3,273 research outputs found

    Real-time performance modelling of a sustained attention to response task

    Get PDF
    Vigilance declines when exposed to highly predictable and uneventful tasks. Monotonous tasks provide little cognitive and motor stimulation and contribute to human errors. This paper aims to model and detect vigilance decline in real time through participant’s reaction times during a monotonous task. A lab-based experiment adapting the Sustained Attention to Response Task (SART) is conducted to quantify the effect of monotony on overall performance. Then relevant parameters are used to build a model detecting hypovigilance throughout the experiment. The accuracy of different mathematical models are compared to detect in real-time – minute by minute - the lapses in vigilance during the task. We show that monotonous tasks can lead to an average decline in performance of 45%. Furthermore, vigilance modelling enables to detect vigilance decline through reaction times with an accuracy of 72% and a 29% false alarm rate. Bayesian models are identified as a better model to detect lapses in vigilance as compared to Neural Networks and Generalised Linear Mixed Models. This modelling could be used as a framework to detect vigilance decline of any human performing monotonous tasks

    The Human Touch:Using a Webcam to Autonomously Monitor Compliance During Visual Field Assessments

    Get PDF
    Purpose: To explore the feasibility of using various easy-to-obtain biomarkers to monitor non-compliance (measurement error) during visual field assessments. Methods: Forty-two healthy adults (42 eyes) and seven glaucoma patients (14 eyes) underwent two same-day visual field assessments. An ordinary webcam was used to compute seven potential biomarkers of task compliance, based primarily on eye gaze, head pose, and facial expression. We quantified the association between each biomarker and measurement error, as defined by (1) test-retest differences in overall test scores (mean sensitivity), and (2) failures to respond to visible stimuli on individual trials (stimuli -3 dB or more brighter than threshold). Results: In healthy eyes, three of the seven biomarkers were significantly associated with overall (test-retest) measurement error (P = 0.003-0.007), and at least two others exhibited possible trends (P = 0.052-0.060). The weighted linear sum of all seven biomarkers was associated with overall measurement error, in both healthy eyes (r = 0.51, P <0.001) and patients (r = 0.65, P <0.001). Five biomarkers were each associated with failures to respond to visible stimuli on individual trials (all P <0.001). Conclusions: Inexpensive, autonomous measures of task compliance are associated with measurement error in visual field assessments, in terms of both the overall reliability of a test and failures to respond on particular trials ("lapses"). This could be helpful for identifying low-quality assessments and for improving assessment techniques (e.g., by discounting suspect responses or by automatically triggering comfort breaks or encouragement). Translational Relevance: This study explores a potential way of improving the reliability of visual field assessments, a crucial but notoriously unreliable clinical measure

    Ability of dyslexic and control teenagers to sustain attention and inhibit responses

    Get PDF
    Dyslexia and attentional difficulty have often been linked, but little is known of the nature of the supposed attentional disorder. The Sustained Attention to Response Task (SART: Robertson, Manly, Andrade, Baddeley and Yiend, 1997) was designed as a measure of sustained attention and requires the withholding of responses to rare (one in nine) targets. To investigate the nature of the attentional disorder in dyslexia, this paper reports two studies which examined the performance of teenagers with dyslexia and their age-matched controls on the SART, the squiggle SART (a modification of the SART using novel and unlabellable stimuli rather than digits) and the go-gap-stop test of response inhibition (GGST). Teenagers with dyslexia made significantly more errors than controls on the original SART, but not the squiggle SART. There were no group differences on the GGST. After controlling for speed of reaction time in a sequential multiple regression predicting SART false alarms, false alarms on the GGST accounted for up to 22% extra variance in the control groups (although less on the squiggle SART) but negligible amounts of variance in the dyslexic groups. We interpret the results as reflecting a stimulus recognition automaticity deficit in dyslexia, rather than a sustained attention deficit. Furthermore, results suggest that response inhibition is an important component of performance on the standard SART when stimuli are recognised automatically

    Personality traits and beliefs about peers\u2019 on-road behaviors as predictors of adolescents\u2019 moped-riding profiles.

    Get PDF
    Several efforts aimed at discriminating between different degrees of on-road risky attitudes have been devoted to the identification of personality profiles among young drivers. However, the results are often inconsistent because of the limits of selfreport measures. To overcome these limits, we tried to identify different profiles based on our study participants\u2019 driving performances in a virtual environment and to look for psychological predictors of inclusion in one of three profiles. One-hundred and fourteen inexperienced adolescents were involved in this study, which included two experimental sessions. During the first, before riding along five virtual courses on a moped simulator, participants\u2019 sensation seeking, locus of control, aggressiveness and beliefs about their peers\u2019 on-road behaviors were measured by means of self-report tools. During the second session, the participants drove the simulator along six courses that were different from those faced in the first session. A cluster analysis was run on a wide number of indexes extracted from the participants\u2019 performances to detect different riding profiles. Three profiles emerged (Imprudent, Prudent and Insecure), with specific riding patterns. The profiles also differed in terms of riding safety, assessed by means of the scores automatically given by the simulator to the participants\u2019 performances. Reporting an external locus of control, underestimating peers\u2019 on-road risky behaviors and showing less concern for fate among the possible causes of crashes are predictors that increase the risk of being included in the Imprudent profile. Low levels of dangerous thrill seeking predict inclusion in the Prudent profile, whereas high rates of self-reported anger play a role in discriminating the Insecure riders from the other profiles. The study indicates that it is possible to identify riding profiles with different degrees of on-road safety among inexperienced adolescents by means of simulated road environments. Moreover, inclusion in these profiles is predicted by different patterns of personality variables and beliefs. Further research is needed to verify the validity of these conclusions in real road conditions

    Early error detection predicted by reduced pre-response control process: an ERP topographic mapping study

    Get PDF
    Advanced ERP topographic mapping techniques were used to study error monitoring functions in human adult participants, and test whether proactive attentional effects during the pre-response time period could later influence early error detection mechanisms (as measured by the ERN component) or not. Participants performed a speeded go/nogo task, and made a substantial number of false alarms that did not differ from correct hits as a function of behavioral speed or actual motor response. While errors clearly elicited an ERN component generated within the dACC following the onset of these incorrect responses, I also found that correct hits were associated with a different sequence of topographic events during the pre-response baseline time-period, relative to errors. A main topographic transition from occipital to posterior parietal regions (including primarily the precuneus) was evidenced for correct hits similar to 170-150 ms before the response, whereas this topographic change was markedly reduced for errors. The same topographic transition was found for correct hits that were eventually performed slower than either errors or fast (correct) hits, confirming the involvement of this distinctive posterior parietal activity in top-down attentional control rather than motor preparation. Control analyses further ensured that this pre-response topographic effect was not related to differences in stimulus processing. Furthermore, I found a reliable association between the magnitude of the ERN following errors and the duration of this differential precuneus activity during the pre-response baseline, suggesting a functional link between an anticipatory attentional control component subserved by the precuneus and early error detection mechanisms within the dACC. These results suggest reciprocal links between proactive attention control and decision making processes during error monitoring

    Anxiety-mediated facilitation of behavioral inhibition: threat processing and defensive reactivity during a go/nogo task

    Get PDF
    Anxiety can be broken down into multiple facets including behavioral components, such as defensive reactivity, and cognitive components, such as distracting anxious thoughts. In a previous study, we showed that anticipation of unpredictable shocks facilitated response inhibition to infrequent nogo trials during a go/nogo task. The present study extends this work to examine the distinct contribution of defensive reactivity, measures with fear-potentiated startle, and anxious thought, assessed with thought probes, on go and nogo performance. Consistent with our prior findings, shock anticipation facilitated response inhibition (i.e., reduced errors of commission) on the nogo trials. Regression analyses showed that 1) nogo accuracy was positively associated with fear-potentiated startle and negatively associated with threat-related/task-unrelated thoughts and 2) go accuracy correlated negatively with fear-potentiated startle. Thus, while the present findings confirm the influence of anxiety on response inhibition, they also show that such influence reflects the balance between the positive effect of defensive reactivity and the negative effect of distracting anxious thoughts
    corecore