media? The quality of a user representation is ultimately task-dependent (e.g. does it improve classifier performance, make more accurate recommendations in a recommendation system) but there are proxies that are less sensitive to the specific task. Is the representation predictive of latent properties such as a person's demographic features, socioeconomic class, or mental health state? Is it predictive of the user's future behavior? In this thesis, we begin by showing how user representations can be learned from multiple types of user behavior on social media. We apply several extensions of generalized canonical correlation analysis to learn these representations and evaluate them at three tasks: predicting future hashtag mentions, friending behavior, and demographic features. We then show how user features can be employed as distant supervision to improve topic model fit. Finally, we show how user features can be integrated into and improve existing classifiers in the multitask learning framework. We treat user representations - ground truth gender and mental health features - as auxiliary tasks to improve mental health state prediction. We also use distributed user representations learned in the first chapter to improve tweet-level stance classifiers, showing that distant user information can inform classification tasks at the granularity of a single message.Comment: PhD thesi

    Learning Representations of Social Media Users

    Get PDF
    User representations are routinely used in recommendation systems by platform developers, targeted advertisements by marketers, and by public policy researchers to gauge public opinion across demographic groups. Computer scientists consider the problem of inferring user representations more abstractly; how does one extract a stable user representation - effective for many downstream tasks - from a medium as noisy and complicated as social media? The quality of a user representation is ultimately task-dependent (e.g. does it improve classifier performance, make more accurate recommendations in a recommendation system) but there are proxies that are less sensitive to the specific task. Is the representation predictive of latent properties such as a person's demographic features, socioeconomic class, or mental health state? Is it predictive of the user's future behavior? In this thesis, we begin by showing how user representations can be learned from multiple types of user behavior on social media. We apply several extensions of generalized canonical correlation analysis to learn these representations and evaluate them at three tasks: predicting future hashtag mentions, friending behavior, and demographic features. We then show how user features can be employed as distant supervision to improve topic model fit. Finally, we show how user features can be integrated into and improve existing classifiers in the multitask learning framework. We treat user representations - ground truth gender and mental health features - as auxiliary tasks to improve mental health state prediction. We also use distributed user representations learned in the first chapter to improve tweet-level stance classifiers, showing that distant user information can inform classification tasks at the granularity of a single message.Comment: PhD thesi
    corecore