

Het leren van representaties voor symbolische sequenties

Representation Learning for Symbolic Sequences

Cedric De Boom

Promotoren: prof. dr. ir. B. Dhoedt, dr. ir. T. Demeester
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. B. Dhoedt

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2017 - 2018

ISBN 978-94-6355-116-8
NUR 984
Wettelijk depot: D/2018/10.500/34

Ghent University
Faculty of Engineering and Architecture
Department of Information Technology

imec
Internet Technology and Data Science Lab

Examination Board:

prof. dr. ir. B. Dhoedt (advisor)
dr. ir. T. Demeester (advisor)
prof. dr. ir. G. de Cooman (chair)
dr. ir. T. Verbelen (secretary)
dr. B. Coppens
prof. dr. ir. T. De Bie
dr. ir. S. Dieleman
prof. dr. D. Van den Poel

Supported by a Doctoral Fellowship of the
Research Foundation – Flanders (FWO)

Dissertation for acquiring the degree of
Doctor of Computer Science Engineering

Dankwoord

“Ik heb zelf wel eens gewonnen, ‘t liep nog vaker fout helaas. Succes is relatief en,
ja, soms vangt een koe een haas. En is de neergang weer begonnen, dan foeter ik
altijd: een winnaar is veel mooier als hij in een afgrond rijdt.”

—Bart Peeters, 2010

Bij de start van elke nieuwe trein- en—ja, ik weet het—autorit lansheen
de as tussen Gent-centrum en Beveren-‘het Monaco aan de Schelde’-Waas,
maak ik steevast een keuze over de soundtrack die de trip van de gepaste
atmosfeer moet voorzien. Daarbij wordt zelden muziek gemeden uit het
spectrum dat beslaan wordt tussen de vijfde symfonie van Prokofiev, Gra-
celand van Paul Simon, de kleinkunstklanken van Buurman en het Foute
Uur op Qmusic. Onlangs werd mijn aandacht echter gevestigd op een
reeks podcasts onder de noemer Freakonomics. Iedere week word je als
luisteraar opnieuw geprikkeld met vragen en inzichten rond economische,
politieke, sociale en psychologische thema’s. Eén van de meest beluisterde
vertellingen uit 2017 droeg de welluidende titel Why Is My Life So Hard?
en werd zelfs twee maal in datzelfde jaar uitgezonden. Het is veelzeg-
gend dat een radioprogramma met deze titel zo populair geworden is, en
tijdens het beluisteren ervan werd al snel duidelijk waarom. Uit recent on-
derzoek1 blijkt namelijk dat we ons maar al te bewust zijn van de nadelen
die we iedere dag ondervinden of van de situaties die ons doen en laten te-
genwerken, maar dat we de voordelen, kansen, opportuniteiten, hulp van
anderen, enz. vaak als vanzelfsprekend lijken te beschouwen. Dit effect
wordt kortweg omschreven als de tegenwind-/meewind-asymmetrie: je
herinnert je zeker wel nog een aantal situaties waarbij je sterk de wind van
voren kreeg—letterlijk én figuurlijk—maar de keren waarbij het allemaal
vanzelf lijkt te gaan, worden snel vergeten. In de academische wereld,
en dan meer bepaald de levenssfeer van de doorsnee doctoraatsstudent,
wordt het ervaren van extreme tegenwind al eens literair—met kleine ‘l’—
omschreven als de valley of shit of de pit of despair2. Ik geloof dat—maar
corrigeer me gerust indien dit niet voor jou als lezer van toepassing is, hier

1Davidai, S., & Gilovich, T. (2016). The headwinds/tailwinds asymmetry: An availability
bias in assessments of barriers and blessings. Journal of Personality and Social Psychology,
111(6), 835-851.

2https://oncirculation.com/2014/01/14/the-valley-of-shit-vs-the-pit-of-despair

https://oncirculation.com/2014/01/14/the-valley-of-shit-vs-the-pit-of-despair

ii

is immers geen rigoureus empirisch experiment aan te pas gekomen—elke
afstuderende doctoraatsstudent zich op z’n minst al eenmaal langsheen
de rand van deze vallei begeven heeft, en dat sommigen er zelfs de bo-
dem van verkend hebben. De truc is dan om voldoende kracht uit deze
situaties te puren zodat je met een nieuw en herboren elan kan verder-
gaan, d.i. de tegenwind-/meewind-asymmetrie proberen omkeren. Want
zoals Bart Peeters al aangaf in de beginquote van dit dankwoord: “een win-
naar is veel mooier als hij in een afgrond rijdt”; met vallen en opstaan, zoals
ze zeggen. Daarom is het van tijd tot tijd gepast om—en dit klinkt wel
heel christelijk, alvast excuses hiervoor—stil te staan bij en dankbaar te
zijn voor de toch wel luxueuze positie waarin je je bevindt, voor de zaken
die je kan en mag verwezenlijken, voor de kansen die je te pas en te onpas
in de schoot geworpen worden, voor de hulp—hoe miniem ook—die je
uit elke ondenkbare hoek aangereikt wordt, voor de vriendschap en liefde
die je mag ontvangen van en geven aan de mensen rondom je, enz. Ik zie
dit dankwoord daarom niet als het zoveelste verplichte nummertje op de
administratieve checklist bij het indienen van mijn doctoraatsproefschrift,
maar eerder als een uitgelezen moment voor bezinning en—naar de man-
tra uit de specifieke lerarenopleiding—reflectie.

De vraag is dan natuurlijk hoe je hier juist aan moet beginnen. Er zijn
altijd enkele personen die je maar al te graag in het lang en breed wil be-
danken voor hun niet-aflatende steun tijdens de voorbije jaren. En er zijn
uiteraard nog tien keer meer personen die je het leven aangenamer, makke-
lijker, gezelliger en interessanter hebben gemaakt, in welke vorm of kwan-
titeit dan ook. Uit de al dan niet ongegronde vrees voor potentiële diplo-
matieke en maatschappelijke rellen—“je gaat me toch wel in je dankwoord
vermelden, hé!”—heb ik ervoor gekozen om het tekstuele aspect van deze
dankbetuiging te beperken tot op het niveau van de sociale groep. Ik zal
dus geen individuele namen vermelden, en al helemaal niet in volgorde
van belangrijkheid, status, aantal mutual friends, genetische verwantschap
en/of (materiële) sponsoring.

Vooreerst natuurlijk een grote portie dank naar mijn promotor-duo; jul-
lie hebben mij de nodige kansen geboden om in alle nodige vrijheid onder-
zoek te verrichten in prikkelende, uitdagende en razend interessante ma-
terie. Ik kon steeds zonder schroom bij jullie terecht met de nodige vragen,
problemen, opmerkingen, suggesties, paper drafts, enz. Daarnaast kreeg
ik uitgebreid de gelegenheid om les te geven aan studenten uit de 1e en
3e bachelor en om thesissen te begeleiden van enkele laatstejaars, iets wat
ik altijd met de volle goesting gedaan heb. Ik heb ook een mooi stukje
van de wereld mogen zien door deel te nemen aan enkele internationale
conferenties in Firenze, Atlantic City, Montréal, New York, Barcelona en
Como. Een speciale vermelding ook voor mijn (ex-)bureaugenootjes uit
het oude 2.22 in de Zuiderpoort en het nieuwe 200.026 in de iGent; be-
dankt voor de vele (intellectuele) discussies, grappen en grollen, uitdagin-
gen, zelfbejammerend steen-en-been-beklag, enz. Uiteraard kon dit alles

iii

ook niet zonder de nodige financiële steun vanuit de Vlaamse overheid en
ook alle andere broodnodige ondersteuning vanuit onze fantastische vak-
groep IBCN/IBCN+/IDLab (weet iemand het eigenlijk nog?) en uiteraard
de UGent. Aan al deze mensen, van de kelder tot +12, zeer, zeer bedankt!

Ik neem ook meteen de gelegenheid beet om mijn doctoraatsjury te be-
danken. Het lijkt me een verre van eenvoudige en moeiteloze taak om dit
proefschrift kritisch en met de volle aandacht door te nemen, en om er na-
dien nog doordachte en zinnige vragen over te kunnen formuleren. Van
mijn kant dus een enorm grote appreciatie voor jullie bereidwilligheid in
het opnemen van deze taak.

Buiten de context van de universiteit, zou ik graag eerst en vooral mijn
ouders en mijn hele gezin uit Beveren in de figuurlijke bloemetjes willen
zetten. Ik werd altijd weer met open armen ontvangen, elke vakantie en elk
weekend, en eigenlijk ook op iedere andere dag van de week, en nooit was
een moeite te veel. Het gaf me ook de o zo nodige gelegenheid om even te
ontsnappen aan de werkgedachte en het soms hectische en drukke stadsle-
ven in Gent. De voorbije jaren hebben we samen nog heel wat mooie reizen
gemaakt naar Italië, Noorwegen, Zuid-Afrika en binnenkort ook Canada,
en ik hoop dat we dat in de toekomst nog veel zullen kunnen blijven doen!
Ook aan mijn grootouders een welgemeende dank u voor alles wat jullie
voor mij gedaan hebben, voor de interesse, de verwennerij, de bezorgheid
en alle mogelijke vormen van steun!

Op dit punt zou ik graag enkele heel goede vrienden een speciale ver-
melding willen geven, maar ik besluit toch om niet af te wijken van mijn
voornemen om geen namen expliciet te vernoemen. Zij die dit paragraafje
nu lezen, zullen zich vast wel aangesproken voelen of weten over wie het
gaat. Het zijn deze vrienden die samen met jou dezelfde weg afleggen—zij
het ieder op zijn of haar eigen unieke manier—en waarmee je dus gelijklo-
pende ervaringen, bekommernissen, succeservaringen, strubbelingen... kan
delen, en dat schept zeker wel een sterke band. We zien of horen elkaar niet
elke dag of iedere week, en dat hoeft ook niet, maar we weten dat we bij
elkaar terecht kunnen om ons hart te luchten bij een chocomelk of Nes-
presso, pizza, babi pangang of Big Mac menu, of bij een spelletje Santorini,
of gewoon een half uur lang op de hoek van een straat bij guur winterweer
na een moordend saaie uiteenzetting over didactische bomen en muurtjes.
Jullie vriendschap is onbetaalbaar!

In de categorie ‘hier word ik reuzeblij van’ denk ik ook met plezier te-
rug aan de vele barbecues en weekendjes met ons groepje ex-computerwe-
tenschappers, en ik hoop dat we deze tradities nog lang kunnen verder-
zetten. Ook in de muziekschool van Beveren ben ik ondertussen tot een
deel van het decor verworden. Tot op de dag van vandaag krijg ik er de
kans om pianolessen te blijven volgen en samen te spelen met talentvolle
muzikanten. Een hele grote dankuwel aan de leerkrachten ginds—die me
vaak al kennen van toen ik nog 1m30 was—het voltallige team, en natuur-
lijk alle andere mensen en vrienden die er voor zorgen dat de sfeer er al-

iv

tijd top is! Om in de muzieksfeer te blijven, dankzij Harmonie Kunst en
Vreugd uit Beveren heb ik vier jaar geleden het hobospelen terug opge-
nomen na een winterslaap van acht jaar, met als gevolg dat ik op vrijdag-
avonden vaak terug te vinden ben in het repetitielokaal onder de tribunes
van het Freethielstadion. De repetities zijn dan wel vaak uitputtend, maar
geven een mens toch veel voldoening na een harde werkweek. En als we er
dan weer met trots kunnen staan op onze concerten twee of drie keer per
jaar, dan mag je heus wel blij en dankbaar zijn dat je deel mag uitmaken
van deze groep fijne muzikanten. Ook een zeer speciale bedanking voor
de vriendjes in en rond Verkeerd Geparkeerd en de leuke activiteiten die
we samen kunnen doen en organiseren—zwemmen in Van Eyck en Ro-
zebroeken, film- en café-avonden, karting, lasershooten...—de meer dan
toffe sfeer onder de medecursisten bij de specifieke lerarenopleiding aan
het Kisp—want gedeelde frustraties scheppen een band, naar het schijnt—
en de toffe weekendjes en zomerbarbecues met team Maasmechelen.

Ik sluit mijn dankwoord af met een bijzonder eerbetoon aan Spotify.
In de zomer van 2016 kreeg ik namelijk de unieke kans om een kleine
drie maanden naar New York te verhuizen voor een stage bij dit inmid-
dels beursgenoteerde bedrijf. Ik kwam er terecht in een enorm gedreven
en dynamisch team en mocht mijn kennis over machine learning en deep
learning botvieren op de populaire feature Discover Weekly; de neerslag
hiervan vindt u terug in Hoofdstuk 6 van dit boek. Na de stage werden
de contacten met Spotify aangehouden en heb ik mij het afgelopen jaar in-
gezet om samen met hen de RecSys Challenge 2018 te organiseren. Het
was geen makkelijke klus om de Million Playlist Dataset samen te stellen
en publiek beschikbaar te maken. Het was en is nog steeds een enorm ple-
zier om met jullie samen te werken. Mijn uitdrukkelijke dank dus aan alle
collega’s, managers en vrienden binnen Spotify!

Ik heb—naar goede aangeleerde gewoontes tijdens de specifieke lera-
renopleiding—ook een tweede versie van mijn reflectie gemaakt. Ik ver-
meldde eerder dat ik geen individuele namen zou vermelden, maar dit
leek me achteraf niet toereikend genoeg voor een aantal bijzondere men-
sen. Daarom besloot ik om me even te concentreren en alle namen van
deze personen en instanties op te schrijven zonder wie dit doctoraat niet
mogelijk was geweest, zonder wie ik meer voor mezelf had moeten zor-
gen, zonder wie de afgelopen jaren minder aangenaam en interessant zou-
den zijn geweest—zowel binnen als buiten mijn doctoraat—zonder wie ik
niemand had gehad om mijn onderzoek toch op zijn minst in grote lijnen
aan uit te leggen, enz. Het resultaat is een wordcloud geworden waarin al
deze namen werden opgenomen, in de vorm van een klavertje vier, waar-
over Wikipedia me vertelt dat “volgens de legende elk deelblad iets voorstelt:
het eerste hoop, het tweede vertrouwen, het derde liefde en het vierde geluk”. Ik
vermoed dat ik hiermee meteen ook het halve Nederlandstalige voorna-
menbestand van de Belgische staat gedekt heb, maar het is uiteraard de
geste die telt.

v

Heel erg bedankt iedereen!

Gent, 22 mei 2018
Cedric De Boom

Table of Contents

Dankwoord i

Samenvatting xxi

Summary xxv

1 Introduction 1
1.1 Life is a sequence . 1
1.2 Anticipation, expectation and surprise 6
1.3 Deterministic and stochastic sequences 9
1.4 Artificial intelligence . 12
1.5 Machine learning . 16
1.6 Deep learning . 21
1.7 Representation learning . 27
1.8 Research contributions . 30
1.9 Publications . 32

1.9.1 Publications in international journals
(listed in the Science Citation Index) 32

1.9.2 Publications in international conferences
(listed in the Science Citation Index) 32

1.9.3 Publications in other international conferences 33
1.9.4 Poster publications in international conferences . . . 33

References . 34

2 Semantics-driven Event Clustering in Twitter Feeds 37
2.1 Introduction . 38
2.2 Related work . 40
2.3 Event clustering . 41

2.3.1 Baseline: single pass clustering 41
2.3.2 Semantics-driven clustering 43
2.3.3 Hashtag-level semantics 43

2.4 Data collection and processing 45
2.4.1 Event definition . 45
2.4.2 Collecting data . 46
2.4.3 Collecting events . 46

viii

2.5 Results . 49
2.5.1 Performance measures 49
2.5.2 Results . 50

2.6 Conclusion . 52
References . 53

3 Representation Learning for Very Short Texts using Weighted Word
Embedding Aggregation 57
3.1 Introduction . 58
3.2 Related work . 59
3.3 Methodology . 61

3.3.1 Basic architecture . 62
3.3.2 Loss functions . 64
3.3.3 Texts with variable length 66

3.4 Data collection . 67
3.4.1 Wikipedia . 67
3.4.2 Twitter . 67

3.5 Experiments . 68
3.5.1 Baselines . 69
3.5.2 Details on the learning procedure 71
3.5.3 Results on Wikipedia 71
3.5.4 Results on Twitter . 74

3.6 Conclusion . 75
References . 76

4 Character-level Recurrent Neural Networks in Practice: Compar-
ing Training and Sampling Schemes 79
4.1 Introduction . 80
4.2 Character-level Recurrent Neural Networks 82

4.2.1 Truncated backpropagation through time 83
4.2.2 Common RNN layers 85

4.3 Training and sampling schemes for character-level RNNs . . 87
4.3.1 High-level overview 87
4.3.2 Training algorithms 89
4.3.3 Sampling algorithms 91
4.3.4 Scheme 1 – Multi-loss training, windowed sampling 93
4.3.5 Scheme 2 – Single-loss training, windowed sampling 93
4.3.6 Scheme 3 – Multi-loss training, progressive sampling 93
4.3.7 Scheme 4 – Conditional multi-loss training, progres-

sive sampling . 94
4.3.8 Literature overview 94

4.4 Evaluation . 96
4.4.1 Experimental setup . 97
4.4.2 Datasets . 98
4.4.3 Experiments . 99

ix

4.4.4 Take-away messages 106
4.5 Future research tracks . 106
4.6 Conclusion . 107
References . 108

5 Polyphonic Piano Music Composition with Composer Style In-
jection using Recurrent Neural Networks 113
5.1 Introduction . 114
5.2 Problem setting . 117
5.3 Methodology . 119

5.3.1 Representing musical notes 119
5.3.2 Modeling music with recurrent neural networks . . . 120
5.3.3 RNN architecture . 122
5.3.4 Training and sampling details 124

5.4 Experiments . 125
5.4.1 Data gathering . 126
5.4.2 Practical and experimental settings 126
5.4.3 Network layer analysis 127
5.4.4 User listening experiments 130

5.5 Conclusion . 134
References . 135

6 Large-Scale User Modeling with Recurrent Neural Networks for
Music Discovery on Multiple Time Scales 139
6.1 Introduction . 140
6.2 Motivation and Related Work 141
6.3 RNNs for Music Discovery 146

6.3.1 Learning song embeddings 147
6.3.2 Learning user taste vectors 147
6.3.3 Recommending songs 148
6.3.4 Incorporating play context 149
6.3.5 User and model updates 150

6.4 Data Gathering and Analysis 151
6.4.1 Training word2vec . 151
6.4.2 Data processing and filtering 151
6.4.3 User data analysis . 152

6.5 Experiments . 153
6.5.1 Network architecture 154
6.5.2 Baselines . 156
6.5.3 Results . 160

6.6 Conclusions . 165
References . 166

7 Conclusions and Future Research Directions 169

List of Figures

1.1 A ‘space man’ . 3
1.2 Pixel sequences in images . 4
1.3 Uncertainty in a sine process 11
1.4 The political compass . 19
1.5 A fully-connected neural network 22
1.6 Commonly used activation functions 24
1.7 Example of a loss function . 26
1.8 Some graphical word embedding examples 28

2.1 Plot of tweet volume as a function of time 48

3.1 Illustration of the weighted average approach 63
3.2 Example distributions of distances between pairs 63
3.3 Plot of the learned weight magnitudes 73

4.1 Unrolling a recurrent neural network in time 84
4.2 Example of trunctated backpropagation through time 85
4.3 Graphical visualization of scheme 1 88
4.4 Graphical visualization of scheme 2 88
4.5 Graphical visualization of scheme 3 88
4.6 Graphical visualization of scheme 4 88
4.7 Comparing RNN architectures with scheme 1 100
4.8 Comparing RNN architectures with scheme 2 101
4.9 Comparing RNN schemes . 102
4.10 Comparing datasets . 104
4.11 Performance with respect to training time 105

5.1 Example of the music representation 118
5.2 Music generation illustration with composer styles 128
5.3 Two-dimensional t-SNE plot 129
5.4 Pearson correlation matrix . 130
5.5 Composition quality comparison 132
5.6 Composition accuracy comparison 133

6.1 The song recommendation pipeline 146

xii

6.2 Pairwise distances between songs 153
6.3 Histogram of the number of song transitions 154
6.4 Weight magnitudes for long- and short-term prediction . . . 158
6.5 Forward analysis of the taste vectors 161
6.6 Backwards analysis of the taste vectors 162

List of Tables

1.1 Some word2vec examples of closest words 29

2.1 Precision, recall and F1 results 50
2.2 Purity results . 52

3.1 Results for the Wikipedia data 70
3.2 Results for the Twitter data 74

4.1 Tabel of symbols in order of appearance 82
4.2 Concise literature overview 95
4.3 The RNN architecture used in all experiments 98
4.4 Absolute training and sampling time per batch 103

5.1 The used RNN architecture (1) 122
5.2 The used RNN architecture (2) 123
5.3 MIDI dataset information . 126

6.1 List of used symbols in order of appearance 142
6.2 Comparing recurrent layer type and number of layers 155
6.3 Comparing performance with varying hidden layer size . . 156
6.4 The final neural network architecture 157
6.5 Results for precision@k . 164

List of Acronyms

A

Adam Adaptive Moment Estimation
AI Artificial Intelligence
Annoy Approximate Nearest Neighbors Oh Yeah
API Application Programming Interface
AWS Amazon Web Services

B

BM25 Okapi Best Matching 25
BPR Bayesian Personalized Ranking
BPTT Backpropagation Through Time
bWST Baseline Short-Term Weight-based Model
bWLT Baseline Long-Term Weight-based Model

C

CAT Consensual Assessment Technique
CBoW Continuous Bag-of-Words
CD Compact Disc
CPU Central Processing Unit
cuDNN CUDA Deep Neural Network library

D

DBSCAN Density-Based Spatial Clustering of Applications
with Noise

xvi

E

EDCoW Event Detection with Clustering of Wavelet-based
Signals

EMI Experts in Musical Intelligence

G

GHz Gigahertz
GPU Graphics Processing Unit
GRU Gated Recurrent Unit

I

ID Identifier
idf Inverse Document Frequency

J

JS divergence Jensen-Shannon Divergence

K

KL divergence Kullback-Leibler Divergence

L

LDA Latent Dirichlet Allocation
LSH Locality-Sensitive Hashing
LSI Latent Semantic Indexing
LSTM Long Short-Term Memory
LT Long Term

xvii

M

MIDI Musical Instrument Digital Interface
MLP Multi-Layer Perceptron
MP3 Moving Picture Experts Group Layer-3 Audio

N

NLP Natural Language Processing
NMF Non-negative Matrix Factorization
NP Non-deterministic Polynomial-time

P

P Precision; Probability
PCA Principal Components Analysis

R

R Recall
RAM Random Access Memory
ReLU Rectified Linear Unit
REST REpresentational State Transfer
rHST Recurrent Short-Term Listening History Model
rHLT Recurrent Long-Term Listening History Model
RMSprop Root Mean Square Propagation
RNN Recurrent Neural Network
rPST Recurrent Short-Term Playlist Model
rPLT Recurrent Long-Term Playlist Model

S

ST Short Term
SVD Singular Value Decomposition
SVM Support Vector Machine

xviii

T

tf Term Frequency
tf-idf Term Frequency Inverse Document Frequency
t-SNE t-Distributed Stochastic Neighbor Embedding

W

WAV Windows Wave

Samenvatting
– Summary in Dutch –

Als ik de term ‘artificiële intelligentie’ (kortweg: AI) laat vallen, denken ve-
len onder ons spontaan aan een of andere futuristische robot. Dit beeld van
de ‘vleesgeworden cyborg’ of trouwe personal assistant is niet eens zo gek,
want het wordt ons voorgeschoteld in talrijke films waaronder A.I. (2001),
Blade Runner (1982), Ex Machina (2015), Her (2014), I, Robot (2004), WALL·E
(2008), Avengers: Age of Ultron (2015)... en tv-series zoals Westworld (2016)
en Black Mirror (2011). Niet zelden wordt in deze rolprenten een ongemak-
kelijke, depressieve en zelfs dystopische maatschappij neergepoot. We ko-
men er maar al te vaak terecht in werelden waarin robots en computers
het dagelijkse leven beheersen en waarin de gewone mens is vervallen tot
een nietszeggend wezen. Het negatieve beeld rond AI wordt daarnaast
versterkt door de berichtgevingen in de lokale en internationale media. Zij
smullen maar al te graag van het onheil dat ons te wachten staat, wat bang-
makerij en vaak nietszeggende discussies over mogelijke doemscenario’s
in de hand werkt.

De voorbeelden hierboven reflecteren in veel gevallen een fictief toe-
komstbeeld en worden daarom vaak bestempeld als sciencefiction of fan-
tasy. Waar de meesten onder ons echter niet bij stilstaan, is dat AI op dit
eigenste moment al onder ons aanwezig is in de apparaten, applicaties,
diensten... die wij op regelmatige basis gebruiken en raadplegen. Het be-
kendste voorbeeld is wellicht het weerbericht. Dagelijks worden ettelijke
slimme modellen losgelaten op de weerkaarten, waarna zij proberen om
het weer voor de komende dagen te voorspellen. De resultaten die uit deze
algoritmen rollen, worden dan netjes opgeschoond en vervolgens gepre-
senteerd op tv om iets voor 8 uur ’s avonds. AI is in deze zin niets anders
dan een computeralgoritme dat voorspellingen kan doen en eventueel be-
slissingen kan nemen op basis van aangeleverde data. Een dergelijk algo-
ritme hoeft niet eens zo complex te zijn: een eenvoudige thermostaat kan
beslissen om te beginnen verwarmen wanneer de temperatuur onder 20
graden Celsius zakt, en slaat af wanneer de omgevingstemperatuur meer
dan 22 graden bedraagt.

U ziet dus dat AI helemaal niet de angstaanjagende of mensachtige ro-
bot hoeft te zijn zoals het ons meestal wordt voorgehouden. Vaak zijn het

xxii SAMENVATTING

slechts kleine systeempjes die zich ongemerkt in de plooien of net onder
de oppervlakte van onze maatschappij genesteld hebben. Uiteraard, er
zijn altijd bedreigingen gepaard gegaan met elke grote ontdekking of we-
tenschappelijke vooruitgang in de maatschappij. En dat is voor AI en haar
toepassingen niet anders. Denk bijvoorbeeld aan de algoritmen van Fa-
cebook en Twitter die je speciaal uitgekozen nieuwsberichten laten zien,
en daarmee de polarisatie in de maatschappij ongewild in de hand wer-
ken. Of computers die autonoom handelen op internationale beurzen en
als dusdanig op eigen houtje een beurskrach kunnen veroorzaken. En zo-
genaamde ‘killer robots’, drones die gemaakt zijn om een specifiek target
te herkennen en uit te schakelen, zouden wel eens sneller realiteit kunnen
worden dan verwacht.

Tot zover de maatschappijkritiek. Deze doctoraatsthesis gaat immers
over het positieve verhaal van AI. Met name hoe AI ten dienste kan staan
van de mensheid, van onze zelfontplooiing, en ter verbreding van onze ei-
gen kennis en inzichten. We zullen het bijvoorbeeld hebben over hoe we re-
laties tussen woorden, concepten, entiteiten... kunnen achterhalen door ge-
bruik te maken van de gigantische bergen informatie die iedere dag op het
internet gegenereerd worden. Als we hier in slagen, zijn we bijvoorbeeld
in staat om de zoekmachines van vandaag nog slimmer te maken, waar-
door we eenvoudig informatie en allerhande gerelateerde content kunnen
terugvinden. Naast de reële data die door gebruikers aangemaakt worden
(Facebook posts, tweets, video’s, foto’s, ...), zullen we ook analyseren hoe
deze gebruikers zich gedragen op bepaalde internetplatformen: welke pro-
ducten koopt meneer x voornamelijk, naar welke video’s kijkt mevrouw y
in het weekend, etc. Als we in staat zijn om AI-toepassingen te maken die
dergelijk gedrag anticiperen, kunnen we deze inzichten aanwenden om
suggesties te geven aan de gebruikers, of ter ondersteuning van de marke-
tingafdelingen, en dergelijke meer. Tot slot zullen we AI ook in een meer
creatieve setting aan het werk zien. Door AI-systemen te maken die in staat
zijn om zelf een muziekstuk of een melodie te componeren, kunnen we niet
alleen het werk verlichten van professionele componisten en musici, maar
krijgen we hopelijk ook extra inzichten in de bestaande muziektheorie.

In het volgende geef ik een korte technische samenvatting van de hoofd-
stukken in dit werk. De hoofdstukken bestrijken een variëteit aan AI-
toepassingen die gebruik maken of gebaseerd zijn op zogenaamde sym-
bolische sequentiële data. Met sequentiële data bedoelen we informatie
die varieert in de tijd, en deze informatie zal voorgesteld worden als een
reeks van symbolen: letters of woorden in een tekst, muzieknoten in een
compositie, een stroom van tweets op Twitter, tracks in een playlist of al-
bum, etc. Voor elk van deze types data gaan we op zoek naar een AI-model
dat in staat is deze data te interpreteren, samen te vatten, zelf te genereren,
te anticiperen, te classificeren, enz.

In Hoofdstuk 2 beginnen we ons onderzoek op Twitter, waar we op
zoek gaan naar tweets die dezelfde gebeurtenis (‘event’) beschrijven, en

SUMMARY IN DUTCH xxiii

waar we geconfronteerd worden met twee types sequentiële data. Ener-
zijds is er het sequentiële aspect van de Twitterstroom, waarop één na één
duizenden tweets per seconden verschijnen. Als we deze data efficiënt wil-
len verwerken, moeten de algoritmen om kunnen gaan met vluchtige data
die niet zomaar kan worden opgeslagen. Hiervoor zullen we een online
clusteringalgoritme gebruiken. Anderzijds bestaat elke tweet uit een op-
eenvolging van woorden, karakters, hashtags... In dit werk gebruiken we
de standaard tf-idf-voorstelling voor tekst. Daarnaast trainen we ook een
LDA-model (Latent Dirichlet Allocation) waardoor we ook de semantische
betekenis van een tweet kunnen voorstellen, en we gebruiken hashtags om
tweets te clusteren volgens semantiek. We zullen zien dat het gebruik van
deze semantische voorstelling de prestaties van ons algoritme voor event-
detectie verbetert.

In Hoofdstuk 3 gaan we dieper in op tekstvoorstellingen. We zullen
word2vec gebruiken als tool om woorden uit een groot tekstcorpus te pro-
jecteren in een laagdimensionale ruimte, wat resulteert in zogenaamde
‘word embeddings’. We bekijken vervolgens hoe we de word embeddings
uit een volledige zin kunnen combineren of aggregeren tot een ‘sentence
embedding’ van hoge kwaliteit. Hiervoor richten we ons tot de document
frequency van een woord als hoofdsignaal. In vergelijking met naieve ag-
gregaties, komt onze methode als beste uit de bus op een dataset van zowel
Wikipedia- en Twitterteksten. Het grote voordeel van onze methode is dat
ze out-of-the-box bruikbaar is.

Voor we overgaan tot de laatste twee applicaties, heb ik een eerder
theoretisch getint hoofdstuk toegevoegd. In Hoofdstuk 4 bespreken we
namelijk in detail de werking van een recurrent neural netwerk voor het
verwerken van karakters in een tekst, hoe dergelijke modellen getraind
worden, en hoe we er data van kunnen samplen. We poneren drie trai-
ningsprocedures en twee samplingmethodes, en geven algemeen advies
wanneer welke methodes best gebruikt worden. Om tot deze claims te
komen, hebben we gebruik gemaakt van vier datasets met tekst van ver-
schillende aard.

In de laatste twee hoofdstukken bespreken we AI-applicaties die inten-
sief gebruik maken van de kracht van recurrente neurale netwerken. Eerst
bekijken we in Hoofdstuk 5 hoe deze modellen gebruikt kunnen worden
voor het componeren van pianomuziek. Daarnaast creëren we ook een mo-
del waarin we rekening houden met de identiteit van verschillende com-
ponisten, en we observeren dat de gegenereerde muziek inderdaad ver-
schillend is afhankelijk van de geselecteerde componist. We slagen er zelfs
in om muziek te genereren waarin we de identiteit van de componist gra-
dueel en naar believen kunnen aanpassen. In een luistertest met muzikale
experts, ondervinden we dat het AI-model wel nog steeds het onderspit
moet delven in vergelijking met echte composities.

Tenslotte zullen we in Hoofdstuk 6 de gebruikers op het online pla-
form voor muziekstreaming Spotify van naderbij onderzoeken. Meer be-

xxiv SAMENVATTING

paald gebruiken we recurrent netwerken om het luistergedrag van deze
gebruikers te modelleren. We ontwikkelen enkele modellen die in staat
zijn om de beluisterde tracks van een gebruiker één voor één te verwerken,
en vervolgens een voorspelling geven van de tracks die de gebruiker mo-
gelijkerwijs in de toekomst zou kunnen beluisteren. Hiervoor maken we
opnieuw gebruik van word2vec om de 6 miljoen meest populaire tracks
op het platform te projecteren in een laagdimensionale ruimte. We tonen
aan dat onze methode het beter doet dan standaardmodellen voor aanbe-
velingssystemen.

We besluiten dat, hoewel de ontwikkelingen in het veld van de artifi-
ciële intelligentie de laatste jaren al sterk toegenomen zijn, het onderzoek
naar krachtigere modellen voor het verwerken van sequenties nog zal blij-
ven groeien. In het laatste hoofdstuk formuleer ik in dat verband de hoofd-
zakelijke conclusies van dit werk en schets ik enkele onderzoeksvragen
voor de toekomst. Het mag duidelijk zijn dat we het laatste van recurrent
neurale netwerken nog lang niet gehoord hebben.

Summary

When I mention the term ‘artificial intelligence’ (in short: AI), many of us
spontaneously think of some kind of futuristic robot. This image of the
‘cyborg incarnate’ or faithful personal assistant is far from surprising, be-
cause it is presented in numerous movies including A.I. (2001), Blade Run-
ner (1982), Ex Machina (2015), Her (2014), I, Robot (2004), WALL·E (2008),
Avengers: Age of Ultron (2015)... and television series such as Westworld
(2016) and Black Mirror (2011). Not infrequently, an uneasy, depressive and
even dystopian society is put down in these motion pictures. All too often
we end up in worlds where robots and computers control daily life and in
which ordinary people have become meaningless creatures. The negative
image surrounding AI is strengthened by the reports in the local and in-
ternational media as well. Newspapers are all too happy to tuck into the
disasters that await us, which encourages intimidation and often meaning-
less discussions about possible doom scenarios.

In the examples above a fictitious vision of the future is often put down,
and these stories are therefore labeled as science fiction or fantasy. Most of
us do not realize, however, that AI is already among us in the devices,
applications, services... that we use and consult on a regular basis. Perhaps
the best-known example is the weather forecast. Daily, smart models are
applied to various weather maps, after which they make a prediction for
the weather situations in the coming days. The results that come from these
algorithms are then neatly cleaned up and presented on tv a little before
8pm in the evening. In this sense, AI is nothing more than a computer
algorithm that can make predictions and possibly make decisions based on
provided data. Such an algorithm does not even have to be very complex: a
simple thermostat can decide to start heating when the temperature drops
below 20 degrees Celsius, and turns off when the ambient temperature is
more than 22 degrees.

So, AI does not have to be the frightening or humanoid robot that is
usually shown to us. Often they are just small systems that have settled
unnoticed in the folds or just below the surface of our society. Of course,
every major discovery or scientific progress in society is accompanied by
threats. And this is no different for AI and its applications. Consider, for
example, the algorithms of Facebook and Twitter that show you selected
news items, and thereby unintentionally increase the polarization in soci-

xxvi SUMMARY

ety. Or computers that autonomously trade on international stock markets
and as such can cause a crash on their own. And so-called ‘killer robots’,
drones that are made to recognize and eliminate a specific target, could
become reality faster than expected.

So far the social criticism. This doctoral thesis is about the positive
story of AI. In particular how AI can be at mankind’s service, of our self-
development, and to broaden our own knowledge and insights. For exam-
ple, we will talk about how we can identify relationships between words,
concepts, entities... by using the extensive amount of information that is
generated on the internet every day. If we succeed, we will for example be
able to make the search engines of today even smarter, so that we can eas-
ily find information and all sorts of related content. In addition to the real
data created by users (Facebook posts, tweets, videos, photos, ...), we will
also analyze how these users behave on certain internet platforms: what
products does Mr. x usually buy, what videos does Mrs. y watch in the
weekends, etc. If we are able to create AI applications that anticipate such
behavior, we can use these insights to give suggestions to the users, or to
support marketing departments in their decisions, etc. Finally, we will also
put AI in a more creative setting. By creating AI systems that are capable of
composing a piece of music or a melody, we can not only lighten the work
of professional composers and musicians, but hopefully we will also gain
additional insights in existing music theory.

In the rest of this summary, I will give a short technical summary of the
chapters in this work. These chapters cover a variety of AI applications
that use or are based on so-called symbolic sequential data. By sequential
data we mean information that varies over time, and this information will
be presented as a series of symbols: letters or words in a text, musical notes
in a composition, tweets in the Twitter stream, tracks in a playlist or album,
etc. For each of these data types we try to build an AI model that is able to
interpret, summarize, generate, anticipate, classify, ... this data.

In Chapter 2, we start our research on the Twitter platform, where we
look for tweets that describe the same event, and where we are confronted
with two types of sequential data. On the one hand, there is the sequential
aspect of the Twitter stream, on which thousands of tweets per second are
appearing one after the other. If we want to process this data efficiently,
our algorithms must be able to deal with volatile data that cannot easily
be stored. For this purpose we will use an online clustering algorithm.
On the other hand, every tweet consists of a succession of words, charac-
ters, hashtags... In this work we use the standard tf-idf representation for
texts. In addition, we also train an LDA model (Latent Dirichlet Alloca-
tion) that captures the semantic meaning of a tweet, and we use hashtags
to cluster tweets according to their semantics. We will observe that the use
of semantic information improves the performance of our event detection
algorithm.

SUMMARY xxvii

In Chapter 3 we will go deeper into text representations. We will use
word2vec as a tool to project words from a large text corpus into a low-
dimensional space, resulting in so-called ‘word embeddings’. We then ex-
amine how we can combine or aggregate the word embeddings from a
complete sentence into one high-quality ‘sentence embedding’. For this,
we focus on the document frequency of a word as the main signal. In
comparison with naive aggregation techniques, our method performs sig-
nificantly better on both Wikipedia texts and tweets. The major advantage
of our method is that it can be used out-of-the-box.

Before we proceed to the last two applications, we will focus first on the
theoretical aspects of recurrent neural networks in Chapter 4. In this, we
discuss in detail the training and sampling process for these kinds of deep
networks. The main use case is modeling characters in a text. We present
three training procedures and two sampling methods, and give general
advice on when which methods are best used. To arrive at these claims,
we have used four text datasets that each have a different nature.

In the last two chapters, we discuss AI applications that intensively use
the power of recurrent neural networks. First, in Chapter 5, we investigate
how these models can be used for composing piano music. In addition,
we also create a model in which we take into account the style of different
composers, and we observe that the generated music is indeed different
depending on the selected composer. We even succeed in generating music
in which we can adjust the style of the composer gradually throughout the
piece. In a listening experiment with musical experts, we find that our AI
model is still performing worse compared to man-made compositions.

Finally, in Chapter 6 we look at users on the online music streaming
platform Spotify. More specifically, we use recurrent networks to model the
listening behavior of these users. We develop a variety of models that are
able to process the tracks a user has listened to one by one. The models are
then able to predict future tracks the user might listen to. For this purpose,
we use word2vec again to project the 6 million most popular tracks in a
low-dimensional space. We show that our method outperforms standard
models for recommendation systems.

We conclude that, although the developments in the field of artificial
intelligence have increased considerably in the past few years, research
into more powerful models for sequence processing will continue to grow.
In the last chapter, I put the main conclusions of this work and I give an
outline of a few research questions we can focus on in the future. It is clear
that the part of recurrent neural networks in the story of AI is far from
finished.

1
Introduction

“Fascination, fascination, it’s just the way we feel. We love this exaltation, we
want the new temptations, it’s like a revelation, we live on fascination.”

—Alphabeat, 2006

1.1 Life is a sequence

It might not immediately occur to you, but the text you are reading right
now is composed of several patterns. These very words have been put in a
specific order by the author of this doctoral thesis, so that you as a reader
are able to attach a meaning to them. If alternative words had been cho-
sen, or if the order of the words were scrambled, maybe the information
conveyed in these sentences would have been different. Apart from the
author’s personal creativity, the arrangement of words is of course highly
dictated by the grammatical rules of the language in which we are com-
municating, of which we all—whether or not unconsciously—have a basic
understanding. For example, in English a noun can be preceded by an ad-
jective (e.g. ‘a brown fox’), while this is usually the other way round in
Romance languages, such as French (e.g. ‘un renard brun’). Everyone’s in-
ternal linguistic alarm is immediately triggered when mistakes are made
against such basic rules—and I hope I have not set anyone’s alarm off yet!
Our innate capacity of language learning and to instinctively sense how
proper language should be structured, is called the language instinct, a term

2 CHAPTER 1

coined by linguist Steven Pinker in his 1994 bestseller [1]. Building on the
theories of Noam Chomsky, one of the brightest linguists and intellectuals,
he claims that parts of the human brain are wired to reflect structures of
a universal meta-grammar [2]. In the learning phase of childhood, these
structures are heavily used to develop one’s mother tongue.

On a more granular level, this text is also a sequence of characters from
the Latin alphabet, next to spaces and punctuations. From very early on,
we are taught to write words letter by letter—for the Flemish and Dutch
readers, recall ‘ik – maan – roos – vis’. This way we learn to associate
spoken sounds with written symbols. That is, the order of the characters
in the word reflects the order in which distinct sounds are made by the
speech organ. Clearly, the words ’present’ and ’serpent’ use the exact same
set of characters, but by changing the order, we arrive at different words
and possibly different meanings—unless you get a pet snake for your next
birthday. However, an interesting phenomenon is that, even though not
entirely correct and not scientifically proven1, it deosn’t mttaer in waht
oredr the ltteers in a wrod are, the olny iprmoatnt tihng is taht the frist and
lsat ltteer be at the rghit pclae [3]. Even though this last sentence was per-
fectly understandable, you will not get hired easily or win a Nobel Prize if
this becomes your standard way of writing. Next to this, a good illustration
of heavy word ‘corruption’ in our daily lives can be found on social media
platforms such as Twitter® and Facebook®, where it is commonplace to
drop vowels, e.g. ‘thnx’ (thanks), ‘plz’ (please), ‘k‘ (OK), ‘ppl’ (people), etc.,
to repeat them extensively, e.g. ‘goooaaaal’ (goal) or ’neeeeever’ (never), or
to undeliberately introduce typos, e.g. ‘Egnlish’ (English). These cases il-
lustrate that humans can cope with dropping characters or changing the
character order up to a certain extent, and that it does not necessarily im-
ply a shift in the semantic meaning of the word or text.

In kindergarten and first grade, we also learn to separate words by
spaces when writing full sentences. Of course, this is obvious to all of
us, because after having learned to write spaces between words, no one
ever questions it again. But there used to be a time when a teacher actu-
ally told you to do so, and you were reinforced to do it every time from
then on, so that it became a natural thing to do. The same principle holds
for writing periods at the end of a sentence, capital letters at the start of a
sentence, commas before or after clauses, etc. Figure 1.1 shows an example
of a didactic tool that is used in some schools for the purpose of writing
spaces.

1For instance, ‘a dootcr aimttded the magltheuansr of a tageene ceacnr pintaet who deid
aetfr a hatospil durg blendur‘ is much more difficult to read; it translates to ‘a doctor admitted
the manslaughter of a teenage cancer patient who died after a hospital drug blunder’.

INTRODUCTION 3

Figure 1.1: In some schools, a ‘space man’ is used to help children remember to
write spaces between words. Source: www.teacherspayteachers.com.

As opposed to the language instinct that we naturally possess, spelling
and writing rules are habits or learned behaviors, because we acquire them
through instruction, exercise, punishment and reward. Since the rules for
writing spaces and periods are generally simple, most people apply these
rules consistently. But the writing rules for commas, verb conjugations,
hyphenation... are more complex, less straightforward and often even not
standardized. Some people have learned these rules by heart and have
developed the habit of applying them with best effort, others have a vague
understanding of the rules and merely follow their intuition, and yet others
never even develop the habit of proper spelling and comma placement.

When we look beyond the character and word level, you might have
noticed by now that this text is comprised of several sentences, one follow-
ing after the other. The order of the sentences is important to effectively
convey a story, an explanation, an argument, etc. At an even higher level,
multiple paragraphs are arranged in a particular order, which in turn are
grouped together in different sections and chapters. We might even look
beyond this very thesis and consider for a moment all books we have read
until today. Since books are usually read one after the other—or at least
finished one after the other—the ordering of these books also forms a se-
quence. This sequence is a reflection of your reading behavior and shows
which kinds of books your are mostly interested in, similar to how a se-
quence of sentences reflects the ideas and messages of the author.

The concepts of structured and ordered characters, words, sentences...
are not just applicable to text. Actually, the world and human life is heavily
organized in a sequential manner. These sequences can be anything, going
from series of consecutive objects, numbers and patterns, to more abstract

www.teacherspayteachers.com

4 CHAPTER 1

Figure 1.2: Four examples of how a picture can be interpreted and read as a se-
quence of pixels. From left to right: horizontal raster scan, vertical raster
scan, horizontal snake scan and zig-zag scan.

orderings of states, situations, etc. Visual, spatial sequences are most eas-
ily observed: we have already covered the text in this book, but there are
many more examples. For example, numerical sequences are abundant in
telephone numbers, license plates, access codes... and the most interesting
ones occur in IQ test questions such as ‘complete the following sequence:
2, 3, 5, 9, 17, 33, ...’ Other spatial sequences can be found in our DNA,
composed of series of molecules that encode the biological mechanisms of
life on earth. Sheet music is also a long chain of music notes, and is very
similar to text in the sense that most songs are often grouped in phrases
and parts, such as intro, verse, chorus, bridge, etc. Printed images can
also be interpreted as sequences of individual pixels and color values, one
positioned next to, above or underneath the other. An image can then be
‘read’ row per row or column per column, using traditional raster scan or
‘snake’ scan, etc. Examples of this are shown in Figure 1.2. Less obvious
spatial sequences are observed on the road where cars are passing by one
after the other. Bricks and other materials are piled on top of each other
to construct a skyscraper. Pictures at an exhibition are often positioned to
guide the visitor through an artist’s story. And we conclude again with
Facebook®, Twitter® and Instagram®, on which activity and news posts
are selected and organized in a particular order to spike as much interest
and interaction as possible.

A lot of sequences are not just orderings in space, but rather consist of
events and phenomena that happen across time. In that case, we use the
term temporal sequence. Time itself is the best example of a temporal se-
quence, and humans have structured it in terms of years, months, weeks,
days, hours, minutes, seconds, milliseconds... To give another example,
when we produce a sound with our voice, a pressure wave is initiated
through the air. Such a wave travels in time through the air and can be re-
garded as a sequence of pressure values. Our eardrums are able to capture
these pressure differences, and through the inner ear they are transformed
so that our brain can interpret them again as sounds. If a sound wave is
not captured or recorded, it is lost forever. An interesting observation is

INTRODUCTION 5

that when a sound wave is recorded onto a physical medium as a series of
pressure values—using the structure of an MP3, WAV, ... file—it becomes
a spatial sequence! Under certain conditions2, these spatial sequences can
be transformed back into the original physical sound waves [4]. This is the
basic principle behind digital sound recording and storage devices such as
the compact disc (CD).

Another important example of a temporal sequence, and one that will
play an important role in this doctoral thesis, is item consumption. All ob-
jects that you use, handle, touch, buy, rent, watch, listen to... during the day
can be arranged in one very long series that is ordered in time. Again, this
can be done on multiple abstraction levels. For example, when you make
a cup of Nespresso® in the morning, the order of handled objects might
be (cup, machine, capsule, machine, cup), but it can also be (cup ear, ma-
chine on switch, machine lid, capsule, machine lid, machine coffee button,
machine lid, machine off switch, cup ear). In the current digital era, you
should not be too surprised that even the smallest action you perform on
your coffee machine is saved to a microchip, mostly for warranty purposes.
In the context of this thesis, items will mostly be digital, non-physical ob-
jects. For example, all videos you have watched on YouTube® can be traced
back to create one long sequence, which reflects your general interests and
watching behavior, i.e. whether you have a short or long attention span by
analyzing your skip behavior, how often you return to the same video over
and over again, etc. These insights can then be used for targeted market-
ing purposes, to recommend additional videos to watch, to help users cre-
ate videos that will reach the largest audience, etc. The same observation
holds for other multimedia streaming services, such as Spotify®, Netflix®,
but also for local cable companies (most notably Proximus® and Telenet®

in Belgium). In a more literal sense, item consumption behavior is impor-
tant for e-commerce websites such as Amazon®, Coolblue® and Bol.com®.
For the owners of these websites, it is very important to gain insight into
their customers, e.g. if someone buys a washing machine, he or she might
also be in need of washing powder or clothespins. The website can also no-
tice that you are probably looking for washing machines, and might come
up with good suggestions of its own, or display what similar users have
bought in the past. Being able to anticipate customer behavior can there-
fore greatly increase your sales. Unfortunately, these systems are far from
flawless today; we can probably all recall the moment when we saw an
online advertisement for the same shirt we had bought just yesterday.

2Since a physical (continuous) signal is transformed into a digital (discrete) signal, the
Nyquist-Shannon sampling theorem has to be fulfilled in order to reconstruct the original
physical signal.

6 CHAPTER 1

1.2 Anticipation, expectation and surprise

In the past few pages I discussed how language, objects, sound, images,
human actions, time... and, in fact, most of nature can often be regarded as
sequences of small atomic entities, depending on your viewpoint. German-
American philosopher Nicholas Rescher states that “natural existence con-
sists in and is best understood in terms of processes rather than things – of
modes of change rather than fixed stabilities” [5]. British sociologist Bar-
bara Adam agrees and believes that “nature itself, the environment, and
sustainability are no longer primarily seen through the lens of space and
become fundamentally temporal realms, processes and concepts” [6, 7].
The fundamental parts of these processes and sequences are the past states,
present states, future states, and the passage from one state to the next.
Causality is an important and the most basic concept that drives a pro-
cess, and describes how one state causes a change in a future state. Think
for example of Newton’s third law of motion, generally known as ‘action-
reaction’, or the spontaneous reflex actions we perform to defend and pro-
tect ourselves, driven by our central nervous system.

However, human behavior and most of nature’s processes cannot solely
be explained by causality alone. In the first section of this introduction, we
have already talked about the importance of being able to foresee what
the future states of a sequence might look like. After all, our actions in
daily life almost always have some associated goal towards the future. For
example, we save or invest money on a regular basis because we want to
live a happy life when we are old; we drive to the supermarket every week
with the purpose of buying food, and we buy food in order to survive; to
reach point B from point A, we put our left foot forward after our right foot
(and vice versa) in order to walk; and in order to gain a profit, we invest
in either stock X or stock Y. In Aristotle’s principle of the four causes, this
is best illustrated by the ‘final’ cause, also called telos (Gr. τέλος). It tries to
formulate an answer to the question why and for which purpose things are
what they are, because there is a final cause or end to be met. For example,
animal teeth grow in the way they do for biting and chewing food, and not
in some random way, which is good for the survival of the animal [8].

The reason why we can live a goal-oriented life, is due to the concept
of anticipation. That is, we are able to continuously make decisions and
perform actions based on our expectations of what the future would look
like whether or not we were to proceed with our intentions. German eco-
nomic sociologist Jens Beckert describes anticipation as ‘fictional expecta-
tion’, since “present imaginaries of future situations [...] provide orienta-
tion in decision making” [9]. The capability of projecting our thoughts into

INTRODUCTION 7

the future is not just a feat of humanity, but is present in the whole of na-
ture, going from biological ecosystems to physical processes [6]. Even on
the tiniest micro-level this principle is at work: while driving on the high-
way, you won’t suddenly brake since you expect the cars in front of you
to keep on driving; at the same time, you keep a distance from the other
cars in case one of them starts braking. While in bed at night, you will—
hopefully—be peaceful and calm, because you expect the situation around
you to remain as is for the next couple of minutes or hours; if you would
suspect that the ceiling could fall down any second, you probably would
run out of the house. And people are having multiple conversations on a
daily basis with each other, because we are able to anticipate each other’s
feelings, and through this we try to invoke certain reactions and responses.
In all these examples, the mind thinks about what might happen in the near
future. In common situations, such as resting and driving and working, we
aren’t even aware of this mental process taking place; in more unusual or
even endangering situations, you probably remember quick flashes or ‘vi-
sions’ of the possible scenarios that might occur. Psychologists call this
effect ‘mental time travel’ [10]. Sociologist Markus Schulz summarizes as
follows: “we all lead our daily lives based on innumerable assumptions
about the future, short-term and long-term, small and large” [11].

In the light of the observations above, we can conclude that the human
mind is a system that is highly anticipatory. American theoretical biolo-
gist Robert Rosen—one of the founders of anticipation studies—defined
an anticipatory system as “a system containing a predictive model of it-
self and/or its environment which allows the system to change state at
one instant in accord with the model’s predictions pertaining to a later in-
stant” [12]. In the definition of Rosen, the concept of a predictive model of
the environment holds a central position. When we are born, we have ab-
solutely no clue about what is going on in our environment: we don’t know
how to interpret it and we certainly don’t know how to interact with it. But
already very quickly, things start making sense. We recognize mum, dad,
and other people in the family. Small objects can be grasped and thrown
on the floor. When we are hungry, we cry until we get food. And a pic-
ture’s size can be increased by pinch-and-zooming on the tablet, which is
something you cannot do in printed magazines. Through this experience,
we are steadily building a model in our brain of how the world around us
works and how we should interact with it.

First, this model contains a wealth of information about all sorts of cog-
nitive features. Recall for example the language instinct we talked about
earlier, or think of our ability to recognize and manipulate objects in a
three-dimensional world. Second, and most importantly in the context of

8 CHAPTER 1

this thesis, we develop a model describing the mechanics of our world,
about the consequences of actions and causes of observations. If we drop
a glass of water, we know that gravity will certainly pull the glass towards
the earth; the floor will most probably be wet, but it is not certain whether
the glass will break or not—or at least, we as humans cannot calculate this
in such a short period. We learn that, when riding a bike or driving a car,
we need to turn the wheel counterclockwise in order to make a left turn.
We also find out how to express specific types of feelings to invoke reac-
tions, and how respond to our friends when they feel depressed. And if
we would commit a crime, we might get caught and be sent to jail—and
God will punish you, depending on your viewpoint. These examples show
that we instinctively know the consequence of our actions before executing
them by mentally ‘unrolling’ different scenarios into the future.

The very fact that we are able to do so, is thanks to our internal model of
the world. No one will imagine a glass hovering in the air when suddenly
dropped, because that is not how our world works, unless of course you
are aboard the International Space Station. In some cases, however, our
internal model of some aspects of the world or the mental depiction of the
future is less straightforward. When playing a game such as chess, Connect
Four® or Stratego®, you have to start thinking about strategies: what might
happen if I perform this very move? How can I trick my opponent? What
could happen within five moves from now? Or when we speak a foreign
language that we have not yet mastered thoroughly, we often have to think
of specific words or grammatical constructions. In cases where we observe
something that is not in line with our mental image of the world’s mechan-
ics and dynamics, we call it surprise. And it is the notion of surprise that
lies at the basis of creativity and emotions, but also accidents and impul-
sive acts. The Canadian professor David Huron suggests that human emo-
tions are governed by five different response systems: reaction, tension,
prediction, imagination, and appraisal [13]. We already recognize reaction,
prediction and imagination as parts of our discourse until now. Tension
is usually caused by uncertainty, and uncertainty is caused by events that
do not entirely align with our expectations. Magicians use uncertainty and
tension as a central element in their act, and musicians often play out-of-
chord notes, preferably on weak beats, to invoke interest from the audi-
ence. We, as spectators or listeners, then use our imagination as well as
possible to predict the outcome or continuation of the uncertain event, and
it is at these moments that we can get carried away by great works of art.
The skill of invoking surprise—and therefore emotions—at the right mo-
ments, through the right interplay of tension and resolution, is what sets
great musicians, writers, painters, directors, chefs, presenters... apart from

INTRODUCTION 9

average ones. But surprise can catch us at any moment in our lives: in the
first days of winter, we all need to adjust our driving style to account for
longer braking distances and more slippery roads; when stocks suddenly
start plummeting, and there is no clear cause, people will start selling and
buying impulsively and emotionally. And also our reflex system is entirely
tuned to surprises: when we trip over an object, our equilibrium reflex is
immediately activated.

1.3 Deterministic and stochastic sequences

When we think of sequences in a purely mathematical context, we often
consider series of subsequent numbers. Perhaps the most famous sequence
in the whole field of mathematics, is the Fibonacci sequence. The main
property of the Fibonacci sequence is that one term in it is the sum of the
previous two terms. If the first two terms are both equal to 1, we arrive at
the following pattern: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... Other sequences are less
famous, but are abundant in a lot of applications, such as square numbers
(1, 4, 9, 16, 25, ...), triangle numbers (1, 3, 6, 10, 15, ...), on-off signals (1, -1,
1, -1, ...), etc. These sequences follow certain patterns and relations that can
be described mathematically. An explicit formula defines every term un of
a sequence as a function of its position n:

un = f(n), n ≥ 1. (1.1)

For example, the sequence of square numbers can be described by:

un = n2, (1.2)

since every term is the squared value of its position in the sequence. Fol-
lowing the formula, we have that u1 = 1, u2 = 22 = 4, u3 = 32 = 9, etc. By
contrast, a recurrent formula defines every term un as a function of one or
more previous terms:

un = f (un−1, un−2, un−3, ...) , (1.3)

given enough values to start or bootstrap the sequence3. If we consider the
square numbers again, it can be verified that this sequence can be written
according to the following recurrent relation:

un = (
√

un−1 + 1)2 , u1 = 1. (1.4)

3While working on this chapter, I got intrigued by the question whether the sequence of
sines sin(n) could be written as a recurrent formula. With a some external help, the research
team and I eventually found that un = sin 2

sin 1 un−1 − un−2 (given u0 = 0 and u1 = sin 1), which
is a surprisingly simple formula!

10 CHAPTER 1

Through this formula, we easily calculate that u2 = (
√

1 + 1)2 = 22 = 4,
u3 = (

√
4 + 1)2 = 32 = 9, etc.

Using both types of formulas, a sequence is fully described. This means
that at all times we have knowledge of the past, present and future terms.
If we connect back to the previous paragraph, this means that we can com-
pletely anticipate the future of a sequence since it has fully predictable be-
havior: you can easily and precisely calculate the 100’th, 1000’th, ... term.
For a recurrent definition, the concepts of ‘mental time travel’ and ‘fictional
expectation’ can almost be taken literally, since we have to explicitly unroll
the sequence to determine the future terms.

A sequence for which there is only one fixed possible term for every
position, is called a deterministic sequence (Lat. determinare, i.e. to limit,
to fix). The 10’th square number is always 100, and never 101, 99 or any
other value. We have to point out that, although the terms in a determin-
istic sequence are fixed, not all deterministic sequences can be cast into a
formula. For example, the sequence of subsequent prime numbers (2, 3, 5,
7, 11, 13, 17, ...) is infinite and deterministic, but cannot be cast into a single
closed-form and computable formula—or, at least, no-one has ever found
such a formula. And everything that has been written down, recorded,
printed, etc. can also be seen as deterministic sequences, (usually) without
an explicit mathematical definition.

Most realistic sequences, however, are not deterministic. When we look
at all events in our daily lives that we have covered already in this intro-
duction, you usually do not know what event will come next, in the near
future, or in the very far future. Of course, you can enforce what words
you will speak within a few seconds from now, what hand movements you
will make, what food you will buy next, etc. But even these actions can be-
come uncertain in the case of unforeseen events: you suddenly fall down
a staircase, someone might ask you about something random, you come
across an interesting item in the supermarket aisle, etc. In fact, for many se-
quences we have a lot of certain knowledge about past and present events,
but almost no certain knowledge about the future events. Even a radio pro-
gram that has been recorded and is now being aired, can get distorted by
various external factors, such as noise, interference, broken hardware, etc.
The very fact that these sequences have uncertain behavior, is the origin
of the name stochastic sequence (Gr. στοχὰζεσθαι, stokhazesthai, i.e. to aim
at, to guess). Figure 1.3 shows how the stochastic nature of a sequence can
impact the outcome of a process. It shows a deterministic sine sequence
along with five similar processes that have been disturbed by (Gaussian)
noise. We notice that, when the noise level is increased, we become more
uncertain about the future outcomes of the process when time progresses.

INTRODUCTION 11

time time

Figure 1.3: The blue line in both figures shows a standard sine wave as a process
over time. The other five curves follow the same sine process, but at
every time step a stochastic standard Gaussian noise factor is added. In
the left figure a standard deviation σ of 0.1 is used; on the right, σ = 0.4.

In the right part of the figure, the cyan blue curve even disappears out of
sight at the top of the graph.

As we have argued before, our brain is extremely well-designed and
well-equipped to reason about and think of uncertain events in the future.
This observation lies at the basis of the numerous actions we take on a daily
basis. In fact, our brain is continuously processing multiple courses of ac-
tions, and it evaluates the outcomes of these courses. Sometimes we do this
deliberately, when we think about our future selves or when taking impor-
tant decisions. But most often these processes take place under the hood
of our conscience. Of course, the number of actions that we can take and
the associated consequences—the so-called state space, the set of all possi-
ble states—is extremely large, which renders the process of ‘mental time
travel’ an extremely time- and resource-consuming job! But we, humans,
can make unconscious decisions almost instantly, which suggests that the
brain possesses a more intelligent system to handle future uncertainty,
which is the ‘model of the world’ we have extensively talked about ear-
lier. Sociologist and philosopher Roberto Poli puts it this way [6]: “When
the brain takes a decision, it does not have sufficient time to traverse the
state space of all the possible choices. To decide efficiently, the brain must
decide which options are more likely to become real, i.e. it has to antici-
pate. [...] Apparently, neurons and more complex brain structures contain
what have been called ‘internal models’ whose main task is to guide the
system in its decision-making activities.” These few sentences summarize
and bring together the concepts of anticipation, decision making, the hu-
man brain, world models and stochastic sequences.

12 CHAPTER 1

1.4 Artificial intelligence

Apart from some clues here and there, we do not know exactly how the
brain stores, processes and reasons about its own model of the world. A lot
of research has been done on this topic, and undoubtedly many researchers
will continue tackling this very research question. After all, the idea that
maybe one day we will be able to explain what mechanisms lie at the basis
of human intelligence, is very tantalizing.

In the meantime, the field of artificial intelligence—in short: AI—has
risen since the 1950s. Artificial intelligence is a research area lying on
the intersection between mathematics, computer science, engineering, eco-
nomics, biology, cognitive science, psychology, philosophy, and probably
borrows from many other scientific fields as well. As the name already
suggests, the main goal of AI is to try to mimic or even surpass genuine
human intelligent behavior by means of artificial agents, i.e. computers,
robots, phones, sensors, industrial machines, game consoles, etc.

A first observation we make, is that computers are traditionally very
good at jobs that usually take a lot of effort for humans, such as calculating
mathematical expressions and searching through large amounts of data.
This is mainly thanks to the clever algorithms and ever-increasing compu-
tational power of these machines. On the one hand, our innate abilities of
hearing, seeing, touching, speaking, ... are products of very long chains of
evolution, since they lie at the basis of nature and all life on earth. Over
time, our senses and brains have become highly optimized for these tasks,
and it appears as if they take almost no effort. Dealing with and reasoning
about complex mathematical problems, on the other hand, has only been
around for ca. 5000 years, which is a mere blink in the history of evolution.
It requires a lot of conscious brain power to solve such tasks, which ex-
plains why maths and sciences are often being perceived as tiring, overly
complex, and abstract. To help us with such difficult and time-consuming
problems, humans have invented different types of computing machines,
of which the basic calculator and the modern-day computer are the best-
known examples.

Secondly, we also observe that computers used to be bad at tasks that
require human intuition, instinct and intelligence, such as recognizing cats
in the street, playing games, interpreting texts, predicting market prizes,
manipulating objects, etc. And this is were AI largely comes into play.
Similar to how humans take decisions by considering visual, auditory and
sensory input signals, artificial intelligence agents are designed to process
specific types of input data, after which they perform an action for the
task they are designed for. Over the course of the past 50 years, more or

INTRODUCTION 13

less, researchers in various domains have developed a vast array of algo-
rithms through which today’s powerful computers, robots, machines... are
able to achieve near- or above-human performance on a bunch of tasks. I
have searched extensively for existing taxonomies of modern AI applica-
tions, but I was unable to find one that presented both an adequate and
complete picture of the research field. The following taxonomy is there-
fore largely based on my personal point of view; and, as is the case with
many taxonomies, other people might have approached it differently. It
is not my intention to give a complete overview of the recent and early AI
developments—for which I refer the reader of this thesis to Stuart Russell’s
reference work [14]—but for every category I will give a few well-known
examples that have been important, groundbreaking or just interesting in
the development of the field.

Cognitive applications

The AI applications in this first category mostly try to mimic human cogni-
tive behavior. This means processing signals by sensing the environment,
attaching a meaning to these signals, and finally being able to extract use-
ful information and knowledge from the processed signals. The national
postal services use such AI systems to sort letters based on their destina-
tion, since they are able to recognize and interpret handwritten addresses.
Next to this, most of the modern car manufacturers implement traffic sign
recognition as part of their on-board systems. The cars continuously take
visual input from the road through a camera, extract the traffic signs and
interpret the symbols. This information is then used to indicate whether
the driver is driving too fast, or is automatically uploaded to the cloud to
update real-life traffic conditions. As a final example, I include Shazam®, a
mobile app that is able to recognize the song that is currently playing in the
room around you. The way this app works, in short, is by matching small
parts of audio signals with entries in a large catalog of most commercially
available records [15].

Predictive applications

In a second category, I consider the AI applications that use current and his-
torical data to make predictions about the present and the future—although
this category of applications can also be used to research phenomena in
the past. For example, a lot of startups such as Kayak® and Hopper® are
nowadays tackling the task of predicting flight prices as accurately as pos-
sible. Suppose that you want to fly from Brussels to Vancouver this sum-
mer, these AI applications will use historical data as well as current sales

14 CHAPTER 1

trends to give the user advice on when and how to book their flights in
order to pay as little as possible. Also in the realm of transportation, the
mobile app Waze® has become increasingly popular in the past few years.
It relies on historical data, real-time crowdsourcing and predictive analysis
to guide car drivers as quickly as possible to their destination. Finally, I
present a broad category of examples that will turn out to be important in
the remainder of this thesis, which is the realm of recommender systems.
Such systems form an important part of every major service that deals
with users and large item catalogs, such as (online) retailers (Amazon®,
Zalando®, ...), streaming services (Netflix®, Spotify®, ...), libraries, social
media, tourism (TripAdvisor®, Yelp®, ...), dating apps, etc. The goal of rec-
ommender systems, as the name suggests, is to present the user with a list
of items (videos, food, music tracks, clothes, potential dates, ...) that he or
she might be interested in trying next or in the future. In that sense, a rec-
ommender system is anticipatory towards a user’s behavior in the future4.

Active applications

AI applications that autonomously perform actions in their (digital or real-
world) environment combine both cognitive and predictive properties. Af-
ter all, such intelligent agents have to be able to interpret what they observe
in order to choose their next actions. In this category, we have the numer-
ous AI bots that are able to play games against humans. The first well-
known examples are chess computers. Already at the end of the 18th cen-
tury, the Hungarian inventor Wolfgang von Kempelen built a chess robot.
It was, however, a fake robot, because there was actually a person sitting
in the cabinet underneath the chess board. In 1996, IBM® made the first
computer, ‘Deep Blue’, that was able to beat a chess world champion un-
der standard time controls: it defeated Garry Kasparov in 1997, although
this is disputed [16]. Deep Blue later resulted in the development of IBM’s
famous AI computer named Watson, which was able to defeat human play-
ers in the television game Jeopardy! From 2014 on, Alphabet’s DeepMind
has recently pioneered in building AI agents that are able to play video
games, and their algorithms have defeated professional players in the an-
cient game of Go [17, 18]. In this category of AI applications, we also find
physical robots, both industrial and humanoid. To pick one major feat
at the end of 2017, the famous robotics company Boston Dynamics made
their robot Atlas do a somersault—although their AI is largely based on
rule-based engineering and control theory.

4These systems are so powerful nowadays, that in 2012 the data company Target was able
to predict a teenager’s pregnancy based on her shopping list without her family knowing.
Her father found out after the supermarket had sent coupons for baby clothes and cribs.

INTRODUCTION 15

Generative applications

In the final category, I consider those applications that are able to generate
new data themselves, while the applications above mainly use existing,
user-provided data. A well-known example are the computer generated
voices in navigation systems and digital assistant such as Siri® (Apple®),
Alexa® (Amazon®) and Cortana® (Microsoft®). Recently, intelligent chat-
bots have been deployed on a number of websites. For example, at the end
of 2017, the Ghent-based company deJuristen even launched a prototype
of their chatbot that gives legal advice; their ultimate goal is to render tra-
ditional lawyers obsolete. Finally, there also exist numerous applications
in the creative domain, in which AI is used to compose music [19, 20], draw
paintings [21], or even create new AI systems themselves [22]!

Most of the applications listed above are designed to make our lives
easier and more pleasant. They also help us at tasks that are difficult, te-
dious and time-consuming, such as finding out the artist and title of that
one song that is now playing on the radio. And, especially for the applica-
tions in the creative and active domain, they teach us a lot about how hu-
mans approach and think about certain tasks. What all applications have
in common, is that they possess a model of the problem we are trying to
solve. This is similar to how the human brain contains models of the tasks
it can perform. But instead of brain power, AI models use a combination
of algorithms, memory and processing power to solve their tasks.

The very fact that AI applications are driven by underlying models that
can be used to reason about outcomes of certain actions or operations, ren-
ders these systems highly anticipatory. This means that many of these sys-
tems can be used in an anticipatory context, or that the systems themselves
are able to anticipate the future, thereby changing their behavior. AI sys-
tems are often modeled in such a way that they take into account multiple
possible (future) outcomes based on historical and present input. These
possibilities are then used to reason about and decide on the next best
course of action. For example, if a person has just listened to five classi-
cal piano pieces, he/she might be interested in more music of the same
genre. But if that person has just left the office and went driving, we might
know from past experience that that he/she likes a rougher genre while
commuting home. However, it is 2pm, and usually that person only drives
home after 5pm, which increases the uncertainty about whether we should
recommend either classical or rock music. All the input that this AI system
gets (musical taste, listening history, location, date and time, device...), can
potentially be used in the final decision about what songs will be recom-
mended to this person.

16 CHAPTER 1

1.5 Machine learning

Artificial intelligence algorithms can be as simple as a set of rules that
trigger a certain action. For example, a simple e-mail spam filter might
check whether an incoming e-mail contains some predefined words or
word groups, such as ‘scam’, ‘100% free’, ‘medicine’, ‘viagra’, ‘fast cash’,
‘free gift’, dollar signs, exclamation marks, etc. If the e-mail contains a suf-
ficient amount of these terms, it might be classified as spam. This is a fairly
easy programming task for first-year bachelor students.

But if you tackle this problem in such a simple way, you might end up
with a lot of false positives (genuine e-mails classified as spam) and false
negatives (spam classified as genuine). First of all, what is ‘a sufficient
amount’ of spam terms? Is it 5% of all words in the e-mail, is it less, is
it more? This number or ‘threshold’ can be determined by a domain ex-
pert, but even then it is far from likely that this expert will pick the optimal
threshold. Second, we assume that we have a set of predefined spam terms
at our disposal. It is true that there exist such public lists, but they are far
from complete, and since these lists are static and not changed often, true
spammers can adapt their e-mail content to include as little of these known
words as possible. So then, if we are unable to use a list of spam-triggering
words, how would we identify them in a robust manner that can evolve
over time? And finally, the contribution of every word to the final decision
is ideally different. For example, the word ‘free’ is probably less character-
istic of spam e-mails than ‘fast cash’, and if you practice a medial profes-
sion, you might actually receive a lot of valid e-mails containing the words
‘medication’ and ‘drugs’. It is, however, an impossible task to determine
manually to what extent a word is an indication of spam.

It is for all the above purposes that we use machine learning, as a special
case of artificial intelligence. Kevin Murphy defines machine learning as
“a set of methods that can automatically detect patterns in data, and then
use the uncovered patterns to predict future data” [23]. Let’s discuss the
elements in this definition. First of all, there’s the data aspect of machine
learning. We live in a time where, according to IBM®, we generate around
2.5 exabytes—i.e. 2.5 billion gigabytes—of data every day; this means that
90% of all data around has been generated in the last two years [24]. There
is a wealth of information and knowledge present (or hidden) in all this
data. Machine learning algorithms in general try to uncover this hidden
information by processing large amounts of data, and to cast this informa-
tion in a model that describes this data. This process is called learning or
training, and is largely similar to how children learn to recognize objects:
we give them a picture of a tree and say “this is a tree”, and we will cor-

INTRODUCTION 17

rect them if they claim that it is something else than a tree. But while the
process of learning a good data model takes years for us humans, some
machine learning algorithms can do it in a few hours or days, depending
on the computational power at hand.

Next to data, Murphy states that machine learning algorithms learn
patterns that are present in this data. A pattern can be anything that leads
to conclusions about the data, and is the basic building block of a model.
For example, if we present the algorithm many pictures of different objects,
it might learn that a picture with two eyes in it probably shows some kind
of animal. Or it might find from a dataset of rent prices that apartments in
the city center are more expensive than in the outskirts. Ideally, machine
learning algorithms find multiple such patterns in the presented data, so
that they are able to build a robust model which can be used to make pre-
dictions and reason about future data. This depends of course highly, first
of all, on the quality of the data that is presented. For example, if all apples
in your dataset are green, then the algorithm might conclude that a red
apple is not a real apple. And second, it also depends on the complexity
of the model. Very simple models will ideally focus on large-scale pat-
terns in the data, and only allow for broad and undetailed predictions. Too
complex models, on the other hand, can learn very detailed patterns in the
data, and, as a result, there exists an actual danger that the model will learn
the complete dataset ‘by heart’. This implies that, if your dataset contains
three pictures of different apples, that the algorithm will have difficulties
recognizing other apples. This phenomenon is called overfitting, and is one
of the major challenges in machine learning. Effectively mitigating overfit-
ting while maintaining a model that is of a high enough quality, is the goal
of every machine learning application.

The definition of Murphy started by saying that machine learning is a
‘set of methods’. In fact, there exist hundreds or even thousands of differ-
ent machine learning models. There is no ‘one model to rule them all’, since
each of the different models often have their own specialized purpose. The
most high-level taxonomy divides machine learning models into either su-
pervised learning, unsupervised learning or reinforcement learning models,
which will be discussed briefly.

———

Supervised learning

In supervised learning, every entry xi in the dataset has an associated label
yi. For example, xi could be an e-mail message, and yi indicates whether
this e-mail is spam or not (1 or 0). Or xi can be a full description of a city
apartment, and yi is the asked rent price. And a given picture xj might

18 CHAPTER 1

contain either a cat or a dog (1 or 0). The goal of supervised learning is
to learn a model that is able to map a given xi onto its label yi as well as
possible. That is, we learn a function f : xi 7→ yi. Once we have learned
this function f , we can apply it to new or unseen data xj to predict its label
f (xj) = ŷj. We often use a hat symbol to indicate that a label is a prediction
and not the real label or ground-truth label from the dataset. If the label is
a real number or any quantity that can be ordered on an axis (an ‘ordinal’
variable), we use the term regression. If there are no orderings in the labels
(e.g. between cats and dogs, or spam vs. no spam, i.e. a ‘nominal’ variable),
we call it classification. In the context of sequences, a interesting supervised
learning problem is to predict the next symbol in a given series. For ex-
ample: predicting the next word or character in a text, predicting the next
Apple® stock price every 5 seconds, predicting the next movie you will
watch, etc. It is a supervised problem, since such machine learning algo-
rithms are mostly trained on historical data, for which we know all ‘future’
symbols. The particular problem of sequence completion lies, among oth-
ers, at the core of this doctoral thesis.

Unsupervised learning

If there are no labels in the dataset at hand, but we still want to uncover
hidden patterns in the data, we call it unsupervised learning. The best-
known family of methods in this group, are the clustering methods. These
algorithms try to partition the dataset into groups of similar datapoints.
For a dataset of cats and dogs images, a clever clustering algorithm might
be able to separate these two classes just by looking at the images alone, but
there are of course no guarantees. Another important class are the dimen-
sionality reduction methods. Without going into too much (mathematical)
details—those are reserved for the subsequent chapters—these methods
try to explain the given data with fewer dimensions than present in the
original data. For example, an image is built up of hundreds of pixels, but
if we are just interested in separating cats from dogs, only one dimension
might be enough to explain this difference. Another popular example that
we have all come across, is the political compass5. In this compass, people
are projected onto a two-dimensional plane according to two axes: left-
right and libertarian-authoritarian. Figure 1.4 shows my own position in
the political compass, along with several politicians. Such a representation
can be seen as a dimensionality reduction: human beings are so complex
that they can be described by thousands of different features, yet the com-
pass projects all individuals along just two axes.

5https://www.politicalcompass.org

https://www.politicalcompass.org

INTRODUCTION 19

AU T H O R I TA R I A N

L I B E RTA R I A N

R
IG

H
TL

E
F

T

E C O N O M I C S C A L E
S

O
C

IA
L

S
C

A
L

E

Fidel Castro

Nicola Sturgeon

Joseph Stalin

Robert Mugabe

Milton Friedman

Friedrich Hayek

Gary Johnson

Ayn Rand

Thomas Paine

Winston Churchill

Angela Merkel

Thomas Hobbes

Hillary Clinton

Donald Trump

Theresa May

Mao Zedong

Jill Stein

Nelson Mandela

Jeremy Corbyn

Bernie Sanders

Noam Chomsky

Figure 1.4: My personal political compass shows that I am slightly left and liber-
tarian (as indicated by the red dot), close to Bernie Sanders and Nelson
Mandela. Since the test is largely based on American society and eco-
nomics, personally, I would have put myself much closer towards the
center of the graph by European standards.

Reinforcement learning

A final class of machine learning models, is called reinforcement learning
and can be compared to trial-and-error learning that occurs all throughout
nature. Learning occurs by performing actions in the environment, and
receiving reward or punishment based on the outcomes of the actions. Re-
inforcement learning is applied in the financial domain to automated stock
trading6, in the industrial domain to reduce the environmental footprint

6Noonan, Laura. “JPMorgan develops robot to execute trades”, Financial Times, July 31st
2017.

20 CHAPTER 1

of datacenters7, in the medical domain to determine the optimal dosing
scheme [25], and in the gaming domain to determine your most suited op-
ponent on online multiplayer platforms8. Although many problems in su-
pervised and unsupervised learning can be cast into a reinforcement learn-
ing problem—e.g. if you predict a cat, but it’s a dog, you get punished—
reinforcement learning is not the focus of this doctoral thesis.

———

Before we move to the next section, let’s revisit the definition of ma-
chine learning by Murphy once again. He states that patterns are ‘auto-
matically’ extracted from given data. Let’s be critical about the word ‘au-
tomatically’ for a moment. For supervised learning, we have stated that
the function f maps every xi to yi as ‘best’ as possible, and that, for unsu-
pervised learning, clustering methods group ‘similar’ datapoints together.
But these are rather vague statements. In the following, I will focus on su-
pervised learning, although the argumentation is valid for other types of
machine learning as well. First of all, as stated before, we have to counter
overfitting: a function that predicts all labels perfectly might not be a good
predictor for unseen data! But even more important, ‘as well as possible’
depends on how we define the so-called error or loss between the predicted
label and the real label coming from the dataset. Suppose for example that
the predicted rent price ŷi for an apartment xi is e470, while the real rent
price yi ise500. One might say that the error or difference between the two
is e30, but that is only the case if you consider the so-called L1 loss func-
tion9, i.e. the absolute value of the difference between the two numbers:

L1(yi, ŷi) = |yi − ŷi| .

In machine learning, however, we often use the quadratic loss function—
mainly because of theoretical grounds and optimization efficiency:

L2(yi, ŷi) = (yi − ŷi)
2.

In our example, the quadratic loss is equal to e2900. If the predicted value
moves further away from the real value, the quadratic loss will increase
more heavily than the L1 loss. Yet other loss functions might even attribute
a greater punishment for underpriced than overpriced apartments. The
choice of loss function will therefore heavily influence the behavior of the
machine learning algorithm.

7Evens, Rich; Gao, Jim. “DeepMind AI reduces energy used for cooling Google data cen-
ters by 40%”, Google Blog, July 20th 2016.

8Claim based on an industry talk by EA Games at RecSys, Como (Italy), 2017.
9Throughout this thesis, a loss function will generally be denoted by the calligraphic L,

although L, J, ... are also commonly used.

INTRODUCTION 21

So, do machine learning algorithms learn patterns from data in an au-
tomated fashion? Yes and no. It is still up to the user or researcher to select
the most appropriate model for the task, pick or tweak the loss function,
select the data features that will be used, determine how the dataset will be
structured and used for learning, etc. Once these choices and parameters
are in place, then, yes, the machine learning algorithm will try to extract
the necessary patterns according to the parameters you have set. We do not
need to specify ourselves that larger apartments are usually more expen-
sive than smaller ones; these conclusions should become apparent from the
extracted patterns. If not, then you should go back to your initial premises:
maybe the model is not powerful enough, maybe you have too little data,
maybe the model is overfitting, etc. Methods such as cross-validation and
meta-learning—dubbed ‘learning to learn’—can help in this process, but
even the best meta-model cannot solve all your machine learning prob-
lems10.

1.6 Deep learning

A particular field of machine learning that has gained huge attention over
the course of the last six or seven years, is deep learning. It is based on the
concept of an (artificial) neural network, a machine learning model that—
as the name suggests—mimics the firing of neurons in the (human) brain.
Similar to how humans process signals coming from our eyes, ears, ... and
attach a meaning to this input, neural networks can take images, sound,
text, ... as input, feed it through the entire network, and produce an output
that we can interpret. Although it is my intention to keep this introductory
chapter as clear from technical details as possible, I cannot bypass some of
core concepts of neural networks that will follow, so please bear with me
for the next couple of paragraphs.

Figure 1.5 shows a toy example of a neural network. The basic building
block of this neural network is a neuron that processes a signal. Neurons
are indicated by small circles in the figure. The signals they process, are
usually represented by real numbers. One neuron in the network takes
an input signal and produces an altered version of this input as output

10This is one of the reasons I am skeptical about out-of-the-box machine learning solu-
tions, also called Machine Learning as a Service (MLaaS). There is no doubt that AmazonML,
Google Prediction and their pals can deliver very useful tools to anyone that wants to use
machine learning in their applications. But these easy-to-use tools quickly lead to the percep-
tion that ‘anyone can do machine learning’, and it might even be dangerous if you have no
understanding about the underlying mechanisms. It also leads to the rise of numerous AI,
data insights and machine learning startups. Some of these company’s employees often have
little to no prior experience in the field, and a lot of larger firms are paying big money for
their consulting sessions. Maybe there is an AI bubble on the verge of bursting?

22 CHAPTER 1

Input 1

Input 2

Input 3

Output

Hidden
layer

Hidden
layer

Input
layer

Output
layer

Figure 1.5: Toy example of a fully-connected neural network with four layers.

signal. This output signal is, subsequently, the input signal for another
neuron, or it can be the final output of the network. Neurons are therefore
interconnected and transfer information to and from each other, similar to
the synapses in our brains, which is shown by the arrows in Figure 1.5.

To keep things as structured and manageable as possible, neurons are
grouped into layers. The layer size or dimensionality refers to the number
of neurons that are present in the layer. The example in the figure shows
four layers: an input layer with size 3, two hidden layers of size 5—they are
called hidden since their values are not observable at the input or output of
the network—and one output layer with one neuron. The neural network
is organized in such a way that all neuron outputs produced in one layer
are processed by the neurons in another layer. Therefore, neurons that
reside within the same layer do not communicate with each other.

The type of neural network shown in Figure 1.5 is called a fully-connected
neural network, since the neurons in each layer are connected to all the
neurons in the subsequent layer. A layer that is fully-connected to the next
layer, is also called a dense or fully-connected layer. The network takes three
values as input, and produces a single value by crossing four layers: the
subsequent hidden layers transform the input in such a way that a suitable
output value is calculated. In general, the power of neural networks is that
the hidden layers are able to extract informative patterns from the input
data in a hierarchical fashion. For example, if the input is an image of a cat,
the first layers will detect edges in the picture, the next ones find rudimen-
tary shapes, and the final hidden layers know how to look for ears, noses,
eyes, nostrils, etc.

INTRODUCTION 23

If we allow ourselves to be a tad formal, we refer back to the previous
section on machine learning and state that a neural network computes one
or more output values as a function of the input values. Every layer with
N neurons is an ordered list of N real values, and the corresponding math-
ematical concept is a vector in the field RN . If the vector of input values is
denoted by x and the output vector by y, a neural network computes the
function f :

y = f (x). (1.5)

In the case of a fully-connected layer, the output of each neuron is multi-
plied by a real-valued weight, which essentially indicates the importance of
that neuron’s value in comparison to the other neurons in the same layer.
Therefore, every arrow in Figure 1.5 has some associated weight w. If we
look at the top neuron of the first hidden layer in this figure, we observe
that a weighted signal from all three input neurons arrive at this hidden
neuron. Before these signals are given to its input, they are summed to-
gether. Thus, the value of every neuron h1

j in the first hidden layer is a
linear combination of all input values in x:

h1
1 = w1,1 · x1 + w1,2 · x2 + w1,3 · x3,

h1
2 = w2,1 · x1 + w2,2 · x2 + w2,3 · x3,

. . .

h1
5 = w5,1 · x1 + w5,2 · x2 + w5,3 · x3. (1.6)

In short, we write:

h1 = Wx, (1.7)

in which W ∈ R5×3 is the matrix of the weights shown in Equation 1.6. The
weights in these matrices will be learned or trained in order to calculate the
desired output of the neural network.

We have now covered most elements of a basic neural network. How-
ever, there is still one ingredient missing. With what we know so far, the
neural network shown in Figure 1.5 only calculates a linear transformation
of the input, which is a restriction. The real power of neural networks is
that they are able to learn non-linear transformations. They do this through
the use of so-called activation functions. In neural networks, every output of
a neuron is first put through such an activation function before it is sent to
the next layer. Some widely used activation functions are ReLU (‘rectified

24 CHAPTER 1

−4 −2 2 4

2

4

x

ReLU(x)

−4 −2 2 4

0.5

1

x

σ(x)

−4 −2 2 4

−1

1

x

tanh(x)

Figure 1.6: Graphical display of the ReLU, sigmoid and tanh activation functions.

linear unit’), sigmoid, tanh and softmax:

ReLU(x) = max(x, 0), (1.8)

σ(x) =
1

1 + e−x , (1.9)

tanh(x) =
1− e−2x

1 + e−2x , (1.10)

softmax(x)i =
exi

∑K
k=1 exk

, ∀i ∈ {1 . . . K}. (1.11)

Figure 1.6 shows graphical plots for the ReLU, sigmoid and tanh functions.
We observe that these activation functions limit or squash the values of the
argument onto a certain interval: ReLU puts all negative values to zero
and leaves the positive values untouched, while sigmoid and tanh confine
the values to [0, 1] and [−1, 1], respectively. The softmax function is not
shown; this particular activation function is applied to a vector of real val-
ues, and ensures that this vector becomes a valid, normalized probability
mass function. This is useful if, for example, we have to decide whether
an image contains a cat or a dog, a horse, a cow, ... In this case, the model
gives us a probability estimate for each of the possibilities. Without going
into further details, the choice of activation functions in the model should
always be tuned to the problem at hand, which we will often discuss in the
subsequent chapters. It should never be taken for granted.

With all the ingredients above, we can now look back at Figure 1.5 and
write down the equations that calculate the output of the neural network
based on the given inputs. Let’s write an arbitrary activation function as
φ, the inputs as x, the outputs as y and the weight matrices as Wih, Whh

and Who for the input-to-hidden, hidden-to-hidden and hidden-to-output
weights. We then get the following:

y = φ
(

Whoφ
(

Whhφ
(

Wihx
)))

. (1.12)

What we observe is an equation of nested matrix multiplications and non-

INTRODUCTION 25

linear transformations. In practice, we also add a vector with learned pa-
rameters b—also called a bias—to each matrix multiplication:

y = φ
(

Whoφ
(

Whhφ
(

Wihx + bih
)
+ bhh

)
+ bho

)
. (1.13)

If we have knowledge of all weight matrices, biases and activation func-
tions, then we see that, indeed, the neural network is a computable func-
tion of the input x. By careful selection of the weights, a neural network
is able to model very complex functions, and it has been shown that (feed-
forward) neural networks are ‘universal function approximators’ [26].

As we have discussed previously for general machine learning tech-
niques, training a neural network—that is, choosing the optimal weights
and biases—is a data-driven process: we apply some data at the input of
the network, we observe the output, and we compare this predicted out-
put to what the real output should be using a predefined loss function. The
weights themselves are then learned through a process called backpropaga-
tion. Without going into too many technical details, backpropagation is
essentially a clever application of the chain rule for computing the deriva-
tive or gradient of the loss function with respect to all parameters in the
network. This gradient is indicative of how and to what extent we should
alter the weights in the network. Figure 1.7 shows a toy example of a loss
curve for two weights. The gradient in point C is shown in green; by fol-
lowing the arrow in the opposite direction, we get closer to a region in
which the loss is lower. Points A and B are called local minima, while point
B is the global minimum, i.e. the best weight configuration.

As we have shown in Equation (1.13), a neural network function is a
nested calculation of matrix multiplications and non-linearities. If the net-
work becomes deeper by adding more layers, or if the layer size increases
heavily—i.e. we change the model’s architecture—we allow the network
to learn more complex functions. However, there is a associated compu-
tational cost, both to evaluate the neural network function, but also, and
most importantly, the training process slows down significantly. This is
one of the reasons11 why neural networks became out of fashion by the
nineties and noughties, and were overtaken in the AI community by so-
called Support Vector Machines (SVMs). However, the advent of more
computing power, mostly in the form of Graphics Processing Units (GPUs)12,
neural networks have gained huge popularity again since the beginning of

11Also, already in the 1960’s Minsky and Papert showed that simple one-layer neural net-
works (‘perceptrons’) are unable to solve the XOR problem [27].

12GPUs are designed to process images as efficiently as possible. Since images are essen-
tially tables of pixel values, they are represented by matrices. And because neural networks
rely heavily on matrix calculations, GPUs are the preferred hardware for the task.

26 CHAPTER 1

as
is

is the global minimum.
, the local gradient of the error

A B C

∇L

L

w1

w2

Figure 1.7: Example of a loss function for two weights w1 and w2. The gradient
of the loss in point C is indicated by the green arrow. Points A and B
show two local minima, and point B is the global minimum. Adapted
after [26].

this decade. This evolution also resulted in the development and research
of networks with many and large layers. Essentially, this is how the term
‘deep learning’ came into use, and it means nothing more than ‘machine
learning using neural networks with many layers’.

Traditionally, the begin date of the deep learning hype is marked 2012,
when Alex Krizhevsky won the international ImageNet competition by a
large margin using a deep neural network [28]. He won the competition
using a so-called convolutional neural network, which borrows its structure
from insights in the field of image processing. Although immensely pop-
ular and powerful, convolutional neural networks are not the focus of this
thesis. Another widely-used class of neural networks, are the recurrent neu-
ral networks (RNNs). These networks allow that the output of a particular
layer is reused as input for the same layer one of the previous layers. If
we recall Equation (1.3), we can imagine that such recurrent connections
in the network are very useful to model sequences. That is, by activating
the recurrent connections for every new symbol in the sequence, a value
produced at position n in the sequence can be used to calculate the value
at position n + 1. RNNs are therefore the models of choice in anticipatory
applications, since they can be used to predict future values in a sequence.
Since this doctoral thesis focuses heavily on learning with and about se-
quential data, one can imagine that RNNs will play an important role in
the subsequent chapters. In the remainder of this introductory chapter, I
will not go further into the details of RNN modeling and training. For this,
I refer the reader to Chapter 4.

INTRODUCTION 27

1.7 Representation learning

The real power of deep models is that they are able to take raw data as
their input. By raw data we mean the actual pixel values in an image or
video frame, all the ordered words in a text, a complete sound wave, etc.
By contrast, most traditional machine learning methods require a prepro-
cessed data format. Finding efficient data representations is a research field
in itself called feature engineering. In the context of the political compass,
if we would take the left-right axis as one feature, and the authoritarian-
libertarian axis as second feature, I am roughly represented by the vec-
tor [−0.33,−0.31]; Donald Trump, on the other hand, is given by [0.3, 0.8].
Deep neural networks mainly don’t require such feature engineering, but
are able to learn useful and important features from the data itself. They
can be extracted from one or more of the hidden layers in the network.

Suppose for example that we have a neural network that has learned
to classify images. Once the network is trained, we can apply an image
to its input, and observe the neuron values in all layers. Then, if one of
the (hidden) layers has a size of 128 neurons, the image is represented by
a 128-dimensional vector at that position in the network, i.e. the image is
projected into a 128-dimensional space. Such a vector is called a represen-
tation, a feature vector or an embedding of the image. The greatest benefit is
that we do not have to define what the 128 dimensions mean. The down-
side is that the dimensions become hard to interpret. For example, if we
have a neural network that takes all information from a person as input
and compresses it in a two-dimensional representation, we do not know
immediately what the presented information means, as opposed to the two
axes in the political compass.

Traditionally, the final layers in a neural network are considered the
most useful representations of the data, depending of course on the appli-
cation at hand. In the context of sequences and recurrent neural networks,
the representations can even change with every new symbol that is pro-
cessed. The representations of the sequence are therefore dynamic reflec-
tions of how the sequence evolves and what the sequence will look like in
the future.

Deep learning is often associated with the concept of representation learn-
ing; to many, these terms are even synonymous. To me—but this is of
course a personal point of view—the learning of representations is often a
nice benefit or side-effect of using deep learning models. But deep neural
networks can also be tailored explicitly to this purpose, and then it be-
comes highly associated with the concept of unsupervised learning and
dimensionality reduction. It is about projecting objects in a space with few

28 CHAPTER 1

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Country and Capital Vectors Projected by PCA
China

Japan

France

Russia

Germany

Italy

Spain
Greece

Turkey

Beijing

Paris

Tokyo

Poland

Moscow

Portugal

Berlin

Rome
Athens

Madrid

Ankara

Warsaw

Lisbon

Figure 1.8: A 2-dimensional reduction of 1000-dimensional word embeddings for
several countries and their corresponding capitals. Copied from (and
more details to be found in) [30].

dimensions such that we can observe or extract useful characteristics of
the objects in this space. For example, if two objects are positioned close to
each other, they are in a sense related, or they share some common charac-
teristics. In this context, recall the political compass from Figure 1.4.

A clear and nice example of representation learning, is the word2vec
algorithm invented by Tomas Mikolov in 2013 [29, 30], which will play a
central role in the following chapters. Word2vec is essentially a simple neu-
ral network that creates representations for words appearing in a large text
corpus, e.g. Wikipedia, news articles, Trump tweets, lyrics, etc. It does this
by taking a word representation in a sentence and by predicting the words
that appear in its neighborhood. For example, in the opening quote of this
chapter, word2vec will try to predict ‘fascination’, ‘exaltation’ and ‘revela-
tion’ based on the word representation of ‘temptations’. After processing
thousands or millions of these quotes, the representations appearing in the
final layer of the neural network will (hopefully) have reached stable val-
ues. We note that word representations are best known as word embeddings
in the research community.

After training, the word2vec space starts to show some interesting char-
acteristics. Figure 1.8 shows the word embeddings for several countries

INTRODUCTION 29

Table 1.1: For a given word, the ten closest words in word2vec space are given in
descending order, based on cosine distance with 400-dimensional word
embeddings trained on the English Wikipedia dump from March 2015.

water chips ghent violin
seawater chip antwerp cello

groundwater velveeta bruges piano
potable omelets brussels clarinet

drinkable breadsticks maastricht harpsichord
tubewells edram kortrijk violins
greywater twisties oudenaarde bassoon

desalinated wafers utrecht violoncello
outfalls microwavable mechelen flute

borewells fritos tournai viola
nonpotable eprom vooruit oboe

associated with their capitals. The original embeddings had 1000 dimen-
sions13, but were projected onto a 2D plane using Principal Components
Analysis (PCA) [30]. We immediately observe a clear structure in the word
embedding space: all countries appear on the left, while the capitals are sit-
uated on the right. On top of that, going from a country to its correspond-
ing capital, we always have to travel more or less in the same direction. It
even turns out that, at least in the original embedding space, we can do
‘word embedding arithmetic’, such as:

vBerlin ≈ vParis − vFrance + vGermany. (1.14)

That is, subtracting the word embedding of France from the Paris embed-
ding, and adding the embedding of Germany, brings us (very) close to the
word embedding of Berlin.

Another useful property of word2vec spaces, is that word similarity can
easily be measured. Similar words words appear frequently together in
the text corpus. This is expressed in the word2vec space by the distance
between the word embeddings. The closer two words appear in the space,
the more they share one or more common meanings. An example will
probably make the idea more tangible. In Table 1.1 I have listed four dif-
ferent words, and for each word the ten closest words are shown. The
word embedding of ‘ghent’ lies close to other cities in the Benelux, and
also ‘vooruit’—a famous historical building and cultural venue in Ghent—
appears in the top 10. For ‘violin’ we are given other popular classical in-
struments. If we take look at ‘water’, the closest words are related substan-
tives and adjectives that are frequently used in the same context (potable,

13Note that 1000 is relatively small compared to the size of a typical word vocabulary.

30 CHAPTER 1

desalinated...). I have included ‘chips’ as well, since it shows words that are
related to the concept of potato chips (breadsticks, twisties, fritos), to elec-
tronic chips (edram, eprom), or to both (wafers). This example shows that
word embeddings are able to capture multiple semantic meanings, given
enough dimensions.

So, why would you need high-quality and low-dimensional data rep-
resentations, such as word embeddings? By far the best use case for such
embeddings, is to allow for fast search and retrieval of similar objects.
Such systems are nowadays used in state-of-the-art recommender systems,
which we have discussed in the taxonomy of Section 1.4. An example of
how such a system is used within Spotify will be discussed in Chapter 6.
Another use case was illustrated by Equation (1.14). Although the exam-
ple is not useful in itself, in general, addition and subtraction of word em-
beddings are mathematical operations that produce sensible results. This
means that if we sum all embeddings from the words that appear in the
same sentence, we calculate a meaningful sentence embedding. Summing
all the embeddings from books that one person has read, leads to a per-
son embedding or user embedding that summarizes that person’s reading
interests. This user profile can then be used to make predictions about, for
example, a user’s future reading behavior. This very idea of manipulating
embeddings, and especially embeddings that summarize sequences, is the
major cornerstone of this thesis.

1.8 Research contributions

This doctoral dissertation is comprised of five research-focused chapters.
Each chapter tackles a particular research question in the context of learn-
ing informative and high-quality representations for sequential data. For
this purpose, most questions will be approached in the context of several
applications, which I will briefly discuss below.

Chapter 2 – Detecting events on Twitter

The first chapter tackles the problem of extracting event information from
a stream of Twitter messages, also called tweets. Examples of detected
events are football games, tv shows, band concerts, etc. In this application,
we encounter sequential data on multiple levels. First, can we find a useful
representation for each tweet as a sequence of words, for which we will use
traditional feature engineering? Second, how do we process the incoming
stream of tweets in order to determine clusters of events?

INTRODUCTION 31

Chapter 3 – Representing very short texts

In the subsequent chapter we build upon the insights of the previous chap-
ter. Traditional text features turn out not to be informative in the context of
Twitter, in one respect due to noise and word corruption, and in the other
because of the low character count—Twitter used to allow only 140 charac-
ters per tweet. How then do we come up with high-quality representations
for very short texts, such as tweets and text messages?

Chapter 4 – Training recurrent neural networks

This chapter goes deep into the details of recurrent neural networks. By
investigating different training and sampling procedures, do we observe
a performance shift of the network? Four alternatives are studied to train
and make predictions from a recurrent neural network, and we give some
go-to advice for any researcher interested in this area of deep learning.

Chapter 5 – Composing piano music

Using the insights from the previous chapter, we use recurrent neural net-
works to find dynamic representations for classical piano pieces. Are these
networks able to model and generate new music? And can we tune the
composition process to the style of a certain composer, such as Bach and
Beethoven?

Chapter 6 – Modeling Spotify users

In the final research chapter, we show how recurrent neural networks can
be used to model users in the large-scale recommender systems of Spotify.
These user models are reflections of a user’s music taste, and are used to
recommend new songs. Are recommender systems based on RNNs able to
beat non-sequential state-of-the-art recommenders?

32 CHAPTER 1

1.9 Publications

The research results obtained during this PhD research have been pub-
lished in scientific journals and presented at a series of international con-
ferences and workshops. The following list provides an overview of these
publications.

1.9.1 Publications in international journals
(listed in the Science Citation Index14)

[1] C. De Boom, S. Van Canneyt, T. Demeester, and B. Dhoedt, Represen-
tation Learning for Very Short Texts using Weighted Word Embedding Ag-
gregation. Published in Pattern Recognition Letters, 80:150–156, 2016.

[2] C. De Boom, R. Agrawal, S. Hansen, E. Kumar, R. Yon, C.-W. Chen,
T. Demeester, and B. Dhoedt, Large-scale User Modeling with Recurrent
Neural Networks for Music Discovery on Multiple Time Scales. Published
in Multimedia Tools and Applications, online, 2017.

[3] C. De Boom, M. De Coster, D. Spitael, S. Leroux, S. Bohez, T. De-
meester, and B. Dhoedt, Polyphonic Piano Music Composition with Com-
poser Style Injection using Recurrent Neural Networks. Submitted to
Neural Computing and Applications, December, 2017.

[4] C. De Boom, T. Demeester, and B. Dhoedt, Character-level Recurrent
Neural Networks in Practice: Comparing Training and Sampling Schemes.
Published in Neural Computing and Applications, online, 2018.

1.9.2 Publications in international conferences
(listed in the Science Citation Index15)

[1] C. De Boom, J. De Bock, A. Van Camp, and G. de Cooman, Robus-
tifying the Viterbi Algorithm. Published in Lecture Notes in Artificial
Intelligence, 8754:160–175, 2014.

14The publications listed are recognized as ‘A1 publications’, according to the following
definition used by Ghent University: A1 publications are articles listed in the Science Citation
Index, the Social Science Citation Index or the Arts and Humanities Citation Index of the ISI
Web of Science, restricted to contributions listed as article, review, letter, note or proceedings
paper.

15The publications listed are recognized as ‘P1 publications’, according to the following
definition used by Ghent University: P1 publications are proceedings listed in the Confer-
ence Proceedings Citation Index - Science or Conference Proceedings Citation Index - Social
Science and Humanities of the ISI Web of Science, restricted to contributions listed as article,
review, letter, note or proceedings paper, except for publications that are classified as A1.

INTRODUCTION 33

[2] C. De Boom, S. Van Canneyt, S. Bohez, T. Demeester, and B. Dhoedt,
Learning Semantic Similarity for Very Short Texts. Published in IEEE
International Conference on Data Mining Workshop (ICDMW), At-
lantic City (NJ), USA, 2015.

[3] R. Lemahieu, S. Van Canneyt, C. De Boom, and B. Dhoedt, Optimiz-
ing the Popularity of Twitter Messages through User Categories. Pub-
lished in IEEE International Conference on Data Mining Workshop
(ICDMW), Atlantic City (NJ), USA, 2015.

[4] J. van der Hooft, C. De Boom, S. Petrangeli, T. Wauters, F. De Turck,
AHTTP/2 Push-Based Framework for Low-Latency Adaptive Streaming
Through User Profiling. Published in IEEE/IFIP Network Operations
and Management Symposium (NOMS), Taipei, Taiwan, 2018.

1.9.3 Publications in other international conferences

[1] C. De Boom, S. Van Canneyt, and B. Dhoedt, Semantics-driven Event
Clustering in Twitter Feeds. Published in Proceedings of the 5th Work-
shop on Making Sense of Microposts (#Microposts), Florence, Italy,
2015.
This paper received the Best Paper Award.

[2] R. Houthooft, C. De Boom, S. Verstichel, F. Ongenae, and F. De Turck,
Structured Output Prediction for Semantic Perception in Autonomous Ve-
hicles. Published in 30th AAAI Conference on Artificial Intelligence,
Phoenix (AZ), USA, 2016.

[3] C. De Boom, S. Leroux, S. Bohez, P. Simoens, T. Demeester, and
B. Dhoedt, Efficiency Evaluation of Character-level RNN Training Sched-
ules. Published in the ICML Data Efficient Machine Learning work-
shop, New York (NY), USA, 2016.

[4] S. Leroux, S. Bohez, C. De Boom, E. De Coninck, T. Verbelen,
B. Vankeirsbilck, P. Simoens, and B. Dhoedt, Lazy Evaluation of Con-
volutional Filters. Published in the ICML Workshop on Device Intelli-
gence, New York (NY), USA, 2016.

1.9.4 Poster publications in international conferences

[1] C. De Boom, S. Van Canneyt, T. Demeester, and B. Dhoedt, Learn-
ing Representations for Tweets Through Word Embeddings. Published in
Proceedings of the Belgian-Dutch Conference on Machine Learning
(BeneLearn), Kortrijk, Belgium, 2016.

34 CHAPTER 1

References

[1] S. Pinker. The Language Instinct. How the Mind Creates Language.
Penguin UK, February 2003.

[2] N. Chomsky. Tool Module: Chomsky’s Universal Grammar [on-
line]. Available from: http://thebrain.mcgill.ca/flash/capsules/
outil_rouge06.html.

[3] G. Rawlinson. The significance of letter position in word recognition.
Ieee Aerospace and Electronic Systems Magazine, 22(1):26–27, Jan-
uary 2007.

[4] C. E. Shannon. Communication in the Presence of Noise. Proceedings of
the IRE, 37(1):10–21, 1949.

[5] N. Rescher. Process Metaphysics. An Introduction to Process Philoso-
phy. SUNY Press, 1996.

[6] R. Poli. Introduction to Anticipation Studies. Springer, August 2017.

[7] B. Adam. Timescapes of modernity: The environment and invisible hazards,
1998.

[8] A. Falcon. Aristotle on causality [online]. 2006. Available from: https://
plato.stanford.edu/archives/spr2015/entries/aristotle-causality/.

[9] J. Beckert. Capitalism as a System of Fictional Expectations. Politics &
Society, 41(3):323–350, 2013.

[10] T. Suddendorf, D. R. Addis, and M. C. Corballis. Mental time travel
and the shaping of the human mind. Philosophical Transactions of the
Royal Society of London B: Biological Sciences, 364(1521):1317–1324,
May 2009.

[11] M. S. Schulz. Future moves: Forward-oriented studies of culture, society,
and technology. Current Sociology, 63(2):129–139, 2015.

[12] R. Rosen. Anticipatory Systems. Philosophical, Mathematical, and
Methodological Foundations. Springer, New York, 2nd edition, 2012.

[13] D. B. Huron. Sweet Anticipation. Music and the Psychology of Expec-
tation. MIT Press, 2006.

[14] S. Russell and P. Norvig. Artificial Intelligence: Pearson New Interna-
tional Edition. A Modern Approach. Pearson Higher Ed, August 2013.

http://thebrain.mcgill.ca/flash/capsules/outil_rouge06.html
http://thebrain.mcgill.ca/flash/capsules/outil_rouge06.html
https://plato.stanford.edu/archives/spr2015/entries/aristotle-causality/
https://plato.stanford.edu/archives/spr2015/entries/aristotle-causality/

INTRODUCTION 35

[15] A. Wang. An Industrial Strength Audio Search Algorithm. In ISMIR,
2003.

[16] F.-h. Hsu. Behind Deep Blue. Building the Computer that Defeated the
World Chess Champion. Princeton University Press, February 2004.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[18] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lilli-
crap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Has-
sabis. Mastering the game of Go without human knowledge. Nature,
550(7676):354–+, 2017.

[19] N. Jaques, S. Gu, R. E. Turner, and D. Eck. Generating Music by Fine-
Tuning Recurrent Neural Networks with Reinforcement Learning. In Deep
Reinforcement Learning Workshop, NIPS, December 2016.

[20] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. WaveNet:
A Generative Model for Raw Audio. arXiv.org, September 2016.
arXiv:1609.03499v2.

[21] L. A. Gatys, A. S. Ecker, and M. Bethge. A Neural Algorithm of Artistic
Style. arXiv.org, August 2015. arXiv:1508.06576v2.

[22] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing Neural Network
Architectures using Reinforcement Learning. CoRR, cs.LG, 2016.

[23] K. P. Murphy. Machine Learning. A Probabilistic Perspective. MIT
Press, August 2012.

[24] M. C. IBM. 10 Key Marketing Trends for 2017 . public.dhe.ibm.com,
2017.

[25] S. Nemati, M. M. Ghassemi, and G. D. Clifford. Optimal medication
dosing from suboptimal clinical examples - A deep reinforcement learning
approach. EMBC, pages 2978–2981, 2016.

[26] C. M. Bishop. Pattern Recognition and Machine Learning. Springer Ver-
lag, August 2006.

36 CHAPTER 1

[27] M. Minksy and S. Papert. Perceptrons: An Introduction to Computational
Geometry. The MIT Press, 1969.

[28] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In NIPS 2012, November 2012.

[29] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of
Word Representations in Vector Space. In Proceedings of Workshop at
ICLR, January 2013.

[30] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed
Representations of Words and Phrases and their Compositionality. In NIPS
2013: Advances in neural information processing systems, October
2013.

2
Semantics-driven Event Clustering

in Twitter Feeds

“Every day they shout and scold and go about their lives, heedless of the gift it is
to be them.”

—Quasimodo, 1996

Twitter is one of the most popular social media platforms where you post short
messages that are publicly visible. The maximum number of characters per ‘tweet’
used to be 140, but as of November 7 2017, it has been doubled to 280 characters.
According to Internet Live Stats1, around 8,000 tweets are sent every second.
By tapping into this huge information stream, we can potentially extract useful
knowledge. This chapter focuses on identifying events using the Twitter stream in
an automated fashion. That is, we want to detect whether a football game, music
concert, television show... is currently taking place based on tweets sent by differ-
ent users. In this, we will face two sequential information challenges. First, there
is the problem of adequately representing a tweet based on the words and informa-
tion it contains. Second, since tweets present themselves one after another in such
a high volume, our algorithms should be able to cope with sequential information
extraction.

? ? ?

1www.internetlivestats.com, measured on February 5 2018, 1pm.

www.internetlivestats.com

38 CHAPTER 2

C. Boom, S. Van Canneyt, and B. Dhoedt.

Appeared in proceedings of the 5th Workshop on Making Sense of Mi-
croposts. 1395. p.2-9

Abstract Detecting events using social media such as Twitter has many
useful applications in real-life situations. Many algorithms which all use
different information sources—either textual, temporal, geographic, com-
munity. . . knowledge—have been developed to achieve this task. Seman-
tic information is often added at the end of the event detection to classify
events into semantic topics. But semantic information can also be used
to drive the actual event detection, which is less covered by academic re-
search. We therefore supplemented an existing baseline event clustering
algorithm with semantic information about the tweets in order to improve
its performance. This paper lays out the details of the semantics-driven
event clustering algorithms developed, discusses a novel method to aid in
the creation of a ground truth for event detection purposes, and analyses
how well the algorithms improve over baseline. We find that assigning
semantic information to every individual tweet results in just a worse per-
formance in F1 measure compared to baseline. If however semantics are
assigned on a coarser, hashtag level the improvement over baseline is sub-
stantial and significant in both precision and recall. Semantic information
of tweets can thus indeed be used to improve the performance of existing
and new event detection algorithms.

2.1 Introduction

Traditional media mainly cover large, general events and thereby aim at
a vast audience. Events that are only interesting for a minority of people
are rarely reported. Next to the traditional mass media, social media such
as Twitter and Facebook are a popular source of information as well, but
extracting valuable and structured data from these media can be challeng-
ing. Posts on Twitter for example have a rather noisy character: written
text is mostly in colloquial speech full of spelling errors and creative lan-
guage use, such posts often reflect personal opinions rather than giving
an objective view of the facts, and a single tweet is too short to grasp all
the properties that represent an event. Nevertheless the user-contributed
content on social media is extensive, and leveraging this content to detect
events can complement the news coverage by traditional media, address
more selective or local audiences and improve the results of search engines.

In the past researchers mostly used textual features as their main source

SEMANTICS-DRIVEN EVENT CLUSTERING IN TWITTER FEEDS 39

of information to perform event detection tasks in social media posts. Next
to the text itself, other characteristic features such as the timestamp of
the post, user behavioural patterns and geolocation have been success-
fully taken into account [1–6]. Less used are so-called semantic features,
in which higher-level categories or semantic topics are captured for every
tweet and used as input for the clustering algorithm. These semantic top-
ics can either be very specific—such as sports, politics, disasters. . . —or can
be latent abstract categories not known beforehand; such an abstract topic
is usually a collection of semantically related words. In most applications
semantics are determined on event level after the actual event detection
process [7]. We however propose to use semantic information on tweet
level to drive the event detection algorithm. After all, events belonging
to different semantic categories—and thus also its associated tweets—are
likely to be discerned more easily than semantically related events. For ex-
ample, it is relatively easy to distinguish the tweets of a sports game and a
concurrent politics debate.

The use case we address in this paper consists of dividing a collec-
tion of tweets into separate events. In this collection every tweet belongs
to a certain event and it is our task to cluster all tweets in such a way
that the underlying event structure is reflected through these clusters of
tweets. For this purpose we adopt a single pass clustering mechanism. As
a baseline we use a clustering approach which closely resembles the al-
gorithm proposed by Becker et al. to cluster Flickr photo collections into
events [8, 9], and in which we only use plain textual features. We then
augment this baseline algorithm, now incorporating semantic information
about the tweets as a second feature next to the text of the tweet. As it turns
out, solely using a semantic topic per tweet only marginally improves base-
line performance; the attribution of semantic labels on tweet level seems to
be too fine-grained to be of any predictive value. We therefore employ an
online dynamic algorithm to assign semantic topics on hashtag level in-
stead of tweet level, which results in a coarser attribution of topic labels.
As will be shown in this paper, the latter approach turns out to be signifi-
cantly better than baseline performance.

The remainder of this paper is structured as follows. In Section 2.2 we
shortly discuss the most appropriate related work in recent literature, after
which we describe the methodology to extract events from a collection of
Twitter posts in Section 2.3. The collection of data and the construction of a
ground truth is treated in Section 2.4. Finally we analyse the results of the
developed algorithms in Section 2.5.

40 CHAPTER 2

2.2 Related work

Since the emergence of large-scale social networks such as Twitter and their
growing user base, the detection of events using social information has at-
tracted the attention of the scientific community. In a first category of tech-
niques, Twitter posts are clustered using similarity measures. These can be
either based on textual, temporal, geographical or other features. Becker
et al. were among the first to implement this idea by clustering a Flickr
photo collection [8, 9]. They developed a single pass unsupervised clus-
tering mechanism in which every cluster represented a single event. Their
approach however scaled exponentially in the number of detected events,
leading to Reuter et al. improving their algorithm by using a prior candi-
date retrieval step [3], thereby reducing the execution time to linear scaling.
Petrović et al. used a different technique based on Locality Sensitive Hash-
ing, which can also be seen as a clustering mechanism [10]. In this work,
tweets are clustered into buckets by means of a hashing function. Related
tweets are more probable to fall into the same bucket, which allows for a
rapid comparison between tweets to drive the event detection process.

The techniques in a second category of event detection algorithms main-
ly use temporal and volumetric information about the tweets being sent.
Yin et al. for example use a peak detection strategy in the volume of tweets
to detect fire outbreaks [6], and Nichols et al. detect volume spikes to
identify events in sporting games [11]. By analysing communication pat-
terns between Twitter users, such as peaks in original tweets, retweets
and replies, Chierichetti et al. were able to extract the major events from
a World Cup football game or the Academy Awards ceremony [12]. Sakaki
et al. regarded tweets as individual sensor points to detect earthquakes in
Japan [4]. They used a temporal model to detect spikes in tweet volume
to identify individual events, after which a spatial tracking model, such
as a Kalman filter or a particle filter, was applied to follow the earthquake
events as they advanced through the country. Bursts of words in time or in
geographic location can also be calculated by using signal processing tech-
niques, e.g. a wavelet transformation. Such a technique was successfully
used by Weng et al. in their EDCoW algorithm to detect Twitter events [13],
and by Chen and Roy to detect events in Flickr photo collections on a geo-
graphic scale [14].

Semantic information is often extracted after the events are detected to
classify them into high level categories [15]. This can be done in either
a supervised way, using a classifier like Naive Bayes or a Support Vector
Machine, but most of the times unsupervised methods are preferred, since
they do not require labelled data to train models and are able to discover

SEMANTICS-DRIVEN EVENT CLUSTERING IN TWITTER FEEDS 41

semantic categories without having to specify these categories beforehand.
Popular unsupervised techniques are Latent Dirichlet Allocation (LDA),
clustering, Principal Component Analysis (PCA) or a neural auto-encoder.
LDA was introduced by Blei et al. in 2003 as a generative model to extract
latent topics from a large collection of documents [16]. Since then many
variants of LDA have emerged tailored to specific contexts. Zhao et al. cre-
ated the TwitterLDA algorithm to extract topics from microposts, such as
tweets, assuming a tweet can only have one topic. Using community infor-
mation next to purely textual information, Liu et al. developed their own
version of LDA as well, called Topic-LinkLDA [17]. A temporal version of
LDA, called TM-LDA, was developed by Wang et al. to be able to extract
topics from text streams, such as a Twitter feed [18]. By batch grouping
tweets in hashtag pools, Mehrotra et al. were able to improve standard
LDA topic assignments to individual tweets [19].

2.3 Event clustering

In this section we will describe the mechanics to discover events in a collec-
tion of tweets. In the dataset we use, every tweet t is assigned a set of event
labels Et. This set contains more than one event label if the tweet belongs
to multiple events. The dataset itself consists of a training set Ttrain and
a test set Ttest. The details on the construction of the dataset are found in
Section 2.4. We will now try to recover the events in the test set by adopt-
ing a clustering approach. First the mechanisms of an existing baseline
algorithm will be expounded. Next we will extend this algorithm using
semantic information calculated from the tweets.

2.3.1 Baseline: single pass clustering

Our baseline algorithm will use single pass clustering to extract events
from the dataset. Becker et al. elaborated such an algorithm to identify
events in Flickr photo collections [8, 9]; their approach was criticized and
improved by Reuter et al. for the algorithm to function on larger datasets
[3]. In this paper we will adopt single-pass clustering as a baseline that
closely resembles the algorithm used by Becker et al.

As a preprocessing step, every tweet in the dataset is represented by
a plain tf-idf vector2 and sorted based on its timestamp value. In the fol-
lowing we will use the same symbol t for the tweet itself and for its tf-idf
vector. As the algorithm proceeds, it will create clusters of tweets, which
are the retrieved events. We denote the cluster to which tweet t belongs as

2We refer to Section 3.2 for a clear-cut definition of tf-idf.

42 CHAPTER 2

St; this cluster is also characterized by a cluster center point st. We refer
to a general cluster and corresponding cluster center point as resp. S and
s. The set A contains all clusters which are currently active, i.e. being con-
sidered in the clustering procedure. During execution of the algorithm, a
cluster is added to A if it is newly created. After some time a cluster can
become inactive by removing this cluster from the set A. In Section 2.5 we
will specify how a cluster can become inactive.

The baseline algorithm works as follows. When the current tweet t is
processed, the cosine similarity cos(t, s) between t and cluster center s is
calculated for all S in A. A candidate cluster S′t (with cluster center s′t) to
which t could be added, and the corresponding cosine similarity cos(t, s′t),
are then calculated as

S′t = arg max
S∈A

cos(t, s), (2.1)

cos(t, s′t) = max
S∈A

cos(t, s). (2.2)

If S′t does not exist—this occurs when A is empty—we assign t to a new
empty cluster St, we set st = t and St is added to A. If S′t does exist, we
need to decide whether t belongs to this candidate cluster or not. For this
purpose we train a logistic regression classifier from LIBLINEAR [20] with
a binary output. It takes cos(s′t, t) as a single feature and decides whether
t belongs to S′t. If it does, then we set St to S′t and we update its cluster
center st as follows:

st =
∑t∈St t
|St|

. (2.3)

If t does not belong to S′t according to the classifier, then as before we assign
t to a new empty cluster St and we set st = t.

In the train routine we calculate the candidate event cluster S′t for every
tweet t in Ttrain and verify whether this cluster corresponds to one of the
event labels of t in the ground truth. If it does, we have a positive train
example, otherwise a negative example. The number of positive and neg-
ative examples are balanced by randomly removing examples from either
the positive or negative set, after which the examples are used to train the
classifier.

In the original implementation by Becker et al. the processing of a tweet
is far from efficient since every event cluster has to be tested. After a certain
time period, the amount of clusters becomes very large. The adjustments
by Reuter et al. chiefly aim at improving this efficiency issue. We do not
consider these improvements here, since in Equation (2.1) we only test cur-
rently active clusters, which is already a performance gain.

SEMANTICS-DRIVEN EVENT CLUSTERING IN TWITTER FEEDS 43

2.3.2 Semantics-driven clustering

To improve the baseline single pass clustering algorithm we propose a
clustering algorithm driven by the semantics of the tweets. For example
tweets that belong to the same semantic topic—e.g. sports, disasters, . . . —
are more likely to belong to the same event than tweets about different
topics. Discerning two events can become easier as well if the two events
belong to different categories.

To calculate a semantic topic for each of the tweets in the dataset, we
make use of the TwitterLDA algorithm [21]. It is an adjustment of the orig-
inal LDA (Latent Dirichlet Allocation) algorithm [16] for short documents
such as tweets, in which every tweet only gets assigned a single topic—
instead of a probabilistic distribution over all the topics—and single user
topic models are taken into account. After running the TwitterLDA algo-
rithm, every tweet t gets assigned a semantic topic γt.

The actual clustering algorithm has the same structure as the baseline
algorithm, but it uses the semantic topic of the tweets as an extra semantic
feature during clustering. We define the semantic fraction σ(t, S) between
a tweet and an event cluster as the fraction of tweets in S that have the
same semantic topic as t:

σ(t, S) =
|{t′ : t′ ∈ S ∧ γt′ = γt}|

|S| . (2.4)

To select a candidate cluster S′t (with cluster center s′t) to which t can be
added, we use the cosine similarity, as before, as well as this semantic frac-
tion:

S′t = arg max
S∈A

cos(t, s) · σ(t, S). (2.5)

We choose to multiply cosine similarity and semantic fraction to select a
candidate cluster since both have to be as large as possible, and if one of
the two factors provides serious evidence against the candidate cluster, we
want this to be reflected. Now we use both cos(t, s′t) and σ(t, S′t) features
to train a logistic regression classifier with a binary output. The rest of the
algorithm continues in the way the baseline algorithm does.

2.3.3 Hashtag-level semantics

As pointed out by Mehrotra et al. the quality of topic models on Twit-
ter data can be improved by assigning topics to tweets on hashtag level
instead of on tweet level [19]. To further improve the semantics-driven
clustering, we therefore use a semantic majority voting scheme on hashtag

44 CHAPTER 2

level, which differs from the approach by Mehrotra et al. in that it can be
used in an online fashion and that we consider multiple semantic topics
per tweet.

In the training set we assign the same topic to all tweets sharing the
same event label by performing a majority vote:

∀t ∈ Ttrain : γt = arg max
γ

∣∣{t′ : γt′ = γ ∧ Et′ ∩ Et 6= ∅
}∣∣ . (2.6)

This way every tweet in the training set is represented by a semantic topic
that is dominated on the level of the events instead of on tweet level, re-
sulting in a much coarser attribution of semantic labels. We cannot do this
for the test set, since we do not know the event labels for the test set while
executing the algorithm. We can however try to emulate such a majority
voting at runtime. For this purpose, every tweet t is associated with a set
of semantic topics Γt. We initialize this set as follows:

∀t ∈ Ttest : Γt = {γt}. (2.7)

Next to a set of topics for every tweet, we consider a dedicated hashtag
pool Hh for every hashtag h, by analogy with [19]. With every pool H we
associate a single semantic topic βH . As the algorithm proceeds, more and
more hashtag pools will be created and filled with tweets.

When a tweet t is processed in the clustering algorithm, it will first be
added to some hashtag pools, depending on the number of hashtags in t.
So for every hashtag h in t, t is added to Hh. When a tweet t is added to a
hashtag pool H, a majority vote inside this pool is performed:

βnew,H = arg max
γ

∣∣{t′ : t′ ∈ H ∧ γt′ = γ
}∣∣ . (2.8)

We then update Γt for every tweet t in H:

∀t ∈ H : Γnew,t = (Γold,t \ {βH}) ∪ {βnew,H}. (2.9)

Finally βnew,H becomes the new semantic topic of H. Note that every tweet
t keeps its original semantic topic γt.

What still needs adjustment in order for the clustering algorithm to use
this new information, is the definition of the semantic fraction from Equa-
tion (2.4). We altered the definition as follows:

σ′(t, S) = max
g∈Γt

|{t′ : t′ ∈ S ∧ g ∈ Γt′}|
|S| . (2.10)

Since Equation (2.10) implies Equation (2.4) if Γt contains only one element
for every tweet t, this is a justifiable generalization.

SEMANTICS-DRIVEN EVENT CLUSTERING IN TWITTER FEEDS 45

2.4 Data collection and processing

In the past many datasets have been assembled to perform event cluster-
ing on social media. Unfortunately many of these datasets are not publicly
available; this is especially true for Twitter datasets. We therefore choose
to build our own dataset. To speed up this task we follow a semi-manual
approach, in which we first collect candidate events based on a hashtag
clustering procedure, after which we manually verify which of these cor-
respond to real-world events.

2.4.1 Event definition

To identify events in a dataset consisting of thousands of tweets, we state
the following event definition, which consists of three assumptions.

ASSUMPTION 1 – a real-world event is characterized by one or multiple
hashtags. For example, tweets on the past FIFA world cup football matches
were often accompanied by hashtags such as #USAvsBelgium and #World-
Cup.

ASSUMPTION 2 – the timespan of an event cannot transgress the bound-
aries of a day. This means that if a certain real-world event takes place at
several days—such as a music festival—this real-world event will be rep-
resented by multiple event labels. The assumption will allow us to discern
events that share the same hashtag, but occur on a different day of the
week, and will speed up the eventual event detection process. The hashtag
#GoT for example will spike in volume whenever a new episode of Game
of Thrones is aired, which are thus different events according to our defi-
nition.

ASSUMPTION 3 – there is only one event that corresponds to a certain hash-
tag on a given day.

Assumption 3 is not restrictive and can easily be relaxed. For example if
we would relax this Assumption and allow multiple events with the same
hashtags to happen on the same day, we would need a feature in the event
detection process to incorporate time differences, which is easily done. Al-
ternatively we could represent our tweets using df-idft vectors, instead of
tf-idf vectors, which also consider time aspects of the tweets [1].

46 CHAPTER 2

2.4.2 Collecting data

We assembled a dataset by querying the Twitter Streaming API for two
weeks, between September 29 and October 13 of the year 2014. We used a
geolocation query and required that the tweets originated from within the
Flanders region in Belgium, at least by approximation. Since only very few
tweets are geotagged, our dataset was far from a representative sample of
the tweets sent during this fortnight.

We therefore augment our dataset to make it more representative for
an event detection task. If a real-world event is represented by one or
more hashtags (Assumption 1), then we assume that at least one tweet with
these hashtags is geotagged and that these hashtags are therefore already
present in the original dataset. We thus consider every hashtag in the orig-
inal dataset and use them one by one to query the Twitter REST API.

A query to the REST API returns an ordered batch of tweets (ti)
m
i=1,

where m is at most 100. By adjusting the query parameters—e.g. the maxi-
mum ID of the tweets—one can use multiple requests to gather tweets up
to one week in the past. To make sure we only gather tweets from within
Flanders, the tokens in the user location text field of every tweet in the cur-
rent batch are compared to a list of regions, cities, towns and villages in
Flanders, assembled using Wikipedia and manually adjusted for multilin-
gual support. If the user location field is empty, the tweet is not considered
further. We define a batch (ti)

m
i=1 to be valid if and only if

|{ti : ti in Flanders}|
timestamp(tm)− timestamp(t1)

> τ1, (2.11)

where τ1 is a predefined threshold. If there are τ2 subsequent invalid
batches, all batches for the current considered hashtag are discarded. If
there are τ3 batches in total for which less than τ4 tweets were sent in Flan-
ders, all batches for the current considered hashtag are discarded as well.
If none of these rules apply, all batches for the current hashtag are added to
the dataset. When the timestamp(·) function is expressed in minutes, we
set τ1 = 1, τ2 = 12, τ3 = 25 and τ4 = 10, as this yielded a good trade-off
between execution time and quality of the data.

2.4.3 Collecting events

Using the assembled data and the event definition of Section 2.4.1 we can
assemble a ground truth for event detection in three steps. Since events are
represented by one or more hashtags according to Assumption 1, we first
cluster the hashtags in the tweets using a co-occurrence measure. Next we

SEMANTICS-DRIVEN EVENT CLUSTERING IN TWITTER FEEDS 47

determine whether such a cluster represents an event, and finally we label
the tweets corresponding with this cluster with an appropriate event label.

To assemble frequently co-occurring hashtags into clusters, a so-called
co-occurrence matrix is constructed. It is a three-dimensional matrix Q that
holds information on how many times two hashtags co-occur in a tweet.
Since events can only take place on one day (Assumption 2), we calculate
co-occurrence on a daily basis. If hashtag k and hashtag ` co-occur ak,`,d
times on day d, then

∀k, `, d : Qk,`,d =
ak,`,d

∑i ak,i,d
. (2.12)

To cluster co-occurring hashtags we adopt the standard DBSCAN cluster-
ing algorithm. This is an online clustering algorithm that requires two
thresholds to be set: the minimum number of hashtags minh per cluster
and a minimum similarity measure ε between two hashtags above which
the two hashtags reside in the same ε-neighbourhood. The similarity mea-
sure between hashtags k and ` on day d is defined as

simk,`,d =
Qk,`,d + Q`,k,d

2
. (2.13)

If we run DBSCAN for every day in the dataset, we obtain a collection of
clusters of sufficiently co-occurring hashtags on the same day.

A lot of these clusters however do not represent a real-world event.
Hashtags such as #love or #followme do not exhibit event-specific charac-
teristics, such as an isolated, statistically significant peak in tweet volume
per minute, but can rather be seen as near-constant noise in the Twitter
feed. In order to identify the hashtags that do represent events and to filter
out the noise, we follow a peak detection strategy. For this purpose we
treat each cluster of hashtags separately, and we refer to the hashtags in
these clusters as ‘event hashtags’. With each cluster C we associate all the
tweets that were sent on the same day and that contain one or more of the
event hashtags in this cluster. We gather them in a set TC. After sorting the
tweets in TC according to their timestamp, we calculate how many tweets
are sent in every timeslot of five minutes, which makes up for a sequence
(vC,i)

n
i=1 of tweet volumes, with n the number of time slots. We define that

some vC,i∗ is an isolated peak in the sequence (vC,i) if and only if

vC,i∗ ≥ θ1 ∧ ∀i 6= i∗ : vC,i∗ ≥ vC,i + θ2, (2.14)

with θ1 and θ2 predefined thresholds. Only if one such isolated peak exists
(Assumption 3), we label all tweets t in TC with the same unique event label
et and add them to the ground truth. Since we used the event hashtags

48 CHAPTER 2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

0 2200Time slot i

Tw
ee

tv
ol

um
e

v C
,i

0

100

Event 1
#wearelosc

Event 2
#wearelosc

#ollosc

Figure 2.1: Plot of tweet volume as a function of time slot for two example events
in the dataset, with their associated hashtags.

from C to construct this event, we have to remove all event hashtags in
C from the tweets in TC, otherwise the tweets themselves would already
reflect the nature of the events in the ground truth.

With this procedure it is however likely that some tweets will belong to
multiple events, but only get one event label. This is possible if a tweet
contains multiple event hashtags that belong to different event hashtag
clusters. We therefore alter the ground truth in which every tweet t cor-
responding to an event is associated with a set of event labels Et instead of
only one label. Of course, for the majority of these tweets, this set will only
contain one event label.

In our final implementation we set minh = 1, ε = 0.3, θ1 = 10 and
θ2 = 5. With these parameters clusters of co-occurring hashtags are rarely
bigger than three elements. After manual inspection and filtering, the final
dataset contains 322 different events adding up to a total of 63,067 tweets
(ca. 12% of the original dataset). We assign 2/3 of the events to a training set
and 1/3 to a test set, leading to 29,844 tweets in the training set and 33,223
in the test set.

Figure 2.1 shows a plot of the tweet volume in function of time slot for

SEMANTICS-DRIVEN EVENT CLUSTERING IN TWITTER FEEDS 49

two events in the dataset. The plot only covers the first week in the dataset.
The events are two football games of the French team LOSC Lille—which is
a city very near Flanders, and therefore shows up in our dataset. The first
event is characterised by the single hashtag #wearelosc, and the second
event by two hashtags: #wearelosc and #ollosc. Our algorithm detects the
peaks in tweet volume during the games, and since only one significant
peak exists per day, we assign the same event label to all tweets with the
associated hashtags sent during that day.

2.5 Results

2.5.1 Performance measures

To assess the performance of the clustering algorithms, we report our re-
sults in terms of precision P, recall R and F1 measure, as defined in [3, 9],
and restated here:

P =
1
|T| ∑

t∈T

|St ∩ {t′ : et′ = et}|
|St|

, (2.15)

R =
1
|T| ∑

t∈T

|St ∩ {t′ : et′ = et}|
|{t′ : et′ = et}|

, (2.16)

F1 = 2 · P · R
P + R

, (2.17)

in which T stands for the total dataset of tweets. When tweets can have
multiple event labels, these definitions however do not apply any more.
We therefore alter them as follows:

P =
1
|T| ∑

t∈T
max

e

|St ∩ {t′ : e ∈ Et′ ∧ e ∈ Et}|
|St|

, (2.18)

R =
1
|T| ∑

t∈T
max

e

|St ∩ {t′ : e ∈ Et′ ∧ e ∈ Et}|
|{t′ : e ∈ Et′ ∧ e ∈ Et}|

. (2.19)

Note that Equations (2.18) and (2.19) imply Equations (2.15) and (2.16) if
there is only one event label per tweet.

We will also use purity as an indicator of the quality of the event clus-
ters we obtain. We have chosen the definition of purity as in [22] and
adapted it to our context as follows:

purity =
1
|T| ∑

t∈T
max

e

|St ∩ {t′ : e = et′}|
|St|

. (2.20)

It is a measure that is closely related to precision.

50 CHAPTER 2

Table 2.1: Using hashtag-level semantics clearly outperforms baseline and plain
semantics-driven clustering.

Precision Recall F1-measure
Baseline 47.12% 35.35% 40.40%
Semantics-driven 52.80% 30.60% 38.74%
Hashtag semantics 48.62% 36.97% 42.00%
Baseline (multi) 64.96% 36.36% 46.62%
Semantics-driven (multi) 69.27% 31.47% 43.28%
Hashtag semantics (multi) 64.06% 37.77% 47.52%

For multiple event labels, we alter this measure as follows:

purity =
1
|T| ∑

t∈T
max

e

|St ∩ {t′ : e ∈ Et′}|
|St|

. (2.21)

2.5.2 Results

We now discuss the results of the algorithms explained in Section 2.3 with
the use of the dataset constructed in Section 2.4. In the algorithms we make
use of a set A of active event clusters, which become inactive after some
time period. We could for example use an exponential decay function to
model the time after which a cluster becomes inactive since the last tweet
was added. Using Assumption 2 however we can use a much simpler
method: when a new day begins, all event clusters are removed from A
and thus become inactive. This way we start with an empty set A of active
clusters every midnight.

For the semantics-driven clustering algorithm we assign the tweets to
10 TwitterLDA topics using the standard parameters proposed in [21] and
500 iterations of Gibbs sampling. Table 2.1 shows the results of the baseline
algorithm, the semantics-driven algorithm and the hashtag-level semantics
approach, both for one event label and multiple event labels per tweet.
Note that, since we have removed the event hashtags from the tweets in
the ground truth, the hashtag-level semantics approach does not use any
implicit or explicit information about the nature of the events.

We note that the hashtag-level semantics approach outperforms the
baseline clustering algorithm, with an increase of 1.6 percentage points
in F1-measure for single event labels. In terms of precision and recall,
hashtag-level semantics performs better in both metrics than baseline (sig-
nificant improvement, p < 0.001 in t-test). When using multiple event
labels per tweet, precision is decreased by 0.9 percentage points, but raises
recall with 1.4 percentage points, leading to an increase of F1-measure by
0.9 percentage points.

SEMANTICS-DRIVEN EVENT CLUSTERING IN TWITTER FEEDS 51

Compared to the standard semantics-driven algorithm we do 6 per-
centage points better in recall, but 4 percentage point worse in precision
for single event labels. Hashtag-level semantic clustering seems to manage
to account for the substantial loss in recall that occurs when using the basic
semantics-driven method, but lacks in precision; the precision is however
still 1.5 percentage points better than the baseline algorithm. The plain
semantics-driven approach is 1.7 percentage points worse than baseline in
terms of F1-measure, but provides much more precision by sacrificing in
recall. For multiple event labels the differences are even more pronounced
between the standard semantics approach and the other algorithms. The
former performs 3.3 percentage points worse in F1-measure compared to
baseline, and 4.2 percentage points worse compared to hashtag semantics.
Using multiple event labels, the plain semantics-driven algorithm however
has a much higher precision than baseline and hashtag semantics.

To assess the significance of the differences in F1 measure between our
three systems, we used a Bayesian technique suggested by Goutte et al. [23].
First we estimated the true positive, false positive and false negative num-
bers for the three systems. Next we sampled 10,000 gamma variates from
the proposed distribution for F1 for these systems and calculated the prob-
ability of one system being better than another system. We repeated this
process 10,000 times. Hashtag semantics resulted in a higher F1 measure
in 99.99% of the cases; our results are thus a significant improvement over
baseline. By contrast, the plain semantics-driven approach is significantly
worse than baseline, also in 99.99% of the cases. Concerning multiple event
labels, the hashtag semantics approach is better in 98.5% of the cases than
baseline, which is also a significant improvement—although less than in
the single event label case.

We also compare our three approaches in terms of cluster purity and
the number of detected event clusters. These numbers are shown in Table
2.2. We see that the purity of the clusters in the plain semantics-driven ap-
proach is higher than baseline and hashtag semantics, but the number of
detected event clusters is even substantially larger. This explains the high
precision and low recall of the semantics-driven algorithm. The purity of
baseline and hashtag semantics is almost equal, but the latter approach dis-
cerns more events than baseline, thereby explaining the slight increase in
precision and recall for the hashtag semantics approach compared to base-
line. Concerning multiple event labels, the purity increases significantly
compared to single event labels. Since the number of detected events re-
mains the same, this explains the substantial increase in precision for the
multi-label procedure.

52 CHAPTER 2

Table 2.2: A comparison of baseline, plain semantics-driven clustering and hashtag
semantics in terms of purity and number of event clusters.

Purity Number of events
Baseline 61.29% 409
Semantics-driven 64.76% 662
Hashtag semantics 61.15% 441
Baseline (multi) 75.51% 409
Semantics-driven (multi) 77.74% 662
Hashtag semantics (multi) 73.72% 441

2.6 Conclusion

We developed two semantics-based extensions to the single-pass baseline
clustering algorithm as used by Becker et al. to detect events in Twitter
streams. In this we used semantic information about the tweets to drive
the event detection. For this purpose we assigned a topic label to every
tweet using the TwitterLDA algorithm. To evaluate the performance of the
algorithms we semi-automatically developed a ground truth using a hash-
tag clustering and peak detection strategy, to aid the manual labelling of
tweets with events. When using the topic labels at the level of individual
tweets, the algorithm performs significantly worse than baseline. When
however gathering the semantic labels of the tweets on a coarser, hashtag
level we get a significant gain over baseline. We can conclude that high-
level semantic information can indeed improve new and existing event de-
tection and clustering algorithms.

SEMANTICS-DRIVEN EVENT CLUSTERING IN TWITTER FEEDS 53

References

[1] L. M. Aiello, G. Petkos, C. Martin, D. Corney, S. Papadopoulos,
R. Skraba, A. Goker, I. Kompatsiaris, and A. Jaimes. Sensing Trend-
ing Topics in Twitter. Multimedia, IEEE Transactions on, 2013.

[2] H. Becker, M. Naaman, and L. Gravano. Beyond Trending Topics: Real-
World Event Identification on Twitter. In ICWSM 2011: International
AAAI Conference on Weblogs and Social Media, 2011.

[3] T. Reuter and P. Cimiano. Event-based classification of social media
streams. In ICMR ’12: Proceedings of the 2nd ACM International Con-
ference on Multimedia Retrieval, 2012.

[4] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes Twitter users:
real-time event detection by social sensors. In WWW ’10: Proceedings of
the 19th international conference on World wide web, 2010.

[5] G. Stilo and P. Velardi. Time Makes Sense: Event Discovery in Twitter Us-
ing Temporal Similarity. In Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), 2014 IEEE/WIC/ACM International Joint Confer-
ences on, 2014.

[6] J. Yin, A. Lampert, M. Cameron, B. Robinson, and R. Power. Using
social media to enhance emergency situation awareness. IEEE Intelligent
Systems, 2012.

[7] S. Van Canneyt, S. Schockaert, and B. Dhoedt. Estimating the Semantic
Type of Events Using Location Features from Flickr. In SIGSPATIAL ’14,
2014.

[8] H. Becker, M. Naaman, and L. Gravano. Event Identification in Social
Media. In WebDB 2009: Twelfth International Workshop on the Web
and Databases, 2009.

[9] H. Becker, M. Naaman, and L. Gravano. Learning similarity metrics for
event identification in social media. In WSDM ’10: Third ACM interna-
tional conference on Web search and data mining, 2010.

[10] S. Petrović, M. Osborne, and V. Lavrenko. Streaming first story detection
with application to Twitter. In HLT ’10: Human Language Technologies:
The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, 2010.

54 CHAPTER 2

[11] J. Nichols, J. Mahmud, and C. Drews. Summarizing sporting events
using twitter. In IUI ’12: Proceedings of the 2012 ACM international
conference on Intelligent User Interfaces, 2012.

[12] F. Chierichetti, J. Kleinberg, R. Kumar, M. Mahdian, and S. Pandey.
Event Detection via Communication Pattern Analysis. In ICWSM ’14: In-
ternational Conference on Weblogs and Social Media, 2014.

[13] J. Weng, Y. Yao, E. Leonardi, and B.-S. Lee. Event Detection in Twitter. In
ICWSM ’11: International Conference on Weblogs and Social Media,
2011.

[14] L. Chen and A. Roy. Event detection from flickr data through wavelet-based
spatial analysis. In CIKM ’09: Proceeding of the 18th ACM conference
on Information and knowledge management, 2009.

[15] A. Ritter, Mausam, O. Etzioni, and S. Clark. Open domain event extrac-
tion from twitter. In KDD ’12: Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2012.

[16] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Ma-
chine Learning, 2003.

[17] Y. Liu, A. Niculescu-Mizil, and W. Gryc. Topic-link LDA: joint models
of topic and author community. In ICML ’09: Proceedings of the 26th
Annual International Conference on Machine Learning, 2009.

[18] Y. Wang, E. Agichtein, and M. Benzi. TM-LDA: efficient online modeling
of latent topic transitions in social media. In KDD ’12: Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2012.

[19] R. Mehrotra, S. Sanner, W. Buntine, and L. Xie. Improving lda topic
models for microblogs via tweet pooling and automatic labeling. 2013.

[20] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLIN-
EAR: A Library for Large Linear Classification. The Journal of Machine
Learning Research, 2008.

[21] W. X. Zhao, J. Jiang, J. He, Y. Song, P. Achananuparp, E.-P. Lim, and
X. Li. Topical keyphrase extraction from Twitter. In HLT ’11: Proceedings
of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, 2011.

SEMANTICS-DRIVEN EVENT CLUSTERING IN TWITTER FEEDS 55

[22] C. Manning, P. Raghavan, and H. Schütze. An Introduction to Informa-
tion Retrieval. Cambridge University Press, 2009.

[23] C. Goutte and E. Gaussier. A probabilistic interpretation of precision, recall
and F-score, with implication for evaluation. In ECIR’05: Proceedings of
the 27th European conference on Advances in Information Retrieval
Research, 2005.

3
Representation Learning for Very
Short Texts using Weighted Word

Embedding Aggregation

“The only formula I know will work for us is that when we’re together in the sum
of our parts, it’s far greater than what we added up to at the start.”

—Little Boots, 2009

In Chapter 2 we have represented tweets by a tf-idf vector. Using such a
representation, we count the number of overlapping words between two tweets
to determine the similarity between them. If more words overlap, the tweets are
more similar to each other. However, since the number of words in a tweet is very
limited, the probability of one or more words overlapping quickly drops. Spelling
mistakes and common word corruptions, as we have discussed in Chapter 1, make
things even worse. We have also seen that word embeddings are able to model
the semantic similarity between words, even though they are different. Therefore,
we will investigate a method of representing tweets and other short texts based on
word embeddings, thereby alleviating the problem of word overlap. The challenge
lies in effectively combining the embeddings of all words in a tweet to calculate a
semantically-rich and high-quality tweet embedding.

? ? ?

58 CHAPTER 3

C. De Boom, S. Van Canneyt, T. Demeester, and B. Dhoedt.

Appeared in Pattern Recognition Letters, 80:150–156, 2016.

Abstract Short text messages such as tweets are very noisy and sparse
in their use of vocabulary. Traditional textual representations, such as tf-
idf, have difficulty grasping the semantic meaning of such texts, which is
important in applications such as event detection, opinion mining, news
recommendation, etc. We constructed a method based on semantic word
embeddings and frequency information to arrive at low-dimensional rep-
resentations for short texts designed to capture semantic similarity. For
this purpose we designed a weight-based model and a learning procedure
based on a novel median-based loss function. This paper discusses the
details of our model and the optimization methods, together with the ex-
perimental results on both Wikipedia and Twitter data. We find that our
method outperforms the baseline approaches in the experiments, and that
it generalizes well on different word embeddings without retraining. Our
method is therefore capable of retaining most of the semantic information
in the text, and is applicable out-of-the-box.

3.1 Introduction

Short pieces of text reach us every day through the use of social media such
as Twitter, newspaper headlines, and texting. Especially on social media,
millions of such short texts are sent every day, and it quickly becomes a
daunting task to find similar messages among them, which is at the core of
applications such as event detection [1], news recommendation [2], etc.

In this paper we address the issue of finding an effective vector rep-
resentation for a very short text fragment. By effective we mean that the
representation should grasp most of the semantic information in that frag-
ment. For this we use semantic word embeddings to represent individual
words, and we learn how to weigh every word in the text through the use
of tf-idf (term frequency - inverse document frequency) information to ar-
rive at an overall representation of the fragment.

These representations will be evaluated through a semantic similarity
task. It is therefore important to point out that textual similarity can be
achieved on different levels. At the most strict level, the similarity mea-
sure between two texts is often defined as being (near) paraphrases. In a
more relaxed setting one is interested in topic- and subject-related texts.
For example, if a sentence is about the release of a new Star Wars episode
and another about Darth Vader, they will be dissimilar in the most strict

REPRESENTATION LEARNING FOR VERY SHORT TEXTS 59

sense, although they share the same underlying subject. In this paper we
focus on the broader concept of topic-based semantic similarity, as this is
often applicable in the already mentioned use cases of event detection and
recommendation.

Our main contributions are threefold. First, we construct a technique to
calculate effective text representations by weighing word embeddings, for
both fixed- and variable-length texts. Second, we devise a novel median-
based loss function to be used in the context of minibatch learning to mit-
igate the negative effect of outliers. Finally we create a dataset of semanti-
cally related and non-related pairs of text from both Wikipedia and Twitter,
on which the proposed techniques are evaluated.

We will show that our technique outperforms most of the baselines in
a semantic similarity task. We will also demonstrate that our technique
is independent of the word embeddings being used, so that the technique
is directly applicable and thus does not require additional model training
when used in different contexts, in contrast to most state-of-the art tech-
niques.

In the next section, we start with a summary of the related work, and
our own methodology will be devised in Section 3.3. Next we explain how
data is collected in Section 3.4, after which we discuss our experimental
results in Section 3.5.

3.2 Related work

In this work we use so-called word embeddings as a basic building block to
construct text representations. Such an embedding is a distributed vector
representation of a single word in a fixed-dimensional semantic space, as
opposed to term tf-idf vectors, in which a word is represented by a one-hot
vector [3, 4]. A word’s term frequency (tf) is the number of times the word
occurs in the considered document, and a word’s document frequency (df)
is the number of documents in the considered corpus that contain that
word. Its (smoothed) inverse document frequency (idf) is defined as:

idf , log
N

1 + df
, (3.1)

in which N is the number of documents in the corpus [4]. A tf-idf-based
similarity measure is based on exact word overlap. As texts become
smaller in length, however, the probability of having words in common
decreases. Furthermore, these measures ignore synonyms and any seman-
tic relatedness between different words, and are prone to negative effects
of homonyms.

60 CHAPTER 3

Instead of relying on exact word overlap, one can incorporate seman-
tic information into the similarity process. Latent Semantic Indexing (LSI)
and Latent Dirichlet Allocation (LDA) are two examples, in which every
word is projected into a semantic (topic) space [5, 6]. At test time, inference
is performed to obtain a semantic vector for a particular sentence. Both
training and inference of standard LSI and LDA, however, are computa-
tionally expensive on large vocabularies.

Although LSI and LDA have been used with success in the past, Skip-
gram models have been shown to outperform them in various tasks [7, 8].
In Skip-gram, part of Google’s word2vec toolkit1, distributed word em-
beddings are learned through a neural network architecture to predict its
surrounding words in a fixed window.

Once the word embeddings are obtained, we have to combine them into
a useful sentence representation. One possibility is to use an multilayer
perceptron (MLP) with the whole sentence as an input, or a 1D convolu-
tional neural network [9–12]. Such an approach, however, requires either
an input of fixed length or aggregation operations—such as dynamic k-
max pooling [13]—to arrive at a sentence representation that has the same
dimensionality for every input. Recurrent neural networks (RNNs) and
variants can overcome the problem of fixed dimensionality or aggregation,
since one can feed word after word in the system and in the end arrive at
a text representation [14–16]. The recently introduced Skip-thought vec-
tors, heavily inspired on Skip-gram, combine the learning of word em-
beddings with the learning of a useful sentence representation using an
RNN encoder and decoder [17]. RNN-based methods present a lot of ad-
vantages over MLPs and convolutional networks, but still retraining is re-
quired when using different types of embeddings.

Paragraph2vec is another method, inspired by the Skip-gram algo-
rithm, to derive sentence vectors [18]. The technique requires the user to
train vectors for frequently occurring word groups. The method, however,
is not usable in a streaming or on-the-fly fashion, since it requires retrain-
ing for unseen word groups at test time.

Aggregating word embeddings through a mean, max, min. . . function
is still one of the most easy and widely used techniques to derive sen-
tence embeddings, often in combination with an MLP or convolutional
network [9, 19–21]. On the one hand, the word order is lost, which can be
important in e.g. paraphrase identification. On the other hand, the meth-
ods are simple, out-of-the-box and do not require a fixed length input.

Related to the concepts of semantic similarity and weighted embedding
aggregation, there is extensive literature. In [22], Kusner et al. calculate a

1Available at code.google.com/archive/p/word2vec

code.google.com/archive/p/word2vec

REPRESENTATION LEARNING FOR VERY SHORT TEXTS 61

similarity metric between documents based on the travel distance of word
embeddings from one document to another one. We on the other hand will
derive vectors for the documents themselves. Kenter et al. learn semantic
features for every sentence in the dataset based on a saliency weighted
network for which the Okapi BM252 algorithm is used [23]. However, the
features are being learned for every sentence prior to test time, and there-
fore not applicable in a real-time streaming context. Finally, in [24] Kang
et al. calculate a cosine similarity matrix between the words of two sen-
tences that are sorted based on their idf value, which they use as a feature
vector for an MLP. Their approach is similar to our work in the sense that
the authors use idf information to rescale term contribution. Their primary
goal, however, is calculating semantic similarity instead of learning a sen-
tence representation. In fact, the authors totally discard the original word
embeddings and only use the calculated cosine similarity features.

3.3 Methodology

The core principle of our methodology is to assign a weight to each word in
a short text. These weights are determined based on the idf value of the in-
dividual words in that text. The idea is that important words—i.e. words
that are needed to determine most of the text’s semantics—usually have
higher idf values than less important words, such as articles and aux-
iliaries. . . Indeed, the latter appear more frequently in various different
texts, while words with a high idf value mostly occur in similar contexts.
The final goal is to combine the weighted words into a semantically effec-
tive, single text representation.

To achieve this goal, we will model the problem of finding a suitable
text representation as a semantic similarity task between couples of short
texts. In order to classify such couples of text fragments into either seman-
tically related pairs or non-related pairs, the vector representations of these
two texts are directly compared. In this paper we use a simple threshold
function on the distance between the two text representations, as we want
related pairs to lie close to each other in their representation space, and
non-related pairs to lie far apart:

g(t1, t2) =

{
pair if d(t1, t2) ≤ θ

non-pair if d(t1, t2) > θ
. (3.2)

In this expression t1 and t2 are two short text vector representations of
dimensionality ν, d : (x, y) ∈ R2ν → R+ is a vector distance function of

2BM25 is a scoring function—as an alternative to tf-idf and cosine similarity—that uses
term frequencies as well as the inverse document frequency to rank documents given a query.

62 CHAPTER 3

choice (e.g. cosine distance, euclidean distance. . .), θ is a threshold, and
g(·) is the binary prediction of semantic relatedness.

3.3.1 Basic architecture

As mentioned before, we will assign a weight to each word in a text ac-
cording to that word’s idf value. To learn these weights, we devise a model
that is visualised in Figure 3.1. In the learning scheme, we use related and
non-related couples of text as input data. First, the words in every text are
sorted from high to low idf values. Original word order is therefore dis-
carded, as is the case in usual standard aggregation operations. After that,
every embedding vector for each of the sorted words is multiplied with a
weight that can be learned. Finally, the weighted vectors are averaged to
arrive at a single text representation.

In more detail, consider a dataset D consisting of couples of short texts.
An arbitrary couple is denoted by C, and the two texts of C by Cα and
Cβ. We indicate the vector representation of word j in text Cα by Cα

j . All
word vectors have the same dimensionality ν. Each text Cα also has an
associated length n(Cα), i.e. the number of words in Cα. For now, in this
section, we assume that n , n(Cα) = n(Cβ), ∀C ∈ D, a notion we will relax
in Section 3.3.3. The final goal of our methodology is to arrive at a vector
representation for both texts in C, denoted by t(Cα) and t(Cβ). Denoting
the sorted texts as Cα′ and Cβ′ , we arrive at a vector representation t(Cα)
and t(Cβ) through the following equation:

∀` ∈ {α, β} : t(C`) =
1
n

n

∑
j=1

wj · C`′
j , (3.3)

in which wj, j ∈ {1, . . . , n} are the weights to be learned. As such, we
create a weighted sum of the individual embeddings, the weights of which
are only related to the rank order according to the idf values of all words
in the fragment.

The model we construct through this procedure is related to the siamese
neural network with parameter sharing from the early nineties [25]. The
learning procedure of such models is as follows. We first calculate the vec-
tor representations for both texts in a particular couple through Equation
(3.3), both using the same weights, after which we compare the two vector
representations through a loss function L

(
t(Cα), t(Cβ)

)
that we wish to

minimize. After that, the weights are updated through a gradient descent
procedure using a learning rate η:

∀j ∈ {1, . . . , n} : wj ← wj − η · ∂

∂wj
L
(

t(Cα), t(Cβ)
)

. (3.4)

REPRESENTATION LEARNING FOR VERY SHORT TEXTS 63

the quick brown fox jumped over the lazy dog

jumped lazy quick dog fox brown over the the
idf
sort

w1 w9· · ·

Σ

1/9

ν

ν

Figure 3.1: Illustration of the weighted average approach for a toy sentence of nine
words long and word vectors of dimension ν.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

0 1Normalized distance

N
um

be
r

of
co

up
le

s

0

300

Figure 3.2: Example distributions of distances between non-related pairs (light
grey) and related pairs (dark grey) on Twitter data, using a simple mean
of word embeddings.

64 CHAPTER 3

3.3.2 Loss functions

As pointed out in the beginning of this section, we want to have seman-
tically related texts to lie close to each other in the representation space,
and non-related texts to lie far apart from each other. We can visually in-
spect the distribution of the distances between every couple in the dataset.
In fact, we calculate two distributions, one for the related pairs and one
for the non-related pairs. Two examples of such distributions, created us-
ing Twitter data and an average word embedding text representation, are
shown in Figure 3.2. Related pairs tend to lie closer to each other than
non-related pairs. There is however a considerable overlap between the
two distributions. This means that making binary decisions on similarity
based on a well-chosen distance threshold will lead to a large error. The
goal is to reduce this error, and thus to minimize the overlap between the
two distributions. Directly minimizing the overlap is difficult, since it re-
quires the overlap as a function of the model weights. We will instead
describe two different loss functions as an approximation to this problem.

The first loss function is related to the contrastive loss function regu-
larly used in siamese neural architectures [26]. We define the quantity pC
as follows:

pC ,

{
1 if C is a related pair,
−1 if C is a non-related pair.

(3.5)

The loss function, which we will conveniently call the contrastive-based
loss, is then given by:

Lc

(
t(Cα), t(Cβ)

)
= pC · d

(
t(Cα), t(Cβ)

)
, (3.6)

in which d : (x, y) ∈ R2ν → R+ is a vector distance function of choice, as
before. Note that, when trying to minimize this loss, related pairs will get
pushed to each other in the representation space, while non-related pairs
will get dragged apart.

This loss function, however, has two main problems. First, there is
an imbalance between the loss for related pairs and non-related pairs, in
which the latter can get an arbitrarily negative loss, while the related pairs’
loss cannot be pushed below zero. To solve this, we could add a max-
imum possible distance—which is e.g. 1 in the case of cosine distance—
but this cannot be generalized to arbitrary distance functions. Second, this
loss function can skew distance distributions, so that minimizing overlap
between distributions is not guaranteed. In fact, the overlap can even in-
crease while minimizing this loss. This happens, for example, when the
distance between some of the related pairs can be drastically reduced while

REPRESENTATION LEARNING FOR VERY SHORT TEXTS 65

other related pairs get dragged farther apart, and vice versa for the non-
related pairs. The loss function as such allows this to happen, since it can
focus on data points that are easier to shift towards or away from each
other and it can ignore what happens to the other data points. As long
as the contribution of these shifts to the overall loss remains dominant,
the loss will diminish, although the predictions according to Equation (3.2)
will be worse. Despite these problems we still consider this loss function
due to its simplicity. The derivative with respect to weight wj is given by:

∂

∂wj
Lc

(
t(Cα), t(Cβ)

)
=

pC
n

(
∇d(x, y)

)∣∣∣
x= 1

n ∑n
j=1 wjCα′

j ,y= 1
n ∑n

j=1 wjC
β′
j

[
Cα′

j

Cβ′

j

]
. (3.7)

In a second loss function we try to mitigate the loss imbalance and po-
tential skewing of the distributions caused by the contrastive-based loss
function. For this purpose we will use the median, as it is a very robust
statistic insensitive to outliers. As we need multiple data points to calculate
the median, this loss function can only be used in the context of minibatch
gradient descent, in which the number of positive and negative examples
in each minibatch is balanced. In practice we consider a minibatch B ⊂ D
of n(B) randomly sampled data points, in which there are exactly n(B)/2

related pairs and n(B)/2 non-related pairs. We consider the couple of texts
M(B) ∈ B as the median couple if µ(B) = d(M(B)α, M(B)β) is the median
of all distances between the couples in B:

M(B) , arg median
C∈B

d(Cα, Cβ); (3.8)

µ(B) , median
C∈B

d(Cα, Cβ). (3.9)

Since minibatch B is randomly sampled, we can consider µ(B) as an ap-
proximation to the optimal split point between related and non-related
pairs, in the sense of threshold θ in Equation (3.2). We thus consider all
related pairs with a distance larger than µ(B), and all non-related pairs
with a distance smaller than µ(B) to be classified incorrectly. Since mini-
mizing a 0-1 loss is NP-hard, we use a scaled cross-entropy function in our
loss, which we will call the median-based loss:

Lm

(
t(Cα), t(Cβ), B

)
= ln

[
1 + exp

(
− κpC

(
µ(B)− d

(
t(Cα), t(Cβ)

)))]
, (3.10)

66 CHAPTER 3

in which κ is a hyperparameter. The derivative with respect to weight wj is
given by the following expression (in which σ(·) is the sigmoid function):

∂

∂wj
Lm

(
t(Cα), t(Cβ), B

)
= κσ

(
−κpC

(
µ(B)− d

(
t(Cα), t(Cβ)

)))
· ∂

∂wj

(
Lc

(
t(Cα), t(Cβ)

)
−Lc

(
t(M(B)α), t(M(B)β)

))
. (3.11)

3.3.3 Texts with variable length

The method described thus far is only applicable to short texts of a fixed
length, which is limiting. In this section we will extend our technique to
texts of a variable, but given maximum length. For this purpose we have
devised multiple approaches, of which we will elaborate the one that per-
formed best in the experiments.

Suppose that all texts have a fixed maximum length of nmax. In
the learning procedure we will learn a total of nmax weights with the
techniques described earlier. To find the weights for a text with length
m ≤ nmax we will use subsampling and linear interpolation. That is,
for an arbitrary text C` we first find the sequence of real-valued indices
I(C`, j), j ∈

{
1, . . . , n(C`)

}
through subsampling:

∀j ∈
{

1, . . . , n(C`)
}

: I(C`, j) , 1 +
(j− 1)(nmax − 1)

n(C`)− 1
. (3.12)

Then, in the second step, we calculate the new weights zj(C`), j ∈{
1, . . . , n(C`)

}
for the words in C` through linear interpolation, in which

ε is arbitrarily small:

∀j ∈
{

1, . . . , n(C`)
}

: zj(C`) ,

(wdIj(C`)e − wbIj(C`)c)(I(C`, j)− bIj(C`)c)
dIj(C`)e − bIj(C`)c+ ε

+ wdIj(C`)e. (3.13)

In this, d·e and b·c are resp. the ceil and floor functions. Finally, Equation
(3.3) needs to be updated with these new weights instead of wj:

∀` ∈ {α, β} : t(C`) =
1

n(C`′)

n(C`′)

∑
j=1

zj(C`′) · C`′
j . (3.14)

Calculating the derivative of the new weights with respect to the original
weights is straightforward.

REPRESENTATION LEARNING FOR VERY SHORT TEXTS 67

3.4 Data collection

To train the weights for the individual embeddings and to conduct ex-
periments, we collect data from different sources. First we gather textual
pairs from Wikipedia which we will use as a base dataset to finetune our
methodology. We will also use this dataset to test our hypotheses and per-
form initial experiments. The second dataset will consist of Twitter mes-
sage pairs, which we will use to show that our method can be used in a
practical streaming context.

3.4.1 Wikipedia

We will perform our initial experiments in a base setting using English
Wikipedia articles. The most important benefit of using Wikipedia is that
there is a lot of well structured data. It is therefore a good starting point to
collect a ground truth to finetune our methodology.

We use the English Wikipedia dump of March 4th 2015, and we remove
its markup and punctuation. We convert all letters to lower case and ev-
ery number is replaced by a single character ‘0’ (zero). Next we construct
related pairs of texts which both have the same, fixed length n. To do this,
we take a Wikipedia article and we extract n consecutive words out of a
paragraph. Then we skip two words, after which we extract the next n con-
secutive words, as long as they remain in the same paragraph. To extract
non-related text pairs we follow the same procedure, but we make sure
that the two texts are from different articles, which we choose at random.
This approach is closely related to the data collection practice used in [10].
We want to emphasize again that our vision of semantic similarity is one
of topic-based similarity instead of paraphrase-similarity, as discussed in
the introduction. This notion is reflected in our data collection. We extract
a total of 4.9 million related pairs and 4.9 million non-related pairs, each
for fixed-length texts of 20 words long. We also extract 4.9 million related
and non-related pairs of which the texts varies in length between 10 and
30 words. All datasets are divided into a train set of 1.5 million pairs, a test
set of 1.5 million pairs and a validation set of 1.9 million pairs.

3.4.2 Twitter

Twitter is a very different kind of medium than Wikipedia. Wikipedia ar-
ticles are written in a formal register and mostly consist of linguistically
correct sentences. Twitter messages, on the other hand, count no more
than 140 characters and are full of spelling errors, abbreviations and slang.

68 CHAPTER 3

We propose that two tweets are semantically related if they are gener-
ated by the same event. As in [1], we require that such an event is repre-
sented by one or more hashtags. Since Twitter posts and associated events
are very noisy by nature, we restrict ourselves to tweets by 100 English
news agencies. We manually created this list through inspection of their
Twitter accounts; the list is available through our GitHub page, see Section
3.6.

We gathered 341 949 tweets from all news agencies through the Twitter
REST API at the end of August 2015. We convert all words to lowercase,
replace all numbers by the single character ‘0’ and remove non-informative
hashtags such as #breaking, #update and #news. To generate related pairs out
of these tweets, we consider four simple heuristic rules:

1. The number of words in each tweet, different from hashtags, men-
tions or URLs, should be at least 5.

2. The Jaccard similarity between the set of hashtags in both tweets
should be at least 0.5.

3. The tweets should be sent no more than 15 minutes from each other.

4. The Jaccard similarity between the set of words in both tweets should
be less than 0.5.

We add the last rule in order to have sufficient word dissimilarity between
the pairs, as tweets that mostly contain the same words are too easy to re-
late. To generate non-related pairs, we remove rule 3 and rule 2 is changed:
the Jaccard similarity between sets of hashtags should now be zero. Using
these heuristics, we generate a train set of 15 000 pairs, a validation set of
20 000 pairs and a test set of 13 645 pairs, of which we remove all over-
lapping hashtags. We manually label 200 generated pairs and non-pairs,
and we achieve an error rate of 28%. Due to the used heuristics and the
linguistic nature of tweets in general, the ground truth can be considered
very noisy; achieving an error rate lower than around 28% on this dataset
will therefore be difficult, and the gain would not lead to a better model of
the human notion of similarity anyway.

3.5 Experiments

In this section we discuss the results of several experiments on all aspects
of our methodology given the data we collected. First we will discuss some
results using the Wikipedia dataset, after which we also take a look at the
Twitter dataset. We will use two performance metrics in our evaluation.

REPRESENTATION LEARNING FOR VERY SHORT TEXTS 69

The first is the optimal split error, i.e. we classify all pairs according to
Equation (3.2)—after determining the optimal split point θ—and we de-
termine the classification error rate. A second performance metric is the
Jensen-Shannon (JS) divergence. This is a symmetric distance measure
between two probability distributions, related to the—well-known, but
asymmetric—KL divergence. We will use it to capture the difference be-
tween the related and non-related pairs’ distributions, as shown in Figure
3.2. The bigger the JS divergence, the greater the difference between the
two distributions.

In our experiments we will use Google’s word2vec software to calculate
word embeddings. We choose Skip-gram with negative sampling as the
learning algorithm, using a context window of five words and 400 dimen-
sions. We feed an entire cleaned English Wikipedia dump of March 4th
2015 to the algorithm, after which we arrive at a total vocabulary size of
2.2 million words. Since we also need document frequencies, we calculate
these for each of the vocabulary words using the same Wikipedia dump.

In previous work we showed that using an Euclidean distance function
leads to a much better separation between related and non-related pairs
than the more often used cosine distance, so we will also use the Euclidean
distance throughout our experiments here [27]. Calculating the gradient
of this distance function—which is used in Equation (3.7)—is straightfor-
ward.

To obtain the results hereafter, we use the following procedure. We use
the train set to train the weights wj in Equation (3.3). The validation set
is used to determine the optimal split point θ in Equation (3.2). Finally
predictions and evaluations are made on the test set. In the next two sub-
sections we discuss the results on the Wikipedia and Twitter datasets.

3.5.1 Baselines

We will compare the performance of our methods to several baseline mech-
anisms that construct sentence vector representations. The simplest and
most widely used baseline is a tf-idf vector. Comparing two tf-idf vectors
is done through a standard cosine similarity. In a second baseline we sim-
ply take, for every dimension, the mean across all embeddings:

∀` ∈ {α, β} : ∀k ∈ {1, . . . , ν} : t(C`)k = mean
j

C`
j,k. (3.15)

In the third baseline we replace the mean by a maximum operation.
Taking a mean or a maximum is a very common approach to com-
bine word embeddings—or other intermediary representations in an NLP

70 CHAPTER 3

Table 3.1: Results for the Wikipedia data, for texts of length 20 and variable lengths,
using Wikipedia and Google embeddings.

W
ik

ip
ed

ia
,2

0
w

or
ds

W
ik

ip
ed

ia
,v

ar
ia

bl
e

le
ng

th
G

oo
gl

e,
va

ri
ab

le
le

ng
th

Sp
lit

er
ro

r
JS

di
ve

rg
en

ce
Sp

lit
er

ro
r

JS
di

ve
rg

en
ce

Sp
lit

er
ro

r
JS

di
ve

rg
en

ce
Tf

-i
df

19
.6

0%
0.

36
98

22
.2

3%
0.

31
90

22
.5

0%
0.

31
30

M
ea

n
19

.4
3%

0.
37

81
25

.6
1%

0.
25

43
34

.4
1%

0.
11

30
M

ax
19

.0
5%

0.
39

81
27

.0
9%

0.
23

08
37

.0
5%

0.
08

42
M

in
/m

ax
16

.7
8%

0.
45

20
26

.1
9%

0.
24

87
35

.8
2%

0.
10

32
M

ea
n,

to
p

30
%

id
f

17
.0

2%
0.

44
35

22
.6

7%
0.

31
82

32
.0

7%
0.

15
12

M
ax

,t
op

30
%

id
f

18
.0

5%
0.

41
93

28
.3

2%
0.

21
50

36
.3

8%
0.

09
99

M
in

/m
ax

,t
op

30
%

id
f

16
.4

0%
0.

45
81

27
.8

6%
0.

22
60

35
.6

1%
0.

11
40

M
ea

n,
id

f-
w

ei
gh

te
d

24
.0

0%
0.

27
67

27
.5

1%
0.

21
39

33
.8

8%
0.

11
85

Le
ar

ne
d

w
ei

gh
ts

,c
on

tr
as

ti
ve

14
.4

4%
0.

50
80

21
.2

0%
0.

35
03

30
.5

0%
0.

17
76

Le
ar

ne
d

w
ei

gh
ts

,m
ed

ia
n

14
.0

6%
0.

51
84

16
.4

1%
0.

46
02

25
.1

0%
0.

26
41

REPRESENTATION LEARNING FOR VERY SHORT TEXTS 71

architecture—into a sentence representation. We can also replace the max-
imum in Equation (3.15) by a minimum. The fourth baseline is a concate-
nation of the maximum and minimum vectors, resulting in a vector having
two times the original dimensionality (‘min/max’). We can also apply the
three previous baselines—i.e. ‘mean’, ‘max’ and ‘min/max’—only consid-
ering words with a high idf value (‘top 30% idf’). That is, we sort the words
in a text based on their idf values, and we take the mean or maximum of
the top 30%. In a final baseline we weigh each word in the sentence with
its corresponding idf value and then take the mean (‘mean, idf-weighted’).

3.5.2 Details on the learning procedure

In the results below we use the methodology from Section 3.3 to learn
weights for individual words in a short text. All procedures are imple-
mented with the Theano3 framework and executed using an Nvidia Tesla
K40 GPU. We use mini-batch stochastic gradient descent as learning pro-
cedure and L2 regularization on the weights. The total loss for one training
batch thus becomes:

Ltotal = Lbatch + λ
nmax

∑
j=1

w2
j . (3.16)

In this, we empirically set parameter λ to 0.001, and Lbatch is either equal
to the contrastive or median-based loss depending on the experiment. The
batch size is equal to 100 text couples, of which 50 are related pairs and
50 are non-related pairs. An initial learning rate η of 0.01 is employed,
which we immediately lower to 0.001 once the average epoch loss starts to
deteriorate. After that, we stop training when the loss difference between
epochs is below 0.05%. The weights are initialized uniformly to a value of
0.5. The entire procedure is visualised in Algorithm 3.1. To determine the
optimal value of the hyperparameter κ in the median-based loss, we use
five-fold cross-validation and a grid search procedure.

3.5.3 Results on Wikipedia

We train weights for Wikipedia texts with a fixed length of 20 words using
the training procedure described in the previous section. The weights al-
ready converge before the first training epoch is finished, that is, without
having seen all examples in the train set. This is due to the simplicity of
our model—i.e. there are only limited degrees of freedom to be learned—
and the large train set. Through cross-validation and grid-search we find

3deeplearning.net/software/theano

deeplearning.net/software/theano

72 CHAPTER 3

Algorithm 3.1: Detailed training procedure

1 ∀j : wj ← 0.5
2 η ← 0.01
3 Lmean-old ← ∞
4 repeat
5 Lmean = 0 // new epoch
6 for batch i ∈ dataset do
7 Ltotal ← Lbatchi + λ ∑nmax

j=1 w2
j

8 ∀j : wj ← wj − η · ∂
∂wj
Ltotal // gradient descent

9 Lmean ← (i−1)Lmean+Ltotal
i // update mean loss

10 if η > 0.001∧ Lmean > Lmean-old then
11 η ← 0.001

12 if η == 0.001∧ Lmean-old −Lmean < 0.0005 then
13 STOP

14 Lmean-old ← Lmean

15 until STOP

an optimal value for κ = 160 used in the median-based loss. The result-
ing weights for texts of 20 words long are visualized in Figure 3.3, for both
the contrastive- and median-based loss. In both cases, the weights drop in
magnitude with increasing index; this confirms the hypothesis that words
with a low idf contribute less to the overall meaning of a sentence than
high idf words. For the median-based loss, the first word is clearly the
most important one, as the second weight is only half the first weight. It is
important to point out that we observe a similar monotonically decreasing
pattern for texts of 10 words and 30 words long, which means that we use
an equal proportion of important to less important words, no matter how
long the sentence is. From the 16th word on, the weights are close to zero,
so these words almost never contribute to the meaning of a text. In com-
parison, there are, by experiment, eight non-informative words on average
in a text of twenty words long.

The results of the experiments are summarized in Table 3.1. In a first
experiment we compare the performance of our approach to all baselines
for texts of length 20 and with word embeddings trained on Wikipedia.
Our method significantly outperforms all baselines (p < 0.001, two-tailed
binomial test) by a high margin for both losses. We also see that a plain

REPRESENTATION LEARNING FOR VERY SHORT TEXTS 73

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Contrastive loss
Median loss

1 6 11 16
Weight index j

W
ei

gh
tm

ag
ni

tu
de

w
j

0

1

Figure 3.3: Plot of the learned weight magnitudes for texts of 20 words long.

tf-idf vector can compete with the simplest and most widely used base-
lines. We further notice that concatenating the minimum and maximum
vectors performs approx 2.25% better than when using a maximum vector
alone, which implies that the sign in word embeddings holds semantically
relevant information.

In a second experiment we vary the length of the texts between 10 and
30 words. The overall performance drop can be addressed to the presence
of text pairs with a length shorter than 20 words. Tf-idf now outperforms
all baselines. For texts of 30 words the probability of word overlap is after
all much higher than for texts of 10 words long; pairs of long texts thus help
lower the error rate for tf-idf. Our method is still the overall best performer
(p < 0.001, two-tailed binomial test), but this time the median-based loss
is able to improve the contrastive-based loss by a high margin of almost
5% in split error, showing that the former loss is much more robust in a
variable-length setting.

Finally, we also performed experiments with word embeddings from
Google News, see footnote 1. We want to stress that we did not retrain
the weights for this experiment in order to test whether our technique is
indeed applicable out-of-the-box. There is only 20.6% vocabulary overlap
between the Wikipedia and Google word2vec model, and there are only
300 dimensions instead of 400, which together can explain the overall per-

74 CHAPTER 3

Table 3.2: Results for the Twitter data using Wikipedia embeddings.

Split error JS divergence
Tf-idf 43.09% 0.0634
Mean 33.68% 0.0783
Max 34.85% 0.0668
Min/max 33.80% 0.0734
Mean, top 30% idf 32.60% 0.0811
Max, top 30% idf 33.38% 0.0740
Min/max, top 30% idf 32.86% 0.0762
Mean, idf-weighted 31.28% 0.0886
Learned weights, contrastive 35.48% 0.0658
Learned weights, median 30.88% 0.0900

formance drop of the word embedding techniques. It is also possible that
the Google embeddings are no right fit to be used on Wikipedia texts. Al-
though our model was not trained to perform well on Google embeddings,
we still achieve the best error rate of all embedding baselines (p < 0.001,
two-tailed binomial test), and again the median loss outperforms the con-
trastive loss by approx 5%. Tf-idf, on the other hand, is the clear winner
here; it did almost not suffer from the vocabulary reduction. It shows that
vector dimensionality and context of usage are important factors in choos-
ing or training word embeddings.

3.5.4 Results on Twitter

Next we perform experiments on the data collected from Twitter. We do
not train additional word embeddings for Twitter, but we keep using the
Wikipedia embeddings, since we have restricted ourselves to tweets of
news publishers, who mainly use clean language. We also keep the same
setting for κ as in the Wikipedia experiments.

The results for the Twitter experiments are shown in Table 3.2. As ex-
pected, the error rate is quite high given the noise present in the dataset.
We also notice that the split error remains slightly higher than the human
error rate of 28%. Tf-idf performs worst in this experiment. Compared
to Wikipedia, tf-idf vectors for tweets are much sparser, which leads to
a higher error rate. Tf-idf is clearly not fit to represent tweets efficiently.
The baselines on the other hand have a much better, but overall compara-
ble performance. Our method with median-based loss performs the best.
The approach using contrastive loss performs worst among all embedding
baselines, as during training the distribution of distances between related
and between non-related texts rapidly gets skewed and develops addi-

REPRESENTATION LEARNING FOR VERY SHORT TEXTS 75

tional modes. This causes the overall training loss to decrease, while the
overlap between the related pairs’ and non-related pairs’ distribution fur-
ther increases. The overall improvement of the median-based loss over the
idf-weighted baseline is not statistically significant (p > 0.05, two-tailed
binomial test); so, based on this Twitter dataset alone, we cannot draw
any statistically sound conclusion whether our method is better in terms of
split error than the idf-weighted baseline. Combined with the results from
Table 3.1, however, we can conclude that choosing median-based learned
weights is generally recommended.

3.6 Conclusion

We devised an effective method to derive vector representations for very
short fragments of text. For this purpose we learned to weigh word embed-
dings based on their idf value, using both a contrastive-based loss function
and a novel median-based loss function that can effectively mitigate the ef-
fect of outliers. Our method is applicable to texts of a fixed length, but can
easily be extended to texts of a variable length through subsampling and
linear interpolation of the learned weights. Our method can be applied
out-of-the-box, that is, there is no need to retrain the model when using
different types of word embeddings. We showed that our method out-
performs widely-used baselines that naively combine word embeddings
into a text representation, using both toy Wikipedia and real-word Twit-
ter data. All code for this paper is readily available on our GitHub page
github.com/cedricdeboom/RepresentationLearning.

github.com/cedricdeboom/RepresentationLearning

76 CHAPTER 3

References

[1] C. De Boom, S. Van Canneyt, and B. Dhoedt. Semantics-driven Event
Clustering in Twitter Feeds. In #MSM, 2015.

[2] N. Jonnalagedda and S. Gauch. Personalized News Recommendation Us-
ing Twitter. In Web Intelligence (WI) and Intelligent Agent Technolo-
gies (IAT), 2013 IEEE/WIC/ACM International Joint Conferences on,
2013.

[3] P. Achananuparp, X. Hu, and X. Shen. The Evaluation of Sentence Sim-
ilarity Measures. In DaWaK 2008: International Conference on Data
Warehousing and Knowledge Discovery, 2008.

[4] C. Manning, P. Raghavan, and H. Schütze. An Introduction to Informa-
tion Retrieval. Cambridge University Press, 2009.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman. Indexing by Latent Semantic Analysis. JASIS, 1990.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Ma-
chine Learning, 2003.

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of
Word Representations in Vector Space. In Proceedings of Workshop at
ICLR, 2013.

[8] R. Lebret and R. Collobert. N-gram-Based Low-Dimensional Representa-
tion for Document Classification. arXiv.org, 2015. arXiv:1412.6277.

[9] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural Language Processing (Almost) from Scratch. The Jour-
nal of Machine Learning Research, 2011.

[10] B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional Neural Network Ar-
chitectures for Matching Natural Language Sentences. In NIPS 2014: Ad-
vances in Neural Information Processing Systems, 2014.

[11] J. Xu, P. Wang, G. Tian, B. Xu, J. Zhao, and F. Wang. Short Text Cluster-
ing via Convolutional Neural Networks. In Proceedings of NAACL- . . . ,
2015.

[12] R. Johnson and T. Zhang. Semi-Supervised Learning with Multi-View
Embedding: Theory and Application with Convolutional Neural Networks.
arXiv.org, 2015. arXiv:1504.01255v1.

REPRESENTATION LEARNING FOR VERY SHORT TEXTS 77

[13] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A Convolutional
Neural Network for Modelling Sentences. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational Linguistics, 2014.

[14] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning
with Neural Networks. In NIPS 2014, 2014.

[15] A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. G. Simonsen, and J.-Y.
Nie. A Hierarchical Recurrent Encoder-Decoder For Generative Context-
Aware Query Suggestion. arXiv.org, 2015. arXiv:1507.02221v1.

[16] M. Sundermeyer, H. Ney, and R. Schluter. From Feedforward to Recur-
rent LSTM Neural Networks for Language Modeling. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, 2015.

[17] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba,
R. Urtasun, and S. Fidler. Skip-Thought Vectors. arXiv.org, 2015.
arXiv:1506.06726v1.

[18] Q. V. Le and T. Mikolov. Distributed Representations of Sentences and
Documents. arXiv.org, 2014. arXiv:1405.4053v2.

[19] J. Weston, S. Chopra, and K. Adams. #TagSpace: Semantic embeddings
from hashtags. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2014.

[20] C. N. dos Santos and M. Gatti. Deep Convolutional Neural Networks for
Sentiment Analysis of Short Texts. In COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics, 2014.

[21] W. Yin and H. Schütze. Convolutional Neural Network for Paraphrase
Identification. In HLT-NAACL, 2015.

[22] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger. From Word
Embeddings To Document Distances. ICML, 2015.

[23] T. Kenter and M. de Rijke. Short Text Similarity with Word Embeddings.
In International Conference on Information and Knowledge Manage-
ment, 2015.

[24] L. Kang, B. Hu, X. Wu, Q. Chen, and Y. He. A Short Texts Matching
Method using Shallow Features and Deep Features. In Third CCF Confer-
ence, NLPCC 2014, 2014.

[25] J. Bromley, I. Guyon, Y. Lecun, E. Säckinger, and R. Shah. Signature
Verification Using a Siamese Time Delay Neural Network. NIPS, 1993.

78 CHAPTER 3

[26] R. Hadsell, S. Chopra, and Y. Lecun. Dimensionality Reduction by Learn-
ing an Invariant Mapping. In CVPR, 2006.

[27] C. De Boom, S. Van Canneyt, S. Bohez, T. Demeester, and B. Dhoedt.
Learning Semantic Similarity for Very Short Texts. In International Con-
ference on Data Mining Workshop, 2015.

4
Character-level Recurrent Neural
Networks in Practice: Comparing

Training and Sampling Schemes

“Alles is, alles is, alles is belangrijk. Zo voorbij, zo voorbij. Wie heeft er tijd, want
het is zo voorbij.”

—Buurman, 2017

The main issue with the text representation discussed in Chapter 3 is that
the order of the words is not preserved. In this chapter, we will therefore explore
truly sequential models for text representations, which process one token after the
other in a sequence. More specifically, we will focus on recurrent neural networks
that take individual characters as input, so-called ‘character-level recurrent neural
networks’. The goal of this chapter is to provide the user of such models with some
practical guidelines and details on the training and sampling procedures. In chap-
ters 5 and 6 we will use recurrent neural networks in some practical applications,
such as music generation and recommender systems.

? ? ?

C. De Boom, T. Demeester, and B. Dhoedt.

Appeared in Neural Computing and Applications, online, 2018.

80 CHAPTER 4

Abstract Recurrent neural networks are nowadays successfully used in an
abundance of applications, going from text, speech and image processing
to recommender systems. Backpropagation through time is the algorithm
that is commonly used to train these networks on specific tasks. Many
deep learning frameworks have their own implementation of training and
sampling procedures for recurrent neural networks, while there are in fact
multiple other possibilities to choose from and other parameters to tune.
In existing literature this is very often overlooked or ignored. In this paper
we therefore give an overview of possible training and sampling schemes
for character-level recurrent neural networks to solve the task of predicting
the next token in a given sequence. We test these different schemes on a va-
riety of datasets, neural network architectures and parameter settings, and
formulate a number of take-home recommendations. The choice of train-
ing and sampling scheme turns out to be subject to a number of trade-offs,
such as training stability, sampling time, model performance and imple-
mentation effort, but is largely independent of the data. Perhaps the most
surprising result is that transferring hidden states for correctly initializing
the model on subsequences often leads to unstable training behavior de-
pending on the dataset.

4.1 Introduction

Dynamic sequences of discrete tokens are abundant and we encounter
them on a daily basis. Examples of discrete tokens are characters or words
in a text, notes in a musical composition, pixels in an image, actions in a
reinforcement learning agent, web pages one visits, tracks one listens to on
a music streaming service etc. Each of these tokens appears in a sequence,
in which there is often a strong correlation between consecutive or nearby
tokens. For example, the similarity between neighboring pixels in an im-
age is very large since they often share similar shades of colors. Words in
sentences, or characters in words, are also correlated because of the under-
lying semantics and language characteristics.

In this paper only discrete tokens are considered as opposed to se-
quences of real-valued samples, such as stock prices, analog audio signals,
word embeddings, etc. but our methodology is also applicable to these
kinds of sequences. A sequence of discrete tokens can be presented to a ma-
chine learning model that is designed to assess the probability of the next
token in the sequence by modeling p(xn|xn−1, xn−2, . . . , x1), in which xi is
the i’th token in the sequence. These kinds of models are the underlying
mechanisms of autoregressive models [1], recurrent and recursive models,
dynamical systems etc. In the field of natural language processing (NLP)

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 81

they are called language models, in which each token stands for a separate
word or n-gram [2]. Since these models give us a probability distribution
of the next token in the sequence, a sample from this distribution can be
drawn and thus a new token for the sequence is generated. By recursively
applying this generation step, entire new sequences can be generated. In
NLP, for example, a language model is not only capable of assessing proper
language utterances but also of generating new and unseen text.

One particular type of generative models that has become popular in
the past years is the recurrent neural network (RNN). In a regular neu-
ral network a fixed-dimensional feature representation is transformed into
another feature representation through a non-linear function; multiple in-
stances of such feature transformations are applied to calculate the final
output of the neural network. In a recurrent neural network this process
of feature transformations is also repeated in time: at every time step a
new input is processed and an output is produced, which makes it suit-
able for modeling time series, language utterances etc. These dynamic se-
quences can be of variable length, and RNNs are able to effectively model
semantically rich representations of these sequences. For example, in 2013,
Graves showed that RNNs are capable of generating structured text, such
as a Wikipedia article, and even continuous handwriting [3]. From then
on these models have shown great potential at modeling the temporal dy-
namics of text, speech as well as audio signals [4–6]. Recurrent neural net-
works can also effectively generate new images on a per pixel basis, as was
shown by Gregor et al. with DRAW [7] and by van den Oord et al. with
PixelRNNs [8]. Next to this, in the context of recommender systems, RNNs
have been used successfully to model user behavior on online services and
to recommend new items to consume [9, 10].

Despite the fact that RNNs are abundant in scientific literature and in-
dustry, there is not much consensus on how to efficiently train these kinds
of models, and, to the extent of our knowledge, there are no focused contri-
butions in literature that tackle this question. The choice of training algo-
rithm very often depends on the deep learning framework at hand, while
in fact there are multiple factors that influence the RNN performance, and
those are often ignored or overlooked. Merity et al. have pointed out before
that “[the] training of RNN models [...] has fundamental trade-offs that
are rarely discussed” [11]. The goal of this paper is to study a number of
widely applicable training and sampling techniques for RNNs, along with
their respective (dis)advantages and trade-offs. These will be tested on a
variety of datasets, neural network architectures, and parameter settings,
in order to gain insights into which algorithm is best suited. In the next sec-
tion the concept of RNNs is introduced and, more specifically, character-

82 CHAPTER 4

level RNNs, and how these models are trained. In Section 4.3 four different
training and sampling methods for RNNs are detailed. After that, in Sec-
tion 4.4, we will present experimental results on the accuracy, efficiency
and performance of the different methods. We will also present a set of
take-home recommendations and a range of future research tracks. Finally,
the conclusions are listed in Section 4.6. Table 4.1 gives an overview of the
symbols that will be used throughout this paper in order of appearance.

Table 4.1: Tabel of symbols in order of appearance.

xi, xi Input token i, input vector i
hi, hi Hidden state i, hidden state vector i
yi, yi Output token i, output vector i
f (·), g(·) Parameterized and differentiable functions
L(·) Loss function
η Learning rate
w, W Arbitrary weight, arbitrary weight matrix
k1 Number of time steps after which one truncated BPTT opera-

tion is performed
k2 Number of time steps over which gradients are backpropa-

gated in truncated BPTT
φ(·) Nonlinear activation function
σ(·) Sigmoid function: σ(x) = 1/(1+exp(−x))

R RNN model
R(·) Output function of RNN modelR
Ri Hidden state i of RNN modelR
� Element-wise vector multiplication operator
⊕ Sequence concatenation operator
D, Dtrain, Dtest Dataset, train set, test set
V Ordered set of tokens appearing in a dataset (‘vocabulary’)
r Number of recurrent layers in an RNN model
γ Dimensionality of the recurrent layers in an RNN model

4.2 Character-level Recurrent Neural Networks

As mentioned in the introduction, this paper mainly focuses on dy-
namic sequences of discrete tokens. Generating and modeling such se-
quences is the core application of a specific type of recurrent neural net-
works: character-level recurrent neural networks. Recurrent neural net-
works (RNN) are designed to maintain a summary of the past sequence
in their memory or so-called hidden state, which is updated whenever a
new input token is presented. This summary is used to make a predic-
tion about the next token in the sequence, i.e. the model p(xn|hn−1) in

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 83

which the hidden state hn−1 of the RNN is a function of the past sequence
(xn−1, xn−2, . . . , x1). Formally, we have:

hn = f (xn, hn−1),

xn+1 = g(hn). (4.1)

Given an adequate initialization h0 of the hidden state and trained param-
eterized functions f (·) and g(·), the previous scheme can be used to gen-
erate an infinite sequence of tokens. In character-level RNNs specifically,
all input tokens are discrete and g(·) is a stochastic function that produces
a probability mass function over all possible tokens. To produce the next
token in the sequence, one can sample from this mass function or simply
pick the token with the highest probability:

hn = f (xn, hn−1),

xn+1 ∼ g(hn). (4.2)

Since the hidden state at time step n is only dependent on the tokens up to
time n and not on future tokens, a character-level RNN can be regarded as
the following fully probabilistic generative model [12]:

p(x1:N) =
N

∏
n=1

p(xn|x1:n−1) =
N

∏
n=1

p(xn, hn−1). (4.3)

In this, we have used the slice notation xk:`, which means (xk, xk+1, . . . , x`).
As a side comment, even though their name only refers to character-based
language models, character-level RNNs are fit to model a wide variety of
discrete sequences, for which we refer the reader to the introduction sec-
tion.

4.2.1 Truncated backpropagation through time

Regular feedforward neural networks are trained using the backpropagation
algorithm [13]. In this, a certain input is first propagated through the net-
work to compute the output. This is called the forward pass. The output is
then compared to a ground truth label using a differentiable loss function.
In the backward pass the gradients of the loss with respect to all the param-
eters in the network are computed by application of the chain rule. Finally,
all parameters are updated using a gradient-based optimization procedure
such as gradient descent [14]. In neural network terminology, the parame-
ters of the network are also called the weights. If the loss function between
the network output y and the ground truth label ŷ is denoted by L(y, ŷ),

84 CHAPTER 4

xn

hn

xn+1

f

g
unroll

· · ·

xn−1

hn−1

xn

f

g

xn

hn

xn+1

f

g

xn+1

hn+1

xn+2

f

g

· · ·

Figure 4.1: Unrolling a recurrent neural network in time. Functions f (·) and g(·)
and their parameters are shared across all time steps.

and the vector of all weights in the network by w, a standard update rule
in gradient descent is given by:

w← w− η · ∇wL(y, ŷ). (4.4)

Here, η is the so-called learning rate, which controls the size of the steps
taken with each weight update. In practice, input samples will be orga-
nized in equally-sized batches sampled from the training dataset for which
the loss is averaged or summed, leading to less noisy updates. This is
called mini-batch gradient descent. Other gradient descent flavors such
as RMSprop and Adam further extend on Equation (4.4), making the opti-
mization procedure even more robust [15].

In recurrent neural networks a new input is applied for every time step,
and the output at a certain time step is dependent on all previous inputs, as
was shown in Equation (4.3). This means that the loss at time step N needs
to be backpropagated up until the applied inputs at time step 1. This pro-
cedure is therefore called backpropagation through time (BPTT) [12]. If the
sequence is very long, BPTT quickly becomes inefficient: backpropagat-
ing through 100 time steps can be compared to backpropagating through
a 100-layer deep feedforward neural network. Unlike with feedforward
networks however, in RNNs the weights are shared across time. This can
best be seen if we unroll the RNN to visualize the separate time steps, see
Figure 4.1.

To scale backpropagation through time for use with long sequences,
the gradient update is often halted after having traversed a fixed number
of time steps. Such a procedure is called truncated backpropagation through
time. Apart from stopping the gradient updates from backpropagating all
the way to the beginning of the sequence, we also limit the frequency of
such updates. For a given training sequence, truncated BPTT then pro-
ceeds as follows. Every time step a new token is processed by the RNN,

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 85

h0

x1

h1

x2

x2

h2

x3

x3

h3

x4

x4

h4

x5

x5

h5

x6

x6

h6

x7

x7

h7

x8

k1

k2

Figure 4.2: Example of trunctated backpropagation through time for k1 = 2 and
k2 = 3. The thick arrows indicate one backpropagation through time
update.

and whenever k1 tokens have been processed in the so-called forward pass—
and the hidden state is updated k1 times—truncated BPTT is initiated by
backpropagating the gradients for k2 time steps. Here, by analogy with
Sutskever [12], we have denoted the number of time steps between per-
forming truncated BPTT by k1 and the length of the BPTT by k2. We will
keep using these parameters throughout this paper. A visual explanatory
example of truncated BPPT can be found in Figure 4.2, which shows how
every two (k1) time steps the gradients are backpropagated for three (k2)
time steps. Note that, in order to remain as data efficient as possible, k1
should preferably be less than or equal to k2, since otherwise some data
points would be skipped during training.

4.2.2 Common RNN layers

As mentioned before, RNNs keep a summary of the past sequence encoded
in a hidden state representation. Whenever a new input is presented to the
RNN, this hidden state gets updated. The way in which the update hap-
pens depends on the internal dynamics of the RNN. The simplest version
of an RNN is an extension of a feedforward neural network, in which ma-
trix multiplications are used to perform input transformations:

ui+1 = φ (Wiui + bi) (4.5)

86 CHAPTER 4

in which ui is the vector representation at the i’th layer of the neural net-
work, Wi is the matrix containing the weights of this layer, and bi is the
vector of biases. The function φ(·) is a nonlinear transformation function,
also called activation function; often used examples are the sigmoid logis-
tic function σ(·), tanh(·) or rectified linear units (ReLU) and their variants.
In the case of RNNs, the hidden state update is rewritten in the style of
Equation (4.1) as follows:

hn = φ (Wxxn + Whhn−1 + b) . (4.6)

The output of the RNN can be computed with Equation (4.5) using hn as
input vector.

To help the RNN model long-term dependencies and to counter the
vanishing gradient problem [16], several extensions on Equation (4.6) have
been proposed. The best known examples are long short-term memories
(LSTMs) and, more recently, gated recurrent units (GRUs), which both
have comparable characteristics and similar performance on a variety of
tasks [17–19]. Both LSTMs and GRUs incorporate a gating mechanism
which controls to what extent the new input is stored in memory and the
old memory is forgotten. For this purpose the LSTM introduces an input
(in) and forget (fn) gate, as well as an output gate (on):

in = σ (Uixn + Wihn−1 + wi � cn−1 + bi) ,

fn = σ (Ufxn + Wfhn−1 + wf � cn−1 + bf) ,

cn = ft � cn−1 + in � tanh (Ucxn + Wchn−1 + bc) ,

on = σ (Uoxn + Wohn−1 + wo � cn−1 + bo) ,

hn = on � tanh (cn) , (4.7)

Here, the symbol � stands for the element-wise vector multiplication.
Note that the LSTM uses two types of memories: a hidden state hn and
a so-called cell state cn. Compared to LSTMs, GRUs do not have this extra
cell state and only incorporate two gates: a reset and update gate [20]. This
reduces the overall number of parameters and generally speeds up learn-
ing. The choice of LSTMs versus GRUs is dependent on the application at
hand, but in the experiments of this paper we will use LSTMs as these are
currently the most widely used RNN layers.

Since in neural networks multiple layers are usually stacked onto one
another, this is also possible with recurrent layers. In that case, the output
at time step n is fed to the input of the next recurrent layer, also at time
step n. Each layer thus processes the sequence of outputs produced by the
previous layer. This will, of course, significantly slow down BPTT.

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 87

4.3 Training and sampling schemes for character-
level RNNs

In this section four schemes are presented on how to train character-level
RNNs and how to sample new tokens from them. The task of the RNN
model is independent of these schemes and its purpose is to predict the
next symbol or character in a sequence given all previous tokens. The train-
ing and sampling schemes are thus merely a practical means to solve the
same task, and in later sections the effect of the used scheme on the perfor-
mance and efficiency of the RNN model is studied. We already point out
that the four schemes presented are among the most basic and practical
methods to train and sample from RNNs, but of course many more com-
binations or variants could be devised. In the discussion of the different
schemes a general character-level RNN will be denoted by R, and R(x) is
the output of the RNN by applying token x at its input. This output is a
vector that represents a probability distribution across all characters. For
notational convenience, we write the i’th hidden state of the RNN byRi.

4.3.1 High-level overview

As mentioned before, we will isolate four different schemes on how to train
RNNs and how to sample new tokens from them. Each scheme fits in the
truncated BPTT framework, and is in fact a practical approximation of the
original algorithm. So whenever we use the k1 and k2 parameters, these
refer to the definitions we gave in Section 4.2.1. It is also important to keep
in mind that the task for all schemes is the same, namely to predict the next
token in a given sequence.

To help understand the mechanisms of each scheme, we visualized
them schematically in Figures 4.3, 4.4, 4.5 and 4.6. In the training proce-
dures we have drawn the output tokens for which a loss is defined. We
see that, for example, the main difference of scheme 2 compared to scheme
1 is that we only compute a loss for the final output token instead of for
all output tokens during training. Regarding the sampling procedures, in
the first two schemes a new token is always sampled starting from the
same initial hidden state, which is colored light gray. We call this principle
‘windowed sampling’. In schemes 3 and 4, on the other hand, sampling a
new token is based on the current hidden state and by applying the pre-
vious token at the input of the RNN. This sampling procedure is called
‘progressive sampling’. In the training procedure of scheme 4 we observe
a similar technique, in which the hidden state is carried across subsequent
sequences. In the next subsections we will give details on all training and

88 CHAPTER 4

a

b

b

c

c

d

a b c

d

b c d

e

Multi-loss training Windowed sampling

Figure 4.3: Graphical visualization of scheme 1.

a b c

d

a b c

d

b c d

e

Single-loss training Windowed sampling

Figure 4.4: Graphical visualization of scheme 2.

a

b

b

c

c

d

a b c

d

d

e

· · ·

· · ·

· · ·
Multi-loss training Progressive sampling

Figure 4.5: Graphical visualization of scheme 3.

a

b

b

c

c

d

c

d

d

e

e

f

a b c

d

d

e

· · ·

· · ·

· · ·
Conditional multi-loss training Progressive sampling

Figure 4.6: Graphical visualization of scheme 4. The shaded circle is the remem-
bered hidden state.

sampling procedures, after which we go over the practical details of the
different schemes one by one. We mention that the schemes are described
without batching, while in practice mini-batch training is usually done, as
motivated in Section 4.2.1. The schemes, however, are easily transferred to
a batched setting.

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 89

4.3.2 Training algorithms

We have isolated three different training procedures for character-level
RNNs. A first algorithm is called multi-loss training, and a rudimen-
tary outline of this is shown in Algorithm 4.1. The input sequences all
have length k2 and are subsequently taken from the train set by skipping
every k1 characters. For each input token a loss is calculated at the out-
put of the RNN. When the entire sequence is processed, the average of all
losses which we use to update the RNN weights is calculated. We also reset
the hidden state of the RNN for each new training sequence. This initial
hidden state will be learned through backpropagation together with the
weights of the RNN. In practice, for every input sequence of k2 characters,
the initial hidden state will be the same. Note that for LSTMs, the hidden
state comprises both the hidden and cell vectors from Equation (4.7). The
truncated_BPTT procedures on lines 10 and 12 calculates the gradients of
the loss with respect to all weights in the RNN using backpropagation. The
optimize procedure on lines 11 and 13 then uses these gradients to update
the weights using (a variant of) Equation (4.4).

Algorithm 4.1: Multi-loss training procedure
input : dataset D of tokens, RNNR, initial hidden state

vector h0, loss function L
parameters: truncated BPTT parameters k1 and k2, learning rate η

1 repeat
2 j← 1
3 while j < size(D)− k2 do
4 loss← 0
5 R0 ← h0

6 s← Dj:j+k2

7 foreach token pair (xi, xi+1) ∈ s do
8 y← R(xi)

9 loss← loss + L(y,xi+1)/k2

10 ∀w ∈ R : ∂loss/∂w← truncated_BPTT(loss, w, k2)
11 ∀w ∈ R : optimize(w, ∂loss/∂w, η)
12 ∇h0 loss← truncated_BPTT(loss, h0, k2)
13 optimize(h0,∇h0 loss, η)
14 j← j + k1

15 until convergence

90 CHAPTER 4

In single-loss training, instead of defining a loss on all outputs of the
RNN—which forces the RNN to make good predictions for the first few
tokens of the sequence—we only define a loss on the final predicted token
in the sequence. The complete training procedure is shown in Algorithm
4.2. The difference with Algorithm 4.1 is that the inner most loop does
not aggregate the loss for every RNN output. Now the loss is calculated
outside this loop on line 9, only for the final RNN output.

In both the multi-loss and single-loss procedures we always start train-
ing on a sequence from an initial hidden state that is learned. In condi-
tional multi-loss training, on the other hand, the multi-loss training proce-
dure is adapted to reuse the hidden state across different sequences. Such
an approach leans much closer to the original truncated BPTT algorithm
than when the initial state is always reset. The outline of the training
method is given in Algorithm 4.3. Since we are using truncated BPTT, the
procedure requires meticulous bookkeeping of the hidden state at every
time step, which can be observed in lines 11–12. This is especially true
when we work in a mini-batch setting where we also need to keep track of
how the subsequent batches are constructed.

Algorithm 4.2: Single-loss training procedure
input : dataset D of tokens, RNNR, initial hidden state

vector h0, loss function L
parameters: truncated BPTT parameters k1 and k2, learning rate η

1 repeat
2 j← 1
3 while j < size(D)− k2 do
4 R0 ← h0

5 s← Dj:j+k2

6 foreach token pair (xi, xi+1) ∈ s do
7 y← R(xi)

8 y′ ← xi+1

9 loss← L(y, y′)
10 ∀w ∈ R : ∂loss/∂w← truncated_BPTT(loss, w, k2)
11 ∀w ∈ R : optimize(w, ∂loss/∂w, η)
12 ∇h0 loss← truncated_BPTT(loss, h0, k2)
13 optimize(h0,∇h0 loss, η)
14 j← j + k1

15 until convergence

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 91

Algorithm 4.3: Conditional multi-loss training procedure
input : dataset D of tokens, RNNR, loss function L
parameters: truncated BPTT parameters k1 and k2, learning rate η

1 repeat
2 j← 0
3 h0 ← 0
4 while j < size(D)− k2 do
5 loss← 0
6 R0 ← h0

7 s← Dj:j+k2

8 foreach token pair (xi, xi+1) ∈ s do
9 y← R(xi)

10 loss← loss + L(y,xi+1)/k2

11 if i == k1 − 1 then
12 h0 ← Ri

13 ∀w ∈ R : ∂loss/∂w← truncated_BPTT(loss, w, k2)
14 ∀w ∈ R : optimize(w, ∂loss/∂w, η)
15 j← j + k1

16 until convergence

4.3.3 Sampling algorithms

Next to the training algorithms we have explained in the previous sec-
tion, we also discern two different sampling procedures. These are used to
generate new and previously unseen sequences. Both procedures have in
common that sampling is started with a seed sequence of k2 tokens that is
fed to the RNN. This is done in order to appropriately bootstrap the RNN’s
hidden state. After the seed sequence has been processed, the two proce-
dures start to differ.

In so-called windowed sampling the next token of the sequence is sam-
pled from the RNN after applying the seed sequence. This newly sampled
token is concatenated at the end of the sequence. After this, the hidden
state of the RNN is reset to its learned representation. Sampling the next
token proceeds in the same way: we take the last k2 tokens from the se-
quence that have been sampled thus far, we feed them to the RNN, the
next token is sampled and appended to the sequence, and the hidden state
of the RNN is reset. The entire windowed sampling procedure is sketched
in Algorithm 4.4. On line 6 of the algorithm, we have used the symbol ⊕
to indicate sequence concatenation.

92 CHAPTER 4

Algorithm 4.4: Windowed sampling procedure
input : RNNR, initial hidden state vector h0, seed sequence s
parameters: truncated BPTT parameter k2

1 repeat
2 R0 ← h0

3 s′ ← get_last_k_tokens(s, k = k2)
4 foreach token x ∈ s′ do
5 y← R(x)

6 s← s ⊕ sample(y)
7 until enough tokens in s

Algorithm 4.5: Progressive sampling procedure
input : RNNR, initial hidden state vector h0, seed sequence s
parameters: truncated BPTT parameter k2

1 R0 ← h0

2 foreach token x ∈ s do
3 y← R(x)

4 repeat
5 t← sample(y)
6 s← s⊕ t
7 y← R(t)
8 until enough tokens in s

In progressive sampling the next token in a sequence is always sam-
pled given the current hidden state and the previously sampled token.
That is, a token is applied at the input of the RNN, which updates its hid-
den state, and then the next token is sampled at the RNN output. The
initial hidden state is therefore never reset. This is the most intuitive way
of sampling from an RNN. The entire sampling procedure is given in Al-
gorithm 4.5. On lines 1–3 the RNN is bootstrapped using the initial hidden
state and the seed sequence. On the following lines, new tokens are contin-
uously sampled from the RNN one token at a time, so the inner loop from
Algorithm 4.4 is no longer needed.

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 93

4.3.4 Scheme 1 – Multi-loss training, windowed sampling

In a first scheme, multi-loss training (Algorithm 4.1) is combined with a
windowed sampling procedure (Algorithm 4.4). The main advantage of
using this scheme is that there is no need for hidden state bookkeeping
across sequences. Especially during training this can be cumbersome in
a batched version of the algorithm. One disadvantage is that sampling is
slower if k2 increases: to sample one new token k2 inputs need to be pro-
cessed. If the RNN model contains many layers, this can lead to scalability
issues. Another disadvantage is that a loss is defined on all k2 outputs of
the RNN during training. That is, we force the RNN to produce good to-
ken candidates after having seen only one or a few input tokens. This can
lead to a short-sighted RNN model that mostly looks at the more recent
history to make a prediction for the next token. In scheme 2 this potential
issue is solved using single-loss training.

4.3.5 Scheme 2 – Single-loss training, windowed sampling

In the second scheme, the multi-loss training procedure of scheme 1 is re-
placed by the single-loss equivalent of Algorithm 4.2. The main advan-
tage is that we allow the hidden state of the RNN a certain burn-in period,
so that predictions can be made using more knowledge from the past se-
quence. Burning in the hidden state also causes the RNN to be able to
learn long-term dependencies in the data, because we only make a predic-
tion after having seen k2 tokens. The potential drawback is that learning
is slower, since only one signal is backpropagated for every sequence com-
pared to k2 signals in the first scheme. The sampling algorithm, on the
other hand, is the same as in the first scheme, and now almost perfectly
reflects how the RNN has been trained, i.e. by only considering the final
token for each input sequence.

4.3.6 Scheme 3 – Multi-loss training, progressive sampling

In scheme number 3, we go back to the multi-loss training procedure of
scheme 1, but now the progressive sampling from Algorithm 4.5 is used
instead of windowed sampling. One drawback of the sampling method
in scheme 1 is that it is not very scalable for large values of k2, since we
need to feed a sequence of k2 tokens to the RNN for every token that is
sampled. In progressive sampling, on the other hand, the next token is
sampled immediately for every new input token. This way, the sampling
of new sequences is sped up by a factor of approximately k2, which is the
main advantage of this scheme.

94 CHAPTER 4

4.3.7 Scheme 4 – Conditional multi-loss training, progres-
sive sampling

In scheme 3 we still use standard multi-loss training, which resets the hid-
den state for every train sequence. Scheme 4 replaces this by the condi-
tional multi-loss training procedure from Algorithm 4.3, while maintain-
ing the progressive sampling algorithm. One of the main disadvantages of
using this particular training algorithm, is its requirement to keep track of
the hidden states across train sequences and to carefully select these train
sequences from the dataset, which can be hard in mini-batch settings. Next
to this, whenever the RNN weights are updated, the hidden state from be-
fore the update is reused, which can potentially lead to unstable learning
behavior. On the plus side, we are able to learn dependencies between
tokens that are more than k2 time steps away, since the hidden state is
remembered in between train sequences. Also, the need to learn an appro-
priate initial hidden state is eliminated, which can lead to a small speed-up
in learning.

4.3.8 Literature overview

We will now go over some of the works in literature that have used RNNs
for language modeling, on both character and word level. Most of the
works that are listed, describe or have described state-of-the-art results on
famous benchmarks such as the Penn Treebank dataset [40, 41], WikiText-
2 [11] and the Hutter Prize datasets [42]. The first two datasets are mainly
used to benchmark word-level language models, while the Hutter Prize
datasets are generally used for character-level evaluation. Some papers,
however, also train character-level models on the Penn Treebank dataset.
It is our purpose to give the reader a high-level idea of what schemes are
being used in existing literature. We do not intend to give a complete
overview of the literature on RNNs for language modeling. Instead, we
focus on highly cited works that have, at some point, reported state-of-the-
art results on some of the above-mentioned benchmarks. In this, attention
is given to the most recent literature in the field.

The overview can be found in Table 4.2. A distinction is made between
character-level models, word-level models and models that are applied on
both levels. At the bottom, three different applications are listed that have
used RNNs to model various sequential problems. We immediately notice
that only 5 out of the 22 investigated papers explicitly mention training
details regarding loss aggregation or hidden state propagation. In the other
cases we had to go through the source code manually to infer the training
and sampling scheme. If there was no source code available, we contacted

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 95

Table 4.2: Concise literature overview on RNN-based language models.

R
ef

er
en

ce
M

od
el

ty
pe

Sc
he

m
e

In
fo

rm
at

io
n

so
ur

ce
(G

ra
ve

s,
20

13
)[

3]
C

ha
ra

ct
er

-l
ev

el
3

A
ut

ho
r

co
m

m
un

ic
at

io
n

(W
u,

20
16

)[
21

]
C

ha
ra

ct
er

-l
ev

el
U

nk
no

w
n

(H
a,

20
16

)[
22

]
C

ha
ra

ct
er

-l
ev

el
U

nk
no

w
n

(C
oo

ijm
an

s,
20

16
)[

23
]

C
ha

ra
ct

er
-l

ev
el

3
A

ut
ho

r
co

m
m

un
ic

at
io

n
(K

ra
us

e,
20

16
)[

24
]

C
ha

ra
ct

er
-l

ev
el

4
A

ut
ho

r
co

m
m

un
ic

at
io

n
(C

hu
ng

,2
01

6)
[2

5]
C

ha
ra

ct
er

-l
ev

el
4

Pa
pe

r
(M

uj
ik

a,
20

17
)[

26
]

C
ha

ra
ct

er
-l

ev
el

4
Pa

pe
r

(Z
ill

y,
20

17
)[

27
]

W
or

d-
&

ch
ar

ac
te

r-
le

ve
l

4
So

ur
ce

co
de

(M
el

is
,2

01
7)

[2
8]

W
or

d-
&

ch
ar

ac
te

r-
le

ve
l

4
Pa

pe
r

(M
ik

ol
ov

,2
01

2)
[2

9]
W

or
d-

le
ve

l
3

So
ur

ce
co

de
(Z

ar
em

ba
,2

01
4)

[3
0]

W
or

d-
le

ve
l

4
Pa

pe
r

(K
im

,2
01

5)
[2

]
W

or
d-

le
ve

l
4

So
ur

ce
co

de
(G

al
,2

01
6)

[3
1]

W
or

d-
le

ve
l

3
So

ur
ce

co
de

(M
er

it
y,

20
16

)[
11

]
W

or
d-

le
ve

l
2/

4
(?

)
A

ut
ho

r
co

m
m

un
ic

at
io

n
(B

ra
db

ur
y,

20
16

)[
32

]
W

or
d-

le
ve

l
4

(?
)

A
ut

ho
r

co
m

m
un

ic
at

io
n

(Z
op

h,
20

16
)[

33
]

W
or

d-
le

ve
l

4
A

ut
ho

r
co

m
m

un
ic

at
io

n
(I

na
n,

20
16

)[
34

]
W

or
d-

le
ve

l
4

So
ur

ce
co

de
(M

er
it

y,
20

17
)[

35
]

W
or

d-
le

ve
l

4
So

ur
ce

co
de

(Y
an

g,
20

17
)[

36
]

W
or

d-
le

ve
l

3
A

ut
ho

r
co

m
m

un
ic

at
io

n
(S

tu
rm

,2
01

6)
[3

7]
M

us
ic

no
te

s
3

A
ut

ho
r

co
m

m
un

ic
at

io
n

(S
ao

n,
20

16
)[

38
]

Ph
on

em
es

3
A

ut
ho

r
co

m
m

un
ic

at
io

n
(D

e
Bo

om
,2

01
7)

[3
9]

Pl
ay

lis
tt

ra
ck

s
2

Pa
pe

r

96 CHAPTER 4

the authors directly to ask for more details. Whenever we could not find
information in the paper, the source code or through the authors, we have
marked it with ‘Unknown’.

Scheme number 4 is by far the most popular in recent literature, but
scheme number 3 is also widely used. As mentioned previously, the main
difference between these two schemes is whether the transfer of the hid-
den state between subsequent training sequences takes place or not. There
seems to be no clear consensus on this topic among researchers. The older
works from 2012 and 2013 by Graves [3] and Mikolov et al. [29] (and by
extension, most of the older works on RNNs) do not transfer the hidden
state, while the community seems to be transitioning towards explicitly do-
ing this. Although there exists no literature describing the advantages and
disadvantages of both methods, we can think of some possible explana-
tions for this. First, while going through multiple source code repositories,
we have noticed that source code is often reused by copying and adapt-
ing from previous work. This causes architectural and computational de-
signs to transfer from previous work into other works. Another possible
cause lies with the evolution of deep learning frameworks. Tensorflow,
Keras and PyTorch have made it fairly easy to train RNNs with hidden
state transfer, while this was less straightforward or required more effort
in older frameworks, such as Theano and Lasagne.

To conclude this concise overview, we have shown that there is a need
for clarity and transparency in literature concerning training and sampling
details for RNNs. Not only in the interest of reproducibility, but also to
spike awareness in the research community. This paper is a first attempt at
calling attention to the different training and sampling schemes for RNNs,
and which trade-offs each of these pose. In the next section, each of the
schemes is evaluated thoroughly in a number of experimental settings.

4.4 Evaluation

In this section, all training and sampling schemes are evaluated in a vari-
ety of settings. As mentioned before, the task in each of these settings is
the same: predicting the next token or character in a sequence given the
previous tokens or characters. To perform the evaluation we will use four
datasets with different characteristics: English text, Finnish text, C code,
and classical music. Next to this, we will vary the RNN architecture—such
as the number of recurrent layers and the hidden state size—as well as the
truncated BPTT parameters. Through these evaluations, we will give some
recommendations on how to train and sample from character-level RNNs.

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 97

4.4.1 Experimental setup

The central part of our experiments is the RNN model. For this, we con-
struct a standard architecture with some parameters that we can vary. The
input of the RNN is a one-hot representation of the current character in the
sequence, i.e. a vector of zeros with length |V|, with V the ordered set of
all characters in the dataset, except for a single one at the current charac-
ter’s position in V. Next, r recurrent LSTM layers are added, each with
a hidden state dimensionality of γ. In the experiments, the parameters of
r and γ will be varied. Finally, we add two fully connected dense layers,
one with a fixed dimensionality of 1,024 neurons, and the final dense layer
again has dimensionality |V|. At this final layer a softmax function is ap-
plied in order to arrive at a probability distribution across all possible next
characters. The complete architecture is summarized in Table 4.3 including
nonlinear activation functions and extra details.

To train the RNN model we will use one of the schemes outlined in
Section 4.3. As is common practice in deep learning and gradient-based
optimization, multiple training sequences are grouped in batches. Each
sequence in such a batch has a length of k2 + 1 tokens, from which the first
k2 are used as input to the RNN, and the next token is used as ground truth
signal for every input token. In this paper, a batch size of 64 sequences is
used across all experiments. To ensure a diverse mix of sequences in each
batch, we pick sequences at equidistant offsets, which we increase by k1
for every new batch. More specifically, every i’th batch 64 sequences are
sampled at the following offsets in the train set Dtrain:

j · size(Dtrain)

64
+ i · k1, j ∈ {0, 1, . . . , 63}. (4.8)

The entire train set is also circularly shifted after each training epoch. Since
in scheme 4 the hidden states is transferred across different batches, this
batching method allows us to fairly compare all four schemes.

At regular points during training the performance of the RNN is eval-
uated with data from the test set Dtest. For this we will use the perplexity
measure, which is widely used in evaluating language models:

perplexity = exp

(
−∑N

i=1 log p(xi|x1:i−1)

N

)
. (4.9)

In this formula xi is the i’th token in the sequence and N is the total number
of tokens. The better a model is at predicting the next token, the lower its
perplexity measure. In the context of RNNs, the conditional probability in
Equation (4.9) is approximated using the hidden state of the RNN, as was

98 CHAPTER 4

Table 4.3: The RNN architecture used in all experiments.

Layer type (no. of dimensions) and nonlinearity
Input (|V|)

1 to r LSTM (γ)
sigmoid (gates); tanh (hidden and cell state update)
orthogonal initialization, gradient clipping at 50.0

r + 1 Fully connected dense (1,024)
leaky ReLU, leakiness = 0.01, glorot uniform initialization

r + 2 Fully connected dense (|V|)
softmax, glorot uniform initialization

shown in Equation (4.3). In practice, the hidden state of the RNN is boot-
strapped with k2 characters and perplexity is calculated on all subsequent
characters in the test set.

In the experiments below, every RNN is trained with 12,800 batches of
64 sequences using the batching method described above. For all schemes
and experiments the standard categorical cross-entropy loss function is
used, which calculates the inner product between the log output proba-
bility vector y and the one-hot vector of the target token x̂:

L (y, x̂) = −onehot(x̂) · log(y) . (4.10)

During training we report perplexity on the test set at logarithmically
spaced intervals. All RNN models are trained five times with k2 al-
ways set to 100 (unless explicitly indicated otherwise), and we choose
k1 ∈ {20, 40, 60, 80, 100}. For every new configuration we reinitialize all
network weights and random generators to the same initial values. As op-
timization algorithm we use Adam with a learning rate of 0.001 throughout
the experiments.

All experiments are performed on a single machine, 12 core Intel Xeon
E5-2620 2.40GHz CPU and Nvidia Tesla K40c GPU. We use a combina-
tion of Theano 0.9 and Lasagne 0.2 as implementation tools, powered by
cuDNN 5.0.

4.4.2 Datasets

In the experiments the performance of each scheme is evaluated on four
datasets1. We list the dataset characteristics below:

1The datasets are available for download at https://github.com/cedricdeboom/
character-level-rnn-datasets

https://github.com/cedricdeboom/character-level-rnn-datasets
https://github.com/cedricdeboom/character-level-rnn-datasets

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 99

1. English: we compiled all plays by William Shakespeare from the
Project Gutenberg website2 in one dataset. The plays follow each
other in random order. The total number of characters is 6,347,705
with 85 unique characters.

2. Finnish: this language is very different from English. On the Guten-
berg website we gathered all texts from Finnish playwrights Juhani
Aho and Eino Leino. This results in a dataset of 10,976,530 characters,
of which 106 are unique.

3. Linux: we saved all C code from the Linux kernel3 and gathered
the files together. On November 22 2016, the entire kernel contained
6,546,665 characters, and 97 of them are unique.

4. Music: we created this dataset by extracting music notes from MIDI
files. When notes are played simultaneously in the MIDI file, we
extract them from low to high, so that we obtain a single sequence of
subsequent notes. We downloaded all piano compositions by Bach,
Beethoven, Chopin and Haydn from Classical Archives4, removed
duplicate compositions, and gathered a dataset of 1,553,852 notes, of
which there are 90 unique ones.

After cyclically permuting each dataset over a randomly chosen offset, we
extract the last 11,100 characters to compile a test set Dtest. All remaining
characters form the train set Dtrain.

4.4.3 Experiments

Several experiments are now performed to evaluate the predictive perfor-
mance of RNNs that have been trained with different configurations. In a
first round of experiments the architecture of the RNN models is varied.
More specifically, we set the number of recurrent LSTM layers r to 1 or 2,
and we also change the hidden state size γ to either 128 or 512. Figure 4.7
shows plots for these different RNN architectures, trained using scheme 1
and on all four datasets. For every architecture we have plotted five lines
for the different settings of k1 mentioned above. In all plots we see that
the RNNs with γ = 512 (green and yellow) initially perform better, but
the RNNs with r = 1 (green and blue) learn somewhat faster in the long
term. At 12,800 batches there is no clear difference in performance any-
more between the architectures. On the music dataset and architectures

2www.gutenberg.org
3github.com/torvalds/linux/tree/master/kernel
4www.classicalarchives.com

www.gutenberg.org
github.com/torvalds/linux/tree/master/kernel
www.classicalarchives.com

100 CHAPTER 4

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(a) English

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(b) Finnish

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(c) Linux

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(d) Music

Figure 4.7: Comparing RNN architectures with scheme 1. Blue: r = 1, γ = 128;
Green: r = 1, γ = 512; Red: r = 2, γ = 128; Yellow: r = 2, γ = 512.

with γ = 512 we observe some overfitting. If we add 25% of dropout to
the final two dense layers [43], this overfitting is already greatly reduced,
but still observable (not shown in the graph). For the Finnish dataset and
architectures with γ = 128 we notice a bump around 1,000 train sequences,
which is present for all k1 configurations. This bump is lowered if we re-
duce the learning rate to 0.0001 or use a different, non momentum-based
optimizer such as RMSProp, but it remains an artefact of both the dataset
and architecture.

We also perform the same experiments with scheme 2, for which the
results are shown in Figure 4.8. The same behavior with respect to the
architectural differences is observed as in the first scheme. But now the
networks converge somewhat slower, which can be seen especially for the
Music dataset by comparing Figures 4.7d and 4.8d. On the plus side, the
performance curves are smoother than for scheme 1. Both effects can be
explained by the fact that there is only one loss signal at the end of each
training sequence, which makes learning slower, but the backpropagated

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 101

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(a) English

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(b) Finnish

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(c) Linux

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(d) Music

Figure 4.8: Comparing RNN architectures with scheme 2. Blue: r = 1, γ = 128;
Green: r = 1, γ = 512; Red: r = 2, γ = 128; Yellow: r = 2, γ = 512.

gradient is of higher quality, since more historical characters are taken into
account. From Figures 4.7 and 4.8 we conclude that the RNN architecture
indeed influences the efficiency of the training procedure, but that the same
effect is observed globally across datasets and training schemes. The best
architecture for all four datasets has parameters r = 1 and γ = 512, i.e. the
green plots. This specific architecture will therefore be used in the next
experiments.

Next, all schemes are compared on the different datasets. As mentioned
above, the architecture with r = 1, γ = 512 is used. The perplexity plots are
gathered in Figure 4.9. We see that schemes 1 and 2 are very robust across
datasets, but also across different settings of k1, since all lines lie very close
to each other. Scheme 1 is also the best performing in terms of perplex-
ity. The performance of scheme 2 is overall worse compared to scheme
1, which is probably due to the fact that learning occurs more slowly, as
argued before. The performance of scheme 3 is comparable to the first
scheme, but only very slightly worse and robust. Since the training pro-

102 CHAPTER 4

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

Pe
rp

le
xi

ty

(a) English

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

Pe
rp

le
xi

ty

(b) Finnish

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

Pe
rp

le
xi

ty

(c) Linux

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

Pe
rp

le
xi

ty

(d) Music

Figure 4.9: Comparing RNN schemes. Blue: scheme 1; Green: scheme 2; Red:
scheme 3; Yellow: scheme 4.

cedure of schemes 1 and 3 is the same, we hypothesize that the sampling
procedure of scheme 3 sometimes has difficulties recovering from errors,
which can be carried across many time steps. Another reason is that the
RNN has not learned to make predictions for sequences longer than k2
tokens. We also mention that for schemes 1, 2 and 3 we experimented
with randomly shuffling all training sequences instead of circularly shift-
ing the train set, as explained in Section 4.4.1, but this did not lead to dif-
ferent observations. In scheme 4 the hidden state is transferred across se-
quences during training, which appears to solve this problem, at least for
some configurations of k1. All configurations for scheme 4 start with the
same performance as for scheme 3, but after around 200 train batches—
i.e. 12,800 train sequences in the graph—some configurations start diverg-
ing, for which we cannot isolate any consistent motivation or explanation.
From the figures we see that this behavior is also heavily dependent on
the dataset; the difference between e.g. the Finnish and Music dataset is
notable.

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 103

Table 4.4: Absolute training time per batch and sampling time for 1 token using
different RNN configurations on the English dataset, k1 = 40. Measure-
ments in ms. The variance is negligible.

r = 1, γ = 128 r = 1, γ = 512 r = 2, γ = 128 r = 2, γ = 512
Scheme 1 60.5 / 7.0 138.8 / 21.7 106.5 / 13.7 267.4 / 43.3
Scheme 2 46.5 / 7.0 114.6 / 21.7 93.1 / 13.7 245.8 / 43.3
Scheme 3 60.5 / 0.7 138.8 / 1.2 106.5 / 1.1 267.5 / 2.2
Scheme 4 60.6 / 0.7 138.9 / 1.2 106.6 / 1.1 267.6 / 2.2

It is also interesting to take a look at a comparison between perfor-
mances on different datasets for the same scheme. These curves are plotted
in Figure 4.10. For all schemes we notice that the performance on the En-
glish, Finnish and Linux datasets is almost equal; only the Music dataset
seems harder to model with the same RNN architecture. What we also
observe is that scheme 1 is very robust against changes in training param-
eters, since all curves lie very close to each other. There is more variance in
this for scheme 2, even more for scheme 3, and it is highest for scheme 4.

At this point we would also like to discuss data efficiency. For small
values of k1, we use less data at a particular point in the training process
compared to larger values of k1. This is important when data resources are
scarce. From Figure 4.10 it is noticeable that, at least for the same scheme,
the lines for different values of k1 lie very close to each other. From these
experiments, a general conclusion could be to use a small value of k1 in
order to be as data efficient as possible. The choice of k1, after all, seems to
have less impact than the choice of training scheme. Additionally, using a
small value of k1 improves label reuse in the multi-loss training algorithms.
This can approximately be quantified by k2/k1, i.e. the number of times a
label is reused in the training process.

Up until now we have been comparing the performance of different
RNN models and schemes in terms of the number of train sequences used
up until a certain point in time. But the models can also be compared
in terms of absolute training and sampling time, which will give us an
overview of which configurations are the fastest. In the next experiment,
we calculate the average training time per batch and sampling time for a
single token on the English dataset. We will vary the scheme that we use
for training, as well as the RNN architecture. Concerning the k1 training
parameter, there will be almost no difference in training time, so in all mea-
surements we use k1 = 40. The numbers are shown in Table 4.4. It is no
surprise that schemes 1, 3 and 4 have almost equal training time per batch,
while scheme 2 trains significantly faster since we only need to compute
one softmax output for each training sequence. It is however noticeable

104 CHAPTER 4

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(a) Scheme 1

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(b) Scheme 2

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(c) Scheme 3

102 103 104 105

Number of input train sequences

0

10

20

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

(d) Scheme 4

Figure 4.10: Comparing datasets. Blue: English; Green: Finnish; Red: Linux; Yel-
low: Music.

that the more complex the RNN architecture, the smaller the relative dif-
ference in training time, with a decrease of 25% for the r = 1, γ = 128
architecture and just 9% for the r = 2, γ = 512 architecture. Regarding the
sampling times, we see that the 3rd and 4th schemes are faster by a fac-
tor of 10 up to 20 compared to schemes 1 and 2, since there is no need to
propagate an entire sequence through the RNN to sample a new token.

We also compare the performance of the different schemes with respect
to changes in the k2 parameter. For each scheme we perform five exper-
iments, for which k2 is set successively to 20, 40, 60, 80 and 100. After
setting k2, the k1 parameter is set to k2, 2k2/3 and k2/3, rounded to the near-
est integer. Every experiment is performed on the Music dataset, since,
based on previous experiments, we expect to gain most insights on it. We
report the model perplexity on the test set as a function of the elapsed train-
ing time, and we train again for a total of 12,800 batches. The results are
shown in Figure 4.11, in which the y-axis is clipped to a maximum of 80 to
achieve the most informative view. We see that the smaller the k2 value, the

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 105

10-1 100 101 102 103

Training time [s]

0

10

20

30

40

50

60

70

80

Pe
rp

le
xi

ty

(a) Scheme 1

10-1 100 101 102 103

Training time [s]

0

10

20

30

40

50

60

70

80

Pe
rp

le
xi

ty

(b) Scheme 2

10-1 100 101 102 103

Training time [s]

0

10

20

30

40

50

60

70

80

Pe
rp

le
xi

ty

(c) Scheme 3

10-1 100 101 102 103

Training time [s]

0

10

20

30

40

50

60

70

80

Pe
rp

le
xi

ty

(d) Scheme 4

Figure 4.11: Performance with respect to training time by comparing k2 values on
the Music dataset. Blue: k2 = 20; Green: k2 = 40; Red: k2 = 60; Yellow:
k2 = 80; Magenta: k2 = 100.

faster we have trained all batches, since it leads to a shorter BPTT. The first
scheme is again the most robust against a changes in k2. Only the shortest
sequence lengths behave more noisily in the first 10 seconds of training, but
all configurations are able to reach a similar optimal perplexity. The sec-
ond scheme trains much slower than scheme 1, and experiences instability
problems for small sequence lengths of 20 and 40. The configurations with
k2 ≥ 60 are all very stable, but have not yet fully converged after 12,800
batches. For scheme 3 we see almost the same behavior as in scheme 1,
with all configurations reaching the same optimal perplexity. But, just as
we saw before, the robustness against changes in k1 is worse. This is espe-
cially true for small values of k2, as shown by the blue lines in Figure 4.11c.
Finally, for scheme 4 we see that almost all configurations are unstable and
behave very noisily. Two configurations with k2 = 20 even achieve a final
perplexity of around 350; lowering k1 for small values of k2 seems to help
in this case.

106 CHAPTER 4

4.4.4 Take-away messages

We conclude this experimentation section with a few recommendations.
We found that the global behavior of the different schemes is nearly inde-
pendent of the used dataset. This is good news, since we do not have to
tune the learning and sampling procedure to the dataset at hand. In this
respect, we arrive at the following conclusions:

• In terms of training schemes, the multi-loss approach (scheme 1 and
3) is recommended. Compared to the single-loss approach (scheme
2), multi-loss training is more efficient. The faster individual itera-
tions of the single-loss approach cannot compensate for the benefit
of combining the loss over multiple positions in the sequence, when
considering the total train time.

• Our general recommendation is to avoid training procedures in
which the hidden state is transferred between input sequences
(scheme 4). Training is as efficient as the multi-loss approach with-
out transferred hidden states (scheme 3), but less robust. On noisy
datasets, such as the Music dataset in our experiments, transferring
hidden states is likely to cause an unstable behavior.

• On the sampling side, there is a trade-off between windowed sam-
pling and progressive sampling. By comparing scheme 1 and 3, it is
seen that windowed sampling is more robust than progressive sam-
pling. However, the latter is more efficient by construction, as it sam-
ples the next character based on the current one and the hidden state,
instead of each time performing a forward pass over a (possibly long)
sequence as in the windowed sampling approach.

4.5 Future research tracks

We include one final section on future research tracks in the area of training
and sampling procedures for character-level RNNs. In this paper we have
made an attempt at isolating the four most common schemes that have
been or are being used in literature. There are however multiple hybrid
combinations that can be identified and investigated in the future. The
most straightforward extension is an intermediate form between single-
and multi-loss training. For example, an extra parameter k3 could be iden-
tified, for which k3 ≤ k2, that defines the number of time steps for which
the loss is calculated and aggregated. The edge cases k3 = 1 and k3 = k2
correspond respectively to the single-loss and multi-loss training proce-
dures. One other possibility is to decay the loss at each time step (linearly

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 107

or exponentially) and combine these through a linear combination to cal-
culate the final loss. For a single training sequence s this results in:

losss = ∑
(xi ,xi+1)∈s

L (R(xi), xi+1) · γi,

with γi = i/length(s)−1 or γi = exp(i− length(s) + 1) for resp. linear and ex-
ponential decay. Consequentially, the resulting gradient is scaled similarly,
thereby reducing the contribution of the first few tokens in the sequence to
the total loss.

4.6 Conclusion

We explained the concept of character-level RNNs and how such models
are typically trained using truncated backpropagation through time. We
then introduced four schemes to train character-level RNNs and how to
sample new tokens from such models. These schemes differ in how they
approximate the truncated backpropagation through time paradigm: how
the RNN outputs are combined in the final loss, and whether the hidden
state of the RNN is remembered or reset for each new input sequence. Af-
ter that, we evaluated each scheme against different datasets and RNN
configurations in terms of predictive performance and training time. We
showed that our conclusions remain valid across all these different experi-
mental settings.

Perhaps the most surprising result of the study is that conditional
multi-loss training, in which the hidden state is carried across training
sequences, often leads to unstable training behavior depending on the
dataset. This contrasts sharply with the observation that this training
procedure is used most often in literature, although it requires meticu-
lous bookkeeping of the hidden state and a carefully designed batching
method. Single-loss training is, compared to multi-loss, slower regarding
the number of used train sequences. An advantage of single-loss training,
however, is that we encourage the network to make predictions on a long-
term basis, since we only backpropagate one loss defined at the end of a
sequence.

We saw that progressive sampling is slightly less robust to changes
in training parameters compared to windowed sampling, especially for
datasets that are more difficult to model, as we showed with the Music
dataset. The main advantage of progressive sampling is that it is orders of
magnitudes faster than windowed sampling.

108 CHAPTER 4

References

[1] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra. Deep
AutoRegressive Networks. arXiv.org, October 2013. arXiv:1310.8499v2.

[2] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. Character-Aware Neural
Language Models. arXiv.org, August 2015. arXiv:1508.06615v3.

[3] A. Graves. Generating Sequences With Recurrent Neural Networks.
arXiv.org, August 2013. arXiv:1308.0850v5.

[4] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and Understanding
Recurrent Networks. arXiv.org, June 2015. arXiv:1506.02078v2.

[5] T. Sercu and V. Goel. Advances in Very Deep Convolutional Neural Net-
works for LVCSR. In Interspeech, 2016.

[6] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. WaveNet:
A Generative Model for Raw Audio. arXiv.org, September 2016.
arXiv:1609.03499v2.

[7] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. DRAW: A Re-
current Neural Network For Image Generation. arXiv.org, February 2015.
arXiv:1502.04623v1.

[8] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel Recurrent
Neural Networks. January 2016. arXiv:1601.06759.

[9] Y. K. Tan, X. Xu, and Y. Liu. Improved Recurrent Neural Networks for
Session-based Recommendations. arXiv.org, 2016. arXiv:1606.08117v2.

[10] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based
Recommendations with Recurrent Neural Networks. arXiv.org, 2016.
arXiv:1511.06939v4.

[11] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer Sentinel Mixture
Models. arXiv.org, September 2016. arXiv:1609.07843v1.

[12] I. Sutskever. Training recurrent neural networks. PhD thesis, 2013.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representa-
tions by back-propagating errors. Cognitive modeling, 1988.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 109

[15] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In
ICLR, 2015.

[16] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow
in recurrent nets: the difficulty of learning long-term dependencies. 2001.

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[18] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmid-
huber. LSTM: A Search Space Odyssey. arXiv.org, March 2015.
arXiv:1503.04069v1.

[19] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling. arXiv.org, 2014.
arXiv:1412.3555v1.

[20] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. arXiv.org, June 2014.
arXiv:1406.1078v3.

[21] Y. Wu, S. Zhang, Y. Zhang, Y. Bengio, and R. Salakhutdinov. On Mul-
tiplicative Integration with Recurrent Neural Networks. arXiv.org, June
2016. arXiv:1606.06630v2.

[22] D. Ha, A. Dai, and Q. V. Le. HyperNetworks. arXiv.org, September
2016. arXiv:1609.09106v4.

[23] T. Cooijmans, N. Ballas, C. Laurent, and A. Courville. Recurrent Batch
Normalization. arXiv.org, March 2016. arXiv:1603.09025v5.

[24] B. Krause, L. Lu, I. Murray, and S. Renals. Multiplicative LSTM for
sequence modelling. arXiv.org, September 2016. arXiv:1609.07959v3.

[25] J. Chung, S. Ahn, and Y. Bengio. Hierarchical Multiscale Recurrent Neu-
ral Networks. arXiv.org, September 2016. arXiv:1609.01704v7.

[26] A. Mujika, F. Meier, and A. Steger. Fast-Slow Recurrent Neural Net-
works. arXiv.org, May 2017. arXiv:1705.08639v2.

[27] J. G. Zilly, R. K. Srivastava, J. Koutník, and J. Schmidhuber. Recurrent
Highway Networks. ICML, 2017.

[28] G. Melis, C. Dyer, and P. Blunsom. On the State of the Art of Evaluation
in Neural Language Models. CoRR, 2017.

110 CHAPTER 4

[29] T. Mikolov and G. Zweig. Context dependent recurrent neural network
language model. In 2012 IEEE Spoken Language Technology Workshop
(SLT, pages 234–239. IEEE, 2012.

[30] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent Neural Network
Regularization. arXiv.org, September 2014. arXiv:1409.2329v5.

[31] Y. Gal and Z. Ghahramani. A Theoretically Grounded Application of
Dropout in Recurrent Neural Networks. NIPS, 2016.

[32] J. Bradbury, S. Merity, C. Xiong, and R. Socher. Quasi-Recurrent Neural
Networks. arXiv.org, November 2016. arXiv:1611.01576v2.

[33] B. Zoph and Q. V. Le. Neural Architecture Search with Reinforcement
Learning. CoRR, 2016.

[34] H. Inan, K. Khosravi, and R. Socher. Tying Word Vectors and Word
Classifiers - A Loss Framework for Language Modeling. CoRR, cs.LG, 2016.

[35] S. Merity, N. S. Keskar, and R. Socher. Regularizing and Optimizing
LSTM Language Models. CoRR, 2017.

[36] Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen. Breaking the Soft-
max Bottleneck: A High-Rank RNN Language Model. arXiv.org, Novem-
ber 2017. arXiv:1711.03953v2.

[37] B. L. Sturm, J. F. Santos, O. Ben-Tal, and I. Korshunova. Music tran-
scription modelling and composition using deep learning. arXiv.org, April
2016. arXiv:1604.08723v1.

[38] G. Saon, T. Sercu, S. Rennie, and H.-K. J. Kuo. The IBM 2016 English
Conversational Telephone Speech Recognition System. arXiv.org, April
2016. arXiv:1604.08242v2.

[39] C. De Boom, R. Agrawal, S. Hansen, E. Kumar, R. Yon, C.-W. Chen,
T. Demeester, and B. Dhoedt. Large-scale user modeling with recurrent
neural networks for music discovery on multiple time scales. Multimedia
Tools and Applications, pages 1–23, August 2017.

[40] M. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large an-
notated corpus of English: the Penn Treebank. Computational Linguistics,
19(2), 1993.

[41] T. Mikolov, M. Karafiát, L. Burget, J. Cernocky, and S. Khudanpur.
Recurrent neural network based language model. In Interspeech, 2010.

CHARACTER-LEVEL RECURRENT NEURAL NETWORKS IN PRACTICE 111

[42] M. Hutter. The Human Knowledge Compression Contest [online]. 2012.
Available from: http:/prize.hutter1.net.

[43] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout - a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

http:/prize.hutter1.net

5
Polyphonic Piano Music

Composition with Composer Style
Injection using Recurrent Neural

Networks

“Please, don’t stop the music.”

—Rihanna, 2007

Now that we have a more than basic understanding of the training and sam-
pling concepts behind recurrent neural networks, we will spend the next two chap-
ters applying them in various applications. In this chapter, we will explore the
research field of automatic music composition. Based on the idea of the character-
level RNN from Chapter 4, we will compose novel music one note after the other.
That is, the model that we will train is able to make a prediction for the next note
in a composition based on the notes that have already been written down. We will
also explore whether it is possible to tune the composition process by considering a
composer’s identity: will a model trained on Beethoven music sound different than
a model that is trained on piano pieces by Chopin? And is it possible to change
this composer information on the fly?

? ? ?

114 CHAPTER 5

C. De Boom, M. De Coster, D. Spitael, S. Leroux, S. Bohez,
T. Demeester, and B. Dhoedt

Submitted to Neural Computing and Applications, December, 2017.

Abstract Automated music composition can teach us a lot about how hu-
mans perceive certain musical properties, but it also has useful applica-
tions in entertainment and cinematic industries. In these areas the musi-
cal score often needs to be adjusted to a specific context, mood or scene.
There, instead of manually composing or selecting the appropriate music,
we would like to be able to steer the process of automatic music genera-
tion using style or mood information. For this purpose we constructed a
deep learning model that allows for musical style injection during com-
position. In particular, this paper describes how we use recurrent neural
networks to model polyphonic piano music, and how we adjust the net-
work architecture to incorporate style information from four stylistically
distinct composers: Bach, Haydn, Beethoven and Chopin. We have con-
ducted field studies in a target audience with a background in classical
music, and we found that our models are capable of generating plausible
polyphonic compositions, and that the style of the music can be altered
on-the-fly whilst tuning the composer identity during composition. The
generated musical pieces are, however, still discernible from hand-made
compositions.

5.1 Introduction

The quest for computer-aided music composition has always been re-
garded as both difficult and intriguing among researchers. The idea that
we can teach the art of creativity to a computer and to have a never-ending
and always changing stream of the best and most pleasing music at one’s
disposal, is very tantalizing. Although most of the musical pieces we listen
to on a daily basis obey a rather compact set of harmonic and rhythmical
guidelines and rules, the main challenge often lies in capturing an overall
coherent musical style, logical phrasings, appealing melodies and themes,
a notion of surprise, and of course a global structure for the song. A single
model or algorithm that successfully tackles all these challenges at once,
does not yet exist, but recently major efforts regarding this subject have
been made by various research institutions.

Ever since the 1980s researchers have tackled automatic music genera-
tion. On the one hand we have symbolic music generation, in which we
compose a piece of music as if written out on sheet music paper, and acous-

POLYPHONIC PIANO MUSIC COMPOSITION 115

tic music generation on the other hand, where we directly generate digital
audio signals. This paper focuses on symbolic music composition, since
generating raw audio has proven to be a computationally and resource de-
manding effort and is still considered a very hard task to date [1, 2]. The
first musical composition algorithms can nowadays be classified as rule-
and template-based systems. They were often highly engineered using
various heuristics, but this made them quite easily interpretable for hu-
mans. For example, in the Experiments in Musical Intelligence (EMI) by
Cope a collection of templates are used to transfer the melodies and har-
monies from one piece of music onto the rhythmic structure of another—
although rigorous details on the methodology are absent in literature [3].
In 1990, the CHORAL system by Ebcioğlu defined a set of highly de-
tailed rules to harmonize Bach chorales [4]. More recently, in 2015, Brown
et al. engineered a collection of heuristics that rest on the psychological
grouping, or ‘Gestalt’, principles of proximity, similarity, closure, conti-
nuity and connectedness [5]. These heuristics are then used to generate
melodies in real time. There have also been attempts at composing poly-
phonic counterpoint music using carefully crafted metaheuristics and ob-
jective functions, which are optimized through a neighborhood search al-
gorithm [6].

Despite the results that were obtained with the above systems, a lot of
manual work and insights about musical and stylistic properties are re-
quired to get adequate and pleasing results. These days, artificial intel-
ligence research is mainly about learning an appropriate model directly
from the data itself with little or no human intervention. If these models
are of ‘sufficiently high complexity’, and given enough training data, the
underlying structure and patterns that are present in the data can auto-
matically be captured, up to a certain degree. In the context of symbolic
music generation, a popular method that is most often used in literature,
is a note per note prediction scheme. The first attempts at this primar-
ily made use of stochastic processes based on transition tables, such as
Markov models [7, 8]. For an nth order Markov model, the next note in
the piece is probabilistically determined based on the sequence of the pre-
vious n notes, i.e. the historical context. The transition probabilities in these
Markov models are learned by processing a large data collection. Through
the use of n-grams in Markov models, Ponsford et al. [9] were able to learn
context-free grammars for harmonic movement in 17th-century saraban-
des. Schulze et al. used multiple hidden Markov models to decouple chord
progressions, durations and melodic arcs [10]. In 2014, Pachet et al. from
the group behind Sony’s Flow Machines also used Markov models to ar-
range jazz standards reminiscent of a specific harmonization style [11]. As

116 CHAPTER 5

all these works show, Markov models can be effective at modeling certain
musical aspects. But since they are inherently focused on local transitions,
it is still difficult to grasp the global structure and overall coherence of a
song without manual engineering.

Neural networks, on the other hand, have a greater and more flexible
representational power than Markov models. Recurrent neural networks
(RNNs), a particular subset of neural networks, are specifically designed to
process symbolic sequences, are not limited to a fixed context window, and
are able to model local as well as global structure in a sequence. In 1989,
Todd was among the first to generate monophonic melodies using basic
RNNs [12], and in 1994, Mozer generated melodies with chord accompa-
niments using RNNs and psychoacoustically motivated pitch and chord
representations [13]. The author stated that the generated music was very
discernible from real compositions and lacked structure, but this work was
done well before the advent of more powerful RNN architectures, such as
LSTMs [14] and GRUs [15], ‘deep’ networks and highly scalable hardware
infrastructure. Eck and Schmidhuber were the first to use LSTMs to gener-
ate blues improvisations with chord progressions and reported that their
model was able to successfully learn the global structure of a song [16].

Almost all previous work in deep learning for music generation mainly
focused on monophonic music in which only one note sounds at a time.
Most music, however, is polyphonic where multiple notes and sounds are
played simultaneously to arrive at rich harmonies. The main difficulty
in polyphonic music generation is that it requires multiple decisions at
the same time that can all influence each other, thereby rendering it a so-
called ‘structured prediction’ problem. For example, predicting the differ-
ent pitches in a single chord independently from each other might lead to
ill-sounding music. Boulanger-Lewandowski et al. focused on this partic-
ular problem for which they used a combination of RNNs and restricted
Boltzmann machines, a type of energy-based neural prediction models
[17]. Since very recently, music generation with deep RNNs, and especially
LSTM-based architectures, has gained great interest again [18, 19]. Jaques
et al. used reinforcement learning with rewards based on music theory to
finetune a note-based RNN [20]. Choi et al. generated chord progressions
and drum tracks with RNNs [21]. The latter use-case, however, failed since
the authors did not foresee that it requires a structured prediction scheme.
In the work by Walder this issue is tackled by solving the structured deci-
sion problem in a sequential manner: notes that sound simultaneously are
predicted one after the other, and the next note is conditioned on all pre-
vious ones [22]. A similar idea is adopted in this paper, for which we will

POLYPHONIC PIANO MUSIC COMPOSITION 117

use RNNs to summarize the past note sequence and use this summary to
make a conditioned prediction about the next note in the piece.

Finally, we also mention that regarding acoustic music generation,
WaveNet by van den Oord et al. was the first to produce ground-breaking
and realistically sounding results [1]. The authors also introduced the con-
cept of a conditional WaveNet, with which they were able to learn a single
speech model for multiple speakers by conditioning the generation pro-
cess on the speaker identity. In this paper, we will use a similar approach
to generate symbolic music in the style of a given composer through one
single model.

In spite of all the recent advances, generating realistic and naturally
sounding music remains difficult and challenging. This paper will not pro-
vide an answer to all the research questions posed at the beginning of this
introduction. Instead we will focus on one aspect of the music composi-
tion process, which is how we can capture the identity of a composer and
use that identity to drive the music generation. In this paper we will fo-
cus on differentiating between four composers that each lived in their own
distinct cultural period: Bach, Haydn, Beethoven and Chopin. A human
music expert should already be able to identify the correct composer with
a fairly high precision, even from a small excerpt of music: Bach’s mu-
sic is representative for the baroque period, Haydn is a classical composer
from the same period as Mozart, Beethoven marked the beginning of the
romantic period in which also Chopin lived. We therefore want to ver-
ify whether a music generator would also be able to produce music with
certain composer-specific properties. And once we have such a model,
we want to know if it is possible to generate music in which we gradu-
ally switch from one style to another. Although we do not show this ex-
plicitly in this paper, our technique is directly applicable to musical styles
other than composer identity, e.g. the genre (waltz, tango, bossa nova. . .),
mood (peaceful, dramatic. . .), instrumentation, etc. With these techniques
we could then for example generate a soundtrack for a movie and continu-
ously tune the music to the mood of each scene on-the-fly, similar to what
Malleson et al. did for movie actor emotions [23].

5.2 Problem setting

Given a piece of music consisting of N notes, each note ai in this piece is
fully characterized by three numerical quantities: its pitch pi, duration di
and start time si:

∀i ∈ {1, 2, . . . N} : ai = (pi, di, si). (5.1)

118 CHAPTER 5

{

3

4

3

4

&

#

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

?#

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

œ

œ
œ
œ
œ

œ

Œ Œ

˙

˙

˙
œ

œ

Œ Œ

i pi di si
1 G3 1/2 0
2 B3 1/2 0
3 D4 1/2 0
4 D5 1/4 0
5 G4 1/8 2/8

6 A4 1/8 3/8

7 A3 1/4 4/8

8 B4 1/8 4/8

9 C5 1/8 5/8

10 B3 1/4 6/8

11 D5 1/4 6/8

Figure 5.1: Example representation according to Equations (5.1)–(5.3) for the short
piece of music on the left. The quantities di and si are displayed in
symbolic note length.

We regard an entire musical composition as a sequence of N notes that are
ordered according to their start times:

∀(ai, ai+1) ⊂ a1:N : si ≤ si+1. (5.2)

In this we used the colon notation aj:k to indicate the range (aj, aj+1, . . . , ak).
This representation is in line with the Prolog format in [9]. A chord is
a group of notes that are played simultaneously. It is formally defined
as a subsequence of notes that have the same start time and are sorted
according to pitch:

aj:k is a chord ⇔ ∀i ∈ {j, j + 1, . . . k− 1} :

si = si+1 ∧ pi < pi+1. (5.3)

If the series of notes aj:k in a1:N all have the same start time but do not form
a valid chord according to Equation (5.3), we rearrange the notes in aj:k
until it is a valid chord. Figure 5.1 shows how a short piece of music can
be transformed into the representation that we have just sketched.

The problem of symbolic music generation is now modeled as a note
per note prediction task. That is, the next note ai in a musical piece is
sampled conditioned on the previous history a1:i−1:

ai ∼ P(ai|a1:i−1). (5.4)

POLYPHONIC PIANO MUSIC COMPOSITION 119

The entire generated musical composition can then be factorized as fol-
lows:

P(a1:N) = P(a1)
N

∏
i=2

P(ai|a1:i−1). (5.5)

Note that, in this framework, the structured problem of predicting notes
that are played simultaneously is modeled in a sequential manner, by anal-
ogy with Walder [22]. A note in a chord, for example, is therefore always
conditioned on all simultaneous notes with a lower pitch.

The music generation process can also be conditioned on the desired
style. That is, the next note is predicted not only based on the previous his-
tory, but we also give additional information on how we want the music
to sound. This information can be kept constant to arrive at a single coher-
ent piece of music, but it is also possible to vary the information across the
piece. For each note ai we capture these additional style or context param-
eters in the quantity ci, after which we arrive at the following factorization:

P(a1:N |c1:N) = P(a1|c1)
N

∏
i=2

P(ai|a1:i−1, ci). (5.6)

5.3 Methodology

In this section we will outline the details regarding the entire music gener-
ation process. First, we have to define a suitable and useful representation
for sequences of musical notes. After that, a model has to be specified in
order to learn to generate such sequences in terms of the probability distri-
butions in Equations (5.5) and (5.6).

5.3.1 Representing musical notes

In Equation (5.1) we defined a single musical note in terms of its pitch,
duration and start time. In symbolic musical data formats, such as MIDI
(Musical Instrument Digital Interface), the pitch of a note is often encoded
as a discrete value that can take one of 128 values:

∀i ∈ {1, 2, . . . N} : pi ∈ {1, 2, . . . 128}. (5.7)

This is enough to e.g. span the keyboard of a piano that has 88 keys. If
the pitch value is increased or decreased by 1, the tone frequency is, re-
spectively, raised or lowered by one semitone, the smallest harmonic in-
terval used in most Western music. A numerical value, however, is not an
appropriate representation to model the pitch, for the difference between

120 CHAPTER 5

two pitch values does not necessarily reflect their harmonic relationship.
Consider for example the triad chords C-E-G (‘C’) and C-E-G# (‘C+’); their
Euclidean distance is 1, but harmonically they are very different and in a
composition the first can only seldom be replaced by the second, and vice
versa. To counter this problem, we represent the pitch of a note by a one-
hot encoding, i.e. an all-zeros vector except for a single one at the position
of the numerical pitch value. This way, we do not impose an ordered struc-
ture on the pitches, so that the appropriate harmonic relationships can be
learned by the generative model. The one-hot representation of pi is de-
noted by pi.

In most Western music the duration of a note can be defined as inte-
ger multiple of the shortest note in a piece, e.g. a 1/16th or 1/32nd note.
Such a representation, however, is not flexible and is agnostic of tempo
changes. We will therefore represent both the duration of a note and its
start time as an absolute real value in seconds. The start time of a note
will be encoded relative to the start time of the previous note; otherwise
the start time would continuously increase throughout the piece, thereby
potentially impeding proper generalization of the model. For example in
a chord, the first note will have a positive relative start time, and all sub-
sequent notes will have a relative start time of zero. The representation of
a note’s duration di is denoted by di, and the relative start time of a note
by si. We also apply a logarithmic transformation to both, since short du-
rations and start times are more common than longer ones. We therefore
arrive at the following representations:

∀i ∈ {1, 2, . . . N} : di = [log(di + 1)] , (5.8)

∀i ∈ {1, 2, . . . N} : si = [log(si − si−1 + 1)] ,

s0 = s1. (5.9)

An arbitrary note ai is now represented by ai as a concatenation of the
representations for its pitch, duration and start time.

∀i ∈ {1, 2, . . . N} : ai = pi ⊕ di ⊕ si. (5.10)

We have used the⊕ operator to denote vector concatenation. The resulting
vector representation has 130 dimensions, i.e. 128 for the pitch, and single
dimension for both duration and start time.

5.3.2 Modeling music with recurrent neural networks

To arrive at the factorization of Equation (5.5), we need to be able to model
P(ai|a1:i−1). That is, we need an appropriate machine learning model that

POLYPHONIC PIANO MUSIC COMPOSITION 121

is able to predict the next note based on the entire history of the piece. For
this we will use recurrent neural networks (RNNs). These types of neural
networks are especially well-suited to model time series. In this context,
RNNs take a new input token x at every time step and produce a corre-
sponding output, whilst maintaining an internal (hidden) representation h
as a summary of the past series [24]:

hi = f (xi, hi−1),

xi+1 ∼ g(hi). (5.11)

In this, f (·) and g(·) are both non-linear, parameterized and differentiable
functions. While f (·) is a deterministic function, g(·) outputs a probability
distribution over all possible tokens, from which the next token can be
sampled.

In order to solve a certain task, a suitable loss function is defined on
the output of the RNN. Then, given enough example data, the RNN pa-
rameters are learned through a procedure called backpropagation through
time [25]. In the context of modeling sequences of musical notes, the anal-
ogy between Equations (5.4) and (5.11) is clear if we regard the hidden state
of the RNN as a complete representation of the past sequence. Indeed, if
the initial hidden state of the RNN is kept fixed, we have that:

P(xi+1|hi) = P(xi+1|xi, hi−1)

= P(xi+1|xi, xi−1, hi−2)

= · · · = P(xi+1|x1:i). (5.12)

RNNs are therefore fit candidates to model polyphonic music as outlined
in Section 5.2.

Suppose now that we have an RNN architecture R, for which the out-
put is computed through the function R(·). The result of R(ai) on the ith

note representation is then a prediction âi+1 for the next note. To train the
RNN, we define a loss function comparing this prediction to the ground
truth ai+1. Since the pitch of a note is represented by a discrete one-hot en-
coding, the first part LCE of the loss function is focused on correctly classi-
fying this pitch, for which we use a standard multiclass cross-entropy loss:

LCE
(
âi, ai

)
= −

128

∑
j=1

pi,j log
(
p̂i,j
)
. (5.13)

The duration and start time of a note, on the other hand, are represented as
continuous values. For these quantities we therefore define the following
`2 loss commonly used in regression problems:

L`2

(
âi, ai

)
=
(
di − d̂i

)2
+
(
si − ŝi

)2. (5.14)

122 CHAPTER 5

Table 5.1: The RNN architecture used for unconditioned music generation.

Layer # Layer type (# dimensions) and nonlinearity
Input (130)

1–2 GRU (256)
sigmoid (gates); tanh (hidden state update)

Dropout, p = 0.25
3 Fully connected dense (512)

leaky ReLU (leakiness = 0.01)
Dropout, p = 0.25

4 Fully connected dense (130)
softmax with temperature τ on output1:128
ReLU on output128:130

To jointly optimize both problems, the loss function that we use to train the
RNN is a linear combination of both the cross-entropy and `2 loss:

L
(
âi, ai

)
= µLCE

(
âi, ai

)
+ (1− µ)L`2

(
âi, ai

)
, (5.15)

for a certain parameter µ ∈ [0, 1]. Varying this parameter shifts focus to
either one of the losses—i.e. pitch or rhythm—during training.

To condition the music generation on a specific composer we add a one-
hot composer encoding ci to the representation of each note ai of a piece:

∀i : ai = [pi, di, si, ci] . (5.16)

Through this modification and given enough degrees of freedom, the inter-
nal dynamics of the RNN become partly dependent on the given composer
and the output of R(·) can therefore change if we switch from one com-
poser to another. The loss function to train this particular RNN remains the
same as given in Equation (5.15). In this paper we consider four different
composers: Bach, Haydn, Beethoven and Chopin; the one-hot composer
vectors therefore have a dimensionality of 4.

5.3.3 RNN architecture

The RNN architecture R for unconditioned music modeling, is given in
Table 5.1. As was shown in Equation (5.10), the input as well as the out-
put of the network is a 130-dimensional note representation. This input is
fed to two stacked recurrent layers, for which we use gated recurrent units
(GRU) [15]. We empirically found that using GRUs instead of the more
widely used LSTMs increased training stability as well as sample qual-
ity. Thoroughly investigating the difference between LSTMs and GRUs is

POLYPHONIC PIANO MUSIC COMPOSITION 123

Table 5.2: The RNN architecture used for music generation conditioned on com-
poser information.

Layer # Layer type (# dimensions) and nonlinearity
Composer input (4)

1 Note input (130) ⊕ Fully connected dense (64)
2–3 GRU (256)

sigmoid (gates); tanh (hidden state update)
Dropout, p = 0.25

4 Fully connected dense (512)
leaky ReLU (leakiness = 0.01)

Dropout, p = 0.25
5 Fully connected dense (130)

softmax with temperature τ on output1:128
ReLU on output128:130

however beyond the scope of this paper. The output of the last GRU layer
is passed through two dense layers. At the input of each dense layer we
apply a dropout regularization scheme with a probability of 0.25 [26]. At
the output of the network the last two dimensions, representing resp. du-
ration and start time, are left untouched to model unbounded, real-valued
quantities. We apply a softmax function with temperature parameter τ

to the first 128 dimensions that represent the pitch of the note. For an n-
dimensional vector x, the ith component of this particular non-linearity is
defined as follows:

softmax(x, τ)i =
exp (xi/τ)

∑n
j=1 exp (xj/τ)

. (5.17)

This way we obtain a normalized probability distribution over all possible
pitches, and the temperature controls the shape of this distribution. For
high temperatures, the distribution becomes more uniform, while for low
temperatures approaching zero, it resembles the delta function centered at
the output with the highest probability. The final two output dimensions
representing the duration and start time are fed through a standard ReLU
nonlinearity, since they can never be negative.

Table 5.2 shows the architecture that is used to condition the music
generation process on a particular composer. In this, the 4-dimensional
one-hot composer encoding is first fed through a dense layer. This dense
layer will act as a lookup table that associates a dense 64-dimensional
vector with each composer. That is, each composer is projected in a 64-
dimensional continuous embedding space. Therefore, any arbitrary dis-

124 CHAPTER 5

tribution of composer identities will result in a convex combination of the
composer vectors in this embedding space. For example, the embedding
vector associated with 50% Bach and 50% Chopin is located halfway on
the line segment between the two composer embeddings. This way we
can generate music in a style that has properties from both composers. The
composer embedding is then concatenated (shown by the⊕ operator) with
the note representation. By feeding the composer information directly to
the GRU cells, the recurrent dynamics of the model are possibly altered if
we switch between composers, and we can thus generate music in a spe-
cific composer style. The rest of the architecture is similar to the uncondi-
tioned model.

5.3.4 Training and sampling details

To optimize the RNN models we outlined above, we use an approximation
of the truncated backpropagation through time (BPTT) training algorithm
[25]. Every training instance will be a sequence of M + 1 notes (ai)

M+1
i=1 of

which the first M are subsequently fed to the RNN and the last M are used
as ground truth labels. Such an approach is often called teacher forcing,
since we always use data from the ground truth to generate predictions.
At every time step we aggregate the loss that is calculated at the output of
the RNN:

Lagg
(
(âi), (ai)

)
=

1
M

M+1

∑
i=2
L
(
âi, ai

)
. (5.18)

This aggregated loss is used to optimize the RNN parameters, for which
we use Adam with learning rate η [27]. The RNN parameters contain the
weights of each layer in the network, but we also include the initial hid-
den state vectors h0 from each recurrent layer. This way the RNN can be
optimally initialized for every new input sequence. In practice, multiple
sequences are grouped together during training in order to perform mini-
batch optimization.

To generate new music given a trained RNN model, we refer to Al-
gorithm 5.1. In this, each new note in the composition is sampled given
the previous M notes. That is, we take the sequence (ai)

M
i=1 of the last M

notes that have been generated, and we apply this sequence at the input of
the RNN. This RNN has first been re-initialized with its pretrained hidden
state. The final output âM+1 of the RNN is then taken as the next sample,
and is appended to the generated sequence. This process can essentially
continue forever and allows for an infinite stream of music. Since note du-
rations and start times are modeled as continuous quantities, we quantize

POLYPHONIC PIANO MUSIC COMPOSITION 125

Algorithm 5.1: Sampling procedure for composer-conditioned
music generation

input : RNNR, initial hidden state vector h0, seed sequence s,
sampling length L, composer vector sequence (ci)

L
i=1

parameters: seed length M, temperature τ
1 foreach i ∈ (1..L) do
2 initialize(R, h0) // Initialize the hidden state of

the RNN
3 s′ ← get_last_k_notes(s, k = M)
4 foreach note a ∈ s′ do

/* Get the RNN output for each input note
concatenated with the composer information,
given a temperature τ */

5 â← R(a⊕ ci, τ)

/* Sample a pitch from the last RNN output and
quantize the time values; add the resulting note
to the sampled sequence */

6 s← s ⊕ quantize(sample(â))

the generated notes to the nearest 1/16th timestep and duration to arrive at
rhythmically steady music.

To kick off the music generation process, we feed a seed sequence of M
notes, which is manually crafted or can come from an existing composition.
In order to condition the generated music on the composer identity, we
supply an additional composer encoding for every input note, as given
by Equation (5.16). This is also shown in Algorithm 5.1. If the next note
in a piece should generated in the style of e.g. Bach, we apply the last M
notes of the piece to the input of the RNN, and to each note we append the
composer encoding for Bach. This way, the last M notes are interpreted
and processed by the RNN as if they were written by Bach, and the next
note can then be generated in the same style.

5.4 Experiments

Now that we have covered all theoretical details, we will conduct a series
of experiments to assess the performance of our models.

126 CHAPTER 5

Table 5.3: Information regarding the collected MIDI dataset.

Composer Number of pieces Number of notes
Bach 277 354,315
Haydn 140 348,294
Beethoven 110 464,252
Chopin 178 379,873
Total 705 1,546,734

5.4.1 Data gathering

To train the RNN models we described in the previous section, we gather
a dataset of polyphonic music. In particular we will focus on piano mu-
sic, since there exists extensive musical literature for this instrument across
different style periods. Since we restrict ourselves to one instrument, we
don’t need to model instrument types, thereby reducing the complexity of
the problem. We pick four composers that all have contributed heavily to
the piano repertoire: Bach, Haydn, Beethoven and Chopin. The music of
these composers is characteristic for different style periods in Western clas-
sical music—baroque, classicism and romanticism—thereby allowing us to
model a wide variety of musical styles.

On the Classical Archives platform1 we collect all unique piano works
from the aforementioned composers in MIDI format. After filtering out du-
plicate compositions, we arrive at a dataset of which the details are given in
Table 5.3. Notice that, although we have fewer compositions by Beethoven,
the number of notes is substantially larger than for the other composers.
We randomly reserve 85% of all pieces per composer to create a training
set, 10% for a test set and 5% for a development set.

5.4.2 Practical and experimental settings

We will use a mini-batched version of Adam with learning rate η = 10−4

during training. For this purpose, we set parameter M—introduced in Sec-
tion 5.3.4—to 100 and we use a batch size of 64 note sequences. These se-
quences are selected as follows: we randomly select a piece from the train-
ing set, from which we randomly pick a sequence of M + 1 subsequent
notes. This process is repeated 64 times.

The loss function defined in Equation (5.15) consists of two parts
weighted by a parameter µ. In practice we find that setting µ to 0.5 yields

1www.classicalarchives.com

POLYPHONIC PIANO MUSIC COMPOSITION 127

good results. We also observe that it is beneficial to train the RNN mod-
els until the train error converges to a minimum, as opposed to reducing
overfitting on the development set. In that case, the model will have re-
membered some of the more typical phrases and harmonies ‘by heart’, up
to a certain degree. Doing so leads to more coherent, realistically sounding
and pleasing music.

The temperature parameter τ is an extra hyperparameter that needs to
be tuned. During training, its value is always set to 1.0, but during sam-
pling we set the temperature parameter τ separately for each of the com-
posers to arrive at musically pleasing results. A too high value results in
highly chaotic movements, while setting it too low leads to small cells of
notes which are repeated endlessly. There is no real science in setting τ to
the most appropriate value, apart from listening to the resulting music and
making subjective assessments on the quality of the fragments. For Bach,
Beethoven and Haydn we set τ = 0.7, but for Chopin we needed a lower
value of τ = 0.5. This is probably because the music of Chopin is rhythmi-
cally and harmonically more complex compared to the other composers.

In Figure 5.2 we give an example of music generation for different com-
poser styles. The sheet music is created directly from MIDI data using
Sibelius2 and is manually cleaned to enhance visual appearance. We have
used a seed of two bars taken from Bach’s French Suite No. 2, Allemande.
This piece is part of the test set and has therefore not been used to train
the model. The top system in the figure shows the original piece. In the
middle we show how the seed is used to generate four bars of new music
in the style of Bach. The bottom system shows the same seed sequence by
Bach, after which four bars of Chopin music are generated. We can visually
already determine that the Chopin fragment is stylistically very different
from the other two fragments. The generated Bach music, on the other
hand, appears much closer to the original composition in terms of style.

5.4.3 Network layer analysis

In order to analyze how the network has learned to distinguish between
different composers, we will look at some of the hidden representations
within the neural network. First, the 512-dimensional output of the
second-to-last layer is investigated, which is the last hidden representa-
tion before the network output. For each of the four composers, we uni-
formly sample 250 note sequences of length 100 from the test set. These
sequences are fed through the RNN, and the hidden representation is cap-
tured. We thus arrive at 1,000 of these representations that we project in a

2www.sibelius.com

128 CHAPTER 5

3 4 3 4 3 4 3 4 3 4 3 4

&

b

b

b

?

b

b

b

&

b

b

b

?

b

b

b

&

b

b

b

?

b

b

b
&

?

œ
œ
œ

œ

œ

œ

œ
œ

œ
œ
œ

œ
œ

œ

œ

œ
œ

œ
œ
b

œ
œ
œ

œ

œ

œ

œ
œ

œ
œ

œ

œ

œ

œ

œ

œ
œ

œ
œ
œ

œ

œ

œ

œ

œ
œ

œ
œ

œ

œ

œ

œ

œ
œ

œ

œ

œ
œ

œ

œ

œ

œ
œ
œ

œ

œ

œ

œ
œ

œ
œ
œ

œ
œ

œ

œ

œ
œ

œ
œ
œ

œ
œ

œ

‰

œ œ J

œ
œ

œ
œ

œ
œ

œ
œ

œ
œ

œ
œ

œ

œ

œ

œ
œ

œ
œ

œ

œ

œ
œ

œ
œ

œ

œ œ

œ
œ
n

œ

œ
œ

œ
b

œ
œ

œ

œ
œ
œ

œ

œ

œ

œ
œ

œ
œ
œ

œ
œ

œ

œ

œ
œ

œ
œ

œ
œ
œ

œ

œ
œ
œ

œ œ

œ

œ

œ

œ
œ
œ
œ

œ

œ
œ
œ

œ
œ
œ
œ
œ

œ
œ
œ

œ
œ

œ
œ
œ
œ

œ
œ

œ

œ

œ

œ

œ

œ
œ

œ

œ

œ
œ

œ
œ

œ

œ

œ

œ

œ

œ

œ

œ J

œ

œ
œ

œ
œ

œ

œœ

™™

œ
œ

œœ

œ

œ

‰
œ J

œ

œ

œ

or
ig

in
al

Ba
ch

se
ed

Ba
ch

ge
ne

ra
te

d
Ba

ch

se
ed

Ba
ch

ge
ne

ra
te

d
C

ho
pi

n

Figure 5.2: Illustration of music generation with different composer styles. On top
is the original excerpt by Bach from French Suite No. 2, Allemande,
BWV 813. In the middle we show music generation in the style of Bach,
and at the bottom in the style of Chopin. The seed is shared between all
examples.

POLYPHONIC PIANO MUSIC COMPOSITION 129

30 20 10 0 10 20 30

Arbitrary units

20

10

0

10

20

30
A

rb
it

ra
ry

 u
n
it

s
t-SNE visualisation of the network outputs

Bach

Beethoven

Chopin

Haydn
Bach
Beethoven

Chopin
Haydn

Figure 5.3: Two-dimensional t-SNE plot of 1,000 hidden representations (i.e. 250
for each of the four composers) at the second last layer in the neural
network.

2D plane using t-SNE, a dimensionality reduction method focused on data
visualization in two or three dimensions [28]. In this, similar data points
are displayed close to each other, while dissimilar data points are typically
far away from each other. The resulting plot is shown in Figure 5.3. The
Bach and Chopin points are seemingly organized in different clusters. This
suggest that the model should be capable of separating the style of these
two composers, which is audibly fairly different. Points for Beethoven and
Haydn on the other hand are scattered across the plot, and there is no clear
pattern to be discovered, apart from the fact that Haydn pieces are rarely
present within the Chopin cluster. From this experiment we can conclude
that the network has learned, up to a certain extent, to make a distinction
between the different composers, and that this distinction is reflected in the
output of the neural network.

In a second analysis our focus lies on the learned composer embed-
dings. The embedding matrix should ideally contain an appropriate se-
mantic representation for each composer. To investigate this, we construct
a correlation matrix by calculating the Pearson correlation between each of
the four composer embedding vectors, shown in Figure 5.4. We see that
the Bach and Chopin embeddings are the least correlated, which is an ob-
servation similar to Figure 5.3. Beethoven and Haydn are correlated most,

130 CHAPTER 5

1.00 0.23 0.23 0.13

0.23 1.00 0.38 0.24

0.23 0.38 1.00 0.29

0.13 0.24 0.29 1.00

Bach

Haydn

Beethoven

Chopin

Bach Haydn Beethoven Chopin

Figure 5.4: Matrix representing the Pearson correlation between each of the four
composer embeddings.

which is not surprising since the early style of Beethoven is very similar to
Haydn’s. So, similar to the hidden representation in the previous exper-
iment, the embeddings are a certain reflection of the relatedness between
the composers.

5.4.4 User listening experiments

A lot of research has gone into the evaluation of intelligent creative sys-
tems, such as music generators, and it is not our purpose to give a complete
overview on this subject. For example in 2006, Moffat et al. found that there
is a discrepancy between how non-musicians and musicians evaluate gen-
erated vs human-composed music in a set-up Turing-like test [29]. Musi-
cians seemed to be guessing at near-chance level, while non-musicians had
a clear preference for human-composed music. The reason is probably that
musicians have a lot of knowledge, have been analyzing music for years,
and they may be acquainted with computer-generated music. They are
also more likely to be familiar with the modern and ‘aleatoric’ genre of clas-
sical music. However, their test public only consisted of 10 non-musicians
and 10 musicians, which is too low to draw accurate and statistically signif-
icant conclusions. Agres et al. pointed out that such tests, in which people
are asked to label a piece of music as either human-composed or machine-

POLYPHONIC PIANO MUSIC COMPOSITION 131

generated, are actually Consensual Assessments Techniques (CATs) rather
than Turing tests in the strict sense [3]. The authors argue that subjective
measures—such as Likert or continuous rating scales—are actually able to
“provide very robust and consistent measures of participant judgments”.

In the light of this last statement, we have conducted two experiments
in a target audience of 51 persons with a solid background in classical mu-
sic (but not necessarily the piano repertoire), recruited at the Royal Conser-
vatory, Faculty of Fine Arts of the University College Ghent. We instructed
the audience to evaluate short fragments of music consisting of 100 notes.
We first asked to score the fragments on a scale of 0 to 10, where 0 means
‘random noise’ and 10 means that ‘the fragment could possibly be com-
posed by a human’, which is similar to the evaluation procedure executed
by Huang et al. [19]. In the experiments we stressed that scores should be
given based on the quality of the composition, and not based on audio or
piano sample quality. Next to a qualitative score, we also asked to indicate
which one of four the composers (Bach, Haydn, Beethoven or Chopin) is
stylistically closest to the fragment at hand.

In a first experiment we trained one unconditioned RNN model exclu-
sively with Bach data, and one RNN with Chopin data. We chose these
two composers since, as we have observed in the previous experiments,
they are stylistically the most different. From each model we extracted 10
fragments of 100 notes after applying an initial seed sequence taken ran-
domly from the test set. We also include 5 real compositions from Bach
as well as Chopin to be able to compare them qualitatively with the gen-
erated music. The participants of the experiment did not know that there
were real compositions among the fragments.

In a second experiment we examined the composer-conditioned RNN
model trained on all four composers. In this we start with a seed sequence
of composer 1, after which we generate 100 notes in the style of composer
1. For the next 100 notes we linearly shift the style from composer 1 to
composer 2, e.g.

∀i ∈ {1, 2, . . . , 100} : ci = [(100−i)/100, i/100], (5.19)

for 2-dimensional composer encodings. This way, as explained in Section
5.3.3, we perform a linear interpolation in the composer embedding space.
The final 100 notes are all generated in the style of composer 2. So, for every
possible composer pair, we have generated 300 notes, of which the first 100
are in the style of composer 1, the last 100 are in the style of composer 2,
and the middle 100 show a linear transition from composer 1 to composer
2. This leads to a total of 36 fragments of 100 notes for the four composers
we consider.

132 CHAPTER 5

Bach Chopin 1 2 3
0

2

4

6

8

10

Qu
al

ity

Bach Chopin

Composer 1

Transition
1→2

Composer 2

0

10

Q
ua

lit
y

Figure 5.5: Bar chart representing composition quality. On the left we show results
for experiment 1 (either Bach or Chopin), on the right for experiment
2 (a transition between two of the four composers). Dark gray is for
generated music, light gray is for real compositions.

Each test subject is asked to evaluate six fragments, of which three
are chosen randomly from the set of 30 unconditioned fragments, and the
other three are related fragments generated as explained above. It it impor-
tant to point that experiments 1 en 2 are conducted simultaneously without
knowledge of the test subjects; they do not know that experiment 1 is lim-
ited to only Chopin and Bach. We also randomly shuffle the six fragments
for each participant so that related fragments from the second experiment
do not follow each other.

We first asked our test subjects to rate the quality of the fragments on a
scale of 0 to 10, as outlined above. The results of this are shown in Figure
5.5, in which the error bars show the standard deviation. In the left part of
the figure the first experiment is shown, in which we compare generated
and real music from Bach and Chopin. The difference in rated quality is
1.8 points for Bach compositions, and only 0.9 points for Chopin. In a
one-sided Student’s t-test, the difference in rated quality for Bach is highly
significant (p = 0.002), but this is not the case for the Chopin compositions
(p = 0.28). These are good results, but still show that generated music
cannot yet match hand-made compositions. The fact that the difference in
quality for Bach is larger than for Chopin is probably explained by the fact
that Bach’s original style is very strict and easily recognized, and therefore
it is easily noticed when a mistake or glitch is present.

The second experiment is shown in the right part of the figure. We have
used all fragments for this experiment, including Haydn and Beethoven
next to Bach and Chopin. The quality of the first fragment matches with
the first experiment, which is as expected. During composer transition,
however, the score drops approximately 1.5 points, and it climbs again 1
point for the third fragment. These observations can be due to a number
of factors. For one, the network is possibly unable to adequately inter-

POLYPHONIC PIANO MUSIC COMPOSITION 133

Bach Chopin 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Bach Chopin

Composer
1

Transition
1→2

Composer
2

0.0

1.0

A
cc

ur
ac

y

Figure 5.6: Bar chart representing composition accuracy. On the left we show re-
sults for experiment 1 (either Bach or Chopin), on the right for experi-
ment 2 (a transition between two of the four composers). Dark gray is
for generated music, light gray is for real compositions.

polate between the recurrent dynamics of different composers, so that no
pleasingly sounding music results. Another possible reason is that the test
subjects got confused by the style transition, and therefore gave a lower
rating.

We also asked our test audience to pick a composer that is stylistically
closest to each fragment they were given. Their choices are compared to
the ground truth in Figure 5.6, in which we report accuracy as a perfor-
mance measure. We again see a large gap of 30% for Bach compositions,
again most probably because of easy identification of this composer’s mu-
sic. Surprisingly we see the opposite happening for Chopin, for which the
generated music gets an accuracy of 57% against only 30% for the original
compositions3; he got most often confused with Beethoven—also a roman-
tic composer—especially Prelude No. 6, Op. 28. The difference for Bach
is statistically significant, while this is not as strong for Chopin (bootstrap
hypothesis test, p = 0.002 vs. p = 0.10). In the results for the second ex-
periment we have stacked two bars for the second fragment, of which the
lower bar is the accuracy for composer 1 and the top one for composer 2.
The combined accuracy is almost 72.9% for the second fragment, despite
the lower quality scores. The accuracy for the first fragment is only 22.9%
(i.e. worse than random); the third fragment performs much better with
38.8%. However, through a bootstrap hypothesis test we cannot reject the
null hypothesis that the accuracy for the first and third fragment is equal
(p = 0.19).

3This reminds us of the story that Charlie Chaplin himself once lost a Charlie Chaplin
impersonation contest. Among the approximately 40 competitors, he ended 27th; see http:
//trove.nla.gov.au/newspaper/article/70146933

http://trove.nla.gov.au/newspaper/article/70146933
http://trove.nla.gov.au/newspaper/article/70146933

134 CHAPTER 5

5.5 Conclusion

In this paper we introduced the task of composer-conditioned music com-
position. We devised a recurrent neural network architecture to generate
polyphonic piano music in the style of a given composer. We showed how
we are able to make continuous transitions between composer styles dur-
ing the music generation process. A field study was conducted in a tar-
get audience with a background in classical music. The test subjects were
asked to assess the quality of generated compositions and select a com-
poser whose style is nearest to the fragments. From the experiments we
conclude that it is possible to induce composer-specific dynamics in the
music generation model and that we can make transitions from one com-
poser to another. However, generated polyphonic music is still discernible
from hand-made compositions. One of the remaining question is how a
global structure can be obtained, in which we have recurring themes, vari-
ations, and proper phrasings. This is currently absent in the model and
the resulting compositions. Another important thought is that the teacher
forcing training paradigm might not be suitable to allow for true model
creativity, since we always depart from knowledge in the ground truth
training data. This leaves open paths for future research.

POLYPHONIC PIANO MUSIC COMPOSITION 135

References

[1] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. WaveNet:
A Generative Model for Raw Audio. arXiv.org, 2016. arXiv:1609.03499v2.

[2] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and
K. Simonyan. Neural Audio Synthesis of Musical Notes with WaveNet
Autoencoders. ICML, 2017.

[3] K. Agres, J. Forth, and G. A. Wiggins. Evaluation of Musical Creativity
and Musical Metacreation Systems. Computers in Entertainment, 2016.

[4] K. Ebcioglu. An Expert System for Harmonizing Chorales in the Style of
Bach,J.S. Journal of Logic Programming, 1990.

[5] A. R. Brown, T. Gifford, and R. Davidson. Techniques for Generative
Melodies Inspired by Music Cognition. Computer Music Journal, 2015.

[6] D. Herremans and K. Soerensen. Composing fifth species counterpoint
music with a variable neighborhood search algorithm. Expert Systems with
Applications, 2013.

[7] K. Jones. Compositional applications of stochastic processes. Computer
Music Journal, 1981.

[8] J. F. Paiement, S. Bengio, and D. Eck. Probabilistic models for melodic
prediction. Artificial Intelligence, 2009.

[9] D. Ponsford, G. Wiggins, and C. Mellish. Statistical learning of harmonic
movement. Journal of New Music Research, 1999.

[10] W. Schulze and B. van der Merwe. Music Generation with Markov Mod-
els. Ieee Multimedia, 2011.

[11] F. Pachet and P. Roy. Non-Conformant Harmonization - the Real Book in
the Style of Take 6. ICCC, 2014.

[12] P. M. Todd. A connectionist approach to algorithmic composition. Com-
puter Music Journal, 1989.

[13] M. C. Mozer. Neural network music composition by prediction: Exploring
the benefits of psychoacoustic constraints and multi-scale processing. Con-
nection Science, 1994.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 1997.

136 CHAPTER 5

[15] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling. arXiv.org, 2014.
arXiv:1412.3555v1.

[16] D. Eck and J. Schmidhuber. Finding temporal structure in music: Blues
improvisation with LSTM recurrent networks. In IEEE Workshop on Neu-
ral Networks for Signal Processing, 2002.

[17] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling Tem-
poral Dependencies in High-Dimensional Sequences - Application to Poly-
phonic Music Generation and Transcription. ICML, 2012.

[18] I.-T. Liu and B. Ramakrishnan. Bach in 2014: Music Composition with
Recurrent Neural Network. arXiv.org, 2014. arXiv:1412.3191.

[19] A. Huang and R. Wu. Deep Learning for Music. arXiv.org, 2016.
arXiv:1606.04930v1.

[20] N. Jaques, S. Gu, R. E. Turner, and D. Eck. Generating Music by Fine-
Tuning Recurrent Neural Networks with Reinforcement Learning. In Deep
Reinforcement Learning Workshop, NIPS, 2016.

[21] K. Choi, G. Fazekas, and M. Sandler. Text-based LSTM networks for
Automatic Music Composition. arXiv.org, 2016. arXiv:1604.05358v1.

[22] C. Walder. Modelling Symbolic Music - Beyond the Piano Roll. ACML,
2016.

[23] C. Malleson, J. C. Bazin, O. Wang, D. Bradley, T. Beeler, A. Hilton,
and A. Sorkine-Hornung. FaceDirector - Continuous Control of Facial
Performance in Video. ICCV, 2015.

[24] I. Sutskever. Training recurrent neural networks. PhD thesis, 2013.

[25] J. L. Elman. Finding Structure in Time. Cognitive science, 1990.

[26] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout - a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 2014.

[27] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In
ICLR, 2015.

[28] L. van der Maaten and G. Hinton. Visualizing Data using t-SNE. Jour-
nal of Machine Learning Research, 2008.

POLYPHONIC PIANO MUSIC COMPOSITION 137

[29] D. Moffat and M. Kelly. An investigation into peopleś bias
against computational creativity in music composition. 2006.
arXiv:11008750380463336829related:fa126CTwxpgJ.

6
Large-Scale User Modeling with
Recurrent Neural Networks for

Music Discovery on Multiple Time
Scales

“Just take a look at the menu, we give you rock a la carte. We’ll breakfast at
Tiffany’s, we’ll sing to you in Japanese. We’re only here to entertain you.”

—Queen, 1978

In the final chapter of this thesis before the conclusion, we will explore how
recurrent neural networks can be used in the context of recommender systems. For
this purpose, we will examine the listening behavior of users on Spotify, globally
the most widely used music streaming platform. On one hand, word2vec will be
used to represent 6 million tracks in a low-dimensional space. This space is learned
by treating user-created playlists as documents, and tracks in these playlists as
individual words. On the other hand, a recurrent neural network will be trained
to process the sequence of tracks that a user has listened to, and the resulting user
embedding is projected in the same word2vec space. This user embedding is then
used to predict a track the user will likely listen to in the future.

? ? ?

140 CHAPTER 6

C. De Boom, R. Agrawal, S. Hansen, E. Kumar, R. Yon, C.-
W. Chen, T. Demeester, and B. Dhoedt

Appeared in Multimedia Tools and Applications, online, 2017.

Abstract The amount of content on online music streaming platforms is
immense, and most users only access a tiny fraction of this content. Rec-
ommender systems are the application of choice to open up the collection
to these users. Standard collaborative filtering has the disadvantage that
it relies on explicit consumer signals, which are often unavailable, and
generally disregards the temporal nature of music consumption. On the
other hand, item co-occurrence algorithms, such as the recently introduced
word2vec-based recommenders, are typically left without an effective user
representation. In this paper, we present a new approach to model users
through recurrent neural networks by sequentially processing consumed
items, represented by any type of embeddings and other context features.
This way we obtain semantically rich user representations, which capture
a user’s musical taste over time. Our experimental analysis on large-scale
user data shows that our model can be used to predict future songs a user
will likely listen to, both in the short and long term.

6.1 Introduction

Online digital content providers, such as media streaming services and e-
commerce websites, usually have immense catalogs of items. To prevent
users from having to search manually through the entire catalog, recom-
mender systems help to filter out items users might like to watch, listen
to, buy. . . and are often based on characteristics of both users and items.
One type of recommendation algorithms is collaborative filtering, which is
generally based on item consumption signals or rating provided by users.
However, such explicit information is not always available. For example,
in what way does clicking on an item represent how much the user likes
this item? Implicit feedback models are therefore used here, but they re-
quire careful parameter tuning. Next to this, systems that model users
based on aggregate historical consumption will often ignore the notion of
sequentiality. In the case of music consumption, for example, it has been
investigated that a user’s listening behavior can be described by a trajec-
tory in time along different artists and genres with periods of fixations and
transitions [1].

Recently, recommenders have also been built on top of item embed-
dings [2, 3]. Such embeddings, or vector representations, are generally

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 141

learned using item co-occurrence measures inspired by recent advances in
language modeling, e.g. word2vec and related algorithms [4]. The problem
with this approach is that we are left without an adequate user representa-
tion, and the question remains how to derive such a representation based
on the given item embeddings.

In this work we focus on creating user representations in the context of
new music discovery on online streaming platforms. We start from given
latent embeddings of the items in the catalog and we represent users as
a function of their item consumption. For this, we propose that a user’s
listening behavior is a sequential process and is therefore governed by an
underlying time-based model. For example, think of a user listening to an
artist’s album for some time and then transitioning to the next album, or to
a compilation playlist of the same musical genre. To model the dynamics
of a user’s listening pattern we use recurrent neural networks, which are
currently among the state-of-the-art in many data series processing tasks,
such as natural language [5, 6] and speech processing [7]. We do not pre-
suppose any of the item embedding properties, such that our model is gen-
erally applicable to any type of item representation. In the next section we
will explain the problem setting and highlight related work regarding mu-
sic recommendation and deep learning. In Section 6.3 we will describe our
methodology, after which we perform an initial data analysis in Section 6.4.
We conclude with the results of our experiments in Section 6.5. A complete
table with the used symbols in this article is given in Table 6.1.

6.2 Motivation and Related Work

Ever since the launch of the Netflix Prize competition in 2006 [8], research
in recommender systems, and a particular subset called collaborative filter-
ing, has spiked. The basis of modern collaborative filtering lies in latent-
factor models, such as matrix factorization [9]. Herein, a low-dimensional
latent vector is learned for each item and user based on rating similarities,
and in the most basic scheme the dot product between a user vector vu and
item vector vi is learned to represent the rating rui of item i by user u:

rui = vT
u vi. (6.1)

This setting is based on the entire user and item history, and does not take
into account that a user’s taste might shift over time. Koren et al. [9] men-
tion that such temporal effects can easily be brought into the model by
adding time-dependent biases for each item and user:

rui(t) = µ + bu(t) + bi(t) + vT
u vi(t). (6.2)

142 CHAPTER 6

Table 6.1: List of used symbols, in order of appearance.

vu(t) User vector for user u at time t
vi(t) Item vector for item i at time t
rui rating of item i by user u
µ Global average rating
bu(t) Rating bias of user u at time t
bi(t) Rating bias of item i at time t
ht Hidden state at time t
ct Cell state at time t
ft Forget gate at time t
ot Output gate at time t
rt Reset gate at time t
ut Update gate at time t
Ux , Wx Weight matrices for gate x
wx Weight vector for gate x
bx Bias for gate x
F (·) Non-linear function
σ(·) Sigmoid function
� Element-wise multiplication operator
N Number of songs in the catalog
D Embedding dimensionality
U Set of all users on the platform
(su) Ordered sequence of song vectors user u listened to
tu Taste vector of user u
R (·; W) RNN function with parameters W
L(·) Loss function
‖·‖2 L2 norm
Lcos(·) Cosine distance
unif {x, y} Uniform distribution between x and y
D Dataset of song sequences
`min, `max Minimum and maximum sampling offsets
η Learning rate
cu Context vector for user u
⊕ Vector concatenation operator
C Ordered set of contexts on the Spotify platform
Ci i’th context in C
c(s) set of contexts for song s
onehot(i, L) One-hot vector of length L with a 1 at position i
1A(x) Indicator function: 1 if x ∈ A, else 0
∆(x, y) Time difference between playing songs x and y
Dhid Hidden dimensionality
γ Discount factor
W(·; w) Weight-based model function with weights w
λ Regularization term
ζ(·) Riemann zeta function
Zipfz(·) Zipf probability density function with parameter z
rPST, rPLT Short- and long-term playlist RNN
rHST, rHLT Short- and long-term user listening history RNN
bWST, bWLT Short- and long-term weight-based model

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 143

Dror et al. [10] extend on this work by introducing additional biases for
albums, artists, genres and user sessions, but these biases now represent a
global rather than a temporal effect of a user’s preference towards an item.
This way we can for example model to what extent the average rating for a
specific album is higher or lower compared to other albums. Although the
models of Koren et al. and Dror et al. are capable of representing a user’s
overall preference towards an item and how this preference shifts in time,
it cannot immediately explain why a user would rate item w higher or
lower after having consumed items x, y and z. That is, a user’s preference
can depend on what he or she has consumed in the immediate past. Basic
collaborative filtering techniques do not explicitly model this sequential
aspect of item consumption and the effect on what future items will be
chosen.

Next to this, standard collaborative filtering and matrix factorization
techniques are mostly fit for explicit feedback settings, i.e. they are based
on positive as well as negative item ratings provided by the users. In more
general cases where we deal with views, purchases, clicks. . . we only have
positive feedback signals, which are binary, non-discriminative, sparse,
and are inherently noisy [11]. Standard and tested techniques to factor-
ize a sparse matrix of user-item interactions are singular value decom-
position (SVD) and non-negative matrix factorization (NMF) [12, 13]. In
the context of implicit feedback, however, missing values do not necessar-
ily imply negative samples. Pan et al. [14] therefore formulate this as a
so-called one class classification problem, in which observed interactions
are attributed higher importance than non-observed ones through different
weighting schemes, or through careful negative sampling. Hu et al. [11] on
the other hand construct an implicit matrix factorization algorithm, based
on the singular value decomposition of the user-item matrix, which differs
from the standard algorithm by attaching higher confidence on items with
a large number of interactions during optimization. Johnson [15] uses the
ideas from Hu et al. and devises a probabilistic framework to model the
probability of a user consuming an item using logistic functions.

The implicit-feedback models calculate global recommendations and
do not exploit temporal information to decide which items the user might
be interested in. Recently, Figueiredo et al. [1] have shown that users on
online music streaming services follow a trajectory through the catalog,
thereby focusing their attention to a particular artist for a certain time span
before continuing to the next artist. For this they use a combination of
different Markov models to describe the inter- (‘switch’) and intra-artist
(‘fixation’) transitions. In other work, Moore et al. [16] learn user and song
embeddings in a latent vector space and model playlists using a first-order

144 CHAPTER 6

Markov model, for which they allow the user and song vectors to drift over
time in the latent space.

Compared to Markov models, which inherently obey the Markov prop-
erty, recent work has shown that recurrent neural networks (RNNs) are
able to learn long-term data dependencies, can process variable-length
time series, have great representational power, and can be learned through
gradient-based optimization. They can effectively model the non-linear
temporal dynamics of text, speech and audio [18, 19], so they are ideal can-
didates for sequential item recommendation. In a general RNN, at each
time step t a new input sample xt is taken to update the hidden state ht:

ht = F (Uxt + Wht−1), (6.3)

in which F (·) is a non-linear function, e.g. sigmoid σ(·), tanh or a rec-
tifier (ReLU and variants) [20]. To counter vanishing gradients during
backpropagation and to be able to learn long-term dependencies, recur-
rent architectures such as long short-term memories (LSTMs) and gated
recurrent units (GRUs) have been proposed, both with comparable per-
formances [21–23]. These models use a gating mechanism, e.g. an LSTM
introduces input (it) and forget (ft) gates that calculate how much of the
input is taken in and to what extent the hidden state should be updated,
and an output gate (ot) that leaks bits of the internal cell state (ct) to the
output:

it = σ (Uixt + Wiht−1 + wi � ct−1 + bi) ,

ft = σ
(

U f xt + W f ht−1 + w f � ct−1 + b f

)
,

ct = ft � ct−1 + it � tanh (Ucxt + Wcht−1 + bc) ,

ot = σ (Uoxt + Woht−1 + wo � ct−1 + bo) ,

ht = ot � tanh (ct) , (6.4)

in which � is the element-wise vector multiplication. GRUs only have
a reset (rt) and update (ut) gate, get rid of the cell state, and have less
parameters overall:

rt = σ (Urxt + Wrht−1 + br) ,

ut = σ (Uuxt + Wuht−1 + bu) ,

gt = tanh
(
Ugxt + rt �Wght−1 + bg

)
,

ht = (1− ut)� ht−1 + ut � gt. (6.5)

Very recently there have been research efforts in using RNNs for item
recommendation. Hidasi et al. [24] use RNNs to recommend items by pre-
dicting the next item interaction. The authors use one-hot item encodings

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 145

as input and produce scores for every item in the catalog, on which a rank-
ing loss is defined. The task can thus be compared to a classification prob-
lem. For millions of items, this quickly leads to scalability issues, and the
authors resort to popularity-based sampling schemes to resolve this. Such
models typically take a long time to converge, and special care needs to
be taken not to introduce a popularity bias, since popular items will occur
more frequently in the training data. The work by Tan et al. [25] is closely
related to the previous approach, and they also state that making a pre-
diction for each item in the catalog is slow and intractable for many items.
Instead, low-dimensional item embeddings can be predicted at the output
in a regression task, a notion we will extend on in Section 6.3.

A popular method to learn item embeddings is the word2vec suite by
Mikolov et al. [4] with both Continuous Bag-of-Words and Skip-Gram vari-
ants. In this, a corpus of item lists is fed into the model, which learns dis-
tributed, low-dimensional vector embeddings for each item in the corpus.
Word2vec and variants have already been applied to item recommenda-
tion, e.g. Barkan et al. [2] formulate a word2vec variant to learn item vec-
tors in a set consumed by a user, Liang [3] devise a word2vec-based Co-
Factor model that unifies both matrix factorization and item embedding
learning, and Ozsoy [26] learns embeddings for places visited by users on
Foursquare to recommend new sites to visit. These works show that a
word2vec-based recommender system can outperform traditional matrix
factorization and collaborative filtering techniques on a variety of tasks. In
the work by Tan et al. item embeddings are predicted and at the same time
learned by the model itself, a practice that generally deteriorates the em-
bedding quality: in the limit, the embeddings will all collapse to a degen-
erate, non-informative solution, since in this case the loss will be minimal.
Also, they minimize the cosine distance during training, which we found
to decrease performance a lot.

In the coming sections, we will train RNNs to predict songs a user
might listen to in the future as a tool to model users on online mu-
sic streaming platforms. For this, we will predict preexisting item
embeddings—about which we will not make any assumptions in the
model—and our task is therefore a regression rather than a classification
problem. This approach is closely related to the work by van den Oord
et al. [27] in which collaborative latent vectors are predicted based on raw
audio signals, and also related to the work by Hill et al. [28] who learn
to project dictionary definition representations onto existing word embed-
dings. Regarding sequential item recommendation, the related works by
Hidasi et al. and Tan et al. mentioned above both perform item recommen-
dation within user sessions, i.e. uninterrupted and coherent sequences of

146 CHAPTER 6

song 1

song 2

song 3

song n
user listening history

vector 1

vector 2

vector 3

vector n

..

.
...

word2vec

RNN taste vector Annoy tree
query

song 1

song 2

song 3

song k
top k

recommendations

..

.

Figure 6.1: The entire song recommendation pipeline for a specific user; we start
with the user’s listening history of N songs, and we end the pipeline
with k song recommendations.

item interactions, which can last from ca. 10 minutes to over an hour. Here,
the prediction time scale is very short-term, and since consumed items
within a user session are usually more similar than across user sessions, it
is generally easier perform item recommendation on this short time scale.
In this work we will explore recommending songs for short-term as well
as long-term consumption. To recommend songs on the long term, we will
need to be able to model a user’s behavior across session boundaries.

6.3 RNNs for Music Discovery

In this section we will explain the details of our approach to use RNNs as a
means to model users on online music streaming platforms and to recom-
mend new songs in a music discovery context. Since we aim towards mod-
els that can be used efficiently in large-scale recommendation pipelines, we
require the models to be trained within a reasonable time frame. Further-
more, sampling from the model should be efficient. Small models with
little parameters are typically wanted to satisfy both requirements.

The entire recommendation pipeline for one specific user is given in
Figure 6.1. The basic building blocks of the pipeline are song vectors,
which have been learned using the songs in the catalog. The general idea is
then to capture and predict a taste vector for each user. These taste vectors
are the output of an RNN that sequentially aggregates song vectors from
the user’s listening history, and can therefore be regarded as a representa-
tion of the user’s musical taste. The taste vector can subsequently be used
to generate song recommendations by querying a tree data structure for
the nearby song vectors.

Since we construct real-valued taste vectors, the RNN solves a regres-
sion task rather than a classification task, as argued in Section 6.2. Directly
predicting item embeddings is a regression problem that requires predict-

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 147

ing a limited set of real-valued outputs, as opposed to a classifier with as
many outputs as the number of items. The computational footprint of these
models is typically smaller than the classifiers. They are usually learned
faster, and are not per se biased towards popular items. One of the main
advantages is that any type of item embeddings and embedding combina-
tions, along with other features, can be used to learn the regression model.

We break the recommendation pipeline into three separate stages
which we will cover below. First, we learn low-dimensional embeddings
for each song in the streaming catalog using word2vec (§6.3.1). Then, we
use an RNN to generate taste vectors for all users in the song embedding
space (§6.3.2). Finally, we use the taste vector to query songs in the nearby
space to generate recommendations for all users (§6.3.3).

6.3.1 Learning song embeddings

In the first stage of the recommendation pipeline we learn latent vector
representations for the top N most popular songs in the catalog. For this,
we use Google’s word2vec suite as explained in Section 6.2; more specifi-
cally we use the Continuous Bag-of-Words (CBoW) algorithm with nega-
tive sampling. As input to the word2vec algorithm we take user-created
playlists of songs. In this, each playlist is considered as an ordered ‘docu-
ment’ of songs. By scanning all playlists in a windowed fashion, word2vec
will learn a distributed vector representation s with dimensionality D for
every song s. Details regarding training data for word2vec will be high-
lighted in Section 6.4.

6.3.2 Learning user taste vectors

In the second pipeline stage we use RNNs to produce user taste vectors
based on song listening history. The network takes a sequence of song
vectors of dimensionality D as input and produces a single taste vector
with the same dimensionality D. Let’s denote the set of all users by U,
the ordered sequence of song vectors user u listened to by (su), and the
predicted taste vector by tu. The RNN then produces:

∀u ∈ U : tu = R ((su) ; W) , (6.6)

in whichR(· ; W) represents the function the RNN computes with param-
eters W.

To learn a semantically rich user taste vector that is able to generate ad-
equate recommendations, ideally this taste vector should be able to capture
how a user’s listening behavior is evolving over time. We therefore train

148 CHAPTER 6

the RNN to predict a song the user is going to listen to in the future. More
specifically, for a particular user u, we take the first n consecutive songs su

1:n
this user has listened to, and we try to predict a future song vector su

n+`, for
some strictly positive value of `. As a loss function, we use the L2 distance
between the predicted taste vector and the true future song vector:

L
(
su

n+`,R (su
1:n; W)

)
=
∥∥su

n+` −R (su
1:n; W)

∥∥
2 . (6.7)

We experimented with other distance functions, such as cosine distance
and a weighted mixture of cosine and L2 distance. The cosine distance
Lcos(·) between two vectors x and y is given by:

Lcos (x, y) = 1− x · y
‖x‖2 ‖y‖2

. (6.8)

The L2 distance, nevertheless, gave the best results in the experiments.
To determine the best value of the prediction offset ` we consider two

separate prediction tasks: short-term and long-term prediction. The idea
is that it is generally easier to predict a song a user is going to listen to
next—e.g. think of a user shuffling an artist album, or listening to a rock
playlist—than it is to predict the 50th song he is going to listen to in the
future. The underlying dynamics of a short-term and long-term prediction
model will therefore be different. For example, the short-term model will
intuitively be more focused on the last few tracks that were played, while
the long-term model will generally look at a bigger timeframe. During
training we sample a value of ` for every input sequence from a discrete
uniform distribution. More specifically, for the short-term model, ` is sam-
pled from unif{1, 10}, and ` is sampled from unif{25, 50} for the long-term
model. Random sampling of the prediction offset for every new input se-
quence reduces chances of overfitting and also increases model general-
ization. The entire training procedure is sketched in Algorithm 6.1. In
here, we use a stochastic minibatch version of the gradient-based Adam
algorithm to update the RNN weights [29]. We have also experimented
with setting ` fixed to 1 for the short-term model, but this leads to very
near-sighted models that make predictions almost solely based on the last
played song. For example, first listening to 100 classical songs and then to
1 pop song would lead to pop song predictions by the RNN.

6.3.3 Recommending songs

The output of the RNN is a user taste vector that resides in the same vec-
tor space as all songs in the catalog. Since we trained the RNN to produce
these taste vectors to lie close to future songs a user might play—in terms

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 149

Algorithm 6.1: RNN training procedure
input : dataset D of song sequences, initial RNN parameters W
parameter: sequence length n, offsets `min and `max, learning rate η

1 repeat
2 shuffle(D)
3 foreach batch B ∈ D do
4 loss← 0
5 foreach sequence (s) ∈ B do
6 ` ∼ unif{`min, `max}
7 loss← loss + L (sn+`,R (s1:n; W))

8 W← adam_update(W, loss, η)

9 until convergence

of L2 distance—we can query for nearby songs in that vector space to gen-
erate new song recommendations. To scale the search for nearby songs
in practice, we construct an Annoy1 tree datastructure with all song vec-
tors. The Annoy tree will iteratively divide the vector space in regions
using a locality-sensitive hashing random projection technique [30], which
facilitates approximate nearest neighbor querying. To generate suggested
recommendations for a particular user, we query the Annoy tree using the
user’s taste vector to find the top k closest catalog songs in the vector space.

6.3.4 Incorporating play context

In general we do not only know the order in which a user plays partic-
ular songs, but we also know the context in which the songs have been
played. By context we mean a playlist, an album page, whether the user
deliberately clicked on the song, etc. This additional information can be
very useful, e.g. we can imagine that a user clicking on a song is a stronger
indicator of the user’s taste than when the song is played automatically in
an album or playlist after the previous song has finished playing. Since the
RNN can process any combination of arbitrary embeddings and features,
we can supply a context vector cu as extra input. The context vector is in
this case concatenated with the song vector at each time step to produce
the user taste vector:

∀u ∈ U : tu = R ((su ⊕ cu) ; W) , (6.9)

1github.com/spotify/annoy

github.com/spotify/annoy

150 CHAPTER 6

in which we use the symbol ⊕ to denote vector concatenation.
To construct a context vector we consider the ordered set C =
(album, playlist, artist, click, . . .) of all possible contexts, denote Ci as the
i’th context in C, and c(s) as the play context for a particular song s,
e.g. c(s) = {playlist, click}. The context vector for a song s is then con-
structed using a one-hot encoding scheme:

c =
|C|

∑
i=1

onehot(i, |C|) · 1c(s)(Ci), (6.10)

in which onehot(i, |C|) is a one-hot vector of length |C| with a single 1 at
position i, and in which 1A(x) is the indicator function that evaluates to 1
if x ∈ A and to 0 otherwise. We also include the time difference between
playing the current song and the last played song. The final context vector
cu

j for the j’th song su
j played by user u then becomes:

cu
j = ∆(su

j , su
j−1)⊕

|C|

∑
i=1

onehot(i, |C|) · 1
c
(

su
j

)(Ci), (6.11)

in which ∆(sj, sj−1) is the time difference in seconds between playing song
sj and sj−1, evaluating to 0 if sj−1 does not exist.

6.3.5 User and model updates

The recommendation pipeline we described in this section can be used in
both static and dynamic contexts. In dynamic contexts, the model should
be updated frequently so that recommendations can immediately reflect
the user’s current listening behavior. This is easily done in our model: for
every song the user listens to we retrieve its song vector that we use to
update the hidden state of the RNN, after which we calculate a new taste
vector to generate recommendations. This requires that we keep track of
the current RNN states for every user in the system, which is a small over-
head. In more static contexts, in which recommendations are generated on
a regular basis for all users (every day, week. . .), there is no need to update
the RNN for every song a user listens to. Here, we retrieve the entire user
listening history–or the last n songs–which we feed to a newly initialized
RNN. We therefore do not need to remember the RNN states for every user.

All recommendation modules that are deployed in practical environ-
ments have to be updated regularly in order to reflect changes in the item
catalog and user behavior. This is no different for the framework we
present here. In order to perform a full model update, we subsequently
train word2vec on the playlists in the catalog, retrain the RNN model on

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 151

the new song vectors, and populate the Annoy tree with the same song vec-
tors. Only retraining word2vec is not sufficient since we almost never end
up in the same song embedding space. If we use dynamic user updates,
note that we also have to do one static update after retraining word2vec
and the RNN, since the remembered RNN states will have become invalid.

6.4 Data Gathering and Analysis

The first stage in the recommendation pipeline considers the learning of se-
mantically rich song vectors, for which we use the word2vec algorithm. In
this section we explain how we gather data to train this word2vec model,
and we perform a preliminary analysis on the song vectors. Finally we
detail the construction of the train and test data for the RNNs.

6.4.1 Training word2vec

To create training data for the word2vec model we treat user-created
playlists as documents and songs within these playlists as individual
words, as mentioned in Section 6.3. For this, we gather all user-created
playlists on the Spotify music streaming platform. In these playlists we
only consider the top N most popular tracks; the other tracks are removed.
In our experiments we set N to 6 million, which makes up for most of the
streams on the Spotify platform. After filtering out unpopular tracks, we
further only consider playlists with a length larger than 10 and smaller
than 5000. We also restrict ourselves to playlists which contain songs from
at least 3 different artists and 3 different albums, to make sure there is
enough variation and diversity in the playlists. After applying the filter-
ing above, we arrive at a corpus of 276.5 million playlists in total. In the
following step, the playlists are fed to the word2vec suite, where we use
the CBoW algorithm with negative sampling. We go through the entire
playlist corpus once during execution of the algorithm in order to produce
vectors with dimensionality D = 40, a number that we empirically deter-
mined and produces good results.

6.4.2 Data processing and filtering

In Section 6.5 we will train different RNN versions, for which we will use
both playlist and user listening data. Playlists are usually more contained
regarding artists and musical genres compared to listening data. Modeling
playlist song sequences with RNNs will therefore be easier, but we can

152 CHAPTER 6

miss out important patterns that appear in actual listening data, especially
if a user listens to a wide variety of genres.

For the playlist data we extract chunks of 110 consecutive songs, i.e. 60
songs to feed to the RNN and the next 50 songs are used as ground truth
for the prediction. Regarding the user listening, which is captured in the
first half of 2016 on the Spotify platform, we only keep songs which have a
song vector associated with them; other songs are removed from the user’s
history. We also save context information for every played song; for this,
we consider the following 13 Spotify-related contexts: collection, library, ra-
dio, own playlist, shared playlist, curated playlist, search, browse, artist, album,
chart, track, clicked, and unknown for missing context information. To ex-
tract RNN training sequences we take chunks of 150 consecutive songs, for
which the first 100 songs are again used as input to the RNN and the last
50 as ground truth. We allow more songs as input to the RNN compared to
the playlist training data since user listening data is generally more diverse
than playlist data, as mentioned before.

Since users often return to the same songs or artists over and over again,
we apply additional filtering to eliminate those songs. This will greatly
improve the RNN’s generalization, and will counter what we call the ‘easy
prediction bias’, as it is too easy to predict songs a user has already listened
to. This filtering is not needed for playlist data, since a song only appears
once in a playlist most of the times. The filtering rules we include, are:

1. The last 50 songs should be unique;

2. The last 50 songs should not appear in the first 100 songs;

3. The last 50 artists should be unique;

4. The last 50 artists should not appear in the first 100 artists.

Note that we only remove similar songs and artists from the ground truth
labels in the dataset, and that we leave the first 100 songs in the user’s
history intact. That is, the same song can still appear multiple times in
these first 100 songs, thereby steering the user’s preference towards this
particular song and influencing the predictions made by the RNN. For
both playlist and listening data we gather 300,000 train sequences, 5,000
validation sequences and 5,000 test sequences.

6.4.3 User data analysis

To analyze the gathered data, we take all 5,000 listening history sequences
in the test set, and we calculate pairwise cosine distances between the song
vectors in these sequences. We measure both the vector distance between

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 153

1 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

All pairs Subsequent pairs

C
os

in
e

di
st

an
ce

0.0

1.8

Figure 6.2: Box plots of pairwise distances between songs in all test set listening
histories.

all possible song pairs in a listening sequence, as well as the distance only
between subsequent songs. The distances are given as box plots in Figure
6.2, in which the whiskers are drawn at 1.5 times the interquartile range.
We see that the all pairs median distance is larger than the subsequent pairs
median distance by around 0.25, indeed confirming the higher correlation
between subsequent songs. We also plot the number of song transitions
within each user’s listening history that have a cosine distance larger than
1, meaning that the next song is more different from the current song than it
is similar to it. The histogram for this is shown in Figure 6.3. Most listening
histories have little such song transitions. The median number is seven,
which points, on average, to listening periods of 21 similar songs before
transitioning to a more different region in the song space, which in turn
corresponds to coherent listening sessions of about 1 to 1.5 hours long.

6.5 Experiments

In this section we discuss the results of various experiments and we show
examples of song recommendations produced by different RNN models.
In the following we first design the best RNN architecture by experimenta-
tion, after which we explain the baselines against which the RNN models
will be tested. All experiments are run on an Amazon AWS instance, 32-
core Intel Xeon 2.60GHz CPU, 64GB RAM and Nvidia GRID K520 GPU
with cuDNN v4. The RNN models are implemented in Lasagne2 and
Theano [31].

2github.com/Lasagne/Lasagne

github.com/Lasagne/Lasagne

154 CHAPTER 6

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80
#transitions with cos distance > 1

#s
on

gs

0

200

400

600

800

1000

Figure 6.3: Histogram of the number of song transitions with cosine distance larger
than 1.

6.5.1 Network architecture

The neural network architecture we propose consists of a number of recur-
rent layers followed by a number of dense layers. The number of input
dimensions is D = 40, which is the dimensionality of a single song vec-
tor. For the recurrent layers we consider both LSTMs and GRUs, since
such models are state-of-the-art in various NLP applications and can han-
dle long-term dependencies. We use standard implementations of these
layers as described in Section 6.2, with a hidden state dimensionality of all
layers equal to Dhid. We will describe how the optimal number of recurrent
layers and the optimal value of Dhid are chosen.

After the recurrent layers we consider two dense layers. We empirically
set the dimensionality of the first dense layer to 4 ·Dhid, and we use a leaky
ReLU nonlinearity with a leakiness of 0.01 [20]. Since we are predicting a
user taste vector in the same song space, the output dimensionality of the
last dense layer is D = 40, which is the same as the input dimensionality.
In the last layer we use a linear activation function, since we are predicting
raw vector values.

In a first experiment we set Dhid to 50, we switch the recurrent layer
type between LSTM and GRU, and we also vary the number of recurrent
layers from 1 up to 3. We record train loss, validation loss, average gradient
update time for a single batch and average prediction time for a single se-
quence. For this experiment we use the gathered playlist data, and we train
a short-term model for which we report the best values across 15 epochs
of training. The results are shown in Table 6.2. We see that both models

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 155

Table 6.2: Comparing recurrent layer type and number of layers on short-term
playlist prediction.

Train loss Validation loss Update [ms] Prediction [ms]
LSTM, 1 layer 258.8 271.2 20 4.4
LSTM, 2 layers 257.3 270.2 39 8.7
LSTM, 3 layers 258.1 271.0 58 13.0
GRU, 1 layer 259.0 271.0 16 2.2
GRU, 2 layers 257.3 270.5 30 4.1
GRU, 3 layers 257.5 270.6 45 6.1

are very comparable in terms of validation loss, and that the optimal num-
ber of recurrent layers is two. The LSTM model performs slightly better
than the GRU model in this case, but the GRU model predicts more than
50% faster than the LSTM model, which can be important in large-scale
commercial production environments. We observe comparable results for
listening history prediction as well as long-term prediction. We therefore
pick the two-layer GRU model as the optimal architecture.

Next we perform experiments to determine the optimal hidden state
size Dhid. We train the two-layer GRU architecture from above for a short-
term playlist prediction, and we vary Dhid from 20 to 100 in steps of 10.
The results are shown in Table 6.3. The validation loss is the highest at 20,
and is minimal at Dhid values of 50 and 60. The loss remains more or less
stable if we increasing the hidden state size to 100. Since larger hidden state
sizes imply slower prediction and train times, we choose Dhid = 50 as the
optimal hidden state size. These observations are also valid for long-term
prediction and for listening history data. The final architecture is displayed
in Table 6.4. It turns out that this architecture is also near-optimal for long-
term playlist prediction as well as for user listening data. Since the number
of network parameters is low and given the large amount of training data,
we do not need additional regularization.

We also train short-term user listening RNNs with additional play con-
text information at the input, as described in Section 6.3.4, and with the
same configurations as in Tables 6.2 and 6.3. The optimal configuration is
a 2-layer architecture with Dhid equal to 100, but the differences in perfor-
mance for 50 ≤ Dhid < 100 are minimal. Furthermore, the performance
gain compared to the same model without context information is non-
significant. We will therefore disregard play context models in the rest
of the experiments.

156 CHAPTER 6

Table 6.3: Comparing performance with varying hidden layer size Dhid on short-
term playlist prediction.

Dhid L2 validation loss Cosine validation loss
20 287.3 0.464
30 276.4 0.425
40 271.5 0.408
50 270.5 0.406
60 270.0 0.406
70 270.4 0.406
80 270.5 0.407
90 270.1 0.405

100 270.4 0.406

6.5.2 Baselines

We will compare the performance of different RNN models against several
baseline models. The general idea here is again that a user’s listening be-
havior is governed by underlying temporal dynamics. We consider three
types of baseline models: an exponential discount model, a weight-based
model, and a classification model. The first two types are aggregation mod-
els, which means that they take an arbitrary number of song vectors as in-
put and produce one output vector by mathematically combining the song
vectors, e.g. through summing or taking a maximum across dimensions.
Aggregation of distributed vectors is a popular practice in NLP applica-
tions and deep learning in general since it does not require any training
when the vector space changes [32, 33]. In our case however, the danger
of aggregation is that sometimes songs from different genres are summed
together, so that we can end up in ‘wrong’ parts of the song space. For
example, if we aggregate the song vectors of a user listening to a mix of
classical and pop music, we might arrive in a space where the majority of
songs is jazz, which in turn will lead to bad recommendations. The third
type of baseline is based on the work by Hidasi et al. [24] as mentioned in
Section 6.2. In this, we will not predict an output vector to query the An-
noy LSH tree, but we will output probability scores for all N items in the
catalog. The top k items can then immediately be recommended.

Exponential discount model

In the exponential discount model we make the assumption that a user’s
taste is better reflected by the recent songs he has listened to than by songs

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 157

Table 6.4: The final neural network architecture.

Layer type (no. of dimensions) and non-linearity
Input (40)

1 GRU (50)
sigmoid (gates); tanh (hidden update)

2 GRU (50)
sigmoid (gates); tanh (hidden update)

3 Fully connected dense (200)
Leaky ReLU, leakiness = 0.01

4 Fully connected dense (40)
Linear activation

he has listened to a while ago. We model this type of temporal dynamics
by the following exponentially decaying weight model:

∀u ∈ U : tu =
k

∑
j=1

su
j · γk−j. (6.12)

In this, we consider the song history of user u which has length k, and we
weigh every vector by a power of γ, the discount factor. Setting γ = 1
results in no discounting and leads to a simple sum of the song vectors,
while setting γ < 1 focuses more attention on recently played songs. The
smaller γ, the more substantial this contribution becomes compared to
songs played a longer time ago. If γ = 0, the user taste vector is essen-
tially the vector of the last played song.

Weight-based model

This model is based on the weighted word embedding aggregation tech-
nique by De Boom et al. [34]. As in the exponential discount model, we
will multiply each song vector sj by a weight wj:

∀u ∈ U : tu =W ((su) ; w) =
k

∑
j=1

su
j · wj, (6.13)

in which we gather all weights wj in a k-dimensional vector w. Now,
instead of fixing the weights to an exponential regime, we will learn the
weights through the same gradient descent procedure as in Algorithm 6.1.

158 CHAPTER 6

0 20 40 60 80 100
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Short term
Long term

1 20 40 60 80
Weight index j

W
ei

gh
tm

ag
ni

tu
de

w
j

−0.2

1
Short-term
Long-term

Figure 6.4: Normalized weight magnitudes for long- and short-term prediction.

In this algorithm we replace the RNN loss by the following weight-based
loss:

L
(
su

k+`,W ((su) ; w)
)

=
∥∥su

k+` −W ((su) ; w)
∥∥

2 + λ ‖w‖2 . (6.14)

We include the last term as weight regularization, and we empirically set λ

to 0.001. Apart from this regularization term, we do not imply any restric-
tions on or relations between the weights. We train a weight-based model
on user listening data for both short- and long-term predictions, and the
resulting weights are plotted in Figure 6.4. For the short-term prediction
the weights are largest for more recent tracks and decrease the further we
go back in the past. This confirms the hypothesis that current listening be-
havior is largely dependent on recent listening history. For the long-term
model we largely observe the same trend, but the weights are noisier and
generally larger than the short-term weights. Also, the weights increase
again in magnitude for the first 10 tracks in the sequence. This may signify
that a portion of a user’s long-term listening behavior can be explained by
looking at songs, genres or artists he has listened to in the past and returns
to after a while.

Classification model

As mentioned above, we loosely rely on the work by Hidasi et al. [24] to
construct a classification baseline model. In this work, the items are en-
coded as a one-hot representation, and the output of the model is a prob-

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 159

ability score for every item in the catalog. To be able to fairly compare
between all other baselines, and to help scale the model, we slightly adapt
it and use the word2vec vectors as input instead of the one-hot item en-
codings. We employ the same neural network model as in Table 6.4 and at
the output we add an additional dense layer with output dimensionality
N = 6,000,000 and softmax activation function. The memory footprint of
this softmax model thus substantially increases by around 938MiB, com-
pared to the model in Table 6.4. Given the large output dimensionality,
we also experimented with a two-stage hierarchical softmax layer [35], but
the computational improvements were only marginal and the model per-
formed worse.

We train the softmax classification model with two different loss func-
tions. First, we consider the categorical cross-entropy loss in the case there
is only one target:

L (i,R (su
1:k; W)) = −onehot

(
su

k+`, N
)
· log [softmax (R (su

1:k; W))]> .
(6.15)

In this loss function, i is the RNN output index of the target song to be
predicted, and softmax

(
R
(
su

1:k; W
))

is the output of the RNN after a soft-
max nonlinearity given the input vectors su

1:k. The second loss function is
a pairwise ranking loss used in the Bayesian Personalized Ranking (BPR)
scheme by Rendle et al. [36]. This loss function evaluates the score of the
positive target against randomly sampled negative targets:

L (i,R (su
1:k; W)) = − 1

NS

NS

∑
j=1

log
[
σ
(
R (su

1:k; W)i −R (su
1:k; W)j

)]
. (6.16)

In this, NS is the number of negative samples that we set fixed to 100, σ(·) is
the sigmoid function, and i is again the output index of the positive sample.
Note that we use a sigmoid nonlinearity rather than a softmax. In practice
we also add an L2 regularization term on the sum of the positive output
value and negative sample values. To generate negative samples, we sam-
ple song IDs from a Zeta or Zipf distribution with parameter z = 1.05,
which we checked empirically on the song unigram distribution:

Zipfz(k) =
k−z

ζ(z)
, (6.17)

in which ζ(·) is the Riemann zeta function. We resample whenever a song
appears in a user’s listening data to make sure the sample is truly negative.

Hidasi et al. reported better stability using BPR loss compared to cross-
entropy loss, but our sampling-based training procedure from Algorithm

160 CHAPTER 6

6.1 did not produce any unstable networks for both loss functions. We
trained short-term and long-term networks on the filtered listening history
data using both cross-entropy and BPR, and all models took around 2.5
days to converge. By comparison, training until convergence on the same
hardware only took 1.5 hours for the models presented in this work.

6.5.3 Results

In this section we will display several performance metrics on the test set
of user listening histories. After all, the music recommendations will be
based on what a user has listened to in the past. We have trained four RNN
models: a playlist short-term (rPST) and long-term (rPLT) RNN, and a user
history short-term (rHST) and long-term (rHLT) RNN. We also report met-
rics for five baselines: a short-term (bWST) and long-term (bWLT) weight-
based model, and exponential discount models with γ ∈ {1.0, 0.97, 0.85}.
In the following we will perform a forward analysis to evaluate how well a
taste vector is related to future song vectors, which will show the predictive
capacity of the different models. We will also do a backwards analysis to
study on what part of the listening history sequences the different models
tend to focus. We conclude with results on a song prediction task.

Forward analysis

In the forward analysis we take the first 100 songs of a user’s listening his-
tory, which we use to generate the taste vector. This taste vector is then
compared to the next 50 song vectors in the listening history in terms of
cosine distance. That is, for each user u in the test set we calculate the se-
quence

(
Lcos(tu, su

100+j)
)

, for j ∈ {1, 2, . . . , 50}. Figure 6.5 shows a plot of
these sequences averaged over all users in the test set. The overall trend of
every model is that the cosine distance increases if we compare the taste
vector to songs further in the future. This is not surprising since it is
generally easier to predict nearby songs than it is to predict songs in the
far future, because the former are usually more related to the last played
songs. We see that the γ = 0.85 and rPST model have comparable per-
formance. They have low cosine distance for the first few tracks, but this
quickly starts to rise, and they both become the worst performing models
for long-term prediction. All other models, apart from rHST and rHLT,
behave similarly, with rPLT being slightly better and the γ = 0.97 model
slightly worse than all others. The two best performing models are rHST
and rHLT. Until future track 20, the rHST model gives the lowest cosine
distance, and rHLT is significantly the best model after that. Since playlists

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 161

0 10 20 30 40 50

0.55

0.60

0.65

0.70

PST
PLT
HST

HLT
WST
WLT

0.85
0.97
1.0

0 10 20 30 40 50
Future song index j

C
os

in
e

di
st

an
ce

(t
u
,s

u 10
0+

j)

0.55

0.6

0.65

0.7

rPST
rPLT
rHST

rHLT
bWST
bWLT

0.85
0.97
1.0

Figure 6.5: Forward analysis of the taste vector models on filtered listening history
data.

are typically more coherent than listening histories—e.g. they often con-
tain entire albums or sometimes only songs by the same artist—this can
explain why the playlist-trained RNNs, and especially rPST, perform not
that well in this analysis. Another general trend is that ST models typically
perform better than their LT counterparts in the very near future. And at
some point the LT model becomes better than the ST model and is a better
predictor on the long term. Finally, among all baselines, we also observe
that bWST is the best performing short-term model, and bWLT performs
best to predict on the long term, which is not surprising since the weight-
based models are a generalization of the discounting models. Note that the
classification models remain absent, because in this case the output of the
RNN is not a user taste vector.

Backwards analysis

In this analysis we again take the first 100 songs of a user’ listening history,
which we use to generate a taste vector. We then compare this taste vector
to these first 100 songs, i.e. the songs that generated the taste vector. We
thus look back in time to gain insights as to what parts of the listening
history contribute most or least to the taste vector. For this we calculate
the sequence

(
Lcos(tu, su

j)
)

, for j ∈ {1, 2, . . . , 100}, and Figure 6.6 plots this
sequence for each model averaged over all users in the test set. We see

162 CHAPTER 6

0 20 40 60 80 100

0.30

0.35

0.40

0.45

0.50

0.55

0.60

PST
PLT
HST

HLT
WST
WLT

0.85
0.97
1.0

0 20 40 60 80 100
Song index j

C
os

in
e

di
st

an
ce

(t
u
,s

u j)

0.3

0.4

0.5

0.6

rPST
rPLT
rHST

rHLT
bWST
bWLT

0.85
0.97
1.0

Figure 6.6: Backwards analysis of the taste vector models on filtered listening his-
tory data.

that the rPST and γ = 0.85 models are very focused on the last songs that
were played, and the average cosine distance increases rapidly the further
we go back in history: for songs 1 until 80 they are the worst performing.
These models will typically be very near-sighted in their predictions, that
is, the song recommendations will mostly be based on the last 10 played
tracks. This is again due to the fact that playlists are very coherent, and
predicting a near-future track can be done by looking at the last tracks
alone. The rHST and bWST models also show a similar behavior, but the
difference in cosine distance for tracks in the near and far history is not
as large compared to rPST. The listening history RNNs, both rHST and
rHLT, produce an overall high cosine distance. These models are therefore
not really tied to or focused on particular songs in the user’s history. It is
interesting to note that the plot for rHLT and bWLT is a near-flat line, so
that the produced taste vector lies equally far from all songs in terms of
cosine distance. In comparison, the γ = 1.0 taste vector, which is actually
just a sum of all songs, produces a U-shaped plot, which is a behavior
similar to the long-term weights in Figure 6.4. If we would attribute more
weight to the first and last few tracks, we would end up with a flatter
line. The γ = 0.97 plot also has a U-shape, but the minimum is shifted
more towards the recent listening history. Note again that the classification
models are absent in this analysis for the same reason as specified above.

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 163

Precision@k

In this section we calculate the precision of actual song recommendations.
We again take 100 songs from a user’s history which we use to generate
a taste vector. Then, as described in Section 6.3.3, we query the word2vec
space for the k nearest songs in the catalog in terms of cosine distance. We
will denote the resulting set as Ω (tu, k). The precision@k value is then the
fraction of how many songs in Ω (tu, k) actually appear in the user’s next
k tracks:

precision@k = (6.18)

1
|U| ∑

u∈U

∣∣∣{s : s ∈ Ω (tu, k) ∧ s ∈ (su
101:100+k)

}∣∣∣
k

.

We can also generalize this to precision@[j : k]:

precision@[j : k] = (6.19)

1
|U| ∑

u∈U

∣∣∣{s : s ∈ Ω (tu, k− j + 1) ∧ s ∈ (su
100+j:100+k)

}∣∣∣
k− j + 1

.

Here we disregard the user’s first next j− 1 tracks, since it is often easier to
predict the immediate next tracks than it is to predict tracks further in the
future. For the next results, we also slightly alter the definition of Ω (tu, k):
given the fact that no song in (su

101:150) occurs in (su
1:100) for all users u, as

described in Section 6.4.2, we only regard the k nearest songs of tu that do
not appear in (su

1:100). For the classification models, we simply take the top
k songs with the highest scores, and compare them to the ground truth. If
we denote these top k songs by Ω

(
R
(
su

1:k; W
)

, k
)
, we can reuse the same

definition of precision@k from above.
The results of the experiments are shown in Table 6.5. In bold we mark

the best performing model for each task, and the second best model is un-
derlined. The overall precisions are quite low, but given that we aggres-
sively filtered the listening data (Section 6.4.2), the task is rather difficult.
The history-based RNNs clearly perform best in all tasks. Generally, for
precision@10, @25 and @50 all short-term models outperform the long-term
models. But once we skip the first 25 songs, which are easier to predict, the
long-term models take over, which shows that listening behavior indeed
changes over time. The performance of the playlist RNNs and weight-
based models are comparable to the exponential discount models, which
we already saw in Figure 6.5.

All four classification models that we trained achieved the same preci-
sion score of 0 percent, so we listed them as one entry in Table 6.5. They

164 CHAPTER 6

Table 6.5: Results for the precision@k experiments on filtered listening history
data.

Precision (%)
@10 @25 @50 @[25 : 50] @[30 : 50]

rPST 1.64 2.39 2.81 1.15 0.94
rPLT 1.27 1.98 2.64 1.30 1.06
rHST 2.03 2.95 3.72 1.85 1.53
rHLT 1.40 2.31 3.25 1.89 1.63
bWST 1.67 2.37 2.94 1.28 1.04
bWLT 1.32 1.95 2.62 1.31 1.06
γ = 0.85 1.94 2.63 3.00 1.20 0.96
γ = 0.97 1.56 2.20 2.77 1.30 1.05
γ = 1.0 1.16 1.78 2.41 1.24 1.02
Classification 0.00 0.00 0.00 0.00 0.00

were not able to correctly guess any of the 50 future songs a user might
listen to. We can think of many reasons why we see this result. First, the
output dimensionality of 6 million is extremely large, which makes it dif-
ficult to discriminate between different but comparable items. The RecSys
Challenge 2015 dataset, used in both the works of Hidasi et al. and Tan et
al., only has around 37,500 items to predict, which is 160 times less than 6
million. Second, the number of weights in the classification model is orders
of magnitudes larger than for the regression model, which causes learning
to be much harder. And third, the data in the works by Hidasi et al. and
Tan et al. comes from user sessions, which are mostly contained and co-
herent sequences of songs a user listens to within a certain time span, see
also Section 6.2. The listening history dataset in our work goes across user
sessions to be able to recommend on the long term, which makes it much
more difficult to model the temporal dynamics. This is reflected in the
overall low precision accuracies.

A note on scalability

As indicated in the title of this article, our methodology should allow for
scalable music discovery. The training procedure—i.e. training word2vec
and the RNN—is not time-critical and can be trained offline. Despite the
fact that these procedures could be parallelized when needed [37], we will
focus on the recommendation part of the system itself, which is more time-
critical.

Since every user can be treated independently, the entire pipeline we
have proposed in Figure 6.1 is ’embarrassingly parallel’ and can therefore

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 165

be scaled up to as many computational nodes as available. Retrieving song
vectors comes down to a dictionary lookup in constant time O(1). Calcu-
lating user taste vectors through the RNN is linear O(n) in the number
of historical song vectors n we consider. An extensive study of the scal-
ability of Annoy, the last part in the pipeline, is beyond the scope of this
paper, and poses a trade-off between accuracy and performance: more tree
nodes inspected leads generally to more accurate nearest neighbors, but
a slower retrieval time (approximately linear in the number of inspected
nodes)3. Retrieving 1,000 nearest neighbors using 10 trees and 10,000 in-
spected nodes only takes on average 2.6ms on our system, which is in same
order of magnitude compared to the RNN prediction times given in Table
6.2.

Combining all the above, sampling a taste vector from the rHLT RNN
and retrieving the top 50 closest songs from the Annoy LSH tree over 1,000
runs takes on average 58ms on our system, while retrieving the top 50
songs from the BPR RNN takes on average 754ms, which is 13 times slower.

6.6 Conclusions

We modeled users on large-scale online music streaming platforms for the
purpose of new music discovery. We sequentially processed a user’s lis-
tening history using recurrent neural networks in order to predict a song
he or she will listen to in the future. For this we treated the problem as a
regression rather than classification task, in which we predict continuous-
valued vectors instead of distinct classes. We designed a short-term and
long-term prediction model, and we trained both versions on playlist data
as well as filtered user listening history data. The best performing mod-
els were chosen to be as small and efficient as possible in order to fit in
large-scale production environments. Incorporating extra play context fea-
tures did not significantly improve the models. We performed a set of ex-
perimental analyses for which we conclude that the history-based models
outperform the playlist-based and all baseline models, and we especially
pointed out the advantages of using the regression approach over the clas-
sification baseline models. We also saw that there is indeed a difference be-
tween short-term and long-term listening behavior. In this work we mod-
eled these with different models. One possible line of future work would
be to design a single sequence-to-sequence model that captures both short
and long term time dependencies to predict the entire future listening se-
quence [5].

3There is an excellent web article by Radim Rehurek from 2014 which studies this in depth,
see rare-technologies.com/performance-shootout-of-nearest-neighbours-querying

rare-technologies.com/performance-shootout-of-nearest-neighbours-querying

166 CHAPTER 6

References

[1] F. Figueiredo, B. Ribeiro, C. Faloutsos, N. Andrade, and J. M. Almeida.
Mining Online Music Listening Trajectories. In ISMIR, 2016.

[2] O. Barkan and N. Koenigstein. Item2vec - Neural Item Embedding for
Collaborative Filtering. RecSys Posters, 2016.

[3] D. Liang, J. Altosaar, and L. Charlin. Factorization Meets the Item Em-
bedding: Regularizing Matrix Factorization with Item Co-occurrence. In
ICML Workshop, 2016.

[4] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed
Representations of Words and Phrases and their Compositionality. In NIPS
2013: Advances in neural information processing systems, October
2013.

[5] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning
with Neural Networks. In NIPS 2014, September 2014.

[6] D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by
Jointly Learning to Align and Translate. In ICLR, 2015.

[7] A. Graves and N. Jaitly. Towards End-To-End Speech Recognition with
Recurrent Neural Networks. In ICML, pages 1764–1772, 2014.

[8] J. Bennett and S. Lanning. The Netflix Prize. In Proceedings of KDD
cup and workshop, 2007.

[9] Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for
Recommender Systems. Computer, 42(8):30–37, 2009.

[10] G. Dror, N. Koenigstein, and Y. Koren. Yahoo! music recommendations
- modeling music ratings with temporal dynamics and item taxonomy. In
RecSys, pages 165–172, New York, New York, USA, 2011. ACM.

[11] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feed-
back datasets. IEEE International Conference on Data Mining, pages
263–272, 2008.

[12] A. Paterek. Improving regularized singular value decomposition for collab-
orative filtering. In Proceedings of KDD cup and workshop, 2007.

[13] D. D. Lee and H. S. Seung. Algorithms for Non-negative Matrix Factor-
ization. NIPS 2000, 2000.

LARGE-SCALE USER MODELING WITH RECURRENT NEURAL NETWORKS 167

[14] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang.
One-Class Collaborative Filtering. In 2008 Eighth IEEE International
Conference on Data Mining, pages 502–511. IEEE, 2008.

[15] C. C. Johnson. Logistic matrix factorization for implicit feedback data. In
NIPS 2014 Workshop on Distributed Machine Learning . . . , 2014.

[16] J. L. Moore, S. Chen, D. Turnbull, and T. Joachims. Taste Over Time -
The Temporal Dynamics of User Preferences. In ISMIR, 2013.

[17] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. WaveNet:
A Generative Model for Raw Audio. arXiv.org, September 2016.
arXiv:1609.03499v2.

[18] T. Sercu and V. Goel. Advances in Very Deep Convolutional Neural Net-
works for LVCSR. In Interspeech, 2016.

[19] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and Understanding
Recurrent Networks. arXiv.org, June 2015. arXiv:1506.02078v2.

[20] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve
neural network acoustic models. In ICML, 2013.

[21] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[22] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmid-
huber. LSTM: A Search Space Odyssey. arXiv.org, March 2015.
arXiv:1503.04069v1.

[23] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling. arXiv.org, 2014.
arXiv:1412.3555v1.

[24] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based
Recommendations with Recurrent Neural Networks. arXiv.org, 2016.
arXiv:1511.06939v4.

[25] Y. K. Tan, X. Xu, and Y. Liu. Improved Recurrent Neural Networks for
Session-based Recommendations. arXiv.org, 2016. arXiv:1606.08117v2.

[26] M. G. Ozsoy. From Word Embeddings to Item Recommendation. arXiv.org,
January 2016. arXiv:1601.01356v3.

[27] A. Van Den Oord, S. Dieleman, and B. Schrauwen. Deep content-based
music recommendation. In NIPS, pages 2643–2651, 2013.

168 CHAPTER 6

[28] F. Hill, K. Cho, A. Korhonen, and Y. Bengio. Learning to Understand
Phrases by Embedding the Dictionary. TACL, 2016.

[29] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In
ICLR, 2015.

[30] M. Charikar. Similarity estimation techniques from rounding algorithms.
In STOC, page 380, New York, New York, USA, 2002. ACM Press.

[31] R. Al-Rfou, G. Alain, A. Almahairi, and e. al. Theano - A Python frame-
work for fast computation of mathematical expressions. arXiv.org, 2016.
arXiv:1605.02688v1.

[32] C. N. dos Santos and M. Gatti. Deep Convolutional Neural Networks for
Sentiment Analysis of Short Texts. In COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics, pages 69–78, Dublin,
July 2014.

[33] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural Language Processing (Almost) from Scratch. The Jour-
nal of Machine Learning Research, 12, February 2011.

[34] C. De Boom, S. Van Canneyt, T. Demeester, and B. Dhoedt. Represen-
tation learning for very short texts using weighted word embedding aggre-
gation. Pattern Recognition Letters, 80(C):150–156, September 2016.

[35] J. Goodman. Classes for fast maximum entropy training. In 2001 IEEE
International Conference on Acoustics, Speech, and Signal Processing.
Proceedings (Cat. No.01CH37221, pages 561–564 vol.1. IEEE, 2001.

[36] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR
- Bayesian Personalized Ranking from Implicit Feedback. UAI, 2009.

[37] S. Ji, N. Satish, S. Li, and P. Dubey. Parallelizing Word2Vec in Multi-Core
and Many-Core Architectures. CoRR, cs.DC, 2016.

7
Conclusions and Future Research

Directions

“Do it for your people, do it for your pride. How you ever gonna know if you never
even try? Do it for your country, do it for your name. ’Cause there gonna be a day
when you’re standing in the hall of fame.”

—The Script, 2012

In the introduction of this book I have talked extensively about why
we, as human beings, are able to interpret the environment around us and
how we can interact with it. Our brain holds many complex world models
that process the information we get from our senses, and we are constantly
using these models to test hypotheses about the future through the mecha-
nisms of anticipation and expectation. We are still not able to fully explain
and understand how all this information, knowledge and reasoning is di-
gested in the human brain, and this will remain an important research topic
for the years to come.

Artificial intelligence and machine learning are modern research fields
that have the strongest ties with computer science and mathematics, but
also borrow insights from biology, psychology, philosophy, etc. Through
extensive research, many of the existing machine learning models are now
approaching or even surpassing human-level behavior on a couple of tasks
such as object recognition and playing games. In this doctoral thesis, I have
focused on those machine learning models that are able to process and

170 CHAPTER 7

learn from sequential data, such as text, music, playlists, Twitter streams,
etc. similar to how humans would analyze this data. Interpreting and writ-
ing text is usually an easy task for humans, because we have been trained
in this particular field for as long as we can remember. On the other hand,
for many of us, analyzing and composing music is a rather difficult assign-
ment, because we have little knowledge about musical patterns and music
theory, which is often only reserved for experienced musicians and com-
posers. Recommending songs, videos, clothes, etc. is not straightforward
either, because it requires extensive domain knowledge. A lot of us can
probably recall a particular retail store we often go to because of the use-
ful and (hopefully honest) advice the seller is providing to us. Even then
it is impossible to serve thousands or even millions of customers every
day while maintaining the same high-quality service level. And analyzing
the entire Twitter stream to look for event-related tweets is a task that is
nearly impossible for humans to execute. This is because of the amount
of data that is produced every second, which is just too high to process
manually. We have then entered the realm of so-called big data analytics,
which requires, next to the machine learning research itself, also a lot of
engineering effort.

It is needless to say that this doctoral thesis has only just scratched the
surface of the above-mentioned applications. In the coming years the area
of research around machine learning, deep learning and, in particular,
sequential modeling will continue to attract a multitude of researchers.
According to recent predictions, the field will keep growing extensively
and will gain importance throughout many industrial branches. Being
able to extract high-quality knowledge from data and to use it intelligently
and wisely for the purpose of marketing, retail, process optimization,
business insights, etc. will create a huge boost for anyone’s company. I
will now briefly go over the main conclusions of this book, after which I
will list a set of possible future research tracks and open challenges. In
particular, I will focus on two domains: text to knowledge, and recurrent
hierarchies.

Text to knowledge With the introduction of word2vec we are now able to
relate words to each other on a semantic level. In Chapter 3 we have de-
signed an out-of-the-box algorithm to combine word embeddings into one
single sentence embedding. We have shown that our method was able to
outperform naive sentence embedding schemes, as well as the tf-idf repre-
sentation that was used in Chapter 2. A sentence embedding that is based
on word2vec helps us to identify different texts that share a certain se-
mantic context, such as movie reviews or weather forecasts. If we were

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 171

to include more dimensions in the word2vec space, we would be able to
distinguish more detailed and fine-grained contexts from each other, such
as the difference between reviews for scifi, comedy, drama... movies.

One of the flaws of plain word2vec, however, is that there is no
detection or clear distinction made between words that appear in different
contexts, such as ‘apple’—the fruit, the tech company, the ’Big Apple’, etc.
Another important observation is that relationships between words are
practically lost, such as word hierarchies, synonyms, fixed expressions,
etc. For example, with word2vec we can discover that the words ‘father’,
‘mother’, ‘son’, ‘daughter’, ‘siblings’, ‘uncle’, ‘grandfather’... are seman-
tically related to each other, but we are unable to construct a detailed
family tree. The same goes for ‘Obama’, ‘Clinton’ and ‘Bush’: all three
men were presidents of the United States, but we don’t know the order in
which they held office, which political party each of them belonged to, etc.
How exactly we can extract these relationships from text and represent
them in the embedding space, or how we can learn to distinguish between
words with multiple meanings, are important research questions for the
future—although various research labs have been or are already looking
into these challenges.

Recurrent hierarchies In Chapter 4, the training and sampling principles
behind recurrent neural networks (RNNs) were discussed in detail. In the
subsequent chapters, we have used RNNs for the purpose of piano music
composition and song recommendations. By learning from a large collec-
tion of music, we have shown that these types of deep networks are able to
capture and model melodic fragments as well as harmonic progressions.
And on the Spotify platform we were able to capture the listening behav-
ior of users by processing the sequence of songs they have listened to. As a
result of this, low-dimensional user embeddings were created that can be
used to recommend new songs in an efficient and scalable manner.

A particular issue that we have not addressed in this thesis, is that many
of the real-life sequences we encounter follow some kind of hierarchical
structure. For example, if we look at any modern pop song, we notice
that it is composed of an intro, verses, repeated choruses, and potentially
a bridge and outro. The parts themselves are also built up of series of bars,
mostly multiples of 4 or 8, accompanied by some fixed chord progressions.
Each of these bars contains melodic fragments, also called ‘themes’, that
can be short or spread out across multiple bars. These themes are repeated
throughout the entire piece, in one form or another. What we therefore see
is that a pop song is a hierarchical structure of themes, chord progressions,
and choruses and verses. If, for a moment, we take a look at users on

172 CHAPTER 7

Spotify, we also notice a hierarchy in their listening behavior as well. At
the lowest level we have the separate tracks. One level up, these tracks
appear in separate albums, playlists or have been released by the same
artist. And these albums might all belong to the same genre, or each to a
different genre. The listening behavior of a user is therefore a walk through
genres, within these genres through albums and artists, and on the most
fine-grained level it is a walk through tracks.

As we have discussed in the introductory chapter, deep neural net-
works that process images are able to model features in a hierarchical fash-
ion, e.g. lines, shapes, eyes, faces, ... That is, after all, what we observe from
the learned filters in these networks. For recurrent neural networks, on the
other hand, it is less apparent whether stacked layers are able to extract a
sound hierarchical structure from the presented sequences. And although
LSTMs and GRUs are designed to counter the problem of vanishing gradi-
ents, thereby enabling us to process longer sequences, in practice it turns
out that, at least in the context of music, important information tends to
get lost anyway after a few hundred or more tokens1. In future research on
RNNs, and on sequence modeling in general, it will therefore be important
to look further into sequence hierarchy. Either by explicitly modeling the
hierarchy with the help of specific domain knowledge, or by creating novel
deep recurrent architectures that are stimulated to look for hierarchies in
sequences. Next to this, it will also become more important to be able to re-
tain specific pieces of information across more than hundreds or thousands
of tokens in the sequence, such as melodic themes in a musical composi-
tion. For this purpose, I mainly look towards RNNs with specific memory
cells, so-called memory networks. Although there has been done extensive
research in this field, I believe that their power still has to be proven in the
context of music generation.

As a final personal remark, I believe that the power of RNNs has not yet
been explored or exploited to its full extent. They will continue to amaze
us in the context of various applications and research domains. And once
we are able to figure out how to deploy them efficiently on low-powered
end devices such as smartphones, watches, sensors, etc. this will further
open up the already wide range of deep learning applications.

1Claim based on a conversation with Aiva Technologies, a Luxemburg-based start-up
company that composes movie and game soundtracks.

	Title page
	Dankwoord
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Samenvatting
	Summary
	Introduction
	Life is a sequence
	Anticipation, expectation and surprise
	Deterministic and stochastic sequences
	Artificial intelligence
	Machine learning
	Deep learning
	Representation learning
	Research contributions
	Publications
	Publications in international journals(listed in the Science Citation Index)
	Publications in international conferences(listed in the Science Citation Index)
	Publications in other international conferences
	Poster publications in international conferences

	References

	Semantics-driven Event Clustering in Twitter Feeds
	Introduction
	Related work
	Event clustering
	Baseline: single pass clustering
	Semantics-driven clustering
	Hashtag-level semantics

	Data collection and processing
	Event definition
	Collecting data
	Collecting events

	Results
	Performance measures
	Results

	Conclusion
	References

	Representation Learning for Very Short Texts using Weighted Word Embedding Aggregation
	Introduction
	Related work
	Methodology
	Basic architecture
	Loss functions
	Texts with variable length

	Data collection
	Wikipedia
	Twitter

	Experiments
	Baselines
	Details on the learning procedure
	Results on Wikipedia
	Results on Twitter

	Conclusion
	References

	Character-level Recurrent Neural Networks in Practice: Comparing Training and Sampling Schemes
	Introduction
	Character-level Recurrent Neural Networks
	Truncated backpropagation through time
	Common RNN layers

	Training and sampling schemes for character-level RNNs
	High-level overview
	Training algorithms
	Sampling algorithms
	Scheme 1 – Multi-loss training, windowed sampling
	Scheme 2 – Single-loss training, windowed sampling
	Scheme 3 – Multi-loss training, progressive sampling
	Scheme 4 – Conditional multi-loss training, progressive sampling
	Literature overview

	Evaluation
	Experimental setup
	Datasets
	Experiments
	Take-away messages

	Future research tracks
	Conclusion
	References

	Polyphonic Piano Music Composition with Composer Style Injection using Recurrent Neural Networks
	Introduction
	Problem setting
	Methodology
	Representing musical notes
	Modeling music with recurrent neural networks
	RNN architecture
	Training and sampling details

	Experiments
	Data gathering
	Practical and experimental settings
	Network layer analysis
	User listening experiments

	Conclusion
	References

	Large-Scale User Modeling with Recurrent Neural Networks for Music Discovery on Multiple Time Scales
	Introduction
	Motivation and Related Work
	RNNs for Music Discovery
	Learning song embeddings
	Learning user taste vectors
	Recommending songs
	Incorporating play context
	User and model updates

	Data Gathering and Analysis
	Training word2vec
	Data processing and filtering
	User data analysis

	Experiments
	Network architecture
	Baselines
	Results

	Conclusions
	References

	Conclusions and Future Research Directions

