2,518 research outputs found

    Functionalization and Characterization of Magnetic Nanoparticles for the Detection of Ferritin Accumulation in Alzheimer's Disease

    Get PDF
    Early diagnosis in Alzheimer's disease (AD), prior to the appearance of marked clinical symptoms, is critical to prevent irreversible neuronal damage and neural malfunction that lead to dementia and death. Therefore, there is an urgent need to generate new contrast agents which reveal by a noninvasive method the presence of some of the pathological signs of AD. In the present study, we demonstrate for the first time a new nanoconjugate composed of magnetic nanoparticles bound to an antiferritin antibody, which has been developed based on the existence of iron deposits and high levels of the ferritin protein present in areas with a high accumulation of amyloid plaques (particularly the subiculum in the hippocampal area) in the brain of a transgenic mouse model with five familial AD mutations. Both in vitro and after intravenous injection, functionalized magnetic nanoparticles were able to recognize and bind specifically to the ferritin protein accumulated in the subiculum area of the AD transgenic mice.Fil: Fernández Cabada, Tamara. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Madrid; EspañaFil: Martínez Serrano, Alberto. Consejo Superior de Investigaciones Científicas; España. Universidad Autónoma de Madrid; EspañaFil: Cussó, Lorena. Instituto de Investigacion Sanitaria Gregorio Marañón; España. Universidad Carlos III de Madrid; España. Centro de Investigación Biomédica en Red de Salud Mental; EspañaFil: Desco, Manuel. Instituto de Investigacion Sanitaria Gregorio Marañón; España. Centro de Investigación Biomédica en Red de Salud Mental; España. Universidad Carlos III de Madrid; EspañaFil: Ramos Gómez, Milagros. Universidad Politécnica de Madrid; Españ

    Can MRI T1 be used to detect early changes in 5xFAD Alzheimer’s mouse brain?

    Get PDF
    In the present study, we have tested whether MRI T1 relaxation time is a sensitive marker to detect early stages of amyloidosis and gliosis in the young 5xFAD transgenic mouse, a well-established animal model for Alzheimer's disease.5xFAD and wild-type mice were imaged in a 4.7 T Varian horizontal bore MRI system to generate T1 quantitative maps using the spin-echo multi-slice sequence. Following immunostaining for glial fibrillary acidic protein, Iba-1, and amyloid-β, T1 and area fraction of staining were quantified in the posterior parietal and primary somatosensory cortex and corpus callosum.In comparison with age-matched wild-type mice, we observed first signs of amyloidosis in 2.5-month-old 5xFAD mice, and development of gliosis in 5-month-old 5xFAD mice. In contrast, MRI T1 relaxation times of young, i.e., 2.5- and 5-month-old, 5xFAD mice were not significantly different to those of age-matched wild-type controls. Furthermore, although disease progression was detectable by increased amyloid-β load in the brain of 5-month-old 5xFAD mice compared with 2.5-month-old 5xFAD mice, MRI T1 relaxation time did not change.In summary, our data suggest that MRI T1 relaxation time is neither a sensitive measure of disease onset nor progression at early stages in the 5xFAD mouse transgenic mouse model

    Small-Animal PET Imaging of Amyloid-Beta Plaques with [11C]PiB and Its Multi-Modal Validation in an APP/PS1 Mouse Model of Alzheimer's Disease

    Get PDF
    In vivo imaging and quantification of amyloid-β plaque (Aβ) burden in small-animal models of Alzheimer's disease (AD) is a valuable tool for translational research such as developing specific imaging markers and monitoring new therapy approaches. Methodological constraints such as image resolution of positron emission tomography (PET) and lack of suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging of Aβ in mouse brain with [11C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to measure Aβ at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological quantification and radioligand binding assays. Specific [11C]PiB uptake in individual brain regions with Aβ deposition was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of Aβ pathology, old homozygous AD animals (21 months) showed the highest uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [11C]PiB imaging of Aβ in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal Aβ imaging. It allows longitudinal imaging studies with follow-up periods of approximately one and a half years and provides a foundation for translational Alzheimer neuroimaging in transgenic mice

    Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo.

    Get PDF
    Amyloid imaging represents a major advance in neuroscience, enabling the detection and quantification of pathologic protein aggregations in the brain. In this review we survey current amyloid imaging techniques, focusing on positron emission tomography (PET) with (11)carbon-labelled Pittsburgh Compound-B ((11)C-PIB), the most extensively studied and best validated tracer. PIB binds specifically to fibrillar beta-amyloid (Abeta) deposits, and is a sensitive marker for Abeta pathology in cognitively normal older individuals and patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). PIB-PET provides us with a powerful tool to examine in vivo the relationship between amyloid deposition, clinical symptoms, and structural and functional brain changes in the continuum between normal aging and AD. Amyloid imaging studies support a model in which amyloid deposition is an early event on the path to dementia, beginning insidiously in cognitively normal individuals, and accompanied by subtle cognitive decline and functional and structural brain changes suggestive of incipient AD. As patients progress to dementia, clinical decline and neurodegeneration accelerate and proceed independently of amyloid accumulation. In the future, amyloid imaging is likely to supplement clinical evaluation in selecting patients for anti-amyloid therapies, while MRI and FDG-PET may be more appropriate markers of clinical progression

    Investigating Glymphatic Function In Alzheimer’s Disease Pathology

    Get PDF
    Alzheimer’s disease is fast becoming the greatest healthcare challenge of our time, with no known cure to-date. Brought about by the toxic formation of plaques of amyloid-β and tangles of tau in the brain, much is still unknown about the precise mechanisms that initiate these protein accumulations, thought to occur decades before clinical manifestation of symptoms. One theory is that an imbalance between the production of these proteins and their removal from the brain promotes retention that eventually aggregates into entities that devastate molecular and cellular machinery. Thus, targeting waste clearance mechanisms responsible for removing cerebral metabolites, including amyloid-β and tau, present novel, enthralling research targets. The glymphatic system is one such pathway that has been recently characterised. Considered a surrogate for lymphatics which are largely lacking in the brain, this fluid network relies on the water channel aquaporin-4, expressed highly on glia, thus being named “glymphatics”. In this work, first, a surgical protocol was established in the mouse brain to facilitate the delivery of tracer molecules into the cerebrospinal fluid. Direct, single time-point, histological assessment of fluorescent tracer distribution was performed to check consistency with previous characterisation of glymphatics in the mouse brain. Glymphatics were then visualised dynamically across the whole brain using magnetic resonance imaging. Glymphatic patterns were investigated in real-time by imaging fluid dynamics in the brain alongside a potent blocker of aquaporin-4. Next, imaging was used to characterise glymphatic changes and aquaporin-4 profiles in mouse models of Alzheimer’s pathology. This revealed a time-dependant relationship between glymphatics and tau accumulation. Finally, the findings were extrapolated onto humans by studying aquaporin-4 modifications in subjects with and without cognitive deficits. Here, the crucial relationship between aquaporin-4 and pathological aggregates of tau and amyloid-β was determined. Furthermore, dystrobrevin, a membrane protein linked to aquaporin-4, was also profiled in the setting of aging and amyloid-β pathology. The work presented herein elucidates the role of glymphatic perturbances in the context of Alzheimer’s disease and clarifies the implications of aquaporin-4 mediated clearance in neurodegeneration

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases
    corecore