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Abstract

Scaling up education online and onlife is presenting numerous key challenges, such as
hardly manageable classes, overwhelming content alternatives, and academic dishonesty
while interacting remotely. However, thanks to the wider availability of learning-related
data and increasingly higher performance computing, Arti�cial Intelligence has the po-
tential to turn such challenges into an unparalleled opportunity. One of its sub-�elds,
namely Machine Learning, is enabling machines to receive data and learn for themselves,
without being programmed with rules. Bringing this intelligent support to education at
large scale has a number of advantages, such as avoiding manual error-prone tasks and
reducing the chance that learners do any misconduct. Planning, collecting, developing,
and predicting become essential steps to make it concrete into real-world education.

This thesis deals with the design, implementation, and evaluation of Machine Learn-
ing models in the context of online educational platforms deployed at large scale. Con-
structing and assessing the performance of intelligent models is a crucial step towards
increasing reliability and convenience of such an educational medium. The contributions
result in large data sets and high-performing models that capitalize on Natural Language
Processing, Human Behavior Mining, and Machine Perception. The model decisions aim to
support stakeholders over the instructional pipeline, speci�cally on content categoriza-
tion, content recommendation, learners’ identity veri�cation, and learners’ sentiment
analysis. Past research in this �eld often relied on statistical processes hardly applicable
at large scale. Through our studies, we explore opportunities and challenges introduced
by Machine Learning for the above goals, a relevant and timely topic in literature.

Supported by extensive experiments, our work reveals a clear opportunity in combin-
ing human and machine sensing for researchers interested in online education. Our �nd-
ings illustrate the feasibility of designing and assessing Machine Learning models for cat-
egorization, recommendation, authentication, and sentiment prediction in this research
area. Our results provide guidelines on model motivation, data collection, model design,
and analysis techniques concerning the above applicative scenarios. Researchers can use
our �ndings to improve data collection on educational platforms, to reduce bias in data
and models, to increase model e�ectiveness, and to increase the reliability of their mod-
els, among others. We expect that this thesis can support the adoption of Machine Learn-
ing models in educational platforms even more, strengthening the role of data as a pre-
cious asset. The thesis outputs are publicly available at https://www.mirkomarras.com.
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Chapter 1

Introduction

1.1 Motivation

In a prosperous digital economy, the development of a successful career lies with the
individual’s ability to continuously acquire knowledge, gain competencies, and get qual-
i�cations. The demand for skilled professionals is fostering job creation and competition
amongst companies interested in securing the best candidates [1]. In such a scenario, On-
line Education plays a crucial role as an ecosystem wherein people (e.g., learners, teachers,
tutors), content (e.g., videos, slides), technology (e.g., platforms, devices, tools), culture
(e.g., community sharing), and strategy (e.g., business models, learning goals) interact
for instilling knowledge to life-long learners, without time or place constraints [2].

Educational and training providers are being encouraged to host online learning by
its technical, economic, and operational feasibility. Similarly, end users are taking ad-
vantage of the �exibility, accessibility, and costs of learning and teaching online. This
win-win situation has led to a proliferation of online initiatives [3]. For instance, in 2019,
more than 40 million students and educators have relied on Google Classroom [4], Cours-
era [5] has hosted more than 33 million users over 3,600 courses, and Udemy [6] has
supported 30 million students and 43 million educators within 100,000 courses. Scaling
up online education towards these numbers is posing key challenges, such as hardly-
manageable classes, overwhelming content alternatives, and academic dishonesty, that
often distract students and educators from their main goals: learning and teaching [7].

Capitalizing on large amounts of data and high performance computing, the rapid
evolution of Arti�cial Intelligence (AI) and its Machine Learning (ML) sub-�eld is turning
the above challenges into an unparalleled opportunity for automated intelligent support.
For instance, computerized content tagging could allow teachers to get supported on this
error-prone task. AI can provide personalized content by analyzing those available on-
line. Moreover, biometrics could represent a reliable way to ensure academic integrity.
Such circumstances have generated interest among researchers, educators, policy mak-
ers, and businesses [8]. Evidence of this attention has originated from the investments
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made by public and private entities [9]. Moreover, forecasts have announced a growth
in the AI-based education market from € 2.6 billion in 2018 to € 7.1 billion by 2023 [10].
Planning, collecting, developing, and predicting are being increasingly recognized as
essential steps to make AI real into real-world education, both online and onlife [11].

1.2 Challenges

Recently, there has been an explosion in research laying out new machine learning
models and calling attention to applicative issues [12]. This research has greatly ex-
panded our understanding on such a technology, but there has been less work on how it
applies on online education at scale. While the state of the art is posing several critical
concerns [13], this thesis will focus on research around the following key challenges:

• The learning-related data made publicly available to the research community is cur-
rently insu�cient to reasonably build and validate machine and deep learning models,
which is needed in the design of meaningful educational interventions.

• The huge number of learning resources makes impracticable their manual categoriza-
tion, while current automated systems based on term frequencies fail to catch seman-
tics. This results in low support to learners and teachers while managing material.

• While current practices in providing automated personalized online education have
been proved to be accurate, they are not designed with bias robustness in mind; so,
they can introduce bias that might a�ect millions of users in large-scale education.

• Existing automated systems for checking learners’ identities tend to be considered
intrusive due to explicit actions asked to users, susceptible to impersonations as mostly
based on a single trait, and/or expensive as they often require additional hardware.

• The huge amount of feedback generated by learners after attending courses is hardly
manageable by humans and automated models based on plain statistical approaches;
consequently, large part of the insights behind this feedback remains uncovered.

As AI-based education will play a relevant role in our everyday life, it becomes imper-
ative to face such critical challenges and provide appropriate support for solving them.

1.3 Contributions

In this thesis, the design, development, and evaluation of machine learning models
for education-related services are deeply investigated in the view of empowering learn-
ing environments with intelligent algorithms. The focus is on how machines can under-
stand human language and behaviour in learning-related data through Natural Language
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Processing (NLP), Computer Vision (CV), and Machine Perception (MP). The proposed
contributions consist of targeted data sets and models that support learners and edu-
cators over the instructional pipeline, speci�cally on categorization, recommendation,
learners’ authentication, and learners’ sentiment analysis (Fig. 1.1). The design and val-
idation of such new models have been guided by thoughtful continuous feedback from
teachers and learners under the "iLearnTV, Anywhere, Anytime" research project [14].

Going more into detail, we provide four data sets that expand existing educational
data sets in terms of scale, completeness, and comprehensiveness. To the best of our
knowledge, these public collections are among the �rst ones that allow to validate ma-
chine and deep learning techniques for educational platforms. On top of them, this thesis
introduces novel approaches to assess the contributions of machine learning technology
to educational environments. First, di�erently from existing state-of-the-art baselines,
the proposed categorization models mapping micro-learning videos to pre-existing cat-
egories exploit semantics rather than term frequency, making more accurate predic-
tions. Second, instead of being optimized only over accuracy and su�ering from bi-
ased decisions, the proposed recommendation models mitigate the e�ects of biases in
data while still being e�ective. Third, in contrast to other competitive approaches, the

Fig. 1.1: Educational context with a platform empowered with the thesis contributions.



4 Section 1.4. Outline

proposed multi-biometric learners’ veri�cation models target ubiquitous scenarios and
cost-e�ective transparent recognition. Finally, the proposed sentiment prediction mod-
els di�er from other opinion mining models as the former fed education-speci�c text
representations into a more e�ective deep neural network tailored to such an input.

Overall, this thesis provides guidelines, insights, limitations, and future directions to
researchers studying machine learning for education. They can apply our �ndings to
improve reliability, to increase e�ectiveness, and to foster user acceptance. This closes
the circle on the thesis goal: improving the understanding on machine learning models
for large-scale education, strengthening the role of data as a precious scienti�c asset.

1.4 Outline

The remainder of this thesis is organised as follows: Chapter 2 provides a brief intro-
duction to the most representative machine-learning concepts underlying this thesis.

Chapter 3 illustrates our categorization models that map educational videos on pre-
existing categories. They integrate speech-to-text methods to get video transcripts, nat-
ural language processing techniques to extract semantic concepts and keywords from
video transcripts, and big data technologies for scalability. This work has been par-
tially studied jointly with dr. Danilo Dessí and prof. Diego Reforgiato from University of
Cagliari (Italy), and published on the "European Semantic Web Conference" (ESWC) con-
ference proceedings [15] and the "Computers in Human Behavior" (CiHB) journal [16].

Chapter 4 proposes educational recommendation models that mitigate biases exist-
ing in data while still being e�ective. This work has been partially studied jointly with
dr. Ludovico Boratto from EURECAT (Spain), and published on the "European Conference
on Information Retrieval" (ECIR) [17] and the World Conference on Information Sys-
tems and Technologies (WorldCist) conference proceedings [18]. Two extended papers
regarding this topic have been also submitted for publication on top-tier journals.

Chapter 5 analyzes existing identity veri�cation approaches in education, and depicts
a new multi-biometric framework. Several authentication subsystems including behav-
ioral and physical biometrics have been proposed on top of that. Moreover, to raise
awareness on multi-biometrics, we used voice veri�cation as use case to prove a new
attack that puts at risk otherwise developed uni-biometrics. The overall multi-biometric
framework has been described in a paper published on the "Pattern Recognition Letters"
journal [19]. The work on touch and face biometrics has been partially studied jointly
with dr. Silvio Barra from theUniversity of Cagliari (Italy), and primarily published on the
"International Conference on Image Analysis and Processing" (ICIAP) [20] and the "Inter-
national Conference on Network and System Security" (NSS) [21] conference proceedings.
Extended works have been published on the "IEEE Cloud Computing" (ICC) journal [22].
The work on face and voice biometrics has been partially studied jointly with dr. Pedro
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Marin-Reyes, prof. Modesto Castrillon-Santana, and prof. Javier Lorenzo-Navarro from
University of Las Palmas (Spain), and published on the "International Conference on Pat-
tern Recognition Applications and Methods" (ICPRAM) conference proceedings [23]. The
extended version has been published on the revised book prepared on top of the same
conference [24]. Finally, the work on biometric attacks has been partially studied jointly
with dr. Pawel Korus and prof. Nasir Memon from New York University (U.S.A.), and
published on the "The International Speech Communication Association" (INTERSPEECH)
conference proceedings [25].

Chapter 6 proposes our sentiment prediction models that mine learners’ opinions,
starting from sparse context-speci�c text representations. This work has been partially
studied jointly with dr. Danilo Dessí and prof. Diego Reforgiato Recupero from University
of Cagliari (Italy), and dr. Mauro Dragoni from Fondazione "Bruno Kessler" (Italy), and
published on the "ACM/SIGAPP Symposium on Applied Computing" (SAC) conference
proceedings [26] and the "Deep-learning Approaches for Sentiment Analysis" book [27].

Finally, Chapter 7 o�ers concluding remarks on the implications of our research and
provides several opportunities for future work in this �eld.

For the sake of reproducibility, code, data, models, demos, and posters accompanying
this thesis are made publicly available at https://www.mirkomarras.com.

https://www.mirkomarras.com




Chapter 2

Machine Learning Fundamentals

This chapter provides essential context around arti�cial intelligence, machine learn-
ing, and deep learning concepts leveraged by this thesis.

2.1 Historical Background

For a long time, researchers have investigated how to instruct computers in order to
reduce the e�ort for intellectual tasks performed by humans [28]. This �eld, namely
Arti�cial Intelligence (AI), includes Machine Learning (ML) and Deep Learning (DL), in
addition to more traditional methods that often relied on hard-coded rules (Fig. 2.1).

Originally, people working in AI believed that automating human tasks could be
achieved by providing to computers a range of rules that describe conditions and com-
mands of action, namely symbolic AI [29]. Humans used to input rules and data to be
processed according to these rules, and get answers. However, symbolic AI came up to
be in�exible to face more intelligent tasks, such as object recognition, content catego-
rization, and machine translation. This opened up to more sophisticated approaches.

Fig. 2.1: Hierarchy in arti�cial intelligence, machine learning, deep learning �elds.
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Fig. 2.2: The di�erences between symbolic AI and machine-learning programming.

In response to this limitation, it was investigated how machine can learn patterns on
its own, starting from data relevant for the targeted task [30]. Such a new paradigm,
namely machine learning, implies that humans input data and answers expected from
the machine with this data, and the machine learns patterns that can be applied to data
unseen so far (Fig. 2.2). Examples relevant to the task are fed into the machine-learning
system, that learns patterns from such a data, making it possible to get complex patterns
for solving the task. For instance, a machine-learning system for object classi�cation
is fed with human-labelled images from which a set of rules for associating pictures to
object labels are learned.

Deep learning is a ML sub-�eld wherein patterns are learned from data through con-
secutive manipulation by means of a sequence of stacked layers [31]. It di�ers from
traditional machine learning, namely shallow learning, that learns only one or two lay-
ers of data representations. The transformation implemented by a deep neural layer is
parameterized by its weights. Hence, learning means optimizing the weights of all lay-
ers, such that the network correctly maps inputs to expected targets. Given the predicted
and true targets, the system computes a score through a loss function that captures how
well the network maps the current samples. The score is then used by the optimizer that,
through a Back-propagation algorithm, arranges the weight values, so that the loss score
will be lower in the next iteration. Repeating the loop a su�cient number of times makes
it possible to learn weight values that minimize the loss, obtaining a trained model.

2.2 Problem Design Branches

Several approaches can be suitable for de�ning problems faced by a machine-learning
system (Fig. 2.3). They can be divided into four broad categories [32], namely:

• Human-Supervised learning is based on learning how to map data to known annota-
tions (i.e., labels). Most applications, such as object recognition, speaker veri�cation,
sentiment prediction, and language understanding, fall into this category.

• Self-Supervised learning implies supervised learning with labels generated from the in-
put data, typically using a heuristic algorithm. For instance, auto-encoders, where the
inputs are also the generated targets, make full advantage of self-supervised learning.
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Fig. 2.3: Common classes of problem encountered in machine learning.

• Unsupervised learning aims to �nd interesting transformations of the input data with-
out knowing any or a subset of targets. Sample applications are survival analysis, data
denoising, dimensionality reduction and clustering.

• Reinforcement learning is based on an agent that receives information about its envi-
ronment and learns to choose actions that will maximize some reward. For instance,
a neural network that outputs game actions to maximize its score can leverage it.

Over this thesis, we mostly focus on supervised learning problems. Therefore, the sub-
sequent sections provide information tailored to this type of problem.

2.3 Experimental Work�ow

Common pipelines solving a machine-learning problem include problem de�nition,
data pre-processing, model development and model evaluation (Fig. 2.4).

Problem De�nition

This step serves to de�ne the type of problem (e.g., binary classi�cation, multi-class
classi�cation, multi-label classi�cation, scalar regression). Identifying the problem type
guides the choices made at next steps, such as the model architecture, the loss function,
and so on. In addition, inputs and outputs need to be de�ned and, based on that design
choice, proper training data should be retrieved. For instance, learning to classify the
sentiment of reviews implies having both reviews and sentiment annotations.

The hypothesis is usually that the outputs can be predicted given the inputs; hence,
the retrieved data should be su�ciently informative to learn the relationship between
inputs and outputs. Therefore, ML can be used only to get patterns present in training
data and recognize what it has been seen there.
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Fig. 2.4: The common pipeline to face a machine-learning problem.

Data Pre-Processing

This step aims to make data more manageable by algorithms through vectorization,
normalization, missing values handling, and/or feature extraction:

• Vectorization. Inputs and outputs should be numerical vectors, irrespective of the data
(e.g., images, text). Turning data into vectors is called vectorization. For instance, text
can be represented as a list of integers standing for sequences of words. On the other
hand, this step is not needed when data is already in numerical form.

• Normalization. It should be noted that feeding into a ML model data that takes large
values or is heterogeneous, as it can prevent the model from converging. To make
learning easier, data should have values in [0,1] range. For instance, image data en-
coded as integers in range [0,255] is usually cast to �oat and divided by 255, so that
they become �oat values in [0,1] range. Similarly, when predicting user’s identities,
each feature could be normalized to have a standard deviation of 1 and a mean of 0.

• Missing Values Handling. If there could missing values when predicting through a
ML model, it is generally a good practice to simulate such a situation also during
model training. To this end, while training, missing values as 0 could be introduced by
copying some training samples and dropping some features that may become missing
while predicting. In this way, the model can learn that the value 0 means missing data
and starts ignoring the value.

• Feature Extraction. Using human knowledge about the data and about the ML algo-
rithm can make the algorithm work better. Feature extraction is usually adopted by
shallow algorithms not having hypothesis spaces rich enough to learn useful features
by themselves. For instance, in speaker veri�cation, inputs for neural networks are
typically based on pre-processed data, such as spectrograms and �lterbanks extracted
from the raw audio. Modern DL is making it possible to fed raw data and let neural
networks extract useful patterns from it.

Model Development

The goal at this step is to develop a ML model able to solve the original task [33].
Three key choices to build the model should be considered: (i) model architecture that
should learn meaningful data representations, (ii) di�erentiable optimization function
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Fig. 2.5: The common components of a shallow-learning model.

Fig. 2.6: The common components of a deep-learning model.

that should match the type of problem, (iii) optimization con�guration that should sup-
port the model in minimizing the objective function.

Some shallow-learning models structured as depicted in Fig. 2.5 are described below.

• Decision Trees (DTs) [34] predict the value of a target variable by learning decision
rules from input features. The model has a root node containing all data features of
the training set. Then, the root node is split into several children according to a given
criteria. This process recursively continues on children until no nodes to be split exist.

• Support Vector Machines (SVMs) [35] map each training data sample to a point in a
N-dimensional space, where N is the number of features and the value of each fea-
ture is the value of a particular coordinate. Then, it �nds the set of hyper-planes that
better di�erentiate the points based on the targets. A linear combination of vectors
determines the location of the decision boundaries producing the best separation.

• Random Forest (RF) [36] is a meta estimator that (i) �ts a number of decision tree
classi�ers on various random data sub-samples and (ii) uses averaging to improve the
predictive accuracy and to control over-�tting. Each decision tree is a weak classi�er,
while all the decision trees combined together aim to be a stronger classi�er.

Some deep-learning models structured as depicted in Fig. 2.6 are described below [37].

• Feed-forward Neural Networks (FNN) were one of the �rst components applied to learn
from data using DL [38, 39]. One or more levels of nodes, namely perceptrons, are ran-
domly joined by weighted connections in a many-to-many fashion. These networks
were historically thought in order to simulate a biological model where nodes are neu-
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rons and links between them represent synapses. On the basis of the input values fed
into the network, nodes of a certain level can be activated and their signal is broad-
casted to the subsequent level. In order to activate nodes of a subsequent level, the
signal generated at a level is weighted and must be greater than a given threshold.

• Recurrent Neural Networks (RNN) are tailored for processing data as a sequence [40, 41].
In contrast to FNNs, RNNs have cyclic connections among nodes of distinct levels. Re-
current connections connect past data with the one that is currently being processed,
simulating a state memory. The forward pass is similar to FNN forward pass. The dif-
ference is that the activation of a node depends on both the current input and the pre-
vious status of the hidden layers. This work�ow is useful when data presents patterns
from the past to the future. As an extension, Bidirectional RNNs (BiRNNs) present the
training data forwards and backwards to two hidden RNNs combined into a common
output layer, making it possible to �nd patterns from both past and future data [42].

• Long Short-Term Memory (LSTM) extends RNNs by employing recurrent connections
and adding memory blocks in their recurrent hidden layers [43, 44]. These memory
blocks save the current temporal state and make it possible to learn temporal observa-
tions hidden in the data. Using memory blocks allows to relate the current data being
processed with the data processed long before, solving the problem experienced by
common RNNs. For this reason, LSTMs have been proved to have a positive impact
on sequence prediction tasks. Bidirectional layers using two hidden LSTMs can be
leveraged to process data both forward and backward.

• Convolutional Neural Networks (CNNs) perform �ltering operations on the nodes of
a layer, abstracting and selecting only meaningful nodes. Such networks have been
historically applied in Computer Vision [45, 46]. Hence, they are not directly applica-
ble on texts, as the text should be vectorized before applying convolutional �lters to
them. Each �lter is composed by a kernel that slides on the vector representation and
repeats the same function on each element until all vectors are covered.

• Attention Layers (ALs) serve to orient perception as well as memory access [47, 48].
They �lter the perceptions that can be stored in memory, and �lter them again on a
second pass when retrieved from memory. This assumption makes it possible to solve
several limits, especially in NLP. For instance, traditional word vectors presume that
a word’s meaning is relatively stable across sentences, but this is not always the case
(e.g., lit as an adjective that describes something burning or as an abbreviation for
literature). Moreover, ALs learn how to relate an input sequence to the output of the
model in order to pay selective attention on more relevant input features. For example,
in order to re�ect the relation between inputs and outputs, an AL may compute an
arithmetic mean of results of various layers according to a certain relevance.

• Other layers can be integrated to �ne-tune the performance of a model. For instance,
Embedding Layers turn positive integers into dense vectors of �xed size chosen from a
pre-initialized matrix [49, 50]. Noise Layers usually avoid model over-�tting by modi-
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fying a fraction of input or adding/subtracting values following a prede�ned distribu-
tion (e.g., Gaussian) [51]. Dropout Layers may be seen as a particular type of a noise
layer that assign the value 0 to a randomly chosen fraction of its input data [52]. Dense
Layers are densely-connected layers used to map large unit inputs in a few unit results.
For example, it may be used to map nodes in a few classes outputted by the model.

As part of the optimization for DL, the error for the current state of the model must
be estimated repeatedly. This requires the choice of an error function, namely a loss
function. Such a function is used to estimate the loss of the model, so that the weights can
be updated to reduce the loss on the next evaluation. Based on the type of ML problem,
there are several loss functions to choose from. For instance, for regression problems,
common loss functions are Mean Squared Error, Mean Squared Logarithmic Error, and
Mean Absolute Error ; for binary supervised classi�cation, Binary Cross-Entropy, Hinge
Loss, and Squared Hinge Loss are usually adopted; for multi-class classi�cation, common
solutions are Multi-Class Cross-Entropy, Sparse Multi-Class Cross-Entropy, and Kullback
Leibler Divergence. Please refer to [53] for further details on each function.

Finally, within DL, an optimizer is integrated to update the weights and minimize
the loss function. The loss function is used by the optimizer to move towards the right
direction to reach the global minimum. Common optimizers include Root Mean Square
Propagation (RMSProp) [54] and Adaptive Moment Estimation (ADAM) [55].

Model Evaluation

Evaluating a model always needs to subdivide the available data into (i) a training
set, (ii) a validation set, and a (iii) test set. During training, the model is fed with the
training set and evaluated on the validation set. The latter data is used because devel-
oping a model usually involves tuning its con�guration (e.g., choosing the number of
layers or the size of the layers). Such a tuning can be achieved by using as a feedback
the performance of the model on the validation set. To test performance on unseen data,
a completely di�erent data set is used to evaluate the model: the test set. The common
procedures for splitting data are provided in what follows (Fig. 2.7) [56]:

• Held-Out Validation. A subset of the data is set apart for testing, typically around 10%
and 20% of the whole dataset. The model is trained on the rest of the data, and its
performance are evaluated on the test set. However, if little data is available, then the
validation and test sets may contain too few samples to be statistically representative,
preventing the validity of the experimental results.

• k-Fold Validation. The data is split into K equal-sized partitions. An independent in-
stance of the model is trained on K–1 partitions, and evaluated on partition i. The
process is repeated K times, with a di�erent partition i as a test set. The �nal metrics
are averaged to obtain the �nal score. This might solve issues related to signi�cant
variance on �nal metrics over di�erent train-test split.
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Fig. 2.7: Common ML evaluation protocols: held-out (top) and k-fold (bottom).

After splitting the data, the metrics for measuring success should be de�ned. The metric
should be directly aligned with the high-level goals, such as the success of the business.
For balanced-classi�cation problems, where every class is equally likely, Accuracy and
area under the Receiver Operating Characteristic curve (ROC) are common metrics. For
class-imbalanced problems, Precision and Recall are usually used. For ranking problems
or multi-label classi�cation, Mean Average Precision is generally adopted. In some cases,
custom metrics are de�ned. Such metrics represent the output of the protocol.

As the universal tension in ML is between optimization and generalization, the ideal
model is the one that stands right at the border between under-�tting and over-�tting.
Hence, all the pipeline steps should be repeated until the model closely reaches this goal.



Chapter 3

Machine Learning Models for Con-
tent Categorization

Research Highlights
• SVM+SGD trained on Concepts is the most e�cient model.
• SVM trained on Keywords+Concepts achieves the highest accuracy.
• Keywords are more representative than Concepts for prediction.
• Models get comparable performance over �rst/second-level categories.

3.1 Introduction

Micro-learning videos embedded into online courses represent one of the most power-
ful medium to deliver knowledge to learners in small chunks over time. This paradigm
promises to have a solid success rate, as proved by recent practical experience [57]. In
contrast to traditional educational models, micro learning lasting from 5 up to 15 min-
utes has a positive impact to knowledge acquisition [58], as it ensures higher �exibility
and better �ts with the constraints of human brain with respect to attention span [59, 60].

With the ever-increasing number of micro-learning videos, managing large video col-
lections is turning into a challenge for educators. Human annotation and archiving is
time-consuming and non cost-e�ective. On the other hand, searching videos given spe-
ci�c categories of interest is becoming harder for learners. This has raised the need of
tools powered by intelligent methods for e�ective and e�cient video classi�cation. Re-
cent studies tend to model the problem as a text classi�cation task which automatically
assigns one category from a set of prede�ned ones to a video based on its transcript (i.e.
a written version of the content presented by the speaker) [61, 62]. These works focused
on traditional long face-to-face video lessons which provide a lot of textual informa-
tion in comparison with the one available in micro-learning videos. Furthermore, these
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approaches usually map video transcripts using Term-Frequency-Inverse Document Fre-
quencies (TF-IDF). Text documents are modeled as a set of term frequencies, regardless
the position of words in the document or semantic links with other words. It follows
that a huge amount of the knowledge derived from the text is lost.

Emerging Semantic Web resources and techniques have been recently combined with
Data Mining and Knowledge Discovery methods in order to perform analysis and obtain
useful insights out of the data [63]. Cutting-edge cognitive computing systems, such as
IBM Watson1 and Microsoft Cognitive Services2, can extract concepts, emotions, entities,
keywords, and relations from unstructured text, and use advanced machine learning
algorithms to derive analytics, generate predictions and hypothesis in a scalable way.
Therefore, they can o�er Cognitive Computing potential, so that the knowledge lost by
the existing approaches can be recovered and enriched.

In this chapter, we are interested in supporting the development of tools powered by
Cognitive Computing to investigate: (i) how we can extract and merge features from
micro-learning videos to improve their representation in the eyes of machine-learning
algorithms, and (ii) which machine learning algorithm is best at taking advantage of
such features in terms of e�ectiveness and e�ciency for micro-learning video classi�ca-
tion. To this end, we analyze micro-learning video collections through a fully-automated
pipeline. More precisely, we propose an e�cient and e�ective approach to classify a
collection of educational videos on pre-existing categories, capitalizing on (i) a Speech-
to-Text tool to get video transcripts, (ii) cutting-edge Natural Language Processing and
Cognitive Computing tools to extract semantic concepts and keywords for their repre-
sentation, and (iii)Apache Spark as Big Data technology for scalability. Several classi�ers
have been trained on feature vectors extracted by Cognitive Computing tools on a data
set we collected fromCoursera, namelyML-Videos. Considering the experimental results,
our approach promises to improve micro-learning video classi�cation performance.

The contribution of this chapter is threefold:

• We arranged a large-scale data set composed by features extracted from 10, 328 videos
downloaded from Coursera. They are pre-annotated with 7 �rst-level categories and
34 second-level categories based on the course wherein they are embedded.

• We propose an automated approach for classifying micro-learning videos, capitalizing
on Cognitive Computing for feature extraction and Big Data technologies for fast com-
putation, going over frequency-based methods, with several practical implications.

• We provide an extensive evaluation in terms of e�ectiveness and e�ciency for micro-
learning classi�cation, comparing our approach with di�erent combinations of feature
type and classi�cation algorithm. This makes it possible to assess which one is the best
at taking advantage of the peculiarities of micro-learning videos.

1https://www.ibm.com/watson/
2https://www.microsoft.com/cognitive-services/en-us

https://www.ibm.com/watson/
https://www.microsoft.com/cognitive-services/en-us
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The rest of this chapter is structured as follows: Section 3.2 describes the most rep-
resentative techniques for content archiving, going deeply on those tested on video
lessons. Then, Section 3.3 formalizes the problem we seek to investigate. Section 3.4
introduces the micro-learning data set we collected, while Section 3.5 describes and eval-
uates the ML models we trained on such a data. Finally, Section 3.6 concludes the chapter.

3.2 Related Work

3.2.1 Content Categorization Techniques

The term categorization is de�ned as the procedure to select the most appropriate
category for a resource from a prede�ned taxonomy. Indexing multimedia content by
classifying it is a task required to organize resources so that they can be quickly retrieved.

Several researchers have tried to automatize multimedia content classi�cation through
accurate, non-time-consuming machine-learning systems [64, 65, 66, 67]. Common so-
lutions adopted pre-existing classi�cation algorithms successfully fed with textual data,
such as Support Vector Machine (SVM) [35, 49, 68], both in its C4.5 [69] and Stochastic
Gradient Descent (SGD) variant [70], Decision Trees (DTs) [34], and Random Forests (RFs)
[36]. However, the usual audio-visual characteristics of a video make video classi�ca-
tion harder with respect to plain text classi�cation. Thus, researchers tended to inte-
grate video metadata [71] and video content information, such as visual frame sequences
[72, 73], audio tracks [74], transcripts [75, 76], or multiple combinations of them [77, 78].

In spite of good results obtained using low-level features, emerging semantic-based
alternatives showed a larger potential. They have been focused on higher level features
that model the content of a video. In [79], the authors presented a novel system for
content understanding and semantic search on a video collection based on low and high
level visual features. In a similar way, [80] investigated the problem of detecting or clas-
sifying single video-clips by means of the event occurring in them, which is de�ned by
a complex collection of elements including people, objects, actions, and relations among
them. The authors in [81] proposed to generate categories for videos by exploiting Au-
tomatic Speech Recognition (ASR) and Optical Character Recognition (OCR), directly.

However, we point out that the video type is a relevant characteristic to better under-
stand video content, and the information leveraged by a reliable analysis should be selected
based on the way knowledge is mainly transmitted. As micro-learning videos mainly
convey knowledge through the instructor’s voice, we mostly relate to classi�cation ap-
proaches that use video transcripts as a source of information. In one of the most repre-
sentative works, the authors in [75] used the transcripts to improve sentiment classi�ca-
tion from general videos. Besides, [76] proposed various video navigation techniques in
educational context through keyword clouds computed from the transcripts using TF-IDF.
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3.2.2 Content Categorization in Education

Several classi�cation tasks have been solved by machine-learning models, but there
is a limited research on how they perform within the educational domain. For instance,
the authors in [62] used Latent Semantic Allocation to �nd and represent topics con-
veyed by a video lecture. The method demonstrated that the video content allows to
achieve better performance than the information extracted from title and tags associ-
ated to the video itself. The authors in [82] used knowledge and relationships extracted
from Wikipedia as a resource to match videos with the most suitable category based
on a pre-de�ned taxonomy. Other classi�cation approaches made use of NLP either di-
rectly on the accompanying audio transcript [83] or extracted automatically from the
lecture images employing OCR or via speech-to-text [84, 85, 86]. Similarly, the authors
in [87] proposed a framework for classifying educational videos from their metadata.
The authors in [88] later applied shallow machine learning techniques.

The analysis of the video transcript is an attractive way to be exploited as transcripts
represent the richest channel of information for video lessons. However, the existing
works that manipulate transcripts focused on long face-to-face video lessons that usu-
ally last more than one hour. It follows that the resulting transcripts include a huge
amount of words than the ones extracted from micro-learning videos, making classi-
�cation di�erent at least from the perspective of the available information. Moreover,
no existing data set targets the micro-learning scenario, so it exists a research gap that
impedes to develop and test solutions for such a learning approach. Furthermore, most
of the approaches modeled each transcript as a set of term frequencies, regardless the
position of words in the text or semantic links with other words. It follows that a lot of
the knowledge derived from the text is lost. Consequently, we �rst seek to �ll the gap
in micro-learning video data sets by collecting resources from existing educational plat-
forms. Then, we investigate how higher-level features extracted from transcripts can
improve micro-learning classi�cation, enriching TF-IDF features with semantics. We
�nally assess how existing classi�cation algorithms work when fed with these features.

3.3 Problem Formalization

The micro-learning video classi�cation problem can be formalized as follows. We
considerN tuples D = (xi,yi)Ni=1 where each xi ⊂ X∗ corresponds to a video transcript
of unknown length composed by words from a dictionary X, and each yi ⊂ Y corre-
sponds to the category conveyed by the video from a pre-de�ned set of categories (e.g.
math, physics). We consider an explicit feature extraction step which produces �xed-
length representations in F ⊂ Re (e.g., TF-IDF). We denote the stage as F : X→F.
Given a feature vector f ⊂ F, we seek to obtain a classi�er Gθ that correctly maps f
into y. Namely, we want to �nd a function Gθ : F→Y that outputs the category of the
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video transcript x whose feature vector is f = F (x). Finding such a classi�er becomes
an optimization problem, which aims to maximize the following objective function:

Gθ = argmax E
(x,y)∈D

[Gθ(F (x)) = y] (3.1)

In other words, we aim to maximize the cases where the classi�er predicts the correct
category of a video based on the features extracted from its transcript.

3.4 The Proposed ML-Videos Data Set

Before designing a tailored classi�cation approach, we �lled the gap in micro-learning
video data sets by collecting resources from existing educational platforms. The collected
data set, namely ML-Videos, contains over 10, 000 micro-learning videos from more than
500 instructors, extracted from courses delivered on Coursera. The videos span a wide
range of di�erent �elds, including maths, physics, economics and so on. Each video
included in the data set is shot in di�erent single-speaker controlled environments, typ-
ically professional recording studios. To the best of our knowledge, there exists no other
benchmark public data set that includes micro-learning videos. To position this data
set in the literature, Table 3.1 summarises other representative video data sets whose
transcripts have been used for classi�cation. Besides lacking micro-learning conditions,
most of them have been labelled with few categories and included longer transcripts.

3.4.1 Collection Methodology

This section describes our multi-stage approach for collecting a large micro-learning
video data set from existing large-scale learning platforms. The collection pipeline is
summarised in Fig. 3.1, and key stages are discussed in the following paragraphs.

Data Set Videos Public? Context Levels Categories
20NG [64] 20,000 Yes News 2 26
NSL-KDD [65] 25,192 No Medicine 1 23
Youtube [71] 182 No Miscellaneous 1 3
TRECVID [79] 25,000 Yes Events 1 20
MCG-WEB [82] 80,031 Yes Miscellaneous 1 493
KHAN [83] 3,000 Yes Classroom Education 1 3
GoogleI/O [89] 209 Yes Classroom Education 1 5
Wikipedia [90] 3,000 No Classroom Education 1 7
ML-Videos 10,328 Yes Micro Learning 2 41

Table 3.1: Representative data sets for video classi�cation based on transcripts.
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Fig. 3.1: Collection pipeline for ML-Videos data set.

1. CandidateCoursesRetrieval: the �rst stage is to obtain a list of courses fromCours-
era. We start from the list of courses that are returned by Coursera APIs3, which is
based on an intersection of the most searched courses in the platform, and the courses
that are freely available. This list, dumped in March 2017, contains 10, 352 courses,
ranging from economics and computer science to history and art.

2. Micro-learning Videos Download: the videos for each of the considered courses
are automatically downloaded using Coursera-dl4, a Python script that can be used
to download lecture resources (e.g., videos, ppt) from Coursera classes. The script is
instructed to create a folder for each course and save all the related videos within it.
Each video is named with its sequence ID and its title, separated by an underscore.

3. Multi-category Video Labelling: �rst-level and second-level category labels are
crawled from Coursera APIs for all the courses in the data set, building a two-level
taxonomy. Category labels are obtained for all but 24 courses, that were discarded.
Categories are assigned to videos based on the course wherein they are integrated.

4. Video Transcripts Extraction: each micro-learning video is sent to the Speech-to-
Text service5 of the IBM Watson’s suite, which combines grammar rules with knowl-
edge of audio signals for translating the spoken language of an audio track in its
written form. Such a tool is one of the most accurate and easily manageable.

5. Transcript Features Extraction: from each video transcript, we extract TF-IDF fea-
tures and high-level semantic features computed by the Natural Language Understand-
ing service6 part of the IBMWatson’s suite. It contains a collection of natural language
processing functions aiming at extracting keywords, concepts, entities and so on from
texts. For this study, we took only concepts and keywords.

3https://about.coursera.org/affiliates
4https://github.com/coursera-dl/coursera-dl
5https://www.ibm.com/watson/developercloud/speech-to-text.html
6https://www.ibm.com/watson/services/natural-language-understanding/

https://about.coursera.org/affiliates
https://github.com/coursera-dl/coursera-dl
https://www.ibm.com/watson/developercloud/speech-to-text.html
https://www.ibm.com/watson/services/natural-language-understanding/
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Fig. 3.2: Structure of ML-Videos data set.

3.4.2 Structure and Statistics

ML-Videos is a CSV -based collection whose structure in terms of entities and associ-
ations is depicted in Fig. 3.2. As expected, Video is the most informative entity. Each
video is identi�ed by a unique ID and primarily described by a short title. One �rst-level
category ID and one second-level category ID are associated to each video and point to
the corresponding entities. The text extracted from each video is saved into the tran-
script attribute, while the subsequent features are reported in the remaining attributes.
Both First-level and Second-level Category entities are identi�ed by an ID and a name. In
addition to this, second-level categories include the ID of the parent �rst-level category.

We collected 10, 328 videos from 617 courses taught in English language. Coursera
pre-assigned each course to one of the 7 �rst-level categories and one of the 34 second-
level categories. Each course contains a set of videos (avg. 18; std. 5). Each downloaded
video was assigned to the same categories of the course it belongs, namely one �rst-
level category and one second-level category. Each video lasts from 5 to 18 minutes, and
the video transcripts contain from 200 to 10, 000 words (avg. 1, 525; std. 1, 017). The
distribution of the number of videos per category is shown in Fig. 3.3 and Fig. 3.4.

The dataset is challenging, since it contains �ne-grained categories that require subtle
details to di�erentiate (e.g. Business Essentials and Business Strategy). Moreover, the
video transcripts contain less words than documents typically used in text classi�cation.
The language style is also di�erent, since transcripts derive from speaking activities.

3.5 The Proposed Content Categorization Approach

In this section, we describe the proposed approach for micro-learning video classi�-
cation. Figure 3.5 depicts its components and how they work together.
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Fig. 3.3: First-level category distribution in ML-Videos.
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Fig. 3.4: Second-level category distribution in ML-Videos.

3.5.1 Methodology

The Classi�cation Manager orchestrates the overall process, from speech-to-text con-
version to performance evaluation. First, it calls the Pre-Processing Module to extract the
transcripts from the videos included into the data set (Steps 1-2). Then, these transcripts
are handled by the Feature Extraction Module which computes the corresponding fea-
tures (Steps 3-4). During training, the Classi�cation Manager sends both features and
category labels to the Classifer Module (Steps 5-6). During testing, only the features are
sent, and the returned categories are matched with the original ones stored in the data
set to evaluate the performance (Step 7). We detail the modules in the following sections.
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Fig. 3.5: The proposed micro-learning video classi�cation approach.

Big Data Manager Module

This module integrates Apache Spark enriched with the MLlib library. MLlib7 is the
Spark’s machine learning library aimed to make practical machine learning scalable and
easy. It includes common learning algorithms and utilities, such as classi�cation, regres-
sion, clustering, collaborative �ltering, dimensionality reduction, as well as lower-level
optimization primitives and higher-level pipeline APIs. By integrating it, our approach
becomes general and �exible. We can easily use any classi�er within the MLlib library,
whose code is already optimized with the Map-Reduce paradigm to run over a cluster.
We might also use any other classi�er of other libraries not speci�c for Apache Spark.
The cluster has been con�gured to use over 100 machines within our department.

Pre-Processing Module

This module takes a micro-learning video as an input and returns the cleaned version
of the associated transcript as an output. Given a micro-learning video v, the module
sends it to the Speech-to-Text service8 of the IBM Watson’s suite, which combines gram-
mar rules with knowledge of audio signals for translating the spoken language of an
audio track in its written form. Its choice depends on the fact that it is one of the most
accurate and easily manageable speech-to-text tools [91]. The service returns a plain

7http://spark.apache.org/mllib/
8https://www.ibm.com/watson/developercloud/speech-to-text.html

http://spark.apache.org/mllib/
https://www.ibm.com/watson/developercloud/speech-to-text.html
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text t(v) corresponding to the transcript of v. The module converts all the words in t(v)
to lowercase and each one of them is compared with the most similar word in WordNet9

in order to detect spelling errors. Each word w in t(v) is substituted in t(v) with the cor-
rect w’, obtaining t’(v). Finally, the module removes stop-words from t’(v) and returns it
as a cleaned transcript. This will be used as a means of analysis for the video.

Features Extraction Module

The Features Extraction Module is responsible of turning a micro-learning transcript
into a set of features. It takes a cleaned transcript from the Pre-Processing Module as
an input and returns a set of pairs where the �rst element is the identi�er string of the
feature and the second element is the relevance of that feature for the corresponding tran-
script. The relevance value spans in the range [0, 1], where a value closer to 0 represents
a low relevance and a value closer to 1 a high relevance of that feature.

From the transcript, the module can extract TF-IDF features and high-level features
computed by the Natural Language Understanding API provided by the IBM Watson’s
suite, which contains a collection of natural language processing functions aiming at
extracting keywords, concepts, entities and so on from texts. Currently, the module
exploits only concepts and keywords, but it can be easily extended to a wider set of
features. Keywords include important topics typically used when indexing data. The
IBM service identi�es and ranks keywords directly mentioned in the text. Concepts
represent words not necessarily referenced in the text, but with which the transcript text
can be associated. These concepts are inferred from the relations between syntactic and
semantic elements of the sentences. Both for concepts and keywords, the IBM service
computes a weight that indicates their relevance.

Given a cleaned transcript t’(v) as returned from the Pre-Processing Module, the mod-
ule �rst computes for each word w ∈ t ′(v) its TF-IDF value building the TF-IDF vector
tf-idf(t’(v)). Then, it sends t’(v) to the Natural Language Understanding service and re-
quests to obtain a concepts vector c(t’(v)) and a keywords vector k(t’(v)). The service
returns them as JSON data. For each vector, a list of pairs is returned where the �rst
element of each pair is the string identi�er and the second element is the relevance as-
sociated to it in the range [0, 1]. After that, the module builds a unique feature vector
kc(t’(v)) by concatenating c(t’(v)) and k(t’(v)). In the case of a collision between two iden-
ti�ers from concepts and keywords vectors, the module computes the mean between the
associated relevance values and stores a single instance of the identi�er, accordingly. As
an example, we consider a short segment of a video transcript about computer networks
(Fig. 3.6). "Computer network" is the only concept extracted even though it is not directly
mentioned in the text. A number of four keywords were returned.

9https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
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Fig. 3.6: Example of features extracted by IBM Watson.

Classi�er Module

The Classi�er Module aims at �nding the most appropriate category for a given video
using the underlying classi�er trained on a number of labeled samples. The classi�er
implements a function f(t ′(v)) → y where f(t ′(v)) is the features vector of t ′(v) and
y is the category returned by the classi�er and of the given taxonomy. The module can
implement any classi�cation algorithm, independently from the feature type. In partic-
ular, our approach integrates Decision Trees, Support Vector Machines, Random Forests,
and Support Vector Machines jointly with Stochastic Gradient Descent, since they are the
most widely used algorithms as emerged from literature review. However, our approach
does not depend on this design choice and any classi�cation algorithm can be used.

3.5.2 Evaluation

In this section, we describe the experiments performed to assess both the e�ectiveness
and the e�ciency of our approach on top of the ML-Videos data set (see Section 3.4).

Evaluation Metrics and Protocols

We mapped the video classi�cation problem as a text classi�cation problem. For each
category yi of the category space y1, . . . , yn, the corresponding precision Pyi , recall Ryi ,
and F-measure F1yi are de�ned by:

Pyi =
TPyi

TPyi+FPyi
Ryi =

TPyi
TPyi+FNyi

F1yi = 2 Ryi ·Pyi
Ryi+Pyi

where TPyi (true positives) is the number of videos correctly assigned to the category
yi, FPyi (false positives) is the number of videos erroneously assigned to yi, and FNyi
(false negatives) is the number of videos that actually belong to the category yi, but they
are not assigned to this class.
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Then, we need to compute the average performance of a binary classi�er (i.e. one
for each category) over multiple categories. There are three main methodologies for the
computation of averaged metrics [92]. They can be summarized as follows:

• Micro-Averaged (Mic). The metrics are globally calculated by counting the total number
of true positives, false negatives and false positives, with no category di�erences.

• Macro-Averaged (Mac). The metrics are locally calculated for each category and the
unweighted mean is computed. This does not consider categories imbalance.

• Weighted-Averaged (W). The metrics are locally calculated for each category, then their
average is obtained by weighting each category metric with the number of instances
of the category in the dataset. Therefore, each category does not contribute equally to
the �nal average and some of them contribute more than the others.

To test the performances of our approach, we considered nine scores obtained from
the combination of the metrics (precision, recall, F-measure) with average mode (mi-
cro, macro, weighted), for each category space of our data set (�rst/second-level). The
evaluation protocol is based on a Strati�ed K-fold Cross-Validation with K=10.

Baselines

In order to evaluate our approach, we tested it with a number of alternative combi-
nations of four features representations and four classi�cation algorithms. The features
representations included TF-IDF (baseline), concepts, keywords, and the combination of
keywords and concepts. While, the baseline classi�ers were the following algorithms:

• Decision Tree (DT). This method creates a model based on C4.5 algorithm, predicting
the value of a target variable by learning decision rules from data features. The model
has a root node containing all data features of the training set. Then, the root node is
split into several children according to a given criteria.

• Support Vector Machine (SVM). This method maps each sample to a point in a n-
dimensional space (where n is number of features). Then, it �nds the set of hyper-
planes that better di�erentiate the categories. A linear combination of vectors deter-
mines the the decision boundaries producing the best separation of categories.

• Random Forest (RF). This method is a meta estimator that �ts a number of decision tree
classi�ers on various random sub-samples of the dataset and uses averaging to improve
the predictive accuracy and control over-�tting. Each decision tree, individually, is a
weak classi�er, while all the decision trees taken together would be a strong classi�er.

• Support Vector Machine + Stochastic Gradient Descent (SVM+SGD). This method ex-
tends the standard SVM implementation with the SGD algorithm, that �nds the best
coe�cients describing the decision boundaries by optimizing for a hinge loss function.
It allows performing training over large data while reducing the computation time.
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Computational Time Evaluation

We evaluated the e�ciency of the proposed approach in terms of the size of the fea-
tures vectors and the time for performing both training and test for a given classi�er.

Table 3.2 summarizes the basic statistics with respect to the di�erent feature sets. The
�rst column indicates the name of the feature set, the second column shows its size, while
the other two columns report the average and the standard deviation of the number of
non-zero elements. The vector sizes for the combination concepts and keywords is greater
than all the others. However, the average number of its non-zero elements is smaller than
that of the TF-IDF. Hence, high-level features might be more discriminative.

Table 3.3 reports the total time required for a given algorithm with a given features
set to perform the training and the test phases. From the results, the SVM+SGD algo-

Feature Set Total Size Average Size Standard Deviation
TF-IDF (baseline) 117,073 260 513

Concepts 29,952 21 13
Keywords 332,023 78 26

Keywords + Concepts 361,975 99 31
Table 3.2: Basic statistics about the considered features sets.

Features Set Algorithm Execution Time [s]
First-level Categories Second-level Categories

TF-IDF
(baseline)

DT 5.23 7.92
RF 12.20 39.81

SVM 3.70 16.25
SVM+SGD 0.25 1.12

Keywords

DT 3.32 7.21
RF 11.06 43.96

SVM 3.32 11.21
SVM+SGD 0.20 1.00

Concepts

DT 1.13 1.88
RF 2.38 7.67

SVM 0.31 2.21
SVM+SGD 0.05 0.20

Keywords
+

Concepts

DT 4.00 8.34
RF 13.53 50.38

SVM 3.95 12.84
SVM+SGD 0.26 1.06

Table 3.3: Computational time for completing both training and test phases.
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rithm achieved the best computational time, especially when fed with concepts. The
computational time mostly depends on the particular classi�er and the number of fea-
tures. For example, the computational time for SVM+SGD classi�er using concepts as
features takes 0.05 seconds due to the lower time required by SVM+SGD and the lower
size of the concepts feature set. DT and plain SVM got comparable computational time.

E�ectiveness Evaluation

We evaluated the performance of all the classi�ers trained on TF-IDF, keywords, con-
cepts, and keywords plus concepts using precision, recall and F-measure. The results in
Table 3.4 indicate that using keywords outperformed TF-IDF only with the SVM+SGD ap-
proach. Using concepts generally gave better results than using keywords, except when
fed into SVM-derived algorithms. Concepts outperformed TF-IDF in case of SVM+SGD
algorithm. With concepts, we obtained higher precision and lower recall, particularly
for macro and weighted evaluations. Overall, SVM fed with TF-IDF outperformed all the
other settings, but it was usually ten time slower than the SVM+SGD counterpart.

Table 3.5 shows the results of the classi�ers on second-level categories. In this
case, SVM+SGD classi�er trained using keywords still outperformed the same algorithms
trained on TF-IDF, while its performance decreased if trained on concepts. When key-

Features Algorithm Precision Recall F-Measure
Mic Mac W Mic Mac W Mic Mac W

TF-IDF
(baseline)

DT 0.48 0.56 0.55 0.48 0.47 0.48 0.48 0.48 0.48
RF 0.58 0.61 0.60 0.58 0.57 0.58 0.58 0.57 0.57
SVM 0.70 0.72 0.71 0.70 0.70 0.70 0.70 0.70 0.69
SVM+SGD 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.61

Keywords

DT 0.35 0.49 0.47 0.35 0.32 0.35 0.35 0.32 0.33
RF 0.43 0.51 0.49 0.43 0.41 0.43 0.43 0.40 0.41
SVM 0.65 0.68 0.67 0.65 0.65 0.65 0.65 0.65 0.65
SVM+SGD 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.65 0.65

Concepts

DT 0.44 0.68 0.66 0.44 0.42 0.44 0.44 0.44 0.45
RF 0.52 0.67 0.66 0.52 0.51 0.52 0.52 0.53 0.53
SVM 0.62 0.64 0.63 0.62 0.62 0.62 0.62 0.62 0.61
SVM+SGD 0.63 0.64 0.64 0.63 0.63 0.63 0.63 0.63 0.62

Keywords
+

Concepts

DT 0.46 0.65 0.64 0.46 0.44 0.46 0.46 0.47 0.47
RF 0.55 0.64 0.63 0.55 0.54 0.55 0.55 0.55 0.55
SVM 0.69 0.71 0.70 0.69 0.69 0.69 0.69 0.69 0.69
SVM+SGD 0.68 0.69 0.69 0.68 0.68 0.68 0.68 0.67 0.67

Table 3.4: E�ectiveness on video classi�cation over �rst-level categories.
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Features Algorithm Precision Recall F-Measure
Mic Mac W Mic Mac W Mic Mac W

TF-IDF
(baseline)

DT 0.46 0.53 0.52 0.46 0.42 0.46 0.46 0.44 0.46
RF 0.58 0.59 0.59 0.58 0.54 0.58 0.58 0.54 0.56
SVM 0.71 0.73 0.73 0.71 0.67 0.71 0.71 0.67 0.70
SVM+SGD 0.58 0.64 0.69 0.58 0.57 0.58 0.58 0.57 0.61

Keywords

DT 0.34 0.50 0.48 0.34 0.32 0.34 0.33 0.36 0.34
RF 0.43 0.49 0.49 0.43 0.41 0.43 0.43 0.42 0.42
SVM 0.62 0.70 0.67 0.62 0.55 0.62 0.62 0.57 0.61
SVM+SGD 0.66 0.66 0.70 0.66 0.65 0.66 0.66 0.63 0.66

Concepts

DT 0.39 0.49 0.52 0.39 0.38 0.39 0.39 0.39 0.40
RF 0.48 0.50 0.53 0.48 0.46 0.48 0.48 0.45 0.47
SVM 0.57 0.58 0.59 0.57 0.53 0.57 0.57 0.53 0.56
SVM+SGD 0.57 0.55 0.58 0.57 0.54 0.57 0.57 0.53 0.56

Keywords
+

Concepts

DT 0.41 0.52 0.52 0.41 0.40 0.41 0.41 0.42 0.41
RF 0.51 0.54 0.54 0.51 0.50 0.51 0.51 0.49 0.50
SVM 0.66 0.70 0.69 0.66 0.60 0.66 0.66 0.62 0.65
SVM+SGD 0.67 0.64 0.69 0.66 0.65 0.66 0.67 0.62 0.66

Table 3.5: E�ectiveness on video classi�cation over second-level categories.

words and concepts were combined, the overall performance improved. In the case of
SVM+SGD, it can be considered better than TF-IDF with an improvement up to 9%. The
worst case with concepts + keywords showed a maximum loss of 7% when SVM is adopted.
As far as the second-level categories classi�cation was concerned, it is worth noticing
that such categories are not equally distributed as the �rst-level categories (see Tables 3.3
and 3.4), and this variance negatively a�ects classi�cation using high-level features.

E�ectiveness-E�ciency Trade-o� Evaluation

In most cases, our semantic approach produces good performance, regardless the
increasing algorithm complexity in terms of video size or transcript size. The �rst factor
in�uences only the time needed to extract transcripts. No assumptions can be done
on transcript sizes in relation to video sizes since the number of words included into a
transcript depends on the amount of orally-provided content. The second factor has an
impact on feature extraction. Training and test are not in�uenced by the transcript size
since the size of each feature vector depends on the size of the word dictionary.

Considering the trade-o� between e�ectiveness in terms of precision, recall, F-
measure and e�ciency in terms of computational time, the combinations achieving best
results include SVM or SVM+SGD as algorithm and TF-IDF or Keywords+Concepts as fea-
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tures, respectively. However, SVM+SGD algorithm is generally over ten times faster than
SVM. With SVM+SGD, our approach using Keywords+Concepts outperforms that using
TF-IDF from 7% to 9% in terms of precision, recall and F-measure. The combination using
SVM+SGD and Keywords+Concepts achieves performance comparable with that obtained
by SVM fed with TF-IDF in terms of e�ectiveness, but the former is strongly better in ef-
�ciency. The experimental results demonstrate that Keywords+Concepts combined with
SVM+SGD can scale well, maintaining good performance in all cases.

3.6 Findings and Recommendations

In this chapter, we presented a new data set and a new approach supporting micro-
learning video classi�cation. Our approach extracts transcripts from videos using novel
speech-to-text systems and exploitsCognitive Computing to represent the features of each
video transcript. Moreover, it leverages Big Data technologies for fast computation.

Based on the obtained results, we can conclude that:

• Combining Concepts and Keywords can help existing machine-learning models to ex-
ploit the semantic behind the text that traditional approaches fail to capture.

• The proposed approach that fed SVM+SGD with Concepts+Keywords achieves good
performance in most cases for both computational time and precision-recall analysis.

• TF-IDF still works better than high-level features with algorithms that incrementally
split data for classi�cations, such as Decision Trees and Random Forest.

• Leveraging Apache Spark allows the proposed approaches to be scalable enough to
process and classify millions of videos, �tting to real-world operational conditions.

• No signi�cant drop exists between models performance over �rst and second-level
categories, highlighting how robust the considered features and algorithms are.

Given the short duration of videos, and therefore the short transcripts, we plan to
leverage DL methodologies for learning more reliable and robust features tailored for
solving this classi�cation task, going beyond general-purpose features. To this end, par-
ticular emphasis will be given to attention-based models able to consider the relevance of
each feature on the �nal classi�cation decision. Furthermore, given the short duration
of videos and their possibly specialized content, we will devise multi-level classi�ca-
tion approaches moving from high-level categories to low-level categories, and inves-
tigate whether this can contribute to get better results or could uselessly increase the
computational demand. Moreover, we would provide our approach as a base for usabil-
ity evaluation in order to quantify its impact on learners’ and instructors’ experience.
Our approach might also be combined with experiential data of students to recommend
videos that �t learners’ interests.



Chapter 4

Machine Learning Models for Con-
tent Recommendation

Research Highlights
• The large-scale dataset we proposed enables ML-based recommendation.
• Educational recommenders are highly susceptible to popularity biases.
• Instructors belonging to a minority group might be disadvantaged.
• Biases can be mitigated by regularizing models during training.

4.1 Introduction

Recommender systems learn behavioural patterns from data to support both individ-
uals [93] and groups [94] at �ltering the overwhelming alternatives our daily life o�ers.
However, the biases in historical data might propagate in the items suggested to the users
and foster potentially undesired outcomes [95]. For instance, some recommenders focus
on a tiny catalog part composed by popular items, leading to popularity bias [96, 97, 98].
Others generate a category-wise bias because the rating distribution greatly varies across
categories [99]. Historical patterns can promote unfair recommendations, discriminating
learners and/or educators based on sensitive attributes [100]. In addition, evaluating only
accuracy might not bring to online success [101]. Movie recommenders make good rating
predictions, but focus on few popular items and lack personalization [102]. In contrast,
in tourism, high accuracy corresponds to better perceived recommendations [103].

In the view of these context-dependent results, we thus point out that online educa-
tion is an unexplored �eld where the impact of biases should be investigated. Existing
e-learning platforms have attracted lots of participants and their interaction has gener-
ated a vast amount of learning-related data. Their collection and processing have opened
up new opportunities for supporting educational experiences, such as personalization
and recommendation [104, 105]. In such a multi-stakeholder environment, where a va-
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riety of individuals (e.g, learners, educators) or groups bene�ts from delivering recom-
mendations, the possibility that a recommender might be biased towards items of certain
categories or people characterized by certain sensitive attributes sheds lights on fairness
and transparency perspectives. Entirely removing any bias from algorithms is currently
impracticable, but uncovering and mitigating them should be a core objective.

In this chapter, we study the susceptibility of educational recommenders to existing
biases, and we design countermeasures that strike the trade-o� between bias mitigation
and recommendation e�ectiveness. We conducted an o�ine evaluation of di�erent rec-
ommendation strategies that took as input the ratings left by learners after attending on-
line courses. Then, we compared the courses recommended by classic and recent meth-
ods against data biases, such as popularity biases and educators’ gender biases. These
biases might have educational (e.g., course popularity bias might a�ect knowledge di-
versi�cation) and societal (e.g., educators from minority groups might be disadvantaged)
implications. Our results uncover that existing recommenders su�er from several biases,
and provide evidence on the need to go beyond the evaluation only of their accuracy.

The contribution of this chapter is �ve-fold:

• We arranged a large-scale data set including over 30k courses, 6K instructors and 32k
learners who provided 600k ratings. This outruns most of the existing educational data
sets for recommendation in terms of scale, completeness, and comprehensiveness.

• We provide novel de�nitions of trade-o� between recommendation e�ectiveness and
robustness against several biases (i.e., popularity robustness, educators’ gender robust-
ness), that make it possible to construct tailored benchmarks for these problems.

• We conduct explorative analysis on several biases (i.e., popularity bias, educators’
gender bias) in traditional recommenders and more recent learning-to-rank recom-
menders, and uncover internal mechanics and de�ciencies behind such biases.

• We de�ne regularization terms within training optimization functions for reducing
the in�uence of popularity and educators’ gender on item relevance during model
development, leveraging pair-wise comparisons of properly-selected pairs of items.

• We extensively validate the proposed mitigation approaches in the collected data set
and other public data sets from di�erent domains. We show that they produce signif-
icant improvements in popularity and providers’ gender bias mitigation, with a rea-
sonable impact on e�ectiveness, regardless of the applied domain.

The rest of this chapter is structured as follows: Section 4.2 describes the most repre-
sentative techniques for recommendation and provides a summary of biases in recom-
mendation. Then, Section 4.3 formalizes the problems we investigate, and Section 4.4
introduces the data set. Section 4.5 and Section 4.6 show approaches for providing less
biased and more fair recommendations. Finally, Section 4.7 concludes the chapter.
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4.2 Related Work

4.2.1 Recommendation Techniques

The term recommendation can be de�ned as predicting the interest of a user for items
based on his/her past interactions, and providing to him/her a ranking of unseen items
for which such a predicted interest is the highest [93]. Interactions can be rating val-
ues (e.g., stars) or binary values (e.g., like/dislike or interested/not interested). They can
be collected either explicitly, in combination with reviews entered by users, or implic-
itly, from system logs. Item recommendation approaches built upon such a data can be
personalized and non-personalized. Here, we deal with personalized recommendations,
which can be obtained through content-based, collaborative �ltering, or hybrid techniques.

Content-based methods mine descriptions and contents of items that have been
marked with high ratings by a user, and then recommend to this user unseen items that
have similar characteristics with respect to the former items [106, 107]. Recommend-
ing purely based on item content might bring some drawbacks, such as narrow pattern
extraction and overspecialization. The former occurs when the feature extractor or the
item content itself is often insu�cient to detect meaningful patterns. The latter implies
that content-based systems might recommended items that are too similar to the ones
experienced any the user in the past.

Collaborative �ltering approaches capitalize on the idea that users with similar rating
patterns might have similar interests in the future [108, 109, 110, 111]. Such a class of
recommenders include neighborhood and model-based methods. In the former, the user-
item ratings are directly used to predict ratings for new items in two ways, known as
user-based or item-based recommendation. They evaluate the interest of a target user for
an item using the ratings for this item by other users that have similar rating patterns.
The latter predicts the rating of a user for an item based on the ratings of the user for
similar items. Two items are similar if users have assigned ratings to these items in a
similar way.

On the other hand, model-based approaches optimize a predictive model fed with
rating data [112]. Relevant patterns of interaction between users and items are cap-
tured by model parameters learned from data. Latent Semantic Analysis [113], Latent
Dirichlet Allocation [114], Support Vector Machines [115], and Singular Value Decomposi-
tion [116, 117] are all examples of model-base approaches. Moreover, recent works inte-
grated learning-to-rank approaches categorized in point-wise [118], pair-wise [119, 120]
and list-wise [121, 122]. Point-wise approaches take a user-item pair and predict how
relevant the item is for that user. Pair-wise approaches digest a triplet of user, observed
item, and unobserved item, and minimize cases when the unobserved item is more rel-
evant than the observed item. List-wise approaches look at the entire list to build the
optimal ordering for that user.
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Finally, content-based and collaborative �ltering methods can be combined, leading to
hybrid recommendation approaches. For instance, individual predictions can be merged
into a single, robust prediction [123, 124] or content information can be added into a
collaborative �ltering model [125, 126].

4.2.2 Recommendation in Education

Research on personalization of learning is getting more and more important with the
increasing use of digital learning environments, such as learning object repositories,
learning management systems, and devices for mobile learning. This has made data col-
lection an inherent process of delivering educational content to the students. That means
that the analysis of learning behavior is no longer only related to representative pilot
studies, but also refers to the interaction of the entire student population. This trend has
even become faster with the appearance of Massive Open Online Courses (MOOCs) [127]
and the emerging of the Learning Analytics �eld [128]. The former provides massive
amounts of student data and fosters new opportunities for recommender systems. The
latter focuses on understanding and supporting learners based on the data they produce.

Existing taxonomies generally identify seven clusters to group educational recom-
menders systems [129], namely (i) the ones following collaborative �ltering approaches
as done in other domains [130, 131]; (ii) the ones that propose improvements to collab-
orative �ltering approaches to take into account the peculiarities of the educational do-
main [132, 133]; (iii) the ones that explicitly consider educational constraints as a source
of information [134, 135]; (iv) the ones that explore alternatives to collaborative �ltering
approaches [136, 137]; (v) the ones that consider contextual information [138, 139]; (vi)
the ones that assess the impact of the recommendations [140, 141]; and (vii) the ones
that focus on recommending courses instead of resources within them [142, 143, 144].
The �eld is moving and new approaches are emerging year by year.

Several trends have emerged from the analysis of educational recommender systems
according to the above-mentioned categories. Finding good items within courses is the
most applied task, but recommendation of sequence of items that aims to create an e�ec-
tive and e�cient learning path through digital contents is also an important task. Along
this mainly content-driven recommendations, the recommendation of other learners who
follow similar learning goals or share the same interests is a very central task. There are
some new tasks appearing in the recent years, which go beyond recommending learning
content within courses, such as suggesting online courses.

Examples for techniques are hybrid and content-based approaches that started to be
reported in 2008 and are increasingly applied in recent years until today. There is an
increasing interest in graph-based and knowledge-based approaches. They are mainly
applied to address sparsity and unstructured data problems. However, collaborative �l-
tering and rule-based approaches are still the most frequently used techniques [129].
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4.2.3 Biases in Recommendation

Popularity Bias

In the existing recommendation strategies, popular items (i.e., those with more rat-
ings) are frequently recommended and less popular ones are suggested rarely, if at all.
This has led to a phenomenon called popularity bias. The authors in [101] were among
the �rst to point at uneven results with respect to popularity in top-k recommendations.
In [145], the authors revealed that social media tra�c tends to exhibit high popularity
bias. In addition to this, it has been proved that popularity bias a�ects several other
domains [146]. In order to cope with popularity bias, researchers developed methods
falling into pre-processing, in-processing, and post-processing.

Pre-processing methods alter training data to reduce the potential impact of bias on it.
For instance, the work in [147] split the whole item set into short and long-tail parts
and clustered their ratings separately. Long-tail recommendations were based on rat-
ings from the corresponding cluster, while short-tail recommendation used the ratings
of individual items. They showed that this reduces the gap for long-tail items, while
maintaining reasonable performance. The authors in [146] proposed a non-uniform
sampling of training triplets. The idea was to normally sample item pairs where the
observed element is less popular then the unobserved one. They proved that learning
from those triplets can counteract popularity bias. The authors in [148] proposed to pick
up unobserved items based on a probability distribution depending on item popularity.

In-processing methods modify an existing algorithm to simultaneously consider rele-
vance and popularity, performing a joint optimization or using one criterion as a con-
straint for the other. The authors in [149] recommended new items by considering user’s
personal popularity tendency. This reasonably penalizes popular items while improving
accuracy. The work in [150] mitigated popularity bias by enhancing recommendation
neutrality, i.e., the statistical independence between a recommendation and its popular-
ity. The authors in [102] modi�ed the RankALS algorithm to push optimization towards
recommended lists that balance accuracy and short/long-tail item relevance. In [151],
the authors calculated the number of common neighbours between two items with given
popularities, then a balanced common-neighbour similarity index is developed by prun-
ing popular neighbours. While all approaches improve short/long-tail item balance, they
are not linked to an internal aspect causing the bias. Such a property might be desirable
to �nd better solutions for that particular class of algorithms.

Post-processing methods seek to re-rank a recommended list returned by an existing al-
gorithm according to certain constraints. The authors in [152, 153] presented two ap-
proaches for controlling item exposure. The �rst one adapted the xQuAD algorithm in
order to balance the trade-o� between accuracy and long-tail item coverage. The second
one multiplies the relevance score for a given item with a weight inversely proportional
to the item popularity. Items were re-ranked according to the weighted scores, gener-
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ating popularity-distributed recommendations. Furthermore, the work in [146] deter-
mined user-speci�c weights that help to balance accuracy and popularity. While a post-
processing approach can be applied to any algorithm, the computation of the weights
highly depends on the scale and distribution of the relevance scores. Therefore, they
must be arranged to the considered algorithm and require extra computation.

Consumer-related Bias

Consumer fairness (C-Fairness) deals with ensuring that users who belong to di�erent
groups or are similar at the individual level will receive recommendations with the same
quality. Existing works tackling consumer fairness either propose pre-processing, in-
processing, or post-processing approaches.

Considering the pre-processing approaches, the authors in [154] introduced the con-
cept of consumer-fairness into tensor-based recommendation algorithms, and optimize
for statistical parity (i.e., having the same recommendation quality for both groups of
users). They did so by proposing an approach to identify and remove from the tensor
all sensitive information about the users. By running the recommendation algorithm on
the tensor without the sensitive attributes, more fair recommendations can be gener-
ated. The authors in [155], instead, generated additional arti�cial data to improve the
fairness of the system. In their work, fairness is obtained by minimizing the di�erence
in the mean squared error of the recommender system for two groups of users.

Regarding in-processing approaches, the authors in [156] proposed approaches to
measure consumer-unfairness that might come from population imbalance (i.e., a class
of users characterized by a sensitive attribute being the minority) and from observation
bias (i.e., a class of users who produced less ratings than their counterpart). They propose
four unfairness metrics, and added them to the Matrix Factorization loss function to be
minimized. The authors in [157] tackled the problem of ensuring consumer-fairness in
recommendation ranking through pair-wise comparisons. They studied the likelihood
of a clicked item being ranked above another relevant unclicked item, de�ning pairwise
fairness. Then, they built a pairwise regularization, which penalizes the model if the its
ability to predict which item was clicked is better for one group than the other.

The mitigation of consumer unfairness through a post-processing approach was pro-
posed by the work in [158], mitigating stereotypes that might arise from the produced
recommendations, in what the authors call ε-fairness. They de�ned a recommendation
list as ε-fair if the predictability of a sensitive feature (e.g., the gender) of the user re-
ceiving the recommendations is lower than a value ε. In order to achieve that goal, a re-
ranking algorithm aims to minimize the loss in accuracy while guaranteeing ε-fairness.
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Provider-related Bias

Provider fairness (P-Fairness) aims to ensure that the providers of the recommended
objects, who belong to di�erent groups or are similar at individual level, will get recom-
mended the same amount of times based on their numerical representation in data.

Provider fairness was mostly tackled through post-processing approaches. The au-
thors in [159] achieved provider-fairness in the Kiva.org platform through a re-ranking
function based on xQuad; this algorithm balances recommendation accuracy and fair-
ness by dynamically adding a custom bonus to the items of the non-recommended
providers. In the same domain, the authors in [160] tried to de�ne the concept of local
fairness and identify protected groups through consideration of local conditions. This
was done to avoid discriminating between types of loans, and to equalize access to cap-
ital across all businesses. While the results showed that it is not possible introduce local
fairness in the recommendation, re�ned approaches could improve local conditions.

Di�erently from other fair recommender systems, the authors in [161] did not mea-
sure provider-unfairness based on sensitive features of the users, but on the popularity of
the providers. They focus on a two-sided marketplace, with the consumers being users
who listen to music, and the artists being the providers. If only highly popular artists
are recommended to users, there could be a disadvantage for the less popular ones. For
this reason, artists are divided in ten bins based on their popularity, and a fairness metric
that rewards recommendation lists diverse in terms of popularity bins is de�ned. Several
policies are de�ned to study the trade-o�s between user-relevance and fairness, with the
ones that balance the two aspects being those achieving the best trade-o�.

4.3 Problem Formalization

In this section, we formalize the recommender system, accuracy metrics, popularity
bias and educators’ fairness concerns, and new metrics we propose to quantify them.

4.3.1 Recommender System Formalization

Given a set ofM users U = {u1,u2, ...,uM} and a set ofN items I = {i1, i2, ..., iN}, we
assume that users have expressed their interest for a subset of items in I. The collected
feedback from observed user-item interactions can be abstracted to a set of (u, i) pairs
implicitly obtained from natural user activity or (u, i, rating) triplets explicitly provided
by users. We denote the user-item feedback matrix R ∈ RM∗N as by R(u, i) = 1 to
indicate user u interacted with item i, and R(u, i) = 0 otherwise; it is worth noticing
that this brings a slight simpli�cation along the way, with no generality loss.
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Given this input, the recommender system’s task is to predict unobserved user-item
relevance, and thereupon deliver a set of ranked items that satisfy the needs of users. To
this end, we assume that a function estimates relevance scores of unobserved entries in
R for a given user, and uses them for ranking the items. Formally, it can be abstracted
as learning R̃(u, i) = f(u, i|θ), where R̃(u, i) denotes the predicted relevance, θ denotes
model parameters, and f denotes the function that maps parameters to scores.

We assume that each user/item is internally represented through aD-sized numerical
vector. More precisely, the model includes a user-vector matrix W and an item-vector
matrix X. We also assume that the function f computes the dot similarity between user
and item vectorsWu andXi. The higher the similarity, the higher the relevance. To rank
items, they are sorted by decreasing relevance, and the top-k items are recommended,
where k is the cut-o� (i.e., the number of items to be shown to that user).

4.3.2 E�ectivenessMetrics and the Proposed Bias-relatedMetrics

As we deal with a multi-criteria setting, we are concerned about any accuracy loss
that results from considering additional criteria. Therefore, our goal is to strike a balance
between recommendation accuracy and debiasing metrics. For the former property, we
rely on a well-known metric, while for the latter property we formalize novel metrics
that are proposed in this thesis.

Normalized Discounted Cumulative Gain (nDCG). The Discounted Cumulative
Gain (DCG) is a measure of ranking quality [162]. Through a graded relevance scale
of items in a ranking, DCG measures the gain of an item based on its position in the
ranking. The gain is accumulated from the top to the bottom of the list, with the gain of
each result discounted at lower ranks. To compare the metric among recommended lists,
all relevant items are sorted by their relative relevance, producing the maximum possi-
ble DCG, i.e, Ideal DCG (IDCG). The normalized discounted cumulative gain (nDCG) is
then computed as:

DCG@k(u|θ) =
k∑
p=1

2f(u,ip|θ) − 1
log2(p+ 1) (4.1)

nDCG@k(θ) = 1
|U|

∑
u∈U

DCG@k(u|θ)
IDCG@k(u|θ) (4.2)

where f(u, ip|θ) is the relevance of the item suggested at position p to u, and IDCG@k
is calculated with items sorted by decreasing relevance.
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Popularity-aware Recommendation Parity (PSP). The proposed parity aims to force
the probability distributions of model outputs for di�erent items to be the same. Consid-
ering that only the top-k items are recommended to users, we focus on the probabilities
of being ranked within the top-k, which is also aligned with basic recommendation accu-
racy metrics, such as precision@k and recall@k. Therefore, we propose the popularity-
aware statistical parity metric, which encourages P(R@k|i = i1, θ) = P(R@k|i =
i2, θ) = ... = P(R@k|i = iN, θ), where R@k represents being ranked within top-k,
and P(R@k|i = j, θ) is the probability of ranking item j within top-k. Formally, we
calculate the probability as follows:

P(R@k|i = j, θ) =
∑
u∈Uϕ (u, j)∑

u∈U 1 − R(u, j) (4.3)

where ϕ (u, j) returns 1 if item j is being ranked in top-k for user u, 0 otherwise,∑
u∈Uϕ (u, j) calculates how many user are being recommended item j in top-k, and∑
u∈U 1−R(u, j) calculates how many users have never interacted with item j, and thus

might receive j as a recommendation. Last, to keep the same scale for di�erent k, we
compute the relative standard deviation over the probabilities to determine PSP@k:

PSP@k =
std (P(R@k|i = i1, θ), ...,P(R@k|i = iN, θ))
mean (P(R@k|i = i1, θ), ...,P(R@k|i = iN, θ)) (4.4)

where std(·) calculates standard deviation, and mean(·) calculates mean value.

Popularity-aware Equality of Treatment (PEO). The proposed equality of treatment
aims to encourage the True Positive Rates (TPRs) of di�erent items to be the same. We
de�ne the TPR as the probability of being ranked within top-k, given the ground-truth
that the item is relevant for the user in the test set. This is noted as P(R@k|i = j,y =
1, θ), where y = 1 de�nes that items are relevant for users. This value can be formally
computed as:

P(R@k|i = j,y = 1, θ) =
∑
u∈Uϕ (u, j)R(u, j)∑

u∈U R(u, j) (4.5)

where
∑
u∈Uϕ (u, j)R(u, j) calculates how many user who interacted with item j (test

set) are being recommended item j in top-k, and
∑
u∈U R(u, j) calculates how many

users have interacted with item j (test set). Then, we calculate the relative standard
deviation to determine PEO@k:

PEO@k =
std (P(R@k|i = i1,y = 1, θ), ...,P(R@k|i = iN,y = 1, θ))
mean (P(R@k|i = i1,y = 1, θ), ...,P(R@k|i = iN,y = 1, θ)) (4.6)
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The reader notices that TPR is equal to recall in classi�cation tasks, while the pro-
posed probability P(R@k|i = j,y = 1, θ) is equal to recall@k of item j in recommenda-
tion tasks. Therefore, mitigating bias based on equality of treatment enforces recall@k
for di�erent items to be similar.

Educators’ Gender Fairness. We assume to measure it as the equality of representation
between the number of items per educator’s gender and the number of recommendations
per educator’s gender. The score ranges between 0 and 1. Higher values indicate greater
educators’ fairness with respect to their gender. The ItemExposureFair@k (IEF@k)
for women educators is de�ned as:

IEF@k(θ) = 1 − abs
(
|Iwomen|

|I|
−

∑
u∈U,i∈Iwomen φ(u, i|θ)∑
u∈U,i∈Iφ(u, i|θ)

)
(4.7)

where φ(u, i|θ) is 1 if item i is recommended to u in top-k list, 0 otherwise. The metric
can be mutually computed for men educators as well.

Under our multi-criteria setting, note that the higher the nDCG value, the more accu-
rate recommendations are. For both PSP@k, PEO@k, and IEF@k, lower values indicate
that recommendations are less biased. From a practical perspective, we argue that a
good nDCG-PSP trade-o� is important in scenarios where an equal recommendation
distribution among items is required regardless of existing imbalance in the data, such
as some circumstances where items are connected with critical or sensitive informa-
tion1. Conversely, a good nDCG-PEO trade-o� is preferred in recommenders that want
to preserve the existing imbalance in original data, but prevent algorithmic bias. Finally,
a good nDCG-IEF trade-o� characterizes recommender systems that are both accurate
and unbiased against educators’ gender.

In what follows, we introduce a new data set that serves to investigate the above
problems in the educational domain. Then, we present exploratory analysis and techni-
cal approaches that aim to tackle the mentioned trade-o�s.

4.4 The Proposed COCO-RS Data Set

COCO-RS contains over 600k ratings from more than 30k learners, extracted from
courses delivered on Udemy, one of the leading global marketplaces for online learning
and teaching at scale. Unlike academic-oriented platforms driven to traditional course-
work, Udemy enables experts in various areas to o�er courses at no charge or for tuition

1We point out that, while this popularity metric and the related trade-o� may not tend to �t all recommendations scenarios universally, it would help drive algorithm decision
for systems that desire to face such popularity concerns due to speci�c business objectives.
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Data Set #Users #Items #Ratings Context Attributes
Book Crossing [163] 105,283 340,556 1,149,780 Books -
Epinions [164] 120,492 755,760 13,668,320 Social Web -
Last-FM [165] 1,892 17,632 92,834 Music -
Movielens 1M [166] 6,040 3,705 998,131 Movies C/P Gender
Movielens 10M [166] 69,878 10,676 9,973,604 Movies -
Movielens 20M [166] 138,493 26,744 20,000,263 Movies -
DAJEEE [167] - 20,000,000 - Resources -
TED [168] 69,000 1,000 100,000 Talks -
Merlot [169] - 40,000 - Resources -
MACE [170] - 150,000 - Resources -
COCO-RS 37,704 30,399 617,588 Courses C/P Gender

Table 4.1: Representative data sets for recommendation.

fees. In comparison with other online course platforms, no third-party control on reli-
ability, validity, accuracy or truthfulness of the course content is performed. All copy-
right and registered trademarks remain property of their owners. To the best of our
knowledge, there exists no other benchmark large-scale data set that includes educa-
tional ratings from online courses. Table 4.1 summarises other representative data sets
used for recommendation. While several large-scale data sets from other domains have
been successfully collected, existing data sets from the educational domain include few
users, items, and ratings, and lack sensitive attributes suitable for fairness studies.

4.4.1 Collection Methodology

This section describes our multi-stage approach for collecting a large educational rat-
ings data set. The pipeline is summarised in Fig. 4.1, and key stages are discussed below:

1. Candidate Courses Retrieval: The �rst stage is to obtain a list of courses from
Udemy. We start from the list of courses that are returned by Udemy APIs2, that
exposes functionalities to help developers accessing content and building external
applications. The script retrieved 43, 023 courses, dumped in November 2017.

2. Course Ratings Download: To retrieve the ratings released by learners, the script
uses the Udemy APIs method aimed to return course ratings given the course iden-
ti�er. The query result gave 6M rows, each with the course id, the timestamp, the
rating between 0 and 5 with step 0.5, and the name of the learner who released it.

3. Data Cleaning and Pruning: To ensure that the data set can be used for bench-
marking recommendation, we took only learners who released at least 10 ratings.

2https://www.udemy.com/developers/

https://www.udemy.com/developers/
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Fig. 4.1: Collection pipeline for COCO-RS data set.

Fig. 4.2: Structure of the COCO-RS data set.

The re-sampled data set includes 37k users, who gave 600k ratings to 30k courses.

4. Stakeholders’ Gender Extraction: UdemyAPIs do not give any information regard-
ing sensitive attributes of learners and instructors. By capitalizing on the names of
learners retrieved at step 2 and the name of instructors retrieved by an hand-crafted
crawler, we used Gender APIs3 to get the gender starting from the name.

5. User IDs Anonymization: As we were dealing with sensitive personal attributes,
we anonymized both learners IDs and instructors IDs. Each type of ID was re-scaled
between 0 and n_users − 1, where n_users corresponds to the number of learners
and instructors, respectively. No other identi�er is linked to original identities.

4.4.2 Structure and Statistics

COCO-RS is a CSV -based collection whose structure in terms of entities and associ-
ations is depicted in Fig. 4.2. Text attributes have Unicode coding, while languages and
timestamps hold ISO639-1 and ISO8601 standards, respectively.

Course is the most informative entity. First, id and course URL provide unique identi-
�cation attributes. Then, the course is described by short and long descriptions. Require-
ments and objectives list technical and pedagogical needs at the beginning and expected

3https://genderapi.io/

https://genderapi.io/
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Fig. 4.4: Ratings/category on COCO-RS.
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Fig. 4.5: Rating distribution on COCO-RS.
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Fig. 4.6: Popularity tail on COCO-RS.

learner skills at the end, respectively. The language, the instructional level (beginner, in-
termediate, expert), �rst/second-level categories, and tags are listed. Each course has only
one �rst-level category and one second-level category. Other course �elds identify the
current price and the discount. Numerical attributes list the course duration in hours.

Due to privacy constraints, the Instructor and Learner entities only include informa-
tion available on the corresponding public pro�les. Each entity instance is uniquely
identi�ed by a fake id, so that the id stored into the data set does not correspond to the
real id of the user. Each instructor is described by the job title and biography. Regard-
ing relationships, in Teach, the pairs of instructor id and course id model the association
among instructors and the courses they teach. One instructor can teach more than one
course and the same course can have one or more instructors. Each pair of course id and
learner id in Participate de�nes the courses that the learner attended. Evaluate contains
learner id, course id, the [0-5] rating with step 0.5, and the timestamp.

By counting the ratings released over time, it can be observed that there is an increas-
ing trend over years (Fig. 4.3). The data set includes 30, 399 courses, distributed over 15
�rst-level categories (Fig. 4.4), that received 617, 588 ratings.

The ratings distribution is unbalanced across categories (avg. 47, 506; st.dev. 62, 615;
min 688; max 240, 047). Similarly, the languages distribution along courses follows such
a trend. Only 21% of courses do not use English as primary language. Furthermore, the
data set includes 37, 793 learners. Such ratings are non-uniformly distributed across the
range of values they can hold (Fig. 4.5). Most of the ratings have a value of 5, meaning
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that learners usually recognize courses as of high-quality. However, only few courses
received lots of ratings, while the rest of them has been rarely evaluated. This means that
the popularity tail in COCO-RS is highly skewed (Fig. 4.6)4. The sparsity of the rating
matrix is therefore 0.995%. The distribution of users across genders is highly unbalanced,
with 84% men and 16% women. The same gender representation is maintained on rat-
ings. Only learners with at least 10 rating are included, while each course can have one
or more ratings. The distribution of the number of ratings per courses (avg. 20; st.dev.
72; min. 1; max. 2, 812) shows a downward trend, but there is a large number of courses
with a lot of ratings. Finally, COCO-RS also includes 7, 411 instructors, 72% men and 28%
women. Few instructors teach several courses (avg. 3; st.dev. 7; min 1; max 453).

4.5 The Proposed Method for Popularity Debiasing

4.5.1 Exploratory Analysis on Traditional Recommenders

To better understand the need of considering recommendation e�ectiveness and pop-
ularity bias metrics, we begin by providing an explorative analysis. We leveraged the
Java recommendation framework LibRec [171] to evaluate traditional collaborative �l-
tering algorithms on COCO-RS, due to their popularity in e-learning contexts [129, 172].

The investigated algorithms are listed below:

• Non-Personalized (NP) baselines:

– Random: randomly recommending items;

– MostPop: recommending the most frequently-consumed items;

– ItemAvg: recommending the items with the highest average rating;

– UserAvg: recommending the items with the highest user average rating.

• Standard Collaborative Filtering (SCF) algorithms:

– ItemKNN : item-based collaborative �lter (Cosine, K-NN, k = 100);

– UserKNN : user-based collaborative �lter (Cosine, K-NN, k = 100).

• Matrix Factorization (MF) methods:

– SVD++: gradient descent matrix factorization (LatentFactors = 40) [173];

– WRMF : weighted regular matrix factorization (LatentFactors = 40)[174].

4Existing works often include the �rst 20% most popular items within the short-tail set and the rest in the long-tail set, but this can lead to unfair intra-set popularity,
especially in highly-skewed tails. Therefore, short and long-tail items have been grouped so that the Gini index of the popularity distribution in each set is 33%. Moreover, since
distant-tail items receive so few ratings that meaningful cross-user comparison becomes noisy, our works will focus only on short and long tails.
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• Learning-To-Rank (LTR) algorithms:

– AoBPR: a variant of BPR manipulating uniform sampling pairs [175];

– BPR: bayesian personalized ranking technique for implicit feedback [119];

– Hybrid: hybrid integrating diversity and accuracy-focused approaches [176];

– LDA: a �ltering approach leveraging Latent Dirichlet Allocation [177].

It should be noted that, while we can generate a ranking of the items a user has not
evaluated yet by predicting missing ratings, LTR methods maximize the ranking quality,
generating diverse recommendations against rating-prediction-based algorithms.

Prediction and Ranking E�ectiveness

First, we evaluate the recommendation e�ectiveness, considering metrics that eval-
uate rating prediction accuracy against those that measure the ranking quality. Like
in similar studies [178], we employed a 5-fold cross validation based on a user-sampling
strategy. We split the users in �ve test sets. Each set was the test set of a given fold.
In each fold, for each user in the corresponding test set, we selected 5 ratings to be the
test ratings, while the rest of their ratings and all the ratings from users not in that test
set were the train ratings. Each algorithm was run in both rating prediction and top-
10 item ranking mode. We chose top-10 recommendations since they probably get the
most attention and 10 is a widely employed cut-o� [93]. Root Mean Squared Error (RMSE)
evaluated the accuracy of the rating predictions (i.e., the lower the better). Area Under
the Curve (AUC), precision, recall, and Normalized Discounter Cumulative Gain (NDCG)
[162] measured the recommended list accuracy (i.e., the higher the better).

Family Method RMSE AUC Prec@10 Rec@10 NDCG
MF SVD++ 0.68 0.50 0.005 0.001 0.008
NP UserAvg 0.70 0.50 0.004 0.007 0.005
SCF UserKNN 0.71 0.68 0.050 0.101 0.095
SCF ItemKNN 0.76 0.69 0.051 0.102 0.092
NP ItemAvg 0.78 0.50 0.005 0.008 0.005
NP MostPop 1.07 0.60 0.023 0.046 0.038
LTR BPR 2.08 0.69 0.054 0.109 0.094
LTR AoBPR 2.34 0.69 0.054 0.108 0.094
NP Random 2.36 0.50 0.004 0.008 0.005
LTR LDA 4.11 0.66 0.042 0.085 0.074
LTR Hybrid 4.11 0.55 0.018 0.037 0.029
MF WRMF 4.12 0.71 0.062 0.124 0.114

Table 4.2: The accuracy of the algorithms on rating prediction and top-10 ranking.
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Table 4.2 shows the results. The best ones are printed in bold in case they were sig-
ni�cantly better with respect to all the others (paired two-tailed Student’s t-tests with
p = 0.05). On RMSE, the MF approach, SVD++, signi�cantly outperformed all the other
schemes. However, the rather simple non-personalized UserAvg yielded comparable ac-
curacy to SVD++, and was better than other computationally expensive schemes like
ItemKNN and BPR. The latter was signi�cantly better than the other LTR approaches.
ItemAvg, which simply considers an item’s average rating, achieved results in line with
ItemKNN. The WRMF method performed, somewhat surprisingly, worse than a lot of the
traditional ones. The ranking of the algorithms on RMSE is not consistent with respect
to other contexts [146]. This con�rms that the data set characteristics like size, sparsity,
and rating distributions can a�ect recommendation accuracy [179].

The results on item ranking in terms of nDCG led to a completely di�erent algo-
rithm ranking. BPR and AoBPR achieved the best performance together with WRMF and
UserKNN. Except Hybrid, the LTR methods performed consistently better than MostPop.
In line with the results in [180], MostPop performed quite poorly, probably due to the
wide range of categories included in the data set. Although Item-KNN is rather simple, it
performed much better than almost all the NP baselines, and reached results comparable
to LTR schemes. SVD++ led to mediocre results, while it was the best method in rating
prediction. In contrast, WRMF achieved the highest accuracy.

While the accuracy of some algorithms is almost equal, the top-10 lists greatly varied.
In view of these di�erences, we calculated the average overlap of courses recommended
by each pair of algorithms to the same user (Fig. 4.7). Such an overlap is high for pairs
like (WRMF, UserKNN ), (UserKNN, LDA), and (AoBPR, BPR). Hybrid and SVD++ recom-
mended courses which are not typically proposed by the other algorithms. However,
since MostPop works well and has some similar recommendations with respect to other
algorithms, the latter could tend to recommend popular courses as well.

Fig. 4.7: The average overlap per user between the top-10 lists.
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Course Popularity Bias

We then explored how the course popularity in data in�uences the algorithms. To
this end, we evaluated how popular are the courses provided by an algorithm, assessing
its capability to suggest relevant but not popular ones.

Table 4.3 presents the popularity of the recommended courses as the number of rat-
ings they received. By design, MostPop has the highest average popularity, since it rec-
ommends best sellers. The recommended courses received about 1, 500 ratings on av-
erage. LDA and WRMF also showed a popularity bias, with 586 and 404 ratings per
recommended course, respectively. On the other hand, some algorithms are not biased
towards course popularity. SVD++, ItemKNN, AoBPR, and BPR recommended several
courses from the long tail. Interestingly, only Hybrid recommended niche and unpopu-
lar courses, and its average number of ratings, 11, is lower than the average number of
ratings per course in the catalog, 20. Other NP baselines achieved a good trade-o�.

To obtain a detailed picture, we sorted the courses according to the number of ratings
in the dataset and organized them in bins of 1000 courses (Fig. 4.8); the �rst bin contains
the least rated courses, while subsequent ones consider courses of increasing popularity.
Then, we counted how many items from each bin an algorithm recommends. Except
Hybrid, Random, and SVD++, all the algorithms often recommended courses from the
bin of the most popular ones (bin30). In BPR, course popularity seems to be directly
related with the chance of being recommended. SVD++ and Hybrid seem to be good
options to recommend niche courses. Interestingly, Hybrid tends to recommend more
unpopular courses than popular ones.

Receiving a lot of ratings does not imply people liked a course. The correlation be-
tween number of ratings and average rating is weak, 0.11. Therefore, we measured the

Family Algorithm Avg. / StDev. Rating Avg. / Std. Dev. Number of Ratings
MF SVD++ 4.76 / 0.21 134 / 267
NP MostPop 4.71 / 0.07 1545 / 588
NP ItemAvg 4.70 / 0.42 15 / 3
MF WRMF 4.68 / 0.17 404 / 393
LTR LDA 4.64 / 0.14 586 / 515
SCF UserKNN 4.63 / 0.21 192 / 296
NP UserAvg 4.60 / 0.20 341 / 524
LTR AoBPR 4.58 / 0.25 71 / 152
SCF ItemKNN 4.55 / 0.23 88 / 168
LTR BPR 4.55 / 0.27 67 / 144
NP Random 4.47 / 0.58 20 / 73
LTR Hybrid 4.44 / 0.72 11 / 57

Table 4.3: The popularity of the recommended items.
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Fig. 4.8: The distribution of the recommended courses over the catalog.

average rating of a course as another popularity indicator. It does not tell if the course
is really liked by a large number of people, but it can help to see if some algorithms tend
to concentrate on highly-rated and probably less-known courses. Table 4.3 shows that a
lot of algorithms recommend courses that were rated, on average, above 4.44 (the global
average is 4.47). Furthermore, some algorithms (i.e., SVD++, MostPop, and WRMF ) rec-
ommended a lot of courses with a high average rating, and low-rated courses are rarely
recommended. LDA focuses on high-rated courses (4.64) and is signi�cantly di�erent
from other LTR methods. For algorithms not optimized for rating prediction, the aver-
age rating is low and closer to the global average. This means that they do not take the
average rating into account and recommended also low-rated courses. The average rat-
ing of the MostPop recommendations is 4.71, so well-known courses are also top-rated.

Catalog Coverage and Concentration Bias

To check if the recommender system is guiding users to long-tail or niche courses,
we should count how many courses in the catalog are recommended. Hence, we looked
at the course space coverage and concentration e�ects of the algorithms.

We counted the number of di�erent courses appearing in the lists (Table 4.4). The
results show that the coverage can be quite di�erent across the algorithms. Except Ran-
dom, only Hybrid recommend more courses than all other techniques, almost half of the
whole catalog. This is in line with the idea behind Hybrid: balancing diversity and rating
prediction accuracy. However, in our context, we found it achieved good diversity, but
low prediction accuracy. Other LTR approaches provided a coverage of around 20%, ex-
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Family Algorithm Coverage Catalog Percentage Gini Index
NP Random 30399 100.00 0.16
LTR Hybrid 12735 41.90 0.77
LTR BPR 6514 21.43 0.85
LTR AoBPR 5857 19.27 0.89
SCF ItemKNN 4653 15.31 0.89
SCF UserKNN 1183 3.89 0.89
MF SVD++ 1121 3.68 0.88
MF WRMF 457 1.50 0.68
LTR LDA 200 0.65 0.64
NP MostPop 29 0.09 0.63
NP UserAvg 14 0.04 0.17
NP ItemAvg 12 0.04 0.28

Table 4.4: The catalog coverage per algorithm out of 30.399 courses.

Fig. 4.9: The distribution of the number of recommendations.

cept LDA (1%). KNN methods showed a limited catalog coverage, con�rming the results
in [181]. In contrast to [182], the algorithms performing best on prediction accuracy are
not the best ones also for the catalog coverage. These di�erences went unnoticed if only
the accuracy was considered.

Catalog coverage does not reveal how often each course was recommended. Thus,
we captured inequalities with respect to how frequently the courses appeared. For each
course suggested by an algorithm, we counted how often it is contained in the lists of
that algorithm. The courses are sorted in descending order, according to the times they
appeared in the lists, and grouped in bins of 10 courses. Bin1 contains the most recom-
mended courses. Fig. 4.9 shows the four bins (out of 3, 040) with the 40 most frequently
recommended courses. The Y-axis shows the percentage of recommendations the algo-
rithm has given for the courses in the corresponding bin with respect to the total number
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of suggestions provided by that algorithm. While SVD++ and ItemKNN recommended a
number of di�erent courses, most of them were rarely proposed. BPR,AoBPR, andWRMF,
which had a good catalog coverage, provided about 20% of the courses from the 40 most
often recommended ones. In Table 4.4, we show the Gini index to observe the inequality
with respect to how often certain courses are recommended, where 0 means equal dis-
tribution and 1 corresponds to maximal inequality [183]. Except for the NP baselines,
Hybrid and BPR have the weakest concentration bias. Compared to BPR, Hybrid’s Gini
index is lower, showing a more balanced distribution of recommendations.

Course Category Popularity Bias

E-learning platforms are often equipped with a taxonomy that associates each course
with one or more categories. This attribute does not imply the quality of a course, but the
distribution of the number of ratings can greatly vary across categories. Nonetheless it
is natural, given by the heterogeneity of users and courses, it makes aggregated ratings
commonly used by algorithms incomparable across categories and thus prone to bias
issues. The course category popularity bias could even in�uence how learners perceive
the recommendations as useful for deepening the knowledge in a preferred category
or for fostering a multi-disciplinary knowledge in unexplored categories. Therefore,
we focused on the popularity of the category to which courses belong and how the
popularity bias a�ecting course categories in data propagates in the recommended lists.

We counted how many di�erent course categories appeared in the lists. UserAvg ex-
hibited only 3 out of 13 di�erent categories, while MostPop and ItemAvg recommended

Fig. 4.10: The distribution of the recommended courses over course categories.
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5 and 8 categories, respectively. Except for LDA (10 categories), all the other algorithms
provided a full coverage on categories. To obtain a clear picture, we sorted the 13 cate-
gories according to their increasing number of ratings in the dataset. Bin12 represents
the most popular category. For each algorithm, we counted how many recommendations
per category were provided in the recommended lists. Fig. 4.10 shows the distribution
of the recommendations per category. BPR, ItemKNN, LDA, and WRMF showed a bias
to the most popular category. More than 50% of their recommendations came from it.
Hybrid and SVD++ o�ered a more uniform distribution across categories.

In this context, it was also important to measure how much each algorithm reinforces
or reduces the bias to a given category. Fig. 4.11 shows the bias related to course cat-
egory popularity. Each rectangle shows the percentage of increment / decrement on
the recommended courses per category with respect to the ratings per category in the
dataset. Considering that “development” is the most popular category, when producing
recommendations, MostPop reinforces its popularity by 50%. Hybrid and SVD++ caused
a 10% popularity reduction in courses of this category. Hence, their recommendations
can meet the needs of those not interested only in “development” courses.

To sum up, the di�erences in accuracy between some algorithms are very small. For
instance, the best-performing techniques, SVD++ and UserAvg, have a di�erence of 0.02
in RMSE. The algorithm ranking based on nDCG was quite di�erent. However, the anal-
ysis regarding catalog coverage and concentration showed that our �ndings on popu-
larity bias can be contrasting with respect to the ones observed for accuracy. Hence,
we point out that, if the goal is to guide learners to di�erent areas of the course
catalog, algorithms should not be optimized on accuracy alone. In fact, Hybrid
did not perform well on prediction accuracy, but covered half of the catalog. In contrast,
SVD++ had a better prediction accuracy, but recommended only 4% of the courses.

Fig. 4.11: The reinforcement produced by algorithms over course categories.
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Fig. 4.12: The neural personalized ranking model explored in our analysis.

4.5.2 Exploratory Analysis on Neural Recommenders

In this section, we extend our exploratory analysis to one of the most widely adopted
algorithms, Neural Personalized Ranking (NPR) [118]. We show that it is vulnerable to
imbalanced data and tends to produce biased recommendation based on PSP and PEO.

Neural Personalized Ranking Description

NPR is one of the most in�uential methods to solve recommendation problems, which
is the foundation of many cutting edge personalized ranking algorithms [184, 185, 186].
This algorithm adopts matrix factorization [187] as the base, and estimates model pa-
rameters θ through a pair-wise objective. The latter maximizes the margin between
the relevance f(u, ii|θ) predicted for an observed item ii and the relevance f(u, ij|θ)
predicted for an unobserved item ij, given interactions in R (Fig. 4.12), de�ned as:

argmax
θ

∑
u∈U,i∈I+u ,j∈I−u

δ(f(u, ii|θ) − f(u, ij|θ)) (4.8)

where δ(·) is the sigmoid function, I+u and I−u are the sets of items for which user u’s
feedback is observed or unobserved, respectively.

Before model training, embedding matrices are initialized with values uniformly dis-
tributed between 0 and 1, and the loss function is transformed to the equivalent mini-
mization problem. For 20 epochs, the model is served with batches of 1024 triplets. More
precisely, for each user u, we create 10 triplets (u, i, j) per observed item i; the unob-
served item j is randomly selected. The optimizer used for gradient update is Adam5.

5In our work, we are more interested in better understanding algorithm characteristics beyond accuracy, so the further accuracy improvements that can probably be achieved
through hyper-parameter tuning would not substantially a�ect the outcomes of our analyses.
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Fig. 4.13: Recommendation accuracy for the explored recommenders.

Recommendation Accuracy Analysis

Throughout our exploratory analysis, NPR is compared with two non-personalized
baselines, namely popularity-based recommender Most Pop and random guess recom-
mender Random. Such baselines are opposite with respect to popularity bias: a random
recommender is insensitive to popularity and uniformly recommends items across the
catalog; a popularity-based recommender ignores tail items, and suggests the same few
popular items to everyone6. For statistic signi�cance, we use paired two-tailed Students
t-tests with a p-value of 0.05.

We adopt two datasets with diverse item distributions: MovieLens 1M (ML1M) [166]
contains 1M ratings applied to 3K movies by 6K users of the online service MovieLens.
Each user rated at least 20 movies; COCO-RS [18] contains 600k ratings applied to 30K
courses by 37K users of the educational platform Udemy. Each user rated at least 10
courses. We treated ratings as positive feedback, i.e., users are interested in rated items.

Figure 4.13 plots the nDCG@k accuracy metric measured for NPR, Most Pop, and
Random in Movielens 1M over the ALL test setup (top-left) and the UAR test setup (top-
right); in COCO-RS over the ALL (bottom-left) and the UAR test setups (bottom-right).
Evaluated on all test ratings (ALL Test Setup - left plots), NPR (blue line) signi�cantly
outperformed Most Pop (orange line) and Random (green line) on both datasets. How-
ever, the performance achieved by Most Pop seems to be highly competitive. This might
reveal that the rating per item distribution on the test set is highly unbalanced towards
popular items, and it can bias evaluation metrics in favor of popular items. Furthermore,

6Even though comparing an algorithm against Most Pop and Random has been previously well studied [146, 17], there is no evidence on how the new bias metrics model
their outcomes.



54 Section 4.5. The Proposed Method for Popularity Debiasing

we observed that the gap in nDCG between NPR and Most Pop increases at higher cut-
o�s. Most Pop can identifying relevant items, but tends not to put them in top positions.

To measure the robustness of the involved recommenders to rating-per-item unbal-
ances within the test set, we examined an alternative experimental con�guration, where
the statistical role of popularity gets reduced. More precisely, we considered a test set,
which is a subset of the original test set, where all items have the same amount of test
ratings (UAR Test Setup) [188]. Results are depicted on the right plots in Figure 4.13. It
can be observed that nDCG scores decrease under the latter evaluation setup for both
NPR and Most Pop. Both algorithms have some degree of bias towards popular items.

The fact that NPR strongly adhere to Most Pop might suggest that a recommender
system optimized for recommendation accuracy would not by default result in recom-
mending sets with low popularity bias estimates. We conjecture that optimizing for
accuracy, without explicitly considering popularity bias, has an adverse impact
on the latter. To demonstrate this, we present a number of results on popularity.

Popularity Bias Analysis

Motivated by the accuracy results, we analyze the ranking probability distributions of
NPR, Most Pop, and Random. To this end, Figure 4.14 plots bias scores in Movielens 1M
as recommendation parity (top-left) and equality of treatment (top-right); in COCO-RS
as recommendation parity (bottom-left) and equality of treatment (bottom-right). From
the �gure, we can conclude that NPR and Most Pop fail to hold good levels of recommen-
dation parity (left plots). This derived from the fact that their PSP@k is tremendously
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Fig. 4.14: Popularity bias for the explored recommenders.
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Fig. 4.15: Item catalog metrics for the explored recommenders.

higher than the PSP@k achieved by Random, which has a perfect recommendation par-
ity by default. Furthermore, the results on equality of treatment (right plots) point to a
di�erent view. PEO@k can identify situations in which some items, often those which
are more popular, might get smaller errors. From the �gure, Most Pop and Random bring
to very high PEO@k scores. This is due to the fact that they achieve high TPR for few
popular items and null TPR for the rest of the catalog.

We also plotted the Average Recommender Item Popularity (ARIP) and the Item Cat-
alog Coverage (COV) for the explored recommenders. The results are plotted in Fig-
ure 4.15 - the average recommended item popularity (top-left) and item catalog cover-
age (top-right) in Movielens 1M; the average recommended item popularity (bottom-
left) and item catalog coverage (bottom-right) in COCO-RS. The average popularity of
an item recommended by NPR is around 50% lower with respect to the one measured
for Most Pop (left plots). It seems to be a signi�cant improvement at �rst glance but,
considering the item popularity distribution, we can observe that such popularity val-
ues along cut-o�s fall into the head item set. Hence, NPR still tends to recommend very
popular items. On item catalog coverage (right plots), NPR achieves full coverage at
k = 200. This means that, at smaller cut-o�s, the recommended items does not greatly
di�er among users, and a tiny part of the catalog is exposed.

Popularity Bias Diagnosis

Starting from the �ndings on recommendation accuracy and popularity bias, we seek
to uncover some internal mechanics that foster bias propagation in NPR.

First, we applied the t-SNE dimensionality reduction technique to both the embedding
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matrices, so that user and item embeddings are mapped onto the same bi-dimensional
space. Figure 4.16 plots user and item embeddings computed by NPR on Movielens 1M
(left) and COCO-RS (right). It can be observed that user embeddings are mapped closer to
short-tail items than long-tail ones. It follows that, when computing user-item relevance,
the items closest to a user often come from the head.

To have a detailed view, we also analyzed the distribution of user-item relevance
scores for observed head-mid items and observed tail items, separately. Figure 4.17
plots the relevance distributions for head-mid and tail item-user comparisons by NPR
in Movielens 1M (left) and COCO-RS (right). Such distributions are surprisingly cleanly
Gaussian, and are signi�cantly di�erent. It can be observed a tendency of head-mid ob-
served items of getting higher relevance to users. This should be considered as an unde-
sired behavior of the algorithm that is under-considering observed tail items regardless
of the real user interest.

Furthermore, we analyzed the performance in terms of overall, intra- and inter- pair-
wise accuracy for head-mid and tail observed items. To this end, we randomly sampled
four sets of 100×N triplets (u, i, j) each, where: the �rst set includes observed head-mid
items as i and unobserved head items as j; the second set includes observed head-mid
items as i and unobserved tail items as j; the third set includes observed tail items as i
and unobserved head-mid items as j; and the fourth set includes observed tail items as
i and unobserved tail items as j. For each set, we computed the recommender pair-wise
accuracy on predicting a higher relevance for observed items than unobserved ones.

Figure 4.18 plots the NPR accuracy on getting higher relevance for observed than
unobserved items for NPR in Movielens 1M (left) and COCO-RS (right). It can be ob-
served that NPR fails in assigning higher relevance to observed head-mid items, when
they were compared to unobserved head-mid items (left-orange bar). It performs better
when observed head-mid items are compared against unobserved tail items (left-green
bar). Similarly, NPR fails to calculate higher relevance when comparing observed tail
items and unobserved head-mid items (right-green bar); it achieves higher accuracy for
observed/unobserved tail item comparisons (right-orange bar).

Considering the inter pair-wise accuracy gap between observed head and observed
tail items (gap between green bars), we uncover that the recommender fails more fre-
quently on giving higher relevance to observed tail items when compared against unob-
served head-mid items (right-green bar); conversely, it performs signi�cantly better in
the opposite case, i.e., observed head-mid item against unobserved tail item (left-green
bar). Hence, tail items, even when of interest, are signi�cantly under-ranked.

The correlation between (i) the di�erence in user-item relevance and (ii) the relative
di�erence in popularity for observed and unobserved items is highly positive: Spear-
manCorr=0.65 for NPR. This means that there is a direct relation between popularity
and relevance, in line with the value obtained by Most Pop: Corr=1.00. On the other
hand, it is in contrast with the correlation measured for Random: Corr=0.00.
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Fig. 4.16: T-SNE embedding representation for NPR.
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Fig. 4.17: Relevance score distributions for NPR.
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Fig. 4.18: Pair-wise accuracy for NPR.

Hence, we conjecture that minimizing the absolute value of such a correla-
tion during optimization might have a positive impact on the targeted trade-o�
between recommendation accuracy and popularity bias. To demonstrate this, we design
a treatment that reduces the strength of this correlation while optimizing for accuracy.

4.5.3 Methodology for Popularity Bias Mitigation

With an understanding of some de�ciencies in NPR internal mechanics, we now in-
vestigate how we can optimize a recommender system for overcoming them, and seek to
generate popularity-unbiased recommendations. To this end, we optimize for equality
in pair-wise accuracy between observed head-mid and tail items by minimizing both (i)
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the pair-wise error speci�ed in Eq. 4.8, and (ii) the correlation between the di�erence
in relevance and in popularity over observed and unobserved items. The reader notices
that our procedure will not rely on any arbitrary split between head-mid and tail items.

The procedure is composed by the following steps:

1. Triplet Generation (SAM). For each user u, we create t = 10 triplets (u, i, j) per
observed item i; the unobserved item j is selected among the items less popular than
i for half of the user triplets, and among the items more popular than i for the other
half. We de�ne this set of triplets as T . This step will make sure that there is su�cient
data for computing the correlation-based regularization de�ned at Step 3.

2. Batch Grouping. We sample triplets in T in batches of m = 1024 samples in order
to set up an iterated stochastic gradient descent. Each batch is balanced in terms of
triplets where i is more popular than j and j is more popular than i, to ensure the
same representation for both sets in a batch.

3. Regularized Optimization (REG). Each training batch we considered, Tbatch =
{(utb , itb , jtb) | 0 6 b 6 m}, is fed into the model that follows a regularized paradigm
derived from the standard pair-wise approach (Fig. 4.12). The loss function can be
formalized as follows:

argmax
θ

(1 − α) acc(Tbatch) + α reg(Tbatch) (4.9)

where α ∈ [0, 1] is the regularizer weight, acc(.) is the standard pair-wise objective,
de�ned as follows:

acc(Tbatch) =

m∑
b=0

δ(f(utb , itb |θ) − f(utb , jtb |θ)) (4.10)

and reg(.) regularizes the correlation involving (i) the residual between observed and
unobserved item relevance and (ii) the relative popularity of the observed item w.r.t.
the popularity of the unobserved item, as follows:

reg(Tbatch) = 1 − |Corr(A,B)| (4.11)

Ab = f(utb , itb |θ) − f(utb , jtb |θ) 0 6 b 6 m (4.12)

Bb =

{
1, if

∑
u∈U R(u, itb) >

∑
u∈U R(u, jtb)

0, otherwise
0 6 b 6 m (4.13)
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where
∑
u∈U R(u, i) and

∑
u∈U R(u, j) are respectively the popularity level of item

i and item j gather in the original dataset.

The model is thus penalized if its ability to predict an higher relevance for an observed
item is better when it is more popular than the unobserved item.

Steps 2 and 3 are repeated for all the batches, until convergence.

4.5.4 Evaluation

In this section, we empirically evaluate the proposed model w.r.t. the two proposed
bias metrics as well as the recommendation accuracy. We aim to answer four key re-
search questions:

• RQ1 What are the e�ects of the proposed data sampling, regularization, and their
combination on recommendations?

• RQ2 How does the regularization weight a�ect our treatment?

• RQ3 What is the impact of our treatment on internal mechanics?

• RQ4 How does our treatment perform compared with other state-of-the-art debiased
models in mitigating popularity bias and preserving recommendation quality?

Datasets

We used the same datasets leveraged for the exploratory analysis. The �rst one,
MovieLens 1M [166], includes 1M ratings applied to 3Kmovies by 6K users. The second
one, COCO-RS [18], includes 37K users, who gave 600K ratings to 30K online courses.
This can help us check if the proposal is generalizable across di�erent domains, as they
hold di�erent popularity distributions across the item spectrum.

Experimental Setup

In the experiments, we need to consider both recommendation accuracy and rec-
ommendation bias. For the recommendation bias perspective, we report PSP@k and
PEO@k. As for the recommendation quality we adopt nDCG@k. We report the results
with k = 10, 20, 50, 100, 200. We also measured precision and recall in the experiments,
which show the same pattern as nDCG, hence we do not report them for conciseness.

We compare the trade-o� achieved by the proposed regularized approach, namely
NPR+SAM+REG, against the one obtained by the following baselines:
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• NPR+J [146]. It applies a debiased data sampling strategy to the dataset, before training
NPR. The main idea is to focus the sampling only on triplets (u, i, j) where i is less
popular and j is more popular.

• NPR+W [152]. It re-ranks the output of NPR according to a weight-based strategy.
The relevance returned by NPR for a given item is multiplied with a weight inversely
proportional to the popularity of that item, before re-ranking.

• NPR+S [153]. For each user, it iteratively builds the re-ranked list by balancing the
contribution of the relevance score returned by NPR and of the diversity level related
to two item sets, namely head-mid and tail sets.

We performed a temporal train-test split that includes the last 20% of ratings released
by a user on the test set and the remaining 80% oldest ones on the training set. Embed-
ding matrices are initialized with values uniformly distributed in the range [0, 1]. The
model is served with batches of 1024 triplets, chosen from the corresponding set. Be-
fore each of 20 epochs, we shu�e the training batches. The optimizer used for gradient
update is Adam. Models are coded in Python on top of Keras, and trained on GPUs.

As we deal with popularity bias issues, we mostly focus on a testing con�guration
where the statistical role of popularity in accuracy metrics gets reduced. For the sake of
completeness, we also include results on the common con�guration that includes a full
test set. More precisely, we run the following setups:

• UAR. The test set consists of a subset of the original test set where all items have the
same amount of ratings, as described in [188].

• ALL. The test set includes all the original test ratings as created by the training-test
procedure describe above.

RQ1: E�ects of Model Components

In this subsection, we run ablation experiments to assess (i) the in�uence of the new
data sampling strategy and the new regularized loss on the model performance, and (ii)
whether combining these two treatments together might improve the trade-o� between
accuracy and popularity bias metrics.

To answer these questions, we compare the base model (NPR) against NPR trained on
data created through the proposed sampling strategy only (NPR+SAM), NPR optimized
through the proposed regularized loss only (NPR+REG), and NPR combining both our
treatments (NPR+SAM+REG). Results on accuracy and popularity are discussed below.

Figure 4.19 plots nDCG scores in Movielens 1M over the ALL test (top-left) and the
UAR test (top-right) and in COCO-RS over the ALL test (bottom-left) and the UAR test
(bottom-right). We can observe that all the newly introduced con�gurations (green,
orange, and red lines) have a loss in accuracy w.r.t. the base NPR model (blue line), if we
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considered all test ratings (left plots), leading to intractable mitigation. However, the gap
in accuracy among base and regularized models is positively reduced, when we consider
the same number of test ratings for all the items (right plots). We argue that, as large
gaps of recommendation accuracy in the ALL setup re�ect only a spurious bias in the
metric and the underlying test set (see [188] for a demonstration), the real impact of our
treatments on accuracy must be considered on the UAR setup. From right plots, we can
conclude that there is a negligible gap in accuracy across models. The impact of each
treatment on nDCG seems to vary across data sets. On ML1M, interestingly, combining
our data sampling and regularized loss slightly improves accuracy, while when treatment
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Fig. 4.19: Recommendation accuracy under our di�erent treatment con�gurations.
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Fig. 4.20: Popularity bias metrics under our di�erent treatment con�gurations.
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Fig. 4.21: Trade-o� under our di�erent treatment con�gurations.

is individually performed there is no di�erence w.r.t base NPR.

Figure 4.20 plots bias metrics in Movielens 1M as recommendation parity (top-
left) and equality of treatment (top-right) and in COCO-RS as recommendation parity
(bottom-left) and equality of treatment (bottom-right). We can observe that our data
sampling (orange line) and our combination of data sampling and regularized loss (red
line) positively impact PSP and PEO metrics, while our regularized loss alone (green line)
still keeps comparable bias w.r.t. plain NPR (blue line). Furthermore, there is no statisti-
cal di�erence on PSP (left plots) between NPR+SAM (orange line) and NPR+SAM+REG
(red line). It follows that the regularized loss does not allow to improve PSP directly.
On other other hand, NPR+SAM+REG can signi�cantly reduce PEO w.r.t. NPR+SAM. It
follows that our regularized loss makes the true positive rates more similar among items.

Overall, our data sampling and regularized loss together achieve a better trade-o�
between recommendation accuracy and popularity bias. Figure 4.21) plots nDCG@10
scores against recommendation parity (top-left) and equality of treatment (top-right) in
Movielens 1M, and nDCG@10 scores against recommendation parity (bottom-left) and
equality of treatment (bottom-right) in COCO-RS. Each point represents an algorithm.
The closer a point is to top-left corner (high nDCG, low PSP/PEO) the better.

RQ2: Impact of Regularization Weight

We investigate how the model performs when we vary the weight given to the reg-
ularization term α within the new proposed loss function. For conciseness, we only
report experimental results on ML1M dataset, but please note that the results on COCO-
RS show similar patterns.
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Fig. 4.22: NPR+SAM+REG recommendation accuracy over α.
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Fig. 4.23: NPR+SAM+REG popularity bias over α.

We vary the trade-o� regularizer α and plot the results on accuracy and popular-
ity bias metrics in Figure 4.22 and Figure 4.23, respectively. More precisely, Figure 4.22
plots nDCG@10 score in Movielens 1M over the ALL test (left) and the UAR test (right)
by varying α, while Figure 4.23 plots bias metrics at k = 10 in Movielens 1M as rec-
ommendation parity (left) and equality of treatment (right) obtained by varying α. The
x-axis coordinates indicates the value of α, while the y-axis shows the value measured
for the corresponding metric at that value of α. Figure 4.22 demonstrates that with
larger weight for the regularization term, the recommendation quality decreases more.
For the bias reduction performance, as presented in Figure 4.23, both PSP and PEO does
not largely vary over di�erent α values, which is most likely due to the nature of the
regularization. To balance accuracy and debiasing, settingα = 0.5 is a reasonable choice.

RQ3: Impact on Internal Mechanics

In this subsection, we run experiments on ML1M and COCO-RS to assess (i) whether
the debiased model can e�ectively reduce the gap between head-mid and tail relevance
distributions, and (ii) whether it can e�ectively balance inter- and intra- pair-wise accu-
racy among head-mid and tail items.

To answer the �rst question, we plot the relevance distributions for head-mid and tail
items in Figure 4.24, where the orange lines are calculated on head/mid-item-user pairs,
and the red lines are calculated on tail-item-user pairs. More precisely, Figure 4.24 plots
relevance score distributions for head-mid and tail item-user comparisons in Movielens
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Fig. 4.24: Relevance score distributions for NPR+SAM+REG.
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Fig. 4.25: Pair-wise accuracy for NPR+SAM+REG.

1M (left) and COCO-RS (right). From the �gure, we can conclude that the proposed
model can e�ectively enhance score distribution similarity. For ML1M, we moved from
a Spearman correlation of 0.65 in the NPR model to 0.10 in the regularized model. For
COCO-RS, such correlation went from 0.47 in NPR to 0.06 in the regularized model.

For the second question, we show the pair-wise accuracy for observed head-mid and
tail items in Figure 4.25. Such a �gure plots the accuracy on getting higher relevance
for observed than unobserved items in ML1M (left) and COCO-RS (right). From the
blue bars, we can see that the overall pair-wise accuracy for head-mid items has been
reduced on both data sets of around 2%, while it has been increased of 4% on ML1M and
2% on COCO for tail items. Interestingly, the regularized approach makes it possible to
reduce the di�erence in inter pair-wise accuracy, which was a damaging e�ect caused by
algorithmic bias. Such a gap moved from 16 to 5 percentage-points in M1M. In COCO-
RS, the gap reached 0 percentage-points.

RQ4: Comparison with Baselines

We next compare the proposed NPR+SAM+REG model with some state-of-the-art al-
ternatives to assess (i) how the proposed model performs in comparison with baselines
for recommendation accuracy and popularity bias individually, and (ii) how the pro-
posed NPR+SAM+REG model manages the trade-o� among such two objectives, com-
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pared with baselines. To answer these questions, we report accuracy and bias metrics
for di�erent models in Figure 4.26 and Figure 4.27. More precisely, Figure 4.26 plots
nDCG scores in Movielens 1M over the ALL test (top-left) and the UAR test (top-right)
and in COCO-RS over the ALL test (bottom-left) and the UAR test (bottom-right). Figure
4.27 plots bias scores in Movielens 1M as recommendation parity (top-left) and equality
of treatment (top-right) and in COCO-RS as recommendation parity (bottom-left) and
equality of treatment (bottom-right). Baselines marked as (*). Our proposed model is
identi�ed by a blue line.

From Figure 4.26, the proposed NPR (blue line) can achieve an accuracy score com-
parable to NPR+J (orange line), while it largely outperforms the other baselines (green
and red lines), over all datasets, on both test setups. The con�guration that shows a sta-
tistically signi�cant di�erent between NPR+SAM+REG and NPR+J is related to the UAR
test setup on COCO-RS (bottom right plot). This may be caused by the skewed item
popularity distribution in COCO-RS, that makes it harder for NPR+SAM+REG to build
meaningful triplets where the observed item is less popular than the unobserved item.

From Figure 4.27, it can be observed that our NPR+REG+SAM model (blue line)
largely reduces PSP w.r.t. the other baselines (left plots) on both datasets. On ML1M
(top left plot), NPR+W exhibits the highest bias on recommendation parity. NPR+J and
NPR+S achieve comparable scores between each other, but smaller than NPR+W. On
COCO-RS (bottom left plot), NPR+S scores get worse. Smaller improvements of our pro-
posal w.r.t. baselines are achieved on PEO as well (right plots) on both datasets. NPR+S
has the lowest PEO among baselines, but still signi�cantly higher than NPR+SAM+REG.

Our proposal beats NPR+J and NPR+W on both recommendation accuracy and pop-
ularity bias reduction. Moreover, it achieves comparable accuracy performance w.r.t.
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Fig. 4.26: Recommendation accuracy against baselines.



66 Section 4.5. The Proposed Method for Popularity Debiasing

10 20 50 100 200
Cut-off k

2

4

6

8

PS
P

NPR+SAM+REG
NPR+S (*)
NPR+W (*)
NPR+J (*)

10 20 50 100 200
Cut-off k

0

10

20

30

40

50

60

PE
O

NPR+SAM+REG
NPR+S (*)
NPR+W (*)
NPR+J (*)

10 20 50 100 200
Cut-off k

2

4

6

8

10

12

PS
P

NPR+SAM+REG
NPR+S (*)
NPR+W (*)
NPR+J (*)

10 20 50 100 200
Cut-off k

5

10

15

20

25

PE
O

NPR+SAM+REG
NPR+S (*)
NPR+W (*)
NPR+J (*)

Fig. 4.27: Popularity bias metrics against baselines.
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Fig. 4.28: Trade-o� against baselines.

NPR+S, but the former outperforms the latter in popularity bias reduction. Therefore,
we can conclude that NPR+SAM+REG can better manage the trade-o� between such a
two objective. To show this �nding, Figure 4.28 plots the nDCG@10 score against rec-
ommendation parity (top-left) and equality of treatment (top-right) in Movielens 1M,
and the nDCG@10 score against recommendation parity (bottom-left) and equality of
treatment (bottom-right) in COCO-RS. Each point represents an algorithm. The closer
a point is to top-left corner (high nDCG, low PSP/PEO) the better.



Chapter 4. Machine Learning Models for Content Recommendation 67

4.6 The Proposed Method for Educators’ Fairness

4.6.1 Exploratory Analysis on Neural Recommenders

To better understand the need for considering recommendation e�ectiveness and ed-
ucators’ fairness based on their gender, we begin by providing a descriptive summary
of (i) the pair-wise recommendation model we seek to investigate and (ii) how it suf-
fers from educators’ unfairness with respect to their gender, when optimized only for
accuracy.

The Investigated Synthetic Data Sets

The exploratory analysis treated items from women educators, i.e., Iwomen, as the
minority group. To simulate real-world scenarios, we created a set of 10 synthetic data
sets, each aimed to simulate di�erent representations of items and ratings related to the
minority group. Each data set included 6, 000 users, 2, 000 educators, 6, 000 items, and
1, 000, 000 random ratings. Fig. 4.29 (left) summarizes women representation in both
items and ratings for each data set. The data set ID is in the form x-y, where x repre-
sents the percentage of women educator items and y the percentage of women educator
ratings. In Fig. 4.29 (right), we quanti�ed the unbalance associated to women represen-
tation across items and ratings by computing the following index:

ItemRatingFair@k(θ) = 1 − abs
(
|Iwomen|

|I|
−

∑
u∈U,i∈Iwomen y(u, i|θ)∑
u∈U,i∈I y(u, i|θ)

)
(4.14)

The score ranges between 0 (strongly unfair) and 1 (strongly fair).
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Fig. 4.29: Women representation and fairness in item/ratings over synthetic data.
.



68 Section 4.6. The Proposed Method for Educators’ Fairness

Constructing such data sets help us to observe how the investigated recommenders
work with di�erent unbalanced representations for the minority group.

The Investigated Pair-wise Learning Approach

To estimate model parameters θ, and consequently compute the user vector matrix
W and the item vector matrix X, most of the existing approaches optimize a pair-wise
objective function (Figure 4.12). Pair-wise learning maximizes the margin between ob-
served item relevance yu,i and unobserved item relevance yu,j for triplets (u, i, j) in Y.
The loss function can be formalized as follows:

argmax
θ

∑
u∈U,i∈Iou ,j∈Iuu

δ(f(u, i|θ) − f(u, j|θ)) (4.15)

where δ(·) is the sigmoid function, Iou and Iuu are the sets of items for which user u’s
feedback is observed or unobserved, respectively.

Embedding matricesW and X are initialized with values uniformly distributed in the
range [0, 1], and the optimization function is transformed to the equivalent minimization
dual problem. Given the user-item feedback matrix Y for each synthetic data set, the
model is served with batches of 1, 024 triplets. For each user u, we created 10 triplets
(u, i, j) per observed item i; the unobserved item j is randomly selected for each triplet.
The optimizer used for gradient update is Adam. The process is repeated for 20 epochs.
The reader notices that the training-testing protocol followed for the previous analysis
is adopted for this analysis as well. We do not report them here for conciseness.
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Fig. 4.30: Women representation and fairness in ratings/exposure over synthetic data.
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Educators’ Fairness Analysis

Fig. 4.30 (left) plots both the women item representation in ratings and the women
item representation in top-10 recommendations (i.e., exposure) for each data set. It can
be observed that the pair-wise learning strategy has a tendency to propagate the unfair-
ness against the minority group, so that the women item representation in recommen-
dations is signi�cantly lower than the women item representation in ratings. In Fig. 4.30
(right), such a bias is quanti�ed by the following index:

RatingExposureFair@k(θ) = 1 − abs
(∑

u∈U,i∈Iwomen y(u, i|θ)∑
u∈U,i∈I y(u, i|θ) −∑

u∈U,i∈Iwomen φ(u, i|θ)∑
u∈U,i∈Iφ(u, i|θ)

) (4.16)

where φ(u, i|θ) is 1 if item i is recommended to u in top-k list, 0 otherwise. The score
ranges between 0 (strongly unfair) and 1 (strongly fair). For all the data set, except for the
40− 30 data set, such an index is signi�cantly lower than 1. This reveals that the higher
the gap between women representations in items and ratings, the higher the unfairness
in women educators’ exposure. It follows that educators from the minority group tend
to be discriminated regardless of the learners’ interest in their items.

As our goal is to achieve the same women educator representation in items and rec-
ommendations, we computed the related fairness index by following Eq. 4.7. Scores
range between 0 (strongly unfair) and 1 (strongly fair). From Fig. 4.31, we can observe
that the gap in women representation between the items and recommendations is larger
than the one exposed between ratings and recommendations. The pair-wise learning
strategy is strongly a�ected by the number of ratings per educators’ gender than the
number of items per educators’ gender.
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Fig. 4.31: Women representation and fairness in item/exposure over synthetic data.



70 Section 4.6. The Proposed Method for Educators’ Fairness

20-10 30-10 40-10 50-10 30-20 40-20 50-20 40-30 50-30 50-40
Synthetic Data Set ID

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

M
od

el
 F

ai
rn

es
s I

nd
ex

Fig. 4.32: Women model fairness index over synthetic data.

Going deeply into the model, we observed also that the pair-wise learning strategy
propagates the unfairness in a way that users’ embeddings are more similar to embed-
dings of items provided by men. To measure such an unfairness, we created a set of
1, 000, 000 user-item pairs, where half of the pairs includes items from women and the
other half includes items from men educator. Then, we measured the average relevance
received by items from women and men. Fig. 4.32 shows such a model fairness index as:

ModelFair@k(θ) = 1 − abs
(

1
|Iwomen|

∑
u∈U,i∈Iwomen

ỹ(u, i|θ) −

1
|Imen|

∑
u∈U,i∈Imen

ỹ(u, i|θ)
) (4.17)

The score ranges between 0 (strongly unfair) and 1 (strongly fair). Accordingly to what
observed for the above-mentioned indexes, the higher the gap between women repre-
sentation in items and ratings, the higher the unfairness for women educators’ relevance.

Hence, we conjecture that playing with the women representation in ratings
and regularizing relevance scores, so that such scores follow the same distribu-
tion for items from both genders, might have a positive impact on the targeted
trade-o� between accuracy and fairness. To demonstrate this, we de�ned a regulariza-
tion process that reduces the mentioned unfairness while optimizing e�ectiveness.

4.6.2 Methodology for Educators’ Unfairness Mitigation

The goal of the regularization procedure is to generate recommendations that maxi-
mize the trade-o� between accuracy and fairness by optimizing also for equality of rep-
resentation between items and recommended lists. To do this, we play with the type of
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triplets fed into the model; then, we set up a loss function aimed to minimize both (i) the
pair-wise error speci�ed in Eq. 4.15 and (ii) the di�erence in relevance across items from
women and men. We will later show empirically that, although the optimization relies
on a given set of interactions, the results are fully generalizable to unseen interactions.

The procedure relies on the following steps:

1. Ratings Upsampling - Regularization Level I. We upsampled the ratings related
to the minority group, so that the minority group is equally represented in both items
and ratings sets. The approach is tested on each of the following techniques:

(a) std-rep: random upsampling on original data, with repetitions.

(b) std-syn: random upsampling on synthetic data, no repetitions.

(c) pop-syn: popularity-based upsampling on synthetic data, no repetitions.

More precisely, assuming that the minority group is represented by a percent of the
items, the upsampling techniques generate new pairs (u, i), where i belongs to the
minority group, until the representation of this group in ratings is below a percent.

2. Triplet Generation. For each user u, we created 10 triplets (u, i, j) per observed
item i associated at Step 1; the unobserved item j is selected among items not yet
observed by u. We de�ne the set of triplets as T .

3. Batch Grouping. We sampled triplets in T in batches of m = 1, 024 samples in
order to set up an iterated stochastic gradient descent optimization. The batches were
created in a way that they hold the same representation of the protected group showed
by the entire data set.

4. Optimization - Regularization Level II. Each training batch Tbatch =
{(utb , itb , jtb) | 0 6 b 6 m} is fed into the model that follows a regularized paradigm
derived from the standard pair-wise approach. The loss function is formalized as:

argmax
θ

acc(Tbatch) + reg(Tbatch) (4.18)

where acc(.) is the accuracy objective of a standard pair-wise approach, de�ned as:

∑
u∈utb ,i∈itb ,j∈jtb

δ(f(u, i) − f(u, j)) (4.19)

and reg(.) is a regularization term computed as the di�erence in relevance across
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items from female and male educators, as follows:

abs[ (
∑

u∈utb ,i∈itb ∩ Iwomen,j∈jtb

f(u, i) − f(u, j)) −

(
∑

u∈utb ,i∈itb ∩ Imen,j∈jtb

f(u, i) − f(u, j)) ]
(4.20)

The model is penalized if its ability to predict an higher relevance for an observed
item is better when the item is provided by a men than a women.

Steps 3 and 4 are repeated for all the batches, until convergence.

4.6.3 Evaluation

In this section, we evaluate both levels of the proposed regularization process aimed
to strike recommendation e�ectiveness and educators’ fairness based on their gender.

The approach is validated in 12 large-scale data sets, i.e., 10 synthetic data sets previ-
ously presented and 2 real-world data sets. To the best of our knowledge, they are among
the few data sets that provide sensitive attributes. The �rst real-world one,MovieLens-1M
(ML-1M) [166], includes 1M ratings applied to 3K movies by 6K users. On ML-1M, the
representation of women providers in items is around 10%, while such a representation
is reduced to 7% in ratings. Therefore, all the upsampling techniques create user-item
pairs, so that the percentage of ratings related to female providers reaches 10%. The sec-
ond real-world one, COCO-RS [18], includes 37K users, who gave 600K ratings to 30K
online courses. On COCO-RS, the representation of women providers in items is around
19%, while it is reduced to 12% in interactions. Therefore, an upsampling technique
creates user-item pairs, so that the percentage of women ratings is 19%.

This can help us check if the proposal is generalizable across domains. Moreover,
each data set holds di�erent items distributions across educators’ genders.

Evaluation Metrics and Protocols

To evaluate the ability of the models in striking recommendation e�ectiveness and
provider fairness, we measured the index formalized in Eq. 4.14.

Moreover, to deeply interpret the results behind such an index, we measured also
e�ectiveness (Precision, Recall, and normalized Discounted Cumulative Gain) and cov-
erage (Overall Coverage, Women Item Coverage and Men Item Coverage) metrics. Pre-
cision measures how well an algorithm puts relevant items (i.e., items observed by the
user and unseen by the algorithm) in top-k recommendations regardless the rank. Recall
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measures the proportion of relevant items included in the recommendation list with re-
spect to the total number of relevant items. nDCG uses graded relevance and positions
of the recommended items to compute the ratio between the discounted cumulative gain
of the current recommended list and the idealized one. Item coverage metrics measure
the percentage of the related items in the catalog that are recommended at least once.
The overall evaluation protocols follow the steps performed during exploratory analysis,
and the evaluation is thus consistent along experiments.

Model Optimization Setups

In what follows, we compare several setups obtained by combining the regularization
levels proposed in the previous section. Such setup are identi�ed as follows:

• no-up: training without regularizing at any level.

• std-rep: regularizing at I level with std-rep upsampling, but not at II level.

• std-syn: regularizing at I level with std-syn upsampling, but not at II level..

• pop-syn: regularizing at I level with pop-syn upsampling, but not at II level.

• reg-no-up: regularizing at II level, but not at I level.

• reg-std-rep: regularizing at I level with std-rep upsampling, and at II level.

• reg-std-syn: regularizing at I level with std-syn upsampling, and at II level.

• reg-pop-syn: regularizing at I level with pop-syn upsampling, and at II level.

Results and Discussion on Synthetic Data Sets

Fig. 4.33 reports the di�erence in women representation across items and recommen-
dations after applying upsampling on the synthetic data sets. Blue bars refer to models
trained without upsampling, while red, green, and yellow bars refer to results achieved
when upsampling is performed. The considered upsampling techniques limit providers’
unfairness, as the ItemExposureFair@k scores measured on them are closer to 1.

Creating synthetic ratings associated to women items (std-syn and pop-syn) makes it
possible to pair representation in all the data sets. In contrast, upsampling by replicat-
ing existing interactions and ratings (std-rep) appears working only when the women
representation in ratings is around 10%. For a larger representation, the fairness index
exhibits signi�cantly lower values. This triggers the fact that replicating user-item pairs
might excessively foster the related items, so that the recommender suggests only them.

Fig. 4.34 shows the impact of the regularization at II level. Interestingly, regularizing
only at II level mitigates unfairness when women and men representations in ratings
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Fig. 4.33: Women item-exposure fairness after mitigation at I level on synthetic data.
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Fig. 4.34: Women item-exposure fairness for mitigation at I+II level on synthetic data.

are comparable; it fails to strike fairness for larger gaps, even though the di�erence in
exposure across genders is reduced with respect to the counterparts not regularized at
all. It appears that recommenders need both levels of regularization to be provider fair.
This con�rms the validity of the intuition emerged from the exploratory analysis.

Results and Discussion on Movielens-1M

Fig. 4.35 reports the trade-o� between e�ectiveness and provider fairness (i.e., the
higher the better). Several regularized setups get a better trade-o� with respect to the
non-regularized setup (blue bar).

Fig. 4.36 reports the item-recommendation fairness score computed as Eq. 4.7 (i.e., the
higher the better). It can be observed that creating synthetic user-item pairs at I level
(std-syn, pop-syn) makes it possible to hold higher educators’ fairness. However, in
contrast to the results observed on synthetic data sets, applying regularization at II level
does not help mitigating fairness. In fact, while reg-no-up and reg-rep show unfairness
towards women providers, reg-syn and reg-pop are unfair for men providers to the same
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extent. Such a behavior could be related to the non-uniform distribution of implicit
feedback in Y in a way that replicating few existing user-item pairs is not enough to
foster items from women educators, while creating synthetic user-item pairs rapidly
biases the recommender towards suggesting items from women educators.

As in any multi-criteria setting, we must be concerned about any accuracy loss that
results from taking additional criteria into consideration. Therefore, we also evaluate
recommendation e�ectiveness in Fig. 4.37. It can be observed that pop-syn has the high-
est loss on accuracy metrics, i.e., around 0.70, while it shows the best fairness score.
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Fig. 4.35: Trade-o� between e�ectiveness and fairness on ML-1M.
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Fig. 4.36: Women item-exposure fairness over ML-1M after treatment.
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Fig. 4.37: E�ectiveness achieved by models over ML-1M
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Fig. 4.38: Coverage of the models over ML-1M
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Fig. 4.39: Trade-o� between e�ectiveness and fairness on COCO-RS.

Surprisingly, the setup reg-std-rep achieved higher e�ectiveness and lower unfairness
with respect to the no-up setup. This means that the proposed multi-level regularization
helps the recommender improve accuracy jointly with fairness. Such a behavior brings
to larger coverage, as more items from women educators are recommended (Fig. 4.38).

Results and Discussion on COCO-RS

Several regularized setups allow us to hold a signi�cantly better trade-o� between
e�ectiveness and fairness even on COCO-RS (Fig. 4.39).

Fig. 4.40 plots the fairness scores obtained by di�erent combinations of regularization.
It is con�rmed that creating synthetic user-item pairs (std-syn, pop-syn) improves edu-
cators’ fairness. However, in contrast to the results observed on the other data sets, ap-
plying regularization at both levels does not help us in mitigating fairness. Regularizing
only at II level (reg-no-up) achieved higher fairness than the standard non-regularized
approach (no-up). Accordingly to ML-1M, COCO-RS shows that reg-syn and reg-pop
become unfair for men educators. The reason behind this observation could be related
to the larger non-uniform distribution of implicit feedback in COCO-RS.



Chapter 4. Machine Learning Models for Content Recommendation 77

no-up std-rep std-syn pop-syn reg-no-up reg-rep reg-syn reg-pop
COCO 600K

0.7

0.8

0.9

1.0
Ite

m
-E

xp
os

ur
e 

Fa
irn

es
s I

nd
ex

Fig. 4.40: Women item-exposure fairness over COCO-RS after treatment.
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Fig. 4.41: E�ectiveness achieved by models over COCO-RS
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Fig. 4.42: Coverage of the models over COCO-RS

Fig. 4.41 plots the accuracy metrics for COCO-RS. In contrast to ML-1M, our multi-
level regularization brings a loss in accuracy for all the setups. However, such a loss
is lower in percentage than the one observed for the other data set. Furthermore, the
proposed treatment achieves higher coverage of the item catalog (Fig. 4.42). The cov-
erage of the items from men remains stable, while the coverage for items from women
becomes six times bigger than the one obtained by the standard pair-wise approach.
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4.7 Findings and Recommendations

In this chapter, we depicted several manageable ways to provide recommendations
robust across biases, such as popularity biases and educators’ gender biases. This has
been possible by leveraging multi-level pair-wise approaches based on data upsampling
for minority groups and/or a regularization within the optimization function.

Based on the results, we can conclude that:

1. Neural recommenders are susceptible to popularity bias, and the extent of such a bias
depends on both the representation in items and ratings.

2. Randomized user-item relevance distributions for short and long-tail items are sig-
ni�cantly di�erent, and the �rst one exhibits higher relevance values, on average.

3. Inter pair-wise accuracy for observed long-tail items is lower than for observed short-
tail items, so the former items are under-ranked regardless of users’ interests.

4. While the popularity-aware model shows a loss in accuracy when the entire test set
is used, it performs better when tested on long-tail item ratings only.

5. The correlation term makes it possible to reach higher trade-o� between recommen-
dation e�ectiveness and popularity robustness than state-of-the-art baselines.

6. Upsampling can be used to signi�cantly increase educators’ gender fairness, espe-
cially by replicating existing user-item pairs from the minority group.

7. Minimizing the di�erence in relevance among items from di�erent educators’ genders
makes it possible to reduce the unfairness across them.

8. Combining regularization at both levels brings better fairness results based on the
extent of the item popularity tail (the less the slope, the higher the fairness).

9. The proposed multi-level regularization can achieve a better trade-o� between rec-
ommendation e�ectiveness and educators’ gender fairness.

The proposed research opens to several future works. For instance, we can investi-
gate the relation between the recommendations and the tendency of each user to prefer
items from minority groups. We can further assess the proposed regularizations on other
approaches, i.e., point-wise and list-wise. Moreover, we will consider how models work
in presence of constraints from multiple stakeholders (e.g., both learners’ and educators’
fairness). Other relevant future work will also focus on investigating under which con-
ditions it is possible to distinguish popularity bias by quality-only related popularity.
Tackling such a goal is challenging as there is no clue on well-accepted de�nitions of
quality and popularity properties. Moreover, it requires further investigation the fact
that current datasets are usually biased towards ratings with high values, making it dif-
�cult to consider ratings as a signal of quality.



Chapter 5

Machine LearningModels for Iden-
tity Veri�cation

Research Highlights
• Biometrics can enable transparent and continuous learner veri�cation.
• Combining face and hand-motion patterns ensures accurate recognition.
• Intermediate audio-visual fusion leads to higher veri�cation accuracy.
• Uni-biometric systems are susceptible to adversarial dictionary attacks.

5.1 Introduction

The increasing participation in digital education is requiring to educational institu-
tions to ensure the integrity of their initiatives against several threats [189]. Such a
misconduct behavior usually involves an impostor that hijacks the identity of an un-
suspected user to conduct malicious activity (identity theft), an authorized individual
that conducts illegal actions and repudiates such actions (identity denial), or an autho-
rized individual that willingly shares their credentials in violation of established policies
and regulations (identity sharing). The most adopted countermeasure allows students
to perform activities while a person monitors them (e.g. Kriterion1 and ProctorU 2), but
this is no scalable and highly subjective. Other systems replace humans with algorithms
via post or real-time analysis (e.g. ProctorFree3 and RemoteProctorNow4), but they usu-
ally lead to high false-positive rates and limited supported scenarios. Emerging hybrid
methods challenge humans only for unclear situations (e.g., Proctorio5).

1https://www.kryteriononline.com/test-taker/online-proctoring-support
2https://www.proctoru.com/
3http://proctorfree.com/
4http://www.softwaresecure.com/products-remote-proctor-now/
5https://proctorio.com/

https://www.kryteriononline.com/test-taker/online-proctoring-support
https://www.proctoru.com/
http://proctorfree.com/
http://www.softwaresecure.com/products-remote-proctor-now/
https://proctorio.com/
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Biometrics are increasingly playing a primary role to verify the identity of learners
[19], onlife and online. Examples of adopted biometric traits include the facial struc-
ture [190], the ridges of a �ngerprint [191], the iris pattern [192], the sound waves of a
voice [193], and the way a person interacts with a digital device [194]. From the system
perspective, recognition pipelines require to detect the modality of interest in the bio-
metric sample. This is followed by a set of pre-processing functions. Features are then
extracted from pre-processed data, and used by a classi�er for recognition. From the
user perspective, an individual is asked to provide some samples whose feature vectors
are stored as a template by the system, i.e., enrollment. Then, the recognition process
determines if the probe comes from the declared person, i.e., veri�cation [195].

Given the nature of the problem, learners should be authenticated continuously and
transparently, without a�ecting their usual interaction. In fact, a system based solely
on something the user has or knows assumes that the student does not share such in-
formation. Similarly, an entry-point biometric authentication does not avoid that the
legitimated student enters the system and an impostor continues. In response, physical
biometrics capture random footages or continuous videos to recognize face traits and/or
body cues [196, 197]. However, they can be fooled by turning the camera to other video
sources. Behavioral biometrics enable authentication based on how people interact, but
are not completely reliable when provided alone and su�er from limited applicability
[198, 199]. Multiple biometrics have been combined, but usually require intrusive ac-
tions or sensors (e.g. a mouse equipped with a �ngerprint reader) [200, 201]. Moreover,
existing systems target PCs or laptops, while learners also use mobile devices [202].

In this chapter, we propose a set of multi-biometric approaches aimed to continuously
and transparently authenticate learners in online and onlife educational scenarios. We
contextually combine di�erent physical and behavioral traits based on the type of inter-
action and the type of device used at a speci�c moment. Each approach transparently
controls both something the learner is and something the learner does, since physical
biometrics are e�ective but lack synchronization with the actions performed on the plat-
form, while behavioral biometrics are suitable to recognize who does the interactions,
but they are not su�ciently accurate alone. This results in a device/interaction-agnostic
biometric framework that leverages sensors and tracking routines present in almost all
the current devices. Please refer to [19] for further information on the whole framework
we proposed. Some of its components are described in detail along this chapter with
�ndings and recommendations.

The contribution of this chapter is �ve-fold:

• We arranged an audio-visual data set of 111 participants vocalizing short sentences
under robot assistance scenarios. The collection took place into a three-�oor university
building by means of eight recording devices, targeting challenging conditions.

• We propose a transparent continuous authentication approach that integrates physical
(face) and behavioral (touch and hand motion) biometrics to control the learner’s iden-
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tity during point-and-click activities on mobile devices, going beyond one-time login.

• We propose a transparent continuous authentication approach that capitalizes on vocal
and facial data to control the learner’s identity during speaking activities. Each uni-
biometric model helps each other to recognize learners when trained jointly.

• We use voice veri�cation as use case to study a new dictionary attack that puts at risk
otherwise developed uni-biometrics systems, showing that adversarial optimization
can be used to signi�cantly increase impersonation capabilities of arbitrary inputs.

• We provide an extensive evaluation of each approach in terms of e�ectiveness and
e�ciency achieved on public data sets, comparing di�erent operational setups to assess
which one performs better within education-related scenarios.

The rest of this chapter is structured as follows: Section 5.2 describes the most repre-
sentative techniques for biometric veri�cation, going deeply on those tested on learning
platforms. Then, Section 5.3 formalizes the problems we seek to investigate. Section 5.4
introduces the audio-visual data set we collected and the other public data sets we ma-
nipulated over the presented research. Section 5.5 and Section 5.6 describe and evaluate
the veri�cation approaches we designed. Section 5.7 depicts the new attack to biometric
systems we crafted. Finally, Section 5.8 concludes the chapter.

5.2 Related Work

5.2.1 Traditional Biometric Veri�cation Techniques

Continuous authentication [195] is a promising area actively studied over the years,
but the related methods have been rarely applied in real settings due to their operational
complexity. The goal is to regularly check the user’s identity throughout the session. Ex-
isting applications include monitoring whether an unsuspected impostor has hijacked a
genuine user’s session on a device [203] or on an online website [204] as well as identi-
fying whether a user has shared their credentials with others in e-learning exams [19].

Physical biometrics, such as face biometrics, have been captured using front-facing
cameras, and analyzed to get distinctive user’s features [205]. Mouse [206], keyboard
[207], touchscreen [208], and other sensors have been used to measure behavioral bio-
metrics (e.g., gait, typing, touching, mouse movements, and hand movements). Such
methods continuously check whether the probe comes from the genuine user; if this is
true, the user can continue the session; otherwise, the user is locked out. To provide a
brief overview, we grouped existing solutions in uni-modal and multi-modal biometrics.

Uni-modal continuous authentication makes use of only a single biometric. Physical
biometrics are rarely used, as they tend to require considerable computing power and
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high-quality data not easy to obtain continuously. For instance, iris recognition needs
the user to face the camera, and usually takes time for authentication [209, 210]. Fin-
gerprint recognition requires expensive devices in the view of long computational time
[211]. One of the common uni-modal approaches is thus based on face recognition. Many
algorithms work well on images collected in controlled settings, while their performance
degrades signi�cantly on images that present variations in pose, illumination, occlusion,
and quality [212]. Behavioral biometrics, such as typing, tapping, and speaking, are usu-
ally considered a suitable data source for transparent and continuous authentication,
while providing usability. Touch sensors data has been leveraged to get users’ distinctive
features for authentication purposes [213, 214]. By contrast, other researchers investi-
gated reliability of motion data for active authentication. Extensive experiments shown
that sensor behavior exhibits su�cient discriminability and stability [215, 216]. Inten-
sive research has been conducted on keystroke dynamics, studying its feasibility to verify
users’ identity on mobile phones and decide whether a text has been written by the le-
gitimated user [217, 218, 219, 220].

Multi-modal biometrics exploit evidence from multiple biometrics to mitigate the is-
sues related to uni-modal methods, such as noisy data, intra-class variation, and spoo�ng
attacks [221]. For instance, it exists a framework combining face and touch modalities
[222]. Instead of a score-level fusion of the scores from face and touch authentication
subsystems, they built a stacked classi�ers fed with the scores returned by uni-modal
systems. Deploying voice, touch, and hand-motion veri�cation for continuous authen-
tication has been recently studied, integrating these biometrics based on the time they
were acquired [223]. This integration would create a trust level on the user based upon
the interval from the last successfully captured samples. The literature also proposed a
mobile non-intrusive and continuous authentication approach that uses biometric tech-
niques enabled by the device, achieving favorable performance [224]. Their studies in-
vestigated authentication systems on laptops. Their experiment adopted an obtrusive lo-
gin and merely the soft biometrics were veri�ed throughout. Furthermore, some works
used a wristband as an initial login �ngerprint sensor and, then, as a device that con-
stantly measures the user’s skin temperature and heart rate [225]. Lastly, audio-visual
recordings have been manipulated to solve visual analysis problems [226]. We point
out that, given that learners interact with di�erent devices based on the context, device-
agnosticism should be considered.

5.2.2 Deep Biometric Veri�cation Techniques

The recent widespread of deep learning has favoured the use of neural networks as
feature extractors combined with common machine-learning classi�ers [227]. Backbone
architectures rapidly evolved over last years, going from AlexNet [228] to SENet [229].
Deep learning approaches have been particularly applied to face and voice biometrics.

From the face perspective, Deepface [230] integrates a cross-entropy-based Softmax
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loss while training the network. However, applying Softmax loss is usually not su�-
cient by itself to learn features separated by a large margin, when samples come from
diverse people. Other loss functions have been explored to enhance generalization. For
instance, euclidean-distance-based losses embed images into an euclidean space, and re-
duce intra-variance while enlarging inter-variance across samples. Contrastive loss [231]
and Triplet loss [232] are commonly used, but they often exhibit training instability and
complex sampling strategies. Center loss [233] and Ring loss [234] balance the trade-
o� between accuracy and �exibility. Furthermore, cosine-margin-based losses, such as
AM-Softmax [235], were proposed to learn features separable through angular distance.

From the voice perspective, the most prominent approaches include d-Vectors [236],
c-Vectors [237], x-Vectors [238], VGGVox-Vectors [239] and ResNet-Vectors [240]. Further-
more, deep learning frameworks with end-to-end loss functions to train speaker dis-
criminative embeddings have recently drawn attention [241]. It has been proved that
they are more accurate than traditional systems based on hand-crafted features. Such
speaker veri�cation strategies relied on Gaussian Mixture Models (GMMs) [242] trained
on low dimensional feature vectors, Joint Factor Analysis (JFA) [243] methods modelling
speaker and channel subspaces separately, or i-Vectors [244] attempting to embed both
subspaces into a single compact, low-dimensional space.

Combining signals from multiple sensors has been traditionally investigated from a
data fusion perspective. For instance, such a merge step can happen at sensor level or
feature level, and focuses on how to combine data from multiple sources. It can be per-
formed by either removing correlations between modalities or representing the fused
data in a common subspace; the fused data is then fed into a machine-learning algo-
rithm [245]. The literature provides also evidence of fusion techniques at score level and
decision level [246, 247, 248, 249]. There is no a general conclusion on which fusion policy
performs better between early and late fusion, but the latter was simpler to be imple-
mented, especially when modalities varied in dimensionality and sampling rates [250].

Good evidence of advantages covered by deep multi-modal fusion comes from the lit-
erature. For instance, the authors in [251] aimed to learn features from audio and faces
from convolutional neural networks compatible at high-level. The works in [252, 253]
depicted time-dependent audio-visual models adapted in an unsupervised fashion by ex-
ploiting the complementary of multiple modalities. Their approach allowed to cope with
situations when one of the modalities is under-performing. Furthermore, the approach
described in [254] used a three-dimensional convolutional neural network to map both
modalities into a single representation space. Inspired by �ndings on high-level cor-
relation of voice and face, the authors in [255] experimented with an attention-based
neural network that learns multi-sensory associations for user veri�cation. Di�erently,
the method in [256] extracted static and dynamic face and audio features; then, it con-
catenated the top discriminative visual-audio features to represent the two modalities,
and used a linear classi�er for veri�cation. Recent research in [257] depicted an e�cient
attention-guided audio-face fusion approach to detect speakers.



84 Section 5.2. Related Work

5.2.3 Biometrics in Education

Collecting and processing biometric data are tasks recently introduced in the context
of educational platforms. First, we provide an overview of representative applications.
Then, we focus on how they have been used to ensure academic integrity.

Biometrics have been integrated in onlife school and university scenarios to simplify
administrative processes that, in general, consume a considerable amount of time (e.g.,
�ngerprint-based attendance control [258] or visual-based attendance control [259]). In
online environments, biometrics have been adopted to monitor student participation, but
also to understand their engagement [260]. Moreover, the analysis of biometrics enabled
detecting cognitive di�culties among learners. By observing their behavior, the platform
can follow how a student interacts with materials, and detect if they lose interest [261].

Biometric technologies can also help instructors ensure the integrity of online activi-
ties [189]. These systems verify the identity of the current user and prevent them from
accessing unauthorized content. Most representative services include ProctorU 6, a stu-
dent proctoring system based on the human direct control of the examiner. The latter
must register to the exam within the Learning Management System. Then, the human su-
pervisor looks at the images coming from the webcam to check the learner’s ID and the
surrounding environment. Once the exam is started, the user is constantly monitored by
the supervisor. Similarly, Pearson VUE7 (Pearson Virtual University Enterprises) requires
identi�cation through an ID card and a facial image. After a system test, the examiner
can start the exam while a human supervisor monitors them throughout the session.
Even though both the systems rely on human supervision, they are considered the most
popular solutions due to the numerous partnerships with schools and universities.

One of the most representative automated systems is Proctorio8, a remote software
that monitors the suspicious behavior of the participants based on pre-con�gured set-
tings (e.g. if the user will be monitored only via camera, or even via microphone; if the
user screen must be recorded, if the web tra�c must be checked, if the user must show
the room wherein they take the test). The exam can be reported as suspect depending on
his behavior, but the teacher will determine if the exam is valid. ProctorFree9 is another
exam supervision system that does not require human intervention. It authenticates
the student using face recognition and continuously checks their identity by analyzing
their face. Furthermore, during the exam, it monitors a variety of typically suspicious
events. Once the exam is completed, a report is sent to the instructor. Finally, TeSLA10

(Trust-Based Authentication and Authorship E-Assessment Analysis) allows a user to be
controlled during an exam through keystroke, face, and voice dynamics. Moreover, an
anti-plagiarism software checks the authenticity of the produced content.

6https://www.proctoru.com/
7https://home.pearsonvue.com/
8https://proctorio.com/
9http://proctorfree.com/

10https://tesla-project.eu/

https://www.proctoru.com/
https://home.pearsonvue.com/
https://proctorio.com/
http://proctorfree.com/
https://tesla-project.eu/
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5.3 Problem Formalization

The learner’s identity veri�cation problem can be formalized as follows. Let A gen-
erally denote the domain of input biometric data. We consider a traditional feature ex-
traction step which produces �xed-length representations inD ⊂ Re from each a ∈ A.
We denote this stage as D : A→ D. Given a veri�cation policy p, a decision threshold τ,
and N enrolled biometric samples per user, a veri�cation system can be de�ned as:

vp,τ : D×DNu → {0, 1} (5.1)

which compares an input feature vector d from an unknown user with a set of enrolled
feature vectors d1

u, ...,dNu from user u to con�rm (1) or refute (0) the user’s identity. We
mainly consider a veri�cation policy p that relies on a similarity function S : D×D→
R in order to compare feature vectors:

vp,τ = any
(
{S (d,diu) > τ : i ∈ 1, . . . ,N}

)
Let Equal Error Rate (EER) denote the value at which the False Acceptance Rate (FAR)

is equal to the False Rejection Rate (FRR), each de�ned as:

FAR =
Number of False Accepts

Number of Impostors Comparisons

FRR =
Number of False Rejects

Number of Genuine Comparisons

(5.2)

Hence, �nding such a veri�cation system becomes an optimization problem, which aims
to minimize the following objective:

τ = argmin
τ

EER

[
E

u∈U,a∈Au ′
vp,τ

(
D(F (a)),DNu

)]
(5.3)

5.4 The Investigated Data Sets

The biometrics research community has provided lots of contributions on data sets
settled up onlife or online. As biometrics has been applied on both scenarios within
educational environments, we seek to investigate identity veri�cation models that might
work onlife and online. To the best of our knowledge, none of the existing data sets
nearly reproduces onlife educational scenarios. Therefore, in what follows, we describe
a novel data set we collected for this purpose. On the other hand, even though existing
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data sets do not target online learning, some of them have been collected under very
similar conditions. Therefore, we exploit such data sets to validate our models.

5.4.1 The Proposed AveRobot Data Set for Onlife Scenarios

AveRobot is a multi-biometric dataset of 111 participants vocalizing short sentences
under robot assistance scenarios. The collection took place into a three-�oor univer-
sity building by means of eight recording devices. The main goal was to mimic a robot
assistance scenario in a semi-constrained indoor environment, as often encountered in
public buildings like universities. Considering that the problem was related to the robot
sensory part, no real robots were necessary, but they were simulated through the use of
various cameras and microphones similar to the ones integrated into robots. The inter-
actions in each �oor were recorded with di�erent devices, simulating a total number of
eight robot acquisition systems: two in the �rst �oor, three in the second one, and three
in the third one. Furthermore, the recordings were made at three locations for each �oor:
near the stairs, along the corridor, and outside the lift. Fig. 5.1 provides sample faces de-

Fig. 5.1: Samples from the AveRobot dataset.

Dataset Users Is Public? Devices/User Visual Specs Audio Specs
[262] 16-171 Yes 2 RGB + RGB-D -
[263] 50 Yes 1 RGB + RGB-D -
[264] 22 No 1 RGB + RGB-D 16bit 48kHz
[265] 90 Yes 1 RGB + RGB-D -
[227] 26 No 1 Grayscale -
[266] 14 No 1 RGB -
AveRobot 111 Yes 8 RGB 16bit 16kHz

Table 5.1: Representative data sets for veri�cation in Human-Robot Interaction.
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tected in AveRobot videos. As the reader may expect, using diverse acquisition devices
poses changes in image illumination, quality, blur, geometry and resolution, and sound
quality (e.g., background chatter and room acoustics make our data set challenging).

Di�erently from AveRobot, other existing data sets collected in Human-Robot In-
teraction scenarios usually include no audio cue and tend to su�er from one or more
limitations: they are obtained under controlled conditions, composed by a small num-
ber of users or samples per user, collected from the same device, or not freely available.
Refer to Table 5.1 for a comparison among AveRobot and other representative data sets.

Collection Methodology

To collect AveRobot, we followed a pipeline whose steps are described below:

1. Device Selection: Eight recording devices were selected to make up the dataset, each
simulating a di�erent robot acquisition system. Table 5.2 details their characteristics.
It should be noted that the devices expose di�erent peculiarities, and they are similar
to the sensors embedded in robots. Camera 1 and 7 tended to generate more blurred
recordings. On the other hand, Camera 3 and 6 recorded videos using interlaced scan,
di�erently from the progressive scan performed by the others.

2. Environmental Setup: We grouped the devices per �oor by considering their dif-
ferent type and various operational heights. Each �oor hosted a smartphone camera,
a compact camera and a video camera, except Floor 0. To assure that the recordings
were done in similar conditions, tripods were used for compact and video cameras,
while smartphone cameras were held by a human operator at the same height of the
other devices. In most cases, we selected a recording height closer to the height of
a robot (e.g., Pepper reaches 120cm). The devices were con�gured with the highest
possible resolution at a constant frame rate.

Model Type Resolution Fps Height Floor
(1) Casio Exilim EXFH20 Compact Cam 1280× 720 30 130 cm 0(2) Huawei P10 Lite Smartphone Cam 1920× 1080 30
(3) Sony HDR-XR520VE Video Cam 1920× 1080 30

120 cm 1(4) Samsung NX1000 Compact Cam 1920× 1080 30
(5) iPhone 6S Smartphone Cam 1920× 1080 30
(5) Sony DCR-SR90 Video Cam 720× 576 25

150 cm 2(7) Olympus VR310 Compact Cam 1280× 720 30
(8) Samsung Galaxy A5 Smartphone Cam 1280× 720 30

Table 5.2: The speci�cations of the recording devices in AveRobot.



88 Section 5.4. The Investigated Data Sets

3. User Recording: The identical recording procedure was repeated for each user.
Firstly, for each location, the user selected and memorized the sentence to be ar-
ticulated, taken from a list of pre-de�ned sentences. Meanwhile, the devices were
arranged in a position near the target location (i.e. stairs, corridor and lift). Then, the
human operators switched on the corresponding devices at the same time, while the
user approached the camera and reproduced the sentence in front of the capturing
devices. In this way, at each location, the same speech was simultaneously recorded
with two/three devices. The same process was repeated on each �oor and location by
selecting a di�erent sentence. The process took between 6 and 10 minutes per user.

4. Data Protection: After �nishing the session, the user read and signed an agreement
in order to respect the European data protection regulation. The information provided
by the participant included but it was not limited to: her/his full name, the identi�-
cation number, whether s/he authorizes to show their data as samples on research
articles, and the signature. Gender, height and age were registered.

5. Video Labelling: The videos were manually labelled to keep track of the identity,
�oor and location, the pronounced sentence and the recording device. To this end,
each video was properly renamed by using the following convention: UserId-FloorId-
LocationId-SentenceId-DeviceId. Moreover, a metadata �le was created to save the
personal information regarding each user: the assigned id, name, surname, gender,
height, native language, age and approval status (i.e. if they authorized to publish
their data in research articles). The anonymized version is made publicly available.

6. Visual Post-Processing: First, all the videos were converted from the original video
format to the target MP4 format. Then, the faces were detected and aligned with
MTCNN [267], resized to 224 × 224 pixels and stored as PNG images. Those frames
with detected faces were extracted and saved, with original resolution, as PNG im-
ages. Each image was manually checked to remove false positives.

7. Audio Post-Processing: Once that the audio was extracted from each video and
stored as a WAV �le, the silence part at the beginning and ending of the audio was
removed through a semi-automated process. It involved the Auditok11 segmentation
tool. Therefore, the resulting audios included only the part where the participant
talks. Each audio was converted to single-channel, 16-bit streams at a 16kHz sampling
rate. The related spectrograms were generated in a sliding window fashion using a
Hamming window of width 25ms and step 10ms for each second of speech.

Structure and Statistics

The proposed dataset contains 2, 664 videos from 111 participants (65% male and 35%
female) who vocalize di�erent short sentences. The sentences were selected by the par-

11https://github.com/amsehili/auditok
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Fig. 5.2: Sample statistics from the AveRobot dataset.

ticipant from a pre-de�ned set of 34 sentences tailored for a robot assistance scenario.
The collected people span di�erent ethnicities (e.g., Chinese and Indian), ages (avg. 27;
std. 11; min. 18; max. 60), and heights (avg. 1.74m; std. 0.10m; min. 1.50m; max.
1.92m). Figure 5.2 depicts relevant distributions along the dataset. The gender, height,
and age for each participant are also provided together with the videos. Each person
was recorded in 3 locations (i.e. stairs, �oor and lift) for each one of the 3 �oors of the
building. As mentioned above, 8 diverse recording devices were leveraged during the
collection to simulate the robot acquisition systems. The recording devices assigned to
the same �oor worked simultaneously. Thus, the dataset comprises 24 videos per user:

• 1st Floor: 2 (devices) × 3 (locations) = 6 videos.

• 2nd Floor: 3 (devices) × 3 (locations) = 9 videos.

• 3rd Floor: 3 (devices) × 3 (locations) = 9 videos.

The total length of the video resources provided by the proposed dataset is 5h 17min,
occupying 21.8GB. Each participant is represented by more than 3min of videos, each
lasting around 7s. It should be noted that each video includes three phases: (i) when
the person is approaching to the devices, (ii) when s/he speaks in front of them, and (iii)
when s/he leaves the scene. Hence, looking only at the face content, each video contains
around 127 frames with a detected face, and each user is represented by over 3, 000
detected faces. The total number of detected faces is 338, 578, occupying 18.0GB. On the
voice content, each video contains around 3s of speech, and each user is represented by
over 1m of content. The voice data lasts 1h 40min, occupying 283MB.
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5.4.2 Representative Existing Data Sets for Online Scenarios

To validate our veri�cation approaches for online educational scenarios, we leveraged
the following existing data sets collected under very similar conditions:

• The H-MOG data set [215] includes 100 users. When a volunteer logs into the data
collection tool, s/he is randomly assigned to a reading, writing, or map navigation
session. For each session, the volunteer either sits or walks to �nish the tasks. One
session lasts about 5 to 15 minutes, and each volunteer is expected to perform 24 ses-
sions: 8 reading sessions, 8 writing sessions, and 8 map navigation sessions. Each
volunteer in the experiments contributed with about 2 to 6 hours of data. The fol-
lowing categories of data are recorded: accelerometer, gyroscope, magnetometer, raw
touch event, tap gesture, scroll gesture, key press on virtual keyboard.

• The UMDAA-02 data set [268] consists of smartphone sensor signals collected from
48 volunteers over two months. The data collection sensors include the front-facing
camera, touchscreen, gyroscope, accelerometer, magnetometer, and pressure sensor.
Excluding the data of 5 users, a set of 33,209 images was selected from all sessions of
the remaining 43 users at an interval of 7 seconds. The database contains many partial
faces. Moreover, single �nger touch sequences on the screen are included. The length
of gestures vary between 1 to 3,637 touch data points. The data set contains a large
number of touch and swipe data per user, and can serve for practical experiments.

• The MOBIO database [269] consists of audio and video data taken from 152 people.
The database has a female-male ratio or nearly 1:2 (100 males and 52 females), and was
collected in six di�erent sites from �ve di�erent countries. This led to both native and
non-native English speakers. In total, 12 sessions were captured for each client, i.e., 6
sessions for phase I and 6 sessions for phase II. Each phase consists of 21 questions,
with the question types belonging to short response questions, short response, and
free speech. The database was recorded using a mobile phone and a laptop computer.
The �rst session consists of data captured on both the laptop and the mobile phone,
while the remaining ones include data from the latter only.

• TheVoxCeleb-1/2 data sets [239, 240] contain over 1 million utterances for 7,205 celebri-
ties, extracted from videos uploaded to YouTube. The datasets are gender balanced.
The speakers span a wide range of di�erent ethnicities, accents, professions and ages.
The videos are shot in a large number of challenging multi-speaker acoustic environ-
ments. These include outdoor stadiums, quiet studio interviews, speeches given to
large audiences, excepts from professionally shot multimedia. Crucially, all are de-
graded with background chatter, laughter, overlapping speech, room acoustics, and
there is a range in the quality of recording equipment and channel noise. Such data
sets can serve for both online and onlife scenarios. To the best of our knowledge, they
represent the unique data sets large enough for training a deep neural network.
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5.5 The Proposed Face-Touch Veri�cation Approach

In this section, we propose a transparent continuous authentication approach that in-
tegrates physical (face) and behavioral (touch and hand motion) biometrics to control the
learner’s identity during point-and-click activities on mobile devices.

5.5.1 Methodology

The reference architecture underlying the proposed approach is depicted in Fig. 5.3.
The implementation of each biometric module was properly carried out to ensure both
e�cacy and e�ciency. It aims to provide a good trade-o� between security and usability.

The approach works as follows. Starting from the login step, for each touch stroke, a
tracking module gets all the data about the touch stroke together with the image captured
from the camera and the data from Inertial Measurement Unit (IMU) sensors, close to the
time the user touches the screen. The sample is sent to the continuous authenticator.
Inside this, each biometric authenticator individually performs authentication by com-
paring the features extracted from the face image, touch data, or motion sensors data with
the corresponding templates and returns a matching score. Then, the matching scores
are fused by the trust manager which decides if the user can continue the session.

Fig. 5.3: The proposed face-touch veri�cation approach.
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Face Authenticator

The module receives an image as input. It implements the FaceNet algorithm for the
localization of the relevant sub-region of the image containing the face [232]. FaceNet
has been proven to work well when face samples are collected in the wild, including
illumination changes, occlusion and wide variation in poses and expressions. A correc-
tion routine is used to normalize illumination on the image. Then, the module detects
the points of interest of the face, i.e., landmarks: the left eyebrow, the right eyebrow,
the left eye, the right eye, the nose, and the mouth. The landmark detector is based on a
regression trees ensemble trained to estimate facial key points from pixel intensity [270].

The face region is cropped and aligned in pre-processing based on the eye regions.
This leads to a normalized, rotated, translated, and scaled representation of the face. Land-
marks are also cropped and manipulated separately. From the extracted image parts, the
module extracts di�erent types of features:

• Pre-processed face converted to grayscale and re-scaled to 64 × 64 pixels.

• Local Binary Patterns12 (LBPs) extracted for cell size of 8 × 8 from 64 × 64 re-scaled
grayscale images.

• Eye-based, nose, and mouth bounding boxes extracted from the 64 × 64 re-scaled
grayscale face and resized to 16×20, 28×17 and 22×46 pixels, respectively.

• LBPs obtained for a cell size of 12 × 12 pixels from each one of the resized landmarks
bounding boxes computed during the previous point.

• FaceNet neural embeddings resulting from the face and the individual landmarks.

The computed features are vectorized as uni-dimensional vector, and the features vectors
extracted from multiple training samples are averaged, then normalized in the range
[0,1] by using z-score normalization. The resulting features vector constitutes the user’s
template. The matching score between the template and the probe is computed by using
cosine similarity, and returned by the authenticator.

Touch Authenticator

The module receives a set of data records related to an individual touch stroke as input.
Each set of records is composed by one �nger-down record,N consecutivemoving records,
and one �nger-up record. Every record ri is encoded as quadruplet: ri = (xi,yi, ci, ti)
∀i ∈ 1, . . . ,N, where (xi,yi) are the location coordinates, ci the contact size applied at
time ti, and N is the number of records captured during the current touch stroke. The
module is set to process only strokes containing more than three data records.

12LBP is a texture operator which labels pixels of an image by thresholding the neighborhood of each pixel and considers the result as binary number.
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From each set of records, di�erent types of feature are extracted in relation to the
contact, the velocity and the acceleration during the touch. More precisely, 5 statistical
features (i.e., mean, standard deviation, maximum, minimum) are computed. In addition,
6 frequency-based features are extracted from time series representing contact, velocity,
and acceleration (i.e., spectral centroid, spectral energy, spectral spread, spectral skew-
ness, spectral kurtosis, and spectral �atness).

Features are concatenated, and the features vectors extracted from multiple training
samples are features-wise averaged, then normalized in the range [0,1] by using z-score
normalization. Each feature is scaled per user using the related standard deviation. Co-
sine similarity between the probe feature vector and the user’s template is computed,
then the similarity is returned as a matching score by the authenticator.

Hand-Motion Authenticator

The module receives three sequences of observations, one sequence for each motion
sensor. In a sequence, each observation represents the values from the three axes of that
sensor at a given time in the form < timestamp, x,y, z >. To get rotation-invariant
features, each observation is enriched with the magnitude m of the combined vector,
i.e., the square root of the sum of the squares of the homologous values in the three axis.
Hence, each observation is in the form < timestamp, x,y, z,m >.

For each motion sensor, the module separately analyzes x, y, z, andm values as time
series, and extracts from each one 10 time-based features (i.e., mean, standard deviation,
average deviation, skewness, kurtosis, root mean square energy, minimum, maximum,
non-negative count, zero-crossing rate) and 6 frequency-based features (i.e., spectral cen-
troid, spectral energy, spectral spread, spectral skewness, spectral kurtosis, and spectral
�atness). Therefore, from each sensor sequence, a 40-dimensional feature vector is ex-
tracted, i.e., 4 time series × 10 features per time series.

Features vectors extracted from multiple training samples are averaged. Features vec-
tors coming from the three motion sensors data are vectorized, and concatenated to form
a unique feature vector. The features vector is normalized in the range [0,1] by using
z-score normalization, and each feature is scaled per user using the related standard de-
viation. During veri�cation, the module uses cosine similarity to calculate how much
the feature vector from the probe and the template are similar. The resulting score is
returned as a matching score by the authenticator.

Trust Manager

The module is responsible of the fusion of the matching scores, and of the computation
of the global trust level in the user’s genuiness. Such a score is used to decide whether
the current user will be successfully authenticated.
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For each biometric authenticator, an individual trust level in user genuiness is kept
updated considering past values in the session. The parameters have been optimized
for each authenticator during preliminary stages. For each biometric authenticator, the
manager rewards or penalizes the trust in the user’s genuiness based on the amount of
the variation between the genuine user template and the current user probe. If there
is a small deviation for that biometric module, then the trust of the system in user’s
genuiness for that biometric module increases. For large deviation, the trust decreases.

The trust levels are fused through a weighted sum. The values assigned to the weights
are based on the equal error rate (i.e. the value when the false acceptance rate and false
rejection rate are the same) of the corresponding authenticator. If the global trust is over
a given threshold, the user continues the session; otherwise, they are locked out.

5.5.2 Evaluation

We evaluated the e�ectiveness of our approach on a chimeric data set that includes
H-MOG and MOBIO multi-modal data. For each person, assuming face and touch plus
sensors biometrics are statistically independent, 100 chimeric users were built from these
two datasets. It is accepted that results obtained in this way are worthy of full reliability.

Given a userui from MOBIO and a useruj from H-MOG, a chimeric user cij is de�ned
as (ui,uj). Since H-MOG contains 100 users, 100 subjects out of the 150 of MOBIO were
randomly chosen. Then, 100 chimeras were built by randomly associating users. Since
the number of sessions per user is the same in the data sets, we chronologically sorted
sessions, and we paired them using their position in the sorted lists.

For each user’s session, we created the biometric sample by counting and sampling
the touch strokes the user has done during the session; then, we associated each touch
stroke to a single biometric sample. Each biometric sample is enriched with the data
from each motion sensor from 100ms before and after the touch stroke.

Finally, we merged all the videos of the current user in the current session, and we
counted the total number of frames of the merged video. We get as video frames as the
number of touch strokes in the session at equally-spaced intervals. We chronologically
assigned the extracted video frames to touch strokes.

Evaluation Metrics and Protocols

The performance of our approach was measured with the following metrics:

• False Acceptance Rate (FAR) measures the chance that the biometric system incorrectly
accepts an attempt of an impostor user. FAR results as dividing the number of false
acceptances by the number of impostor attempts. The lower the better.
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• False Rejection Rate (FRR) measures the chance that the biometric system incorrectly
fails to authenticate a legitimated user. FRR is calculated as the ratio between the
number of false rejects and the number of genuine attempts. The lower the better.

• Equal Error Rate (EER) is the value obtained at the threshold level used by the biometric
system where FAR and FRR are equal. The lower the better.

Results and Discussion on Short-term Authentication

The �rst experimental setup aims to evaluate the performance of our approach when
the authentication is performed closely to the enrolment. In this setting, the in�uence
of the interaction context and the e�ect of aging should be negligible.

For each user session, we trained the system with data recorded on the �rst 70% of
the session, and tested it on data tracked on the remaining 30% data. Going over the
scope of this experimental setup, the simulated scenario could also serve as continuous
authentication within one session of device utilization: assuming that the genuine user
logins in the application by entry-point authentication, and the enrolment starts with the
session, after having observed few samples, the device turns to authentication mode. In
this way, it could detect impersonation when the genuine user interacts with the device
and, after a moment, they leave the device unattended. We assume that the login and
the �rst part of the session are entirely carried out with the genuine user.

The EER of the individual biometric subsystems (i.e., face, touch and motion sen-
sors matchers) and of the bi-modal and tri-modal fusion matchers obtained during this
experimental setup are reported in Table 5.3. From the results with uni-modal veri�ca-
tion, we observed that the motion sensor subsystem achieved the lowest performance
(EER=12.45%) with respect to the other combinations. Since data tracked by motion sen-
sors is exposed to large variations during the session, it is reasonable that the resulting
EER was higher. The touch subsystem achieved promising but not exceptional results.
The authentication capability mainly depends on the duration of the touch stroke and

System Type Biometrics Combination Authentication Setting
Short-term Mid-term

Uni-modal
Face 3.21 5.95
Touch 7.80 11.23
Hand Motion 12.45 17.56

Bi-modal
Face + Touch 1.53 3.92
Face + Hand Motion 2.81 5.69
Touch + Hand Motion 6.78 10.52

Tri-modal Face + Touch + Hand Motion 0.84 3.56

Table 5.3: The EER obtained by the proposed face-touch veri�cation approach.
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the amount of data they consequently provide. For instance, swipe gestures enable to
get more data in terms of touch records with respect to tap gestures. The face subsystem
reached good performance when it is used alone.

The multi-modal subsystems got lower EERs than single-modality ones, except for
the bi-modal approach combining touch and motion sensors; the latter performed worse
than the individual face matcher (3.57% EER). By fusing touch and face, the EER of the
individual face matcher was reduced of 1.68%. Integrating all the modalities allows to
further decrease it of 0.69% with respect to the best bi-modal subsystem (i.e., face plus
touch). The achieved EER is reasonable.

Results and Discussion on Mid-term Authentication

The second experimental setup aims to evaluate the performance of our approach
when the authentication is performed some weeks after the enrolment; thus, the aging
e�ect and the di�erent interaction context could in�uence recognition capabilities.

This scenario assumes that the genuine user trains the approach during enrolment,
then the template stays the same over many sessions. During the session, the system au-
thenticates the user by comparing the probe with the template built during old sessions.
Even though the short-term authentication scenario embraces a lot of real situations, it
does not work when the mobile device has been stolen in advance. Improper access is
detected only if the impostor enters the session after the real user. To overcome this
limitation, we simulated mid-term authentication by training the system with data from
the �rst 70% sessions, and testing it on data from 30% later ones.

The EERs obtained in the second experimental setup are reported in Table 5.3. The
EERs varied between 5.95% and 17.56% for single-modality approaches. The motion sen-
sors subsystem reported the largest decline in performance with respect to the ones un-
der short-term evaluation, while they remained more stable for face and touch.

Integrating multi-modal solutions improved the authentication performance, but the
combination touch plus motion sensors performed worse than face-only recognition
in this experimental setup. The bi-modal recognition performance resulted in higher
EERs in comparison with the EERs obtained under short-term evaluation. Moreover, the
contribution of touch and motion sensors subsystems to improve the face recognition
capabilities is less in this scenario. This is reasonable since behavioral biometrics usually
tend to exhibit large variations among di�erent sessions. Furthermore, some variables
of the interaction context could be varied between enrolment and authentication (e.g.,
emotional state, hand posture). The aging e�ect could also in�uence performance.

The tri-modal fusion enabled to reach reasonable, but higher EERs values with respect
to the one on short-term evaluation. The total number of scores being tested was big,
and those correctly matched were relevant. The EERs can be considered reasonable.
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To have a more detailed picture of the proposed approach, we also tracked the com-
putational time required by each biometric module. From such an analysis, we observed
that strengthening face biometrics with touch and hand-motion does not compromise
the stringent real-time requirements for continuous authentication. The computational
time of the multi-biometric veri�cation is still dominated by the time required for pro-
cessing face biometrics (i.e., face veri�cation is 60% slower than touch or hand-motion
veri�cation). The di�erence in computational time between touch and hand-motion
sub-modules is negligible (i.e., less than 5%). This might derive from the higher complex-
ity of processing images, i.e., faces, than plain time-series, i.e., touch and hand-motion.
Furthermore, veri�cation is run in parallel over sub-modules, and inserting additional
sub-modules does not impact the overall computation time.

5.6 The Proposed Face-Voice Veri�cation Approach

In this section we propose a transparent continuous authentication approach that cap-
italizes on vocal and facial data to control the learner’s identity while speaking. Each
uni-biometric model helps each other to recognize learners when trained jointly.

5.6.1 Methodology

The proposed fusion strategy that jointly learns voice and face feature representa-
tions, including input data formats, architectures, and training details, is depicted in Fig.
5.4. The core idea is to leverage the morphological relations existing between voice and
face biometrics in order to investigate a cross-modal training, where each uni-biometric
model is supported by the biometric model of the other modality in improving the ef-
fectiveness of its feature representations. Di�erently from other intermediate fusion ap-
proaches, such a multi-biometric fusion might happen (i) on training to develop better
uni-biometric models and/or (ii) on deployment to exploit joint evidence.

Face Backbone

Let Af ⊂ Rm×n×3 denote the domain of RGB images with m × n × 3 size. Each
image af ∈ Af is pre-processed in order to detect the bounding box and key points
(two eyes, nose and two mouth corners) of the face. The a�ne transformation is used
to align the face. The image is then resized and each pixel value is normalised in the
range [0,1]. The resulting intermediate facial image, de�ned as Sf ⊂ Rm×n×3, is used
as input of the visual modality branch of our model. In this branch, an explicit feature
extraction produces �xed-length representations in Df ⊂ Re. We denote such a stage
as Dfθf : Af → Df. Its output is referred to as face feature vector.
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Fig. 5.4: The proposed neural architecture for intermediate multi-biometric fusion.

Voice Backbone

Let Av ⊂ R∗ denote the domain of waveforms digitally represented by an interme-
diate visual acoustic representation Sv ⊂ Rk×∗, such as a spectrogram or a �lter-bank.
Each audio av ∈ Av is converted to single-channel. The spectrogram is then com-
puted in a sliding window fashion using a Hamming window, generating an acoustic
representation sv that corresponds to the audio av. Mean and variance normalisation is
performed on every frequency bin of the spectrum. The resulting representation is used
as input of the acoustic modality branch of our model. In this branch, an explicit feature
extraction produces �xed-length representations in Dv ⊂ Re. We denote such a stage
as Dvθv : Sv → Dv. Its output is named voice feature vector.

Fusion Backbone

LetD2×e be the domain of audio-visual feature vectors generated by a plain concate-
nation of the sparse representation from the face and voice backbones, i.e., df and dv.
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We denote as Cθ : (Df,Dv) → D2×e such a concatenation stage of both modalities
applied after the representation layer of each single modality branch. Then, an addi-
tional feature vector learning step is applied to the concatenated vector d ∈ D2×e to
get a single feature vector of size g jointly learned from df and dv. This extra layer
aims to (i) keep independent the multi-biometric embedding size from the uni-biometric
embedding sizes and (ii) learn more compacted and �exible representations. Moreover,
by setting g = e, reasonable comparisons between uni-biometric and multi-biometric
sparse representations of the same size can be performed. We denote such an extra step
as Dfvθf,v : D2×e → Dg. Its output is named as audio-visual feature vector.

Combining both modalities might generate a better sparse representation of the in-
dividual, and enrich the feature representation of a single modality. This is due to the
relations of voice to genre and facial morphology of people, e.g., male people commonly
have a tone lower than female people. Therefore, by leveraging the fusion backbone, the
uni-biometric backbones help each other to better recognize people. Our hypothesis is
that the embeddings of each backbone should perform better when trained jointly.

Backbones Instantiation

The proposed approach makes use of existing neural network architectures, slightly
arranged to accommodate the modality digested by each of the above-mentioned back-
bones and the subsequent fusion purposes.

Two instances of the residual-network (ResNet-50) architecture are used as feature
vector extractors Dfθf and Dvθv within face and voice backbones, respectively [271].
Such a network, well known for good classi�cation performance on visual and acoustic
modalities [230, 240], is similar to a multi-layer convolutional neural network, but with
added skip connections such that the layers add residuals to an identity mapping on the
channel outputs. The input layers of the original ResNet-50 architecture are adapted to
the modality associated to the corresponding backbone. Moreover, the fully-connected
layer at the top of the original network is replaced by two layers: a �atten layer and a
fully-connected layer giving the embedding of the modality, i.e., df or dv.

The fusion backbone Dfvθf,v is instantiated by a concatenation layer stacked into the
model to combine face and voice feature vectors inD2×e domain, and an additional fully-
connected layer where the signi�cant features of video and audio modality are jointly
embedded. The latter output represents the audio-visual feature vector d ∈ Dg pre-
viously formalized. Moreover, for each fully-connected layer, batch normalization has
been set before the activation function to regularize the outputs, and a dropout layer is
inserted after activation to prevent model over-�tting. Finally, an output layer depend-
ing on the applied loss function is posed at the top of the network during training.



100 Section 5.6. The Proposed Face-Voice Veri�cation Approach

Training Process Description

The training data is composed by N tuples {(xi,yi)}Ni=1 where each multi-biometric
sample xi corresponds to a person associated with the class yi ∈ 1, ..., I, being I the
number of di�erent identities depicted inN samples. Each sample xi is de�ned as a pair
xi = (avi ,afi) such that avi is a utterance and afi is a visual frame. The elements of
each pair are randomly chosen among face and voice samples from the same user; then,
they are sequentially fed into the multi-biometric model. Such a model can be integrated
with any existing loss function. Additionally, a hold-out validation set consisted of all
the speech and face segments from a single randomly-selected video per user.

5.6.2 Evaluation

Experiments aimed to assess the reliability of the proposed uni-/multi-biometric fea-
ture representations. The instances of the model involved in these experiments were
trained on VoxCeleb1-Dev and tested on AveRobot, MOBIO, and VoxCeleb1-Test. This
is motivated by the fact that VoxCeleb1 has been known for being the largest dataset for
audio-visual veri�cation, and this is more suited for training a deep neural network.

Evaluation Data Format

For the face branch, each frame is analyzed in order to detect the face area and land-
marks through MTCNN [267]. The �ve facial points (two eyes, nose and two mouth
corners) are adopted by such an algorithm to perform face alignment. The faces are
then resized to 112 × 112 pixels in order to �t in our branch and each pixel in [0, 255]
in RGB images is normalized by subtracting 127.5 then dividing by 128. The resulting
images are then used as input to the face branch.

For the voice branch, each audio is converted to single-channel, 16-bit streams at a
16 kHz sampling rate for consistency. The spectrograms are then generated in a sliding
window fashion using a Hamming window of width 25ms and step 10ms. This gives
spectrograms of size 512× 300 for three seconds of speech. Mean and variance normal-
isation is performed on every frequency bin of the spectrum. No other speech-speci�c
pre-processing is used. The spectrograms are used as input to the voice branch.

Evaluated Feature Representations

The evaluation involved uni-biometric and multi-biometric feature representations
obtained from backbone networks trained on top of VoxCeleb1-Dev. In order to optimize
model weights, several instances of the network were independently trained through
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di�erent loss functions from various families: Softmax loss [230], Center loss [233], Ring
loss [234], and AM-Softmax loss [235]. More precisely, for each training loss, we trained
appropriate models to learn the following feature representations:

• Uni-Modal Voice representations extracted from dv when the voice branch is trained
alone (baseline).

• Uni-Modal Face representations extracted from df when the face branch is trained
alone (baseline).

• Multi-Modal Voice representations extracted from dv when the voice branch is trained
jointly with the face branch (introduced in this paper).

• Multi-Modal Face representations extracted from df when the face branch is trained
jointly with the voice branch (introduced in this paper).

• Multi-Modal Face+Voice representations extracted from dg when the face branch and
the voice branch are jointly trained (introduced in this paper).

Each model was initialised with weights pre-trained on ImageNet. Stochastic gradient
descent with a weight decay set to 0.0005 was used on mini-batches of size 64 along 40
epochs. The initial learning rate was 0.1, and this was decreased with a factor of 10 after
20, 30 and 35 epochs. The training procedure was coded in Python using Keras.

Evaluation Metrics and Protocols

For each testing data set, the protocol aims to evaluate how the learned represen-
tations are capable of verifying, given a pair of test frames/spectrograms, whether the
faces/voices come from the same person. For each testing data set, we randomly se-
lected 40 users every time in order to (i) keep constant the number of considered users
and (ii) maintain comparable the results across the di�erent data sets (VoxCeleb1-Test
has the minimum number of participants among the considered data sets, i.e., 40). Then,
we randomly created a list of 20 videos (with repetitions) for each selected user and,
from each one of them, we randomly created 20 positive frame/spectrogram pairs and 20
negative frame/spectrogram pairs. The above-mentioned feature representations were
considered as feature vector associated to each frame/spectrogram. We used euclidean
distances to compare probes and templates. Equal Error Rate (EER) was computed to
evaluate the performance of the models on the test pairs. The lower the EER, the higher
the performance. Lastly, the experiment was repeated, and the results were averaged.

Results on Veri�cation

Fig. 5.5-5.7 plot the results achieved by the learned representations on veri�cation.
The loss and the modality performance vary across settings.
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Fig. 5.5: EER veri�cation results on VoxCeleb1-Test.
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Fig. 5.6: EER veri�cation results on MOBIO.
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Fig. 5.7: EER veri�cation results on Averobot.
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It can be observed that multi-modal face representations achieve lower EER than uni-
modal face representations with all the dataset and training losses. This means that
deep fusion signi�cantly helps to create better sparse representations for the face modal-
ity. More precisely, EER obtained by representations learned through Ring and Center
losses can be improved of around 50%, while we observed an improvement of around
25% thanks to representations learned through Softmax and Margin losses. It follows
that multi-modal face representations better separate genuine and impostor pairs.

Comparable results are obtained by multi-modal voice representations, even though
the improvement w.r.t. the uni-modal voice representations is lower, i.e. among 5% and
10%. Interestingly, multi-modal voice representations learned through Ring loss do not
work well. This revealed that Ring loss su�ers from the deep fusion approach. Our
results suggest that such a loss has a minor impact in deep audio-visual fusion settings.

By merging face and voice embeddings into a single representation, the veri�cation
performance improves on all the datasets, with all the losses. It can be observed an
improvement of around 50% on all the settings. Face-voice fused representations work
well also when learned through Ring loss; hence, the de�ciencies of multi-modal voice
representations learned through this loss are mitigated by fusing voices and faces.

The results across the testing datasets con�rm that the context has a relevant impact
on the absolute performance of the models, moving from VoxCeleb1-Test to AveRobot by
increasing challenging level. In particular, the veri�cation results on AveRobot pairs are
4/5 times worse than the ones achieved on MOBIO pairs. This large di�erence could be
related to the more uncontrolled conditions, with dark faces and highly-noisy scenarios.

It is worth noticing that, to get full advantage of combining highly-variant touch and
hand-motion biometrics with face biometrics, the multi-biometric veri�cation protocols
presented in Section 5.5 required to collect data over multiple sessions before building
meaningful multi-biometrics templates. On the other hand, combining voice and face
biometrics led to reasonable accuracy just after having observed one evidence of the
targeted user; therefore, the multi-biometrics veri�cation protocol we adopted for face-
voice authentication focused on one-shot evidence for building templates. Consequently,
the results presented in this chapter should not mislead the reader towards considering
face, touch, and hand-motion combination has more accurate than face and voice com-
bination, as they were tested on di�erent context-speci�c veri�cation protocols.

5.7 The Proposed Attack on Uni-modal Veri�cation

In this section, to raise awareness on multi-biometrics, we demonstrate the feasibility
of dictionary attacks on otherwise-developed uni-biometrics, using the voice modality as
a use case. We targeted large populations without speci�c knowledge of the individuals
or their speech models. Such attacks, recently demonstrated for �ngerprints [272, 273],



104 Section 5.7. The Proposed Attack on Uni-modal Veri�cation

rely on the necessary usability-security trade-o�s in mass deployments (e.g., only par-
tial scans of multiple independent �nger impressions), and stand in stark contrast to the
prevailing individual-targeted attacks [274]. The widely-known menagerie analysis al-
ready hints at this vulnerability - it shows that certain individuals act as wolves and can
match a lot of users. This suggests the existence of a large family of Master Voices (MVs),
which match large populations by chance with high probability.

More precisely, building on top of the formalization provided by Section 5.3, �nding
master voices becomes an optimization problem, which aims to �nd audio waveforms
maximizing the following objective function:

ã = argmax
a
E
u∈U

vp,τ
(
D(F (a)),DNu

)
(5.4)

5.7.1 Methodology

Veri�cation System and Data Sets

In this study, we leveraged the VoxCeleb data sets [239, 240], two of the largest cor-
pora for speaker veri�cation and identi�cation. They include unconstrained speech of
celebrities, extracted from public videos, and featuring diverse acoustic environments.

All waveforms were single-channel, 16-bit recordings sampled at 16 kHz. As acoustic
feature extraction F , we computed magnitude spectrograms with a sliding window of
size k = 512 samples, and a stride of 160 samples. We applied the Hamming window of
512 samples. Then, mean and variance normalisation was performed on every frequency
bin. As feature extractor D , we used the VGGVox model [239] pre-trained on the train
portion of the �rst version of the data set AVC1-Train (1,211 speakers) and validated on the
test portion of the same data set AVC1-Test. The model extracts a e = 1024-dimensional
representation from each 512 × ∗ spectrogram. As similarity function S , we used the
cosine similarity. When we applied a policy, we sampledN = 10 utterances per user for
enrollment. The selected valueN can represent a good trade-o� between long and short
enrolment lists employed by the existing literature. We consider two veri�cation policies
p, AnyN [275] and AvgN [236, 237], which rely on a similarity functionS : D×D→ R:

vp,τ =

{
any

(
{S (d,diu) > τ : i ∈ 1, . . . ,N}

)
if p = AnyN

S
(
d, 1
N

∑N
i=1 d

i
u

)
> τ if p = AvgN

For our experiments on master voices, we used the second version of VoxCeleb [240].
From it, we sampled two disjoint populations, i.e., AVC2-Train for exploration and train-
ing, and AVC2-Test for testing. Each included 1,000 speakers, equally divided between the
sexes. Each individual was represented by 50 utterances, leading to the total of 50,000
utterances with duration between 4 and 10 seconds for each population.
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The veri�cation pipeline achieves an Equal Error Rate (EER) of 8% on utterance-
utterance pairs from the validation set AVC1-Test (consistent with results in [239]), which
increases to 11.2% on our sampled population AVC2-Train. Based on the latter evaluation,
we chose two global thresholds: τEER = 0.53 and τFAR1% = 0.74, which correspond to the
Equal Error Rate and False Acceptance Rate (FAR) of 1%, respectively.

Exploratory Analysis

Our �rst step was to perform exploratory menagerie analysis to assess prevalence of
naturally occurring wolves [276] - potential candidates for master voices. We conducted
the experiments on AVC2-Train for male and female speakers separately, since they exhibit
distinct characteristics, which is con�rmed in feature domain D (see Fig. 5.8a).

For each user, we �rst computed the average genuine score, which represents how
well they match against themselves, and the average imposter score indicating how well
they match against others (Fig. 5.8b and 5.8c). Each point in the scatter plots represents a
user. Intuitively, to �nd good master voices, we are interested in people in the top of the
graphs since they cause a disproportionate number of false acceptances. Interestingly,
the model revealed an undesired e�ect against women, who exhibit signi�cantly greater
intra-sex average imposter similarity than men.

To investigate this phenomenon, we resorted to utterance-level analysis. In Fig. 5.8d,
we show false acceptance rates for utterance-to-utterance matching targeting a speci�c
gender. The x axis is ordered by FAR, which leads to nearly no errors at the beginning,
and a sudden deterioration in the middle, which corresponds to unlikely erroneous intra-
sex matches. On the end, the plot clearly shows the existence of outliers, and signi�cant
di�erences between males and females. The plot also reveals that, with the commonly
used equal-error-rate threshold, the female wolves match over 60% of peers’ utterances.

We also assessed the consistency of individual speakers to produce easily confusible
utterances. The results are shown in Fig. 5.8e and 5.8f for female and male speakers,
respectively. For each gender, we ranked the utterances belonging to that gender by
decreasing FAR and we grouped them in groups of 500 utterances based on their position
in the ranking (i.e., the top-500 utterances with highest FAR belong to the �rst group
and so on). For each user, we then counted how many of her/his utterances belong to
each group. Users who generate high FARs have a lot of utterances in the top groups
(bottom-left of the plots), while users with less impersonation power have utterances
in the last groups (top-right of the plots). It can be observed that, while some users are
prone to produce high FARs, their utterances are scattered across the groups. Hence,
we can conclude that while the individual speaker properties matter, there is a strong
content-related component which may inhibit attacks when what it is said is important.

Finally, we assessed the impact of di�erent veri�cation policies (Fig. 5.8g and 5.8h).
For each enrolled utterance and user u, we match other users based on their enrollment
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(a) 2-D t-SNE projection of VGGVox vectors.
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(b) Menagerie analysis within women.
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(c) Menagerie analysis within men.
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(d) False accept rate per utterance.
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(e)Women ranking based on false accept rates.
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(f) Male ranking based on false accept rates.
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(g) Impersonation rate with Any10 policy.
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(h) Impersonation rate with Avg10 policy.

Fig. 5.8: Exploratory menagerie analysis.
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Fig. 5.9: The proposed approach for generating a master voice.

set, veri�cation policy, and decision threshold τ. With the Any10 policy, we observed
utterances capable of impersonating between 80% and 90% of the users for τEER and be-
tween 20% and 35% for τFAR1%. The results were only slightly worse for the Avg10 policy,
where we observed impersonation rates between 60% and 80% for τEER and between 10%
and 25% for τFAR1%.

The impersonation results indicate that naturally occurring wolves are good candi-
dates for master voices given existing veri�cation policies13. However, speech content
and background noise have strong in�uence as well, leading to di�culties in �nding a
large collection of master voices for a successful dictionary attack. Hence, in the follow-
ing section, we explore adversarial perturbations for seeking e�ective master voices.

The Proposed Optimization

The goal of the optimization process is to generate a master voice waveform which
maximizes the expected FAR (5.4). Given an existing seed waveform a and a set of M
training waveforms ATrain of a large user population U, we seek ã, which maximizes∑
u∈U vp,τ

(
D(F (ã)),DNu

)
. We will later show empirically that, although the optimiza-

tion relies on a given population, the results are fully generalizable to unseen individuals.

Our optimization process seeks adversarial perturbations s̃ of the selected input spec-
trogram s = F (a), and relies on an iterated stochastic gradient descent (Fig. 5.9). By
slightly perturbing the input spectrogram, we are able to make it more and more similar
to an increasing number of training spectrograms, and bias the veri�cation choices the
system makes towards higher FAR.

13We acknowledge huge impact of the decision thresholds. However, while a 1% FAR may already seem to be excessive, even state-of-the-art models cannot guarantee
acceptable TPRs for stricter thresholds.
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Fig. 5.10: The core of the Gradient Computation module.

The steps below are repeated in each iteration t:

1. Mini-Batch Sampling. We sample a batch ofm spectrograms Sbatch ← {F (a) : a ∈
ATrain} withm << M.

2. Gradient Computation. We pair the current iteration of the input spectrogram
s̃t and the batch spectrograms {(s̃t, si) : si ∈ Sbatch} and feed them to the Siamese
network for comparison (Fig. 5.10). We compute gradients w.r.t. s̃t and feed them to
the next step for �ltering.

3. Gradients Filtering by Similarity. We discard gradients obtained from target ex-
amples with similarity outside a certain range [Smin, Smax]. This prevents seeking
futile optimization directions, i.e., users who we already match, who we have negli-
gible matching chances.

4. Perturbation Computation. We compute the adversarial perturbation ∇̃t as:

∇̃t = max
(
α

N

∑
i

∇i, ∇̃min

)
(5.5)

where ∇̃min is the minimum perturbation, α is the learning rate, and ∇i is the gra-
dient from i-th �ltered pair.

5. Spectrogram Update. We update the current estimate of the input spectrogram as:

s̃t+1 = s̃t + ∇̃t (5.6)

The process is repeated until the gain in FAR is higher than γ. We then get a master voice
waveform ã by inverting its optimized spectrogram via the Gri�n-Lim algorithm [277].
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Fig. 5.11: The distribution of impersonation rates for the best-performing settings.

Gender EER Threshold FAR1% Threshold
Seed Train Test Any10 Avg10 Any10 Avg10

SVs MVs SVs MVs SVs MVs SVs MVs
M M M 47.2 65.0 27.2 44.9 6.7 16.3 2.9 9.6
M F M 46.6 17.0 26.3 6.9 6.8 1.9 3.5 0.7
F M M 3.4 29.3 0.9 14.8 0.3 2.6 0.1 1.2
F F M 3.5 1.5 0.9 0.4 0.3 0.3 0.1 0.1
M M F 4.7 2.1 1.3 0.4 0.3 0.2 0.1 0.0
M F F 5.2 41.9 1.7 23.6 1.8 6.1 1.4 3.3
F M F 62.7 28.3 41.5 15.2 15.4 5.6 8.1 2.5
F F F 63.4 80.9 41.6 62.6 14.4 34.2 7.2 20.8

Table 5.4: Average impersonation rates for seed and master voices.

5.7.2 Evaluation

Our optimization starts from a seed voice (SV) and aims to improve its impersonation
capabilities. To measure the improvement that our optimization can achieve from an
arbitrary SV, we sample SVs from the population AVC2-Train while controlling their initial
impersonation power. For each gender, we ordered the corresponding 25,000 utterances
according to their inherent impostor score for the Any10 veri�cation policy and thresh-
old τEER. We sampled 200 utterances from uniformly distributed percentiles in the popu-
lation. Finally, we used our optimization procedure, to yield 100 master voices (50:50 for
males and females, respectively) optimized for intra-sex matching (i.e. training only on
utterances from the same gender in AVC2-Train), and 100 master voices optimized for inter-
sex matching (i.e. training only on utterances from the opposite gender in AVC2-Train). We
assess their impersonation rates on a disjoint population of 1,000 people AVC2-Test.

Table 5.4 compares the impersonation rates for Seed Voices (SVs) and master voices
(MVs) under di�erent training and testing genders, veri�cation policies, and thresholds.
The reported results correspond to the test population AVC2-Test, with people unseen at
the time of optimization. On average, we can improve the seed impersonation rate by
20 and 10 percentage points for τEER and τFAR1%, respectively. For the least secure setting
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with the Any10 policy and threshold τEER, on average, a MV can impersonate 80% of
females and 65% of males. In the most secure con�guration, the Avg10 policy and τFAR1%,
on average, a MV can still impersonate 20% of females and 10% of males.

Regarding gender, we observed a signi�cant improvement in the impersonation rates
when the same sex is chosen for seed, training and testing samples (i.e., M-M-M and
F-F-F settings). Moreover, when the training and the testing gender are the same (i.e.,
F-M-M and M-F-F settings), the results seem to be good, independent from the seed
gender - except for Avg10 policy at τFAR1%. This means that the added noise makes it
possible to use perturbed utterances to impersonate users of the opposite gender. In
contrast, settings with di�erent training and the testing genders (i.e., M-F-M, F-F-M, M-
M-F, F-M-F) led to poor results, highlighting how relevant the training gender is on the
optimization. Female MVs seem to be more powerful than male MVs.

In Fig. 5.11 we show the distribution of impersonation rates in the populations of seed
and master voices for F-F-F and M-M-M gender settings. The probability of �nding an
utterance with high impersonation rate is low in SVs (green lines), while it signi�cantly
increases in MVs (blue lines). This means that MVs produce high impersonation rates in-
dependently from the starting utterance and, thus, from the speaker, the speech and the
environment. The di�erence in impersonation rates between train (lighter colors) and
test populations (darker colors) is negligible, so MVs generalize well across populations.

5.8 Findings and Recommendations

In this chapter, we provided data and approaches for performing learners’ authen-
tication in ubiquitous settings. More precisely, we presented an approach for integrat-
ing face authentication together with behavior authentication to secure the user access
to online learning platforms, going beyond one-o� authentication. We also proposed
a multi-biometric model that digests face and voice traits in parallel, and we explored
how it helps to improve recognition performance in learners’ veri�cation scenarios, both
online and onlife. Furthermore, we performed the �rst analysis of speaker veri�cation
systems in the context of recently reported dictionary attacks on biometrics. Such at-
tacks might put at risk current uni-modal veri�cation approaches.

Based on the obtained results, we can conclude that:

1. Strengthening face biometrics with touch and hand-motion biometrics leads to higher
authentication accuracy, without compromising the stringent real-time requirements
for continuous authentication. The computational time of the multi-biometrics veri�-
cation is still dominated by the time required for processing the original face biomet-
rics, and veri�cation is run in parallel over sub-modules to avoid additional overhead.

2. Even though touch and hand-motion exposed a low persistence over time, they can
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be e�ectively used to recognize people within few weeks.

3. Face and voice models can bene�t from deep intermediate fusion, and the recognition
improvement depends on the modality, the loss, and the context.

4. Uni-biometric face models exhibit higher accuracy improvements than uni-biometric
voice models, after being jointly trained at intermediate level.

5. Merging face and voice into a single embedding vector at intermediate level positively
impacts the accuracy of multi-biometric audio-visual models.

6. Face and voice models jointly trained at intermediate level generalize well across pop-
ulations, and are more robust when applied in challenging contexts.

7. Speech seems susceptible to dictionary attacks, and both speaker and speech content
a�ect impersonation rates.

8. Dictionary attacks based on adversarial optimization can be used to signi�cantly in-
crease impersonation capabilities of arbitrary inputs.

9. The gender bias of a veri�cation model increases the di�erence in exposure to dictio-
nary attacks across populations based on the gender.

In next steps, we plan to investigate other approaches to improve the recognition scores
returned by individual biometric subsystems, the adoption of additional biometrics, the
way the system trusts the user’s genuiness, and the capability of working well when
one motion signal lacks. Moreover, we will investigate master voice transferability and
generative models usage for master voice generation. Finally, we plan to build proper
countermeasures to the uncovered attack.





Chapter 6

Machine Learning Models for Sen-
timent Analysis

Research Highlights
• The COCO-SA data set enables deep sentiment analysis in education.
• Our neural network has been proved to be accurate for sentiment analysis.
• Context-trained embeddings perform better than general-purpose ones.
• Context-trained Word2Vec embeddings show the lowest error score.

6.1 Introduction

Individuals use online social platforms to express opinions on products and services.
Such user-generated data, generally a text (e.g., reviews, tweets, wikis, blogs), is often
characterized by a positive or negative polarity according to the satisfaction of people
who write it. Understanding individual’s satisfaction is a key element for companies
and institutions to do collective reasoning. The automatic investigation performed on
person’s opinions usually relies on Sentiment Analysis (SA). Techniques and systems
in this �eld aim to extract and classify emotions and sentiments by combining Natural
Language Processing (NLP), Text Mining and Computational Linguistics [278]. Exploiting
this arti�cial intelligence makes it possible to complement common practices (e.g., focus
groups or surveys), but still presents challenges because of context dependencies of data.

Online educational platforms deployed at large scale are earning more and more atten-
tion as social spaces where students can consume content and share opinions regarding
their experience [279]. For instance, such a collective intelligence might be useful for
peers who are planning to attend a given course, instructors interested in improving
their teaching practices, and providers who can get bene�ts from learners’ feedback to
re�ne the platform itself. Therefore, these environments can be envisioned as dedicated
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social channels where discussions are focused on speci�c topics concerning course con-
tent quality, teachers’ skills, and so on [280]. SA approaches on students’ opinions have
recently started to gain attention [281], and their design is still an open challenge.

Prominent SA solutions use word embeddings as feature vectors, i.e., distributed rep-
resentations that model words properties in vectors of real numbers which capture syn-
tactic features and semantic word relationships [282, 283, 46, 284, 285]. Generating word
embeddings is based on distributional co-occurrences of adjacent words able to model
words meanings not visible from their surface. This exploits the fact that words with a
similar meaning tend to be connected by a given relation. For instance, the verbs utilize
and use, synonym although syntactically di�erent, present similar sets of co-occurring
words and can be considered similar, while a third verb, such as play, has di�erent co-
occurrences and should be considered di�erent from both utilize and use.

Training deep neural networks on word embeddings is making it possible to learn com-
plex data representation, increasingly higher-level features, and correctly measure prop-
erties held by data, especially in SA tasks [286, 282, 283]. However, the literature ac-
knowledges that models generated from general-purpose data sets, independently from
any speci�c domain, under-perform the ones built on data from the target context of the
SA task. This happens because context-trainedmodels may capture speci�c patterns from
the target context, while generic-trained ones might learn patterns acting as noise for it.
Hence, using deep neural networks powered by word embeddings learned from e-learning
data can enable improving the e�ectiveness of the dedicated SA systems.

In this chapter, we aim to investigate deep learning and word embeddings for senti-
ment analysis in educational contexts. To this end, we propose a deep learning model,
trained on word embedding representations coming from the e-learning context, that is
able to predict a sentiment score for reviews posted by learners. We also report its ex-
perimental evaluation on a large-scale dataset of online course reviews. More precisely,
we show how word embeddings trained on smaller context-speci�c textual resources
are more e�ective with respect to those trained on bigger general-purpose resources.
Moreover, we highlight the bene�ts derived from combining word embeddings and deep
learning approaches for sentiment analysis in education.

The contribution of this chapter is threefold:

• We arranged a large-scale data set of textual reviews extracted from Udemy, including
over 16K instructors and 2, 5M learners who provided 4.5M reviews over 43k courses.

• We propose a fully-automated approach for e�ective and e�cient classi�cation of tex-
tual reviews based on educational-speci�c word embeddings as features and on top of
a deep learning architecture for prediction, going over traditional term-based methods.

• We provide an extensive evaluation in terms of e�ectiveness and e�ciency for review
classi�cation, comparing our approach with di�erent combinations of feature types
and algorithms to assess which one is the best at classifying learners’ reviews.
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The rest of this chapter is structured as follows: Section 6.2 describes the most repre-
sentative techniques for sentiment analysis, going deeply on those tested in education.
Then, Section 6.3 formalizes the problem we seek to investigate. Section 6.4 introduces
the learners’ review data set we collected. Section 6.5 describe and evaluate the classi�-
cation model we trained on such a data. Finally, Section 6.6 concludes the chapter.

6.2 Related Work

6.2.1 Sentiment Analysis Techniques

Common SA approaches can be classi�ed in supervised and unsupervised [287]. Su-
pervised approaches require a training data set annotated with numerical values left by
users or inferred from the content in the text, and leverage it to build a classi�er that
predicts a sentiment score for unseen data. Common supervised pipelines require the
extraction of features from the text. Such features are then fed into an algorithm that
assigns a positive or negative polarity to the text. On the other hand, unsupervised ap-
proaches rely on lexicons associated with sentiment scores in order to model the polarity.

ML has been extensively adopted for SA tasks. For instance, the authors in [288] used
Maximum Entropy (ME) and Naive Bayes (NB) algorithms, adopting syntactical and se-
mantic patterns extracted from words on Twitter. Their method relies on the concept of
contextual semantic i.e. considering word co-occurrences in order to extract the mean-
ing of words [289]. When evaluated on nine Twitter data sets, their method showed
better performance than baselines. More recently, the authors in [290] applied Stochastic
Gradient Descent (SGD) and Support Vector Machine (SVM) algorithms to classify movies
reviews in a binary classi�cation problem (i.e. positive or negative). They showed that
the use of a n-gram model to represent reviews obtains higher levels of accuracy when
the value n was small. Moreover, they showed that combining uni-gram, bi-gram, and
tri-gram features was better than using a single representation at once.

The SA domain also experienced the in�uence of the wide spread of deep learning
approaches. For instance, in [46], a Convolutional Neural Network (CNN) was designed
to capture features from character to sentence level. An ensemble neural network was
proposed by [291], where various sentiment classi�ers trained on di�erent sets of fea-
tures were combined. They performed experiments on six di�erent datasets coming
from Twitter and movies reviews, showing improvements when compared with state-
of-art ML baselines. Another approach combines various ML classi�ers with DL ones
[292]. A SVM classi�er was mounted on top of a 7-layer CNN in order to complement
the characteristics of each other and obtain a more advanced classi�er. They were able
to obtain more than 3% of improvement compared to a classic DL model. To learn con-
tinuous representations of words for SA, a combination of CNN with a Long-Short Term
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Memory (LSTM) was exploited by [293]. They were able to assign �xed-length vectors
to sentences of varying lengths, showing how DL outperform common ML algorithms.

Emerging deep learning SA approaches have been usually fed with word embeddings,
improving accuracy of baseline methods not using word embeddings. For instance, the
authors in [284] incorporated prior knowledge at both word and document level with
the aim to investigate how contextual sentiment was in�uenced by each word. On the
same direction, other researchers employed sentiment of text for the generation of words
embeddings [294]. They joined context semantics and sentiment characteristics, so that
neighboring words have both a similar meaning and sentiment. Similarly, the authors
in [295] augmented sentiment information into semantic word representations and ex-
tended the Skip-gram model, coming up with two sentiment word embedding models.
The learned sentiment Word Embeddings were able to represent sentiment and seman-
tics. Furthermore, the authors in [296] presented a model that uses a mix of unsuper-
vised and supervised techniques to learn word vector representations, including seman-
tic term-document features. The model showed performances higher than several ML
methods adopted for sentiment detection. Focusing on Twitter sentiment classi�cation,
the authors in [297] trained sentiment-sensitive words embeddings through the adoption
of three neural networks. Their experiments showed it outperformed the competitors.

Several challenges have been created to solve SA polarity detection task and several
resulting winning systems employed word embeddings within their core. For instance,
the Semantic Sentiment Analysis challenge [298, 299, 300, 301], held within the ESWC
2018 conference, included a polarity detection task where participants were asked to
train their systems by using a combination of word embeddings. The annual SemEval
workshop usually includes SA polarity detection, and most prominent solutions employ
neural network architectures with various types of input features, including word em-
beddings. Kaggle1 hosts several challenges, and some were related to SA. For instance,
the Sentiment Analysis on Movie Reviews challenge2 asked participants to label the movie
reviews collected in the Rotten Tomatoes data set [302] on a scale of �ve values: neg-
ative, somewhat negative, neutral, somewhat positive, positive. One recent challenge,
namely Bag of Words Meets Bags of Popcorn3, looked for deep learning models combined
with word embeddings for polarity detection on movie reviews [296].

6.2.2 Sentiment Analysis in Education

Education has recently gained the attention of SA in order to get knowledge from
dynamics that online platforms enable. More precisely, studying sentiments in education
can support learning and teaching evaluation, assessing the quality of the involved tools,
increasing students’ motivation, and re�ning learning processes [303].

1https://www.kaggle.com/
2https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
3https://www.kaggle.com/c/word2vec-nlp-tutorial

https://www.kaggle.com/
https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
https://www.kaggle.com/c/word2vec-nlp-tutorial
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Based on recent surveys [279], it can be possible to identify two main sentiment anal-
ysis approaches used in this domain: the machine learning and lexicon-based approaches.
On the one hand, machine learning approaches can be divided into supervised and un-
supervised machine learning approaches. Regarding supervised machine learning ap-
proach, there are several classi�ers used in education domain such as decision tree, linear,
rule-based, and probabilistic classi�ers. On the other hand, the lexicon-based approach
uses techniques such as dictionary-based and corpus-based approaches. For instance, one
work embraces the use of Sentiment Analysis to mine students’ interactions in collabo-
rative tools, guaranteeing the students’ communication privacy in their opinions [304].
Another relevant area that exploited SA was teachers’ assessment. For example, the au-
thors in [281] adopted a Support Vector Machine to evaluate the teachers’ performance
using 1, 040 comments of systems engineering students as a dataset. The evaluation of
the teaching-learning process was also object of study through SA on comments posted
by both students and teachers [305]. Similarly, the authors in [306] studied sentiments
to build an adaptive learning environment with recommendations.

6.3 Problem Formalization

The sentiment polarity detection task can be formalized as follows. Given N tuples
D = (xi,yi)Ni=1 where each xi ⊂ X∗ corresponds to a textual comment of unknown
length composed by words from a dictionary X, and each yi ⊂ Y corresponds to the
polarity of the comment from a pre-de�ned set of polarities. We consider an explicit
feature extraction step which produces �xed-length representations in F ⊂ Re. We
denote the stage as F : X →F. Given a feature vector f ⊂ F, we seek to create a
regression model Gθ that maps f into a continuous value closed to y. Namely, we want
to �nd a function Gθ : F→Y that outputs the �oating-point polarity of the comment x
whose feature vector is f = F (x). Finding such a regression model implies to minimize
the following objective function:

Gθ = argmin E
(x,y)∈D

|Gθ(F (x)) − y| (6.1)

6.4 The Proposed COCO-SA Data Set

COCO-SA contains over 1M reviews from more than 4.5M learners, extracted from
courses delivered on Udemy. Unlike academic-oriented platforms driven to traditional
coursework, Udemy enables experts in various areas to o�er courses at no charge or for
tuition fees. In comparison with other online course platforms, no third-party control
on reliability, validity, accuracy or truthfulness of the course content is performed. All
copyright and registered trademarks remain property of their owners. To the best of our
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Data Set #Reviews Context
Stanford Movies [285] 10,605 Movie Reviews
IMDB [164] 25,000 Movie Reviews
Sentiment140 [307] 160,000 Twitter Posts
Dranziera [308] 1,000,000 Amazon Reviews
Stanford Amazon [309] 34,686,770 Amazon Reviews
ForumSent [310] 1,075 Online Learning Forum Posts
FacebookEdu [311] 10,000 Facebook Education Posts
TwitterEdu [312] 19,997 Twitter Education Posts
CourseraC3 [313] 35,590 Online Learning Forum Posts
COCO-SA 1,396,312 Online Course Reviews

Table 6.1: Representative data sets for textual sentiment analysis.

knowledge, there exists no other benchmark large-scale data set that includes educa-
tional ratings from online courses. Table 6.1 summarises other representative data sets
used for sentiment analysis. Besides lacking online courses conditions, most of them
include only few reviews and the set of review polarities is limited (e.g., two or �ve).

6.4.1 Collection Methodology

This section describes our multi-stage approach for collecting a large educational re-
view data set. The pipeline is summarised in Fig. 6.1, and key stages are discussed below:

1. Candidate Courses Retrieval: The �rst stage is to obtain a list of courses from
Udemy. We start from the list of courses that are returned by Udemy APIs4, that
exposes functionalities to help developers accessing content and building external
applications. The script retrieved 43, 023 courses, dumped in November 2017.

2. Course Reviews Download: To retrieve the reviews released by learners, the script
uses the Udemy APIs method aimed to return course reviews given the course iden-
ti�er. The query result gave 6M rows, each with the course id, the timestamp, the
rating between 0 and 5 with step 0.5, and the comment.

3. Data Cleaning and Pruning: To ensure that the data set can be used for bench-
marking sentiment analysis, we took only reviews whose comment has at least 20
characters. The re-sampled data set includes 1, 396, 312 reviews from 30, 599 courses.

4. Semantic Features Enrichment: We enriched each review with Part-of-Speech
(PoS) tags computed by the Natural Language Toolkit5 (NLTK), and keywords and
concepts computed by the IBM Watson Natural Language Understanding APIs6.

4https://www.udemy.com/developers/
5http://www.nltk.org/
6https://www.ibm.com/watson/services/natural-language-understanding/

https://www.udemy.com/developers/
http://www.nltk.org/
https://www.ibm.com/watson/services/natural-language-understanding/
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Fig. 6.1: Collection pipeline for COCO-SA data set.

Fig. 6.2: Structure of the COCO-SA data set.

6.4.2 Structure and Statistics

COCO-SA is a CSV -based collection whose structure in terms of entities and associ-
ations is depicted in Fig. 6.2. Text attributes have Unicode coding, while languages and
timestamps hold ISO639-1 and ISO8601 standards, respectively.

Course is the most informative entity. First, id and course URL provide unique identi-
�cation attributes. Then, the course is described by short and long descriptions. Require-
ments and objectives list technical and pedagogical needs at the beginning and expected
learner skills at the end, respectively. The language, the instructional level (beginner, in-
termediate, expert), �rst/second-level categories, and tags are listed. Each course has only
one �rst-level category and one second-level category. Other course �elds identify the
current price and the discount. Numerical attributes list the course duration in hours.

The Instructor and Learner entities only include information available on the corre-
sponding public pro�les. Each entity instance is uniquely identi�ed by a fake id, so that
the id stored into the data set does not correspond to the real id of the user. Each in-
structor is described by the job title and biographic keywords. Regarding relationships,
in Teach, the pairs of instructor id and course id model the association among instructors
and the courses they teach. One instructor can teach more than one course and the same
course can have one or more instructors. Evaluate contains learner id, course id, the [0-5]
rating with step 0.5, the comment, and the timestamp.
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Fig. 6.5: Polarity distribution on COCO-SA.

By counting the comments released over time, it can be observed that their number
grows exponentially in recent years (Fig. 6.3). The data set includes 30, 599 courses,
distributed over 15 �rst-level categories (see Fig. 6.4), that received 1, 396, 312 comments.

The comment distribution is unbalanced across categories (avg. 67, 755; st.dev.
78, 049; min 2, 968; max 292, 693). Similarly, the languages distribution along courses
follows such a trend. Only 21% of courses do not use English as primary language. The
reviews are non-uniformly distributed across the range of values they can hold (Fig. 6.5).
Most of the polarity ratings have a value of 5. Only few courses received lots of reviews.
The distribution of the number of reviews per courses (avg. 45; st.dev. 265; min. 1;
max. 17, 695) shows a downward trend, but there is a large number of courses with a lot
of comments. Each review is usually short in terms of number of characters (avg 141;
st.dev. 195; min 1; max 65, 000). This makes the data set challenging since the prediction
algorithms will rely on only few words for classifying the sentiment behind the text.

6.5 The Proposed Sentiment Prediction Approach

6.5.1 Methodology

In this section, we describe our deep learning approach for performing regression in a
polarity detection task, through word embeddings. Fig. 6.6 depicts its main components.
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Fig. 6.6: The proposed approach for sentiment prediction.

The approach is designed to be modular and extensible. The addition and the update of
word embedding algorithms or neural networks involve almost no changes. Moreover,
each component is properly parametrized to facilitate its con�guration. All the modules
are described in the following sections.

Review Splitting

The review splitting step serves to de�ne the various dataset splits over the model devel-
opment. The system digests a dataset D of N reviews organized as follows:

D = {(text1, score1), ..., (textN, scoreN)} (6.2)

where texti is a textual review and scorei is an integer label that belongs to the set
C = {score1, ..., scoreM}.

During this step, we thus need to split input data D in three subsets, each for a speci�c
phase of the development:
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1. Dcreation: the sample of data used to create word embeddings.

2. Dtrain: the sample of data used to �t the model (i.e., weights and biases).

3. Dtest: the sample of data used as the gold standard to evaluate the model.

In order to do this, we set up two split ratios and we assign the text-score pairs in D to
the di�erent subsets Dcreation,Dtrain,Dtest according to them:

1. screation ∈ [0, 1]: the percentage of reviews for each class c ∈ C that are randomly
chosen from the set D to create word embeddings, yielding Dcreation.

2. straining ∈ [0, 1]: the percentage of reviews for each class c ∈ C that are ran-
domly chosen from D \Dcreation to train the model, yielding Dtrain.

The remaining reviews representDtest. The overall procedure ensures that the subsets
are disjoint and their union covers the entire dataset D.

Word Embedding Modelling

The state-of-the-art method to model a word with a vector is using word embeddings;
it is common to see word embeddings that are 256-dimensional, 512-dimensional, or
1,024-dimensional when dealing with very large vocabularies. There are two ways to
generate and leverage word embeddings:

1. Learn word embeddings jointly with the same context we are interested in by starting
with random word vectors and, then, learning word vectors along the process.

2. Load into the sentiment prediction model the word embeddings pre-computed using
a di�erent ML task than the one we are interested in. If the amount of training data in
Dtrain is small, this is the common solution.

To the best of our knowledge, no word embedding database speci�cally targets the
e-learning context. Therefore, this step goes through the �rst most general solution of
learning word embeddings from scratch on top of the COCO-SA data set, while we also
use word embedding pre-computed on other contexts for comparison along the chapter.

In order to generate word embeddings from scratch, the subset of pre-processed re-
views Dcreation was employed. We concatenated them into a large corpus and this
corpus was fed into a given word embedding generation algorithm selected among the
following ones: Word2Vec [314], GloVe [315], FastText [316], or Intel [317]. Each of them
outputs a set of feature vectors E for words in that corpus. The feature values are non-
negative real numbers. For each distinct word w in the vocabulary in Dcreation, there
exists a corresponding feature vector e ∈ E which represents the word embedding for
that word. All the feature vectors share the same size. The size of the word embeddings
and of the window where the word embeddings generator looks at contextual words can
be arbitrarily selected. These two values are parametrized on our approach.
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Review Vectorization

Review vectorization is the process of transforming each review into a numeric se-
quence. This can be done in multiple ways (e.g., segment text into words and transform
each word into a vector, segment text into characters and transform each character into
a vector, extract n-grams of words or characters, and transform each n-gram into a vec-
tor). The di�erent units into which the text is broken (words, characters, or n-grams)
are called tokens, and breaking text into such tokens is called tokenization. The process
consists of applying some tokenization schemes and then associating numeric vectors
with the generated tokens. These vectors, packed into sequences, are needed for manip-
ulating text during sentiment model training and inference.

In order to be treated by machines, we need to turn the reviews within Dtrain and
Dtest into a set of integer-encoded pre-processed reviews de�nes as follows:

D ′train = {(text ′1, score1), ..., (text ′K, scoreK)}∀(texti, scorei) ∈ Dtrain (6.3)

D ′test = {(text ′1, score1), ..., (text ′J, scoreJ)}∀(texti, scorei) ∈ Dtest (6.4)

where each pair (text ′i, scorei) includes an integer encoding of the text comment texti
and the original polarity scorei from Dtrain and Dtest, respectively.

The process for generatingD ′train andD ′test works as follows. Each word is associ-
ated to a unique integer value chosen from a range [0,|V |−1], where V is the vocabulary
in D. For each input review (texti, scorei), we build an integer-encoded vector text ′i
from texti, where an integer value at position j in text ′i represents the mapped value
for word w for that position in texti. The sets D ′train and D ′test are vectorized.

Deep Neural Network Modelling

This step is necessary for de�ning the architecture and the optimization components
of the deep neural network that (i) takes pairs of integer-encoded texts and sentiment
scores, (ii) maps such texts into word embeddings, and (iii) predicts the sentiment scores.

The proposed architecture tailored for sentiment score prediction is shown in Fig. 6.7.
Given that our training process requires running the network on a rather large corpus,
our design choices are mainly driven by the computational e�ciency of the network.
Hence, di�erently from [286], which presents an architecture with two Bidirectional
LSTM layers, we adopt a single Bidirectional LSTM layer architecture. Moreover, we
con�gure the last layer to return a single continuous value, i.e., the predicted sentiment
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score. Therefore, our network is composed by an Embedding layer followed by a Bidi-
rectional LSTM layer, a Neural Attention mechanism, and a Dense layer:

1. Embedding Layer takes a two-dimensional tensor of shape (N,M) as input, where
N represents the number of integer-encoded text comment samples, whileM the max-
imum sequence length of such samples. Each entry is a sequence of integers passed by
the Input Layer. The output of the Embedding layer is a two-dimensional vector with
one embedding for each wordw in the input sequence of words of each text comment
t. Before receiving data, the Embedding Layer loads the pre-trained word embeddings
computed during the previous step as weights. Such weights are frozen, so that the
pre-trained parts are not updated during training and testing.

2. Bidirectional LSTM Layer is an extension of the traditional LSTM that generally
improves model performance on sequence classi�cation problems. It trains two LSTM
instead of just one: the �rst is trained on the input sequence as it is and the second on
a reversed copy of the input sequence. The forward and backward outputs are then
concatenated before being passed on to the next layer, and this is the method often
used in studies of bidirectional LSTM. Through this layer, the model is able to analyze
a review as a whole, binding �rst and last words coming up with a more precise score.
Moreover, by exploiting the bidirectional version of a LSTM, the model is able to get
patterns that better model the learners’ writing style.

Embedding Layer Input size:     300
Output size:  300

Gaussian Noise Layer Input size:     300
Output size:  300

Dropout Layer Input size:     300
Output size:  300

Bidirectional LSTM Layer Input size:     300
Output size:  128

Dropout Layer Input size:     128
Output size:  128

Attention Layer Input size:     128
Output size:  128

Dropout Layer Input size:     128
Output size:  128

Dense Layer Input size:     128
Output size:  1

Fig. 6.7: The proposed deep learning architecture for sentiment prediction.
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3. Attention Layer enables the network referring back to the input sequence, instead
of forcing it to encode all the information forward into one �xed-length vector. It
takes n arguments y1, ...,yn and a context c. It returns a vector z which is supposed
to be the summary of the yi, focusing on information linked to the context c. More
speci�cally, in our model it returns a weighted arithmetic mean of the yi, and the
weights are chosen according to the relevance of each yi given the context c. This
step can improve performance, detecting which words more in�uence the sentiment.

4. Dense Layer is a regular densely-connected layer implementing a function output =
activation(dot(input, kernel) + bias) where activation is the element-wise activation
function, while kernel and bias are a weights matrix and a bias vector created by the
layer, respectively. The layer uses a linear activation a(x) = x and provides a single
output unit representing the sentiment score.

To mitigate over�tting, the network augments the cost function within layers with
l2-norm regularization terms for the parameters of the network. It also uses Gaussian
Noise and Dropout layers to prevent feature co-adaptation.

Sentiment Model Training and Prediction

The fresh instance of the sentiment model takes a set of neural Word Embeddings
E together with a set of pre-processed reviews D ′train, as input. With these embed-
dings and reviews, the component trains the deep neural network. As an objective,
the network measures the MSE (Mean Squared Error) of the predicted sentiment score
against the gold standard value for each input sequence. Parameters are optimized us-
ing RMSProp (Root Mean Square Propagation) [318] with learning_rate = 0.001. The
network was con�gured for training on batches of size 128 along 20 epochs, shu�ing
batches between consecutive epochs. The trained neural network takes a set of unseen
reviewsD ′test and returns the sentiment score score ′ predicted for that comment text ′.

6.5.2 Evaluation

In this section, we describe the experiments we conducted to explore the e�ectiveness
and e�ciency of our approach over the COCO-SA data set. More precisely, we used
textual reviews inCOCO-SA as an input to our approach, while the corresponding ratings
were considered as ground-truth sentiment labels for the input reviews.

In our experiments, we considered reviews with non-empty English text comments.
They are 1,396,312 in COCO-SA. Each review includes a rating ranging from 0.5 to 5 with
step of 0.5. Considering that our approach supports only integer ratings, we mapped
COCO-SA ratings on a scale from 0 to 9 with steps of 1. The datasetD included 1.396.312
reviews and the split ratios were screation = strain = 0.90. Those values were selected
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since we wanted to keep both training and testing sets with balanced rating distributions.
Moreover, we performed 10-fold strati�ed cross validation. Hence, 1,396,312 - 6,500 * 10
reviews were put inDcreation to create embeddings, while 5,850 * 10 were put inDtrain
for training the model and 650 * 10 were put in Dtest for testing.

The approach was developed in Python using Keras on top of a TensorFlow backend.
The experiments were carried out on a NVIDIA Titan XGPU equipped with 16 GB RAM.

Evaluation Metrics and Protocols

In order to evaluate the performance of our model, we measured the MSE (Mean
Squared Error) and the MAE (Mean Absolute Error) scores, de�ned as follows:

MAE(y, ŷ) = 1
n
·
n−1∑
i=0

|yi − ŷi| (6.5)

MSE(y, ŷ) = 1
n
·
n−1∑
i=0

(yi − ŷi)
2 (6.6)

where yi is a true target value, ŷi is a predicted target value, and n is the number of
samples for both (6.5) and (6.6). It follows that given two algorithms a1 and a2, a1 is
better than a2 if its MSE and MAE are lower than those of a2. During experiments, each
of the 10 polarity labels has been equally represented in the testing data set [92].

Baselines

We compared our approach with the following common ML algorithms:

• Support Vector Machine (SVM). Support Vector Machines aim to build hyperplanes
among data samples in such a way that the separation between classes is as large
as possible. In the regression variant, named SVR (Support Vector Regressor), the al-
gorithm tries to �nd hyperplanes that predict the distribution of data.

• Random Forests (RF). Random Forests is based on an ensemble of decision trees, where
each tree is trained and votes for a class for the presented data [319]. We use a Random
Forest with 10 trees with depth 20. Essentially, each decision tree splits data into
smaller data groups based on the features of the data until there are small enough
sets of data that only have data points with the same label. These splits are chosen
according to a purity measure and, at each node, the algorithm tries to maximize the
gain on it. For our regression problem, we consider Mean Squared Error (MSE).
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• Feed-forward Neural Network (FF). We used a common fully-connected network with
10 hidden layers. It represents one of the simplest neural network architectures.

To feed data into these baseline models, we compute the average of word embeddings
for each review. More speci�cally, given a review r with terms {t0, ..., tn−1}, we took the
associated word embeddings {w0, ...,wn−1} and computed their average w.

Regressors E�ectiveness

Figure 6.8 and Figure 6.9 report MAE and MSE of the compared regressors. First of all,
our results con�rm that Neural Networks, both using a single Feed-forward layer and
using our model, perform better than common ML algorithms, showing a lower error.
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Comparing the Feed-forward baseline with our Deep Neural Network model, there is a
little error di�erence. It is possible to note that the combination FF + FastText obtains
similar performances of both DNNR + GloVe and DNNR + FastText. The best performance
was obtained by DNNR + Word2Vec. Similar considerations also apply when analyzing
the MSE. In fact the DNNR model gets best performance as well. In contrast with the
MAE, no baseline obtains performances similar to our model.

Embeddings E�ectiveness

This further experiment aims to show how the context-trained Word Embeddings
we generated have advantage over reference generic-trained Word Embeddings, when
they are fed into our deep neural network as frozen weights of the Embedding Layer.
In order to evaluate the e�ectiveness of our approach, we performed experiments using
embeddings of size 300 trained on COCO-SA online course reviews. We compared them
against the following reference generic-trained Word Embeddings of size 300:

• The Word2Vec7 Word Embeddings trained on a part of the Google News dataset in-
cluding 100 billion words with a vocabulary of 3 million words.

• The GloVe8 Word Embeddings trained on a Wikipedia dataset including one billion
words with a vocabulary of 400 thousand words.

• The FastText9 Word Embeddings trained on a Wikipedia dataset including four billion
words with a vocabulary of 1 million thousand words.

Context-trained Intel word embeddings are compared with generic Word2Vec word
embeddings because i) there are not public generic Intel word embeddings, and ii) the
Intel algorithm is an evolution of the Word2Vec algorithm.

Figure 6.10 and Figure 6.11 show that there is no signi�cant di�erence between
context-trained word and generic-trained embeddings when the MAE is used for the
comparison. Nevertheless, it is worth underling how the type of embeddings enables
to obtain better results in the E-learning domain. Context-trained Word2Vec embed-
dings show the lowest values of MAE compared to other embeddings types. In contrast,
when the MSE is considered, context-trained embeddings perform better, as shown in
Fig. 6.11. In this case, context-trained embeddings have low values of MSE in almost all
cases except for the GloVe Word Embeddings. The best performance was obtained by
context-trained Word2Vec embeddings, proving that i) Word2Vec is the best algorithm to
learn word representations from our dataset, and ii) context-trained Word Embeddings
are able to capture speci�c patterns in education. This makes possible to adapt our DL
model on the E-learning domain and improve results in sentiment prediction.

7https://code.google.com/archive/p/word2vec/
8https://nlp.stanford.edu/projects/glove/
9https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.vec

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.vec
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6.6 Findings and Recommendations

This chapter was structured around a case study on SA within the e-learning context.
By combining state-of-the-art deep learning methodologies and word embedding text
representations, we introduced and described a deep neural network aimed to predict
a sentiment score for text reviews left by learners after attending online courses, as a
targeted educational context. The chapter guides the readers on how to address this
task by providing an overview of the common building blocks of a SA system, from
input text representations to neural network components, followed by a recipe which
combines them into a model able to outperform common ML baselines.
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Based on the obtained results, we can conclude that:

1. Collecting reviews from online learning platforms makes it possible to leverage deep
learning models powered by word embeddings for sentiment prediction in education.

2. Simple and advanced deep learning models perform better than common machine
learning algorithms, such as SVM and Random Forest, on learners’ reviews.

3. Integrating Bidirectional LSTM and Attention Layers enables the neural network to
perform more accurate predictions with respect to using only fully-connected layers.

4. The use of word embeddings generated from e-learning resources enables the model
to capture more peculiarities from this target context.

5. Education-speci�c Word2Vec word embeddings can better represent the semantics
behind e-learning data and help the model to well predict the sentiment score.

Possible future work can involve (i) the analysis of other ways to generate context
and sentiment-aware word embeddings, (ii) the exploration of the di�erence among
context/general-trained embeddings, which words their embeddings change signi�-
cantly and have strong impact in the polarity, and (iii) the investigation on the social
e�ects generated by reviews and their predicted sentiment labels. In order to get insight-
ful knowledge on how people perceive each review, more research taking into account
various, potentially related aspects discussed within a single review is needed. More-
over, advanced SA strategies can integrate opinions conveyed by other mediums (e.g.,
videos, images, audios) in addition to those released through textual reviews.
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Conclusions

In this thesis, we investigated the design, evaluation and application of machine-
learning technology aimed to support educators and learners over the instructional
pipeline. To this end, we designed and analyzed several data sets and models, rang-
ing from micro-learning video classi�ers to educational recommender systems, from
learner’s biometric veri�ers to education-speci�c sentiment predictors. Natural Lan-
guage Processing, Computer Vision, and Machine Perception methods have made it pos-
sible to automatically interpret human language and behaviour in learning-related data.

7.1 Contribution Summary

The research under this thesis has been proved to provide the following contributions:

• The four data sets we proposed outrun existing educational data sets in terms of scale,
completeness, and comprehensiveness. To the best of our knowledge, these collections
are among the �rst ones that enable machine/deep learning in educational platforms.

• The categorization models proposed in Chapter 3 can support users in mapping video-
lessons on pre-existing categories. Di�erently from most of the competitive baselines,
they exploit semantics rather than term frequency for accurate predictions.

• The educational recommendation models proposed in Chapter 4 mitigate the e�ects
of biases existing in data while still being e�ective. These models di�er from other
existing educational recommenders that are often optimized only over accuracy.

• The multi-biometric identity veri�cation models proposed in Chapter 5 can support
educators, when learners must be recognized. With respect to other systems for learn-
ers’ proctoring, our models target ubiquitous scenarios and transparent veri�cation.

• The sentiment prediction models proposed in Chapter 6 can help monitoring learners’
opinions. It di�ers from other state-of-the-art approaches as it embeds education-
speci�c text representations and deep neural networks that led to accurate predictions
across the sentiment scale.
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It is worth noticing that several models primarily tested in laboratory experiments
have been successfully transferred into a real platform under the "iLearnTV, Anywhere,
Anytime" project. Nonetheless, the models presented in this thesis contain limitations,
and the most relevant ones have been mentioned in the respective chapters.

7.2 Take-home Messages

While each chapter has provided several insights speci�c to the models involved in a
given step of the instructional pipeline, the contributions presented in this thesis allows
us to make also broader conclusions that are commonly shared:

1. Collecting and processing large-scale data sets from online learning platforms allows
researchers to shape e�ective educational machine-learning models. In support to
this point, this thesis brings to the public four data sets and several use cases.

2. Leveraging word semantics rather than word frequencies in learning-related text
analysis makes it possible to develop more accurate and e�cient machine learn-
ing models. This thesis proved this point via semantics-powered models for micro-
learning video classi�cation and sentiment prediction in learners’ reviews.

3. Combining multiple data sources at di�erent levels of the prediction pipeline of-
ten leads to higher performance of the corresponding educational machine-learning
model. Several solutions in this thesis merge diverse data, e.g., concepts and keywords
for video classi�cation, physical and behavioral biometrics for identity veri�cation.

4. Even though educational machine learning models usually propagate biases, this phe-
nomenon can be mitigated by regularizing their optimization function, with a mini-
mum loss in e�ectiveness. The exploratory analysis conducted in this thesis and the
resulting algorithms (e.g., recommenders) are just an example of this point.

5. E�ective machine learning models can be successfully trained even on data transpar-
ently collected during the interaction of users with the platform. This cost-e�ective
property has made it possible to design veri�cation algorithms that identify learners
continuously as well as recommendation algorithms that rely only on implicit data.

6. Shaping proper deep learning architectures and training them on the collected large-
scale data sets has improved the e�ectiveness of the resulting models, while keeping
them e�cient. This win-win situation has made it possible to integrate several of the
models proposed in this thesis into a real-world educational platform.
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7.3 Future Research Directions

Our research on machine learning in education has produced a variety of methods,
but still poses some interesting challenges that require further investigation:

• Public Data Sets and Models. Most studies in education have still used rather small
data sets which were not made publicly available. This makes it di�cult to train and
test ML models. As education is an heterogeneous �eld, a larger collection with more
diverse data sets is needed. Furthermore, sharing code and pre-trained models should
become a common practice. Code for existing models is not often made public, while,
for others, it is needed to re-implement models from scratch. More data sets and mod-
els should be shared.

• Transferability across Contexts. Existing models tend to target large-scale online
learning environments and appear to be sensitive to such a context targeted by the
underlying data. This has favored the creation of ML models that, after being trained
with data from a given context (e.g., online teaching), do not generalize well in other
contexts (e.g., face-to-face teaching). With the availability of new public data sets and
pre-trained models, it will become easier to plug them into a task di�erent from the
original one. Researchers could �ne-tune pre-trained models with few contextual data.

• Robustness in Uncontrolled Environments. Devising ML models that can prop-
erly operate in real-world environments is another open issue. Most models either
implicitly or explicitly impose some constraints and su�er from low e�ciency while
operating. Such limits should be reduced in order to seamlessly make decisions, e.g.,
during the interaction between an individual and a proctoring system. This requires
innovative, robust, and e�cient algorithms.

• Robustness against Spoo�ng Attacks. Synthetically generated data or maliciously
modi�ed data are used to circumvent ML models. For instance, this could a�ect edu-
cational recommender systems fed with arti�cial data that boost popularity of courses
irrespective of their quality as well as identity veri�cation systems that are fooled by
impostor biometric data. The challenge is to develop counter-measures that are ap-
plicable also to unseen or unknown attacks. Investigating how the deployment of ML
models might help to face this challenge requires further research.

• Explainability and Interpretability. ML models embedded in educational arti�cial
intelligence systems might su�er from low explainability (e.g., on the reason those
particular recommendations are provided to the user). Hence, it becomes important
to understand how we can explain the output of a model and how it varies based
on changes in input or algorithmic parameters. Moreover, it requires attention how
internal mechanics can be explained in human terms.

• Fairness, Transparency and Accountability. With the advent of AI-based edu-
cation, addressing bias within ML models will be a core priority due to several rea-
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sons. Some biases can be introduced by using training data which is not an accu-
rate sample of the population (e.g., more men than women) or is in�uenced by socio-
cultural stereotypes (e.g., popularity). Moreover, advanced properties built on top of
biases, e.g., fairness, transparency, and accountability, require attention. Future re-
search should control these properties in the developed models.

Based on the rapid evolution of machine learning in education over these years, we
are hopeful that this technology will positively impact real-world education more and
more. In addition to the use cases presented in this thesis, other possible applications
of our studies include but are not limited to: classi�cation of other resources (e.g., pptx,
books), feeds for learning material suitable for life-long learning, evaluation of the teach-
ing activities, recognition of learners and teachers for access control to both restricted
areas (e.g., classrooms) and to computers and mobile devices.

Methodological and technological shifts often go hand-in-hand and, as online edu-
cation become increasingly ubiquitous, an increasing level of data on learners and their
context can be automatically and continuously obtained. This enhances the richness of
the collected contextual data, removes the requirement for active and passive sensing to
take place on a single device, and can further optimise the models that support stake-
holders along the instructional pipeline. We argue that these circumstances have the
opportunity to further strengthen the reliability of machine learning in education.
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